Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee
2015-07-01
[Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.
Upper Extremity Deep Vein Thromboses: The Bowler and the Barista.
Stake, Seth; du Breuil, Anne L; Close, Jeremy
2016-01-01
Effort thrombosis of the upper extremity refers to a deep venous thrombosis of the upper extremity resulting from repetitive activity of the upper limb. Most cases of effort thrombosis occur in young elite athletes with strenuous upper extremity activity. This article reports two cases who both developed upper extremity deep vein thromboses, the first being a 67-year-old bowler and the second a 25-year-old barista, and illustrates that effort thrombosis should be included in the differential diagnosis in any patient with symptoms concerning DVT associated with repetitive activity. A literature review explores the recommended therapies for upper extremity deep vein thromboses.
Upper Extremity Deep Vein Thromboses: The Bowler and the Barista
du Breuil, Anne L.; Close, Jeremy
2016-01-01
Effort thrombosis of the upper extremity refers to a deep venous thrombosis of the upper extremity resulting from repetitive activity of the upper limb. Most cases of effort thrombosis occur in young elite athletes with strenuous upper extremity activity. This article reports two cases who both developed upper extremity deep vein thromboses, the first being a 67-year-old bowler and the second a 25-year-old barista, and illustrates that effort thrombosis should be included in the differential diagnosis in any patient with symptoms concerning DVT associated with repetitive activity. A literature review explores the recommended therapies for upper extremity deep vein thromboses. PMID:27800207
Predictors of Upper-Extremity Physical Function in Older Adults.
Hermanussen, Hugo H; Menendez, Mariano E; Chen, Neal C; Ring, David; Vranceanu, Ana-Maria
2016-10-01
Little is known about the influence of habitual participation in physical exercise and diet on upper-extremity physical function in older adults. To assess the relationship of general physical exercise and diet to upper-extremity physical function and pain intensity in older adults. A cohort of 111 patients 50 or older completed a sociodemographic survey, the Rapid Assessment of Physical Activity (RAPA), an 11-point ordinal pain intensity scale, a Mediterranean diet questionnaire, and three Patient- Reported Outcomes Measurement Information System (PROMIS) based questionnaires: Pain Interference to measure inability to engage in activities due to pain, Upper-Extremity Physical Function, and Depression. Multivariable linear regression modeling was used to characterize the association of physical activity, diet, depression, and pain interference to pain intensity and upper-extremity function. Higher general physical activity was associated with higher PROMIS Upper-Extremity Physical Function and lower pain intensity in bivariate analyses. Adherence to the Mediterranean diet did not correlate with PROMIS Upper-Extremity Physical Function or pain intensity in bivariate analysis. In multivariable analyses factors associated with higher PROMIS Upper-Extremity Physical Function were male sex, non-traumatic diagnosis and PROMIS Pain Interference, with the latter accounting for most of the observed variability (37%). Factors associated with greater pain intensity in multivariable analyses included fewer years of education and higher PROMIS Pain Interference. General physical activity and diet do not seem to be as strongly or directly associated with upper-extremity physical function as pain interference.
Lowes, Linda P; Alfano, Lindsay N; Yetter, Brent A; Worthen-Chaudhari, Lise; Hinchman, William; Savage, Jordan; Samona, Patrick; Flanigan, Kevin M; Mendell, Jerry R
2013-03-14
Individuals with dystrophinopathy lose upper extremity strength in proximal muscles followed by those more distal. Current upper extremity evaluation tools fail to fully capture changes in upper extremity strength and function across the disease spectrum as they tend to focus solely on distal ability. The Kinect by Microsoft is a gaming interface that can gather positional information about an individual's upper extremity movement which can be used to determine functional reaching volume, velocity of movement, and rate of fatigue while playing an engaging video game. The purpose of this study was to determine the feasibility of using the Kinect platform to assess upper extremity function in individuals with dystrophinopathy across the spectrum of abilities. Investigators developed a proof-of-concept device, ACTIVE (Abilities Captured Through Interactive Video Evaluation), to measure functional reaching volume, movement velocity, and rate of fatigue. Five subjects with dystrophinopathy and 5 normal controls were tested using ACTIVE during one testing session. A single subject with dystrophinopathy was simultaneously tested with ACTIVE and a marker-based motion analysis system to establish preliminary validity of measurements. ACTIVE proof-of-concept ranked the upper extremity abilities of subjects with dystrophinopathy by Brooke score, and also differentiated them from performance of normal controls for the functional reaching volume and velocity tests. Preliminary test-retest reliability of the ACTIVE for 2 sequential trials was excellent for functional reaching volume (ICC=0.986, p<0.001) and velocity trials (ICC=0.963, p<0.001). The data from our pilot study with ACTIVE proof-of-concept demonstrates that newly available gaming technology has potential to be used to create a low-cost, widely-accessible and functional upper extremity outcome measure for use with children and adults with dystrophinopathy.
Park, Jin-Young; Chang, Moonyoung; Kim, Kyeong-Mi; Kim, Hee-Jung
2015-06-01
The purpose of this study was to examine the effects of mirror therapy on upper-extremity function and activities of daily living in chronic stroke patients. [Subjects and Methods] Fifteen subjects were each assigned to a mirror therapy group and a sham therapy group. The Fugl-Meyer Motor Function Assessment and the Box and Block Test were performed to compare paretic upper-extremity function and hand coordination abilities. The functional independence measurement was conducted to compare abilities to perform activities of daily living. [Results] Paretic upper-extremity function and hand coordination abilities were significantly different between the mirror therapy and sham therapy groups. Intervention in the mirror therapy group was more effective than in the sham therapy group for improving the ability to perform activities of daily living. Self-care showed statistically significant differences between the two groups. [Conclusion] Mirror therapy is effective in improving paretic upper-extremity function and activities of daily living in chronic stroke patients.
Park, Jin-Young; Chang, Moonyoung; Kim, Kyeong-Mi; Kim, Hee-Jung
2015-01-01
The purpose of this study was to examine the effects of mirror therapy on upper-extremity function and activities of daily living in chronic stroke patients. [Subjects and Methods] Fifteen subjects were each assigned to a mirror therapy group and a sham therapy group. The Fugl-Meyer Motor Function Assessment and the Box and Block Test were performed to compare paretic upper-extremity function and hand coordination abilities. The functional independence measurement was conducted to compare abilities to perform activities of daily living. [Results] Paretic upper-extremity function and hand coordination abilities were significantly different between the mirror therapy and sham therapy groups. Intervention in the mirror therapy group was more effective than in the sham therapy group for improving the ability to perform activities of daily living. Self-care showed statistically significant differences between the two groups. [Conclusion] Mirror therapy is effective in improving paretic upper-extremity function and activities of daily living in chronic stroke patients. PMID:26180297
Application of RFID technology-upper extremity rehabilitation training.
Chen, Chih-Chen; Chen, Yu-Luen; Chen, Shih-Ching
2016-01-01
[Purpose] Upper extremity rehabilitation after an injury is very important. This study proposes radio frequency identification (RFID) technology to improve and enhance the effectiveness of the upper extremity rehabilitation. [Subjects and Methods] People use their upper extremities to conduct daily activities. When recovering from injuries, many patients neglect the importance of rehabilitation, which results in degraded function. This study recorded the training process using the traditional rehabilitation hand gliding cart with a RFID reader, RFID tags in the panel, and a servo host computer. [Results] Clinical evidence, time taken to achieve a full score, counts of missing the specified spots, and Brunnstrom stage of aided recovery, the proximal part of the upper extremity show that the RFID-based upper extremity training significantly and reduce negative impacts of the disability in daily life and activities. [Conclusion] This study combined a hand-gliding cart with an RFID reader, and when patients moved the cart, the movement could be observed via the activated RFID tags. The training data was collected and quantified for a better understanding of the recovery status of the patients. Each of the participating patients made progress as expected.
Gutefeldt, Kerstin; Hedman, Christina A; Thyberg, Ingrid S M; Bachrach-Lindström, Margareta; Arnqvist, Hans J; Spångeus, Anna
2017-11-05
To investigate the prevalence, activity limitations and potential risk factors of upper extremity impairments in type 1 diabetes in comparison to controls. In a cross-sectional population-based study in the southeast of Sweden, patients with type 1 diabetes <35 years at onset, duration ≥20 years, <67 years old and matched controls were invited to answer a questionnaire on upper extremity impairments and activity limitations and to take blood samples. Seven hundred and seventy-three patients (ages 50 ± 10 years, diabetes duration 35 ± 10 years) and 708 controls (ages 54 ± 9 years) were included. Shoulder pain and stiffness, hand paraesthesia and finger impairments were common in patients with a prevalence of 28-48%, which was 2-4-folds higher than in controls. Compared to controls, the patients had more bilateral impairments, often had coexistence of several upper extremity impairments, and in the presence of impairments, reported more pronounced activity limitations. Female gender (1.72 (1.066-2.272), p = 0.014), longer duration (1.046 (1.015-1.077), p = 0.003), higher body mass index (1.08 (1.017-1.147), p = 0.013) and HbA1c (1.029 (1.008-1.05), p = 0.007) were associated with upper extremity impairments. Compared to controls, patients with type 1 diabetes have a high prevalence of upper extremity impairments, often bilateral, which are strongly associated with activity limitations. Recognising these in clinical practise is crucial, and improved preventative, therapeutic and rehabilitative interventions are needed. Implications for rehabilitation Upper extremity impairments affecting the shoulder, hand and fingers are common in patients with type 1 diabetes, the prevalence being 2-4-fold higher compared to non-diabetic persons. Patients with diabetes type 1 with upper extremity impairments have more pronounced limitations in daily activities compared to controls with similar impairments. Recognising upper extremity impairments and activity limitations are important and improved preventive, therapeutic and rehabilitation methods are needed.
Park, Jung Ho; Kim, Hee-Chun; Lee, Jae Hoon; Kim, Jin Soo; Roh, Si Young; Yi, Cheol Ho; Kang, Yoon Kyoo; Kwon, Bum Sun
2009-05-01
While the lower extremities support the weight and move the body, the upper extremities are essential for the activities of daily living, which require many detailed movements. Therefore, a disability of the upper extremity function should include a limitation of all motions of the joints and sensory loss, which affects the activities. In this study, disabilities of the upper extremities were evaluated according to the following conditions: 1) amputation, 2) joint contracture, 3) diseases of upper extremity, 4) weakness, 5) sensory loss of the finger tips, and 6) vascular and lymphatic diseases. The order of 1) to 6) is the order of major disability and there is no need to evaluate a lower order disability when a higher order one exists in the same joint or a part of the upper extremity. However, some disabilities can be either added or substituted when there are special contributions from multiple disabilities. An upper extremity disability should be evaluated after the completion of treatment and full adaptation when further functional changes are not expected. The dominance of the right or left hand before the disability should not be considered when there is a higher rate of disability.
Shim, Je-Myung; Kwon, Hae-Yeon; Kim, Ha-Roo; Kim, Bo-In; Jung, Ju-Hyeon
2013-12-01
[Purpose] The aim of this study was to assess the effect of Nordic pole walking on the electromyographic activities of upper extremity and lower extremity muscles. [Subjects and Methods] The subjects were randomly divided into two groups as follows: without Nordic pole walking group (n=13) and with Nordic pole walking group (n=13). The EMG data were collected by measurement while the subjects walking on a treadmill for 30 minutes by measuring from one heel strike to the next. [Results] Both the average values and maximum values of the muscle activity of the upper extremity increased in both the group that used Nordic poles and the group that did not use Nordic poles, and the values showed statistically significant differences. There was an increase in the average value for muscle activity of the latissimus dorsi, but the difference was not statistically significant, although there was a statistically significant increase in its maximum value. The average and maximum values for muscle activity of the lower extremity did not show large differences in either group, and the values did not show any statistically significant differences. [Conclusion] The use of Nordic poles by increased muscle activity of the upper extremity compared with regular walking but did not affect the lower extremity.
Shim, Je-myung; Kwon, Hae-yeon; Kim, Ha-roo; Kim, Bo-in; Jung, Ju-hyeon
2014-01-01
[Purpose] The aim of this study was to assess the effect of Nordic pole walking on the electromyographic activities of upper extremity and lower extremity muscles. [Subjects and Methods] The subjects were randomly divided into two groups as follows: without Nordic pole walking group (n=13) and with Nordic pole walking group (n=13). The EMG data were collected by measurement while the subjects walking on a treadmill for 30 minutes by measuring from one heel strike to the next. [Results] Both the average values and maximum values of the muscle activity of the upper extremity increased in both the group that used Nordic poles and the group that did not use Nordic poles, and the values showed statistically significant differences. There was an increase in the average value for muscle activity of the latissimus dorsi, but the difference was not statistically significant, although there was a statistically significant increase in its maximum value. The average and maximum values for muscle activity of the lower extremity did not show large differences in either group, and the values did not show any statistically significant differences. [Conclusion] The use of Nordic poles by increased muscle activity of the upper extremity compared with regular walking but did not affect the lower extremity. PMID:24409018
Stress fractures of the ribs and upper extremities: causation, evaluation, and management.
Miller, Timothy L; Harris, Joshua D; Kaeding, Christopher C
2013-08-01
Stress fractures are common troublesome injuries in athletes and non-athletes. Historically, stress fractures have been thought to predominate in the lower extremities secondary to the repetitive stresses of impact loading. Stress injuries of the ribs and upper extremities are much less common and often unrecognized. Consequently, these injuries are often omitted from the differential diagnosis of rib or upper extremity pain. Given the infrequency of this diagnosis, few case reports or case series have reported on their precipitating activities and common locations. Appropriate evaluation for these injuries requires a thorough history and physical examination. Radiographs may be negative early, requiring bone scintigraphy or MRI to confirm the diagnosis. Nonoperative and operative treatment recommendations are made based on location, injury classification, and causative activity. An understanding of the most common locations of upper extremity stress fractures and their associated causative activities is essential for prompt diagnosis and optimal treatment.
Ekstrand, Elisabeth; Rylander, Lars; Lexell, Jan; Brogårdh, Christina
2016-11-02
Despite that disability of the upper extremity is common after stroke, there is limited knowledge how it influences self-perceived ability to perform daily hand activities. The aim of this study was to describe which daily hand activities that persons with mild to moderate impairments of the upper extremity after stroke perceive difficult to perform and to evaluate how several potential factors are associated with the self-perceived performance. Seventy-five persons (72 % male) with mild to moderate impairments of the upper extremity after stroke (4 to 116 months) participated. Self-perceived ability to perform daily hand activities was rated with the ABILHAND Questionnaire. The perceived ability to perform daily hand activities and the potentially associated factors (age, gender, social and vocational situation, affected hand, upper extremity pain, spasticity, grip strength, somatosensation of the hand, manual dexterity, perceived participation and life satisfaction) were evaluated by linear regression models. The activities that were perceived difficult or impossible for a majority of the participants were bimanual tasks that required fine manual dexterity of the more affected hand. The factor that had the strongest association with perceived ability to perform daily hand activities was dexterity (p < 0.001), which together with perceived participation (p = 0.002) explained 48 % of the variance in the final multivariate model. Persons with mild to moderate impairments of the upper extremity after stroke perceive that bimanual activities requiring fine manual dexterity are the most difficult to perform. Dexterity and perceived participation are factors specifically important to consider in the rehabilitation of the upper extremity after stroke in order to improve the ability to use the hands in daily life.
Ju, Yumi; Yoon, In-Jin
2018-01-01
[Purpose] Modified constraint-induced movement therapy and mirror therapy are recognized as stroke rehabilitation methods. The aim of the present study was to determine whether these therapies influence upper extremity function and whether upper extremity function influences the ability to perform activities of daily living in further. [Subjects and Methods] Twenty-eight stroke patients participated in the study. Interventions were administered five times per week for 3 weeks. Activities of daily living or self-exercise were performed after modified constraint-induced movement therapy or mirror therapy, respectively. Analyses were performed on the results of the Manual Function Test and the Korean version of the Modified Barthel Index to determine the factors influencing activities of daily living. [Results] Both groups showed improvement in upper extremity function, but only the modified constraint-induced movement therapy group showed a correlation between upper extremity function and performance in the hygiene, eating, and dressing. The improved hand manipulation function found in the modified constraint-induced movement therapy had statistically significant influences on eating and dressing. [Conclusion] Our results suggest that a patient's attempts to move the affected side result in improved performance in activities of daily living as well as physical function.
Ju, Yumi; Yoon, In-Jin
2018-01-01
[Purpose] Modified constraint-induced movement therapy and mirror therapy are recognized as stroke rehabilitation methods. The aim of the present study was to determine whether these therapies influence upper extremity function and whether upper extremity function influences the ability to perform activities of daily living in further. [Subjects and Methods] Twenty-eight stroke patients participated in the study. Interventions were administered five times per week for 3 weeks. Activities of daily living or self-exercise were performed after modified constraint-induced movement therapy or mirror therapy, respectively. Analyses were performed on the results of the Manual Function Test and the Korean version of the Modified Barthel Index to determine the factors influencing activities of daily living. [Results] Both groups showed improvement in upper extremity function, but only the modified constraint-induced movement therapy group showed a correlation between upper extremity function and performance in the hygiene, eating, and dressing. The improved hand manipulation function found in the modified constraint-induced movement therapy had statistically significant influences on eating and dressing. [Conclusion] Our results suggest that a patient’s attempts to move the affected side result in improved performance in activities of daily living as well as physical function. PMID:29410571
Tedesco Triccas, L; Burridge, J H; Hughes, A M; Pickering, R M; Desikan, M; Rothwell, J C; Verheyden, G
2016-01-01
To systematically review the methodology in particular treatment options and outcomes and the effect of multiple sessions of transcranial direct current stimulation (tDCS) with rehabilitation programmes for upper extremity recovery post stroke. A search was conducted for randomised controlled trials involving tDCS and rehabilitation for the upper extremity in stroke. Quality of included studies was analysed using the Modified Downs and Black form. The extent of, and effect of variation in treatment parameters such as anodal, cathodal and bi-hemispheric tDCS on upper extremity outcome measures of impairment and activity were analysed using meta-analysis. Nine studies (371 participants with acute, sub-acute and chronic stroke) were included. Different methodologies of tDCS and upper extremity intervention, outcome measures and timing of assessments were identified. Real tDCS combined with rehabilitation had a small non-significant effect of +0.11 (p=0.44) and +0.24 (p=0.11) on upper extremity impairments and activities at post-intervention respectively. Various tDCS methods have been used in stroke rehabilitation. The evidence so far is not statistically significant, but is suggestive of, at best, a small beneficial effect on upper extremity impairment. Future research should focus on which patients and rehabilitation programmes are likely to respond to different tDCS regimes. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Peters, Denise M; McPherson, Aaron K; Fletcher, Blake; McClenaghan, Bruce A; Fritz, Stacy L
2013-09-01
The use of video gaming as a therapeutic intervention has increased in popularity; however, the number of repetitions in comparison with traditional therapy methods has yet to be investigated. The primary purpose of this study was to document and compare the number of repetitions performed while playing 1 of 2 video gaming systems for a time frame similar to that of a traditional therapy session in individuals with chronic stroke. Twelve participants with chronic stroke (mean age, 66.8 ± 8.2 years; time poststroke, 19.2 ± 15.4 months) completed video game play sessions, using either the Nintendo Wii or the Playstation 2 EyeToy. A total of 203 sessions were captured on video record; of these, 50 sessions for each gaming system were randomly selected for analysis. For each selected record, active upper and lower extremity repetitions were counted for a 36-minute segment of the recorded session. The Playstation 2 EyeToy group produced an average of 302.5 (228.1) upper extremity active movements and 189.3 (98.3) weight shifts, significantly higher than the Nintendo Wii group, which produced an average of 61.9 (65.7) upper extremity active movements and 109.7 (78.5) weight shifts. No significant differences were found in steps and other lower extremity active movements between the 2 systems. The Playstation 2 EyeToy group produced more upper extremity active movements and weight shifting movements than the Nintendo Wii group; the number and type of repetitions varied across games. Active gaming (specifically Playstation 2 EyeToy) provided more upper extremity repetitions than those reported in the literature by using traditional therapy, suggesting that it may be a modality to promote increased active movements in individuals poststroke.
Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.
Rankin, Jeffery W; Richter, W Mark; Neptune, Richard R
2011-04-29
Manual wheelchair propulsion places considerable physical demand on the upper extremity and is one of the primary activities associated with the high prevalence of upper extremity overuse injuries and pain among wheelchair users. As a result, recent effort has focused on determining how various propulsion techniques influence upper extremity demand during wheelchair propulsion. However, an important prerequisite for identifying the relationships between propulsion techniques and upper extremity demand is to understand how individual muscles contribute to the mechanical energetics of wheelchair propulsion. The purpose of this study was to use a forward dynamics simulation of wheelchair propulsion to quantify how individual muscles deliver, absorb and/or transfer mechanical power during propulsion. The analysis showed that muscles contribute to either push (i.e., deliver mechanical power to the handrim) or recovery (i.e., reposition the arm) subtasks, with the shoulder flexors being the primary contributors to the push and the shoulder extensors being the primary contributors to the recovery. In addition, significant activity from the shoulder muscles was required during the transition between push and recovery, which resulted in increased co-contraction and upper extremity demand. Thus, strengthening the shoulder flexors and promoting propulsion techniques that improve transition mechanics have much potential to reduce upper extremity demand and improve rehabilitation outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wee, Seng Kwee; Hughes, Ann-Marie; Warner, Martin; Burridge, Jane H
2014-09-01
Many stroke patients exhibit excessive compensatory trunk movements during reaching. Compensatory movement behaviors may improve upper extremity function in the short-term but be detrimental to long-term recovery. To evaluate the evidence that trunk restraint limits compensatory trunk movement and/or promotes better upper extremity recovery in stroke patients. A search was conducted through electronic databases from January 1980 to June 2013. Only randomized controlled trials (RCTs) comparing upper extremity training with and without trunk restraint were selected for review. Three review authors independently assessed the methodological quality and extracted data from the studies. Meta-analysis was conducted when there was sufficient homogenous data. Six RCTs involving 187 chronic stroke patients were identified. Meta-analysis of key outcome measures showed that trunk restraint has a moderate statistically significant effect on improving Fugl-Meyer Upper Extremity (FMA-UE) score, active shoulder flexion, and reduction in trunk displacement during reaching. There was a small, nonsignificant effect of trunk restraint on upper extremity function. Trunk restraint has a moderate effect on reduction of upper extremity impairment in chronic stroke patients, in terms of FMA-UE score, increased shoulder flexion, and reduction in excessive trunk movement during reaching. There is insufficient evidence to demonstrate that trunk restraint improves upper extremity function and reaching trajectory smoothness and straightness in chronic stroke patients. Future research on stroke patients at different phases of recovery and with different levels of upper extremity impairment is recommended. © The Author(s) 2014.
Kim, Jin-young; Kim, Jong-man; Ko, Eun-young
2014-01-01
The purpose this study was to investigate the effect of action observation physical training (AOPT) on the functioning of the upper extremities in children with cerebral palsy (CP), using an evaluation framework based on that of the International Classification of Functioning, Disability and Health (ICF). The subjects were divided into an AOPT group and a physical training (PT) group. AOPT group practiced repeatedly the actions they observed on video clips, in which normal child performed an action with their upper extremities. PT group performed the same actions as the AOPT group did after observing landscape photographs. The subjects participated in twelve 30-min sessions, 3 days a week, for 4 weeks. Evaluation of upper extremity function using the following: the power of grasp and Modified Ashworth Scale for body functions and structures, a Box and Block test, an ABILHAND-Kids questionnaire, and the WeeFIM scale for activity and participation. Measurements were performed before and after the training, and 2 weeks after the end of training. The results of this study showed that, in comparison with the PT group, the functioning of the upper extremities in the AOPT group was significantly improved in body functions and activity and participation according to the ICF framework. This study demonstrates that AOPT has a positive influence on the functioning of the upper extremities in children with CP. It is suggested that this alternative approach for functioning of the upper extremities could be an effective method for rehabilitation in children with CP. PMID:25061598
Understanding neuromotor strategy during functional upper extremity tasks using symbolic dynamics.
Nathan, Dominic E; Guastello, Stephen J; Prost, Robert W; Jeutter, Dean C
2012-01-01
The ability to model and quantify brain activation patterns that pertain to natural neuromotor strategy of the upper extremities during functional task performance is critical to the development of therapeutic interventions such as neuroprosthetic devices. The mechanisms of information flow, activation sequence and patterns, and the interaction between anatomical regions of the brain that are specific to movement planning, intention and execution of voluntary upper extremity motor tasks were investigated here. This paper presents a novel method using symbolic dynamics (orbital decomposition) and nonlinear dynamic tools of entropy, self-organization and chaos to describe the underlying structure of activation shifts in regions of the brain that are involved with the cognitive aspects of functional upper extremity task performance. Several questions were addressed: (a) How is it possible to distinguish deterministic or causal patterns of activity in brain fMRI from those that are really random or non-contributory to the neuromotor control process? (b) Can the complexity of activation patterns over time be quantified? (c) What are the optimal ways of organizing fMRI data to preserve patterns of activation, activation levels, and extract meaningful temporal patterns as they evolve over time? Analysis was performed using data from a custom developed time resolved fMRI paradigm involving human subjects (N=18) who performed functional upper extremity motor tasks with varying time delays between the onset of intention and onset of actual movements. The results indicate that there is structure in the data that can be quantified through entropy and dimensional complexity metrics and statistical inference, and furthermore, orbital decomposition is sensitive in capturing the transition of states that correlate with the cognitive aspects of functional task performance.
Gelen, Ertugrul; Dede, Muhittin; Bingul, Bergun Meric; Bulgan, Cigdem; Aydin, Mensure
2012-01-01
The purpose of this study was to compare the acute effects of static stretching; dynamic exercises and high volume upper extremity plyometric activity on tennis serve performance. Twenty-six elite young tennis players (15.1 ± 4.2 years, 167.9 ± 5.8 cm and 61.6 ± 8.1 kg) performed 4 different warm-up (WU) routines in a random order on non-consecutive days. The WU methods consisted of traditional WU (jogging, rally and serve practice) (TRAD); traditional WU and static stretching (TRSS); traditional WU and dynamic exercise (TRDE); and traditional WU and high volume upper extremity plyometric activity (TRPLYP). Following each WU session, subjects were tested on a tennis serve ball speed test. TRAD, TRSS, TRDE and TRPLYO were compared by repeated measurement analyses of variance and post-hoc comparisons. In this study a 1 to 3 percent increase in tennis serve ball speed was recorded in TRDE and TRPLYO when compared to TRAD (p< 0.05). However, no significant change in ball speed performance between TRSS and TRAD. (p> 0.05). ICCs for ball speed showed strong reliability (0.82 to 0.93) for the ball speed measurements.The results of this study indicate that dynamic and high volume upper extremity plyometric WU activities are likely beneficial to serve speed of elite junior tennis players. Key points After the traditional warm up in tennis, static stretching has no effect on serve speed. Tennis players should perform dynamic exercises and/or high volume upper extremity plyometric activities to improve their athletic performance. PMID:24150068
Bowman, Mary H; Taub, Edward; Uswatte, Gitendra; Delgado, Adriana; Bryson, Camille; Morris, David M; McKay, Staci; Mark, Victor W
2006-01-01
Constraint-Induced Movement therapy (CI therapy) is a recognized rehabilitation approach for persons having stroke with mild to moderately severe motor upper extremity deficits. To date, no rehabilitation treatment protocol has been proven effective that addresses both motor performance and spontaneous upper extremity use in the life situation for chronic stroke participants having severe upper extremity impairment with no active finger extension or thumb abduction. This case report describes treatment of a chronic stroke participant with a plegic hand using a CI therapy protocol that combines CI therapy with selected occupational and physical therapy techniques. Treatment consisted of six sessions of adaptive equipment and upper extremity orthotics training followed by a three-week, six-hour daily intervention of CI therapy plus neurodevelopmental treatment. Outcome measures included the Motor Activity Log for very low functioning patients (Grade 5 MAL), upper extremity portion of the Fugl-Meyer Motor Assessment, Graded Wolf Motor Function Test - for very low functioning patients (gWMFT- Grade 5), and Modified Ashworth Scale. The participant showed improvement on each outcome measure with the largest improvement on the Grade 5 MAL. In follow-up, the participant had good retention of his gains in motor performance and use of his more affected arm for real world activities after 3 months; after a one-week brush-up at 3 months, and at one year post-treatment.
Gil, Joseph A; Elia, Gregory; Shah, Kalpit N; Owens, Brett D; Got, Christopher
2018-04-16
Fishing injuries commonly affect the hands. The goal of this study was to quantify the incidence of fishing-related upper extremity injuries that present to emergency departments in the United States. We examined the reported cases of fishing-related upper extremity injuries in the National Electronic Injury Surveillance System database. Analysis was performed based on age, sex and the type of injury reported. The national incidence of fishing-related upper extremity injuries was 119.6 per 1 million person-years in 2014. The most common anatomic site for injury was the finger (63.3%), followed by the hand (20.3%). The most common type of injury in the upper extremity was the presence of a foreign body (70.4%). The incidence of fishing-related upper extremity injuries in males was 200 per 1 million person-years, which was significantly higher than the incidence in females (41 per 1 million person-years). The incidence of fishing-related upper extremity injuries that present to the Emergency Department was 120 per 1 million person-years. The incidence was significantly higher in males. With the widespread popularity of the activity, it is important for Emergency Physicians and Hand Surgeons to understand how to properly evaluate and manage these injuries.
Özcan Kahraman, Buse; Özsoy, İsmail; Acar, Serap; Özpelit, Ebru; Akdeniz, Bahri; Sevinç, Can; Savcı, Sema
2017-07-01
Pulmonary arterial hypertension (PAH) is a rare disease. Although muscle strength, exercise capacity, quality of life, and activities of daily living of patients with PAH are affected, it is not known how they are affected by disease severity. The purpose of the present study was to investigate effects of disease severity on upper extremity muscle strength, exercise capacity, and performance of activities of daily living in patients with PAH. Twenty-five patients with disease severity classified according to the New York Heart Association (NYHA) as functional class II (n=14) or class III (n=11) were included in the study. Upper-extremity exercise capacity and limitations in performing activities of daily living were assessed with 6-minute pegboard and ring test (6PBRT) and the Milliken activities of daily living scale (MAS), respectively. Shoulder flexion, elbow extension, elbow flexion muscle strength, and handgrip strength were measured with dynamometer. There were no significant differences in age, gender, body mass index, or mean pulmonary artery pressure between groups (p>0.05). The 6PBRT, MAS, and elbow flexion (right) and grip strength (right and left) results were significantly lower in NYHA III group than in NYHA II group (p=0.004, p=0.002, p=0.043, p=0.002 and p=0.003, respectively). There was no significant difference in shoulder flexion, elbow flexion (left), or elbow extension between groups (p>0.05). Results suggest that upper extremity exercise capacity, elbow flexion muscle strength (right), and handgrip strength decrease and that limitations in activities of daily living grow as disease severity increases in patients with PAH. When planning rehabilitation programs, disease severity should be considered and evaluations and treatments for the upper extremities should be included.
Page, Stephen J; Hill, Valerie; White, Susan
2013-06-01
To compare the efficacy of a repetitive task-specific practice regimen integrating a portable, electromyography-controlled brace called the 'Myomo' versus usual care repetitive task-specific practice in subjects with chronic, moderate upper extremity impairment. Sixteen subjects (7 males; mean age 57.0 ± 11.02 years; mean time post stroke 75.0 ± 87.63 months; 5 left-sided strokes) exhibiting chronic, stable, moderate upper extremity impairment. Subjects were administered repetitive task-specific practice in which they participated in valued, functional tasks using their paretic upper extremities. Both groups were supervised by a therapist and were administered therapy targeting their paretic upper extremities that was 30 minutes in duration, occurring 3 days/week for eight weeks. One group participated in repetitive task-specific practice entirely while wearing the portable robotic, while the other performed the same activity regimen manually. The upper extremity Fugl-Meyer, Canadian Occupational Performance Measure and Stroke Impact Scale were administered on two occasions before intervention and once after intervention. After intervention, groups exhibited nearly identical Fugl-Meyer score increases of ≈2.1 points; the group using robotics exhibited larger score changes on all but one of the Canadian Occupational Performance Measure and Stroke Impact Scale subscales, including a 12.5-point increase on the Stroke Impact Scale recovery subscale. Findings suggest that therapist-supervised repetitive task-specific practice integrating robotics is as efficacious as manual practice in subjects with moderate upper extremity impairment.
Lang, Catherine E.; Bland, Marghuretta D.; Bailey, Ryan R.; Schaefer, Sydney Y.; Birkenmeier, Rebecca L.
2012-01-01
The purpose of this review is to provide a comprehensive approach for assessing the upper extremity (UE) after stroke. First, common upper extremity impairments and how to assess them are briefly discussed. While multiple UE impairments are typically present after stroke, the severity of one impairment, paresis, is the primary determinant of UE functional loss. Second, UE function is operationally defined and a number of clinical measures are discussed. It is important to consider how impairment and loss of function affect UE activity outside of the clinical environment. Thus, this review also identifies accelerometry as an objective method for assessing UE activity in daily life. Finally, the role that each of these levels of assessment should play in clinical decision making is discussed in order to optimize the provision of stroke rehabilitation services. PMID:22975740
Ashnagar, Zinat; Shadmehr, Azadeh; Hadian, Mohammadreza; Talebian, Saeed; Jalaei, Shohreh
2016-08-10
Whole Body Vibration (WBV) has been reported to change neuromuscular activity which indirectly assessed by electromyography (EMG). Although researches regarding the influence of WBV on EMG activity of the upper extremity muscles are in their infancy, contradictory findings have been reported as a result of dissimilar protocols. The purpose of this study was to investigate the effects of WBV on electromyography (EMG) activity of upper extremity muscles in static modified push up position. Forty recreationally active females were randomly assigned in WBV and control groups. Participants in WBV group received 5 sets of 30 seconds vibration at 5 mm (peak to peak) and 30 Hz by using vibratory platform. No vibration stimulus was used in the control group. Surface EMG was recorded from Upper Trapezius (UT), Serratus Anterior (SA), Biceps Brachii (BB) and Triceps Brachii (TB) muscles before, during and after the vibration protocol while the subjects maintained the static modified push up position. EMG signals were expressed as root mean square (EMGrms) and normalized by maximum voluntary exertion (MVE). EMGrms activity of the studied muscles increased significantly during the vibration protocol in the WBV group comparing to the control group (P ≤ 0.05). The results indicated that vibration stimulus transmitting via hands increased muscle activity of UT, SA, BB and TB muscles by an average of 206%, 60%, 106% and 120%, respectively, comparing to pre vibration values. These findings suggest that short exposure to the WBV could increase the EMGrms activity of the upper extremity muscles in the static modified push-up position. However, more sessions of WBV application require for a proper judgment.
Wii™-habilitation of upper extremity function in children with cerebral palsy. An explorative study.
Winkels, Diny G M; Kottink, Anke I R; Temmink, Rutger A J; Nijlant, Juliëtte M M; Buurke, Jaap H
2013-01-01
Commercially available virtual reality systems can possibly support rehabilitation objectives in training upper arm function in children with Cerebral Palsy (CP). The present study explored the effect of the Nintendo Wii™ training on upper extremity function in children with CP. During six weeks, all children received twice a week training with the Wii™, with their most affected arm. The Melbourne Assessment of Upper Limb Function and ABILHAND-Kids were assessed pre- and post- training. In addition, user satisfaction of both children and health professionals was assessed after training. Enjoyment in gaming was scored on a visual analogue scale scale after each session by the children. Fifteen children with CP participated in the study. The quality of upper extremity movements did not change (-2.1, p > 0.05), while a significant increase of convenience in using hands/arms during performance of daily activities was found (0.6, p < 0.05). Daily activities seem to be easier performed after Wii™ training for most of the included children with CP.
Park, JuHyung; Lee, NaYun; Cho, YongHo; Yang, YeongAe
2015-03-01
[Purpose] The purpose of this study was to investigate the impact that modified constraint-induced movement therapy has on upper extremity function and the daily life of chronic stroke patients. [Subjects and Methods] Modified constraint-induced movement therapy was conduct for 2 stroke patients with hemiplegia. It was performed 5 days a week for 2 weeks, and the participants performed their daily living activities wearing mittens for 6 hours a day, including the 2 hours of the therapy program. The assessment was conducted 5 times in 3 weeks before and after intervention. The upper extremity function was measured using the box and block test and a dynamometer, and performance daily of living activities was assessed using the modified Barthel index. The results were analyzed using a scatterplot and linear regression. [Results] All the upper extremity functions of the participants all improved after the modified constraint-induced movement therapy. Performance of daily living activities by participant 1 showed no change, but the results of participant 2 had improved after the intervention. [Conclusion] Through the results of this research, it was identified that modified constraint-induced movement therapy is effective at improving the upper extremity functions and the performance of daily living activities of chronic stroke patients.
Hoozemans, M J M; Knelange, E B; Frings-Dresen, M H W; Veeger, H E J; Kuijer, P P F M
2014-11-01
Systematically review observational studies concerning the question whether workers that perform pushing/pulling activities have an increased risk for upper extremity symptoms as compared to workers that perform no pushing/pulling activities. A search in MEDLINE via PubMed and EMBASE was performed with work-related search terms combined with push/pushing/pull/pulling. Studies had to examine exposure to pushing/pulling in relation to upper extremity symptoms. Two authors performed the literature selection and assessment of the risk of bias in the studies independently. A best evidence synthesis was used to draw conclusions in terms of strong, moderate or conflicting/insufficient evidence. The search resulted in 4764 studies. Seven studies were included, with three of them of low risk of bias, in total including 8279 participants. A positive significant relationship with upper extremity symptoms was observed in all four prospective cohort studies with effect sizes varying between 1.5 and 4.9. Two out of the three remaining studies also reported a positive association with upper extremity symptoms. In addition, significant positive associations with neck/shoulder symptoms were found in two prospective cohort studies with effect sizes of 1.5 and 1.6, and with shoulder symptoms in one of two cross-sectional studies with an effect size of 2.1. There is strong evidence that pushing/pulling is related to upper extremity symptoms, specifically for shoulder symptoms. There is insufficient or conflicting evidence that pushing/pulling is related to (combinations of) upper arm, elbow, forearm, wrist or hand symptoms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Page, Stephen J.; Hill, Valerie; White, Susan
2013-01-01
Objective To compare the efficacy of a repetitive task specific practice regimen integrating a portable, electromyography-controlled brace called the “Myomo” versus usual care repetitive task specific practice in subjects with chronic, moderate upper extremity impairment. Subjects 16 subjects (7 males; mean age = 57.0 ± 11.02 years; mean time post stroke = 75.0 ± 87.63 months; 5 left-sided strokes) exhibiting chronic, stable, moderate upper extremity impairment. Interventions Subjects were administered repetitive task specific practice in which they participated in valued, functional tasks using their paretic upper extremities. Both groups were supervised by a therapist and were administered therapy targeting their paretic upper extremities that was 30-minutes in duration, occurring 3 days/week for 8 weeks. However, one group participated in repetitive task specific practice entirely while wearing the portable robotic while the other performed the same activity regimen manually.. Main Outcome Measures The upper extremity Fugl-Meyer, Canadian Occupational Performance measure and Stroke Impact Scale were administered on two occasions before intervention and once after intervention. Results After intervention, groups exhibited nearly-identical Fugl-Meyer score increases of ≈ 2.1 points; the group using robotics exhibited larger score changes on all but one of the Canadian occupational performance measure and Stroke Impact Scale subscales, including a 12.5-point increase on the Stroke Impact Scale recovery subscale. Conclusions Findings suggest that therapist-supervised repetitive task specific practice integrating robotics is as efficacious as manual in subjects with moderate upper extremity impairment. PMID:23147552
NASA Astrophysics Data System (ADS)
Hasbullah Mohd Isa, Wan; Taha, Zahari; Mohd Khairuddin, Ismail; Majeed, Anwar P. P. Abdul; Fikri Muhammad, Khairul; Abdo Hashem, Mohammed; Mahmud, Jamaluddin; Mohamed, Zulkifli
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton by means of an intelligent active force control (AFC) mechanism. The Newton-Euler formulation was used in deriving the dynamic modelling of both the anthropometry based human upper extremity as well as the exoskeleton that consists of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed in this study to investigate its efficacy performing joint-space control objectives. An intelligent AFC algorithm is also incorporated into the PD to investigate the effectiveness of this hybrid system in compensating disturbances. The Mamdani Fuzzy based rule is employed to approximate the estimated inertial properties of the system to ensure the AFC loop responds efficiently. It is found that the IAFC-PD performed well against the disturbances introduced into the system as compared to the conventional PD control architecture in performing the desired trajectory tracking.
Rouse, Adam G.
2016-01-01
In reaching to grasp an object, proximal muscles that act on the shoulder and elbow classically have been viewed as transporting the hand to the intended location, while distal muscles that act on the fingers simultaneously shape the hand to grasp the object. Prior studies of electromyographic (EMG) activity in upper extremity muscles therefore have focused, by and large, either on proximal muscle activity during reaching to different locations or on distal muscle activity as the subject grasps various objects. Here, we examined the EMG activity of muscles from the shoulder to the hand, as monkeys reached and grasped in a task that dissociated location and object. We quantified the extent to which variation in the EMG activity of each muscle depended on location, on object, and on their interaction—all as a function of time. Although EMG variation depended on both location and object beginning early in the movement, an early phase of substantial location effects in muscles from proximal to distal was followed by a later phase in which object effects predominated throughout the extremity. Interaction effects remained relatively small. Our findings indicate that neural control of reach-to-grasp may occur largely in two sequential phases: the first, serving to project the entire upper extremity toward the intended location, and the second, acting predominantly to shape the entire extremity for grasping the object. PMID:27009156
Quinn, Lori; Busse, Monica; Dal Bello-Haas, Vanina
2013-01-01
Parkinson Disease (PD) and Huntington Disease (HD) are degenerative neurological diseases, which can result in impairments and activity limitations affecting the upper extremities from early in the disease process. The progressive nature of these diseases poses unique challenges for therapists aiming to effectively maximize physical functioning and minimize participation restrictions in these patient groups. Research is underway in both diseases to develop effective disease-modifying agents and pharmacological interventions, as well as mobility-focused rehabilitation protocols. Rehabilitation, and in particular task-specific interventions, has the potential to influence the upper extremity functional abilities of patients with these degenerative conditions. However to date, investigations of interventions specifically addressing upper extremity function have been limited in both PD, and in particular HD. In this paper, we provide an update of the known pathological features of PD and HD as they relate to upper extremity function. We further review the available literature on the use of outcome measures, and the clinical management of upper extremity function in both conditions. Due to the currently limited evidence base in both diseases, we recommend utilization of a clinical management framework specific for degenerative conditions that can serve as a guideline for disease management. Copyright © 2013. Published by Elsevier Inc.
Bailey, Ryan; Kaskutas, Vicki; Fox, Ida; Baum, Carolyn M; Mackinnon, Susan E
2009-11-01
To explore the relationship between upper extremity nerve damage and activity participation, pain, depression, and perceived quality of life. A total of 49 patients with upper extremity nerve damage completed standardized measures of activity participation, pain, depression, and quality of life. We analyzed scores for all subjects and for 2 diagnostic groups: patients with compressive neuropathy and patients with nerve injury (laceration, tumor, and brachial plexus injury), and explored predictors of overall quality of life. Participants had given up 21% of their previous daily activities; greater activity loss was reported in patients with nerve injury. Pain was moderate and 39% had signs of clinical depression. Physical and psychological quality of life ratings were below the norms. Activity loss was strongly associated with higher levels of depression and lower physical and psychological quality of life. Higher depression scores correlated strongly with lower overall quality of life. Greater pain correlated moderately with higher depression scores and weakly with quality of life; no statistical relationship was found between pain and physical quality of life. Activity participation and depression predicted 61% of the variance in overall quality of life in patients with nerve damage. The results of this study suggest that hand surgeons and therapists caring for patients with nerve compression and nerve injury should discuss strategies to improve activity participation, and decrease pain and depression, to improve overall effect on quality of life throughout the recovery process. Depression screening and referral when indicated should be included in the overall treatment plan for patients with upper extremity nerve damage. Prognostic IV.
Preconditioning electromyographic data for an upper extremity model using neural networks
NASA Technical Reports Server (NTRS)
Roberson, D. J.; Fernjallah, M.; Barr, R. E.; Gonzalez, R. V.
1994-01-01
A back propagation neural network has been employed to precondition the electromyographic signal (EMG) that drives a computational model of the human upper extremity. This model is used to determine the complex relationship between EMG and muscle activation, and generates an optimal muscle activation scheme that simulates the actual activation. While the experimental and model predicted results of the ballistic muscle movement are very similar, the activation function between the start and the finish is not. This neural network preconditions the signal in an attempt to more closely model the actual activation function over the entire course of the muscle movement.
Fluet, Gerard G.; Merians, Alma S.; Qiu, Qinyin; Lafond, Ian; Saleh, Soha; Ruano, Viviana; Delmonico, Andrea R.; Adamovich, Sergei V.
2014-01-01
Background and Purpose A majority of studies examining repetitive task practice facilitated by robots for the treatment of upper extremity paresis utilize standardized protocols applied to large groups. Others utilize interventions tailored to patients but don't describe the clinical decision making process utilized to develop and modify interventions. This case report will describe a robot-based intervention customized to match the goals and clinical presentation of a gentleman with upper extremity hemiparesis secondary to stroke. Methods PM is an 85 year-old man with left hemiparesis secondary to an intracerebral hemorrhage five years prior to examination. Outcomes were measured before and after a one month period of home therapy and after a one month robotic intervention. The intervention was designed to address specific impairments identified during his PT examination. When necessary, activities were modified based on the patient's response to his first week of treatment. Outcomes PM trained twelve sessions using six virtually simulated activities. Modifications to original configurations of these activities resulted in performance improvements in five of these activities. PM demonstrated a 35 second improvement in Jebsen Test of Hand Function time and a 44 second improvement in Wolf Motor Function Test time subsequent to the robotic training intervention. Reaching kinematics, 24 hour activity measurement and the Hand and Activities of Daily Living scales of the Stroke Impact Scale all improved as well. Discussion A customized program of robotically facilitated rehabilitation resulted in large short-term improvements in several measurements of upper extremity function in a patient with chronic hemiparesis. PMID:22592063
Li, Mingfen; Liu, Ye; Wu, Yi; Liu, Sirao; Jia, Jie; Zhang, Liqing
2014-06-01
We investigated the efficacy of motor imagery-based Brain Computer Interface (MI-based BCI) training for eight stroke patients with severe upper extremity paralysis using longitudinal clinical assessments. The results were compared with those of a control group (n = 7) that only received FES (Functional Electrical Stimulation) treatment besides conventional therapies. During rehabilitation training, changes in the motor function of the upper extremity and in the neurophysiologic electroencephalographic (EEG) were observed for two groups. After 8 weeks of training, a significant improvement in the motor function of the upper extremity for the BCI group was confirmed (p < 0.05 for ARAT), simultaneously with the activation of bilateral cerebral hemispheres. Additionally, event-related desynchronization (ERD) of the affected sensorimotor cortexes (SMCs) was significantly enhanced when compared to the pretraining course, which was only observed in the BCI group (p < 0.05). Furthermore, the activation of affected SMC and parietal lobe were determined to contribute to motor function recovery (p < 0.05). In brief, our findings demonstrate that MI-based BCI training can enhance the motor function of the upper extremity for stroke patients by inducing the optimal cerebral motor functional reorganization.
System Characterization of MAHI EXO-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation
French, James A.; Rose, Chad G.; O'Malley, Marcia K.
2015-01-01
This paper presents the performance characterization of the MAHI Exo-II, an upper extremity exoskeleton for stroke and spinal cord injury (SCI) rehabilitation, as a means to validate its clinical implementation and to provide depth to the literature on the performance characteristics of upper extremity exoskeletons. Individuals with disabilities arising from stroke and SCI need rehabilitation of the elbow, forearm, and wrist to restore the ability to independently perform activities of daily living (ADL). Robotic rehabilitation has been proposed to address the need for high intensity, long duration therapy and has shown promising results for upper limb proximal joints. However, upper limb distal joints have historically not benefitted from the same focus. The MAHI Exo-II, designed to address this shortcoming, has undergone a static and dynamic performance characterization, which shows that it exhibits the requisite qualities for a rehabilitation robot and is comparable to other state-of-the-art designs. PMID:25984380
System Characterization of MAHI EXO-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation.
French, James A; Rose, Chad G; O'Malley, Marcia K
2014-10-01
This paper presents the performance characterization of the MAHI Exo-II, an upper extremity exoskeleton for stroke and spinal cord injury (SCI) rehabilitation, as a means to validate its clinical implementation and to provide depth to the literature on the performance characteristics of upper extremity exoskeletons. Individuals with disabilities arising from stroke and SCI need rehabilitation of the elbow, forearm, and wrist to restore the ability to independently perform activities of daily living (ADL). Robotic rehabilitation has been proposed to address the need for high intensity, long duration therapy and has shown promising results for upper limb proximal joints. However, upper limb distal joints have historically not benefitted from the same focus. The MAHI Exo-II, designed to address this shortcoming, has undergone a static and dynamic performance characterization, which shows that it exhibits the requisite qualities for a rehabilitation robot and is comparable to other state-of-the-art designs.
Brogioli, Michael; Popp, Werner L; Albisser, Urs; Brust, Anne K; Frotzler, Angela; Gassert, Roger; Curt, Armin; Starkey, Michelle L
2016-11-01
After spinal cord injury (SCI), levels of independence are commonly assessed with standardized clinical assessments. However, such tests do not provide information about the actual extent of upper limb activities or the impact on independence of bi- versus unilateral usage throughout daily life following cervical SCI. The objective of this study was to correlate activity intensity and laterality of upper extremity activity measured by body-fixed inertial measurement units (IMUs) with clinical assessment scores of independence. Limb-use intensity and laterality of activities performed by the upper extremities was measured in 12 subjects with cervical SCI using four IMUs (positioned on both wrists, on the chest, and on one wheel of the wheelchair). Algorithms capable of reliably detecting self-propulsion and arm activity in a clinical environment were applied to rate functional outcome levels, and were related to clinical independence measures during inpatient rehabilitation. Measures of intensity of upper extremity activity during self-propulsion positively correlated (p < 0.05, r = 0.643) with independence measures related to mobility. Clinical measures of laterality were positively correlated (p < 0.01, r = 0.900) with laterality as measured by IMUs during "daily life," and increased laterality was negatively correlated (p < 0.01, r = -0.739) with independence. IMU sensor technology is sensitive in assessing and quantifying upper limb-use intensity and laterality in human cervical SCI. Continuous and objective movement data of distinct daily activities (i.e., mobility and day-to-day activities) can be related to levels of independence. Therefore, IMU sensor technology is suitable not only for monitoring activity levels during rehabilitation (including during clinical trials) but could also be used to assess levels of participation after discharge.
Muscle Strength and Changes in Physical Function in Women With Systemic Lupus Erythematosus.
Andrews, James S; Trupin, Laura; Schmajuk, Gabriela; Barton, Jennifer; Margaretten, Mary; Yazdany, Jinoos; Yelin, Edward H; Katz, Patricia P
2015-08-01
Cross-sectional studies have observed that muscle weakness is associated with worse physical function among women with systemic lupus erythematosus (SLE). The present study examines whether reduced upper and lower extremity muscle strength predict declines in function over time among adult women with SLE. One hundred forty-six women from a longitudinal SLE cohort participated in the study. All measures were collected during in-person research visits approximately 2 years apart. Upper extremity muscle strength was assessed by grip strength. Lower extremity muscle strength was assessed by peak knee torque of extension and flexion. Physical function was assessed using the Short Physical Performance Battery (SPPB). Regression analyses modeled associations of baseline upper and lower extremity muscle strength with followup SPPB scores controlling for baseline SPPB, age, SLE duration, SLE disease activity (Systemic Lupus Activity Questionnaire), physical activity level, prednisone use, body composition, and depression. Secondary analyses tested whether associations of baseline muscle strength with followup in SPPB scores differed between intervals of varying baseline muscle strength. Lower extremity muscle strength strongly predicted changes over 2 years in physical function even when controlling for covariates. The association of reduced lower extremity muscle strength with reduced physical function in the future was greatest among the weakest women. Reduced lower extremity muscle strength predicted clinically significant declines in physical function, especially among the weakest women. Future studies should test whether therapies that promote preservation of lower extremity muscle strength may prevent declines in function among women with SLE. © 2015, American College of Rheumatology.
Park, Jin-Hyuck; Park, Ji-Hyuk
2016-03-01
[Purpose] The purpose of this study was to investigate the effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis. [Subjects] The subjects were chronic stroke patients with hemiparesis. [Methods] Thirty subjects were randomly assigned to either the control group or experimental group. All subjects received 20 sessions (5 days in a week) of virtual reality movement therapy using the Nintendo Wii. In addition to Wii-based virtual reality movement therapy, experimental group subjects performed mental practice consisting of 5 minutes of relaxation, Wii games imagination, and normalization phases before the beginning of Wii games. To compare the two groups, the upper extremity subtest of the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log were performed. [Results] Both groups showed statistically significant improvement in the Fugl-Meyer Assessment, Box and Block Test, and quality of the movement subscale of Motor Activity Log after the interventions. Also, there were significant differences in the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log between the two groups. [Conclusion] Game-based virtual reality movement therapy alone may be helpful to improve functional recovery of the upper extremity, but the addition of MP produces a lager improvement.
Mozheiko, E Yu; Prokopenko, S V; Alekseevich, G V
To reason the choice of methods of restoration of advanced hand activity depending on severity of motor disturbance in the top extremity. Eighty-eight patients were randomized into 3 groups: 1) the mCIMT group, 2) the 'touch glove' group, 3) the control group. For assessment of physical activity of the top extremity Fugl-Meyer Assessment Upper Extremity, Nine-Hole Peg Test, Motor Assessment Scale were used. Assessment of non-use phenomenon was carried out with the Motor Activity Log scale. At a stage of severe motor dysfunction, there was a restoration of proximal departments of a hand in all groups, neither method was superior to the other. In case of moderate severity of motor deficiency of the upper extremity the most effective was the method based on the principle of biological feedback - 'a touch glove'. In the group with mild severity of motor dysfunction, the best recovery was achieved in the mCIMT group.
Hypothyroid-induced acute compartment syndrome in all extremities.
Musielak, Matthew C; Chae, Jung Hee
2016-12-20
Acute compartment syndrome (ACS) is an uncommon complication of uncontrolled hypothyroidism. If unrecognized, this can lead to ischemia, necrosis and potential limb loss. A 49-year-old female presented with the sudden onset of bilateral lower and upper extremity swelling and pain. The lower extremity anterior compartments were painful and tense. The extensor surface of the upper extremities exhibited swelling and pain. Motor function was intact, however, limited due to pain. Bilateral lower extremity fasciotomies were performed. Postoperative Day 1, upper extremity motor function decreased significantly and paresthesias occurred. She therefore underwent bilateral forearm fasciotomies. The pathogenesis of hypothyroidism-induced compartment syndrome is unclear. Thyroid-stimulating hormone-induced fibroblast activation results in increased glycosaminoglycan deposition. The primary glycosaminoglycan in hypothyroid myxedematous changes is hyaluronic acid, which binds water causing edema. This increases vascular permeability, extravasation of proteins and impaired lymphatic drainage. These contribute to increased intra-compartmental pressure and subsequent ACS. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2016.
Vincent, Joshua I; MacDermid, Joy C; Michlovitz, Susan L; Rafuse, Richard; Wells-Rowsell, Christina; Wong, Owen; Bisbee, Leslie
2014-01-01
Longitudinal clinical measurement study. The push-off test (POT) is a novel and simple measure of upper extremity weight-bearing that can be measured with a grip dynamometer. There are no published studies on the validity and reliability of the POT. The relationship between upper extremity self-report activity/participation and impairment measures remain an unexplored realm. The primary purpose of this study is to estimate the intra and inter-rater reliability and construct validity of the POT. The secondary purpose is to estimate the relationship between upper extremity self-report activity/participation questionnaires and impairment measures. A convenience sample of 22 patients with wrist or elbow injuries were tested for POT, wrist/elbow range of motion (ROM), isometric wrist extension strength (WES) and grip strength; and completed two self-report activity/participation questionnaires: Disability of the Arm, Shoulder and the Hand (DASH) and Work Limitations Questionnaire (WLQ-26). POT's inter and intra-rater reliability and construct validity was tested. Pearson's correlations were run between the impairment measures and self-report questionnaires to look into the relationship amongst them. The POT demonstrated high inter-rater reliability (ICC affected = 0.97; 95% C.I. 0.93-0.99; ICC unaffected = 0.85; 95% C.I. 0.68-0.94) and intra-rater reliability (ICC affected = 0.96; 95% C.I. 0.92-0.97; ICC unaffected = 0.92; 95% C.I. 0.85-0.97). The POT was correlated moderately with the DASH (r = -0.47; p = 0.03). While examining the relationship between upper extremity self-reported activity/participation questionnaires and impairment measures the strongest correlation was between the DASH and the POT (r = -0.47; p = 0.03) and none of the correlations with the other physical impairment measures reached significance. At-work disability demonstrated insignificant correlations with physical impairments. The POT test provides a reliable and easily administered quantitative measure of ability to bear the load through an injured arm. Preliminary evidence supports a moderate relationship between loading bearing measured by the POT and upper extremity function measured by the DASH. 1b. Copyright © 2014 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
The effects of smartphone use on upper extremity muscle activity and pain threshold
Lee, Minkyung; Hong, Yunkyung; Lee, Seunghoon; Won, Jinyoung; Yang, Jinjun; Park, Sookyoung; Chang, Kyu-Tae; Hong, Yonggeun
2015-01-01
[Purpose] The purpose of this study was to determine whether muscle activity and pressure-induced pain in the upper extremities are affected by smartphone use, and to compare the effects of phone handling with one hand and with both hands. [Subjects] The study subjects were asymptomatic women 20–22 years of age. [Methods] The subjects sat in a chair with their feet on the floor and the elbow flexed, holding a smartphone positioned on the thigh. Subsequently, the subjects typed the Korean anthem for 3 min, one-handed or with both hands. Each subject repeated the task three times, with a 5-min rest period between tasks to minimize fatigue. Electromyography (EMG) was used to record the muscle activity of the upper trapezius (UT), extensor pollicis longus (EPL), and abductor pollicis (AP) during phone operation. We also used a dolorimeter to measure the pressure-induced pain threshold in the UT. [Results] We observed higher muscle activity in the UT, AP, and EPL in one-handed smartphone use than in its two-handed use. The pressure-induced pain threshold of the UT was lower after use of the smartphone, especially after one-handed use. [Conclusion] Our results show that smartphone operation with one hand caused greater UT pain and induced increased upper extremity muscle activity. PMID:26180311
Risk factors associated with PICC-related upper extremity venous thrombosis in cancer patients.
Yi, Xiao-lei; Chen, Jie; Li, Jia; Feng, Liang; Wang, Yan; Zhu, Jia-An; Shen, E; Hu, Bing
2014-03-01
To investigate the incidence and risk factors for peripherally inserted central venous catheters-related upper extremity venous thrombosis in patients with cancer. With the widespread use of peripherally inserted central venous catheters, peripherally inserted central venous catheters-related upper extremity venous thrombosis in patients with cancer leads to increasing morbidity and mortality. It is very important to further explore the incidence and risk factors for peripherally inserted central venous catheters-related venous thrombosis. Consecutive patients with cancer who were scheduled to receive peripherally inserted central venous catheters, between September 2009 and May 2012, were prospectively studied in our centre. They were investigated for venous thrombosis by Doppler sonography three times a day within 30 days after catheter insertion. Univariable and multivariable logistic regressions' analyses were performed to identify the risk factors for peripherally inserted central venous catheters-related thrombosis. A total of 89 patients with cancer were studied in our research. Of these, 81 patients were followed up within one month. The mean interval between catheter insertion and the onset of thrombosis was 12.45 ± 6.17 days. The multivariable analyses showed that chemotherapy history, less activities and diabetes were the key risk factors for thrombosis. Peripherally inserted central venous catheters-related upper extremity venous thrombosis had high incidence rate, and most cases had no significant symptoms. The history of chemotherapy, less activities and diabetes were found to be the key risk factors. It should be routinely scanned in high-risk patients every 3-5 days after catheter insertion, which would then find blood clots in time and reduce the incidence of pulmonary embolism. Risk factors associated with peripherally inserted central venous catheters-related upper extremity venous thrombosis are of critical importance in improving the quality of patients' life. It is very important to grasp the indications to reduce the incidence rate of peripherally inserted central venous catheters-related upper extremity venous thrombosis. © 2013 John Wiley & Sons Ltd.
Fujiwara, Toshiyuki; Kawakami, Michiyuki; Honaga, Kaoru; Tochikura, Michi; Abe, Kaoru
2017-01-01
Hybrid Assistive Neuromuscular Dynamic Stimulation (HANDS) therapy is one of the neurorehabilitation therapeutic approaches that facilitates the use of the paretic upper extremity (UE) in daily life by combining closed-loop electromyography- (EMG-) controlled neuromuscular electrical stimulation (NMES) with a wrist-hand splint. This closed-loop EMG-controlled NMES can change its stimulation intensity in direct proportion to the changes in voluntary generated EMG amplitudes recorded with surface electrodes placed on the target muscle. The stimulation was applied to the paretic finger extensors. Patients wore a wrist-hand splint and carried a portable stimulator in an arm holder for 8 hours during the daytime. The system was active for 8 hours, and patients were instructed to use their paretic hand as much as possible. HANDS therapy was conducted for 3 weeks. The patients were also instructed to practice bimanual activities in their daily lives. Paretic upper extremity motor function improved after 3 weeks of HANDS therapy. Functional improvement of upper extremity motor function and spasticity with HANDS therapy is based on the disinhibition of the affected hemisphere and modulation of reciprocal inhibition. HANDS therapy may offer a promising option for the management of the paretic UE in patients with stroke.
Allami, Mostafa; Mousavi, Batool; Masoumi, Mehdi; Modirian, Ehsan; Shojaei, Hadi; Mirsalimi, Fatemeh; Hosseini, Maryam; Pirouzi, Pirouz
2016-01-01
Upper limb amputations are one of the unpleasant war injuries that armed forces are exposed to frequently. The present study aimed to assess the musculoskeletal and peripheral nervous systems in Iraq-Iran war veterans with bilateral upper extremity amputation. The study consisted of taking a history and clinical examinations including demographic data, presence and location of pain, level of amputation, passive and active ranges of movement of the joints across the upper and lower extremities and spine, manual palpation, neurological examination, blood circulation pulses and issues related to a prosthetic limb. In this study, 103 Iranian bilateral upper extremity amputees (206 amputations) from the Iran-Iraq war were evaluated, and a detailed questionnaire was also administered. The most common level of amputation was the finger or wrist level (108, 52.4 %). Based on clinical examination, we found high frequencies of limited active and passive joint range of movement across the scapula, shoulder, elbow, wrist and metacarpophalangeal, interphalangeal and thumb joints. Based on muscle strength testing, we found varying degrees of weakness across the upper limbs. Musculoskeletal disorders included epicondylitis (65, 31.6 %), rotator cuff injury (24, 11.7 %), bicipital tendonitis (69, 33.5 %), shoulder drop (42, 20.4 %) and muscle atrophy (19, 9.2 %). Peripheral nerve disorders included carpal tunnel syndrome in 13 (6.3 %) and unilateral brachial plexus injury in 1 (1 %). Fifty-three (51.5 %) were diagnosed with facet joint syndrome at the level of the cervical spine (the most frequent site). Using a prosthesis was reported by 65 (63.1 %), both left and right sides. The back was the most common site of pain (71.8 %). The high prevalence of neuro-musculoskeletal disorders among bilateral upper extremity amputees indicates that they need regular rehabilitation care.
Kim, TaeHoon; Kim, SeongSik; Lee, ByoungHee
2016-03-01
The purpose of this study was to investigate whether action observational training (AOT) plus brain-computer interface-based functional electrical stimulation (BCI-FES) has a positive influence on motor recovery of paretic upper extremity in patients with stroke. This was a hospital-based, randomized controlled trial with a blinded assessor. Thirty patients with a first-time stroke were randomly allocated to one of two groups: the BCI-FES group (n = 15) and the control group (n = 15). The BCI-FES group administered to AOT plus BCI-FES on the paretic upper extremity five times per week during 4 weeks while both groups received conventional therapy. The primary outcomes were the Fugl-Meyer Assessment of the Upper Extremity, Motor Activity Log (MAL), Modified Barthel Index and range of motion of paretic arm. A blinded assessor evaluated the outcomes at baseline and 4 weeks. All baseline outcomes did not differ significantly between the two groups. After 4 weeks, the Fugl-Meyer Assessment of the Upper Extremity sub-items (total, shoulder and wrist), MAL (MAL-Activity of Use and Quality of Movement), Modified Barthel Index and wrist flexion range of motion were significantly higher in the BCI-FES group (p < 0.05). AOT plus BCI-based FES is effective in paretic arm rehabilitation by improving the upper extremity performance. The motor improvements suggest that AOT plus BCI-based FES can be used as a therapeutic tool for stroke rehabilitation. The limitations of the study are that subjects had a certain limited level of upper arm function, and the sample size was comparatively small; hence, it is recommended that future large-scale trials should consider stratified and lager populations according to upper arm function. Copyright © 2015 John Wiley & Sons, Ltd.
Waddell, Kimberly J; Birkenmeier, Rebecca L; Bland, Marghuretta D; Lang, Catherine E
2016-01-01
To classify the self-identified goals of individuals post-stroke with chronic upper extremity (UE) paresis, and determine if age, UE functional capacity and pre-stroke hand dominance influence overall goal selection. Sixty-five subjects participated. Using the Canadian Occupational Performance Measure (COPM) to establish treatment goals, the top five goals were categorized using the Occupational Therapy Practice Framework into five categories: activities of daily living (ADLs), instrumental activities of daily living (IADLs), leisure, work and general UE movement. A Chi-square analysis determined if age, UE functional capacity (measured by the Action Research Arm Test) and UE hand dominance influenced individual goal selection. The majority of goals were in the ADL (37%) and IADL (40%) categories. A small percentage (12%) was related to general UE movement. Individuals with moderate UE functional capacity identified more ADL goals than those with higher UE functional capacity. There was not a difference between age and UE dominance across all five goal areas. Individuals with chronic UE paresis had specific goals that were not influenced by age or hand dominance, but partially influenced by severity. General UE movement goals were identified less than goals related to specific activities. Considering the specificity of individual goals following stroke, it is recommended that clinicians regularly utilize a goal setting tool to help establish client goals. It is recommended that clinicians further inquire about general goals in order to link upper extremity deficits to functional activity limitations. Age, upper extremity functional capacity and hand dominance have little influence on the rehabilitation goals for individuals with chronic paresis after stroke.
Park, Jin-Hyuck; Park, Ji-Hyuk
2016-01-01
[Purpose] The purpose of this study was to investigate the effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis. [Subjects] The subjects were chronic stroke patients with hemiparesis. [Methods] Thirty subjects were randomly assigned to either the control group or experimental group. All subjects received 20 sessions (5 days in a week) of virtual reality movement therapy using the Nintendo Wii. In addition to Wii-based virtual reality movement therapy, experimental group subjects performed mental practice consisting of 5 minutes of relaxation, Wii games imagination, and normalization phases before the beginning of Wii games. To compare the two groups, the upper extremity subtest of the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log were performed. [Results] Both groups showed statistically significant improvement in the Fugl-Meyer Assessment, Box and Block Test, and quality of the movement subscale of Motor Activity Log after the interventions. Also, there were significant differences in the Fugl-Meyer Assessment, Box and Block Test, and quality of movement subscale of the Motor Activity Log between the two groups. [Conclusion] Game-based virtual reality movement therapy alone may be helpful to improve functional recovery of the upper extremity, but the addition of MP produces a lager improvement. PMID:27134363
Evaluation of impairment of the upper extremity.
Blair, S J; McCormick, E; Bear-Lehman, J; Fess, E E; Rader, E
1987-08-01
Evaluation of impairment of the upper extremity is the product of a team effort by the physician, occupational therapist, physical therapist, and rehabilitation counselor. A careful recording of the anatomic impairment should be made because this is critical in determining the subsequent functional activities of the extremity. The measurement criteria for clinical and functional evaluation includes condition assessment instruments. Some assess the neurovascular system, others assess movements including the monitoring of articular motion and musculotendinous function. Sensibility assessment instruments measure sympathetic response and detect single joint stimulus, discrimination, quantification, and recognition abilities. A detailed description of each assessment is recorded and physical capacity evaluation is only one component of the entire vocational evaluation. This evaluation answers questions regarding the injured worker's ability to return to his previous job. The work simulator is a useful instrument that allows rehabilitation and testing of the injured upper extremity. Job site evaluation includes assessment criteria for work performance, work behavior, and work environment.
Visser, Bart; De Looze, Michiel; De Graaff, Matthijs; Van Dieën, Jaap
2004-02-05
The objective of the present study was to gain insight into the effects of precision demands and mental pressure on the load of the upper extremity. Two computer mouse tasks were used: an aiming and a tracking task. Upper extremity loading was operationalized as the myo-electric activity of the wrist flexor and extensor and of the trapezius descendens muscles and the applied grip- and click-forces on the computer mouse. Performance measures, reflecting the accuracy in both tasks and the clicking rate in the aiming task, indicated that the levels of the independent variables resulted in distinguishable levels of accuracy and work pace. Precision demands had a small effect on upper extremity loading with a significant increase in the EMG-amplitudes (21%) of the wrist flexors during the aiming tasks. Precision had large effects on performance. Mental pressure had substantial effects on EMG-amplitudes with an increase of 22% in the trapezius when tracking and increases of 41% in the trapezius and 45% and 140% in the wrist extensors and flexors, respectively, when aiming. During aiming, grip- and click-forces increased by 51% and 40% respectively. Mental pressure had small effects on accuracy but large effects on tempo during aiming. Precision demands and mental pressure in aiming and tracking tasks with a computer mouse were found to coincide with increased muscle activity in some upper extremity muscles and increased force exertion on the computer mouse. Mental pressure caused significant effects on these parameters more often than precision demands. Precision and mental pressure were found to have effects on performance, with precision effects being significant for all performance measures studied and mental pressure effects for some of them. The results of this study suggest that precision demands and mental pressure increase upper extremity load, with mental pressure effects being larger than precision effects. The possible role of precision demands as an indirect mental stressor in working conditions is discussed.
Gauthier, Lynne V; Kane, Chelsea; Borstad, Alexandra; Strahl, Nancy; Uswatte, Gitendra; Taub, Edward; Morris, David; Hall, Alli; Arakelian, Melissa; Mark, Victor
2017-06-08
Constraint-Induced Movement therapy (CI therapy) is shown to reduce disability, increase use of the more affected arm/hand, and promote brain plasticity for individuals with upper extremity hemiparesis post-stroke. Randomized controlled trials consistently demonstrate that CI therapy is superior to other rehabilitation paradigms, yet it is available to only a small minority of the estimated 1.2 million chronic stroke survivors with upper extremity disability. The current study aims to establish the comparative effectiveness of a novel, patient-centered approach to rehabilitation utilizing newly developed, inexpensive, and commercially available gaming technology to disseminate CI therapy to underserved individuals. Video game delivery of CI therapy will be compared against traditional clinic-based CI therapy and standard upper extremity rehabilitation. Additionally, individual factors that differentially influence response to one treatment versus another will be examined. This protocol outlines a multi-site, randomized controlled trial with parallel group design. Two hundred twenty four adults with chronic hemiparesis post-stroke will be recruited at four sites. Participants are randomized to one of four study groups: (1) traditional clinic-based CI therapy, (2) therapist-as-consultant video game CI therapy, (3) therapist-as-consultant video game CI therapy with additional therapist contact via telerehabilitation/video consultation, and (4) standard upper extremity rehabilitation. After 6-month follow-up, individuals assigned to the standard upper extremity rehabilitation condition crossover to stand-alone video game CI therapy preceded by a therapist consultation. All interventions are delivered over a period of three weeks. Primary outcome measures include motor improvement as measured by the Wolf Motor Function Test (WMFT), quality of arm use for daily activities as measured by Motor Activity Log (MAL), and quality of life as measured by the Quality of Life in Neurological Disorders (NeuroQOL). This multi-site RCT is designed to determine comparative effectiveness of in-home technology-based delivery of CI therapy versus standard upper extremity rehabilitation and in-clinic CI therapy. The study design also enables evaluation of the effect of therapist contact time on treatment outcomes within a therapist-as-consultant model of gaming and technology-based rehabilitation. Clinicaltrials.gov, NCT02631850 .
Lee, Myung Mo; Lee, Kyeong Jin; Song, Chang Ho
2018-04-27
BACKGROUND Virtual reality (VR) training with motion-controlled console games can be incorporated into stroke rehabilitation programs. The use of a variety of gaming software can provide the patient with an opportunity to perform activities that are exciting, entertaining, and that may not be feasible in clinical environments. The aim of this preliminary randomized controlled study was to investigate the effects of game-based VR canoe paddling training, when combined with conventional physical rehabilitation programs, on postural balance and upper extremity function in 30 patients with subacute stroke. MATERIAL AND METHODS Thirty patients, who were within six months following the diagnosis of stroke, were randomly allocated to either the experimental group (n=15) or the control group (n=15). All participants participated in a conventional rehabilitation program. Also, the experimental group (n=15) performed the VR canoe paddling training for 30 minutes each day, three times per week, for five weeks. After five weeks, outcomes of changes in postural balance and upper extremity function were evaluated and compared between the two groups. RESULTS At five weeks, postural balance and upper extremity function showed significant improvements in both patients groups when compared with the baseline measurements (p<0.05). However, postural balance and upper extremity function were significantly improved in the experimental group when compared with the control group (p<0.05). CONCLUSIONS Game-based VR canoe paddling training is an effective rehabilitation therapy that enhances postural balance and upper extremity function in patients with subacute stroke when combined with conventional physical rehabilitation programs.
Sequences of upper and lower extremity motions in javelin throwing.
Liu, Hui; Leigh, Steve; Yu, Bing
2010-11-01
Javelin throwing is technically demanding. Sequences of upper and lower extremity motions are important for javelin throwing performance. The purpose of this study was to determine the general sequences of upper and lower extremity motions of elite male and female javelin throwers. Three-dimensional kinematic data were collected for 32 female and 30 male elite javelin throwers during competitions. Shoulder, elbow, wrist, hip, knee, ankle, lower trunk, and upper trunk joint and segment angles were reduced for the best trial of each participant. Beginning times of 6 upper extremity and 10 lower extremity joint and segment angular motions were identified. Sequences of the upper and lower extremity motions were determined through statistical analyses. Upper and lower extremity motions of the male and female elite javelin throwers followed specific sequences (P ≤ 0.050). Upper extremity motions of the male and female elite javelin throwers did not follow a proximal-to-distal sequence as suggested in the literature. Male and female elite javelin throwers apparently employed different sequences for upper and lower extremity motions (P < 0.001). Further studies are needed to determine the effects of sequences of upper and lower extremity motions on javelin throwing performance.
Burkhart, Timothy A; Brydges, Evan; Stefanczyk, Jennifer; Andrews, David M
2017-04-01
The occurrence of distal upper extremity injuries resulting from forward falls (approximately 165,000 per year) has remained relatively constant for over 20years. Previous work has provided valuable insight into fall arrest strategies, but only symmetric falls in body postures that do not represent actual fall scenarios closely have been evaluated. This study quantified the effect of asymmetric loading and body postures on distal upper extremity response to simulated forward falls. Twenty participants were suspended from the Propelled Upper Limb fall ARest Impact System (PULARIS) in different torso and leg postures relative to the ground and to the sagittal plane (0°, 30° and 45°). When released from PULARIS (hands 10cm above surface, velocity 1m/s), participants landed on two force platforms, one for each hand. Right forearm impact response was measured with distal (radial styloid) and proximal (olecranon) tri-axial accelerometers and bipolar EMG from seven muscles. Overall, the relative height of the torso and legs had little effect on the forces, or forearm response variables. Muscle activation patterns consistently increased from the start to the peak activation levels after impact for all muscles, followed by a rapid decline after peak. The impact forces and accelerations suggest that the distal upper extremity is loaded more medial-laterally during asymmetric falls than symmetric falls. Altering the direction of the impact force in this way (volar-dorsal to medial-lateral) may help reduce distal extremity injuries caused when landing occurs symmetrically in the sagittal plane as it has been shown that volar-dorsal forces increase the risk of injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
Duplex sonography for detection of deep vein thrombosis of upper extremities: a 13-year experience.
Chung, Amy S Y; Luk, W H; Lo, Adrian X N; Lo, C F
2015-04-01
To determine the prevalence and characteristics of sonographically evident upper-extremity deep vein thrombosis in symptomatic Chinese patients and identify its associated risk factors. Regional hospital, Hong Kong. Data on patients undergoing upper-extremity venous sonography examinations during a 13-year period from November 1999 to October 2012 were retrieved. Variables including age, sex, history of smoking, history of lower-extremity deep vein thrombosis, major surgery within 30 days, immobilisation within 30 days, cancer (history of malignancy), associated central venous or indwelling catheter, hypertension, diabetes mellitus, sepsis within 30 days, and stroke within 30 days were tested using binary logistic regression to understand the risk factors for upper-extremity deep vein thrombosis. The presence of upper-extremity deep vein thrombosis identified. Overall, 213 patients with upper-extremity sonography were identified. Of these patients, 29 (13.6%) had upper-extremity deep vein thrombosis. The proportion of upper-extremity deep vein thrombosis using initial ultrasound was 0.26% of all deep vein thrombosis ultrasound requests. Upper limb swelling was the most common presentation seen in a total of 206 (96.7%) patients. Smoking (37.9%), history of cancer (65.5%), and hypertension (27.6%) were the more prevalent conditions among patients in the upper-extremity deep vein thrombosis-positive group. No statistically significant predictor of upper-extremity deep vein thrombosis was noted if all variables were included. After backward stepwise logistic regression, the final model was left with only age (P=0.119), female gender (P=0.114), and history of malignancy (P=0.024) as independent variables. History of malignancy remained predictive of upper-extremity deep vein thrombosis. Upper-extremity deep vein thrombosis is uncommon among symptomatic Chinese population. The most common sign is swelling and the major risk factor for upper-extremity deep vein thrombosis identified in this study is malignancy.
The Effect of Shoulder Plyometric Training on Amortization Time and Upper-Extremity Kinematics.
Swanik, Kathleen A; Thomas, Stephen J; Struminger, Aaron H; Bliven, Kellie C Huxel; Kelly, John D; Swanik, Charles B
2016-12-01
Plyometric training is credited with providing benefits in performance and dynamic restraint. However, limited prospective data exist quantifying kinematic adaptations such as amortization time, glenohumeral rotation, and scapulothoracic position, which may underlie the efficacy of plyometric training for upper-extremity rehabilitation or performance enhancement. To measure upper-extremity kinematics and plyometric phase times before and after an 8-wk upper-extremity strength- and plyometric-training program. Randomized pretest-posttest design. Research laboratory. 40 recreationally active men (plyometric group, age 20.43 ± 1.40 y, height 180.00 ± 8.80 cm, weight 73.07 ± 7.21 kg; strength group, age 21.95 ± 3.40 y, height 173.98 ± 11.91 cm, weight 74.79 ± 13.55 kg). Participants were randomly assigned to either a strength-training group or a strength- and plyometric-training group. Each participant performed the assigned training for 8 wk. Dynamic and static glenohumeral and scapular-rotation measurements were taken before and after the training programs. Dynamic measurement of scapular rotation and time spent in each plyometric phase (concentric, eccentric, and amortization) during a ball-toss exercise were recorded while the subjects were fitted with an electromagnetic tracking system. Static measures included scapular upward rotation at 3 different glenohumeral-abduction angles, glenohumeral internal rotation, and glenohumeral external rotation. Posttesting showed that both groups significantly decreased the time spent in the amortization, concentric, and eccentric phases of a ball-toss exercise (P < .01). Both groups also exhibited significantly decreased static external rotation and increased dynamic scapular upward rotation after the training period (P < .01). The only difference between the training protocols was that the plyometric-training group exhibited an increase in internal rotation that was not present in the strength-training group (P < .01). These findings support the use of both upper-extremity plyometrics and strength training for reducing commonly identified upper-extremity-injury risk factors and improving upper-extremity performance.
Coenen, Pieter; Healy, Genevieve N; Winkler, Elisabeth A H; Dunstan, David W; Owen, Neville; Moodie, Marj; LaMontagne, Anthony D; Eakin, Elizabeth A; O'Sullivan, Peter B; Straker, Leon M
2018-04-22
We examined the association of musculoskeletal symptoms (MSS) with workplace sitting, standing and stepping time, as well as sitting and standing time accumulation (i.e. usual bout duration of these activities), measured objectively with the activPAL3 monitor. Using baseline data from the Stand Up Victoria trial (216 office workers, 14 workplaces), cross-sectional associations of occupational activities with self-reported MSS (low-back, upper and lower extremity symptoms in the last three months) were examined using probit regression, correcting for clustering and adjusting for confounders. Sitting bout duration was significantly (p < 0.05) associated, non-linearly, with MSS, such that those in the middle tertile displayed the highest prevalence of upper extremity symptoms. Other associations were non-significant but sometimes involved large differences in symptom prevalence (e.g. 38%) by activity. Though causation is unclear, these non-linear associations suggest that sitting and its alternatives (i.e. standing and stepping) interact with MSS and this should be considered when designing safe work systems. Practitioner summary: We studied associations of objectively assessed occupational activities with musculoskeletal symptoms in office workers. Workers who accumulated longer sitting bouts reported fewer upper extremity symptoms. Total activity duration was not significantly associated with musculoskeletal symptoms. We underline the importance of considering total volumes and patterns of activity time in musculoskeletal research.
Lee, Myung Mo; Lee, Kyeong Jin
2018-01-01
Background Virtual reality (VR) training with motion-controlled console games can be incorporated into stroke rehabilitation programs. The use of a variety of gaming software can provide the patient with an opportunity to perform activities that are exciting, entertaining, and that may not be feasible in clinical environments. The aim of this preliminary randomized controlled study was to investigate the effects of game-based VR canoe paddling training, when combined with conventional physical rehabilitation programs, on postural balance and upper extremity function in 30 patients with subacute stroke. Material/Methods Thirty patients, who were within six months following the diagnosis of stroke, were randomly allocated to either the experimental group (n=15) or the control group (n=15). All participants participated in a conventional rehabilitation program. Also, the experimental group (n=15) performed the VR canoe paddling training for 30 minutes each day, three times per week, for five weeks. After five weeks, outcomes of changes in postural balance and upper extremity function were evaluated and compared between the two groups. Results At five weeks, postural balance and upper extremity function showed significant improvements in both patients groups when compared with the baseline measurements (p<0.05). However, postural balance and upper extremity function were significantly improved in the experimental group when compared with the control group (p<0.05). Conclusions Game-based VR canoe paddling training is an effective rehabilitation therapy that enhances postural balance and upper extremity function in patients with subacute stroke when combined with conventional physical rehabilitation programs. PMID:29702630
Efficacy of Mirror Therapy Containing Functional Tasks in Poststroke Patients
2016-01-01
Objective To investigate the effect of mirror therapy containing functional tasks on upper extremity function and activities of daily living in patients with subacute stroke. Methods The subjects were randomly divided into two groups: the mirror therapy group (30 patients) and the sham therapy group (30 patients). The mirror therapy group underwent a mirror therapy program together with conventional therapy for 20 minutes per day on 5 days per week for 4 weeks. The control group received a sham conventional therapy program under the same schedule as the mirror therapy group. The Fugl-Meyer Motor Function Assessment (FMA), Brunnstrom motor recovery stage, and Modified Barthel Index (MBI) were evaluated 4 weeks after the treatment. Results The upper extremity function on the affected side and ability to perform daily life activities after the intervention were significantly improved in both groups. After 4 weeks of intervention, improvements in the FMA (p=0.027) and MBI (p=0.041) were significantly greater in the mirror therapy group than the sham therapy group. Conclusion In this study, we found that the mirror therapy containing functional task was effective in terms of improving the upper extremity functions and activities of daily living in patients with subacute stroke. PMID:27606269
Efficacy of Mirror Therapy Containing Functional Tasks in Poststroke Patients.
Lim, Kil-Byung; Lee, Hong-Jae; Yoo, Jeehyun; Yun, Hyun-Ju; Hwang, Hye-Jung
2016-08-01
To investigate the effect of mirror therapy containing functional tasks on upper extremity function and activities of daily living in patients with subacute stroke. The subjects were randomly divided into two groups: the mirror therapy group (30 patients) and the sham therapy group (30 patients). The mirror therapy group underwent a mirror therapy program together with conventional therapy for 20 minutes per day on 5 days per week for 4 weeks. The control group received a sham conventional therapy program under the same schedule as the mirror therapy group. The Fugl-Meyer Motor Function Assessment (FMA), Brunnstrom motor recovery stage, and Modified Barthel Index (MBI) were evaluated 4 weeks after the treatment. The upper extremity function on the affected side and ability to perform daily life activities after the intervention were significantly improved in both groups. After 4 weeks of intervention, improvements in the FMA (p=0.027) and MBI (p=0.041) were significantly greater in the mirror therapy group than the sham therapy group. In this study, we found that the mirror therapy containing functional task was effective in terms of improving the upper extremity functions and activities of daily living in patients with subacute stroke.
Fu, Jianming; Zeng, Ming; Shen, Fang; Cui, Yao; Zhu, Meihong; Gu, Xudong; Sun, Ya
2017-10-01
The aim of this study was to explore the effects of action observation therapy on motor function of upper extremity, activities of daily living, and motion evoked potential in cerebral infarction patients. Cerebral infarction survivors were randomly assigned to an experimental group (28 patients) or a control group (25 patients). The conventional rehabilitation treatments were applied in both groups, but the experimental group received an additional action observation therapy for 8 weeks (6 times per week, 20 minutes per time). Fugl-Meyer assessment (FMA), Wolf Motor Function Test (WMFT), Modified Barthel Index (MBI), and motor evoked potential (MEP) were used to evaluate the upper limb movement function and daily life activity. There were no significant differences between experiment and control group in the indexes, including FMA, WMFT, and MBI scores, before the intervention. However, after 8 weeks treatments, these indexes were improved significantly. MEP latency and center-motion conduction time (CMCT) decreased from 23.82 ± 2.16 and 11.15 ± 1.68 to 22.69 ± 2.11 and 10.12 ± 1.46 ms. MEP amplitude increased from 0.61 ± 0.22 to 1.25 ± 0.38 mV. A remarkable relationship between the evaluations indexes of MEP and FMA was found. Combination of motion observation and traditional upper limb rehabilitation treatment technology can significantly elevate the movement function of cerebral infarction patients in subacute seizure phase with upper limb dysfunction, which expanded the application range of motion observation therapy and provided an effective therapy strategy for upper extremities hemiplegia in stroke patients.
Hanney, William J.; Kolber, Morey J.; Davies, George J.; Riemann, Bryan
2011-01-01
Introduction: Understanding the relationships between performance tests and sport activity is important to the rehabilitation specialist. The purpose of this study was two- fold: 1) To identify if relationships exist between tests of upper body strength and power (Single Arm Seated Shot Put, Timed Push-Up, Timed Modified Pull-Up, and The Davies Closed Kinetic Chain Upper Extremity Stability Test, and the softball throw for distance), 2) To determine which variable or group of variables best predicts the performance of a sport specific task (the softball throw for distance). Methods: One hundred eighty subjects (111 females and 69 males, aged 18-45 years) performed the 5 upper extremity tests. The Pearson product moment correlation and a stepwise regression were used to determine whether relationships existed between performance on the tests and which upper extremity test result best explained the performance on the softball throw for distance. Results: There were significant correlations (r=.33 to r=.70, p=0.001) between performance on all of the tests. The modified pull-up test was the best predictor of the performance on the softball throw for distance (r2= 48.7), explaining 48.7% of variation in performance. When weight, height, and age were added to the regression equation the r2 values increased to 64.5, 66.2, and 67.5 respectively. Conclusion: The results of this study indicate that several upper extremity tests demonstrate significant relationships with one another and with the softball throw for distance. The modified pull up test was the best predictor of performance on the softball throw for distance. PMID:21712942
Sood, Aditya; Therattil, Paul J; Russo, Gerardo; Lee, Edward S
2017-01-01
Objective: The latissimus dorsi flap is a workhorse for plastic surgeons, being used for many years for soft-tissue coverage of the upper extremity as well as for functional reconstruction to restore motion to the elbow and shoulder. The authors present a case of functional latissimus dorsi transfer for restoration of elbow flexion and review the literature on technique and outcomes. Methods: A literature review was performed using MEDLINE and the Cochrane Collaboration Library for primary research articles on functional latissimus dorsi flap transfer. Data related to surgical techniques and outcomes were extracted. Results: The literature search yielded 13 relevant studies, with a total of 52 patients who received pedicled, functional latissimus dorsi flaps for upper-extremity reconstruction. The most common etiology requiring reconstruction was closed brachial plexus injury (n = 13). After flap transfer, 98% of patients were able to flex the elbow against gravity and 82.3% were able to flex against resistance. In the presented case, a 77-year-old man underwent resection of myxofibrosarcoma of the upper arm with elbow prosthesis placement and functional latissimus dorsi transfer. The patient was able to actively flex against gravity at 3-month follow-up. Conclusions: A review of the literature shows that nearly all patients undergoing functional latissimus dorsi transfer for upper-extremity reconstruction regain at least motion against gravity whereas a large proportion regain motion against resistance. Considerations when planning for functional latissimus dorsi transfer include patient positioning, appropriate tensioning of the muscle, safe inset, polarity, management of other affected upper-extremity joints, and educating patients on the expected outcomes.
Therattil, Paul J.; Russo, Gerardo; Lee, Edward S.
2017-01-01
Objective: The latissimus dorsi flap is a workhorse for plastic surgeons, being used for many years for soft-tissue coverage of the upper extremity as well as for functional reconstruction to restore motion to the elbow and shoulder. The authors present a case of functional latissimus dorsi transfer for restoration of elbow flexion and review the literature on technique and outcomes. Methods: A literature review was performed using MEDLINE and the Cochrane Collaboration Library for primary research articles on functional latissimus dorsi flap transfer. Data related to surgical techniques and outcomes were extracted. Results: The literature search yielded 13 relevant studies, with a total of 52 patients who received pedicled, functional latissimus dorsi flaps for upper-extremity reconstruction. The most common etiology requiring reconstruction was closed brachial plexus injury (n = 13). After flap transfer, 98% of patients were able to flex the elbow against gravity and 82.3% were able to flex against resistance. In the presented case, a 77-year-old man underwent resection of myxofibrosarcoma of the upper arm with elbow prosthesis placement and functional latissimus dorsi transfer. The patient was able to actively flex against gravity at 3-month follow-up. Conclusions: A review of the literature shows that nearly all patients undergoing functional latissimus dorsi transfer for upper-extremity reconstruction regain at least motion against gravity whereas a large proportion regain motion against resistance. Considerations when planning for functional latissimus dorsi transfer include patient positioning, appropriate tensioning of the muscle, safe inset, polarity, management of other affected upper-extremity joints, and educating patients on the expected outcomes. PMID:28293330
Frydendal, Thomas; Eshøj, Henrik; Liaghat, Behnam; Edouard, Pascal; Søgaard, Karen; Juul-Kristensen, Birgit
2018-05-05
Shoulder pain is highly prevalent in competitive swimmers, and generalized joint hypermobility (GJH) is considered a risk factor. Sensorimotor control deficiencies and altered neuromuscular activation of the shoulder may represent underlying factors. To investigate whether competitive swimmers with GJH including shoulder hypermobility (GJHS) differ in shoulder sensorimotor control and muscle activity from those without GJH and no shoulder hypermobility (NGJH). Competitive swimmers (aged 13-17) were recruited. GJHS or NGJH status was determined using the Beighton score (0-9) and Rotès-Quérol test (positive/negative). Inclusion criteria for GJHS were a Beighton score ≥5 and minimum one hypermobile shoulder, while NGJH was defined as a Beighton score ≤3 and no shoulder hypermobility. Three prone lying, upper-extremity weight-bearing shoulder stabilometric tests were performed on a force platform: Bilateral upper-extremity support eyes open (BL-EO) and eyes closed (BL-EC) and unilateral upper-extremity support eyes open (UL-EO). Surface electromyography (SEMG) was measured from the upper trapezius, lower trapezius, serratus anterior, infraspinatus and pectoralis major muscles. SEMG was normalized using maximal voluntary isometric contractions and presented relative to maximal voluntary SEMG (%MVE). Co-contraction index (CCI) was calculated for the following muscle pairs: upper trapezius-lower trapezius, upper trapezius-serratus anterior, and infraspinatus-pectoralis major. Between-group differences in stabilometric parameters, %MVE, and CCI were analyzed with a mixed effects model. Thirty-eight swimmers were enrolled as GJHS (n = 19) or NGJH (n = 19). There were no group differences in stabilometric parameters or CCI. GJHS displayed significantly decreased (29%) pectoralis major activity during BL-EO compared to NGJH (5.35 ± 1.77%MVE vs. 7.51 ± 1.96%MVE; p = 0.043). Adolescent competitive swimmers with GJHS displayed no shoulder sensorimotor control deficiencies and no generally altered shoulder muscle activity pattern, except for decreased pectoralis major activity in BL-EO. Longitudinal studies are needed to investigate whether decreased pectoralis major activation contributes to the development of shoulder pain in swimmers with GJHS. Copyright © 2018 Elsevier B.V. All rights reserved.
Baik, Jong Sam; Jang, Seong Ho; Park, Dong Sik
2009-01-01
To develop an objective and scientific method to evaluate the brain injured and brain diseased persons with motor dysfunction, American Medical Association's Guides to the Evaluation of Permanent Impairment was used as an exemplar. After the motor dysfunction due to brain injury or brain disease was confirmed, active range of motion and muscle strength of affected extremities were measured. Also, the total function of extremities was evaluated through the assessment of activities of daily living, fine coordination of hand, balance and gait. Then, the total score of manual muscle test and functional assessment of impaired upper and lower extremity were added, respectively. Spasticity of upper and lower extremity was used as minus factors. Patients with movement disorder such as Parkinson's disease were assessed based on the degree of dysfunction in response to medication. We develop a new rating system based on the concept of total score. PMID:19503680
Lee, Suhyun; Kim, Yumi; Lee, Byoung-Hee
2016-12-01
In the present study, we aimed to investigate the effect of virtual reality-based bilateral upper extremity training (VRBT) on paretic upper limb function and muscle strength in patients with stroke. Eighteen stroke survivors were assigned to either the VRBT group (n = 10) or the bilateral upper limb training group (BT, n = 8). Patients in the VRBT group performed bilateral upper extremity exercises in a virtual reality environment, whereas those in the BT group performed conventional bilateral upper extremity exercises. All training was conducted for 30 minutes day -1 , 3 days a week, for a period of 6 weeks. Patients were assessed for upper extremity function and hand strength. Compared with the BT group, the VRBT group exhibited significant improvements in upper extremity function and muscle strength (p < 0.05) after the 6-week training programme. The Box and Block test results revealed that upper extremity function and elbow flexion in hand strength were significantly improved in terms of group, time and interaction effect of group by time. Furthermore, the VRBT group demonstrated significant improvements in upper extremity function, as measured by the Jebsen Hand Function Test and Grooved Pegboard test, and in the hand strength test, as measured by elbow extension, grip, palmar pinch, lateral pinch and tip pinch, in both time and the interaction effect of group by time. These results suggest that VRBT is a feasible and beneficial means of improving upper extremity function and muscle strength in individuals following stroke. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Yoon, Jisun; Chun, Min Ho; Lee, Sook Joung; Kim, Bo Ryun
2015-06-01
The aim of this study was to evaluate the benefit of virtual reality-based rehabilitation on upper-extremity function in patients with brain tumor. Patients with upper-extremity dysfunction were divided into age-matched and tumor type-matched two groups. The intervention group performed the virtual reality program 30 mins per session for 9 sessions and conventional occupational therapy 30 mins per session for 6 sessions for 3 wks, whereas the control group received conventional occupational therapy alone 30 mins per session for 15 sessions for 3 wks. The Box and Block test, the Manual Function test, and the Fugl-Meyer scale were used to evaluate upper-extremity function. The Korean version of the Modified Barthel Index was used to assess activities of daily living. Forty patients completed the study (20 for each group). Each group exhibited significant posttreatment improvements in the Box and Block test, Manual Function test, Fugl-Meyer scale, and Korean version of the Modified Barthel Index scores. The Box and Block test, the Fugl-Meyer scale, and the Manual Function test showed greater improvements in shoulder/elbow/forearm function in the intervention group and hand function in the control group. Virtual reality-based rehabilitation combined with conventional occupational therapy may be more effective than conventional occupational therapy, especially for proximal upper-extremity function in patients with brain tumor. Further studies considering hand function, such as use of virtual reality programs that targeting hand use, are required.
Kim, Arim; Lee, Hye-Sun; Song, Chiang-Soon
2017-01-01
[Purpose] The purpose of this study was to examine the effects of interactive metronome training on the postural stability and upper extremity function of an individual with Parkinson's disease. [Subject and Methods] The participant of this case study was a 75-year-old female with Parkinson's disease diagnosed 7 years prior. This study was a single-subject research with an A-B-A design. She received IM training during the treatment phase (B phase) for 40 minutes per session. She was assessed pretest and posttest using the Berg balance scale and Wolf motor function test, and at baseline and the treatment phase using the measured box-and-block test and a Tetrax system. [Results] After training, the patient's static and dynamic balance, functional activity, and performance time of the upper extremity improved. Interactive metronome therapy improved the manual dexterity of both hands. Interactive metronome therapy also improved the limit of stability of the Parkinson's disease. [Conclusion] Though a case study, the results of this study suggest that IM therapy is effective at restoring the postural stability and upper extremity function of patients with Parkinson's disease.
Kim, Arim; Lee, Hye-Sun; Song, Chiang-Soon
2017-01-01
[Purpose] The purpose of this study was to examine the effects of interactive metronome training on the postural stability and upper extremity function of an individual with Parkinson’s disease. [Subject and Methods] The participant of this case study was a 75-year-old female with Parkinson’s disease diagnosed 7 years prior. This study was a single-subject research with an A-B-A design. She received IM training during the treatment phase (B phase) for 40 minutes per session. She was assessed pretest and posttest using the Berg balance scale and Wolf motor function test, and at baseline and the treatment phase using the measured box-and-block test and a Tetrax system. [Results] After training, the patient’s static and dynamic balance, functional activity, and performance time of the upper extremity improved. Interactive metronome therapy improved the manual dexterity of both hands. Interactive metronome therapy also improved the limit of stability of the Parkinson’s disease. [Conclusion] Though a case study, the results of this study suggest that IM therapy is effective at restoring the postural stability and upper extremity function of patients with Parkinson’s disease. PMID:28210066
A hybrid joint based controller for an upper extremity exoskeleton
NASA Astrophysics Data System (ADS)
Mohd Khairuddin, Ismail; Taha, Zahari; Majeed, Anwar P. P. Abdul; Hakeem Deboucha, Abdel; Azraai Mohd Razman, Mohd; Aziz Jaafar, Abdul; Mohamed, Zulkifli
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton. The Euler-Lagrange formulation was used in deriving the dynamic modelling of both the human upper limb as well as the exoskeleton that consists of the upper arm and the forearm. The human model is based on anthropometrical measurements of the upper limb. The proportional-derivative (PD) computed torque control (CTC) architecture is employed in this study to investigate its efficacy performing joint-space control objectives specifically in rehabilitating the elbow and shoulder joints along the sagittal plane. An active force control (AFC) algorithm is also incorporated into the PD-CTC to investigate the effectiveness of this hybrid system in compensating disturbances. It was found that the AFC- PD-CTC performs well against the disturbances introduced into the system whilst achieving acceptable trajectory tracking as compared to the conventional PD-CTC control architecture.
NASA Astrophysics Data System (ADS)
Priya, P.; Krishnan, R.; Mujumdar, Milind; Houze, Robert A.
2017-10-01
Historical rainfall records reveal that the frequency and intensity of extreme precipitation events, during the summer monsoon (June-September) season, have significantly risen over the Western Himalayas (WH) and adjoining upper Indus basin since 1950s. Using multiple datasets, the present study investigates the possible coincidences between an increasing trend of precipitation extremes over WH and changes in background flow climatology. The present findings suggest that the combined effects of a weakened southwest monsoon circulation, increased activity of transient upper-air westerly troughs over the WH region, enhanced moisture supply by southerly winds from the Arabian Sea into the Indus basin have likely provided favorable conditions for an increased frequency of certain types of extreme precipitation events over the WH region in recent decades.
Park, Jung-Keun; Boyer, Jon; Tessler, Jamie; Casey, Jeffrey; Schemm, Linda; Gore, Rebecca; Punnett, Laura
2009-07-01
This study examined the inter-rater reliability of expert observations of ergonomic risk factors by four analysts. Ten jobs were observed at a hospital using a newly expanded version of the PATH method (Buchholz et al. 1996), to which selected upper extremity exposures had been added. Two of the four raters simultaneously observed each worker onsite for a total of 443 observation pairs containing 18 categorical exposure items each. For most exposure items, kappa coefficients were 0.4 or higher. For some items, agreement was higher both for the jobs with less rapid hand activity and for the analysts with a higher level of ergonomic job analysis experience. These upper extremity exposures could be characterised reliably with real-time observation, given adequate experience and training of the observers. The revised version of PATH is applicable to the analysis of jobs where upper extremity musculoskeletal strain is of concern.
Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard
2017-07-01
Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. Implications for Rehabilitation Rehabilitation of individuals with severely paretic upper extremities after stroke is challenging due to limited movement capacity and few options for therapeutic training. Long-term functional recovery of the arm after stroke depends on early return of active hand control, establishing a need for acute training methods focused distally. This study demonstrates the feasibility of an early hand-based intervention using virtual reality based priming and scaled motor activities which can allow for participation by persons without the motor control required for traditionally presented rehabilitation and testing.
Choi, Jun Hwan; Kim, Bo Ryun; Kim, Sun Mi; Im, Sang Hee; Lee, So Young; Hyun, Chul Woong
2014-01-01
Objective To investigate the effectiveness of commercial gaming-based virtual reality (VR) therapy on the recovery of paretic upper extremity in subacute stroke patients. Methods Twenty patients with the first-onset subacute stroke were enrolled and randomly assigned to the case group (n=10) and the control group (n=10). Primary outcome was measured by the upper limb score through the Fugl-Meyer Assessment (FMA-UL) for the motor function of both upper extremities. Secondary outcomes were assessed for motor function of both upper extremities including manual function test (MFT), box and block test (BBT), grip strength, evaluated for activities of daily living (Korean version of Modified Barthel Index [K-MBI]), and cognitive functions (Korean version of the Mini-Mental State Examination [K-MMSE] and continuous performance test [CPT]). The case group received commercial gaming-based VR therapy using Wii (Nintendo, Tokyo, Japan), and the control group received conventional occupational therapy (OT) for 30 minutes a day during the period of 4 weeks. All patients were evaluated before and after the 4-week intervention. Results There were no significant differences in the baseline between the two groups. After 4 weeks, both groups showed significant improvement in the FMA-UL, MFT, BBT, K-MBI, K-MMSE, and correct detection of auditory CPT. However, grip strength was improved significantly only in the case group. There were no significant intergroup differences before and after the treatment. Conclusion These findings suggested that the commercial gaming-based VR therapy was as effective as conventional OT on the recovery of upper extremity motor and daily living function in subacute stroke patients. PMID:25229027
Choi, Jun Hwan; Han, Eun Young; Kim, Bo Ryun; Kim, Sun Mi; Im, Sang Hee; Lee, So Young; Hyun, Chul Woong
2014-08-01
To investigate the effectiveness of commercial gaming-based virtual reality (VR) therapy on the recovery of paretic upper extremity in subacute stroke patients. Twenty patients with the first-onset subacute stroke were enrolled and randomly assigned to the case group (n=10) and the control group (n=10). Primary outcome was measured by the upper limb score through the Fugl-Meyer Assessment (FMA-UL) for the motor function of both upper extremities. Secondary outcomes were assessed for motor function of both upper extremities including manual function test (MFT), box and block test (BBT), grip strength, evaluated for activities of daily living (Korean version of Modified Barthel Index [K-MBI]), and cognitive functions (Korean version of the Mini-Mental State Examination [K-MMSE] and continuous performance test [CPT]). The case group received commercial gaming-based VR therapy using Wii (Nintendo, Tokyo, Japan), and the control group received conventional occupational therapy (OT) for 30 minutes a day during the period of 4 weeks. All patients were evaluated before and after the 4-week intervention. There were no significant differences in the baseline between the two groups. After 4 weeks, both groups showed significant improvement in the FMA-UL, MFT, BBT, K-MBI, K-MMSE, and correct detection of auditory CPT. However, grip strength was improved significantly only in the case group. There were no significant intergroup differences before and after the treatment. These findings suggested that the commercial gaming-based VR therapy was as effective as conventional OT on the recovery of upper extremity motor and daily living function in subacute stroke patients.
Chang, Won Hyuk; Park, Eunhee; Lee, Jungsoo; Lee, Ahee; Kim, Yun-Hee
2017-06-01
The identification of intrinsic factors for predicting upper extremity motor outcome could aid the design of individualized treatment plans in stroke rehabilitation. The aim of this study was to identify prognostic factors, including intrinsic genetic factors, for upper extremity motor outcome in patients with subacute stroke. A total of 97 patients with subacute stroke were enrolled. Upper limb motor impairment was scored according to the upper limb of Fugl-Meyer assessment score at 3 months after stroke. The prediction of upper extremity motor outcome at 3 months was modeled using various factors that could potentially influence this impairment, including patient characteristics, baseline upper extremity motor impairment, functional and structural integrity of the corticospinal tract, and brain-derived neurotrophic factor genotype. Multivariate ordinal logistic regression models were used to identify the significance of each factor. The independent predictors of motor outcome at 3 months were baseline upper extremity motor impairment, age, stroke type, and corticospinal tract functional integrity in all stroke patients. However, in the group with severe motor impairment at baseline (upper limb score of Fugl-Meyer assessment <25), the number of Met alleles in the brain-derived neurotrophic factor genotype was also an independent predictor of upper extremity motor outcome 3 months after stroke. Brain-derived neurotrophic factor genotype may be a potentially useful predictor of upper extremity motor outcome in patients with subacute stroke with severe baseline motor involvement. © 2017 American Heart Association, Inc.
Modelling and control of an upper extremity exoskeleton for rehabilitation
NASA Astrophysics Data System (ADS)
Taha, Zahari; Majeed, Anwar P. P. Abdul; Tze, Mohd Yashim Wong Paul; Abdo Hashem, Mohammed; Mohd Khairuddin, Ismail; Azraai Mohd Razman, Mohd
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton for rehabilitation. The Lagrangian formulation was employed to obtain the dynamic modelling of both the anthropometric based human upper limb as well as the exoskeleton that comprises of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed to investigate its efficacy performing a joint task trajectory tracking in performing flexion/extension on the elbow joint as well as the forward adduction/abduction on the shoulder joint. An active force control (AFC) algorithm is also incorporated into the aforementioned controller to examine its effectiveness in compensating disturbances. It was found from the study that the AFC-PD performed well against the disturbances introduced into the system without compromising its tracking performances as compared to the conventional PD control architecture.
Page, Stephen J; Hade, Erinn; Persch, Andrew
2015-01-01
There remains a need for a quickly administered, stroke-specific, bedside measure of active wrist and finger movement for the expanding stroke population. The wrist stability and hand mobility scales of the upper extremity Fugl-Meyer Assessment (w/h UE FM) constitute a valid, reliable measure of paretic UE impairment in patients with active wrist and finger movement. The aim of this study was to determine performance on the w/h UE FM in a stable cohort of survivors of stroke with only palpable movement in their paretic wrist flexors. A single-center cohort study was conducted. Thirty-two individuals exhibiting stable, moderate upper extremity hemiparesis (15 male, 17 female; mean age=56.6 years, SD=10.1; mean time since stroke=4.6 years, SD=5.8) participated in the study, which was conducted at an outpatient rehabilitation clinic in the midwestern United States. The w/h UE FM and Action Research Arm Test (ARAT) were administered twice. Intraclass correlation coefficients (ICCs), Cronbach alpha, and ordinal alpha were computed to determine reliability, and Spearman rank correlation coefficients and Bland-Altman plots were computed to establish validity. Intraclass correlation coefficients for the w/h UE FM and ARAT were .95 and .99, respectively. The w/h UE FM intrarater reliability and internal consistency were greater than .80, and concurrent validity was greater than .70. This also was the first stroke rehabilitative study to apply ordinal alpha to examine internal consistency values, revealing w/h UE FM levels greater than .85. Concurrent validity findings were corroborated by Bland-Altman plots. It appears that the w/h UE FM is a promising tool to measure distal upper extremity movement in patients with little active paretic wrist and finger movement. This finding widens the segment of patients on whom the w/h UE FM can be effectively used and addresses a gap, as commonly used measures necessitate active distal upper extremity movement. © 2015 American Physical Therapy Association.
Hays, Ron D; Spritzer, Karen L; Amtmann, Dagmar; Lai, Jin-Shei; Dewitt, Esi Morgan; Rothrock, Nan; Dewalt, Darren A; Riley, William T; Fries, James F; Krishnan, Eswar
2013-11-01
To create upper-extremity and mobility subdomain scores from the Patient-Reported Outcomes Measurement Information System (PROMIS) physical functioning adult item bank. Expert reviews were used to identify upper-extremity and mobility items from the PROMIS item bank. Psychometric analyses were conducted to assess empirical support for scoring upper-extremity and mobility subdomains. Data were collected from the U.S. general population and multiple disease groups via self-administered surveys. The sample (N=21,773) included 21,133 English-speaking adults who participated in the PROMIS wave 1 data collection and 640 Spanish-speaking Latino adults recruited separately. Not applicable. We used English- and Spanish-language data and existing PROMIS item parameters for the physical functioning item bank to estimate upper-extremity and mobility scores. In addition, we fit graded response models to calibrate the upper-extremity items and mobility items separately, compare separate to combined calibrations, and produce subdomain scores. After eliminating items because of local dependency, 16 items remained to assess upper extremity and 17 items to assess mobility. The estimated correlation between upper extremity and mobility was .59 using existing PROMIS physical functioning item parameters (r=.60 using parameters calibrated separately for upper-extremity and mobility items). Upper-extremity and mobility subdomains shared about 35% of the variance in common, and produced comparable scores whether calibrated separately or together. The identification of the subset of items tapping these 2 aspects of physical functioning and scored using the existing PROMIS parameters provides the option of scoring these subdomains in addition to the overall physical functioning score. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priya, P.; Krishnan, R.; Mujumdar, Milind
Historical rainfall records reveal that the frequency and intensity of extreme precipitation events, during the summer monsoon (June to September) season, have significantly risen over the Western Himalayas (WH) and adjoining upper Indus basin since 1950s. Using multiple datasets, the present study investigates the possible coincidences between an increasing trend of precipitation extremes over WH and changes in background flow climatology. The present findings suggest that the combined effects of a weakened southwest monsoon circulation, increased activity of transient upper-air westerly troughs over the WH region, enhanced moisture supply by southerly winds from the Arabian Sea into the Indus basinmore » have likely provided favorable conditions for an increased frequency of certain types of extreme precipitation events over the WH region in recent decades.« less
Validity of the Dictionary of Occupational Titles for Assessing Upper Extremity Work Demands
Opsteegh, Lonneke; Soer, Remko; Reinders-Messelink, Heleen A.; Reneman, Michiel F.; van der Sluis, Corry K.
2010-01-01
Objectives The Dictionary of Occupational Titles (DOT) is used in vocational rehabilitation to guide decisions about the ability of a person with activity limitations to perform activities at work. The DOT has categorized physical work demands in five categories. The validity of this categorization is unknown. Aim of this study was to investigate whether the DOT could be used validly to guide decisions for patients with injuries to the upper extremities. Four hypotheses were tested. Methods A database including 701 healthy workers was used. All subjects filled out the Dutch Musculoskeletal Questionnaire, from which an Upper Extremity Work Demands score (UEWD) was derived. First, relation between the DOT-categories and UEWD-score was analysed using Spearman correlations. Second, variance of the UEWD-score in occupational groups was tested by visually inspecting boxplots and assessing kurtosis of the distribution. Third, it was investigated whether occupations classified in one DOT-category, could significantly differ on UEWD-scores. Fourth, it was investigated whether occupations in different DOT-categories could have similar UEWD-scores using Mann Whitney U-tests (MWU). Results Relation between the DOT-categories and the UEWD-score was weak (rsp = 0.40; p<.01). Overlap between categories was found. Kurtosis exceeded ±1.0 in 3 occupational groups, indicating large variance. UEWD-scores were significantly different within one DOT-category (MWU = 1.500; p<.001). UEWD scores between DOT-categories were not significantly different (MWU = 203.000; p = .49). Conclusion All four hypotheses could not be rejected. The DOT appears to be invalid for assessing upper extremity work demands. PMID:21151934
Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
Sugar, Thomas G; He, Jiping; Koeneman, Edward J; Koeneman, James B; Herman, Richard; Huang, H; Schultz, Robert S; Herring, D E; Wanberg, J; Balasubramanian, Sivakumar; Swenson, Pete; Ward, Jeffrey A
2007-09-01
The structural design, control system, and integrated biofeedback for a wearable exoskeletal robot for upper extremity stroke rehabilitation are presented. Assisted with clinical evaluation, designers, engineers, and scientists have built a device for robotic assisted upper extremity repetitive therapy (RUPERT). Intense, repetitive physical rehabilitation has been shown to be beneficial overcoming upper extremity deficits, but the therapy is labor intensive and expensive and difficult to evaluate quantitatively and objectively. The RUPERT is developed to provide a low cost, safe and easy-to-use, robotic-device to assist the patient and therapist to achieve more systematic therapy at home or in the clinic. The RUPERT has four actuated degrees-of-freedom driven by compliant and safe pneumatic muscles (PMs) on the shoulder, elbow, and wrist. They are programmed to actuate the device to extend the arm and move the arm in 3-D space. It is very important to note that gravity is not compensated and the daily tasks are practiced in a natural setting. Because the device is wearable and lightweight to increase portability, it can be worn standing or sitting providing therapy tasks that better mimic activities of daily living. The sensors feed back position and force information for quantitative evaluation of task performance. The device can also provide real-time, objective assessment of functional improvement. We have tested the device on stroke survivors performing two critical activities of daily living (ADL): reaching out and self feeding. The future improvement of the device involves increased degrees-of-freedom and interactive control to adapt to a user's physical conditions.
Use of computer games as an intervention for stroke.
Proffitt, Rachel M; Alankus, Gazihan; Kelleher, Caitlin L; Engsberg, Jack R
2011-01-01
Current rehabilitation for persons with hemiparesis after stroke requires high numbers of repetitions to be in accordance with contemporary motor learning principles. The motivational characteristics of computer games can be harnessed to create engaging interventions for persons with hemiparesis after stroke that incorporate this high number of repetitions. The purpose of this case report was to test the feasibility of using computer games as a 6-week home therapy intervention to improve upper extremity function for a person with stroke. One person with left upper extremity hemiparesis after stroke participated in a 6-week home therapy computer game intervention. The games were customized to her preferences and abilities and modified weekly. Her performance was tracked and analyzed. Data from pre-, mid-, and postintervention testing using standard upper extremity measures and the Reaching Performance Scale (RPS) were analyzed. After 3 weeks, the participant demonstrated increased upper extremity range of motion at the shoulder and decreased compensatory trunk movements during reaching tasks. After 6 weeks, she showed functional gains in activities of daily living (ADLs) and instrumental ADLs despite no further improvements on the RPS. Results indicate that computer games have the potential to be a useful intervention for people with stroke. Future work will add additional support to quantify the effectiveness of the games as a home therapy intervention for persons with stroke.
Clinical concepts for treatment of the elbow in the adolescent overhead athlete.
Ellenbecker, Todd S; Reinold, Michael; Nelson, Cory O
2010-10-01
Injuries to the adolescent elbow are common because of the repetitive overuse inherent in many overhead sport activities. The management of these patients is greatly facilitated through a greater understanding of the demands placed on the upper extremity kinetic chain during these overhead activities as well as a detailed examination and rehabilitation for the entire upper extremity kinetic chain. Particular emphasis on improving rotator cuff strength and muscular endurance, along with scapular stabilization, is a critical part of elbow rehabilitation in these patients. In addition, the use of a strategic and progressive interval sport return program is necessary to minimize reinjury and return the adolescent overhead athlete to full function. Copyright © 2010 Elsevier Inc. All rights reserved.
Evaluation of pediatric upper extremity peripheral nerve injuries.
Ho, Emily S
2015-01-01
The evaluation of motor and sensory function of the upper extremity after a peripheral nerve injury is critical to diagnose the location and extent of nerve injury as well as document functional recovery in children. The purpose of this paper is to describe an approach to the evaluation of the pediatric upper extremity peripheral nerve injuries through a critical review of currently used tests of sensory and motor function. Outcome studies on pediatric upper extremity peripheral nerve injuries in the Medline database were reviewed. The evaluation of the outcome in children less than 10 years of age with an upper extremity peripheral nerve injury includes careful observation of preferred prehension patterns, examination of muscle atrophy and sudomotor function, provocative tests, manual muscle testing and tests of sensory threshold and tactile gnosis. The evaluation of outcome in children with upper extremity peripheral nerve injuries warrants a unique approach. Copyright © 2015 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Physical examination of upper extremity compressive neuropathies.
Popinchalk, Samuel P; Schaffer, Alyssa A
2012-10-01
A thorough history and physical examination are vital to the assessment of upper extremity compressive neuropathies. This article summarizes relevant anatomy and physical examination findings associated with upper extremity compressive neuropathies. Copyright © 2012 Elsevier Inc. All rights reserved.
Zwaan, Eva M; IJsselmuiden, Alexander J J; van Rosmalen, Joost; van Geuns, Robert-Jan M; Amoroso, Giovanni; Moerman, Esther; Ritt, Marco J P F; Schreuders, Ton A R; Kofflard, Marcel J M; Holtzer, Carlo A J
2016-12-01
The aim of this study is to provide a complete insight in the access-site morbidity and upper extremity function after Transradial Percutaneous Coronary Intervention (TR-PCI). In percutaneous coronary intervention the Transradial Approach (TRA) is gaining popularity as a default technique. It is a very promising technique with respect to post-procedure complications, but the exact effects of TRA on upper extremity function are unknown. The effects of trAnsRadial perCUtaneouS coronary intervention on upper extremity function (ARCUS) trial is a multicenter prospective cohort study that will be conducted in all patients admitted for TR-PCI. Clinical outcomes will be monitored during a follow-up of 6 months, with its primary endpoint at two weeks of follow-up. To investigate the complete upper extremity function, a combination of physical examinations and validated questionnaires will be used to provide information on anatomical integrity, strength, range of motion (ROM), coordination, sensibility, pain, and functioning in everyday life. Procedural and material specifications will be registered in order to include all possible aspects influencing upper extremity function. Results from this study will elucidate the effect of TR-PCI on upper extremity function. This creates the opportunity to further optimize TR-PCI, to make improvements in functional outcome and to prevent morbidity regarding full upper extremity function. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chéron, Charlène; Leboeuf-Yde, Charlotte; Le Scanff, Christine; Jespersen, Eva; Rexen, Christina Trifonov; Franz, Claudia; Wedderkopp, Niels
2017-01-13
It is not known which sports are most likely to cause overuse injuries of the extremities in children. In this study, we report on the incidence of overuse injuries of the upper and lower extremities in children who participate in various leisure-time sports and relate this to the frequency of sport sessions. Natural experiment including a prospective cohort study. 10 state schools in 1 Danish municipality: Svendborg. 1270 children aged 6-13 years participating in the Childhood Health, Activity, and Motor Performance School Study Denmark. Over 2.5 years, parents answered weekly SMS-track messages (a) on type and frequency of leisure-time sports undertaken by their child, and (b) reporting if their child had experienced any musculoskeletal pain. Children with reported pain were examined by a clinician and diagnosed as having an overuse injury of an extremity or not. The incidence of diagnosed overuse injury was calculated for each of the 9 most common sports in relation to 5-week periods. Incidence by frequency of sessions was calculated, and multivariable analysis was performed taking into account age, sex and frequency of physical education classes at school. Incidence of overuse injuries of the lower extremity ranged from 0.2 to 3.3 for the 9 sports, but was near 0 for overuse injuries of the upper extremities. There was no obvious dose-response. The multivariate analysis showed soccer and handball to be the sports most likely to result in an overuse injury. Among a general population of schoolchildren, overuse injuries of the lower extremities were not common and overuse injuries of the upper extremities were rare. Organised leisure-time sport, as practised in Denmark, can be considered a safe activity for children. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Chéron, Charlène; Leboeuf-Yde, Charlotte; Le Scanff, Christine; Jespersen, Eva; Rexen, Christina Trifonov; Franz, Claudia; Wedderkopp, Niels
2017-01-01
Objectives It is not known which sports are most likely to cause overuse injuries of the extremities in children. In this study, we report on the incidence of overuse injuries of the upper and lower extremities in children who participate in various leisure-time sports and relate this to the frequency of sport sessions. Design Natural experiment including a prospective cohort study. Setting 10 state schools in 1 Danish municipality: Svendborg. Participants 1270 children aged 6–13 years participating in the Childhood Health, Activity, and Motor Performance School Study Denmark. Outcomes measures Over 2.5 years, parents answered weekly SMS-track messages (a) on type and frequency of leisure-time sports undertaken by their child, and (b) reporting if their child had experienced any musculoskeletal pain. Children with reported pain were examined by a clinician and diagnosed as having an overuse injury of an extremity or not. The incidence of diagnosed overuse injury was calculated for each of the 9 most common sports in relation to 5-week periods. Incidence by frequency of sessions was calculated, and multivariable analysis was performed taking into account age, sex and frequency of physical education classes at school. Results Incidence of overuse injuries of the lower extremity ranged from 0.2 to 3.3 for the 9 sports, but was near 0 for overuse injuries of the upper extremities. There was no obvious dose–response. The multivariate analysis showed soccer and handball to be the sports most likely to result in an overuse injury. Conclusions Among a general population of schoolchildren, overuse injuries of the lower extremities were not common and overuse injuries of the upper extremities were rare. Organised leisure-time sport, as practised in Denmark, can be considered a safe activity for children. PMID:28087543
Lang, Catherine E.; Birkenmeier, Rebecca; Holm, Margo; Rubinstein, Elaine; Van Swearingen, Jessie; Skidmore, Elizabeth R.
2016-01-01
OBJECTIVE. We examined the feasibility, tolerability, and preliminary efficacy of repetitive task-specific practice for people with unilateral spatial neglect (USN). METHOD. People with USN ≥6 mo poststroke participated in a single-group, repeated-measures study. Attendance, total repetitions, and satisfaction indicated feasibility and pain indicated tolerability. Paired t tests and effect sizes were used to estimate changes in upper-extremity use (Motor Activity Log), function (Action Research Arm Test), and attention (Catherine Bergego Scale). RESULTS. Twenty participants attended 99.4% of sessions and completed a high number of repetitions. Participants reported high satisfaction and low pain, and they demonstrated small, significant improvements in upper-extremity use (before Bonferroni corrections; t = –2.1, p = .04, d = .30), function (t = –3.0, p < .01, d = .20), and attention (t = –3.4, p < .01, d = –.44). CONCLUSION. Repetitive task-specific practice is feasible and tolerable for people with USN. Improvements in upper-extremity use, function, and attention may be attainable. PMID:27294994
EMG based FES for post-stroke rehabilitation
NASA Astrophysics Data System (ADS)
Piyus, Ceethal K.; Anjaly Cherian, V.; Nageswaran, Sharmila
2017-11-01
Annually, 15 million in world population experiences stroke. Nearly 9 million stroke survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG Abstract—Annually, 15 million in world population experiences stroke. Nearly 9 million stroke survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG based FES system can be used for effective upper limb motor re-education in post stroke upper limb rehabilitation. The governing feature of the designed system is its synchronous activation, in which the FES stimulation is dependent on the amplitude of the EMG signal acquired from the unaffected upper limb muscle of the hemiplegic patient. This proportionate operation eliminates the undesirable damage to the patient’s skin by generating stimulus in proportion to voluntary EMG signals. This feature overcomes the disadvantages of currently available manual motor re-education systems. This model can be used in home-based post stroke rehabilitation, to effectively improve the upper limb functions.
Comparison of Muscle Activation during Dominant Hand Wrist Flexion when Writing.
Park, Soohee
2013-12-01
[Purpose] This study investigated the difference in muscle activation of the dominant upper extremity in right-handed and left-handed persons during writing. [Subjects] There were 36 subjects (16 left- handers/ 20 right- handers), and the study was conducted from 03/01/2012 to 30/3/2012. [Methods] Six electrodes were attached to the FCU (flexor carpi ulnaris), FCR (flexor carpi radialis), ECU (extensor carpi ulnaris), ECR (extensor carpi radialis), and both UT (upper trapezius) muscles. [Results] FCU muscle activation was 16.77±9.12% in left-handers and 10.29±4.13% (%MVIC) in right-handers. FCR muscle activation was 19.09±9.43% in left-handers and 10.64±5.03% in right-handers. In addition, the UT muscle activation on the writing hand side was 11.91±5.79% in left-handers and 1.66±1.19% in right-handers. [Conclusion] As a result of this study, it was discovered that left-handers used more wrist flexion in performance of the writing task with the dominant upper extremity than right-handers, and that the left-handers activated the wrist and shoulder muscles more than the right-handers. These results indicate a potential danger of musculoskeletal disease in left-hander.
Exercise prescription after fragility fracture in older adults: a scoping review
Feehan, Lynne M.; Beck, Charlotte A.; Harris, Susan R.; MacIntyre, Donna L.; Li, Linda C.
2017-01-01
Purpose To identify and chart research literature on safety, efficacy or effectiveness of exercise prescription following fracture in older adults. Methods We conducted a systematic, research-user-informed, scoping review. The population of interest was adults aged ≥ 45 years with any fracture. ‘Exercise prescription’ included post-fracture therapeutic exercise, physical activity or rehabilitation interventions. Eligible designs included knowledge synthesis studies, primary interventional studies and observational studies. Trained reviewers independently evaluated citations for inclusion. Results A total of 9415 citations were reviewed with 134 citations (119 unique studies) identified: 13 knowledge syntheses, 95 randomized or controlled clinical trials, and 11 ‘other’ designs, representing 74 articles on lower extremity fractures, 34 on upper extremity, eight on vertebral, and three on mixed body region fractures. Exercise prescription characteristics were often missing or poorly described. Six general categories emerged describing exercise prescription characteristics: timing post-fracture, person prescribing, program design, functional focus, exercise script parameters and co-interventions. Upper extremity and ankle fracture studies focused on fracture healing or structural impairment outcomes, whereas hip fracture studies focused more on activity limitation outcomes. The variety of different outcome measures used made pooling or comparison of outcomes difficult. Conclusions There was insufficient information to identify evidence-informed parameters for safe and effective exercise prescription for older adults following fracture. Key gaps in the literature include limited numbers of studies on exercise prescription following vertebral fracture, poor delineation of effectiveness of different strategies for early post-fracture mobilization following upper extremity fracture, and inconsistent details of exercise prescription characteristics after lower extremity fracture. PMID:20967425
Yang, Byung Il; Song, Bo Kyoung; Joung, Sang Mi
2017-01-01
[Purpose] The purpose of this study was to determine whether two-handed task training is effective on motor learning of injured cerebral cortex activation and upper extremity function recovery after stroke. [Subjects and Methods] Two hemiplegic subjects participated in this study: one patient was affected on the dominant side of the body and the other was affected on the non-dominant side of the body, and both scored in the range of 58–66 in the Fugl-Meyer assessment. The excitability of the corticospinal tract and Manual Function Test were examined. [Results] The excitability of the corticospinal tract and the Manual Function Test showed significant differences in the activation of both sides of the cerebral cortex and in the variation in learning effect of upper extremity motor function recovery in patients with hemiplegic non-dominant hand (left). [Conclusion] The results suggested that two-handed task training had a different influence on dominant hand (right) and non-dominant hand (left) motor recovery. PMID:28210051
Enhanced left-finger deftness following dominant upper- and lower-limb amputation.
Swanberg, Kelley M; Clark, Abigail M; Kline, Julia E; Yurkiewicz, Ilana R; Chan, Brenda L; Pasquina, Paul F; Heilman, Kenneth M; Tsao, Jack W
2011-09-01
After amputation, the sensorimotor cortex reorganizes, and these alterations might influence motor functions of the remaining extremities. The authors examined how amputation of the dominant or nondominant upper or lower extremity alters deftness in the intact limbs. The participants were 32 unilateral upper- or lower-extremity amputees and 6 controls. Upper-extremity deftness was tested by coin rotation (finger deftness) and pegboard (arm, hand, and finger deftness) tasks. Following right-upper- or right-lower-extremity amputation, the left hand's finger movements were defter than the left-hand fingers of controls. In contrast, with left-upper- or left-lower-extremity amputation, the right hand's finger performance was the same as that of the controls. Although this improvement might be related to increased use (practice), the finding that right-lower-extremity amputation also improved the left hand's finger deftness suggests an alternative mechanism. Perhaps in right-handed persons the left motor cortex inhibits the right side of the body more than the right motor cortex inhibits the left side, and the physiological changes induced by right-sided amputation reduced this inhibition.
Survey of upper extremity injuries among martial arts participants.
Diesselhorst, Matthew M; Rayan, Ghazi M; Pasque, Charles B; Peyton Holder, R
2013-01-01
To survey participants at various experience levels of different martial arts (MA) about upper extremity injuries sustained during training and fighting. A 21-s question survey was designed and utilised. The survey was divided into four groups (Demographics, Injury Description, Injury Mechanism, and Miscellaneous information) to gain knowledge about upper extremity injuries sustained during martial arts participation. Chi-square testing was utilised to assess for significant associations. Males comprised 81% of respondents. Involvement in multiple forms of MA was the most prevalent (38%). The hand/wrist was the most common area injured (53%), followed by the shoulder/upper arm (27%) and the forearm/elbow (19%). Joint sprains/muscle strains were the most frequent injuries reported overall (47%), followed by abrasions/bruises (26%). Dislocations of the upper extremity were reported by 47% of participants while fractures occurred in 39%. Surgeries were required for 30% of participants. Females were less likely to require surgery and more likely to have shoulder and elbow injuries. Males were more likely to have hand injuries. Participants of Karate and Tae Kwon Do were more likely to have injuries to their hands, while participants of multiple forms were more likely to sustain injuries to their shoulders/upper arms and more likely to develop chronic upper extremity symptoms. With advanced level of training the likelihood of developing chronic upper extremity symptoms increases, and multiple surgeries were required. Hand protection was associated with a lower risk of hand injuries. Martial arts can be associated with substantial upper extremity injuries that may require surgery and extended time away from participation. Injuries may result in chronic upper extremity symptoms. Hand protection is important for reducing injuries to the hand and wrist.
Valderrama-Hinds, Luis M; Al Snih, Soham; Rodriguez, Martin A; Wong, Rebeca
2017-04-01
Arthritis and vitamin D insufficiency are prevalent in older adults and are risk factors for disability. The objective of this study was to examine the effect of co-occurring arthritis and vitamin D deficiency on upper-lower extremity functional limitations and disability in older adults. We examined 1533 participants aged ≥50 years from a subsample of the Mexican Health and Aging Study. Measures included sociodemographics, body mass index, comorbid conditions, falls, physical activity, physical function tests, functional limitations, activities of daily living (ADL), and vitamin D. Participants were categorized into four groups according to arthritis and vitamin D status: no vitamin D insufficiency and no arthritis (58.80%), vitamin D insufficiency only (27.49%), arthritis only (8.47%), and arthritis and vitamin D insufficiency (5.24%). Fourteen percent reported arthritis, and 31.2% had vitamin D insufficiency. The arthritis and vitamin D insufficiency group was associated with upper-lower extremity functional limitations [odds ratio (OR) 1.82, 95% confidence interval (CI) 1.06-3.15, and OR 1.90, 95% CI 1.00-3.62, respectively] and ADL disability (OR 3.00, 95% CI 1.63-5.51) when compared with the no vitamin D insufficiency and no arthritis group (reference group). The arthritis only group was three times more likely to report upper-lower extremity functional limitations and ADL disability. The vitamin D insufficiency only group was not significantly associated with functional limitations nor ADL disability. Arthritis and vitamin D insufficiency increased the risk of ADL disability in this population. However, the effect of arthritis and vitamin D insufficiency on upper-lower extremity functional limitations was not higher than the effect of arthritis only, but higher than the effect on vitamin D insufficiency alone.
Paik, Young-Rim; Lee, Jeong-Hoon; Lee, Doo-Ho; Park, Hee-Su; Oh, Dong-Hwan
2017-12-01
[Purpose] This study investigated the effects of mirror therapy and neuromuscular electrical stimulation on upper extremity function in stroke patients. [Subjects and Methods] This study recruited 8 stroke patients. All patients were treated with mirror therapy and neuromuscular electrical stimulation five times per week for 4 weeks. Upper limb function evaluation was performed using upper extremity part of fugl meyer assessment. [Results] Before and after intervention, fugl meyer assessment showed significant improvement. [Conclusion] In this study, mirror therapy and neuromuscular electrical stimulation are effective methods for upper extremity function recovery in stroke patients.
Hong, Il Ki; Choi, Jong Bae; Lee, Jong Ha
2012-09-01
Paresis of the upper extremity after stroke is not effectively solved by existing therapies. We investigated whether mental imagery training combined with electromyogram-triggered electric stimulation improved motor function of the paretic upper extremity in patients with chronic stroke and induced cortical changes. Fourteen subjects with chronic stroke (≥12 months) were randomly allocated to receive mental imagery training combined with electromyogram-triggered electric stimulation (n=7) or generalized functional electric stimulation (n=7) on the forearm extensor muscles of the paretic extremity in 2 20-minute daily sessions 5 days a week for 4 weeks. The upper extremity component of the Fugl-Meyer Motor Assessment, the Motor Activity Log, the modified Barthel Index, and (18)F-fluorodeoxyglucose brain positron emission tomography were measured before and after the intervention. The group receiving mental imagery training combined with electromyogram-triggered electric stimulation exhibited significant improvements in the upper extremity component of the Fugl-Meyer Motor Assessment after intervention (median, 7; interquartile range, 5-8; P<0.05), but the group receiving functional electric stimulation did not (median, 0; interquartile range, 0-3). Differences in score changes between the 2 groups were significant. The mental imagery training combined with electromyogram-triggered electric stimulation group showed significantly increased metabolism in the contralesional supplementary motor, precentral, and postcentral gyri (P(uncorrected)<0.001) after the intervention, but the functional electric stimulation group showed no significant differences. Mental imagery training combined with electromyogram-triggered electric stimulation improved motor function of the paretic extremity in patients with chronic stroke. The intervention increased metabolism in the contralesional motor-sensory cortex. Clinical Trial Registration- URL: https://e-irb.khmccri.or.kr/eirb/receipt/index.html?code=02&status=5. Unique identifier: KHUHMDIRB 1008-02.
Geertzen, J H; Dijkstra, P U; van Sonderen, E L; Groothoff, J W; ten Duis, H J; Eisma, W H
1998-10-01
To determine the relationship between impairments, disability and handicap in reflex sympathetic dystrophy (RSD) patients. A long-term follow-up study of upper extremity RSD patients. A university hospital. Sixty-five patients, 3-9 years (mean interval 5.5 years) after RSD of the upper extremity (mean age 50.2 years). Impairments: range of motion, moving two point discrimination, muscle strength of the hand and pain were measured. Disability was assessed with the Groningen Activity Restriction Scale (GARS) and handicap was assessed with three subscales (social functioning, role limitations due to physical problems and role limitations due to emotional problems) of the RAND-36. After RSD of the upper extremity, 62% of the patients are limited in activities of daily living (ADL) and/or instrumental ADL (IADL). Pain and restrictions in forward flexion of the shoulder, thumb opposition and grip strength are the most important impairments limiting ADL and IADL. Patients with limitations in ADL and IADL are significantly more handicapped than patients without limitations. Pain is the most important factor contributing to handicap. The relationship between impairments and disability and between disability and handicap in RSD patients is weak to moderate. Pain is the most important factor leading to disability and handicap.
The home stroke rehabilitation and monitoring system trial: a randomized controlled trial.
Linder, Susan M; Rosenfeldt, Anson B; Reiss, Aimee; Buchanan, Sharon; Sahu, Komal; Bay, Curtis R; Wolf, Steven L; Alberts, Jay L
2013-01-01
Because many individuals poststroke lack access to the quality and intensity of rehabilitation to improve upper extremity motor function, a home-based robotic-assisted upper extremity rehabilitation device is being paired with an individualized home exercise program. The primary aim of this project is to determine the effectiveness of robotic-assisted home therapy compared with a home exercise program on upper extremity motor recovery and health-related quality of life for stroke survivors in rural and underserved locations. The secondary aim is to explore whether initial degree of motor function of the upper limb may be a factor in predicting the extent to which patients with stroke may be responsive to a home therapy approach. We hypothesize that the home exercise program intervention, when enhanced with robotic-assisted therapy, will result in significantly better outcomes in motor function and quality of life. A total of 96 participants within six-months of a single, unilateral ischemic, or hemorrhagic stroke will be recruited in this prospective, single-blind, multisite randomized clinical trial. The primary outcome is the change in upper extremity function using the Action Research Arm Test. Secondary outcomes include changes in: upper extremity function (Wolf Motor Function Test), upper extremity impairment (upper extremity portion of the Fugl-Meyer Test), self-reported quality of life (Stroke Impact Scale), and affect (Centers for Epidemiologic Studies Depression Scale). Similar or greater improvements in upper extremity function using the combined robotic home exercise program intervention compared with home exercise program alone will be interpreted as evidence that supports the introduction of in-home technology to augment the recovery of function poststroke. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.
Knowles, Martyn; Nation, David A; Timaran, David E; Gomez, Luis F; Baig, M Shadman; Valentine, R James; Timaran, Carlos H
2015-01-01
Fenestrated endovascular aortic aneurysm repair (FEVAR) is an alternative to open repair in patients with complex abdominal aortic aneurysms who are neither fit nor suitable for standard open or endovascular repair. Chimney and snorkel grafts are other endovascular alternatives but frequently require bilateral upper extremity access that has been associated with a 3% to 10% risk of stroke. However, upper extremity access is also frequently required for FEVAR because of the caudal orientation of the visceral vessels. The purpose of this study was to assess the use of upper extremity access for FEVAR and the associated morbidity. During a 5-year period, 148 patients underwent FEVAR, and upper extremity access for FEVAR was used in 98 (66%). Outcomes were compared between those who underwent upper extremity access and those who underwent femoral access alone. The primary end point was a cerebrovascular accident or transient ischemic attack, and the secondary end point was local access site complications. The mean number of fenestrated vessels was 3.07 ± 0.81 (median, 3) for a total of 457 vessels stented. Percutaneous upper extremity access was used in 12 patients (12%) and open access in 86 (88%). All patients who required a sheath size >7F underwent high brachial open access, with the exception of one patient who underwent percutaneous axillary access with a 12F sheath. The mean sheath size was 10.59F ± 2.51F (median, 12F), which was advanced into the descending thoracic aorta, allowing multiple wire and catheter exchanges. One hemorrhagic stroke (one of 98 [1%]) occurred in the upper extremity access group, and one ischemic stroke (one of 54 [2%]) occurred in the femoral-only access group (P = .67). The stroke in the upper extremity access group occurred 5 days after FEVAR and was related to uncontrolled hypertension, whereas the stroke in the femoral group occurred on postoperative day 3. Neither patient had signs or symptoms of a stroke immediately after FEVAR. The right upper extremity was accessed six times without a stroke (0%) compared with the left being accessed 92 times with one stroke (1%; P = .8). Four patients (4%) had local complications related to upper extremity access. One (1%) required exploration for an expanding hematoma after manual compression for a 7F sheath, one (1%) required exploration for hematoma and neurologic symptoms after open access for a 12F sheath, and two patients (2%) with small hematomas did not require intervention. Two (two of 12 [17%]) of these complications were in the percutaneous access group, which were significantly more frequent than in the open group (two of 86 [2%]; P = .02). Upper extremity access appears to be a safe and feasible approach for patients undergoing FEVAR. Open exposure in the upper extremity may be safer than percutaneous access during FEVAR. Unlike chimney and snorkel grafts, upper extremity access during FEVAR is not associated with an increased risk of stroke, despite the need for multiple visceral vessel stenting. Copyright © 2015 Society for Vascular Surgery. All rights reserved.
Upper extremity deep venous thrombosis after port insertion: What are the risk factors?
Tabatabaie, Omidreza; Kasumova, Gyulnara G; Kent, Tara S; Eskander, Mariam F; Fadayomi, Ayotunde B; Ng, Sing Chau; Critchlow, Jonathan F; Tawa, Nicholas E; Tseng, Jennifer F
2017-08-01
Totally implantable venous access devices (ports) are widely used, especially for cancer chemotherapy. Although their use has been associated with upper extremity deep venous thrombosis, the risk factors of upper extremity deep venous thrombosis in patients with a port are not studied adequately. The Healthcare Cost and Utilization Project's Florida State Ambulatory Surgery and Services Database was queried between 2007 and 2011 for patients who underwent outpatient port insertion, identified by Current Procedural Terminology code. Patients were followed in the State Ambulatory Surgery and Services Database, State Inpatient Database, and State Emergency Department Database for upper extremity deep venous thrombosis occurrence. The cohort was divided into a test cohort and a validation cohort based on the year of port placement. A multivariable logistic regression model was developed to identify risk factors for upper extremity deep venous thrombosis in patients with a port. The model then was tested on the validation cohort. Of the 51,049 patients in the derivation cohort, 926 (1.81%) developed an upper extremity deep venous thrombosis. On multivariate analysis, independently significant predictors of upper extremity deep venous thrombosis included age <65 years (odds ratio = 1.22), Elixhauser score of 1 to 2 compared with zero (odds ratio = 1.17), end-stage renal disease (versus no kidney disease; odds ratio = 2.63), history of any deep venous thrombosis (odds ratio = 1.77), all-cause 30-day revisit (odds ratio = 2.36), African American race (versus white; odds ratio = 1.86), and other nonwhite races (odds ratio = 1.35). Additionally, compared with genitourinary malignancies, patients with gastrointestinal (odds ratio = 1.55), metastatic (odds ratio = 1.76), and lung cancers (odds ratio = 1.68) had greater risks of developing an upper extremity deep venous thrombosis. This study identified major risk factors of upper extremity deep venous thrombosis. Further studies are needed to evaluate the appropriateness of thromboprophylaxis in patients at greater risk of upper extremity deep venous thrombosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Qin, Jin; Trudeau, Matthieu; Katz, Jeffrey N; Buchholz, Bryan; Dennerlein, Jack T
2011-08-01
Musculoskeletal disorders associated with computer use span the joints of the upper extremity. Computing typically involves tapping in multiple directions. Thus, we sought to describe the loading on the finger, wrist, elbow and shoulder joints in terms of kinematic and kinetic difference across single key switch tapping to directional tapping on multiple keys. An experiment with repeated measures design was conducted. Six subjects tapped with their right index finger on a stand-alone number keypad placed horizontally in three conditions: (1) on single key switch (the number key 5); (2) left and right on number key 4 and 6; (3) top and bottom on number key 8 and 2. A force-torque transducer underneath the keypad measured the fingertip force. An active-marker infrared motion analysis system measured the kinematics of the fingertip, hand, forearm, upper arm and torso. Joint moments for the metacarpophalangeal, wrist, elbow, and shoulder joints were estimated using inverse dynamics. Tapping in the top-bottom orientation introduced the largest biomechanical loading on the upper extremity especially for the proximal joint, followed by tapping in the left-right orientation, and the lowest loading was observed during single key switch tapping. Directional tapping on average increased the fingertip force, joint excursion, and peak-to-peak joint torque by 45%, 190% and 55%, respectively. Identifying the biomechanical loading patterns associated with these fundamental movements of keying improves the understanding of the risks of upper extremity musculoskeletal disorders for computer keyboard users. Copyright © 2010 Elsevier Ltd. All rights reserved.
Tissue expansion in the treatment of giant congenital melanocytic nevi of the upper extremity
Ma, Tengxiao; Fan, Ke; Li, Lei; Xie, Feng; Li, Hao; Chou, Haiyan; Zhang, Zhengwen
2017-01-01
Abstract The aim of our study was to use tissue expansion for the treatment of giant congenital melanocytic nevi of the upper extremity and examine potential advantages over traditional techniques. There were 3 stages in the treatment of giant congenital melanocytic nevi of the upper extremities using tissue expansion: first, the expander was inserted into the subcutaneous pocket; second, the expander was removed, lesions were excised, and the wound of the upper extremity was placed into the pocket to delay healing; third, the residual lesion was excised and the pedicle was removed. The pedicle flap was then unfolded to resurface the wound. During the period between June 2007 and December 2015, there were 11 patients with giant congenital melanocytic nevi of the upper extremities who underwent reconstruction at our department with skin expansion. Few complications were noted in each stage of treatment. The functional and aesthetic results were observed and discussed in this study. Optimal aesthetic and functional results were obtained using tissue expansion to reconstruct the upper extremities due to the giant congenital melanocytic nevi. PMID:28353563
Johnson, Liam; Bird, Marie-Louise; Muthalib, Makii; Teo, Wei-Peng
2018-01-09
The STRoke Interactive Virtual thErapy (STRIVE) intervention provides community-dwelling stroke survivors access to individualised, remotely supervised progressive exercise training via an online platform. This trial aims to determine the clinical efficacy of the STRIVE intervention and its effect on brain activity in community-dwelling stroke survivors. In a multisite, assessor-blinded randomised controlled trial, 60 stroke survivors >3 months poststroke with mild-to-moderate upper extremity impairment will be recruited and equally randomised by location (Melbourne, Victoria or Launceston, Tasmania) to receive 8 weeks of virtual therapy (VT) at a local exercise training facility or usual care. Participants allocated to VT will perform 3-5 upper limb exercises individualised to their impairment severity and preference, while participants allocated to usual care will be asked to maintain their usual daily activities. The primary outcome measures will be upper limb motor function and impairment, which will be assessed using the Action Research Arm Test and Upper Extremity Fugl-Meyer, respectively. Secondary outcome measures include upper extremity function and spasticity, as measured by the box and block test and Modified AshworthScale, respectively, and task-related changes in bilateral sensorimotor cortex haemodynamics during hand reaching and wrist extension movements as measured by functional near-infrared spectroscopy. Quality of life will be measured using the Euro-Quality of Life-5 Dimension-5 Level Scale, and the Motor Activity Log-28 will be used to measure use of the hemiparetic arm. All measures will be assessed at baseline and immediately postintervention. The study was approved by the Deakin University Human Research Ethics Committee in May 2017 (No. 2017-087). The results will be disseminated in peer-reviewed journals and presented at major international stroke meetings. ACTRN12617000745347; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Bird, Marie-Louise; Muthalib, Makii
2018-01-01
Introduction The STRoke Interactive Virtual thErapy (STRIVE) intervention provides community-dwelling stroke survivors access to individualised, remotely supervised progressive exercise training via an online platform. This trial aims to determine the clinical efficacy of the STRIVE intervention and its effect on brain activity in community-dwelling stroke survivors. Methods and analysis In a multisite, assessor-blinded randomised controlled trial, 60 stroke survivors >3 months poststroke with mild-to-moderate upper extremity impairment will be recruited and equally randomised by location (Melbourne, Victoria or Launceston, Tasmania) to receive 8 weeks of virtual therapy (VT) at a local exercise training facility or usual care. Participants allocated to VT will perform 3–5 upper limb exercises individualised to their impairment severity and preference, while participants allocated to usual care will be asked to maintain their usual daily activities. The primary outcome measures will be upper limb motor function and impairment, which will be assessed using the Action Research Arm Test and Upper Extremity Fugl-Meyer, respectively. Secondary outcome measures include upper extremity function and spasticity, as measured by the box and block test and Modified AshworthScale, respectively, and task-related changes in bilateral sensorimotor cortex haemodynamics during hand reaching and wrist extension movements as measured by functional near-infrared spectroscopy. Quality of life will be measured using the Euro-Quality of Life-5 Dimension-5 Level Scale, and the Motor Activity Log-28 will be used to measure use of the hemiparetic arm. All measures will be assessed at baseline and immediately postintervention. Ethics and dissemination The study was approved by the Deakin University Human Research Ethics Committee in May 2017 (No. 2017–087). The results will be disseminated in peer-reviewed journals and presented at major international stroke meetings. Trial registration number ACTRN12617000745347; Pre-results. PMID:29317414
Hamilton, Clayon B; Chesworth, Bert M
2013-11-01
The original 20-item Upper Extremity Functional Index (UEFI) has not undergone Rasch validation. The purpose of this study was to determine whether Rasch analysis supports the UEFI as a measure of a single construct (ie, upper extremity function) and whether a Rasch-validated UEFI has adequate reproducibility for individual-level patient evaluation. This was a secondary analysis of data from a repeated-measures study designed to evaluate the measurement properties of the UEFI over a 3-week period. Patients (n=239) with musculoskeletal upper extremity disorders were recruited from 17 physical therapy clinics across 4 Canadian provinces. Rasch analysis of the UEFI measurement properties was performed. If the UEFI did not fit the Rasch model, misfitting patients were deleted, items with poor response structure were corrected, and misfitting items and redundant items were deleted. The impact of differential item functioning on the ability estimate of patients was investigated. A 15-item modified UEFI was derived to achieve fit to the Rasch model where the total score was supported as a measure of upper extremity function only. The resultant UEFI-15 interval-level scale (0-100, worst to best state) demonstrated excellent internal consistency (person separation index=0.94) and test-retest reliability (intraclass correlation coefficient [2,1]=.95). The minimal detectable change at the 90% confidence interval was 8.1. Patients who were ambidextrous or bilaterally affected were excluded to allow for the analysis of differential item functioning due to limb involvement and arm dominance. Rasch analysis did not support the validity of the 20-item UEFI. However, the UEFI-15 was a valid and reliable interval-level measure of a single dimension: upper extremity function. Rasch analysis supports using the UEFI-15 in physical therapist practice to quantify upper extremity function in patients with musculoskeletal disorders of the upper extremity.
Chesworth, Bert M.
2013-01-01
Background The original 20-item Upper Extremity Functional Index (UEFI) has not undergone Rasch validation. Objective The purpose of this study was to determine whether Rasch analysis supports the UEFI as a measure of a single construct (ie, upper extremity function) and whether a Rasch-validated UEFI has adequate reproducibility for individual-level patient evaluation. Design This was a secondary analysis of data from a repeated-measures study designed to evaluate the measurement properties of the UEFI over a 3-week period. Methods Patients (n=239) with musculoskeletal upper extremity disorders were recruited from 17 physical therapy clinics across 4 Canadian provinces. Rasch analysis of the UEFI measurement properties was performed. If the UEFI did not fit the Rasch model, misfitting patients were deleted, items with poor response structure were corrected, and misfitting items and redundant items were deleted. The impact of differential item functioning on the ability estimate of patients was investigated. Results A 15-item modified UEFI was derived to achieve fit to the Rasch model where the total score was supported as a measure of upper extremity function only. The resultant UEFI-15 interval-level scale (0–100, worst to best state) demonstrated excellent internal consistency (person separation index=0.94) and test-retest reliability (intraclass correlation coefficient [2,1]=.95). The minimal detectable change at the 90% confidence interval was 8.1. Limitations Patients who were ambidextrous or bilaterally affected were excluded to allow for the analysis of differential item functioning due to limb involvement and arm dominance. Conclusion Rasch analysis did not support the validity of the 20-item UEFI. However, the UEFI-15 was a valid and reliable interval-level measure of a single dimension: upper extremity function. Rasch analysis supports using the UEFI-15 in physical therapist practice to quantify upper extremity function in patients with musculoskeletal disorders of the upper extremity. PMID:23813086
Mirror therapy enhances upper extremity motor recovery in stroke patients.
Mirela Cristina, Luca; Matei, Daniela; Ignat, Bogdan; Popescu, Cristian Dinu
2015-12-01
The purpose of this study was to evaluate the effects of mirror therapy program in addition with physical therapy methods on upper limb recovery in patients with subacute ischemic stroke. 15 subjects followed a comprehensive rehabilitative treatment, 8 subjects received only control therapy (CT) and 7 subjects received mirror therapy (MT) for 30 min every day, five times a week, for 6 weeks in addition to the conventional therapy. Brunnstrom stages, Fugl-Meyer Assessment (upper extremity), the Ashworth Scale, and Bhakta Test (finger flexion scale) were used to assess changes in upper limb motor recovery and motor function after intervention. After 6 weeks of treatment, patients in both groups showed significant improvements in the variables measured. Patients who received MT showed greater improvements compared to the CT group. The MT treatment results included: improvement of motor functions, manual skills and activities of daily living. The best results were obtained when the treatment was started soon after the stroke. MT is an easy and low-cost method to improve motor recovery of the upper limb.
ERIC Educational Resources Information Center
Montpetit, Kathleen; Haley, Stephen; Bilodeau, Nathalie; Ni, Pengsheng; Tian, Feng; Gorton, George, III; Mulcahey, M. J.
2011-01-01
This article reports on the content range and measurement precision of an upper extremity (UE) computer adaptive testing (CAT) platform of physical function in children with cerebral palsy. Upper extremity items representing skills of all abilities were administered to 305 parents. These responses were compared with two traditional standardized…
Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard
2016-01-01
Purpose Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Methods Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. Results The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. Conclusion This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. PMID:27636200
Peters, S E; Johnston, V; Ross, M; Coppieters, M W
2017-02-01
This Delphi study aimed to reach consensus on important facilitators and barriers for return-to-work following surgery for non-traumatic upper extremity conditions. In Round 1, experts ( n = 42) listed 134 factors, which were appraised in Rounds 2 and 3. Consensus (⩾85% agreement) was achieved for 13 facilitators (high motivation to return-to-work; high self-efficacy for return-to-work and recovery; availability of modified/alternative duties; flexible return-to-work arrangements; positive coping skills; limited heavy work exertion; supportive return-to-work policies; supportive supervisor/management; no catastrophic thinking; no fear avoidance to return-to-work; no fear avoidance to pain/activity; return to meaningful work duties; high job satisfaction) and six barriers (mood disorder diagnosis; pain/symptoms at more than one musculoskeletal site; heavy upper extremity exertions at work; lack of flexible return-to-work arrangements; lack of support from supervisor/management; high level of pain catastrophizing). Future prognostic studies are required to validate these biopsychosocial factors to further improve return-to-work outcomes. V.
Upper Extremity Amputations and Prosthetics
Ovadia, Steven A.; Askari, Morad
2015-01-01
Upper extremity amputations are most frequently indicated by severe traumatic injuries. The location of the injury will determine the level of amputation. Preservation of extremity length is often a goal. The amputation site will have important implications on the functional status of the patient and options for prosthetic reconstruction. Advances in amputation techniques and prosthetic reconstructions promote improved quality of life. In this article, the authors review the principles of upper extremity amputation, including techniques, amputation sites, and prosthetic reconstructions. PMID:25685104
Imaging of upper extremity stress fractures in the athlete.
Anderson, Mark W
2006-07-01
Although it is much less common than injuries in the lower extremities, an upper extremity stress injury can have a significant impact on an athlete. If an accurate and timely diagnosis is to be made, the clinician must have a high index of suspicion of a stress fracture in any athlete who is involved in a throwing, weightlifting, or upper extremity weight-bearing sport and presents with chronic pain in the upper extremity. Imaging should play an integral role in the work-up of these patients; if initial radiographs are unrevealing, further cross-sectional imaging should be strongly considered. Although a three-phase bone scan is highly sensitive in this regard, MRI has become the study of choice at most centers.
Ji, Eun-Kyu; Lee, Sang-Heon
2016-11-01
[Purpose] The purpose of this study was to investigate the effects of virtual reality training combined with modified constraint-induced movement therapy on upper extremity motor function recovery in acute stage stroke patients. [Subjects and Methods] Four acute stage stroke patients participated in the study. A multiple baseline single subject experimental design was utilized. Modified constraint-induced movement therapy was used according to the EXplaining PLastICITy after stroke protocol during baseline sessions. Virtual reality training with modified constraint-induced movement therapy was applied during treatment sessions. The Manual Function Test and the Box and Block Test were used to measure upper extremity function before every session. [Results] The subjects' upper extremity function improved during the intervention period. [Conclusion] Virtual reality training combined with modified constraint-induced movement is effective for upper extremity function recovery in acute stroke patients.
Lee, Hsin-Yi; Yeh, Wen-Yu; Chen, Chun-Wan; Wang, Jung-Der
2005-07-01
Prevalence of upper extremity disorders and their associations with psychosocial factors in the workplace have received more attention recently. A national survey of cross-sectional design was performed to determine the prevalence rates of upper extremity disorders among different industries. Trained interviewers administered questionnaires to 17,669 workers and data on musculoskeletal complaints were obtained along with information on risk factors. Overall the 1-year prevalence of neck (14.8%), shoulder (16.6%), and hand (12.4%) disorders were higher than those of the upper back (7.1%) and elbow (8.3%) among those who sought medical treatment due to the complaint. Workers in construction and agriculture-related industries showed a higher prevalence of upper extremity disorders. After multiple logistic regression adjusted for age, education, and employment duration, we found job content, physical working condition, a harmonious interpersonal relationship at the workplace and organizational problems were significant determinants of upper extremity disorders in manufacturing and service industries. Male workers in manufacturing industries showed more concern about physical working conditions while female workers in public administration emphasized problems of job content and interpersonal relationships. We concluded that these factors were major job stressors contributing to musculoskeletal pain of the upper extremity.
Frouzan, Arash; Masoumi, Kambiz; Delirroyfard, Ali; Mazdaie, Behnaz; Bagherzadegan, Elnaz
2017-08-01
Long bone fractures are common injuries caused by trauma. Some studies have demonstrated that ultrasound has a high sensitivity and specificity in the diagnosis of upper and lower extremity long bone fractures. The aim of this study was to determine the accuracy of ultrasound compared with plain radiography in diagnosis of upper and lower extremity long bone fractures in traumatic patients. This cross-sectional study assessed 100 patients admitted to the emergency department of Imam Khomeini Hospital, Ahvaz, Iran with trauma to the upper and lower extremities, from September 2014 through October 2015. In all patients, first ultrasound and then standard plain radiography for the upper and lower limb was performed. Data were analyzed by SPSS version 21 to determine the specificity and sensitivity. The mean age of patients with upper and lower limb trauma were 31.43±12.32 years and 29.63±5.89 years, respectively. Radius fracture was the most frequent compared to other fractures (27%). Sensitivity, specificity, positive predicted value, and negative predicted value of ultrasound compared with plain radiography in the diagnosis of upper extremity long bones were 95.3%, 87.7%, 87.2% and 96.2%, respectively, and the highest accuracy was observed in left arm fractures (100%). Tibia and fibula fractures were the most frequent types compared to other fractures (89.2%). Sensitivity, specificity, PPV and NPV of ultrasound compared with plain radiography in the diagnosis of upper extremity long bone fractures were 98.6%, 83%, 65.4% and 87.1%, respectively, and the highest accuracy was observed in men, lower ages and femoral fractures. The results of this study showed that ultrasound compared with plain radiography has a high accuracy in the diagnosis of upper and lower extremity long bone fractures.
Nishimoto, Atsuko; Kawakami, Michiyuki; Fujiwara, Toshiyuki; Hiramoto, Miho; Honaga, Kaoru; Abe, Kaoru; Mizuno, Katsuhiro; Ushiba, Junichi; Liu, Meigen
2018-01-10
Brain-machine interface training was developed for upper-extremity rehabilitation for patients with severe hemiparesis. Its clinical application, however, has been limited because of its lack of feasibility in real-world rehabilitation settings. We developed a new compact task-specific brain-machine interface system that enables task-specific training, including reach-and-grasp tasks, and studied its clinical feasibility and effectiveness for upper-extremity motor paralysis in patients with stroke. Prospective beforeâ€"after study. Twenty-six patients with severe chronic hemiparetic stroke. Participants were trained with the brain-machine interface system to pick up and release pegs during 40-min sessions and 40 min of standard occupational therapy per day for 10 days. Fugl-Meyer upper-extremity motor (FMA) and Motor Activity Log-14 amount of use (MAL-AOU) scores were assessed before and after the intervention. To test its feasibility, 4 occupational therapists who operated the system for the first time assessed it with the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST) 2.0. FMA and MAL-AOU scores improved significantly after brain-machine interface training, with the effect sizes being medium and large, respectively (p<0.01, d=0.55; p<0.01, d=0.88). QUEST effectiveness and safety scores showed feasibility and satisfaction in the clinical setting. Our newly developed compact brain-machine interface system is feasible for use in real-world clinical settings.
Technology improves upper extremity rehabilitation.
Kowalczewski, Jan; Prochazka, Arthur
2011-01-01
Stroke survivors with hemiparesis and spinal cord injury (SCI) survivors with tetraplegia find it difficult or impossible to perform many activities of daily life. There is growing evidence that intensive exercise therapy, especially when supplemented with functional electrical stimulation (FES), can improve upper extremity function, but delivering the treatment can be costly, particularly after recipients leave rehabilitation facilities. Recently, there has been a growing level of interest among researchers and healthcare policymakers to deliver upper extremity treatments to people in their homes using in-home teletherapy (IHT). The few studies that have been carried out so far have encountered a variety of logistical and technical problems, not least the difficulty of conducting properly controlled and blinded protocols that satisfy the requirements of high-level evidence-based research. In most cases, the equipment and communications technology were not designed for individuals with upper extremity disability. It is clear that exercise therapy combined with interventions such as FES, supervised over the Internet, will soon be adopted worldwide in one form or another. Therefore it is timely that researchers, clinicians, and healthcare planners interested in assessing IHT be aware of the pros and cons of the new technology and the factors involved in designing appropriate studies of it. It is crucial to understand the technical barriers, the role of telesupervisors, the motor improvements that participants can reasonably expect and the process of optimizing IHT-exercise therapy protocols to maximize the benefits of the emerging technology. Copyright © 2011 Elsevier B.V. All rights reserved.
Wolf, Steven L.; Winstein, Carolee J.; Miller, J Phillip; Thompson, Paul A.; Taub, Edward; Uswatte, Gitendra; Morris, David; Blanton, Sarah; Nichols-Larsen, Deborah; Clark, Patricia C.
2008-01-01
Summary Background Constraint-Induced Movement therapy (CIMT) uses a variety of treatment components, including restricted use of the better upper extremity, to promote increased use of the contralesional limb for many hours each weekday over two consecutive weeks. The EXCITE Trial demonstrated the efficacy of this intervention for patients 3-9 months post-stroke who were followed for the next 12 months. We assessed the retention of improvements through 24 months. Method Measurements were made every four months for impaired upper extremity function (Wolf Motor Function Test - WMFT and Motor Activity Log - MAL) and health related quality of life (Stroke Impact Scale - SIS) amongst 106/222 participants randomized into one arm of the EXCITE Trial in which they received CIMT rather than usual and customary care. Findings There was no observed regression from the treatment effects observed at 12 months after treatment during the next 12 months for the primary outcome measures of WMFT and MAL. In fact, the additional changes were in the direction of increased therapeutic effect. For the strength components of the WMFT the changes were significant (P < .05) Secondary outcome variables, including the SIS, exhibited a similar pattern. Interpretation Mild to moderately impaired patients who are 3-9 months post-stroke demonstrate substantial improvement in functional use of the paretic upper extremity and quality of life 2 years after receiving a 2-week CIMT intervention. Thus this intervention has persistent benefits. PMID:18077218
Functional studies in 79-year-olds. II. Upper extremity function.
Lundgren-Lindquist, B; Sperling, L
1983-01-01
As part of the Gerontological and Geriatric Population Study of 79-year-old people in Göteborg, a representative subsample comprising 112 women and 93 men took part in a study of upper extremity function. Thirty-eight per cent of the women and 37% of the men had disorders in the upper extremities. The investigation included tests of co-ordination, static strength in the key-grip and the transversal volar grip, power capacity in opening jars and a bottle, basal movements in the upper extremities in personal hygiene and dressing activities, function in the kitchen e.g. reaching shelves, manual tasks including tests of pronation and supination of the forearm. In the key-grip as well as in the transversal volar grip men showed a generally larger decrease in strength with age than women compared to 70-year-olds in a previous population study. Significant correlations were found between strength in the key-grip and the performance time in the test of co-ordination. Women produced about 66% of the muscular force of the men when opening jars. Significant correlations were found between strength in the transversal volar grip and the maximal torque for opening the jars. Female and male subjects who were not capable of handling the electric plug in the manual ability test had significantly weaker strength in the key-grip. The importance of designing products and adapting the environment so as to correspond to the functional capacity of the elderly, is emphasized.
Strifling, Kelly M B; Konop, Katherine A; Wang, Mei; Harris, Gerald F
2009-01-01
Walkers are prescribed with the notion that one type of walker will be better for a child than another. One underlying justification for this practice is the theory that one walker may produce less stress on the upper extremities as the patient uses the walker. Nevertheless, upper extremity joint loading is not typically analyzed during walker assisted gait in children with spastic diplegic cerebral palsy. It has been difficult to evaluate the theory of walker prescription based on upper extremity stresses because loading on the upper extremities however has not been quantified until recently. In this study, weight bearing on the glenohumeral joints was analyzed in five children with spastic diplegic cerebral palsy using both anterior and posterior walkers fitted with 6-axis handle transducers. Though walkers' effects on the upper extremities proved to be similar between walker types, the differences between the walkers may have some clinical significance in the long run. In general, posterior walker use created larger glenohumeral joint forces. Though these differences are not statistically significant, over time and with repetitive loading they may be clinically significant.
Stover, Bert; Silverstein, Barbara; Wickizer, Thomas; Martin, Diane P; Kaufman, Joel
2007-06-01
Work related upper extremity musculoskeletal disorders (MSD) result in substantial disability, and expense. Identifying workers or jobs with high risk can trigger intervention before workers are injured or the condition worsens. We investigated a disability instrument, the QuickDASH, as a workplace screening tool to identify workers at high risk of developing upper extremity MSDs. Subjects included workers reporting recurring upper extremity MSD symptoms in the past 7 days (n = 559). The QuickDASH was reasonably accurate at baseline with sensitivity of 73% for MSD diagnosis, and 96% for symptom severity. Specificity was 56% for diagnosis, and 53% for symptom severity. At 1-year follow-up sensitivity and specificity for MSD diagnosis was 72% and 54%, respectively, as predicted by the baseline QuickDASH score. For symptom severity, sensitivity and specificity were 86% and 52%. An a priori target sensitivity of 70% and specificity of 50% was met by symptom severity, work pace and quality, and MSD diagnosis. The QuickDASH may be useful for identifying jobs or workers with increased risk for upper extremity MSDs. It may provide an efficient health surveillance screening tool useful for targeting early workplace intervention for prevention of upper extremity MSD problems.
Higgins, Johanne; Finch, Lois E; Kopec, Jacek; Mayo, Nancy E
2010-02-01
To create and illustrate the development of a method to parsimoniously and hierarchically assess upper extremity function in persons after stroke. Data were analyzed using Rasch analysis. Re-analysis of data from 8 studies involving persons after stroke. Over 4000 patients with stroke who participated in various studies in Montreal and elsewhere in Canada. Data comprised 17 tests or indices of upper extremity function and health-related quality of life, for a total of 99 items related to upper extremity function. Tests and indices included, among others, the Box and Block Test, the Nine-Hole Peg Test and the Stroke Impact Scale. Data were collected at various times post-stroke from 3 days to 1 year. Once the data fit the model, a bank of items measuring upper extremity function with persons and items organized hierarchically by difficulty and ability in log units was produced. This bank forms the basis for eventual computer adaptive testing. The calibration of the items should be tested further psychometrically, as should the interpretation of the metric arising from using the item calibration to measure the upper extremity of individuals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Dian, E-mail: dwang@mcw.edu; Bosch, Walter; Kirsch, David G.
Purpose: To evaluate variability in the definition of preoperative radiotherapy gross tumor volume (GTV) and clinical target volume (CTV) delineated by sarcoma radiation oncologists. Methods and Materials: Extremity sarcoma planning CT images along with the corresponding diagnostic MRI from two patients were distributed to 10 Radiation Therapy Oncology Group sarcoma radiation oncologists with instructions to define GTV and CTV using standardized guidelines. The CT data with contours were then returned for central analysis. Contours representing statistically corrected 95% (V95) and 100% (V100) agreement were computed for each structure. Results: For the GTV, the minimum, maximum, mean (SD) volumes (mL) weremore » 674, 798, 752 {+-} 35 for the lower extremity case and 383, 543, 447 {+-} 46 for the upper extremity case. The volume (cc) of the union, V95 and V100 were 882, 761, and 752 for the lower, and 587, 461, and 455 for the upper extremity, respectively. The overall GTV agreement was judged to be almost perfect in both lower and upper extremity cases (kappa = 0.9 [p < 0.0001] and kappa = 0.86 [p < 0.0001]). For the CTV, the minimum, maximum, mean (SD) volumes (mL) were 1145, 1911, 1605 {+-} 211 for the lower extremity case and 637, 1246, 1006 {+-} 180 for the upper extremity case. The volume (cc) of the union, V95, and V100 were 2094, 1609, and 1593 for the lower, and 1533, 1020, and 965 for the upper extremity cases, respectively. The overall CTV agreement was judged to be almost perfect in the lower extremity case (kappa = 0.85 [p < 0.0001]) but only substantial in the upper extremity case (kappa = 0.77 [p < 0.0001]). Conclusions: Almost perfect agreement existed in the GTV of these two representative cases. Tshere was no significant disagreement in the CTV of the lower extremity, but variation in the CTV of upper extremity was seen, perhaps related to the positional differences between the planning CT and the diagnostic MRI.« less
Kietrys, David M; Gerg, Michael J; Dropkin, Jonathan; Gold, Judith E
2015-09-01
This study aimed to determine the effects of input device type, texting style, and screen size on upper extremity and trapezius muscle activity and cervical posture during a short texting task in college students. Users of a physical keypad produced greater thumb, finger flexor, and wrist extensor muscle activity than when texting with a touch screen device of similar dimensions. Texting on either device produced greater wrist extensor muscle activity when texting with 1 hand/thumb compared with both hands/thumbs. As touch screen size increased, more participants held the device on their lap, and chose to use both thumbs less. There was also a trend for greater finger flexor, wrist extensor, and trapezius muscle activity as touch screen size increased, and for greater cervical flexion, although mean differences for cervical flexion were small. Future research can help inform whether the ergonomic stressors observed during texting are associated with musculoskeletal disorder risk. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Prevalence of upper extremity symptoms and disorders among dental and dental hygiene students.
Werner, Robert A; Franzblau, Alfred; Gell, Nancy; Hamann, Curt; Rodgers, Pamela A; Caruso, Timothy J; Perry, Frank; Lamb, Courtney; Beaver, Shirley; Hinkamp, David; Eklund, Kathy; Klausner, Christine P
2005-02-01
Upper extremity musculoskeletal disorders are common among dental professionals. The natural history of these disorders is not well-understood. These disorders are more common in older workers, but the prevalence among younger workers has not been well-studied. The objective of this study was to determine if dental/dental hygiene students had a similar prevalence of upper extremity musculoskeletal disorders compared to age-matched clerical workers. We hypothesize students will have a lower prevalence of upper extremity musculoskeletal disorders compared to clerical workers. This was a cross-sectional design. Dental and dental hygiene students from three schools were compared to clerical workers from three locations (an insurance company and two data processing plants). There were 343 dental and dental hygiene students and 164 age-matched clerical workers. Regional discomfort was the primary outcome. The secondary health outcomes were diagnoses of carpal tunnel syndrome and upper extremity tendinitis. Clerical workers had a higher prevalence of hand symptoms (62 percent vs. 20 percent), elbow symptoms (34 percent vs. 6 percent) and shoulder/neck symptoms (48 percent vs. 16 percent) and a higher prevalence of carpal tunnel syndrome (2.5 percent vs. .6 percent) and upper extremity tendinitis (12 percent vs. 5 percent). The clerical workers were more obese, smoked more, exercised less frequently, and had lower educational levels and less control of their work environment. Dental and dental hygiene students have a very low prevalence of upper extremity musculoskeletal disorders. A longitudinal study is necessary to evaluate ergonomic and personal risk factors.
Singh, Hardeep; Unger, Janelle; Zariffa, José; Pakosh, Maureen; Jaglal, Susan; Craven, B Catharine; Musselman, Kristin E
2018-01-15
Abstact Purpose: To provide an overview of the feasibility and outcomes of robotic-assisted upper extremity training for individuals with cervical spinal cord injury (SCI), and to identify gaps in current research and articulate future research directions. A systematic search was conducted using Medline, Embase, PsycINFO, CCTR, CDSR, CINAHL and PubMed on June 7, 2017. Search terms included 3 themes: (1) robotics; (2) SCI; (3) upper extremity. Studies using robots for upper extremity rehabilitation among individuals with cervical SCI were included. Identified articles were independently reviewed by two researchers and compared to pre-specified criteria. Disagreements regarding article inclusion were resolved through discussion. The modified Downs and Black checklist was used to assess article quality. Participant characteristics, study and intervention details, training outcomes, robot features, study limitations and recommendations for future studies were abstracted from included articles. Twelve articles (one randomized clinical trial, six case series, five case studies) met the inclusion criteria. Five robots were exoskeletons and three were end-effectors. Sample sizes ranged from 1 to 17 subjects. Articles had variable quality, with quality scores ranging from 8 to 20. Studies had a low internal validity primarily from lack of blinding or a control group. Individuals with mild-moderate impairments showed the greatest improvements on body structure/function and performance-level measures. This review is limited by the small number of articles, low-sample sizes and the diversity of devices and their associated training protocols, and outcome measures. Preliminary evidence suggests robot-assisted interventions are safe, feasible and can reduce active assistance provided by therapists. Implications for rehabilitation Robot-assisted upper extremity training for individuals with cervical spinal cord injury is safe, feasible and can reduce hands-on assistance provided by therapists. Future research in robotics rehabilitation with individuals with spinal cord injury is needed to determine the optimal device and training protocol as well as effectiveness.
Marnejon, Thomas; Angelo, Debra; Abu Abdou, Ahmed; Gemmel, David
2012-01-01
To identify clinically important risk factors associated with upper extremity venous thrombosis following peripherally inserted central venous catheters (PICC). A retrospective case control study of 400 consecutive patients with and without upper extremity venous thrombosis post-PICC insertion was performed. Patient data included demographics, body mass index (BMI), ethnicity, site of insertion, size and lumen of catheter, internal length, infusate, and co-morbidities, such as diabetes mellitus, congestive heart failure, and renal failure. Additional risk factors analyzed were active cancer, any history of cancer, recent trauma, smoking, a history of prior deep vein thrombosis, and recent surgery, defined as surgery within three months prior to PICC insertion. The prevalence of trauma, renal failure, and infusion with antibiotics and total parenteral nutrition (TPN) was higher among patients exhibiting upper extremity venous thrombosis (UEVT), when compared to controls. Patients developing UEVT were also more likely to have PICC line placement in a basilic vein and less likely to have brachial vein placement (P<.001). Left-sided PICC line sites also posed a greater risk (P=.026). The rate of standard DVT prophylaxis with low molecular weight heparin and unfractionated heparin and the use of warfarin was similar in both groups. Average length of hospital stay was almost double among patients developing UEVT, 19.5 days, when compared to patients undergoing PICC line insertion without thrombosis, 10.8 days (t=6.98, P<.001). In multivariate analysis, trauma, renal failure, left-sided catheters, basilic placement, TPN, and infusion with antibiotics, specifically vancomycin, were significant risk factors for UEVT associated with PICC insertion. Prophylaxis with low molecular weight heparin, unfractionated heparin or use of warfarin did not prevent the development of venous thrombosis in patients with PICCs. Length of hospital stay and cost are markedly increased in patients who develop PICC-associated upper extremity venous thrombosis.
Pehlivan, Ali Utku; Rose, Chad; O'Malley, Marcia K
2013-06-01
Rehabilitation of the distal joints of the upper extremities is crucial to restore the ability to perform activities of daily living to patients with neurological lesions resulting from stroke or spinal cord injury. Robotic rehabilitation has been identified as a promising new solution, however, much of the existing technology in this field is focused on the more proximal joints of the upper arm. A recently presented device, the RiceWrist-S, focuses on the rehabilitation of the forearm and wrist, and has undergone a few important design changes. This paper first addresses the design improvements achieved in the recent design iteration, and then presents the system characterization of the new device. We show that the RiceWrist-S has capabilities beyond other existing devices, and exhibits favorable system characteristics as a rehabilitation device, in particular torque output, range of motion, closed loop position performance, and high spatial resolution.
Wearing a Wetsuit Alters Upper Extremity Motion during Simulated Surfboard Paddling
Nessler, J. A.; Silvas, M.; Carpenter, S.; Newcomer, S. C.
2015-01-01
Surfers often wear wetsuits while paddling in the ocean. This neoprene covering may be beneficial to upper extremity movement by helping to improve proprioceptive acuity, or it may be detrimental by providing increased resistance. The purpose of this study was to evaluate the effects of wearing a wetsuit on muscle activation, upper extremity motion, heart rate, and oxygen consumption during simulated surfboard paddling in the laboratory. Twelve male, recreational surfers performed two paddling trials at a constant workload on a swim bench ergometer both with and without a wetsuit. Kinematic data and EMG were acquired from the right arm via motion capture, and oxygen consumption and heart rate were recorded with a metabolic cart and heart rate monitor. Wearing a wetsuit had no significant effect on oxygen consumption or heart rate. A significant increase in EMG activation was observed for the middle deltoid but not for any of the other shoulder muscle evaluated. Finally, approximate entropy and estimates of the maximum Lyapunov exponent increased significantly for vertical trajectory of the right wrist (i.e. stroke height) when a wetsuit was worn. These results suggest that a 2mm wetsuit has little effect on the energy cost of paddling at lower workloads but does affect arm motion. These changes may be the result of enhanced proprioceptive acuity due to mechanical compression from the wetsuit. PMID:26551321
Ege, Tolga; Unlu, Aytekin; Tas, Huseyin; Bek, Dogan; Turkan, Selim; Cetinkaya, Aytac
2015-01-01
Decision of limb salvage or amputation is generally aided with several trauma scoring systems such as the mangled extremity severity score (MESS). However, the reliability of the injury scores in the settling of open fractures due to explosives and missiles is challenging. Mortality and morbidity of the extremity trauma due to firearms are generally associated with time delay in revascularization, injury mechanism, anatomy of the injured site, associated injuries, age and the environmental circumstance. The purpose of the retrospective study was to evaluate the extent of extremity injuries due to ballistic missiles and to detect the reliability of mangled extremity severity score (MESS) in both upper and lower extremities. Between 2004 and 2014, 139 Gustillo Anderson Type III open fractures of both the upper and lower extremities were enrolled in the study. Data for patient age, fire arm type, transporting time from the field to the hospital (and the method), injury severity scores, MESS scores, fracture types, amputation levels, bone fixation methods and postoperative infections and complications retrieved from the two level-2 trauma center's data base. Sensitivity, specificity, positive and negative predictive values of the MESS were calculated to detect the ability in deciding amputation in the mangled limb. Amputation was performed in 39 extremities and limb salvage attempted in 100 extremities. The mean followup time was 14.6 months (range 6-32 months). In the amputated group, the mean MESS scores for upper and lower extremity were 8.8 (range 6-11) and 9.24 (range 6-11), respectively. In the limb salvage group, the mean MESS scores for upper and lower extremities were 5.29 (range 4-7) and 5.19 (range 3-8), respectively. Sensitivity of MESS in upper and lower extremities were calculated as 80% and 79.4% and positive predictive values detected as 55.55% and 83.3%, respectively. Specificity of MESS score for upper and lower extremities was 84% and 86.6%; negative predictive values were calculated as 95.45% and 90.2%, respectively. MESS is not predictive in combat related extremity injuries especially if between a score of 6-8. Limb ischemia and presence or absence of shock can be used in initial decision-making for amputation.
Ege, Tolga; Unlu, Aytekin; Tas, Huseyin; Bek, Dogan; Turkan, Selim; Cetinkaya, Aytac
2015-01-01
Background: Decision of limb salvage or amputation is generally aided with several trauma scoring systems such as the mangled extremity severity score (MESS). However, the reliability of the injury scores in the settling of open fractures due to explosives and missiles is challenging. Mortality and morbidity of the extremity trauma due to firearms are generally associated with time delay in revascularization, injury mechanism, anatomy of the injured site, associated injuries, age and the environmental circumstance. The purpose of the retrospective study was to evaluate the extent of extremity injuries due to ballistic missiles and to detect the reliability of mangled extremity severity score (MESS) in both upper and lower extremities. Materials and Methods: Between 2004 and 2014, 139 Gustillo Anderson Type III open fractures of both the upper and lower extremities were enrolled in the study. Data for patient age, fire arm type, transporting time from the field to the hospital (and the method), injury severity scores, MESS scores, fracture types, amputation levels, bone fixation methods and postoperative infections and complications retrieved from the two level-2 trauma center's data base. Sensitivity, specificity, positive and negative predictive values of the MESS were calculated to detect the ability in deciding amputation in the mangled limb. Results: Amputation was performed in 39 extremities and limb salvage attempted in 100 extremities. The mean followup time was 14.6 months (range 6–32 months). In the amputated group, the mean MESS scores for upper and lower extremity were 8.8 (range 6–11) and 9.24 (range 6–11), respectively. In the limb salvage group, the mean MESS scores for upper and lower extremities were 5.29 (range 4–7) and 5.19 (range 3–8), respectively. Sensitivity of MESS in upper and lower extremities were calculated as 80% and 79.4% and positive predictive values detected as 55.55% and 83.3%, respectively. Specificity of MESS score for upper and lower extremities was 84% and 86.6%; negative predictive values were calculated as 95.45% and 90.2%, respectively. Conclusion: MESS is not predictive in combat related extremity injuries especially if between a score of 6–8. Limb ischemia and presence or absence of shock can be used in initial decision-making for amputation. PMID:26806974
Microbes in the upper atmosphere and unique opportunities for astrobiology research.
Smith, David J
2013-10-01
Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.
Open scapulothoracic dissociation.
Fischer, P J; Kent, R B
2001-04-01
Scapulothoracic dissociation refers to the traumatic separation of the shoulder from the chest wall. This most commonly occurs as a closed injury. We present a case of open scapulothoracic dissociation and emphasize clinical features unique to this injury. In both closed and open scapulothoracic dissociation, the force necessary to shear the scapula from its thoracic attachments results in vascular disruption and neurologic injury to the upper extremity. As a consequence, patients have a pulseless, flail upper extremity with a significant chest wall hematoma (closed) or active bleeding (open). The first priority is to resuscitate and address life-threatening injuries. If the patient has active bleeding, immediate vascular control to prevent exsanguination is essential. Patients with ischemia and an incomplete injury or unreliable neurologic examination need revascularization. Outcome is based on the extent of brachial plexus or cervical nerve root avulsion. Patients with loss of neurologic function ultimately benefit from amputation at the appropriate level.
Feasibility of High-Repetition, Task-Specific Training for Individuals With Upper-Extremity Paresis
Waddell, Kimberly J.; Birkenmeier, Rebecca L.; Moore, Jennifer L.; Hornby, T. George
2014-01-01
OBJECTIVE. We investigated the feasibility of delivering an individualized, progressive, high-repetition upper-extremity (UE) task-specific training protocol for people with stroke in the inpatient rehabilitation setting. METHOD. Fifteen patients with UE paresis participated in this study. Task-specific UE training was scheduled for 60 min/day, 4 days/wk, during occupational therapy for the duration of a participant’s inpatient stay. During each session, participants were challenged to complete ≥300 repetitions of various tasks. RESULTS. Participants averaged 289 repetitions/session, spending 47 of 60 min in active training. Participants improved on impairment and activity level outcome measures. CONCLUSION. People with stroke in an inpatient setting can achieve hundreds of repetitions of task-specific training in 1-hr sessions. As expected, all participants improved on functional outcome measures. Future studies are needed to determine whether this high-repetition training program results in better outcomes than current UE interventions. PMID:25005508
INTERSESSION RELIABILITY OF UPPER EXTREMITY ISOKINETIC PUSH-PULL TESTING.
Riemann, Bryan L; Davis, Sarah E; Huet, Kevin; Davies, George J
2016-02-01
Based on the frequency pushing and pulling patterns are used in functional activities, there is a need to establish an objective method of quantifying the muscle performance characteristics associated with these motions, particularly during the later stages of rehabilitation as criteria for discharge. While isokinetic assessment offers an approach to quantifying muscle performance, little is known about closed kinetic chain (CKC) isokinetic testing of the upper extremity (UE). To determine the intersession reliability of isokinetic upper extremity measurement of pushing and pulling peak force and average power at slow (0.24 m/s), medium (0.43 m/s) and fast (0.61 m/s) velocities in healthy young adults. The secondary purpose was to compare pushing and pulling peak force (PF) and average power (AP) between the upper extremity limbs (dominant, non-dominant) across the three velocities. Twenty-four physically active men and women completed a test-retest (>96 hours) protocol in order to establish isokinetic UE CKC reliability of PF and AP during five maximal push and pull repetitions at three velocities. Both limb and speed orders were randomized between subjects. High test-retest relative reliability using intraclass correlation coefficients (ICC2, 1) were revealed for PF (.91-.97) and AP (.85-.95) across velocities, limbs and directions. PF typical error (% coefficient of variation) ranged from 6.1% to 11.3% while AP ranged from 9.9% to 26.7%. PF decreased significantly (p < .05) as velocity increased whereas AP increased as velocity increased. PF and AP during pushing were significantly greater than pulling at all velocities, however the push-pull differences in PF became less as velocity increased. There were no significant differences identified between the dominant and nondominant limbs. Isokinetically derived UE CKC push-pull PF and AP are reliable measures. The lack of limb differences in healthy normal participants suggests that clinicians can consider bilateral comparisons when interpreting test performance. The increase in pushing PF and AP compared to pulling can be attributed to the muscles involved and the frequency that pushing patterns are used during functional activities. 3.
Findlater, Sonja E; Dukelow, Sean P
2017-01-01
Proprioception is an important aspect of function that is often impaired in the upper extremity following stroke. Unfortunately, neurorehabilitation has few evidence based treatment options for those with proprioceptive deficits. The authors consider potential reasons for this disparity. In doing so, typical assessments and proprioceptive intervention studies are discussed. Relevant evidence from the field of neuroscience is examined. Such evidence may be used to guide the development of targeted interventions for upper extremity proprioceptive deficits after stroke. As researchers become more aware of the impact of proprioceptive deficits on upper extremity motor performance after stroke, it is imperative to find successful rehabilitation interventions to target these deficits and ultimately improve daily function.
Fluet, Gerard G; Merians, Alma S; Qiu, Qinyin; Saleh, Soha; Ruano, Viviana; Delmonico, Andrea R; Adamovich, Sergei V
2014-09-01
A majority of studies examining repetitive task practice facilitated by robots for the treatment of upper extremity paresis utilize standardized protocols applied to large groups. This study will describe a virtually simulated, robot-based intervention customized to match the goals and clinical presentation of a gentleman with upper extremity hemiparesis secondary to stroke. MP, the subject of this case, is an 85-year-old man with left hemiparesis secondary to an intracerebral hemorrhage 5 years prior to examination. Outcomes were measured before and after a 1-month period of home therapy and after a 1-month virtually simulated, robotic intervention. The intervention was designed to address specific impairments identified during his PT examination. When necessary, activities were modified based on MP's response to his first week of treatment. MP's home training program produced a 3-s decline in Wolf Motor Function Test (WMFT) time and a 5-s improvement in Jebsen Test of Hand Function (JTHF) time. He demonstrated an additional 35-s improvement in JTHF and an additional 44-s improvement in WMFT subsequent to the robotic training intervention. A 24-h activity measurement and the Hand and Activities of Daily Living scales of the Stroke Impact Scale improved following the robotic intervention. Based on his responses to training we feel that we have established that a customized program of virtually simulated, robotically facilitated rehabilitation was feasible and resulted in larger improvements than an intensive home training program in several measurements of upper extremity function in our patient with chronic hemiparesis.
A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems
Blana, Dimitra; Hincapie, Juan G.; Chadwick, Edward K.; Kirsch, Robert F.
2008-01-01
Upper extremity neuroprostheses use functional electrical stimulation (FES) to restore arm motor function to individuals with cervical level spinal cord injury. For the design and testing of these systems, a biomechanical model of the shoulder and elbow has been developed, to be used as a substitute for the human arm. It can be used to design and evaluate specific implementations of FES systems, as well as FES controllers. The model can be customized to simulate a variety of pathological conditions. For example, by adjusting the maximum force the muscles can produce, the model can be used to simulate an individual with tetraplegia and to explore the effects of FES of different muscle sets. The model comprises six bones, five joints, nine degrees of freedom, and 29 shoulder and arm muscles. It was developed using commercial, graphics-based modeling and simulation packages that are easily accessible to other researchers and can be readily interfaced to other analysis packages. It can be used for both forward-dynamic (inputs: muscle activation and external load; outputs:motions) and inverse-dynamic (inputs: motions and external load; outputs: muscle activation) simulations. Our model was verified by comparing the model-calculated muscle activations to electromyographic signals recorded from shoulder and arm muscles of five subjects. As an example of its application to neuroprosthesis design, the model was used to demonstrate the importance of rotator cuff muscle stimulation when aiming to restore humeral elevation. It is concluded that this model is a useful tool in the development and implementation of upper extremity neuroprosthetic systems. PMID:18420213
Blana, Dimitra; Hincapie, Juan G; Chadwick, Edward K; Kirsch, Robert F
2008-01-01
Upper extremity neuroprostheses use functional electrical stimulation (FES) to restore arm motor function to individuals with cervical level spinal cord injury. For the design and testing of these systems, a biomechanical model of the shoulder and elbow has been developed, to be used as a substitute for the human arm. It can be used to design and evaluate specific implementations of FES systems, as well as FES controllers. The model can be customized to simulate a variety of pathological conditions. For example, by adjusting the maximum force the muscles can produce, the model can be used to simulate an individual with tetraplegia and to explore the effects of FES of different muscle sets. The model comprises six bones, five joints, nine degrees of freedom, and 29 shoulder and arm muscles. It was developed using commercial, graphics-based modeling and simulation packages that are easily accessible to other researchers and can be readily interfaced to other analysis packages. It can be used for both forward-dynamic (inputs: muscle activation and external load; outputs: motions) and inverse-dynamic (inputs: motions and external load; outputs: muscle activation) simulations. Our model was verified by comparing the model calculated muscle activations to electromyographic signals recorded from shoulder and arm muscles of five subjects. As an example of its application to neuroprosthesis design, the model was used to demonstrate the importance of rotator cuff muscle stimulation when aiming to restore humeral elevation. It is concluded that this model is a useful tool in the development and implementation of upper extremity neuroprosthetic systems.
Murga, Allen G; Chiriano, Jason T; Bianchi, Christian; Sheng, Neha; Patel, Sheela; Abou-Zamzam, Ahmed M; Teruya, Theodore H
2017-07-01
Central venous occlusion is a common occurrence in patients with end-stage renal disease. Placement of upper extremity arteriovenous access in patients with occlusion of the brachiocephalic veins is often not an option. Avoidance of lower extremity vascular access can decrease morbidity and infection. The central venous lesions were crossed centrally via femoral access. The wire was retrieved in the neck extravascularly. A Hemodialysis Reliable Outflow catheter was then placed in the right atrium and completed with an arterial anastomosis. We describe a novel technique for placing upper extremity arteriovenous access in patients with occlusion of the brachiocephalic veins. This technique was utilized in 3 patients. The technical success was 100%. The placement of upper extremity arteriovenous access in patients with central venous occlusions is technically feasible. Published by Elsevier Inc.
Rankin, Jeffery W.; Kwarciak, Andrew M.; Richter, W. Mark; Neptune, Richard R.
2010-01-01
Manual wheelchair propulsion has been linked to a high incidence of overuse injury and pain in the upper extremity, which may be caused by the high load requirements and low mechanical efficiency of the task. Previous studies have suggested that poor mechanical efficiency may be due to a low effective handrim force (i.e. applied force that is not directed tangential to the handrim). As a result, studies attempting to reduce upper extremity demand have used various measures of force effectiveness (e.g. fraction effective force, FEF) as a guide for modifying propulsion technique, developing rehabilitation programs and configuring wheelchairs. However, the relationship between FEF and upper extremity demand is not well understood. The purpose of this study was to use forward dynamics simulations of wheelchair propulsion to determine the influence of FEF on upper extremity demand by quantifying individual muscle stress, work and handrim force contributions at different values of FEF. Simulations maximizing and minimizing FEF resulted in higher average muscle stresses (23% and 112%) and total muscle work (28% and 71%) compared to a nominal FEF simulation. The maximal FEF simulation also shifted muscle use from muscles crossing the elbow to those at the shoulder (e.g. rotator cuff muscles), placing greater demand on shoulder muscles during propulsion. The optimal FEF value appears to represent a balance between increasing push force effectiveness to increase mechanical efficiency and minimizing upper extremity demand. Thus, care should be taken in using force effectiveness as a metric to reduce upper extremity demand. PMID:20674921
Biomechanical and psychosocial work exposures and musculoskeletal symptoms among vineyard workers.
Bernard, Christophe; Courouve, Laurène; Bouée, Stéphane; Adjémian, Annie; Chrétien, Jean-Claude; Niedhammer, Isabelle
2011-01-01
This study explored the associations between biomechanical and psychosocial work factors and musculoskeletal symptoms in vineyard workers. This cross-sectional study was based on a random sample of 2,824 male and 1,123 female vineyard workers in France. Data were collected using a self-administered questionnaire. Neck/shoulder, back and upper and lower extremity symptoms were evaluated using the Nordic questionnaire. Biomechanical exposures included 15 tasks related to vineyard activities. Psychosocial work factors included effort-reward imbalance and overcommitment, measured using the effort-reward imbalance model, and low job control and insufficient material means. Statistical analysis was performed using logistic regression analysis, and the results were adjusted for age, body mass index, educational level, work status and years in vineyard. Pruning-related factors increased the risk of upper extremity pain for both genders, of back pain for men and of neck/shoulder and lower extremity pain for women. Driving increased the risk of neck/shoulder and back pain among men. Psychosocial work factors, which were insufficient material means, overcommitment (both genders), effort-reward imbalance (men) and low job control (women), were associated with musculoskeletal symptoms, back and upper extremity pain for both genders and neck/shoulder and lower extremity pain for men. These results underlined that both biomechanical and psychosocial work factors may play a role in musculoskeletal pain among vineyard workers. Prevention policies focusing on both biomechanical and psychosocial work exposures may be useful to prevent musculoskeletal symptoms.
Urbin, M A; Fleisig, Glenn S; Abebe, Asheber; Andrews, James R
2013-02-01
A baseball pitcher's ability to maximize ball speed while avoiding shoulder and elbow injuries is an important determinant of a successful career. Pitching injuries are attributed to microtrauma brought about by the repetitive stress of high-magnitude shoulder and elbow kinetics. Over a number of pitches, variations in timing peak angular velocities of trunk segment rotations will be significantly associated with ball speed and upper extremity kinetic parameters. Descriptive laboratory study. Kinematic and kinetic data were derived from 9 to 15 fastball pitches performed by 16 active, healthy collegiate (n = 8) and professional (n = 8) pitchers via 3-dimensional motion capture (240 Hz). Each pitch was decomposed into 4 phases corresponding to the time between peak angular velocities of sequential body segment rotations. Four mixed models were used to evaluate which phases varied significantly in relation to ball speed, peak shoulder proximal force, peak shoulder internal rotation torque, and peak elbow varus torque. Mixed-model parameter coefficient estimates were used to quantify the influence of these variations in timing on ball speed and upper extremity kinetics. All 4 mixed models were significant (P < .05). The time from stride-foot contact to peak pelvis angular velocity varied significantly in relation to all upper extremity kinetic parameters and ball speed. Increased time in this phase correlated with decreases in all parameters. Decreased ball speed also correlated with increased time between peak upper torso and elbow extension angular velocities. Decreased shoulder proximal force also correlated with increased time between peak pelvis and upper torso angular velocities. There are specific phases that vary in relation to ball speed and upper extremity kinetic parameters, reinforcing the importance of effectively and consistently timing segmental interactions. For the specific interactions that varied significantly, increased phase times were associated with decreased kinetics and ball speed. Although increased time within specific phases correlates with decreases in the magnitude of upper extremity kinetics linked to overuse injuries, it also correlates with decreased ball speed. Based on these findings, it may appear that minimizing the risk of injury (ie, decreased kinetics) and maximizing performance quality (ie, increased ball speed) are incompatible with one another. However, there may be an optimal balance in timing that is effective for satisfying both outcomes.
EMG-Torque correction on Human Upper extremity using Evolutionary Computation
NASA Astrophysics Data System (ADS)
JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly
2016-09-01
There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.
Frouzan, Arash; Masoumi, Kambiz; Delirroyfard, Ali; Mazdaie, Behnaz; Bagherzadegan, Elnaz
2017-01-01
Background Long bone fractures are common injuries caused by trauma. Some studies have demonstrated that ultrasound has a high sensitivity and specificity in the diagnosis of upper and lower extremity long bone fractures. Objective The aim of this study was to determine the accuracy of ultrasound compared with plain radiography in diagnosis of upper and lower extremity long bone fractures in traumatic patients. Methods This cross-sectional study assessed 100 patients admitted to the emergency department of Imam Khomeini Hospital, Ahvaz, Iran with trauma to the upper and lower extremities, from September 2014 through October 2015. In all patients, first ultrasound and then standard plain radiography for the upper and lower limb was performed. Data were analyzed by SPSS version 21 to determine the specificity and sensitivity. Results The mean age of patients with upper and lower limb trauma were 31.43±12.32 years and 29.63±5.89 years, respectively. Radius fracture was the most frequent compared to other fractures (27%). Sensitivity, specificity, positive predicted value, and negative predicted value of ultrasound compared with plain radiography in the diagnosis of upper extremity long bones were 95.3%, 87.7%, 87.2% and 96.2%, respectively, and the highest accuracy was observed in left arm fractures (100%). Tibia and fibula fractures were the most frequent types compared to other fractures (89.2%). Sensitivity, specificity, PPV and NPV of ultrasound compared with plain radiography in the diagnosis of upper extremity long bone fractures were 98.6%, 83%, 65.4% and 87.1%, respectively, and the highest accuracy was observed in men, lower ages and femoral fractures. Conclusion The results of this study showed that ultrasound compared with plain radiography has a high accuracy in the diagnosis of upper and lower extremity long bone fractures. PMID:28979747
Punnett, L.
1998-01-01
OBJECTIVE: To evaluate the association between upper extremity soft tissue disorders and exposure to preventable ergonomic stressors in vehicle manufacturing operations. METHODS: A cross sectional study was conducted in one vehicle stamping plant and one engine assembly plant. A standardised physical examination of the upper extremities was performed on all subjects. An interviewer administered questionnaire obtained data on demographics, work history, musculoskeletal symptoms, non-occupational covariates, and psycho-physical (relative intensity) ratings of ergonomic stressors. The primary exposure score was computed by summing the responses to the psychophysical exposure items. Multivariate regression analysis was used to model the prevalence of disorders of the shoulders or upper arms, wrists or hands, and all upper extremity regions (each defined both by symptoms and by physical examination plus symptoms) as a function of exposure quartile. RESULTS: A total of 1315 workers (85% of the target population) was examined. The prevalence of symptom disorders was 22% for the wrists or hands and 15% for the shoulders or upper arms; cases defined on the basis of a physical examination were about 80% as frequent. Disorders of the upper extremities, shoulders, and wrists or hands all increased markedly with exposure score, after adjustment for plant, acute injury, sex, body mass index, systemic disease, and seniority. CONCLUSIONS: Musculoskeletal disorders of the upper extremities were strongly associated with exposure to combined ergonomic stressors. The exposure- response trend was very similar for symptom cases and for physical examination cases. It is important to evaluate all dimensions of ergonomic exposure in epidemiological studies, as exposures often occur in combination in actual workplaces. PMID:9764102
Sweeping Arches and Loops [video
2014-07-10
Two active regions with their intense magnetic fields produced towering arches and spiraling coils of solar loops above them (June 29 - July 1, 2014) as they rotated into view. When viewed in extreme ultraviolet light, magnetic field lines are revealed by charged particles that travel along them. These active regions appear as dark sunspots when viewed in filtered light. Note the small blast in the upper of the two major active regions, followed by more coils of loops as the region reorganizes itself. The still was taken on June 30 at 10:33 UT. Credit: NASA/Solar Dynamics Observatory Two active regions with their intense magnetic fields produced towering arches and spiraling coils of solar loops above them (June 29 - July 1, 2014) as they rotated into view. When viewed in extreme ultraviolet light, magnetic field lines are revealed by charged particles that travel along them. These active regions appear as dark sunspots when viewed in filtered light. Note the small blast in the upper of the two major active regions, followed by more coils of loops as the region reorganizes itself. The still was taken on June 30 at 10:33 UT. Credit: Solar Dynamics Observatory/NASA.
Reoperations following combat-related upper-extremity amputations.
Tintle, Scott M; Baechler, Martin F; Nanos, George P; Forsberg, Jonathan A; Potter, Benjamin K
2012-08-15
Amputation revision rates following major upper-extremity amputations have not been previously reported in a large cohort of patients. We hypothesized that the revision rates following major upper-extremity amputation were higher than the existing literature would suggest, and that surgical treatment of complications and persistent symptoms would lead to improved outcomes. We performed a retrospective analysis of a consecutive series of ninety-six combat-wounded personnel who had sustained a total of 100 major upper-extremity amputations in Operation Iraqi Freedom and Operation Enduring Freedom. Prerevision and postrevision outcome measures, including prosthesis use and type, the presence of phantom and residual limb pain, pain medication use, and return to active military duty, were identified for all patients. All amputations resulted from high-energy trauma, with 87% occurring secondary to a blast injury. Forty-two residual limbs (42%) underwent a total of 103 repeat surgical interventions. As compared with patients with all other levels of amputation, those with a transradial amputation were 4.7 (95% confidence interval [CI]: 1.75 to 12.46) times more likely to have phantom limb pain and 2.8 (95% CI: 1.04 to 7.39) times more likely to require neuropathic pain medications. In the group of patients who underwent revision surgery, regular prosthesis use increased from 19% before the revision to 87% after it (p < 0.0001). In our cohort, revision amputation to address surgical complications and persistently symptomatic residual limbs improved the patient's overall acceptance of the prosthesis and led to outcomes equivalent to those following amputations that did not require revision.
Developing Home-Based Virtual Reality Therapy Interventions.
Lin, Janice; Kelleher, Caitlin L; Engsberg, Jack R
2013-02-01
Stroke is one of the leading causes of serious long-term disability. However, home exercise programs given at rehabilitation often lack in motivational aspects. The purposes of this pilot study were (1) create individualized virtual reality (VR) games and (2) determine the effectiveness of VR games for improving movement in upper extremities in a 6-week home therapy intervention for persons with stroke. Participants were two individuals with upper extremity hemiparesis following a stroke. VR games were created using the Looking Glass programming language and modified based on personal interests, goals, and abilities. Participants were asked to play 1 hour each day for 6 weeks. Assessments measured upper extremity movement (range of motion and Action Research Arm Test [ARAT]) and performance in functional skills (Canadian Occupational Performance Measure [COPM] and Motor Activity Log [MAL]). Three VR games were created by a supervised occupational therapist student. The participants played approximately four to six times a week and performed over 100 repetitions of movements each day. Participants showed improvement in upper extremity movement and participation in functional tasks based on results from the COPM, ARAT, and MAL. Further development in the programming environment is needed to be plausible in a rehabilitation setting. Suggestions include graded-level support and continuation of creating a natural programming language, which will increase the ability to use the program in a rehabilitation setting. However, the VR games were shown to be effective as a home therapy intervention for persons with stroke. VR has the potential to advance therapy services by creating a more motivating home-based therapy service.
Rand, Debbie; Eng, Janice J.
2011-01-01
Background Although inpatient rehabilitation may enhance an individual’s functional ability after stroke, it is not known whether these improvements are accompanied by an increase in daily use of the arms and legs. Objective To determine the change in daily use of the upper and lower extremities of stroke patients during rehabilitation and to compare these values with that of community-dwelling older adults. Methods A total of 60 stroke patients underwent functional assessments and also wore 3 accelerometers for 3 consecutive weekdays on admission to rehabilitation and 3 weeks later prior to hospital discharge. The number of steps and upper-extremity activity counts were measured over the waking hours and during daily use for occupational therapy and physical therapy (PT) sessions. Healthy older adults (n = 40) also wore 3 accelerometers for 5 consecutive days. Results Stroke patients demonstrated a significant increase in mobility function, and this was accompanied by an increase in daily walking over the entire day as well as in PT. However, increases in daily walking were found predominantly in patients who were wheelchair users (and not walkers) at the time of admission. Control walking values (5202 steps) were more than 17 times that of stroke patients. Despite significant improvements in paretic hand function, no increase in daily use of the paretic or nonparetic hand was found over the entire day or in PT. Conclusions. A disparity between functional recovery and increases in daily use of the upper and lower extremities was found during inpatient stroke rehabilitation. PMID:21693771
Clauw, Daniel J; Williams, David A
2002-05-01
Pain and fatigue are commonly associated with work-related upper extremity disorders. Occasionally these symptoms persist beyond a reasonable healing period. One potential explanation for prolonged symptom expression is the concurrent development of a stress-mediated illness or CMI (Chronic Multi-Symptom Illness). In such a scenario, the chronic regional pain and other symptoms that the individual is experiencing would be attributable to the CMI rather than to tissue damage or a biomechanical dysfunction of the upper-extremity. This article critically reviews the case definitions of the new class of CMI disorders and evaluates the existing evidence supporting centrally mediated physiological changes (e.g., sensory hypervigilance, dysautonomia) that manifest as symptoms of pain and fatigue in some individuals experiencing chronic stressors. While explanations for prolonged pain and fatigue have historically focused on mechanisms involving peripheral pathology or psychiatric explanations, ample evidences support the role of altered Central Nervous System function in accounting for symptom manifestation in CMI. A model is presented that unites seemingly disparate findings across numerous investigations and provides a framework for understanding how genetics, triggering events, stressors, and early life events can affect CNS activity. Resultant symptom expression (e.g., pain and fatigue) from central dysregulation would be expected to occur in a subset of individuals in the population, including a subset of individuals with work-related upper extremity disorders. Thus when symptoms such as pain and fatigue persist beyond a reasonable period, consideration of CMI and associated assessment and interventions focused on central mechanisms may be worthwhile.
Effect of mirror therapy with tDCS on functional recovery of the upper extremity of stroke patients.
Cho, Hyuk-Shin; Cha, Hyun-Gyu
2015-04-01
[Purpose] This study aimed to determine the effect of mirror therapy (MT) with transcranial direct current stimulation (tDCS) on the recovery of the upper extremity function of chronic stroke patients. [Subjects] Twenty-seven patients at least 6 months after stroke onset were divided randomly into an experimental group (14 patients) and a control group (13 patients). [Methods] All subjects received tDCS for 20 min followed by a 5 min rest. Then the experimental group received MT while the control group conducted the same exercises as the experimental group using a mirror that did not show the non-paretic upper extremity. The groups performed the same exercises for 20 min. All subjects received this intervention for 45-min three times a week for 6 weeks. [Results] After the intervention, the experimental group showed significant improvements in the box and block test (BBT), grip strength, and the Fugl-Meyer assessment (FMA), and a significant decrease in the Jebsen-Taylor test. The control group showed a significant increase in grip strength after the intervention, and a significant decrease in the Jebsen-Taylor test. Comparison of the result after the intervention revealed that the experimental group showed more significant increases in the BBT and grip strength than the control group. [Conclusion] These results show that MT with tDCS has a positive effect on the functional recovery of the upper extremity of stroke patients, through activating motor regions in the brain, and thus plays an important role in recovery of neuroplasticity.
Incidence and prevalence of complaints of the neck and upper extremity in general practice
Bot, S; van der Waal, J M; Terwee, C; van der Windt, D A W M; Schellevis, F; Bouter, L; Dekker, J
2005-01-01
Objective: To study the incidence and prevalence of neck and upper extremity musculoskeletal complaints in Dutch general practice. Methods: Data were obtained from the second Dutch national survey of general practice. In all, 195 general practitioners (GPs) from 104 practices across the Netherlands recorded all contacts with patients during 12 consecutive months. Incidence densities and consultation rates were calculated. Results: The total number of contacts during the registration period of one year was 1 524 470. The most commonly reported complaint was neck symptoms (incidence 23.1 per 1000 person-years), followed by shoulder symptoms (incidence 19.0 per 1000 person-years). Sixty six GP consultations per 1000 person-years were attributable to a new complaint or new episode of complaint of the neck or upper extremity (incidence density). In all, the GPs were consulted 147 times per 1000 registered persons for complaints of the neck or upper extremity. For most complaints the incidence densities and consultation rates were higher for women than for men. Conclusions: Neck and upper extremity symptoms are common in Dutch general practice. The GP is consulted approximately seven times each week for a complaint relating to the neck or upper extremity; of these, three are new complaints or new episodes. Attention should be paid to training GPs to deal with neck and upper limb complaints, and to research on the prognosis and treatment of these common complaints in primary care. PMID:15608309
Sympathetic skin responses in patients with hyperthyroidism.
Gozke, E; Ozyurt, Z; Dortcan, N; Ore, O; Kocer, A; Ozer, E
2007-01-01
The aim of this study was to investigate the disorders of sympathetic nervous system in patients with hyperthyroidism using sympathetic skin response (SSR). Twenty-two newly diagnosed cases with hyperthyroidism were included in the study. The results were compared with those of 20 healthy controls. SSR was recorded with the contralateral electrical stimulation of the median nerve (of the upper extremities) and tibial nerve (of the lower extremities) with active electrodes placed on palms and soles and reference electrodes attached on the dorsal aspects of hands and feet. Ages of the cases with hyperthyroidism and controls ranged between 15-65 years (mean: 46.7 +/- 15.0 years) and 24-62 years (mean: 39.6 +/- 9.8 years) respectively (p > 0.05). In all the control subjects SSR could be obtained, while from the lower extremities of 4 cases with hyperthyroidism (18.0%) SSR could not be elicited. Mean SSR latencies of lower extremities were found significantly longer than control group (p < 0. 05). No difference was detected between mean amplitudes of SSR in upper and lower extremities. These findings suggest that SSR is useful for investigation of sympathetic nervous system involvement in cases with hyperthyroidism.
Siu, Ho Chit; Arenas, Ana M; Sun, Tingxiao; Stirling, Leia A
2018-02-05
Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue.
Arenas, Ana M.; Sun, Tingxiao
2018-01-01
Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue. PMID:29401754
Adam, Garret; Wang, Kevin; Demaree, Christopher J.; Jiang, Jenny S.; Cheung, Mathew; Bechara, Carlos F.
2018-01-01
Thoracic outlet syndrome (TOS) is a neurovascular condition involving the upper extremity, which is known to occur in individuals who perform chronic repetitive upper extremity activities. We prospectively evaluate the incidence of TOS in high-performance musicians who played bowed string musicians. Sixty-four high-performance string instrument musicians from orchestras and professional musical bands were included in the study. Fifty-two healthy volunteers formed an age-matched control group. Bilateral upper extremity duplex scanning for subclavian vessel compression was performed in all subjects. Provocative maneuvers including Elevated Arm Stress Test (EAST) and Upper Limb Tension Test (ULTT) were performed. Abnormal ultrasound finding is defined by greater than 50% subclavian vessel compression with arm abduction, diminished venous waveforms, or arterial photoplethysmography (PPG) tracing with arm abduction. Bowed string instruments performed by musicians in our study included violin (41%), viola (33%), and cello (27%). Positive EAST or ULTT test in the musician group and control group were 44%, and 3%, respectively (p = 0.03). Abnormal ultrasound scan with vascular compression was detected in 69% of musicians, in contrast to 15% of control subjects (p = 0.03). TOS is a common phenomenon among high-performance bowed string instrumentalists. Musicians who perform bowed string instruments should be aware of this condition and its associated musculoskeletal symptoms. PMID:29370085
Kozak, Agnessa; Schedlbauer, Grita; Peters, Claudia; Nienhaus, Albert
2014-01-01
Background Veterinary work is a physically demanding profession and entails the risk of injuries and diseases of the musculoskeletal system, particularly in the upper body. The prevalence of musculoskeletal disorders (MSD), the consequences and work-related accidents in German veterinarians were investigated. Work-related and individual factors associated with MSD of upper extremities and the neck were analyzed. Methods In 2011, a self-reporting Standardized Nordic Questionnaire was mailed to registered veterinarians in seven federal medical associations in Germany. A total of 3174 (38.4%) veterinarians responded. Logistic regression analysis was used to determine the association between risk factors and MSD-related impairment of daily activities. Results MSD in the neck (66.6%) and shoulder (60.5%) were more prevalent than in the hand (34.5%) or elbow (24.5%). Normal activities were affected in 28.7% (neck), 29.5% (shoulder), 19.4% (hand) and 14% (elbow) of the respondents. MSD in the upper body occurred significantly more often in large animal practitioners. Accidents that resulted in MSD were most frequently reported in the hand/wrist (14.3%) or in the shoulder (10.8%). The majority of all accidents in the distal upper extremities were caused by animals than by other factors (19% vs. 9.2%). For each area of the body, a specific set of individual and work-related factors contributed significantly to severe MSD: Older age, gender, previous injuries, BMI, practice type, veterinary procedures such as dentistry, rectal procedures and obstetric procedures as well as high demands and personal burnout. Conclusion From the perspective of occupational health and safety, it seems to be necessary to improve accident prevention and to optimize the ergonomics of specific tasks. Our data suggest the need for target group-specific preventive measures that also focus on the psychological factors at work. PMID:24586718
Tosun, Aliye; Türe, Sabiha; Askin, Ayhan; Yardimci, Engin Ugur; Demirdal, Secil Umit; Kurt Incesu, Tülay; Tosun, Ozgur; Kocyigit, Hikmet; Akhan, Galip; Gelal, Fazıl Mustafa
2017-07-01
To assess the efficacy of inhibitory repetitive transcranial magnetic stimulation (rTMS) and neuromuscular electrical stimulation (NMES) on upper extremity motor function in patients with acute/subacute ischemic stroke. Twenty-five ischemic acute/subacute stroke subjects were enrolled in this randomized controlled trial. Experimental group 1 received low frequency (LF) rTMS to the primary motor cortex of the unaffected side + physical therapy (PT) including activities to improve strength, flexibility, transfers, posture, balance, coordination, and activities of daily living, mainly focusing on upper limb movements; experimental group 2 received the same protocol combined with NMES to hand extensor muscles; and the control group received only PT. Functional magnetic resonance imaging (fMRI) scan was used to evaluate the activation or inhibition of the affected and unaffected primary motor cortex. No adverse effect was reported. Most of the clinical outcome scores improved significantly in all groups, however no statistically significant difference was found between groups due to the small sample sizes. The highest percent improvement scores were observed in TMS + NMES group (varying between 48 and 99.3%) and the lowest scores in control group (varying between 13.1 and 28.1%). Hand motor recovery was significant in both experimental groups while it did not change in control group. Some motor cortex excitability changes were also observed in fMRI. LF-rTMS with or without NMES seems to facilitate the motor recovery in the paretic hand of patients with acute/subacute ischemic stroke. TMS or the combination of TMS + NMES may be a promising additional therapy in upper limb motor training. Further studies with larger numbers of patients are needed to establish their effectiveness in upper limb motor rehabilitation of stroke.
Upper extremity sensorimotor control among collegiate football players.
Laudner, Kevin G
2012-03-01
Injuries stemming from shoulder instability are very common among athletes participating in contact sports, such as football. Previous research has shown that increased laxity negatively affects the function of the sensorimotor system potentially leading to a pathological cycle of shoulder dysfunction. Currently, there are no data detailing such effects among football players. Therefore, the purpose of this study was to examine the differences in upper extremity sensorimotor control among football players compared with that of a control group. Forty-five collegiate football players and 70 male control subjects with no previous experience in contact sports participated. All the subjects had no recent history of upper extremity injury. Each subject performed three 30-second upper extremity balance trials on each arm. The balance trials were conducted in a single-arm push-up position with the test arm in the center of a force platform and the subjects' feet on a labile device. The trials were averaged, and the differences in radial area deviation between groups were analyzed using separate 1-way analyses of variance (p < 0.05). The football players showed significantly more radial area deviation of the dominant (0.41 ± 1.23 cm2, p = 0.02) and nondominant arms (0.47 ± 1.63 cm2, p = 0.03) when compared with the control group. These results suggest that football players may have decreased sensorimotor control of the upper extremity compared with individuals with no contact sport experience. The decreased upper extremity sensorimotor control among the football players may be because of the frequent impacts accumulated during football participation. Football players may benefit from exercises that target the sensorimotor system. These findings may also be beneficial in the evaluation and treatment of various upper extremity injuries among football players.
Black breast cancer survivors experience greater upper extremity disability.
Dean, Lorraine T; DeMichele, Angela; LeBlanc, Mously; Stephens-Shields, Alisa; Li, Susan Q; Colameco, Chris; Coursey, Morgan; Mao, Jun J
2015-11-01
Over one-third of breast cancer survivors experience upper extremity disability. Black women present with factors associated with greater upper extremity disability, including: increased body mass index (BMI), more advanced disease stage at diagnosis, and varying treatment type compared with Whites. No prior research has evaluated the relationship between race and upper extremity disability using validated tools and controlling for these factors. Data were drawn from a survey study among 610 women with stage I-III hormone receptor positive breast cancer. The disabilities of the arm, shoulder and hand (QuickDASH) is an 11-item self-administered questionnaire that has been validated for breast cancer survivors to assess global upper extremity function over the past 7 days. Linear regression and mediation analysis estimated the relationships between race, BMI and QuickDASH score, adjusting for demographics and treatment types. Black women (n = 98) had 7.3 points higher average QuickDASH scores than White (n = 512) women (p < 0.001). After adjusting for BMI, age, education, cancer treatment, months since diagnosis, and aromatase inhibitor status, Black women had an average 4-point (95 % confidence interval 0.18-8.01) higher QuickDASH score (p = 0.04) than White women. Mediation analysis suggested that BMI attenuated the association between race and disability by 40 %. Even several years post-treatment, Black breast cancer survivors had greater upper extremity disability, which was partially mediated by higher BMIs. Close monitoring of high BMI Black women may be an important step in reducing disparities in cancer survivorship. More research is needed on the relationship between race, BMI, and upper extremity disability.
Guerra, Jorge; Uddin, Jasim; Nilsen, Dawn; Mclnerney, James; Fadoo, Ammarah; Omofuma, Isirame B.; Hughes, Shatif; Agrawal, Sunil; Allen, Peter; Schambra, Heidi M.
2017-01-01
There currently exist no practical tools to identify functional movements in the upper extremities (UEs). This absence has limited the precise therapeutic dosing of patients recovering from stroke. In this proof-of-principle study, we aimed to develop an accurate approach for classifying UE functional movement primitives, which comprise functional movements. Data were generated from inertial measurement units (IMUs) placed on upper body segments of older healthy individuals and chronic stroke patients. Subjects performed activities commonly trained during rehabilitation after stroke. Data processing involved the use of a sliding window to obtain statistical descriptors, and resulting features were processed by a Hidden Markov Model (HMM). The likelihoods of the states, resulting from the HMM, were segmented by a second sliding window and their averages were calculated. The final predictions were mapped to human functional movement primitives using a Logistic Regression algorithm. Algorithm performance was assessed with a leave-one-out analysis, which determined its sensitivity, specificity, and positive and negative predictive values for all classified primitives. In healthy control and stroke participants, our approach identified functional movement primitives embedded in training activities with, on average, 80% precision. This approach may support functional movement dosing in stroke rehabilitation. PMID:28813877
Huri, Meral; Şahin, Sedef; Kayıhan, Hülya
2016-11-01
The present study was designed to compare hand function in autistic children with history of upper extremity trauma with that of autistic children those who do not have history of trauma. The study group included total of 65 children diagnosed with autism spectrum disorder (ASD) and was divided into 2 groups: children with trauma history (Group I) and control group (Group II) (Group I: n=28; Group II: n=37). Hand function was evaluated with 9-Hole Peg Test and Jebsen Hand Function Test. Somatosensory function was evaluated using somatosensory subtests of Sensory Integration and Praxis Test. Results were analyzed with Student's t-test and Mann-Whitney U test using SPSS version 20 software. Hand function and somatosensory perception test scores were statistically significantly better in children without upper extremity trauma history (p<0.05). When association between hand function tests and upper extremity somatosensory perception tests was taken into account, statistically significant correlations were found between all parameters of hand function tests and Manual Form Perception and Localization of Tactile Stimuli Test results (p<0.05). Autistic children with upper extremity trauma history had poor somatosensory perception and hand function. It is important to raise awareness among emergency service staff and inform them about strong relationship between somatosensory perception, hand function, and upper extremity trauma in children with ASD in order to develop appropriate rehabilitation process and prevent further trauma.
Alon, Gad; Levitt, Alan F; McCarthy, Patricia A
2007-01-01
To test if functional electrical stimulation (FES) can enhance the recovery of upper extremity function during early stroke rehabilitation. Open-label block-randomized trial, begun during inpatient rehabilitation and continued at the patients' home. Patients were assigned to either FES combined with task-specific upper extremity rehabilitation (n = 7) or a control group that received task-specific therapy alone (n = 8) over 12 weeks. Outcome measures . Hand function (Box & Blocks, B & B; Jebsen-Taylor light object lift, J-T) and motor control (modified Fugl-Meyer, mF-M) were video-recorded for both upper extremities at baseline, 4, 8, and 12 weeks. B&B mean score at 12 weeks favored (P = .049) the FES group (42.3 +/- 16.6 blocks) over the control group (26.3 +/- 11.0 blocks). The FES group J-T task was 6.7 +/- 2.9 seconds and faster (P = .049) than the 11.8 +/- 5.4 seconds of the control group. Mean mF-M score of the FES group at 12 weeks was 49.3 +/- 5.1 points out of 54, compared to the control group that scored 40.6 +/- 8.2 points (P = .042). All patients regained hand function. Upper extremity task-oriented training that begins soon after stroke that incorporates FES may improve upper extremity functional use in patients with mild/moderate paresis more than task-oriented training without FES.
Stock, S R; Cole, D C; Tugwell, P; Streiner, D
1996-06-01
Both epidemiologic studies of the factors that contribute to the development of work-related musculoskeletal disorders of the neck and upper limb and intervention studies that test the effectiveness of workplace ergonomic and organizational changes are needed to provide empiric evidence for preventive strategies. This study reviews the relevance and comprehensiveness of existing functional status instruments for epidemiologic studies of work-related neck and upper limb disorders. Twelve domains were identified as the major areas of life affected by workers' neck and upper extremity disorder(s): work, household and family responsibilities, self-care, transportation/driving, sexual activity, sleep, social activities, recreational activities, mood, self-esteem, financial effects, and iatrogenic effects of assessments and treatment. Fifty-two functional status instruments were identified. Of these, 21 met the specified criteria as potentially relevant and were rated on the 3-point scale for relevance and comprehensiveness for each domain. None of the instruments covered all 12 domains adequately.
Strifling, Kelly M B; Lu, Na; Wang, Mei; Cao, Kevin; Ackman, Jeffrey D; Klein, John P; Schwab, Jeffrey P; Harris, Gerald F
2008-10-01
This prospective study analyzes the upper extremity kinematics of 10 children with spastic diplegic cerebral palsy using anterior and posterior walkers. Although both types of walkers are commonly prescribed by clinicians, no quantitative data comparing the two in regards to upper extremity motion has been published. The study methodology included testing of each subject with both types of walkers in a motion analysis laboratory after an acclimation period of at least 1 month. Overall results showed that statistically, both walkers are relatively similar. With both anterior and posterior walkers, the shoulders were extended, elbows flexed, and wrists extended. Energy expenditure, walking speed and stride length was also similar with both walker types. Several differences were also noted although not statistically significant. Anterior torso tilt was reduced with the posterior walker and shoulder extension and elbow flexion were increased. Outcomes analysis indicated that differences in upper extremity torso and joint motion were not dependent on spasticity or hand dominance. These findings may help to build an understanding of upper extremity motion in walker-assisted gait and potentially to improve walker prescription.
Villeneuve, Myriam; Penhune, Virginia; Lamontagne, Anouk
2014-01-01
Music-supported therapy was shown to induce improvements in motor skills in stroke survivors. Whether all stroke individuals respond similarly to the intervention and whether gains can be maintained over time remain unknown. We estimated the immediate and retention effects of a piano training program on upper extremity function in persons with chronic stroke. Thirteen stroke participants engaged in a 3-week piano training comprising supervised sessions (9 × 60 min) and home practice. Fine and gross manual dexterity, movement coordination, and functional use of the upper extremity were assessed at baseline, pre-intervention, post-intervention, and at a 3-week follow-up. Significant improvements were observed for all outcomes at post-intervention and follow-up compared to pre-intervention scores. Larger magnitudes of change in manual dexterity and functional use of the upper extremity were associated with higher initial levels of motor recovery. Piano training can result in sustainable improvements in upper extremity function in chronic stroke survivors. Individuals with a higher initial level of motor recovery at baseline appear to benefit the most from this intervention.
Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; Chen, Yasheng; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William
2015-09-01
We evaluated safety and feasibility of high-pressure transvenous limb perfusion in an upper extremity of adult patients with muscular dystrophy, after completing a similar study in a lower extremity. A dose escalation study of single-limb perfusion with 0.9% saline was carried out in nine adults with muscular dystrophies under intravenous analgesia. Our study demonstrates that it is feasible and definitely safe to perform high-pressure transvenous perfusion with 0.9% saline up to 35% of limb volume in the upper extremities of young adults with muscular dystrophy. Perfusion at 40% limb volume is associated with short-lived physiological changes in peripheral nerves without clinical correlates in one subject. This study provides the basis for a phase 1/2 clinical trial using pressurized transvenous delivery into upper limbs of nonambulatory patients with Duchenne muscular dystrophy. Furthermore, our results are applicable to other conditions such as limb girdle muscular dystrophy as a method for delivering regional macromolecular therapeutics in high dose to skeletal muscles of the upper extremity.
Hatem, Samar M.; Saussez, Geoffroy; della Faille, Margaux; Prist, Vincent; Zhang, Xue; Dispa, Delphine; Bleyenheuft, Yannick
2016-01-01
Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation. PMID:27679565
Uswatte, Gitendra; Taub, Edward; Morris, David; Vignolo, Mary; McCulloch, Karen
2005-11-01
In research on Constraint-Induced Movement (CI) therapy, a structured interview, the Motor Activity Log (MAL), is used to assess how stroke survivors use their more-impaired arm outside the laboratory. This article examines the psychometrics of the 14-item version of this instrument in 2 chronic stroke samples with mild-to-moderate upper-extremity hemiparesis. Participants (n=41) in the first study completed MALs before and after CI therapy or a placebo control procedure. In addition, caregivers independently completed a MAL on the participants. Participants (n=27) in the second study completed MALs and wore accelerometers that monitored their arm movements for 3 days outside the laboratory before and after an automated form of CI therapy. Validity of the participant MAL Quality of Movement (QOM) scale was supported. Correlations between pretreatment-to-posttreatment change scores on the participant QOM scale and caregiver MAL QOM scale, caregiver MAL amount of use (AOU) scale, and accelerometer recordings were 0.70, 0.73, and 0.91 (P<0.01), respectively. Internal consistency (alpha>0.81), test-retest reliability (r>0.91), stability, and responsiveness (ratio>3) of the participant QOM scale were also supported. The participant AOU and caregiver QOM and AOU scales were internally consistent, stable, and sensitive, but were not reliable. The participant MAL QOM scale can be used exclusively to reliably and validly measure real-world, upper-extremity rehabilitation outcome and functional status in chronic stroke patients with mild-to-moderate hemiparesis.
Upper extremity pain and computer use among engineering graduate students.
Schlossberg, Eric B; Morrow, Sandra; Llosa, Augusto E; Mamary, Edward; Dietrich, Peter; Rempel, David M
2004-09-01
The objective of this study was to investigate risk factors associated with persistent or recurrent upper extremity and neck pain among engineering graduate students. A random sample of 206 Electrical Engineering and Computer Science (EECS) graduate students at a large public university completed an online questionnaire. Approximately 60% of respondents reported upper extremity or neck pain attributed to computer use and reported a mean pain severity score of 4.5 (+/-2.2; scale 0-10). In a final logistic regression model, female gender, years of computer use, and hours of computer use per week were significantly associated with pain. The high prevalence of upper extremity pain reported by graduate students suggests a public health need to identify interventions that will reduce symptom severity and prevent impairment.
Shoulder injuries from alpine skiing and snowboarding. Aetiology, treatment and prevention.
Kocher, M S; Dupré, M M; Feagin, J A
1998-03-01
There has been a decrease in the overall injury rate and the rate of lower extremity injuries for alpine skiing, with a resultant increase in the ratio of upper extremity to lower extremity injuries. Upper extremity injuries account for 20 to 35% of all injuries during alpine skiing and nearly 50% of all injuries during snowboarding. The most common upper extremity injuries during skiing are sprain of the thumb metacarpal-phalangeal joint ulnar collateral ligament, and the most common in snowboarding is wrist fracture. Shoulder injuries from skiing and snowboarding have been less well characterised. With the increased ratio of upper to lower extremity injuries during alpine skiing and the boom in popularity of snowboarding, shoulder injuries will be seen with increasing frequency by those who care for alpine sport injuries. Shoulder injuries account for 4 to 11% of all alpine skiing injuries and 22 to 41% of upper extremity injuries. The rate of shoulder injuries during alpine skiing is 0.2 to 0.5 injuries per thousand skier-days. During snowboarding, shoulder injuries account for 8 to 16% of all injuries and 20 to 34% of upper extremity injuries. Falls are the most common mechanism of shoulder injury, in addition to pole planting during skiing and aerial manoeuvres during snowboarding. Common shoulder injuries during skiing and snowboarding are glenohumeral instability, rotator cuff strains, acromioclavicular separations and clavicle fractures. Less common shoulder injuries include greater tuberosity fractures, trapezius strains, proximal humerus fractures, biceps strains, glenoid fractures, scapula fractures, humeral head fractures, sterno-clavicular separations, acromion fractures and biceps tendon dislocation. Prevention of shoulder injuries during skiing and snowboarding may be possible through interventions in education and technique, conditioning and equipment and environment.
Muscle activation patterns of the upper and lower extremity during the windmill softball pitch.
Oliver, Gretchen D; Plummer, Hillary A; Keeley, David W
2011-06-01
Fast-pitch softball has become an increasingly popular sport for female athletes. There has been little research examining the windmill softball pitch in the literature. The purpose of this study was to describe the muscle activation patterns of 3 upper extremity muscles (biceps, triceps, and rhomboids [scapular stabilizers]) and 2 lower extremity muscles (gluteus maximus and medius) during the 5 phases of the windmill softball pitch. Data describing muscle activation were collected on 7 postpubescent softball pitchers (age 17.7 ± 2.6 years; height 169 ± 5.4 cm; mass 69.1 ± 5.4 kg). Surface electromyographic data were collected using a Myopac Jr 10-channel amplifier (RUN Technologies Scientific Systems, Laguna Hills, CA, USA) synchronized with The MotionMonitor™ motion capture system (Innovative Sports Training Inc, Chicago IL, USA) and presented as a percent of maximum voluntary isometric contraction. Gluteus maximus activity reached (196.3% maximum voluntary isometric contraction [MVIC]), whereas gluteus medius activity was consistent during the single leg support of phase 3 (101.2% MVIC). Biceps brachii activity was greatest during phase 4 of the pitching motion. Triceps brachii activation was consistently >150% MVIC throughout the entire pitching motion, whereas the scapular stabilizers were most active during phase 2 (170.1% MVIC). The results of this study indicate the extent to which muscles are activated during the windmill softball pitch, and this knowledge can lead to the development of proper preventative and rehabilitative muscle strengthening programs. In addition, clinicians will be able to incorporate strengthening exercises that mimic the timing of maximal muscle activation most used during the windmill pitching phases.
Upper extremity disorders in heavy industry workers in Greece.
Tsouvaltzidou, Thomaella; Alexopoulos, Evangelos; Fragkakis, Ioannis; Jelastopulu, Eleni
2017-06-18
To investigate the disability due to musculoskeletal disorders of the upper extremities in heavy industry workers. The population under study consisted of 802 employees, both white- and blue-collar, working in a shipyard industry in Athens, Greece. Data were collected through the distribution of questionnaires and the recording of individual and job-related characteristics during the period 2006-2009. The questionnaires used were the Quick Disabilities of the Arm, Shoulder and Hand (QD) Outcome Measure, the Work Ability Index (WAI) and the Short-Form-36 (SF-36) Health Survey. The QD was divided into three parameters - movement restrictions in everyday activities, work and sports/music activities - and the SF-36 into two items, physical and emotional. Multiple linear regression analysis was performed by means of the SPSS v.22 for Windows Statistical Package. The answers given by the participants for the QD did not reveal great discomfort regarding the execution of manual tasks, with the majority of the participants scoring under 5%, meaning no disability. After conducting multiple linear regression, age revealed a positive association with the parameter of restrictions in everyday activities (b = 0.64, P = 0.000). Basic education showed a statistically significant association regarding restrictions during leisure activities, with b = 2.140 ( P = 0.029) for compulsory education graduates. WAI's final score displayed negative charging in the regression analysis of all three parameters, with b = -0.142 ( P = 0.0), b = -0.099 ( P = 0.055) and b = -0.376 ( P = 0.001) respectively, while the physical and emotional components of SF-36 associated with movement restrictions only in daily activities and work. The participants' specialty made no statistically significant associations with any of the three parameters of the QD. Increased musculoskeletal disorders of the upper extremity are associated with older age, lower basic education and physical and mental/emotional health and reduced working ability.
Shaw, Colin N; Stock, Jay T
2013-04-01
Descriptions of Pleistocene activity patterns often derive from comparisons of long bone diaphyseal robusticity across contemporaneous fossilized hominins. The purpose of this study is to augment existing understanding of Pleistocene hominin mobility patterns by interpreting fossil variation through comparisons with a) living human athletes with known activity patterns, and b) Holocene foragers where descriptions of group-level activity patterns are available. Relative tibial rigidity (midshaft tibial rigidity (J)/midshaft humeral rigidity (J)) was compared amongst Levantine and European Neandertals, Levantine and Upper Palaeolithic Homo sapiens, Holocene foragers and living human athletes and controls. Cross-country runners exhibit significantly (p<0.05) greater relative tibial rigidity compared with swimmers, and higher values compared with controls. In contrast, swimmers displayed significantly (p<0.05) lower relative tibial rigidity than both runners and controls. While variation exists among all Holocene H. sapiens, highly terrestrially mobile Later Stone Age (LSA) southern Africans and cross-country runners display the highest relative tibial rigidity, while maritime Andaman Islanders and swimmers display the lowest, with controls falling between. All fossil hominins displayed relative tibial rigidity that exceeded, or was similar to, the highly terrestrially mobile Later Stone Age southern Africans and modern human cross-country runners. The more extreme skeletal structure of most Neandertals and Levantine H. sapiens, as well as the odd Upper Palaeolithic individual, appears to reflect adaptation to intense and/or highly repetitive lower limb (relative to upper limb) loading. This loading may have been associated with bipedal travel, and appears to have been more strenuous than that encountered by even university varsity runners, and Holocene foragers with hunting grounds 2000-3000 square miles in size. Skeletal variation among the athletes and foraging groups is consistent with known or inferred activity profiles, which support the position that the Pleistocene remains reflect adaptation to extremely active and mobile lives. Copyright © 2013 Elsevier Ltd. All rights reserved.
Slavens, Brooke A; Harris, Gerald F
2008-01-01
Human motion analysis has evolved from the lower extremity to the upper extremity. Rehabilitation engineering is reliant upon three-dimensional biome-chanical models for a thorough understanding of upper body motions and forces in order to improve treatment methods, rehabilitation strategies and to prevent injury. Due to the complex nature of upper body movements, a standard biomechanical model does not exist. This paper reviews several kinematic and kinetic rehabilitation engineering models from the literature. These models may capture a single joint; multijoints such as the shoulder, elbow and wrist; or a combination of joints and an ambulatory aid, which serves as the extension of the upper arm. With advances in software and hardware, new models continuously arise due to the clinical questions at hand. When designing a biomechanical upper extremity model, several key components must be determined. These include deciding on the anatomic segments of the model, the number of markers and placement on bony landmarks, the definition of joint coordinate systems, and the description of the joint motions. It is critical to apply the proper model to further our understanding of pathologic populations.
Kinematic Analysis of Four Plyometric Push-Up Variations
MOORE, LAURA H.; TANKOVICH, MICHAEL J.; RIEMANN, BRYAN L.; DAVIES, GEORGE J.
2012-01-01
Plyometric research in the upper extremity is limited, with the effects of open-chain plyometric exercises being studied most. Kinematic and ground reaction force data concerning closed-chain upper extremity plyometrics has yet to be examined. Twenty-one recreationally active male subjects performed four variations of plyometric push-ups in a counterbalanced order. These included box drop push-ups from 3.8 cm, 7.6 cm, 11.4 cm heights, and clap push-ups. Kinematics of the trunk, dominant extremity and both hands were collected to examine peak flight, elbow flexion at ground contact, elbow displacement, and hand separation. Additionally peak vertical ground reaction force was measured under the dominant extremity. The 11.4 cm and clap push-ups had significantly higher peak flight than the other variations (P<.001). At ground contact, the elbow was in significantly greater flexion for the 3.8 cm and clap push-up compared to the other variations (P<.001). The clap push-up had significantly more elbow displacement than the other variations (P<.001) while hand separation was not significantly different between variations (P=.129). Peak vertical ground reaction force was significantly greater for the clap push-ups than for all other variations (P< .001). Despite similar flight heights between the 11.4 cm and clap push-ups, the greater peak vertical ground reaction force and elbow displacement of the clap push-ups indicates the clap push-up is the most intense of the variations examined. Understanding the kinematic variables involved will aid in the creation of a closed chain upper-extremity plyometric progression. PMID:27182390
Yeldan, Ipek; Huseyınsınoglu, Burcu Ersoz; Akıncı, Buket; Tarakcı, Ela; Baybas, Sevim; Ozdıncler, Arzu Razak
2015-11-01
[Purpose] The aim of the study was to evaluate the effects of a very early mirror therapy program on functional improvement of the upper extremity in acute stroke patients. [Subjects] Eight stroke patients who were treated in an acute neurology unit were included in the study. [Methods] The patients were assigned alternatively to either the mirror therapy group receiving mirror therapy and neurodevelopmental treatment or the neurodevelopmental treatment only group. The primary outcome measures were the upper extremity motor subscale of the Fugl-Meyer Assessment, Motricity Index upper extremity score, and the Stroke Upper Limb Capacity Scale. Somatosensory assessment with the Ayres Southern California Sensory Integration Test, and the Barthel Index were used as secondary outcome measures. [Results] No statistically significant improvements were found for any measures in either group after the treatment. In terms of minimally clinically important differences, there were improvements in Fugl-Meyer Assessment and Barthel Index in both mirror therapy and neurodevelopmental treatment groups. [Conclusion] The results of this pilot study revealed that very early mirror therapy has no additional effect on functional improvement of upper extremity function in acute stroke patients. Multicenter trials are needed to determine the results of early application of mirror therapy in stroke rehabilitation.
Benaya, A; Schwartz, Y; Kory, R; Yinnon, A M; Ben-Chetrit, E
2015-05-01
Peripheral venous access in elderly, hospitalized patients is often challenging. The usual alternative is insertion of a central venous catheter, with associated risk for complications. The purpose of this investigation was to determine the relative incidence of phlebitis secondary to lower as compared to upper extremity intravenous catheters (IVCs) and associated risk factors. A non-randomized, observational, cohort-controlled study was carried out. Consecutive patients receiving a lower extremity IVC were enrolled and compared with patients receiving an upper extremity IVC. Patients were followed from insertion until removal of the IVC. The major endpoint was phlebitis. The incidence of phlebitis secondary to upper extremity IVCs was 3/50 (6 %) compared to 5/53 (9.4 %) in lower extremity IVCs (χ(2) Yates = 0.08, p = 0.776). Age, gender, obesity, diabetes mellitus, site (arm versus leg, left versus right), and size of needle were not found to be risk factors for phlebitis according to univariate analysis. None of the patients developed bloodstream infection. In elderly patients with poor venous access, lower extremity IVCs are a reasonable and low-risk alternative to central venous catheters.
Assessing Upper Extremity Motor Function in Practice of Virtual Activities of Daily Living
Adams, Richard J.; Lichter, Matthew D.; Krepkovich, Eileen T.; Ellington, Allison; White, Marga; Diamond, Paul T.
2015-01-01
A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An Unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user’s avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman’s rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs. PMID:25265612
Assessing upper extremity motor function in practice of virtual activities of daily living.
Adams, Richard J; Lichter, Matthew D; Krepkovich, Eileen T; Ellington, Allison; White, Marga; Diamond, Paul T
2015-03-01
A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user's avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman's rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs.
Flinn, Nancy A; Smith, Jennifer L; Tripp, Christopher J; White, Matthew W
2009-01-01
The objective of the study was to examine the results of robotic therapy in a single client. A 48-year-old female client 15 months post-stroke, with right hemiparesis, received robotic therapy as an outpatient in a large Midwestern rehabilitation hospital. Robotic therapy was provided three times a week for 6 weeks. Robotic therapy consisted of goal-directed, robotic-aided reaching tasks to exercise the hemiparetic shoulder and elbow. No other therapeutic intervention for the affected upper extremity was provided during the study or 3 months follow-up period. The outcome measures included the Fugl-Meyer, graded Wolf motor function test (GWMFT), motor activity log, active range of motion and Canadian occupational performance measure. The participant made gains in active movement; performance; and satisfaction of functional tasks, GWMFT and functional use. Limitations involved in this study relate to the generalizability of the sample size, effect of medications, expense of robotic technologies and the impact of aphasia. Future research should incorporate functional use training along with robotic therapy.
Manchikanti, Laxmaiah; Cash, Kimberly A.; Pampati, Vidyasagar; Wargo, Bradley W.; Malla, Yogesh
2012-01-01
Study Design: A randomized, double-blind, active controlled trial. Objective: To evaluate the effectiveness of cervical interlaminar epidural injections of local anesthetic with or without steroids in the management of chronic neck pain and upper extremity pain in patients with disc herniation and radiculitis. Summary of Background Data: Epidural injections in managing chronic neck and upper extremity pain are commonly employed interventions. However, their long-term effectiveness, indications, and medical necessity, of their use and their role in various pathologies responsible for persistent neck and upper extremity pain continue to be debated, even though, neck and upper extremity pain secondary to disc herniation and radiculitis, is described as the common indication. There is also paucity of high quality literature. Methods: One-hundred twenty patients were randomly assigned to one of 2 groups: Group I patients received cervical interlaminar epidural injections of local anesthetic (lidocaine 0.5%, 5 mL); Group II patients received 0.5% lidocaine, 4 mL, mixed with 1 mL of nonparticulate betamethasone. Primary outcome measure was ≥ 50 improvement in pain and function. Outcome assessments included Numeric Rating Scale (NRS), Oswestry Disability Index (ODI), opioid intake, employment, and changes in weight. Results: Significant pain relief and functional status improvement (≥ 50%) was demonstrated in 72% of patients who received local anesthetic only and 68% who received local anesthetic and steroids. In the successful group of participants, significant improvement was illustrated in 77% in local anesthetic group and 82% in local anesthetic with steroid group. Conclusions: Cervical interlaminar epidural injections with or without steroids may provide significant improvement in pain and function for patients with cervical disc herniation and radiculitis. PMID:22859902
Manchikanti, Laxmaiah; Cash, Kimberly A; Pampati, Vidyasagar; Wargo, Bradley W; Malla, Yogesh
2012-01-01
A randomized, double-blind, active controlled trial. To evaluate the effectiveness of cervical interlaminar epidural injections of local anesthetic with or without steroids in the management of chronic neck pain and upper extremity pain in patients with disc herniation and radiculitis. Epidural injections in managing chronic neck and upper extremity pain are commonly employed interventions. However, their long-term effectiveness, indications, and medical necessity, of their use and their role in various pathologies responsible for persistent neck and upper extremity pain continue to be debated, even though, neck and upper extremity pain secondary to disc herniation and radiculitis, is described as the common indication. There is also paucity of high quality literature. One-hundred twenty patients were randomly assigned to one of 2 groups: Group I patients received cervical interlaminar epidural injections of local anesthetic (lidocaine 0.5%, 5 mL); Group II patients received 0.5% lidocaine, 4 mL, mixed with 1 mL of nonparticulate betamethasone. Primary outcome measure was ≥ 50 improvement in pain and function. Outcome assessments included Numeric Rating Scale (NRS), Oswestry Disability Index (ODI), opioid intake, employment, and changes in weight. Significant pain relief and functional status improvement (≥ 50%) was demonstrated in 72% of patients who received local anesthetic only and 68% who received local anesthetic and steroids. In the successful group of participants, significant improvement was illustrated in 77% in local anesthetic group and 82% in local anesthetic with steroid group. Cervical interlaminar epidural injections with or without steroids may provide significant improvement in pain and function for patients with cervical disc herniation and radiculitis.
Nerve Injuries of the Upper Extremity
... Upper Extremity Find a hand surgeon near you. Videos Figures Figure 1 - Nerve with bundles of individual ... or "in." Also, avoid using media types like "video," "article," and "picture." Tip 4: Your results can ...
Congenital Differences of the Upper Extremity: Classification and Treatment Principles
2011-01-01
For hand surgeons, the treatment of children with congenital differences of the upper extremity is challenging because of the diverse spectrum of conditions encountered, but the task is also rewarding because it provides surgeons with the opportunity to impact a child's growth and development. An ideal classification of congenital differences of the upper extremity would reflect the full spectrum of morphologic abnormalities and encompass etiology, a guide to treatment, and provide prognoses. In this report, I review current classification systems and discuss their contradictions and limitations. In addition, I present a modified classification system and provide treatment principles. As our understanding of the etiology of congenital differences of the upper extremity increases and as experience of treating difficult cases accumulates, even an ideal classification system and optimal treatment strategies will undoubtedly continue to evolve. PMID:21909463
Innovations in prosthetic interfaces for the upper extremity.
Kung, Theodore A; Bueno, Reuben A; Alkhalefah, Ghadah K; Langhals, Nicholas B; Urbanchek, Melanie G; Cederna, Paul S
2013-12-01
Advancements in modern robotic technology have led to the development of highly sophisticated upper extremity prosthetic limbs. High-fidelity volitional control of these devices is dependent on the critical interface between the patient and the mechanical prosthesis. Recent innovations in prosthetic interfaces have focused on several control strategies. Targeted muscle reinnervation is currently the most immediately applicable prosthetic control strategy and is particularly indicated in proximal upper extremity amputations. Investigation into various brain interfaces has allowed acquisition of neuroelectric signals directly or indirectly from the central nervous system for prosthetic control. Peripheral nerve interfaces permit signal transduction from both motor and sensory nerves with a higher degree of selectivity. This article reviews the current developments in each of these interface systems and discusses the potential of these approaches to facilitate motor control and sensory feedback in upper extremity neuroprosthetic devices.
Kukke, Sahana N.; Curatalo, Lindsey A.; de Campos, Ana Carolina; Hallett, Mark; Alter, Katharine E.; Damiano, Diane L.
2015-01-01
Functional reaching is impaired in dystonia. Here, we analyze upper extremity kinematics to quantify timing and coordination abnormalities during unimanual reach-to-grasp movements in individuals with childhood-onset unilateral wrist dystonia. Kinematics were measured during movements of both upper limbs in a patient group (n = 11, age = 17.5 ± 5 years), and a typically developing control group (n = 9, age = 16.6 ± 5 years). Hand aperture was computed to study the coordination of reach and grasp. Time-varying joint synergies within one upper limb were calculated using a novel technique based on principal component analysis to study intra-limb coordination. In the non-dominant arm, results indicate reduced coordination between reach and grasp in patients who could not lift the grasped object compared to those who could lift it. Lifters exhibit incoordination in distal upper extremity joints later in the movement and non-lifters lacked coordination throughout the movement and in the whole upper limb. The amount of atypical coordination correlates with dystonia severity in patients. Reduced coordination during movement may reflect deficits in the execution of simultaneous movements, motor planning, or muscle activation. Rehabilitation efforts can focus on particular time points when kinematic patterns deviate abnormally to improve functional reaching in individuals with childhood-onset dystonia. PMID:26208359
Kukke, Sahana N; Curatalo, Lindsey A; de Campos, Ana Carolina; Hallett, Mark; Alter, Katharine E; Damiano, Diane L
2016-05-01
Functional reaching is impaired in dystonia. Here, we analyze upper extremity kinematics to quantify timing and coordination abnormalities during unimanual reach-to-grasp movements in individuals with childhood-onset unilateral wrist dystonia. Kinematics were measured during movements of both upper limbs in a patient group ( n = 11, age = 17.5 ±5 years), and a typically developing control group ( n = 9, age = 16.6 ±5 years). Hand aperture was computed to study the coordination of reach and grasp. Time-varying joint synergies within one upper limb were calculated using a novel technique based on principal component analysis to study intra-limb coordination. In the non-dominant arm, results indicate reduced coordination between reach and grasp in patients who could not lift the grasped object compared to those who could lift it. Lifters exhibit incoordination in distal upper extremity joints later in the movement and non-lifters lacked coordination throughout the movement and in the whole upper limb. The amount of atypical coordination correlates with dystonia severity in patients. Reduced coordination during movement may reflect deficits in the execution of simultaneous movements, motor planning, or muscle activation. Rehabilitation efforts can focus on particular time points when kinematic patterns deviate abnormally to improve functional reaching in individuals with childhood-onset dystonia.
Mulcahey, M J; Merenda, Lisa; Tian, Feng; Kozin, Scott; James, Michelle; Gogola, Gloria; Ni, Pengsheng
2013-01-01
This study examined the psychometric properties of item pools relevant to upper-extremity function and activity performance and evaluated simulated 5-, 10-, and 15-item computer adaptive tests (CATs). In a multicenter, cross-sectional study of 200 children and youth with brachial plexus birth palsy (BPBP), parents responded to upper-extremity (n = 52) and activity (n = 34) items using a 5-point response scale. We used confirmatory and exploratory factor analysis, ordinal logistic regression, item maps, and standard errors to evaluate the psychometric properties of the item banks. Validity was evaluated using analysis of variance and Pearson correlation coefficients. Results show that the two item pools have acceptable model fit, scaled well for children and youth with BPBP, and had good validity, content range, and precision. Simulated CATs performed comparably to the full item banks, suggesting that a reduced number of items provide similar information to the entire set of items. Copyright © 2013 by the American Occupational Therapy Association, Inc.
Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang
2012-01-01
Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108
New options for vascularized bone reconstruction in the upper extremity.
Houdek, Matthew T; Wagner, Eric R; Wyles, Cody C; Nanos, George P; Moran, Steven L
2015-02-01
Originally described in the 1970s, vascularized bone grafting has become a critical component in the treatment of bony defects and non-unions. Although well established in the lower extremity, recent years have seen many novel techniques described to treat a variety of challenging upper extremity pathologies. Here the authors review the use of different techniques of vascularized bone grafts for the upper extremity bone pathologies. The vascularized fibula remains the gold standard for the treatment of large bone defects of the humerus and forearm, while also playing a role in carpal reconstruction; however, two other important options for larger defects include the vascularized scapula graft and the Capanna technique. Smaller upper extremity bone defects and non-unions can be treated with the medial femoral condyle (MFC) free flap or a vascularized rib transfer. In carpal non-unions, both pedicled distal radius flaps and free MFC flaps are viable options. Finally, in skeletally immature patients, vascularized fibular head epiphyseal transfer can provide growth potential in addition to skeletal reconstruction.
Observation of acoustic-gravity waves in the upper atmosphere during severe storm activity
NASA Technical Reports Server (NTRS)
Hung, R. J.
1975-01-01
A nine-element continuum wave spectrum, high-frequency, Doppler sounder array has been used to detect upper atmospheric wave-like disturbances during periods with severe weather activity, particularly severe thunderstorms and tornadoes. Five events of severe weather activity, including extreme tornado outbreak of April 3, 1974, were chosen for the present study. The analysis of Doppler records shows that both infrasonic waves and gravity waves were excited when severe storms appeared in the north Alabama area. Primarily, in the case of tornado activity, S-shaped Doppler fluctuations or Doppler fold-backs are observed, while quasi-sinusoidal fluctuations are more common in the case of thunderstorm activity. A criterion for the production of Doppler fold-backs is derived and compared with possible tornado conditions.
Wu, Feng L; Sun, Yu; Pan, Sheng F; Zhang, Li; Liu, Zhong J
2014-06-01
Postoperative paresis, so-called C5 palsy, of the upper extremities is a common complication of cervical surgery. There have been several reports about upper extremity palsy after cervical laminoplasty for patients with cervical myelopathy. However, the possible risk factors remain unclear. To investigate the factors associated with the development of upper extremity palsy after expansive open-door laminoplasty for cervical myelopathy. A retrospective review of medical records. A total of 102 patients (76 men and 26 women) were eligible for analysis in this study. The mean age of the patients was 58.7 years (range 35-81 years). Sixteen patients (13 men and 3 women, average age 62.8 years) with palsy were categorized as Group P, and eighty-six patients (63 men and 23 women, average age 57.8 years) without palsy as Group C. The demographic data collected from both groups were age, sex, duration of symptoms, disease, and type of surgical procedure. Cervical curvature index, width of the intervertebral foramen (WIF) at C5, anterior protrusion of the superior articular process (APSAP), number of compressed segments, high-signal intensity zone at the level corresponding to C3-C5 (HIZ:C3-C5), and posterior shift of the spinal cord (PSSC) were also evaluated. Upper extremity palsy was defined as weakness of Grade 4 or less of the key muscles in the upper extremity by manual muscle test without any deterioration of myelopathic symptoms after surgery. Comparisons were made with screen for the parameters with significant differences, and then we further analyzed these parameters by logistic regression analysis (the forward method) to verify the risk factors of the upper extremity palsy. Significant differences in diagnosis, the type of procedure, WIF, APSAP, and HIZ:C3-C5 were observed between the two groups. No statistical difference in PSSC between the groups was noted (2.06 vs. 2.53 mm, p=.247). In logistic regression analysis, ossification of the posterior longitudinal ligament (OPLL), cervical open-door laminoplasty together with posterior instrumented fusion (CLP+PIF), and WIF were found to be significant risk factors for postoperative upper extremity palsy. Patients with preoperative foraminal stenosis, OPLL, and additional iatrogenic foraminal stenosis because of CLP+PIF were more likely to develop postoperative upper extremity palsy. Attention should be given to the WIF determined on preoperative computed tomography of the C5 root. To prevent iatrogenic foraminal stenosis, appropriate distraction between spine segments should be provided during placement of the rod. Copyright © 2014 Elsevier Inc. All rights reserved.
d'Errico, Angelo; Katz, Jeffrey N.; Gore, Rebecca; Punnett, Laura
2009-01-01
Objective A longitudinal cohort of automobile manufacturing workers (n = 1214) was examined for: 1) prevalence and persistence of specific upper extremity musculoskeletal disorders (UEMSDs) such as lateral epicondylitis and de Quervain's disease, and non-specific disorders (NSDs) defined in symptomatic individuals without any specific disorder, and 2) disorder prognoses based on symptom characteristics and other factors. Methods Eight specific disorders were identified through case definitions based on upper extremity physical examinations and symptom surveys administered on three occasions over six years. Results At baseline, 41% of the cohort reported upper extremity symptoms; 18% (n = 214) of these had NSDs. In each survey, tendon-related conditions accounted for over half of the specific morbidity. Twenty-five percent had UEMSDs in multiple anatomical sites, and most with hand/wrist disorders had two or more hand/wrist UEMSDs. Persistence for all specific disorders decreased with length of follow-up. Specific UEMSDs were characterized by greater pain severity and functional impairment, and more lost work days than NSDs. Conclusions Upper extremity symptoms and diagnoses vary over time. NSDs may be the early stages of conditions that will eventually become more specific. NSDs and overlapping specific UEMSDs should be taken into account in UEMSD classification. PMID:19016265
Villeneuve, Myriam; Penhune, Virginia; Lamontagne, Anouk
2014-01-01
Objective: Music-supported therapy was shown to induce improvements in motor skills in stroke survivors. Whether all stroke individuals respond similarly to the intervention and whether gains can be maintained over time remain unknown. We estimated the immediate and retention effects of a piano training program on upper extremity function in persons with chronic stroke. Methods: Thirteen stroke participants engaged in a 3-week piano training comprising supervised sessions (9 × 60 min) and home practice. Fine and gross manual dexterity, movement coordination, and functional use of the upper extremity were assessed at baseline, pre-intervention, post-intervention, and at a 3-week follow-up. Results: Significant improvements were observed for all outcomes at post-intervention and follow-up compared to pre-intervention scores. Larger magnitudes of change in manual dexterity and functional use of the upper extremity were associated with higher initial levels of motor recovery. Conclusion: Piano training can result in sustainable improvements in upper extremity function in chronic stroke survivors. Individuals with a higher initial level of motor recovery at baseline appear to benefit the most from this intervention. PMID:25202258
Peeters, Laura H C; de Groot, Imelda J M; Geurts, Alexander C H
2018-05-01
Trunk control is essential during seated activities. The trunk interacts with the upper extremities (UE) and head by being part of a kinematic chain and by providing a stable basis. When trunk control becomes impaired, it may have consequences for the execution of UE tasks. To review trunk involvement in body movement and stability when performing seated activities and its relation with UE and head movements in neurological patients with a flaccid trunk, with a focus on childhood and development with age. A search using PubMed was conducted and 32 out of 188 potentially eligible articles were included. Patients with a flaccid trunk (e.g. with spinal cord injury or cerebral palsy) tend to involve the trunk earlier while reaching than healthy persons. Different balance strategies are observed in different types of patients, like using the contralateral arm as counterweight, eliminating degrees of freedom, or reducing movement speed. The key role of the trunk in performing activities should be kept in mind when developing interventions to improve seated task performance in neurological patients with a flaccid trunk. Copyright © 2018 Elsevier B.V. All rights reserved.
Bilateral macrodystrophia lipomatosa of the upper extremities with syndactyly and multiple lipomas.
van der Meer, Saskia; Nicolai, Jean-Philippe A; Schut, Simone M; Meek, Marcel F
2011-12-01
Macrodystrophia lipomatosa is a rare disease that causes congenital local gigantism of part of an extremity, which is characterised by an increase in all mesenchymal elements, particularly fibroadipose tissue. This is the first report to our knowledge of a case of histologically confirmed bilateral macrodystrophia lipomatosa of the upper extremities with syndactyly and multiple lipomas.
Goldfarb, Charles A; Shaw, Neil; Steffen, Jennifer A; Wall, Lindley B
2017-03-01
There have been few publications regarding the prevalence of congenital upper extremity anomalies and no recent reports from the United States. The purpose of this investigation was to examine the prevalence of congenital upper extremity anomalies in the total birth population of New York State over a 19-year period utilizing the New York Congenital Malformations Registry (NYCMR) database. The NYCMR includes children with at least 1 birth anomaly diagnosed by 2 years of age and listed by diagnosis code. We scrutinized these codes for specific upper extremity anomalies, including polydactyly, syndactyly, reduction defects, clubhand malformations, and syndromes with upper limb anomalies. We included children born between 1992 and 2010. There were a total of 4,883,072 live births in New York State during the study period. The overall prevalence of congenital upper extremity anomalies was 27.2 cases per 10,000 live births. Polydactyly was most common with 12,418 cases and a prevalence rate of 23.4 per 10,000 live births. The next most common anomalies included syndactyly with 627 cases affecting the hands (1498 total) and reduction defects (1111 cases). Specific syndromes were quite rare and were noted in a total of 215 live births. The prevalence of anomalies was higher in New York City compared with New York State populations at 33.0 and 21.9 per 10,000 live births, respectively. The NYCMR data demonstrate that congenital upper extremity anomalies are more common than previously reported. This is in large part due to the high prevalence of polydactyly. Although registries are imperfect, such data are helpful in monitoring prevalence rates over time, identifying potential causes or associations, and guiding health care planning and future research. Level I-diagnostic.
Qiu, Qinyin; Adamovich, Sergei; Saleh, Soha; Lafond, Ian; Merians, Alma S.; Fluet, Gerard G.
2015-01-01
Nine children with cerebral palsy and nine adults with stroke were trained using 5 different upper extremity simulations using the NJIT-RAVR system for approximately nine to twelve hours over a three week period. Both groups made improvements in clinical measurements of upper extremity function and reaching kinematics. Patterns and magnitudes of improvement differ between the two groups. Responses to training required adjustment of the robotic system to accommodate the rehabilitation needs of children with cerebral palsy. PMID:22275632
Apostoli, P; Sala, Emma
2009-01-01
in some sequences of the film "Modern Times" Chaplin is clearly involved in activities at high risk for work-related musculo-skeletal disorders of the upper extremities (UEWMSDs), but evidence and perception of any complaint are not evident. To evaluate the extent of the biomechanical risk using current risk assessment methods and discuss the possible reasons for lack of complaints. we made an analysis using six of the current methods for ergonomic risk assessment (State of Washington, check list OCRA, HAL by ACGIH, RULA Strain Index, OREGE). All the methods applied demonstrated high-to-very high levels of biomechanical risk for the upper extremities, with evident psychic effects but without apparent musculo-skeletal disorders. The discrepancy between evident psychological disorders ad apparent absence of UEWMSDs are discussed as being due to either: an artistic choice by Charlie Chaplin who focused on the aspects thought to be more immediately and easily comic; the short duration of the physical load exertion; or because of a different perception of muscular work and fatigue that was also typical until the 1970's and 1980's, which also confirmed the principles and practices of our preventive and medical disciplines at that time.
Southerst, Danielle; Yu, Hainan; Randhawa, Kristi; Côté, Pierre; D'Angelo, Kevin; Shearer, Heather M; Wong, Jessica J; Sutton, Deborah; Varatharajan, Sharanya; Goldgrub, Rachel; Dion, Sarah; Cox, Jocelyn; Menta, Roger; Brown, Courtney K; Stern, Paula J; Stupar, Maja; Carroll, Linda J; Taylor-Vaisey, Anne
2015-01-01
Musculoskeletal disorders (MSDs) of the upper and lower extremities are common in the general population and place a significant burden on the health care system. Manual therapy is recommended by clinical practice guidelines for the management of these injuries; however, there is limited evidence to support its effectiveness. The purpose of our review was to investigate the effectiveness of manual therapy in adults or children with MSDs of the upper or lower extremity. Randomized controlled trials (RCTs), cohort studies, and case-control studies evaluating the effectiveness of manual therapy were eligible. We searched MEDLINE, EMBASE, PsycINFO, CINAHL, and the Cochrane Central Register of Controlled Trials from 1990 to 2015. Paired reviewers screened studies for relevance and critically appraised relevant studies using the Scottish Intercollegiate Guidelines Network criteria. Studies with low risk of bias were synthesized following best-evidence synthesis principles. Where available, we computed mean changes between groups, relative risks and 95 % CI. We screened 6047 articles. Seven RCTs were critically appraised and three had low risk of bias. For adults with nonspecific shoulder pain of variable duration, cervicothoracic spinal manipulation and mobilization in addition to usual care may improve self-perceived recovery compared to usual care alone. For adults with subacromial impingement syndrome of variable duration, neck mobilization in addition to a multimodal shoulder program of care provides no added benefit. Finally, for adults with grade I-II ankle sprains of variable duration, lower extremity mobilization in addition to home exercise and advice provides greater short-term improvements in activities and function over home exercise and advice alone. No studies were included that evaluated the effectiveness of manual therapy in children or for the management of other extremity injuries in adults. The current evidence on the effectiveness of manual therapy for MSDs of the upper and lower extremities is limited. The available evidence supports the use of manual therapy for non-specific shoulder pain and ankle sprains, but not for subacromial impingement syndrome in adults. Future research is needed to determine the effectiveness of manual therapy and guide clinical practice. CRD42014009899.
Peters, Denise M; Fridriksson, Julius; Stewart, Jill C; Richardson, Jessica D; Rorden, Chris; Bonilha, Leonardo; Middleton, Addie; Gleichgerrcht, Ezequiel; Fritz, Stacy L
2018-01-01
Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R 2 = 0.36-0.46) and gait speed (R 2 = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp 39:120-132, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A rare disease in an atypical location-Kimura's Disease of the upper extremity.
Lam, Alan Cheuk Si; Au Yeung, Rex Kwok Him; Lau, Vince Wing Hang
2015-12-01
Kimura's disease is a rare chronic inflammatory disorder predominantly affecting young Asian male patients, occurring mainly in the head and neck regions. Kimura's disease of the upper extremity is extremely rare, and previous case reports in the literature show similar imaging characteristics with consistent location at the medial epitrochlear region, predominantly with unilateral involvement. We present the first reported case of Kimura's disease affecting the anterolateral aspect of the upper arm, sparing the medial epitrochlear region, illustrating that with typical MR appearance and serology, the involvement of this rare disease in an atypical location still warrants consideration of this diagnosis. There was also bilateral asymmetrical involvement in our patient, suggesting the possibility of a propensity for Kimura's disease affecting the upper extremities to have bilateral involvement, which may necessitate imaging of the clinically asymptomatic contralateral limb in these patients for early lesion identification and treatment.
Severe upper extremity injuries in frontal automobile crashes: the effects of depowered airbags.
Jernigan, M Virginia; Rath, Amber L; Duma, Stefan M
2005-03-01
The purpose of this study was to determine the effects of depowered frontal airbags on the incidence of severe upper extremity injuries. The National Automotive Sampling System database files from 1993 to 2000 were examined in a study that included 2,413,347 occupants who were exposed to an airbag deployment in the United States. Occupants exposed to a depowered airbag deployment were significantly more likely to sustain a severe upper extremity injury (3.9%) than those occupants exposed to a full-powered airbag deployment (2.5%) (P=.01). Full-powered systems resulted in an injury distribution of 89.2% fractures and 7.9% dislocations compared with depowered systems with 55.3% fractures and 44.3% dislocations. Although depowered airbags were designed to reduce the risk of injuries, they appear to have increased the overall incidence of severe upper extremity injuries through a shift from long bone fractures to joint dislocations.
Forearm fracture bending risk functin for the 50th percentile male.
Santago, Anthony C; Cormier, Joseph M; Duma, Stefan M; Yoganandan, Narayan; Pintar, Frank A
2008-01-01
The increase in upper extremity injuries in automobile collisions, because of the widespread implantation of airbags, has lead to a better understanding of forearm injury criteria. Risk functions for upper extremity injury that can be used in instrumented upper extremities would be useful. This paper presents a risk function for forearm injury for the 50th percentile male based on bending fracture moment data gathered from previous studies. The data was scaled using two scaling factors, one for orientation and one for mass, and the Weibull survival analysis model was then used to develop the risk function. It was determined that a 25% risk of injury corresponds to an 82 Nm bending load, a 50% risk of injury corresponds to a 100 Nm bending load, and a 75% risk of injury corresponds to a 117 Nm bending load. It is believed the risk function can be used with an instrumented upper extremity during vehicle testing.
Humerus fracture bending risk function for the 50th percentile male.
Santago, Anthony C; Cormier, Joseph M; Duma, Stefan M
2008-01-01
The increase in upper extremity injuries in automobile collisions, because of the widespread implantation of airbags, has lead to an increased focus in humerus injury criteria. Risk functions for upper extremity injury that can be used in instrumented upper extremities would be useful. This paper presents a risk function for humerus injury for the 50th percentile male based on bending fracture moment data gathered from previous studies. The data was scaled using two scaling factors, one for mass and one for rate, and the Weibull survival analysis model was then used to develop the risk function. It was determined that a 25% risk of injury corresponds to a 214 Nm bending load, a 50% risk of injury corresponds to a 257 Nm bending load, and a 75% risk of injury corresponds to a 296 Nm bending load. It is believed the risk function can be used with an instrumented upper extremity during vehicle testing.
Boo, Jung-A; Moon, Sang-Hyun; Lee, Sun-Min; Choi, Jung-Hyun; Park, Si-Eun
2016-01-01
[Purpose] The purpose of this study was to determine the effect of whole-body vibration exercise in a sitting position prior to therapy in stroke patients. [Subjects and Methods] Fourteen chronic stroke patients were included in this study. Prior to occupational therapy, whole-body exercise was performed for 10 minutes, 5 times per week, for a total of 8 weeks. Muscle tone and upper extremity function were measured. The Modified Ashworth Scale (MAS) was used to measure muscle tone, and the Manual Function Test (MFT) and Fugl-Meyer Assessment scale (FugM) were used to measure upper extremity function. [Results] MAS score was significantly decreased, and MFT and FugM were significantly increased. [Conclusion] These results indicate that whole-body vibration exercise in a sitting position prior to therapy had a positive effect on muscle tone, and upper extremity function in stroke patients.
Montpetit, Kathleen; Haley, Stephen; Bilodeau, Nathalie; Ni, Pengsheng; Tian, Feng; Gorton, George; Mulcahey, M J
2011-02-01
This article reports on the content range and measurement precision of an upper extremity (UE) computer adaptive testing (CAT) platform of physical function in children with cerebral palsy. Upper extremity items representing skills of all abilities were administered to 305 parents. These responses were compared with two traditional standardized measures: Pediatric Outcomes Data Collection Instrument and Functional Independence Measure for Children. The UE CAT correlated strongly with the upper extremity component of these measures and had greater precision when describing individual functional ability. The UE item bank has wider range with items populating the lower end of the ability spectrum. This new UE item bank and CAT have the capability to quickly assess children of all ages and abilities with good precision and, most importantly, with items that are meaningful and appropriate for their age and level of physical function.
McLaughlin Gray, Julie; Frank, Gelya; Wolkoff, Monique
2015-01-01
OBJECTIVE. To identify the potential utility of musculoskeletal sonographic imaging in upper-extremity rehabilitation. METHOD. Two occupational therapists in an outpatient hand rehabilitation clinic were recruited by convenience, were trained in the use of sonography, and implemented sonographic imaging in their clinical practice. Qualitative data were obtained during and after the implementation period by means of questionnaires and interviews. Data collection, analysis, and interpretation were completed in an iterative process that culminated in a thematic analysis of the therapists’ perceptions. RESULTS. The data indicate four potential areas of utility for musculoskeletal sonography in upper-extremity rehabilitation: (1) mastering anatomy and pathology, (2) augmenting clinical reasoning, (3) supplementing intervention, and (4) building evidence. CONCLUSION. Numerous potential uses were identified that would benefit both therapist and client. Further exploration of complexities and efficacy for increasing patient outcomes is recommended to determine best practices for the use of musculoskeletal sonography in upper-extremity rehabilitation. PMID:26114469
Dropkin, Jonathan; Kim, Hyun; Punnett, Laura; Wegman, David H; Warren, Nicholas; Buchholz, Bryan
2015-01-01
Office computer workers are at increased risk for neck/upper extremity (UE) musculoskeletal pain. A seven-month office ergonomic intervention study evaluated the effect of two engineering controls plus training on neck/UE pain and mechanical exposures in 113 computer workers, including a 3-month follow-up period. Participants were randomised into an intervention group, who received a keyboard/mouse tray (KBT), touch pad (TP) for the non-dominant hand and keyboard shortcuts, and a control group who received keyboard shortcuts. Participants continued to have available a mouse at the dominant hand. Outcomes were pain severity, computer rapid upper limb assessment (RULA), and hand activity level. Prevalence ratios (PRs) evaluated intervention effects using dichotomised pain and exposure scores. In the intervention group, the dominnt proximal UE pain PR=0.9, 95% CI 0.7 to 1.2 and the dominant distal UE PR=0.8, 95% CI 0.5 to 1.3, postintervention. The non-dominant proximal UE pain PR=1.0, 95% CI 0.8 to 1.4, while the non-dominant distal UE PR=1.2, 95% CI 0.6 to 2.2, postintervention. Decreases in non-neutral postures were found in two RULA elements (non-dominant UE PR=0.9, 95% CI 0.8 to 0.9 and full non-dominant RULA PR=0.8, 95% CI 0.8 to 0.9) of the intervention group. Hand activity increased on the non-dominant side (PR=1.4, 95% CI 1.2 to 1.6) in this group. While the intervention reduced non-neutral postures in the non-dominant UE, it increased hand activity in the distal region of this extremity. To achieve lower hand activity, a KBT and TP used in the non-dominant hand may not be the best devices to use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
The Influence of Wheelchair Propulsion Hand Pattern on Upper Extremity Muscle Power and Stress
Slowik, Jonathan S.; Requejo, Philip S.; Mulroy, Sara J.; Neptune, Richard R.
2016-01-01
The hand pattern (i.e., full-cycle hand path) used during manual wheelchair propulsion is frequently classified as one of four distinct hand pattern types: arc, single loop, double loop and semicircular. Current clinical guidelines recommend the use of the semicircular pattern, which is based on advantageous levels of broad biomechanical metrics implicitly related to the demand placed on the upper extremity (e.g., lower cadence). However, an understanding of the influence of hand pattern on specific measures of upper extremity muscle demand (e.g., muscle power and stress) is needed to help make such recommendations, but these quantities are difficult and impractical to measure experimentally. The purpose of this study was to use musculoskeletal modeling and forward dynamics simulations to investigate the influence of the hand pattern used on specific measures of upper extremity muscle demand. The simulation results suggest that the double loop and semicircular patterns produce the most favorable levels of overall muscle stress and total muscle power. The double loop pattern had the lowest full-cycle and recovery-phase upper extremity demand but required high levels of muscle power during the relatively short contact phase. The semicircular pattern had the second-lowest full-cycle levels of overall muscle stress and total muscle power, and demand was more evenly distributed between the contact and recovery phases. These results suggest that in order to decrease upper extremity demand, manual wheelchair users should use either the double loop or semicircular pattern when propelling their wheelchairs at a self-selected speed on level ground. PMID:27062591
Luria, Shai; Rivkin, Gurion; Avitzour, Malka; Liebergall, Meir; Mintz, Yoav; Mosheiff, Ram
2013-03-01
Explosion injuries to the upper extremity have specific clinical characteristics that differ from injuries due to other mechanisms. To evaluate the upper extremity injury pattern of attacks on civilian targets, comparing bomb explosion injuries to gunshot injuries and their functional recovery using standard outcome measures. Of 157 patients admitted to the hospital between 2000 and 2004, 72 (46%) sustained explosion injuries and 85 (54%) gunshot injuries. The trauma registry files were reviewed and the patients completed the DASH Questionnaire (Disabilities of Arm, Shoulder and Hand) and SF-12 (Short Form-12) after a minimum period of 1 year. Of the 157 patients, 72 (46%) had blast injuries and 85 (54%) had shooting injuries. The blast casualties had higher Injury Severity Scores (47% vs. 22% with a score of > 16, P = 0.02) and higher percent of patients treated in intensive care units (47% vs. 28%, P = 0.02). Although the Abbreviated Injury Scale score of the upper extremity injury was similar in the two groups, the blast casualties were found to have more bilateral and complex soft tissue injuries and were treated surgically more often. No difference was found in the SF-12 or DASH scores between the groups at follow up. The casualties with upper extremity blast injuries were more severely injured and sustained more bilateral and complex soft tissue injuries to the upper extremity. However, the rating of the local injury to the isolated limb is similar, as was the subjective functional recovery.
NASA Technical Reports Server (NTRS)
Pandya, Abhilash; Maida, James; Hasson, Scott; Greenisen, Michael; Woolford, Barbara
1993-01-01
As manned exploration of space continues, analytical evaluation of human strength characteristics is critical. These extraterrestrial environments will spawn issues of human performance which will impact the designs of tools, work spaces, and space vehicles. Computer modeling is an effective method of correlating human biomechanical and anthropometric data with models of space structures and human work spaces. The aim of this study is to provide biomechanical data from isolated joints to be utilized in a computer modeling system for calculating torque resulting from any upper extremity motions: in this study, the ratchet wrench push-pull operation (a typical extravehicular activity task). Established here are mathematical relationships used to calculate maximum torque production of isolated upper extremity joints. These relationships are a function of joint angle and joint velocity.
Balliet, R; Levy, B; Blood, K M
1986-05-01
Electromyographic (EMG) sensory feedback therapy (SFT) was used in the neuromuscular retraining of the nonfunctional upper extremity in five chronic left cerebrovascular accident (CVA) patients with impaired expressive and auditory comprehension. Speech diagnoses included global, moderate-to-severe Broca, and Wernicke aphasias. These patients had experienced increased despondency associated with previous therapy failures and often had indicated that they wished to have their involved extremity amputated, so that it would no longer be in the way. In this study, specific behavioral training strategies to increase patient involvement were used, including: general relaxation, modified SFT instruction, and home exercises, which were supported by family and/or friends. After an average of 50 therapy sessions, all patients were successfully retrained to use their right upper extremity at the gross-assist level. This resulted in feelings of increased self-esteem to the extent that amputation was no longer requested. It is concluded that EMG SFT can be beneficial in the neuromuscular reeducation of paretic upper extremity muscles of CVA patients with expressive aphasia and (impaired) auditory comprehension.
Sasaki, Kana; Matsunaga, Toshiki; Tomite, Takenori; Yoshikawa, Takayuki; Shimada, Yoichi
2012-04-01
Hemiplegia is a common sequel of stroke and assisted living care is needed in many cases. The purpose of this study was to evaluate the effect of using surface electrode stimulation device in rehabilitation, in terms of functional improvement in upper limb and the changes in brain activation related to central nervous system reconstruction. Five patients with chronic hemiplegia received electrical stimulation therapy using the orthosis-type surface electrode stimulation device for 12 weeks. Training time was 30 min/day for the first weeks, and increased 30 min/day in every 4 weeks. Upper limb outcome measures included Brunnstrom stage, range of motion, Fugl-Meyer assessment and manual function test. Brain activation was measured using functional MRI. After therapy with therapeutic electrical stimulation (TES) for 12 weeks upper limb function improved in all cases. The results of brain activation showed two patterns. In the first, the stimulation produced an activity in the bilateral somatosensory cortices (SMC), which was seen to continue over time. The second, activation was bilateral and extensive before stimulation, but localized to the SMC after intervention. Treatment with TES using an orthosis-type electrode stimulation device improves upper limb function in chronic hemiplegia patients. The present findings suggest that there are not only efferent but also afferent effects that may promote central nervous system remodeling.
Noyes, Adam M; Dickey, John
2017-05-01
Upper extremity deep venous thrombosis (UEDVT) involves thrombosis of the deep veins of the arm as they enter the thorax. They are increasing in frequency, largely due to the rising use of central venous catheters and implantable cardiac devices, and represent more than 10% of all DVT cases, Upper extremity deep venous thrombosis has been historically misunderstood when compared to lower extremity deep vein thrombosis (LEDVT). Their associated disease states may carry devastating complications, with mortality rates often higher than that of LEDVT. Thus, education on recognition, classification and management is critical to avoid long-term sequelae and mortality from UEDVT. [Full article available at http://rimed.org/rimedicaljournal-2017-05.asp].
Gold, Judith E; d'Errico, Angelo; Katz, Jeffrey N; Gore, Rebecca; Punnett, Laura
2009-02-01
A longitudinal cohort of automobile manufacturing workers (n = 1,214) was examined for: (1) prevalence and persistence of specific upper extremity musculoskeletal disorders (UEMSDs) such as lateral epicondylitis and de Quervain's disease, and non-specific disorders (NSDs) defined in symptomatic individuals without any specific disorder, and (2) disorder prognoses based on symptom characteristics and other factors. Eight specific disorders were identified through case definitions based on upper extremity physical examinations and symptom surveys administered on three occasions over 6 years. At baseline, 41% of the cohort reported upper extremity symptoms; 18% (n = 214) of these had NSDs. In each survey, tendon-related conditions accounted for over half of the specific morbidity. Twenty-five percent had UEMSDs in multiple anatomical sites, and most with hand/wrist disorders had two or more hand/wrist UEMSDs. Persistence for all specific disorders decreased with length of follow-up. Specific UEMSDs were characterized by greater pain severity and functional impairment, and more lost work days than NSDs. Upper extremity symptoms and diagnoses vary over time. NSDs may be the early stages of conditions that will eventually become more specific. NSDs and overlapping specific UEMSDs should be taken into account in UEMSD classification. Am. J. Ind. Med. 52:124-132, 2009. (c) 2008 Wiley-Liss, Inc.
Czihal, M; Paul, S; Rademacher, A; Bernau, C; Hoffmann, U
2015-03-01
To explore the association of the postthrombotic syndrome with venous hemodynamics and morphological abnormalities after upper extremity deep venous thrombosis. Thirty-seven patients with a history of upper extremity deep venous thrombosis treated with anticoagulation alone underwent a single study visit (mean time after diagnosis: 44.4 ± 28.1 months). Presence and severity postthrombotic syndrome were classified according to the modified Villalta score. Venous volume and venous emptying were determined by strain-gauge plethysmography. The arm veins were assessed for postthrombotic abnormalities by ultrasonography. The relationship between postthrombotic syndrome and hemodynamic and morphological sequelae was evaluated using univariate significance tests and Spearman's correlation analysis. Fifteen of 37 patients (40.5%) developed postthrombotic syndrome. Venous volume and venous emptying of the arm affected by upper extremity deep venous thrombosis did not correlate with the Villalta score (rho = 0.17 and 0.19; p = 0.31 and 0.25, respectively). Residual morphological abnormalities, as assessed by ultrasonography, did not differ significantly between patients with and without postthrombotic syndrome (77.3% vs. 86.7%, p = 0.68). Postthrombotic syndrome after upper extremity deep venous thrombosis is not associated with venous hemodynamics or residual morphological abnormalities. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Sallés, Laia; Martín-Casas, Patricia; Gironès, Xavier; Durà, María José; Lafuente, José Vicente; Perfetti, Carlo
2017-04-01
[Purpose] This study aims to describe a protocol based on neurocognitive therapeutic exercises and determine its feasibility and usefulness for upper extremity functionality when compared with a conventional protocol. [Subjects and Methods] Eight subacute stroke patients were randomly assigned to a conventional (control group) or neurocognitive (experimental group) treatment protocol. Both lasted 30 minutes, 3 times a week for 10 weeks and assessments were blinded. Outcome measures included: Motor Evaluation Scale for Upper Extremity in Stroke Patients, Motricity Index, Revised Nottingham Sensory Assessment and Kinesthetic and Visual Imagery Questionnaire. Descriptive measures and nonparametric statistical tests were used for analysis. [Results] The results indicate a more favorable clinical progression in the neurocognitive group regarding upper extremity functional capacity with achievement of the minimal detectable change. The functionality results are related with improvements on muscle strength and sensory discrimination (tactile and kinesthetic). [Conclusion] Despite not showing significant group differences between pre and post-treatment, the neurocognitive approach could be a safe and useful strategy for recovering upper extremity movement following stroke, especially regarding affected hands, with better and longer lasting results. Although this work shows this protocol's feasibility with the panel of scales proposed, larger studies are required to demonstrate its effectiveness.
Sallés, Laia; Martín-Casas, Patricia; Gironès, Xavier; Durà, María José; Lafuente, José Vicente; Perfetti, Carlo
2017-01-01
[Purpose] This study aims to describe a protocol based on neurocognitive therapeutic exercises and determine its feasibility and usefulness for upper extremity functionality when compared with a conventional protocol. [Subjects and Methods] Eight subacute stroke patients were randomly assigned to a conventional (control group) or neurocognitive (experimental group) treatment protocol. Both lasted 30 minutes, 3 times a week for 10 weeks and assessments were blinded. Outcome measures included: Motor Evaluation Scale for Upper Extremity in Stroke Patients, Motricity Index, Revised Nottingham Sensory Assessment and Kinesthetic and Visual Imagery Questionnaire. Descriptive measures and nonparametric statistical tests were used for analysis. [Results] The results indicate a more favorable clinical progression in the neurocognitive group regarding upper extremity functional capacity with achievement of the minimal detectable change. The functionality results are related with improvements on muscle strength and sensory discrimination (tactile and kinesthetic). [Conclusion] Despite not showing significant group differences between pre and post-treatment, the neurocognitive approach could be a safe and useful strategy for recovering upper extremity movement following stroke, especially regarding affected hands, with better and longer lasting results. Although this work shows this protocol’s feasibility with the panel of scales proposed, larger studies are required to demonstrate its effectiveness. PMID:28533607
Rankin, Jeffery W; Kwarciak, Andrew M; Richter, W Mark; Neptune, Richard R
2012-11-01
The majority of manual wheelchair users will experience upper extremity injuries or pain, in part due to the high force requirements, repetitive motion and extreme joint postures associated with wheelchair propulsion. Recent studies have identified cadence, contact angle and peak force as important factors for reducing upper extremity demand during propulsion. However, studies often make comparisons between populations (e.g., able-bodied vs. paraplegic) or do not investigate specific measures of upper extremity demand. The purpose of this study was to use a musculoskeletal model and forward dynamics simulations of wheelchair propulsion to investigate how altering cadence, peak force and contact angle influence individual muscle demand. Forward dynamics simulations of wheelchair propulsion were generated to emulate group-averaged experimental data during four conditions: 1) self-selected propulsion technique, and while 2) minimizing cadence, 3) maximizing contact angle, and 4) minimizing peak force using biofeedback. Simulations were used to determine individual muscle mechanical power and stress as measures of muscle demand. Minimizing peak force and cadence had the lowest muscle power requirements. However, minimizing peak force increased cadence and recovery power, while minimizing cadence increased average muscle stress. Maximizing contact angle increased muscle stress and had the highest muscle power requirements. Minimizing cadence appears to have the most potential for reducing muscle demand and fatigue, which could decrease upper extremity injuries and pain. However, altering any of these variables to extreme values appears to be less effective; instead small to moderate changes may better reduce overall muscle demand. Copyright © 2012 Elsevier Ltd. All rights reserved.
Stein, Joel; Narendran, Kailas; McBean, John; Krebs, Kathryn; Hughes, Richard
2007-04-01
Robot-assisted exercise shows promise as a means of providing exercise therapy for weakness that results from stroke or other neurological conditions. Exoskeletal or "wearable" robots can, in principle, provide therapeutic exercise and/or function as powered orthoses to help compensate for chronic weakness. We describe a novel electromyography (EMG)-controlled exoskeletal robotic brace for the elbow (the active joint brace) and the results of a pilot study conducted using this brace for exercise training in individuals with chronic hemiparesis after stroke. Eight stroke survivors with severe chronic hemiparesis were enrolled in this pilot study. One subject withdrew from the study because of scheduling conflicts. A second subject was unable to participate in the training protocol because of insufficient surface EMG activity to control the active joint brace. The six remaining subjects each underwent 18 hrs of exercise training using the device for a period of 6 wks. Outcome measures included the upper-extremity component of the Fugl-Meyer scale and the modified Ashworth scale of muscle hypertonicity. Analysis revealed that the mean upper-extremity component of the Fugl-Meyer scale increased from 15.5 (SD 3.88) to 19 (SD 3.95) (P = 0.04) at the conclusion of training for the six subjects who completed training. Combined (summated) modified Ashworth scale for the elbow flexors and extensors improved from 4.67 (+/-1.2 SD) to 2.33 (+/-0.653 SD) (P = 0.009) and improved for the entire upper limb as well. All subjects tolerated the device, and no complications occurred. EMG-controlled powered elbow orthoses can be successfully controlled by severely impaired hemiparetic stroke survivors. This technique shows promise as a new modality for assisted exercise training after stroke.
Şimşek, Tülay Tarsuslu; Çekok, Kübra
2016-12-01
The aim of this study was to investigate the effects of Nintendo Wii(TM)-based balance and upper extremity training on activities of daily living and quality of life in patients with subacute stroke. 42 adults with stroke (mean age (SD) = 58.04 (16.56) years and mean time since stroke (SD) = (55.2 ± 22.02 days (∼8 weeks)) were included in the study. Participants were enrolled from the rehabilitation department of a medical center (a single inpatient rehabilitation facility). Participants were randomly assigned to Nintendo Wii group (n = 20) or Bobath neurodevelopmental treatment (NDT) (n = 22). The treatments were applied for 10 weeks (45-60 minutes/day, 3 days/week) for both of two groups. Nintendo Wii group used five games selected from the Wii sports and Wii Fit packages for upper limb and balance training, respectively. The patients in Bobath NDT group were applied a therapy program included upper extremity activites, strength, balance gait and functional training. The functional independence in daily life activities and health-related quality of life was assessed with Functional Independence Measure (FIM) and Nottingham Health Profile (NHP), respectively. Participant's treatment satisfaction was recorded by using Visual Analogue Scale. A second evaluation (FIM and NHP) occurred after 10 weeks at the end of rehabilitative treatment (post-training). Treatment satisfaction was measured after 10 sessions. There were significant difference between FIM and NHP values in NDT and Nintendo Wii group (p < 0.05). However, a significant difference was not found between the groups with regard to FIM and NHP (p > 0.05). The patients in Nintendo Wii group were detected to be better satisfied from the therapy (p < 0.05). A significant difference was found between subparameters and total FIM score, all subparameters and total NHP score in both groups (p < 0.05). These findings suggested that the Nintendo Wii training was as effective as Bobath NDT on daily living functions and quality of life in subacute stroke patients.
Lee, So Young; Jeon, Young Tae; Kim, Bo Ryun; Han, Eun Young
2017-01-01
Abstract Rationale: Spasticity is a major complication after stroke, and botulinumtoxin A (BoNT-A) injection is commonly used to manage focal spasticity. However, it is uncertain whether BoNT-A can improve voluntary motor control or activities of daily living function of paretic upper limbs. This study investigated whether BoNT-A injection combined with robot-assisted upper limb therapy improves voluntary motor control or functions of upper limbs after stroke. Patient concerns: Two subacute stroke patients were transferred to the Department of Rehabilitation. Diagnoses: Patients demonstrated spasticity in the upper extremity on the affected side. Interventions: BoNT-A was injected into the paretic muscles of the shoulder, arm, and forearm of the 2 patients at the subacute stage. Conventional rehabilitation therapy and robot-assisted upper limb training were performed during the rehabilitation period. Outcomes: Manual dexterity, grip strength, muscle tone, and activities of daily living function were improved after multidisciplinary rehabilitation treatment. Lessons: BoNT-A injection in combination with multidisciplinary rehabilitation treatment, including robot-assisted arm training, should be recommended for subacute spastic stroke patients to enhance appropriate motor recovery. PMID:29390585
Oh, Hyun Seung; Kim, Eun Joo; Kim, Doo Young; Kim, Soo Jeong
2016-06-01
To investigate the effects of adjuvant mental practice (MP) on affected upper limb function following a stroke using three-dimensional (3D) motion analysis. In this AB/BA crossover study, we studied 10 hemiplegic patients who had a stroke within the past 6 months. The patients were randomly allocated to two groups: one group received MP combined with conventional rehabilitation therapy for the first 3 weeks followed by conventional rehabilitation therapy alone for the final 3 weeks; the other group received the same therapy but in reverse order. The MP tasks included drinking from a cup and opening a door. MP was individually administered for 20 minutes, 3 days a week for 3 weeks. To assess the tasks, we used 3D motion analysis and three additional tests: the Fugl-Meyer Assessment of the upper extremity (FMA-UE) and the motor activity logs for amount of use (MAL-AOU) and quality of movement (MAL-QOM). Assessments were performed immediately before treatment (T0), 3 weeks into treatment (T1), and 6 weeks into treatment (T2). Based on the results of the 3D motion analysis and the FMA-UE index (p=0.106), the MAL-AOU scale (p=0.092), and MAL-QOM scale (p=0.273), adjuvant MP did not result in significant improvements. Adjuvant MP had no significant effect on upper limb function following a stroke, according to 3D motion analysis and three clinical assessment tools (the FMA-UE index and the two MAL scales). The importance of this study is its use of objective 3D motion analysis to evaluate the effects of MP. Further studies will be needed to validate these findings.
Levac, Danielle; Nawrotek, Joanna; Deschenes, Emilie; Giguere, Tia; Serafin, Julie; Bilodeau, Martin; Sveistrup, Heidi
2016-06-01
Virtual reality active video games are increasingly popular physical therapy interventions for children with cerebral palsy. However, physical therapists require educational resources to support decision making about game selection to match individual patient goals. Quantifying the movements elicited during virtual reality active video game play can inform individualized game selection in pediatric rehabilitation. The objectives of this study were to develop and evaluate the feasibility and reliability of the Movement Rating Instrument for Virtual Reality Game Play (MRI-VRGP). Item generation occurred through an iterative process of literature review and sample videotape viewing. The MRI-VRGP includes 25 items quantifying upper extremity, lower extremity, and total body movements. A total of 176 videotaped 90-second game play sessions involving 7 typically developing children and 4 children with cerebral palsy were rated by 3 raters trained in MRI-VRGP use. Children played 8 games on 2 virtual reality and active video game systems. Intraclass correlation coefficients (ICCs) determined intra-rater and interrater reliability. Excellent intrarater reliability was evidenced by ICCs of >0.75 for 17 of the 25 items across the 3 raters. Interrater reliability estimates were less precise. Excellent interrater reliability was achieved for far reach upper extremity movements (ICC=0.92 [for right and ICC=0.90 for left) and for squat (ICC=0.80) and jump items (ICC=0.99), with 9 items achieving ICCs of >0.70, 12 items achieving ICCs of between 0.40 and 0.70, and 4 items achieving poor reliability (close-reach upper extremity-ICC=0.14 for right and ICC=0.07 for left) and single-leg stance (ICC=0.55 for right and ICC=0.27 for left). Poor video quality, differing item interpretations between raters, and difficulty quantifying the high-speed movements involved in game play affected reliability. With item definition clarification and further psychometric property evaluation, the MRI-VRGP could inform the content of educational resources for therapists by ranking games according to frequency and type of elicited body movements.
Nawrotek, Joanna; Deschenes, Emilie; Giguere, Tia; Serafin, Julie; Bilodeau, Martin; Sveistrup, Heidi
2016-01-01
Background Virtual reality active video games are increasingly popular physical therapy interventions for children with cerebral palsy. However, physical therapists require educational resources to support decision making about game selection to match individual patient goals. Quantifying the movements elicited during virtual reality active video game play can inform individualized game selection in pediatric rehabilitation. Objective The objectives of this study were to develop and evaluate the feasibility and reliability of the Movement Rating Instrument for Virtual Reality Game Play (MRI-VRGP). Methods Item generation occurred through an iterative process of literature review and sample videotape viewing. The MRI-VRGP includes 25 items quantifying upper extremity, lower extremity, and total body movements. A total of 176 videotaped 90-second game play sessions involving 7 typically developing children and 4 children with cerebral palsy were rated by 3 raters trained in MRI-VRGP use. Children played 8 games on 2 virtual reality and active video game systems. Intraclass correlation coefficients (ICCs) determined intra-rater and interrater reliability. Results Excellent intrarater reliability was evidenced by ICCs of >0.75 for 17 of the 25 items across the 3 raters. Interrater reliability estimates were less precise. Excellent interrater reliability was achieved for far reach upper extremity movements (ICC=0.92 [for right and ICC=0.90 for left) and for squat (ICC=0.80) and jump items (ICC=0.99), with 9 items achieving ICCs of >0.70, 12 items achieving ICCs of between 0.40 and 0.70, and 4 items achieving poor reliability (close-reach upper extremity-ICC=0.14 for right and ICC=0.07 for left) and single-leg stance (ICC=0.55 for right and ICC=0.27 for left). Conclusions Poor video quality, differing item interpretations between raters, and difficulty quantifying the high-speed movements involved in game play affected reliability. With item definition clarification and further psychometric property evaluation, the MRI-VRGP could inform the content of educational resources for therapists by ranking games according to frequency and type of elicited body movements. PMID:27251029
Huang, C-C; Yang, Y-H; Chen, C-H; Chen, T-W; Lee, C-L; Wu, C-L; Chuang, S-H; Huang, M-H
2008-03-01
The aim of this study was to compare the flexibility of the upper extremities in collegiate students involved in Aikido (a kind of soft martial art attracting youth) training with those involved in other sports. Fifty freshmen with a similar frequency of exercise were divided into the Aikido group (n = 18), the upper-body sports group (n = 17), and the lower-body sports group (n = 15) according to the sports that they participated in. Eight classes of range of motion in upper extremities were taken for all subjects by the same clinicians. The Aikido group had significantly better flexibility than the upper-body sports group except for range of motion in shoulder flexion (p = 0.22), shoulder lateral rotation (p > 0.99), and wrist extension (p > 0.99). The Aikido group also had significantly better flexibility than the lower-body sports group (p < 0.01) and the sedentary group (p < 0.01) in all classes of range of motion. The upper-body sports group was significantly more flexible in five classes of range of motion and significantly tighter in range of motion of wrist flexion (p < 0.01) compared to the lower-body sports group. It was concluded that the youths participating in soft martial arts had good upper extremities flexibility that might not result from regular exercise alone.
2013-01-01
The purpose of this study was to characterize responses in oxygen uptake ( V·O2), heart rate (HR), perceived exertion (OMNI scale) and integrated electromyogram (iEMG) readings during incremental Nordic walking (NW) and level walking (LW) on a treadmill. Ten healthy adults (four men, six women), who regularly engaged in physical activity in their daily lives, were enrolled in the study. All subjects were familiar with NW. Each subject began walking at 60 m/min for 3 minutes, with incremental increases of 10 m/min every 2 minutes up to 120 m/min V·O2 , V·E and HR were measured every 30 seconds, and the OMNI scale was used during the final 15 seconds of each exercise. EMG readings were recorded from the triceps brachii, vastus lateralis, biceps femoris, gastrocnemius, and tibialis anterior muscles. V·O2 was significantly higher during NW than during LW, with the exception of the speed of 70 m/min (P < 0.01). V·E and HR were higher during NW than LW at all walking speeds (P < 0.05 to 0.001). OMNI scale of the upper extremities was significantly higher during NW than during LW at all speeds (P < 0.05). Furthermore, the iEMG reading for the VL was lower during NW than during LW at all walking speeds, while the iEMG reading for the BF and GA muscles were significantly lower during NW than LW at some speeds. These data suggest that the use of poles in NW attenuates muscle activity in the lower extremities during the stance and push-off phases, and decreases that of the lower extremities and increase energy expenditure of the upper body and respiratory system at certain walking speeds. PMID:23406834
Macke, C; Winkelmann, M; Mommsen, P; Probst, C; Zelle, B; Krettek, C; Zeckey, C
2017-02-01
To analyse the influence of upper extremity trauma on the long-term outcome of polytraumatised patients. A total of 629 multiply injured patients were included in a follow-up study at least ten years after injury (mean age 26.5 years, standard deviation 12.4). The extent of the patients' injury was classified using the Injury Severity Score. Outcome was measured using the Hannover Score for Polytrauma Outcome (HASPOC), Short Form (SF)-12, rehabilitation duration, and employment status. Outcomes for patients with and without a fracture of the upper extremity were compared and analysed with regard to specific fracture regions and any additional brachial plexus lesion. In all, 307 multiply-injured patients with and 322 without upper extremity injuries were included in the study. The groups with and without upper limb injuries were similar with respect to demographic data and injury pattern, except for midface trauma. There were no significant differences in the long-term outcome. In patients with brachial plexus lesions there were significantly more who were unemployed, required greater retraining and a worse HASPOC. Injuries to the upper extremities seem to have limited effect on long-term outcome in patients with polytrauma, as long as no injury was caused to the brachial plexus. Cite this article: Bone Joint J 2017;99-B:255-60. ©2017 The British Editorial Society of Bone & Joint Surgery.
Willcocks, RJ; Triplett, WT; Forbes, SC; Arora, H; Senesac, CR; Lott, DJ; Nicholson, TR; Rooney, WD; Walter, GA; Vandenborne, K
2016-01-01
There is a pressing need for biomarkers and outcomes that can be used across disease stages in Duchenne muscular dystrophy (DMD), to facilitate the inclusion of a wider range of participants in clinical trials and to improve our understanding of the natural history of DMD. Quantitative magnetic resonance imaging (qMRI) and spectroscopy (MRS) biomarkers show considerable promise in both the legs and forearms of individuals with DMD, but have not yet been examined in functionally important proximal upper extremity muscles such as the biceps brachii and deltoid. The primary objective of this study was to examine the feasibility of implementing qMRI and MRS biomarkers in the proximal upper extremity musculature, and the secondary objective was to examine the relationship between MR measures of arm muscle pathology and upper extremity functional endpoints. Biomarkers included MRS and MRI measures of fat fraction and transverse relaxation time (T2). The MR exam was well tolerated in both ambulatory and nonambulatory boys. qMR biomarkers differentiated affected and unaffected participants and correlated strongly with upper extremity function (r=0.91 for biceps brachii T2 versus Performance of Upper Limb score). These qMR outcome measures could be highly beneficial to the neuromuscular disease community, allowing measurement of the quality of functionally important muscles across disease stages to understand the natural history of DMD and particularly to broaden the opportunity for clinical trial participation. PMID:27778157
Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy.
Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M; Fowler, Eileen; Greenberg, Marcia B; Malkus, Elizabeth C; Rebibo, Odelia; Siener, Catherine S; Caraco, Yoseph; Kolodny, Edwin H; Lau, Heather A; Pestronk, Alan; Shieh, Perry; Skrinar, Alison M; Mayhew, Jill E
2017-09-01
To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function.
Solar and terrestrial physics. [effects of solar activities on earth environment
NASA Technical Reports Server (NTRS)
1975-01-01
The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.
Kaban, Nicole L; Avitabile, Nicholas C; Siadecki, Sebastian D; Saul, Turandot
2016-06-01
The peripheral veins in the arms and forearms of patients with a history of intravenous (IV) drug use may be sclerosed, calcified, or collapsed due to damage from previous injections. These patients may consequently require alternative, more invasive types of vascular access including central venous or intraosseous catheters. We investigated the relationship between hand dominance and the presence of patent upper extremity (UE) veins specifically in patients with a history of IV drug-use. We predicted that injection into the non-dominant UE would occur with a higher frequency than the dominant UE, leading to fewer damaged veins in the dominant UE. If hand dominance affects which upper extremity has more patent veins, providers could focus their first vascular access attempt on the dominant upper extremity. Adult patients were approached for enrollment if they provided a history of IV drug use into one of their upper extremities. Each upper extremity was examined with a high frequency linear transducer in 3 areas: the antecubital crease, forearm and the proximal arm. The number of fully compressible veins ≥1.8 mm in diameter was recorded for each location. The mean vein difference between the numbers of veins in the dominant versus the non-dominant UE was -1.5789. At a .05 significance level, there was insufficient evidence to suggest the number of compressible veins between patients' dominant and non-dominant arms was significantly different (P = .0872.) The number of compressible veins visualized with ultrasound was not greater in the dominant upper extremity as expected. Practitioners may gain more information about potential peripheral venous access sites by asking patients their previous injection practice patterns. Copyright © 2016 Elsevier Inc. All rights reserved.
Toshniwal, Gokul; Sunder, Rani; Thomas, Ronald; Dureja, G P
2012-01-01
Interventional pain management techniques play an important role in the multidisciplinary approach to management of complex regional pain syndrome (CRPS). In this preliminary study we compared the efficacy of continuous stellate ganglion (CSG) block with that of continuous infraclavicular brachial plexus (CIBP) block in management of CRPS type I of upper extremity. Thirty-three patients with CRPS type I of upper extremity were randomly assigned to either CSG or CIBP group. Patients were treated for 1 week with continuous infusion of 0.125% bupivacaine at 2and 5mL/h, respectively. Catheter was removed at 1 week and patients were followed up for 4 weeks. The outcome was evaluated in terms of neuropathic pain scale score (NPSS), edema scores (Grades 0-2), and range of motion (ROM) of all upper extremity joints (Grades 0-2). CIBP group showed statistically significant improvement in NPSS compared with CSG group during the first 12 hours after the procedures (P value <0.05). After 12 hours, the NPSS was comparable between the groups. At 4 weeks, both groups showed clinically significant improvement in edema score and ROM of all upper extremity joints when compared with the baseline. This preliminary study suggests that CIBP block and CSG block may be feasible and effective interventional techniques for the management of CRPS type I of upper extremities. Hence, we recommend a larger well-randomized, well-controlled, clinical trial to confirm our findings and determine if any significant difference exists between the groups in terms of long-term pain relief and functional restoration. Wiley Periodicals, Inc.
Kim, HyunJin; Lee, GyuChang; Song, ChangHo
2014-04-01
Motor recovery of the upper extremity in stroke patients is an important goal of rehabilitation. In particular, motor recovery can be accelerated when physical and cognitive interventions are combined. Thus, the aim of this study was to investigate the effects of functional electrical stimulation (FES) with mirror therapy (MT) on motor function of upper extremity in stroke patients. Twenty-seven stroke patients were recruited, and the 23 subjects who met the inclusion criteria were randomly allocated into 2 groups: the experimental group (n = 12) and the control group (n = 11). Both groups received conventional rehabilitation training for 60 minutes/day and 5 days/week for 4 weeks. In addition, members of the experimental group received FES with MT and members of the control group received FES without MT for 30 minutes/day and 5 days/week for 4 weeks. Immediately before and after intervention, motor recovery was measured using the Fugl-Meyer (FM) assessment, Brunnstrom's motor recovery stage (BMRS), the Manual Function Test (MFT), and the Box and Block Test (BBT). Significant upper extremity motor improvements were observed in the experimental and control groups according to the FM, BMRS, MFT, and BBT (P < .05). In particular, FM subscores for wrist, hand, and co-ordination and MFT subscores for hand function were more significantly improved in the experimental group (P < .05). Motor functions of the upper extremity were improved by FES with MT versus controls. The study shows that FES with MT during poststroke rehabilitation may effectively improve motor functions of the upper extremity. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Osu, Rieko; Otaka, Yohei; Ushiba, Junichi; Sakata, Sachiko; Yamaguchi, Tomofumi; Fujiwara, Toshiyuki; Kondo, Kunitsugu; Liu, Meigen
2012-01-01
For the recovery of hemiparetic hand function, a therapy was developed called contralateral homonymous muscle activity stimulated electrical stimulation (CHASE), which combines electrical stimulation and bilateral movements, and its feasibility was studied in three chronic stroke patients with severe hand hemiparesis. Patients with a subcortical lesion were asked to extend their wrist and fingers bilaterally while an electromyogram (EMG) was recorded from the extensor carpi radialis (ECR) muscle in the unaffected hand. Electric stimulation was applied to the homonymous wrist and finger extensors of the affected side. The intensity of the electrical stimulation was computed based on the EMG and scaled so that the movements of the paretic hand looked similar to those of the unaffected side. The patients received 30-minutes of therapy per day for 2 weeks. Improvement in the active range of motion of wrist extension was observed for all patients. There was a decrease in the scores of modified Ashworth scale in the flexors. Fugl-Meyer assessment scores of motor function of the upper extremities improved in two of the patients. The results suggest a positive outcome can be obtained using the CHASE system for upper extremity rehabilitation of patients with severe hemiplegia.
Peng, Feng; Chen, Lin; Han, Dong; Xiao, Chenwei; Bao, Qiyuan; Wang, Tao
2013-11-01
We presented our experience on the use of anterolateral thigh (ALT) chimeric flap to reconstruct two separate defects in upper extremity. From December 2009 to August 2012, we used this ALT chimeric flap to reconstruct two separate defects in upper extremity on five patients (mean age: 36.6 years; range: 15 ∼ 47 years). The locations of defect were palm and fingers in four patients and forearm in the other patient. The sizes of defect ranged from 4.5 × 1.5 cm to 20 × 10 cm. A minimum of two separate perforator vessels in the flap were identified. The skin paddle was then split between the two perforators to shape two separate paddles with a common vascular supply. There were no cases of flap failure or re-exploration. Four donor sites were directly closed and one was covered by a skin graft. Donor-site morbidity was negligible. The ALT chimeric flap provides customized cover for two separate defects in upper extremity. Copyright © 2013 Wiley Periodicals, Inc.
Sethi, Amit; Davis, Sandra; McGuirk, Theresa; Patterson, Tara S.; Richards, Lorie G.
2012-01-01
Study Design Quasi-experimental design Introduction Although the effectiveness of constraint induced movement therapy (CIMT) in upper extremity (UE) rehabilitation post stroke is well known, the efficacy of CIMT to enhance the temporal structure of variability in upper extremity movement is not known. Purpose The purpose of this study was to investigate whether CIMT could enhance temporal structure of variability in upper extremity movement in individuals with chronic stroke. Methods Six participants with chronic stroke underwent CIMT for 4 hours/day for 2 weeks. Participants performed three trials of functional reach-to-grasp before and after CIMT. Temporal structure of variability was determined by calculating approximate entropy (ApEn) in shoulder, elbow and wrist flexion/extension joint angles. Results ApEn increased post CIMT, however, statistical significance was not achieved (p > 0.0167). Conclusion Future studies with larger sample size are warranted to investigate the effect of CIMT upon temporal structure of variability in UE movement. PMID:23084461
Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults
Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.
2014-01-01
Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203
Boström, Maria; Dellve, Lotta; Thomée, Sara; Hagberg, Mats
2008-04-01
This study prospectively assessed the importance of individual conditions and computer use during school or work and leisure time as risk factors for self-reported generally reduced productivity due to musculoskeletal complaints among young adults with musculoskeletal symptoms in the neck or upper extremities. A cohort of 2914 young adults (18-25 years, vocational school and college or university students) responded to an internet-based questionnaire concerning musculoskeletal symptoms related to individual conditions and computer use during school or work and leisure time that possibly affected general productivity. Prevalence ratios (PR) were used to assess prospective risk factors for generally reduced productivity. The selected study sample (N=1051) had reported neck or upper-extremity symptoms. At baseline, 280 of them reported reduced productivity. A follow-up of the 771 who reported no reduced productivity was carried out after 1 year. Risk factors for self-reported generally reduced productivity for those followed-up were symptoms in two or three locations or dimensions for the upper back or neck and the shoulders, arms, wrists, or hands [PR 2.30, 95% confidence interval (95% CI) 1.40-3.78], symptoms persisting longer than 90 days in the shoulders, arms, wrists, or hands (PR 2.50, 95% CI 1.12-5.58), current symptoms in the shoulders, arms, wrists, or hands (PR 1.78, 95% CI 1.10-2.90) and computer use 8-14 hours/week during leisure time (PR 2.32, 95% CI 1.20-4.47). A stronger relationship was found if three or four risk factors were present. For women, a relationship was found between generally reduced productivity and widespread and current symptoms in the upper extremities. The main risk factors for generally reduced productivity due to musculoskeletal symptoms among young adults in this study were chronic symptoms in the upper extremities and widespread symptoms in the neck and upper extremities.
The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke.
Uswatte, G; Taub, E; Morris, D; Light, K; Thompson, P A
2006-10-10
Data from monkeys with deafferented forelimbs and humans after stroke indicate that tests of the motor capacity of impaired extremities can overestimate their spontaneous use. Before the Motor Activity Log (MAL) was developed, no instruments assessed spontaneous use of a hemiparetic arm outside the treatment setting. To study the MAL's reliability and validity for assessing real-world quality of movement (QOM scale) and amount of use (AOU scale) of the hemiparetic arm in stroke survivors. Participants in a multisite clinical trial completed a 30-item MAL before and after treatment (n = 106) or an equivalent no-treatment period (n = 116). Participants also completed the Stroke Impact Scale (SIS) and wore accelerometers that monitored arm movement for three consecutive days outside the laboratory. All were 3 to 12 months post-stroke and had mild to moderate paresis of an upper extremity. After an item analysis, two MAL tasks were eliminated. Revised participant MAL QOM scores were reliable (r =0.82). Validity was also supported. During the first observation period, the correlation between QOM and SIS Hand Function scale scores was 0.72. The corresponding correlation for QOM and accelerometry values was 0.52. Participant QOM and AOU scores were highly correlated (r = 0.92). The participant Motor Activity Log is reliable and valid in individuals with subacute stroke. It might be employed to assess the real-world effects of upper extremity neurorehabilitation and detect deficits in spontaneous use of the hemiparetic arm in daily life.
Maudrich, Tom; Kenville, Rouven; Lepsien, Jöran; Villringer, Arno; Ragert, Patrick; Steele, Christopher J
2017-01-01
During unimanual motor tasks, muscle activity may not be restricted to the contracting muscle, but rather occurs involuntarily in the contralateral resting limb, even in healthy individuals. This phenomenon has been referred to as mirror electromyographic activity (MEMG). To date, the physiological (non-pathological) form of MEMG has been observed predominately in upper extremities (UE), while remaining sparsely described in lower extremities (LE). Accordingly, evidence regarding the underlying mechanisms and modulation capability of MEMG, i.e., the extent of MEMG in dependency of exerted force during unilateral isometric contractions are insufficiently investigated in terms of LE. Furthermore, it still remains elusive if and how MEMG is affected by long-term exercise training. Here, we provide novel quantitative evidence for physiological MEMG in homologous muscles of LE (tibialis anterior (TA), rectus femoris (RF)) during submaximal unilateral dorsiflexion in healthy young adults. Furthermore, endurance athletes (EA, n = 11) show a higher extent of MEMG in LE compared to non-athletes (NA, n = 11) at high force demands (80% MVC, maximum voluntary contraction). While the underlying neurophysiological mechanisms of MEMG still remain elusive, our study indicates, at least indirectly, that sport-related long-term training might affect the amount of MEMG during strong isometric contractions specifically in trained limbs. To support this assumption of exercise-induced limb-specific MEMG modulation, future studies including different sports disciplines with contrasting movement patterns and parameters should additionally be performed.
Maudrich, Tom; Kenville, Rouven; Lepsien, Jöran; Villringer, Arno; Ragert, Patrick; Steele, Christopher J.
2017-01-01
During unimanual motor tasks, muscle activity may not be restricted to the contracting muscle, but rather occurs involuntarily in the contralateral resting limb, even in healthy individuals. This phenomenon has been referred to as mirror electromyographic activity (MEMG). To date, the physiological (non-pathological) form of MEMG has been observed predominately in upper extremities (UE), while remaining sparsely described in lower extremities (LE). Accordingly, evidence regarding the underlying mechanisms and modulation capability of MEMG, i.e., the extent of MEMG in dependency of exerted force during unilateral isometric contractions are insufficiently investigated in terms of LE. Furthermore, it still remains elusive if and how MEMG is affected by long-term exercise training. Here, we provide novel quantitative evidence for physiological MEMG in homologous muscles of LE (tibialis anterior (TA), rectus femoris (RF)) during submaximal unilateral dorsiflexion in healthy young adults. Furthermore, endurance athletes (EA, n = 11) show a higher extent of MEMG in LE compared to non-athletes (NA, n = 11) at high force demands (80% MVC, maximum voluntary contraction). While the underlying neurophysiological mechanisms of MEMG still remain elusive, our study indicates, at least indirectly, that sport-related long-term training might affect the amount of MEMG during strong isometric contractions specifically in trained limbs. To support this assumption of exercise-induced limb-specific MEMG modulation, future studies including different sports disciplines with contrasting movement patterns and parameters should additionally be performed. PMID:29085288
Neotectonic Activity from the Upper Reaches of the Arabian Gulf and Possibilities of New Oil Fields
NASA Astrophysics Data System (ADS)
Sissakian, V. K.; Abdul Ahad, A. D.; Al-Ansari, N.; Knutsson, S.
2018-03-01
Upper reaches of the Arabian Gulf consist of different types of fine sediments including the vast Mesopotamia Plain sediments, tidal flat sediments and estuarine sabkha sediments. The height of the plain starts from zero meter and increases northwards to three meters with extremely gentle gradient. The vast plain to the north of the Arabian Gulf is drained by Shat Al-Arab (Shat means river in Iraqi slang language) and Khor Al-Zubair (Khor means estuary). The former drains the extreme eastern part of the plain; whereas, the latter drains the western part. Shat Al-Arab is the resultant of confluence of the Tigris and Euphrates rivers near Al-Qurna town; about 160 km north of the Arabian Gulf mouth at Al-Fao town; whereas, the length of Khor Al-Zubair is about 50 km; as measured from Um Qasir Harbor. The drainage system around Khor Al-Zubair is extremely fine dendritic; whereas around Shat Al-Arab is almost parallel running from both sides of the river towards the river; almost perpendicularly. The fine dendritic drainage around Khor Al-Zubair shows clear recent erosional activity, beside water divides, abandoned irrigation channels and dislocated irrigational channels and estuarine distributaries; all are good indication for a Neotectonic activity in the region. These may indicate the presence of subsurface anticlines, which may represent oil fields; since tens of subsurface anticlines occur in near surroundings, which are oil fields.
Su, Ning; Zhai, Fei-Fei; Zhou, Li-Xin; Ni, Jun; Yao, Ming; Li, Ming-Li; Jin, Zheng-Yu; Gong, Gao-Lang; Zhang, Shu-Yang; Cui, Li-Ying; Tian, Feng; Zhu, Yi-Cheng
2017-01-01
Objective: To investigate the correlation between cerebral small vessel disease (CSVD) burden and motor performance of lower and upper extremities in community-dwelling populations. Methods: We performed a cross-sectional analysis on 770 participants enrolled in the Shunyi study, which is a population-based cohort study. CSVD burden, including white matter hyperintensities (WMH), lacunes, cerebral microbleeds (CMBs), perivascular spaces (PVS), and brain atrophy were measured using 3T magnetic resonance imaging. All participants underwent quantitative motor assessment of lower and upper extremities, which included 3-m walking speed, 5-repeat chair-stand time, 10-repeat pronation–supination time, and 10-repeat finger-tapping time. Data on demographic characteristics, vascular risk factors, and cognitive functions were collected. General linear model analysis was performed to identify potential correlations between motor performance measures and imaging markers of CSVD after controlling for confounding factors. Results: For motor performance of the lower extremities, WMH was negatively associated with gait speed (standardized β = -0.092, p = 0.022) and positively associated with chair-stand time (standardized β = 0.153, p < 0.0001, surviving FDR correction). For motor performance of the upper extremities, pronation–supination time was positively associated with WMH (standardized β = 0.155, p < 0.0001, surviving FDR correction) and negatively with brain parenchymal fraction (BPF; standardized β = -0.125, p = 0.011, surviving FDR correction). Only BPF was found to be negatively associated with finger-tapping time (standardized β = -0.123, p = 0.012). However, lacunes, CMBs, or PVS were not found to be associated with motor performance of lower or upper extremities in multivariable analysis. Conclusion: Our findings suggest that cerebral microstructural changes related to CSVD may affect motor performance of both lower and upper extremities. WMH and brain atrophy are most strongly associated with motor function deterioration in community-dwelling populations. PMID:29021757
Su, Ning; Zhai, Fei-Fei; Zhou, Li-Xin; Ni, Jun; Yao, Ming; Li, Ming-Li; Jin, Zheng-Yu; Gong, Gao-Lang; Zhang, Shu-Yang; Cui, Li-Ying; Tian, Feng; Zhu, Yi-Cheng
2017-01-01
Objective: To investigate the correlation between cerebral small vessel disease (CSVD) burden and motor performance of lower and upper extremities in community-dwelling populations. Methods: We performed a cross-sectional analysis on 770 participants enrolled in the Shunyi study, which is a population-based cohort study. CSVD burden, including white matter hyperintensities (WMH), lacunes, cerebral microbleeds (CMBs), perivascular spaces (PVS), and brain atrophy were measured using 3T magnetic resonance imaging. All participants underwent quantitative motor assessment of lower and upper extremities, which included 3-m walking speed, 5-repeat chair-stand time, 10-repeat pronation-supination time, and 10-repeat finger-tapping time. Data on demographic characteristics, vascular risk factors, and cognitive functions were collected. General linear model analysis was performed to identify potential correlations between motor performance measures and imaging markers of CSVD after controlling for confounding factors. Results: For motor performance of the lower extremities, WMH was negatively associated with gait speed (standardized β = -0.092, p = 0.022) and positively associated with chair-stand time (standardized β = 0.153, p < 0.0001, surviving FDR correction). For motor performance of the upper extremities, pronation-supination time was positively associated with WMH (standardized β = 0.155, p < 0.0001, surviving FDR correction) and negatively with brain parenchymal fraction (BPF; standardized β = -0.125, p = 0.011, surviving FDR correction). Only BPF was found to be negatively associated with finger-tapping time (standardized β = -0.123, p = 0.012). However, lacunes, CMBs, or PVS were not found to be associated with motor performance of lower or upper extremities in multivariable analysis. Conclusion: Our findings suggest that cerebral microstructural changes related to CSVD may affect motor performance of both lower and upper extremities. WMH and brain atrophy are most strongly associated with motor function deterioration in community-dwelling populations.
Interventional Therapy for Upper Extremity Deep Vein Thrombosis
Carlon, Timothy A.; Sudheendra, Deepak
2017-01-01
Approximately 10% of all deep vein thromboses occur in the upper extremity, and that number is increasing due to the use of peripherally inserted central catheters. Sequelae of upper extremity deep vein thrombosis (UEDVT) are similar to those for lower extremity deep vein thrombosis (LEDVT) and include postthrombotic syndrome and pulmonary embolism. In addition to systemic anticoagulation, there are multiple interventional treatment options for UEDVT with the potential to reduce the incidence of these sequelae. To date, there have been no randomized trials to define the optimal management strategy for patients presenting with UEDVT, so many conclusions are drawn from smaller, single-center studies or from LEDVT research. In this article, the authors describe the evidence for the currently available treatment options and an approach to a patient with acute UEDVT. PMID:28265130
Median and ulnar neuropathies in university guitarists.
Kennedy, Rachel H; Hutcherson, Kimberly J; Kain, Jennifer B; Phillips, Alicia L; Halle, John S; Greathouse, David G
2006-02-01
Descriptive study. To determine the presence of median and ulnar neuropathies in both upper extremities of university guitarists. Peripheral nerve entrapment syndromes of the upper extremities are well documented in musicians. Guitarists and plucked-string musicians are at risk for entrapment neuropathies in the upper extremities and are prone to mild neurologic deficits. Twenty-four volunteer male and female guitarists (age range, 18-26 years) were recruited from the Belmont University School of Music and the Vanderbilt University Blair School of Music. Individuals were excluded if they were pregnant or had a history of recent upper extremity or neck injury. Subjects completed a history form, were interviewed, and underwent a physical examination. Nerve conduction status of the median and ulnar nerves of both upper extremities was obtained by performing motor, sensory, and F-wave (central) nerve conduction studies. Descriptive statistics of the nerve conduction study variables were computed using Microsoft Excel. Six subjects had positive findings on provocative testing of the median and ulnar nerves. Otherwise, these guitarists had normal upper extremity neural and musculoskeletal function based on the history and physical examinations. When comparing the subjects' nerve conduction study values with a chart of normal nerve conduction studies values, 2 subjects had prolonged distal motor latencies (DMLs) of the left median nerve of 4.3 and 4.7 milliseconds (normal, < 4.2 milliseconds). Prolonged DMLs are compatible with median neuropathy at or distal to the wrist. Otherwise, all electrophysiological variables were within normal limits for motor, sensory, and F-wave (central) values. However, comparison studies of median and ulnar motor latencies in the same hand demonstrated prolonged differences of greater than 1.0 milliseconds that affected the median nerve in 2 additional subjects, and identified contralateral limb involvement in a subject with a prolonged distal latency. The other 20 subjects demonstrated normal comparison studies of the median and ulnar nerves in both upper extremities. In this descriptive study of a population of 24 university guitarists, 4 musicians (17%) were found to have electrophysiologic evidence of median neuropathy at or distal to the wrist or carpal tunnel syndrome. Ulnar nerve electrophysiological function was within normal limits for all subjects examined.
ERIC Educational Resources Information Center
Duthie, Pamela Rae
To determine the effects of water exercise on the movements of multiple sclerosis patients, this study utilized tests to determine changes in the linear range of motion of the shoulder, elbow, and wrist after a 45-minute period of water activities and to determine if the movement became more effective. The test used was an overhead throw with a…
Constrained handgrip force decreases upper extremity muscle activation and arm strength.
Smets, Martin P H; Potvin, James R; Keir, Peter J
2009-09-01
Many industrial tasks require repetitive shoulder exertions to be performed with concurrent physical and mental demands. The highly mobile nature of the shoulder predisposes it to injury. The purpose of this study was to determine the effects of simultaneous gripping, at a specified magnitude, on muscle activity and maximal arm force in various directions. Ten female subjects performed maximal arm exertions at two different heights and five directions using both specified (30% maximum voluntary grip) and preferred (self-selected) grip forces. Electromyography was recorded from eight muscles of the right upper extremity. The preferred grip condition produced grip forces that were dependent on the combination of arm height and force direction and were significantly greater (arm force down), lower (to left, up and push forward), or similar to the specified grip condition. Regardless of the magnitude of the preferred grip force, specifying the grip resulted in decreased maximal arm strength (by 18-25%) and muscle activity (by 15-30%) in all conditions, indicating an interfering effect when the grip force was specified by visual target force-matching. Task constraints, such as specific gripping demands, may decrease peak force levels attainable and alter muscle activity. Depending on the nature of task, the amount of relative demand may differ, which should be considered when determining safety thresholds.
Detecting severe injuries of the upper body in multiple trauma patients.
Horst, Klemens; Hildebrand, Frank; Kobbe, Philipp; Pfeifer, Roman; Lichte, Philipp; Andruszkow, Hagen; Lefering, Rolf; Pape, Hans Christoph
2015-12-01
The clavicle limits the upper thoracic cage and connects the body and upper extremities. The clavicle is easy to examine and is visible on standard emergency room radiographs. We hypothesized that clavicular fracture in polytrauma patients would indicate the presence of further injuries of the upper extremities, head, neck, and thorax. A population-based trauma registry was used. All patients were documented between 2002 and 2013. Inclusion criteria were age ≥16 y and injury severity score (ISS) ≥16. Patients were divided into two groups according to the presence or absence of a clavicular fracture (group C+ and group C-). Scoring was based on the abbreviated injury scale, ISS, and new injury severity score. Trauma mechanisms, demographics, and the posttraumatic clinical course were compared. In total, 4790 patients with clavicular fracture (C+) and 41,775 without (C-) were included; the mean ISS was 30 ± 11 (C+) versus 28 ± 12 (C-). Patients with clavicular fracture had a longer stay on the intensive care unit with 12 ± 14 versus 10 ± 13 d. Injuries to the thoracic wall, severe lung injuries as well as injuries to the cervical spine were significantly increased in C+ patients. Thoracic injuries as well as injuries of the shoulder girdle and/or arm showed an increased abbreviated injury scale in the C+ group. A clinically relevant coincidence of clavicular fractures with injuries of the chest and upper extremity was found. As clavicular fractures can be diagnosed easily, it might also help to reduce the incidence of missed injuries of the chest and upper extremity. Therefore, special attention should be paid on thoracic as well as upper extremity injures during the second and tertiary surveys in case of clavicular fractures. Copyright © 2015 Elsevier Inc. All rights reserved.
Planning and Coordination of a Reach-Grasp-Eat Task in Children with Hemiplegia
ERIC Educational Resources Information Center
Hung, Ya-Ching; Henderson, Eugene R.; Akbasheva, Frida; Valte, Leslie; Ke, Wei Shan; Gordon, Andrew M.
2012-01-01
Children with hemiplegia have deficits in motor planning in addition to their impairments in movement of their more-affected upper extremity (UE). However, little is known about the relationship between motor planning and multi-segment coordination during functional activities in this population. In the present study, motor planning strategies and…
38 CFR 3.809 - Specially adapted housing under 38 U.S.C. 2101(a).
Code of Federal Regulations, 2010 CFR
2010-07-01
... following requirements are met: (a) Service. Active military, naval or air service after April 20, 1898, is... balance or propulsion as to preclude locomotion without the aid of braces, crutches, canes, or a... upper extremity which so affect the functions of balance or propulsion as to preclude locomotion without...
Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas
2016-01-01
To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P < 0.001). The order from lowest to highest relative muscle activity matched the order from most to least stable therapy device. There was no significant interaction between muscle location (lower versus upper leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Specialized connective tissue: bone, the structural framework of the upper extremity
Weatherholt, Alyssa M.; Fuchs, Robyn K.; Warden, Stuart J.
2011-01-01
Bone is a connective tissue containing cells, fibers and ground substance. There are many functions in the body in which the bone participates, such as storing minerals, providing internal support, protecting vital organs, enabling movement, and providing attachment sites for muscles and tendons. Bone is unique because its collagen framework absorbs energy, while the mineral encased within the matrix allows bone to resist deformation. This article provides an overview of the structure and function of bone tissue from a macroscopic to microscopic level and discusses the physiological processes contributing to upper extremity bone health. It concludes by discussing common conditions influencing upper extremity bone health. PMID:22047807
Goldfarb, Charles A.; Wall, Lindley B.; Bohn, Deborah C.; Moen, Patrick; Van Heest, Ann E.
2014-01-01
Purpose To examine the relative presentation frequency of children with upper limb congenital anomalies at 3 Midwestern referral centers using the Oberg, Manske, and Tonkin (OMT) classification and to assess the utility of this new classification system. Methods 641 individuals with 653 congenital upper extremity anomalies were identified at 3 hospitals in 2 large metropolitan areas during a 1-year interval. Patients were identified prospectively and the specific upper extremity anomaly and any associated syndromes were confirmed using medical records and radiographs. We applied the OMT classification that categorizes anomalies using a dysmorphology outline as malformations, dysplasias, deformations, and syndromes, and assessed its utility and ease of use. Results There were 480 extremities (74%) with a limb malformation including 184 involving the entire limb. Arthrogryposis was the most common of these (53 extremities). Anomalies affecting only the hand plate accounted for 62% (296) of the malformations. Of these, radial polydactyly (15%) was the most common specific anomaly, followed by symbrachydactyly (13%) and cleft hand (11%). Dysplasias were noted in 86 extremities; 55 of these were multiple hereditary exostoses. There were 87 extremities with deformations and 58 of these were trigger digits. A total of 98 children had a syndrome or association. Constriction ring sequence was most common. The OMT was straightforward to use and most anomalies could be easily assigned. There were a few conditions, such as Madelung deformity and symbrachydactyly, that would benefit from clarification on how to best classify them. Conclusions Malformations were the most common congenital anomalies in the 653 upper extremities evaluated over a 1-year period at 3 institutions. We were able to classify all individuals using the OMT classification system. PMID:25534840
Goldfarb, Charles A; Wall, Lindley B; Bohn, Deborah C; Moen, Patrick; Van Heest, Ann E
2015-01-01
To examine the relative presentation frequency of children with upper limb congenital anomalies at 3 Midwestern referral centers using the Oberg, Manske, and Tonkin (OMT) classification and to assess the utility of this new classification system. 641 individuals with 653 congenital upper extremity anomalies were identified at 3 hospitals in 2 large metropolitan areas during a 1-year interval. Patients were identified prospectively and the specific upper extremity anomaly and any associated syndromes were confirmed using medical records and radiographs. We applied the OMT classification that categorizes anomalies using a dysmorphology outline as malformations, dysplasias, deformations, and syndromes, and assessed its utility and ease of use. There were 480 extremities (74%) with a limb malformation including 184 involving the entire limb. Arthrogryposis was the most common of these (53 extremities). Anomalies affecting only the hand plate accounted for 62% (296) of the malformations. Of these, radial polydactyly (15%) was the most common specific anomaly, followed by symbrachydactyly (13%) and cleft hand (11%). Dysplasias were noted in 86 extremities; 55 of these were multiple hereditary exostoses. There were 87 extremities with deformations and 58 of these were trigger digits. A total of 109 children had a syndrome or association. Constriction ring sequence was most common. The OMT was straightforward to use and most anomalies could be easily assigned. There were a few conditions, such as Madelung deformity and symbrachydactyly, that would benefit from clarification on how to best classify them. Malformations were the most common congenital anomalies in the 653 upper extremities evaluated over a 1-year period at 3 institutions. We were able to classify all individuals using the OMT classification system. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Shaw, W S; Feuerstein, M; Lincoln, A E; Miller, V I; Wood, P M
2001-08-01
A case manager's ability to obtain worksite accommodations and engage workers in active problem solving may improve health and return to work outcomes for clients with work related upper extremity disorders (WRUEDs). This study examines the feasibility of a 2 day training seminar to help nurse case managers identify ergonomic risk factors, provide accommodation, and conduct problem solving skills training with workers' compensation claimants recovering from WRUEDs. Eight procedural steps to this case management approach were identified, translated into a training workshop format, and conveyed to 65 randomly selected case managers. Results indicate moderate to high self ratings of confidence to perform ergonomic assessments (mean = 7.5 of 10) and to provide problem solving skills training (mean = 7.2 of 10) after the seminar. This training format was suitable to experienced case managers and generated a moderate to high level of confidence to use this case management approach.
Nerve Entrapment Syndromes at the Wrist and Elbow by Sonography.
Klauser, Andrea S; Buzzegoli, Tommaso; Taljanovic, Mihra S; Strobl, Sylvia; Rauch, Stefan; Teh, James; Wanschitz, Julia; Löscher, Wolfgang; Martinoli, Carlo
2018-07-01
Nerve entrapment syndromes of the upper extremity are associated with structural abnormalities or by an intrinsic abnormality of the nerve. Nerve entrapment syndromes generally have a typical clinical presentation, and findings on physical examination and in conjunction with electrodiagnostic studies imaging is used to evaluate the cause, severity, and etiology of the entrapment. With the development of high-frequency linear array transducers (12-24 MHz), ultrasound (US) is incomparable in terms of spatial resolution to depict morphological aspects and changes in nerves. US can identify the abnormalities causing entrapment, such as fibrous bands, ganglia, anomalous muscles, and osseous deformities, with the advantage of dynamic assessment under active and passive examination. US is a unique diagnostic modality that allows superb visualization of both large and small peripheral terminal nerve branches of the upper extremity and enables the correct diagnosis of various nerve entrapment syndromes. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Kowalczewski, Jan; Gritsenko, Valeriya; Ashworth, Nigel; Ellaway, Peter; Prochazka, Arthur
2007-07-01
To test the efficacy of functional electric stimulation (FES)-assisted exercise therapy (FES-ET) on a workstation in the subacute phase of recovery from a stroke. Single-blind, randomly controlled comparison of high- and low-intensity treatment. Laboratory in a rehabilitation hospital. Nineteen stroke survivors (10 men, 9 women; mean age +/- standard deviation, 60.6+/-5.8y), with upper-extremity hemiplegia (mean poststroke time, 48+/-17d). The main inclusion criteria were: stroke occurred within 3 months of onset of trial and resulted in severe upper-limb dysfunction, and FES produced adequate hand opening. An FES stimulator and an exercise workstation with instrumented objects were used by 2 groups to perform specific motor tasks with their affected upper extremity. Ten subjects in the high-intensity FES-ET group received FES-ET for 1 hour a day on 15 to 20 consecutive workdays. Nine subjects in the low-intensity FES-ET group received 15 minutes of sensory electric stimulation 4 days a week and on the fifth day they received 1 hour of FES-ET. Primary outcome measure included the Wolf Motor Function Test (WMFT). Secondary outcome measures included the Motor Activity Log (MAL), the upper-extremity portion of the Fugl-Meyer Assessment (FMA), and the combined kinematic score (CKS) derived from workstation measurements. The WMFT, MAL, and FMA were used to assess function in the absence of FES whereas CKS was used to evaluate function assisted by FES. Improvements in the WMFT and CKS were significantly greater in the high-intensity group (post-treatment effect size, .95) than the low-intensity group (post-treatment effect size, 1.3). The differences in MAL and FMA were not statistically significant. Subjects performing high-intensity FES-ET showed significantly greater improvements on the WMFT than those performing low-intensity FES-ET. However, this was not reflected in subjects' self-assessments (MAL) or in their FMA scores, so the clinical significance of the result is open to debate. The CKS data suggest that high-intensity FES-ET may be advantageous in neuroprosthetic applications.
White, Jennifer; Mills, Chris; Ball, Nick; Scurr, Joanna
2015-01-01
The relationship between inappropriate breast support and upper-extremity kinematics for female runners is unclear. The purpose of this study was to investigate the effect of breast support and breast pain on upper-extremity kinematics during running. Eleven female recreational runners with larger breasts (UK D and E cup) completed a 7 min 20 s treadmill run (2.58 m · s(-1)) in a high and low breast support condition. Multi-planar breast and upper-extremity kinematic data were captured in each breast support condition by eight infrared cameras for 30 s towards the end of the run. Breast pain was rated at the end of each treadmill run using a numeric analogue scale. The high support bra reduced breast kinematics and decreased breast pain (P < 0.05). Upper-extremity kinematics did not differ between breast support conditions (P > 0.05), although some moderate positive correlations were found between thorax range of motion and breast kinematics (r = 0.54 to 0.73). Thorax and arm kinematics do not appear to be influenced by breast support level in female runners with large breasts. A high support bra that offers good multi-planar breast support is recommended for female runners with larger breasts to reduce breast pain.
One-per-mil tumescent technique for upper extremity surgeries: broadening the indication.
Prasetyono, Theddeus O H; Biben, Johannes A
2014-01-01
We studied the effect of 1:1,000,000 epinephrine concentration (1 per mil) to attain a bloodless operative field in hand and upper extremity surgery and to explore its effectiveness and safety profile. This retrospective observational study enrolled 45 consecutive patients with 63 operative fields consisting of various hand and upper extremity problems. One-per-mil solution was injected into the operative field with tumescent technique to create a bloodless operating field without tourniquet. The solution was formulated by adding a 1:1,000,000 concentration of epinephrine and 100 mg of lidocaine into saline solution to form 50 mL of tumescent solution. Observation was performed on the clarity of the operative field, which we described as totally bloodless, minimal bleeding, acceptable bleeding, or bloody. The volume of tumescent solution injected, duration of surgery, and surgical outcome were also reviewed. The tumescent technique with 1-per-mil solution achieved 29% totally bloodless, 48% minimal bleeding, 22% acceptable bleeding, and 2% bloody operative fields in cases that included burn contracture and congenital hand and upper extremity surgeries. One-per-mil tumescent solution created a clear operative field in hand and upper extremity surgery. It proved safe and effective for a wide range of indications. Therapeutic IV. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Thorborg, K; Bandholm, T; Schick, M; Jensen, J; Hölmich, P
2013-08-01
Handheld dynamometry (HHD) is a promising tool for obtaining reliable hip strength measurements in the clinical setting, but intertester reliability has been questioned, especially in situations where testers exhibit differences in upper-extremity muscle strength (male vs female). The purpose of this study was to examine the intertester reliability concerning strength assessments of hip abduction, adduction, external and internal rotation, flexion and extension using HHD, and to test whether systematic differences in test values exist between testers of different upper-extremity strength. Fifty healthy individuals (29 women), aged 25 ± 5 years were included. Two physiotherapist students (one female, one male) of different upper-extremity strength performed the measurements. The tester order and strength test order were randomized. Intraclass correlation coefficients were used to quantify reliability, and ranged from 0.82 to 0.91 for the six strength test. The female tester systematically measured lower strength values for all isometric strength tests (P < 0.05). In hip strength assessments using HHD, systematic bias exists between testers of different sex, which is likely explained by differences in upper-extremity strength. Hence, to improve intertester reliability, the dynamometer likely needs external fixation, as this will eliminate the influence of differences in upper-extremity strength between testers. © 2011 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fluet, Gerard G; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V; Tunik, Eugene; Merians, Alma S
2017-07-01
The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl-Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. Implications for rehabilitation Intensive hand and finger rehabilitation activities can be added to an in-patient rehabilitation program for persons with subacute stroke. Targeted training of the thumb may have an impact on activity level function in persons with upper extremity hemiparesis. Untrained transfer tasks can be utilized to confirm that training tasks have elicited motor learning. Changes in cortical motor maps can be used to document changes in brain function which can be used to evaluate changes in motor behavior persons with subacute stroke.
NASA Astrophysics Data System (ADS)
Cheng, L.; Du, J.
2015-12-01
The Xiang River, a main tributary of the Yangtze River, is subjected to high floods frequently in recent twenty years. Climate change, including abrupt shifts and fluctuations in precipitation is an important factor influencing hydrological extreme conditions. In addition, human activities are widely recognized as another reasons leading to high flood risk. With the effects of climate change and human interventions on hydrological cycle, there are several questions that need to be addressed. Are floods in the Xiang River basin getting worse? Whether the extreme streamflow shows an increasing tendency? If so, is it because the extreme rainfall events have predominant effect on floods? To answer these questions, the article detected existing trends in extreme precipitation and discharge using Mann-Kendall test. Continuous wavelet transform method was employed to identify the consistency of changes in extreme precipitation and discharge. The Pearson correlation analysis was applied to investigate how much degree of variations in extreme discharge can be explained by climate change. The results indicate that slightly upward trends can be detected in both extreme rainfalls and discharge in the upper region of Xiang River basin. For the most area of middle and lower river basin, the extreme rainfalls show significant positive trends, but the extreme discharge displays slightly upward trends with no significance at 90% confidence level. Wavelet transform analysis results illustrate that highly similar patterns of signal changes can be seen between extreme precipitation and discharge in upper section of the basin, while the changes in extreme precipitation for the middle and lower reaches do not always coincide with the extreme streamflow. The correlation coefficients of the wavelet transforms for the precipitation and discharge signals in most area of the basin pass the significance test. The conclusion may be drawn that floods in recent years are not getting worse in Xiang River basin. The similar signal patterns and positive correlation between extreme discharge and precipitation indicate that the variability of extreme precipitation has an important effect on extreme discharge of flood, although the intensity of human impacts in lower section of Xiang River basin has increased markedly.
Social networking among upper extremity patients.
Rozental, Tamara D; George, Tina M; Chacko, Aron T
2010-05-01
Despite their rising popularity, the health care profession has been slow to embrace social networking sites. These are Web-based initiatives, designed to bring people with common interests or activities under a common umbrella. The purpose of this study is to evaluate social networking patterns among upper extremity patients. A total of 742 anonymous questionnaires were distributed among upper extremity outpatients, with a 62% response rate (462 were completed). Demographic characteristics (gender, age, level of education, employment, type of health insurance, and income stratification) were defined, and data on computer ownership and frequency of social networking use were collected. Social network users and nonusers were compared according to their demographic and socioeconomic characteristics. Our patient cohort consisted of 450 patients. Of those 450 patients, 418 had a high school education or higher, and 293 reported a college or graduate degree. The majority of patients (282) were employed at the time of the survey, and income was evenly distributed among U.S. Census Bureau quintiles. A total of 349 patients reported computer ownership, and 170 reported using social networking sites. When compared to nonusers, social networking users were younger (p<.001), more educated (p<.001), and more likely to be employed (p = .013). Users also had higher income levels (p=0.028) and had high rates of computer ownership (p<.001). Multivariate regression revealed that younger age (p<.001), computer ownership (p<.001), and higher education (p<.001) were independent predictors of social networking use. Most users (n = 114) regularly visit a single site. Facebook was the most popular site visited (n=142), followed by MySpace (n=28) and Twitter (n=16). Of the 450 upper extremity patients in our sample, 170 use social networking sites. Younger age, higher level of education, and computer ownership were associated with social networking use. Physicians should consider expanding their use of social networking sites to reach their online patient populations. Copyright 2010 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Functional Multijoint Position Reproduction Acuity in Overhead-Throwing Athletes
Tripp, Brady L; Uhl, Timothy L; Mattacola, Carl G; Srinivasan, Cidambi; Shapiro, Robert
2006-01-01
Context: Baseball players rely on the sensorimotor system to uphold the balance between upper extremity stability and mobility while maintaining athletic performance. However, few researchers have studied functional multijoint measures of sensorimotor acuity in overhead-throwing athletes. Objective: To compare sensorimotor acuity between 2 high-demand functional positions and among planes of motion within individual joints and to describe a novel method of measuring sensorimotor function. Design: Single-session, repeated-measures design. Setting: University musculoskeletal research laboratory. Patients or Other Participants: Twenty-one National Collegiate Athletic Association Division I baseball players (age = 20.8 ± 1.5 years, height = 181.3 ± 5.1 cm, mass = 87.8 ± 9.1 kg) with no history of upper extremity injury or central nervous system disorder. Main Outcome Measure(s): We measured active multijoint position reproduction acuity in multiple planes using an electromagnetic tracking device. Subjects reproduced 2 positions: arm cock and ball release. We calculated absolute and variable error for individual motions at the scapulothoracic, glenohumeral, elbow, and wrist joints and calculated overall joint acuity with 3-dimensional variable error. Results: Acuity was significantly better in the arm-cock position compared with ball release at the scapulothoracic and glenohumeral joints. We observed significant differences among planes of motion within the scapulothoracic and glenohumeral joints at ball release. Scapulothoracic internal rotation and glenohumeral horizontal abduction and rotation displayed less acuity than other motions. Conclusions: We established the reliability of a functional measure of upper extremity sensorimotor system acuity in baseball players. Using this technique, we observed differences in acuity between 2 test positions and among planes of motion within the glenohumeral and scapulothoracic joints. Clinicians may consider these differences when designing and implementing sensorimotor system training. Our error scores are similar in magnitude to those reported using single-joint and single-plane measures. However, 3-dimensional, multijoint measures allow practical, unconstrained test positions and offer additional insight into the upper extremity as a functional unit. PMID:16791298
Differences in Self-Reported Physical Limitation Among Older Women and Men in Ismailia, Egypt
2012-01-01
Objectives. This study explores the reasons for gender differences in self-reported physical limitation among older adults in Ismailia, Egypt. Method. 435 women and 448 men, 50 years and older in Ismailia, Egypt, participated in a social survey and tests of physical performance. Ordered logit models were estimated to compare unadjusted gender differences in reported disability with these differences adjusted sequentially for (a) age and objective measures of physical performance, (b) self-reported morbidities and health care use, and (c) social and economic attributes. Results. Compared with men, women more often reported higher levels of limitation in activities of daily living (ADLs), upper-extremity range of motion (ROM), and lower-extremity gross mobility (GM). Adjusting for age and objective measures of physical performance, women and men had similar odds of self-reporting difficulty with ADLs. With sequential adjustments for the remaining variables, women maintained significantly higher odds of self-reported difficulty with upper-extremity ROM and lower-extremity GM. Discussion. Cross-culturally, gender differences in self-reported disability may arise from objective and subjective perceptions of disability. Collectively, these results and those from prior studies in Bangladesh and the United States suggest that gender gaps in self-reported physical limitation may be associated with the degree of gender equality in society. PMID:22929399
Differences in self-reported physical limitation among older women and men in Ismailia, Egypt.
Khadr, Zeinab; Yount, Kathryn
2012-09-01
This study explores the reasons for gender differences in self-reported physical limitation among older adults in Ismailia, Egypt. 435 women and 448 men, 50 years and older in Ismailia, Egypt, participated in a social survey and tests of physical performance. Ordered logit models were estimated to compare unadjusted gender differences in reported disability with these differences adjusted sequentially for (a) age and objective measures of physical performance, (b) self-reported morbidities and health care use, and (c) social and economic attributes. Compared with men, women more often reported higher levels of limitation in activities of daily living (ADLs), upper-extremity range of motion (ROM), and lower-extremity gross mobility (GM). Adjusting for age and objective measures of physical performance, women and men had similar odds of self-reporting difficulty with ADLs. With sequential adjustments for the remaining variables, women maintained significantly higher odds of self-reported difficulty with upper-extremity ROM and lower-extremity GM. Cross-culturally, gender differences in self-reported disability may arise from objective and subjective perceptions of disability. Collectively, these results and those from prior studies in Bangladesh and the United States suggest that gender gaps in self-reported physical limitation may be associated with the degree of gender equality in society.
Free style perforator based propeller flaps: Simple solutions for upper extremity reconstruction!
Panse, Nikhil; Sahasrabudhe, Parag
2014-01-01
The introduction of perforator flaps by Koshima et al. was met with much animosity in the plastic surgery fraternity. The safety concerns of these flaps following the intentional twist of the perforators have prevented widespread adoption of this technique. Use of perforator based propeller flaps in the lower extremity is gradually on the rise, but their use in upper extremity reconstruction is infrequently reported, especially in the Indian subcontinent. We present a retrospective series of 63 free style perforator flaps used for soft tissue reconstruction of the upper extremity from November 2008 to June 2013. Flaps were performed by a single surgeon for various locations and indications over the upper extremity. Patient demographics, surgical indication, defect features, complications and clinical outcome are evaluated and presented as an uncontrolled case series. 63 free style perforator based propeller flaps were used for soft tissue reconstruction of 62 patients for the upper extremity from November 2008 to June 2013. Of the 63 flaps, 31 flaps were performed for trauma, 30 for post burn sequel, and two for post snake bite defects. We encountered flap necrosis in 8 flaps, of which there was complete necrosis in 4 flaps, and partial necrosis in four flaps. Of these 8 flaps, 7 needed a secondary procedure, and one healed secondarily. Although we had a failure rate of 12-13%, most of our failures were in the early part of the series indicative of a learning curve associated with the flap. Free style perforator based propeller flaps are a reliable option for coverage of small to moderate sized defects. Therapeutic IV.
Complete 3D kinematics of upper extremity functional tasks.
van Andel, Carolien J; Wolterbeek, Nienke; Doorenbosch, Caroline A M; Veeger, DirkJan H E J; Harlaar, Jaap
2008-01-01
Upper extremity (UX) movement analysis by means of 3D kinematics has the potential to become an important clinical evaluation method. However, no standardized protocol for clinical application has yet been developed, that includes the whole upper limb. Standardization problems include the lack of a single representative function, the wide range of motion of joints and the complexity of the anatomical structures. A useful protocol would focus on the functional status of the arm and particularly the orientation of the hand. The aim of this work was to develop a standardized measurement method for unconstrained movement analysis of the UX that includes hand orientation, for a set of functional tasks for the UX and obtain normative values. Ten healthy subjects performed four representative activities of daily living (ADL). In addition, six standard active range of motion (ROM) tasks were executed. Joint angles of the wrist, elbow, shoulder and scapula were analyzed throughout each ADL task and minimum/maximum angles were determined from the ROM tasks. Characteristic trajectories were found for the ADL tasks, standard deviations were generally small and ROM results were consistent with the literature. The results of this study could form the normative basis for the development of a 'UX analysis report' equivalent to the 'gait analysis report' and would allow for future comparisons with pediatric and/or pathologic movement patterns.
Kim, Kyunghoon; Lee, Sukmin; Kim, Donghoon; Lee, Kyoungbo; Kim, Youlim
2016-01-01
[Purpose] The objective of this study was to investigate the effects of mirror therapy combined with exercise tasks on the function of the upper limbs and activities of daily living. [Subjects and Methods] Twenty-five stroke patients who were receiving physical therapy at K Hospital in Gyeonggi-do, South Korea, were classified into a mirror therapy group (n=12) and a conventional therapy group (n=13). The therapies were applied for 30 minutes per day, five times per week, for a total of four weeks. Upper limb function was measured with the Action Research Arm test, the Fugl-Meyer Assessment, and the Box and Block test, and activities of daily living were measured with the Functional Independence Measure. A paired test was performed to compare the intragroup differences between before training and after four weeks of therapy, and an independent t-test was performed to compare the differences between the two groups before and after four weeks of therapy. [Results] In the intragroup comparison, both groups showed significant differences between measurements taken before and after four weeks of therapy. In the intergroup comparison, the mirror therapy group showed significant improvements compared with the conventional therapy group, both in upper limb function and activities of daily living. [Conclusion] The findings of this study demonstrated that mirror therapy is more effective than conventional therapy for the training of stroke patients to improve their upper limb function and activities of daily living.
Jang, Sung Ho; You, Sung H; Kwon, Yong-Hyun; Hallett, Mark; Lee, Mi Young; Ahn, Sang Ho
2005-01-01
Recovery mechanisms supporting upper extremity motor recovery following stroke are well established, but cortical mechanism associated with lower extremity motor recovery is unknown. The aim of this study was to assess cortical reorganization associated with lower extremity motor recovery in a hemiparetic patient. Six control subjects and a 17 year-old woman with left intracerebral hemorrhage due to an arterio-venous malformation rupture were evaluated. The motor function of the paretic (left) hip and knee had recovered slowly to the extent of her being able to overcome gravity for 10 months after the onset of stroke. However, her paretic upper extremity showed no significant motor recovery. Blood oxygenation level dependent (BOLD) functional MRI at 1.5 Tesla was used to determine the acutual location of cortical activation in the predefined regions of interest. Concurrently, Diffusion Tensor Imaging (DTI) in combination with a novel 3D-fiber reconstruction algorithm was utilized to investigate the pattern of the corticospinal pathway connectivity between the areas of the motor stream. All subjects' body parts were secured in the scanner and performed a sequential knee flexion-extension with a predetermined angle of 0-60 degrees at 0.5 Hz. Controls showed anticipated activation in the contralateral sensorimotor cortex (SM1) and the descending corticospinal fibers stemming from motor cortex. In contrast to control normal subjects, the stroke patient showed fMRI activation only in the unaffected (right) primary SM1 during either paretic or nonparetic knee movements. DTT fiber tracing data showed that the corticospinal tract fibers were found only in the unaffected hemisphere but not in the affected hemisphere. Our results indicate that an ipsilateral motor pathway from the unaffected (right) motor cortex to the paretic (right) leg was present in this patient. This study raises the potential that the contralesional (ipsilateral) SM1 is involved in cortical reorganization associated lower extremity motor recovery in stroke. This study is the first neuroimaging evidence that the combined fMRI and DTI fiber tracing can significantly expand the explanatory power of probing cortical reorganization underlying motor recovery mechanism in stroke.
Zoccolillo, L; Morelli, D; Cincotti, F; Muzzioli, L; Gobbetti, T; Paolucci, S; Iosa, M
2015-12-01
Previous studies reported controversial results about the efficacy of video-game based therapy (VGT) in improving neurorehabilitation outcomes in children with cerebral palsy (CP). Primary aim was to investigate the effectiveness of VGT with respect to conventional therapy (CT) in improving upper limb motor outcomes in a group of children with CP. Secondary aim was to quantify if VGT leads children to perform a higher number of movements. A cross-over randomized controlled trial (RCT) for investigating the primary aim and a cross-sectional study for investigating the secondary aim of this study. Outpatients. clinical diagnosis of CP, age between 4 and 14 years, level of GMFC between I and IV. QI<35, severe comorbidities, incapacity to stand even with an external support. Twenty-two children with CP (6.89±1.91-year old) were enrolled in a cross-over RCT with 16 sessions of VGT (using Xbox with Kinect device) and then 16 of CT or vice versa. Upper limb functioning was assessed using the Quality of Upper Extremities Skills Test (QUEST) and hand abilities using Abilhand-kids score. According to the secondary aim of this study a secondary cross-sectional study has been performed. Eight children with CP (6.50±1.60-year old) were enrolled into a trial in which five wireless triaxial accelerometers were positioned on their forearms, legs and trunk for quantifying the physical activity during VGT vs. CT. QUEST scores significantly improved only after VGT (P=0.003), and not after CT (P=0.056). The reverse occurred for Abilhand-kids scores (P=0.165 vs. P=0.013, respectively). Quantity of performed movements was three times higher in VGT than in CT (+198%, P=0.027). VGT resulted effective in improving the motor functions of upper limb extremities in children with CP, conceivably for the increased quantity of limb movements, but failed in improving the manual abilities for performing activities of daily living which benefited more from CT. VGT performed using the X-Box with Kinect device could enhance the number of upper limb movements in children with CP during rehabilitation and in turn improving upper limb motor skills, but CT remained superior for improving performances in manual activities of daily living.
Upper-extremity phocomelia reexamined: a longitudinal dysplasia.
Goldfarb, Charles A; Manske, Paul R; Busa, Riccardo; Mills, Janith; Carter, Peter; Ezaki, Marybeth
2005-12-01
In contrast to longitudinal deficiencies, phocomelia is considered a transverse, intercalated segmental dysplasia. Most patients demonstrate severe, but not otherwise classifiable, upper-extremity deformities, which usually cannot be placed into one of three previously described phocomelia groups. Additionally, these phocomelic extremities do not demonstrate true segmental deficits; the limb is also abnormal proximal and distal to the segmental defect. The purpose of this investigation was to present evidence that upper-extremity abnormalities in patients previously diagnosed as having phocomelia in fact represent a proximal continuum of radial or ulnar longitudinal dysplasia. The charts and radiographs of forty-one patients (sixty extremities) diagnosed as having upper-extremity phocomelia were reviewed retrospectively. On the basis of the findings on the radiographs, the disorders were categorized into three groups: (1) proximal radial longitudinal dysplasia, which was characterized by an absent proximal part of the humerus, a nearly normal distal part of the humerus, a completely absent radius, and a radial-sided hand dysplasia; (2) proximal ulnar longitudinal dysplasia, characterized by a short one-bone upper extremity that bifurcated distally and by severe hand abnormalities compatible with ulnar dysplasia; and (3) severe combined dysplasia, with type A characterized by an absence of the forearm segment (i.e., the radius and ulna) and type B characterized by absence of the arm and forearm (i.e., the hand attached to the thorax). Twenty-nine limbs in sixteen patients could be classified as having proximal radial longitudinal dysplasia. Systemic medical conditions such as thrombocytopenia-absent radius syndrome were common in those patients, but additional musculoskeletal conditions were rare. Twenty limbs in seventeen patients could be classified as having proximal ulnar longitudinal dysplasia. Associated musculoskeletal abnormalities, such as proximal femoral focal deficiency, were common in those patients. Eleven limbs in ten patients were identified as having severe combined dysplasia, which was type A in seven of them and type B in four. Four patients with severe combined dysplasia had congenital cardiac anomalies, and four had associated musculoskeletal abnormalities. Three of the four patients with the type-B disorder had a contralateral ulnar longitudinal dysplasia. We propose that cases previously classified as upper-extremity phocomelia represent a spectrum of severe longitudinal dysplasia, as none of the sixty extremities that we studied demonstrated a true intercalary deficiency. These findings have both developmental and genetic implications.
Chéron, Charlène; Le Scanff, Christine; Leboeuf-Yde, Charlotte
2016-01-01
Sporting activities can cause injuries and overuse injuries of the extremities (OIE) in children have been shown to be more common than injuries caused by trauma. The lower extremity is more frequently affected than the upper extremity in OIE, but it is not known whether injury site and diagnosis vary in different sporting activities. To identify any differences between sports in relation to diagnoses and anatomical areas most likely to be injured. A search was made in November 2014 and again in June 2016 in PubMed, SportDiscus, PsycInfo and Web of Sciences. Search terms were: « overuse injuries OR cumulative trauma disorders OR musculoskeletal injuries » AND « extremity OR limb » AND « physical activity OR sport OR risk factor OR predictors OR exercises » AND « child OR adolescent OR young adults ». Inclusion criteria were: 1) prospective, retrospective, or cross-sectional study design; 2) age ≤19 years; 3) the articles must clearly state if reported cases were classified as traumatic or overuse injuries; 4) reporting on OIE in relation to a particular sports type, and 5) sample size >50. A blinded systematic review was conducted. In all, nine of the 736 identified articles were included, studying soccer, handball, orienteering, running, dance, and gymnastics. The incidence of OIE was given only in a few articles but at least the site and diagnosis of OIE were identifiable. The lower limb is more often affected than the upper in all sports covered, and, in general, the lower leg and knee are the two most often affected areas. However, in handball, the elbow was the second most often reported area, and in gymnastics injuries of the foot appeared to be more frequent than in the other sports. No differences in diagnoses were observed between sports types. Our work contributes new information, namely that the site of OIE in children and adolescents appears to vary only somewhat between different types of sports. Further well-designed surveillance studies are needed to improve knowledge that can help prevent injuries in children and adolescents participating in sports activities.
Upper Extremity Muscle Activity During In-Phase and Anti-Phase Continuous Pushing Tasks.
Gruevski, Kristina M; Hodder, Joanne N; Keir, Peter J
2017-11-01
To determine the effect of anti-phase, in-phase bimanual and unimanual simulated industrial pushing tasks and frequency on upper extremity muscle activity. Research investigating symmetrical (in-phase) and asymmetrical (anti-phase) pushing exertions is limited despite a high prevalence in industry. Fifteen female participants completed five pushing tasks using a dual handle apparatus at three frequencies: 15 cycles per minute (cpm), 30 cpm, and self-selected. Tasks included two bimanual symmetrical pushes (constrained and unconstrained), two bimanual asymmetrical pushes (reciprocating and continuous), and one right unimanual push. Surface electromyography (EMG) from the right anterior, middle, and posterior deltoid (AD, MD, and PD); right and left trapezius (RT and LT); right pectoralis major (PM); and right and left external obliques (REO and LEO) was collected and normalized to maximum voluntary effort. There was a task by frequency interaction in the AD, MD, PD, and RT ( p < .005), where activity in AD, MD, and PD was highest in the continuous task at 15 cpm, but activity was similar across task in 30 cpm and self-selected. Muscle activity coefficient of variation was lowest during continuous task across all frequencies. Continuous, anti-phase pushes and constrained, in-phase pushes had the highest muscle activity demands and the least amount of variability in muscle activity and therefore may present the greatest risk of injury. Anti-phase pushing is known to have a greater cognitive demand, and this study demonstrated that it also has a greater physical demand when performed continuously.
Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy
Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M.; Fowler, Eileen; Greenberg, Marcia B.; Malkus, Elizabeth C.; Rebibo, Odelia; Siener, Catherine S.; Caraco, Yoseph; Kolodny, Edwin H.; Lau, Heather A.; Pestronk, Alan; Shieh, Perry; Mayhew, Jill E.
2017-01-01
Abstract Objective: To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Methods: Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Results: Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. Conclusions: The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function. PMID:28827485
Buyukavci, Raikan; Akturk, Semra; Ersoy, Yüksel
2018-02-07
Ultrasound-guided botulinum toxin type A injection is an effective treatment for spasticity. Euro-musculus spasticity approach is a new method for administering injections to the correct point of the correct muscle. The clinical outcomes of this practical approach is not yet available in the literature. The purpose of this study was to evaluate the effects on spasticity and the functional outcomes of ultrasound guided botulinum toxin type A injections via the Euro-musculus spasticity approach to treat upper limb spasticity in post-stroke patients. An observational study. Inpatient post-stroke patients. Twenty five post-stroke patients with post-stroke upper limb spasticity were recruited. The ultrasound-guided botulinum toxin type A injections were administered into the spastic target muscles using the Euro-musculus spasticity approach, and all of the patients were enrolled in rehabilitation programmes after the injections. This research included the innervation zone and injection site figures and ultrasound images of each muscle in the upper limb. The degree of spasticity was assessed via the Modified Ashworth Scale and the upper limb motor function via the Fugl Meyer Upper Extremity Scale at the baseline and 4 and 12 weeks after the botulinum toxin type A injection. Significant decreases in the Modified Ashworth Scale scores of the upper limb flexor muscle tone measured 4 and 12 weeks after the botulinum toxin type A injection were found when compared to the baseline scores (p<0.025). When compared with the baseline Fugl Meyer Upper Extremity subgroup scores, the sitting position, wrist and total scores at 4 and 12 weeks were significantly improved (p<0.025). However, only the Fugl Meyer Upper Extremity hand scores were significantly improved 12 weeks after the injection (p<0.025). Ultrasound-guided botulinum toxin type A injection via the Euro- musculus spasticity approach is a practical and effective method for administering injections to the correct point of the correct muscle. Ultrasound-guided botulinum toxin type A injections combined with rehabilitation programmes decrease spasticity and improve the upper extremity motor functions in stroke patients. This new approach for ultrasound- guided botulinum toxin type A injection is very practical and effective method for upper extremity spasticity.
The Effect of Restricted Arm Swing on Energy Expenditure in Healthy Men
ERIC Educational Resources Information Center
Yizhar, Ziva; Boulos, Spiro; Inbar, Omri; Carmeli, Eli
2009-01-01
Arm swing in human walking is an active natural motion involving the upper extremities. Earlier studies have described the interrelationship between arms and legs during walking, but the effect of arm swing on energy expenditure and dynamic parameters during normal gait, is inconclusive. The aim of this study was to investigate the effect of…
Designing instrumented walker to measure upper-extremity's efforts: A case study.
Khodadadi, Mohammad; Baniasad, Mina Arab; Arazpour, Mokhtar; Farahmand, Farzam; Zohoor, Hassan
2018-02-26
The high prevalence of shoulder pain in using walkers in patients who have spinal cord injury (SCI). Also, the limited options available to economically measure grip forces in walkers, which drove the need to create one. This article describes a method to obtain upper-extremities' forces and moments in a person with SCI by designing an appropriate instrumented walker. First, since the commercial multidirectional loadcells are too expensive, custom loadcells are fabricated. Ultimately, a complete gait analysis by means of VICON motion analysis and using inverse dynamic method has been held to measure upper-extremities' efforts. The results for a person with SCI using a two-wheel walker in low and high heights and a basic walker show that there are higher shoulder and elbow flexion-extension moments and also higher shoulder forces in superior-inferior direction and higher elbow and wrist forces in anterior-posterior directions. The results are not much different in using two different types of walker. By using the proposed method, upper-extremities' forces and moments were obtained and the results were compared to each other in using two different walkers.
Sokal, Brad; Uswatte, Gitendra; Barman, Joydip; Brewer, Michael; Byrom, Ezekiel; Latten, Jessica; Joseph, Jeethu; Serafim, Camila; Ghaffari, Touraj; Sarkar, Nilanjan
2014-03-01
To test the convergent validity of an objective method, Sensor-Enabled Radio-frequency Identification System for Monitoring Arm Activity (SERSMAA), that distinguishes between functional and nonfunctional activity. Cross-sectional study. Laboratory. Participants (N=25) were ≥0.2 years poststroke (median, 9) with a wide range of severity of upper-extremity hemiparesis. Not applicable. After stroke, laboratory tests of the motor capacity of the more-affected arm poorly predict spontaneous use of that arm in daily life. However, available subjective methods for measuring everyday arm use are vulnerable to self-report biases, whereas available objective methods only provide information on the amount of activity without regard to its relation with function. The SERSMAA consists of a proximity-sensor receiver on the more-affected arm and multiple units placed on objects. Functional activity is signaled when the more-affected arm is close to an object that is moved. Participants were videotaped during a laboratory simulation of an everyday activity, that is, setting a table with cups, bowls, and plates instrumented with transmitters. Observers independently coded the videos in 2-second blocks with a validated system for classifying more-affected arm activity. There was a strong correlation (r=.87, P<.001) between time that the more-affected arm was used for handling objects according to the SERSMAA and functional activity according to the observers. The convergent validity of SERSMAA for measuring more-affected arm functional activity after stroke was supported in a simulation of everyday activity. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Yavuzer, G; Senel, A; Atay, M B; Stam, H J
2008-09-01
To evaluate the effects of ''Playstation EyeToy Games'' on upper extremity motor recovery and upper extremity-related motor functioning of patients with subacute stroke. The authors designed a randomized, controlled, assessor-blinded, 4-week trial, with follow-up at 3 months. A total of 20 hemiparetic inpatients (mean age 61.1 years), all within 12 months post-stroke, received 30 minutes of treatment with ''Playstation EyeToy Games'' per day, consisting of flexion and extension of the paretic shoulder, elbow and wrist as well as abduction of the paretic shoulder or placebo therapy (watching the games for the same duration without physical involvement into the games) in addition to conventional program, 5 days a week, 2-5 hours/day for 4 weeks. Brunnstrom's staging and self-care sub-items of the functional independence measure (FIM) were performed at 0 month (baseline), 4 weeks (post-treatment), and 3 months (follow-up) after the treatment. The mean change score (95% confidence interval) of the FIM self-care score (5.5 [2.9-8.0] vs 1.8 [0.1-3.7], P=0.018) showed significantly more improvement in the EyeToy group compared to the control group. No significant differences were found between the groups for the Brunnstrom stages for hand and upper extremity. ''Playstation EyeToy Games'' combined with a conventional stroke rehabilitation program have a potential to enhance upper extremity-related motor functioning in subacute stroke patients.
The incidence of upper extremity injuries in endoscopy nurses working in the United States.
Drysdale, Susan A
2013-01-01
Numerous studies have addressed musculoskeletal disorders in the international working population. The literature indicates that injuries exist at astounding rates with significant economic impact. Attempts have been made by government, private industry, and special interest groups to address the issues related to the occurrence and prevention of musculoskeletal injuries. Because of the limited research on the gastrointestinal (GI) endoscopy nursing sector, this descriptive, correlational study explored the incidence of upper extremity injuries in GI endoscopy nurses and technicians in the United States. A total of 215 subjects were included in the study. Findings show that upper extremity injuries exist among nurses working in GI endoscopy. Twenty-two percent of respondents missed work for upper extremity injuries. The findings also show that the severity of disability is related to the type of work done, type of assistive aids available at work, and whether or not ergonomic or physiotherapy assessments were provided at the place of employment. In reference to rate of injury and the availability of ergonomics and physiotherapy assessments, those who had ergonomic assessments available to them had scores on the Disabilities of the Arm, Shoulder, and Hand (DASH) inventory (indicating upper extremity disability) that were significantly lower (DASH score, 9.96) than those who did not have the assessments available (DASH score, 14.66). The results suggest that there are a significant number of subjects who are disabled to varying degrees and the majority of these are employed in full-time jobs.
Grantham, W Jeffrey; To, Philip; Watson, Jeffry T; Brywczynski, Jeremy; Lee, Donald H
2016-08-01
Air transportation to tertiary care centers of patients with upper extremity amputations has been utilized in hopes of reducing the time to potential replantation; however, this mode of transportation is expensive and not all patients will undergo replantation. The purpose of this study is to review the appropriateness and cost of air transportation in upper extremity amputations. Consecutive patients transported by aircraft with upper extremity amputations in a 7-year period at a level-1 trauma center were retrospectively reviewed. The distance traveled was recorded, along with the times of the injury, referral, transportation duration, arrival, and start of the operation. The results of the transfer were defined as replantation or revision amputation. Overall, 47 patients were identified with 43 patients going to the operating room, but only 14 patients (30%) undergoing replantation. Patients arrived at the tertiary hand surgery center with a mean time of 182.3 minutes following the injury, which includes 105.2 minutes of transportation time. The average distance traveled was 105.4 miles (range, 22-353 miles). The time before surgery of those who underwent replantation was 154.6 minutes. The average cost of transportation was $20,482. Air transportation for isolated upper extremity amputations is costly and is not usually the determining factor for replantation. The type of injury and patients' expectations often dictate the outcome, and these may be better determined at the time of referral with use of telecommunication photos, discussion with a hand surgeon, and patient counseling. III.
Back and upper extremity disorders among enlisted U.S. Marines: burden and individual risk factors.
Huang, G D; Feuerstein, M; Arroyo, F
2001-11-01
Although musculoskeletal disorders of the low back and upper extremities can affect military readiness, little is known about their extent and risk factors in the U.S. Marine Corps. Using the Defense Medical Epidemiology and Defense Medical Surveillance System databases, back and upper extremity diagnostic categories were among the top four sources of outpatient visits and duty limitation among enlisted Marines. Back disorders were also found to be the fifth most common cause for lost time. Subsequently, high-risk occupations were identified, age-related trends for clinic visit rates were determined, and rate ratios were computed for the top 15 low back and upper extremity diagnoses among enlisted Marines from 1997 through 1998. Occupational categories with the highest rates of musculoskeletal-related outpatient visits included image interpretation, auditing and accounting, disturbsing, surveillance/target acquisition, and aircraft launch equipment. Significantly increasing linear trends in rates across age groups were found for most diagnoses. For 1998, age-specific rate ratios indicated significantly higher rates for most low back and upper extremity disorders for females; lower rank (i.e., E1-E4) was also a risk, but for fewer diagnoses. The findings emphasize the need to identify modifiable (e.g., work-related, individual) risk factors and to develop focused primary and secondary prevention programs for musculoskeletal disorders in the Marine Corps. Subsequently, these efforts can assist in reducing associated effects, maximizing resource utilization, and enhancing operational readiness.
Park, Youngju; Chang, Moonyoung; Kim, Kyeong-Mi; An, Duk-Hyun
2015-05-01
[Purpose] The purpose of this study was to determine the effects of mirror therapy with tasks on upper extremity unction and self-care in stroke patients. [Subjects] Thirty participants were randomly assigned to either an experimental group (n=15) or a control group (n=15). [Methods] Subjects in the experimental group received mirror therapy with tasks, and those in the control group received a sham therapy; both therapies were administered, five times per week for six weeks. The main outcome measures were the Manual Function Test for the paralyzed upper limb and the Functional Independence Measure for self-care performance. [Results] The experimental group had more significant gains in change scores compared with the control group after the intervention. [Conclusion] We consider mirror therapy with tasks to be an effective form of intervention for upper extremity function and self-care in stroke patients.
Lehnhardt, M; Hirche, C; Daigeler, A; Goertz, O; Ring, A; Hirsch, T; Drücke, D; Hauser, J; Steinau, H U
2012-02-01
Soft tissue sarcomas (STS) are a rare entity with reduced prognosis due to their aggressive biology. For an optimal treatment of STS identification of independent prognostic factors is crucial in order to reduce tumor-related mortality and recurrence rates. The surgical oncological concept includes wide excisions with resection safety margins >1 cm which enables acceptable functional results and reduced rates of amputation of the lower extremities. In contrast, individual anatomy of the upper extremities, in particular of the hand, leads to an intentional reduction of resection margins in order to preserve the extremity and its function with the main intention of tumor-free resection margins. In this study, the oncological safety and outcome as well as functional results were validated by a retrospective analysis of survival rate, recurrence rate and potential prognostic factors. A total of 160 patients who had been treated for STS of the upper extremities were retrospectively included. Independent prognostic factors were analyzed (primary versus recurrent tumor, tumor size, resection status, grade of malignancy, additional therapy, localization in the upper extremity). Kaplan-Meier analyses for survival rate and local control were calculated. Further outcome measures were functional results validated by the DASH score and rate of amputation. In 130 patients (81%) wide tumor excision (R0) was performed and in 19 patients (12%) an amputation was necessary. The 5-year overall survival rate was 70% and the 5-year survival rate in primary tumors was 81% whereas in recurrences 55% relapsed locally. The 10-year overall survival rate was 45% and the 5-year recurrence rate was 18% for primary STS and 43% for recurrent STS. Variance analysis revealed primary versus recurrent tumor, tumor size, resection status and grade of malignancy as independent prognostic factors. Analysis of functional results showed a median DASH score of 37 (0-100; 0=contralateral extremity). The 5-year survival and local recurrence rates are comparable to STS wide resections with safety margins >1 cm for the lower extremities and the trunk. Analysis of prognostic factors revealed resection status and the tumor-free resection margins to be the main goals in STS resection of upper extremity.
Yildirim, Adem; Sürücü, Gülseren Dost; Karamercan, Ayşe; Gedik, Dilay Eken; Atci, Nermin; Dülgeroǧlu, Deniz; Özgirgin, Neşe
2016-11-21
A number of exercises to strengthen the upper extremities are recommended to increase functional independence and quality of life (QoL) in patients with paraplegia. Circuit resistance training (CRT) is a type of progressive resistive exercise performed repeatedly at fixed mechanical exercise stations. The aim of this study was to investigate the potential benefits of CRT for upper extremity muscle strength, functional independence, and QoL in patients with paraplegia. Twenty-six patients with paraplegia who were participating in a conventional rehabilitation program at a tertiary education and research hospital were enrolled in this study. The participants were randomly assigned to two groups. The exercise group participated in the CRT program, which consisted of repetitive exercises for the upper extremities performed at fixed mechanical stations 5 sessions per week for 6 weeks, in addition to conventional rehabilitation. Participants in the control group received only conventional rehabilitation over the same period. We compared the groups with respect to QoL, as well as isokinetic muscle test outcomes in the upper extremities, using the Functional Independence Measure (FIM) and Borg's scale. We observed significant increases in scores on the physical component of the FIM, Borg's scale, and QoL in both the exercise and control groups. Furthermore, the large majority of isokinetic values were significantly more improved in the exercise group compared to the control group. When post-treatment outcomes were compared between the groups, improvements in scores on the physical component of the FIM and in most isokinetic values were significantly greater in the exercise group. This study showed that CRT has positive effects on muscle strength in the upper extremities and the physical disability components of the FIM when added to conventional rehabilitation programs for paraplegic patients. However, we observed no significant improvement in QoL scores after adding CRT to a conventional treatment regime. Randomized trial (Level II).
Situ, Jie; Wu, Jian; Wang, Jing-lin; Zhu, De-xiang; Zhang, Jian-jie; Liu, Wei-wei; Qin, Zhuo-hui
2012-05-01
To study the sympathetic skin response (SSR) to the effects of N-hexane on autonomic nerves function in patients with chronic N-hexane poisoning. The subjects in present study included 30 controls and 37 cases with chronic N-hexane poisoning. Also 37 patients were divided into 3 subgroups (mild, moderate and severe poisoning) according to diagnostic criteria of occupational diseases. All subjects were examined by SSR test and nerve conduction velocity (NCV) test. All patients were reexamined by SSR and NCV every 1 ∼ 2 months. The differences in SSR parameters (latency, amplitude) among groups were observed. In the severe poisoning subgroup, the changes of SSR and NCV parameters (conduction velocity, amplitude) in different poisoning stages were observed. There were significant differences in SSR latency of upper extremity among groups and the significant differences in SSR amplitude of upper and lower extremity among groups (P < 0.05). No significant differences in SSR parameters were found between the adjacent groups (P > 0.05). There were significant differences in SSR latency of upper extremity during different periods and the significant differences in SSR amplitude of upper and lower extremity during different periods among all groups (P < 0.05). The change of SSR parameters consistent with that in NCV. The longest SSR latency of upper extremity and the smallest SSR amplitudes of upper and lower extremity appears 1 - 2 months earlier than that of the smallest action potential amplitude. The damage of autonomic nerves induced by N-hexane increased with poisoning progresses. The damage of autonomic nerves corresponded with the damage of myelin sheath of large myelinated nerves, but which appeared 1 - 2 months earlier than the damage of axon of large myelinated nerves. SSR test may serve as a method to detect the damage of autonomic nerves function in patients with chronic N-hexane poisoning.
Using Free Internet Videogames in Upper Extremity Motor Training for Children with Cerebral Palsy.
Sevick, Marisa; Eklund, Elizabeth; Mensch, Allison; Foreman, Matthew; Standeven, John; Engsberg, Jack
2016-06-07
Movement therapy is one type of upper extremity intervention for children with cerebral palsy (CP) to improve function. It requires high-intensity, repetitive and task-specific training. Tedium and lack of motivation are substantial barriers to completing the training. An approach to overcome these barriers is to couple the movement therapy with videogames. This investigation: (1) tested the feasibility of delivering a free Internet videogame upper extremity motor intervention to four children with CP (aged 8-17 years) with mild to moderate limitations to upper limb function; and (2) determined the level of intrinsic motivation during the intervention. The intervention used free Internet videogames in conjunction with the Microsoft Kinect motion sensor and the Flexible Action and Articulated Skeleton Toolkit software (FAAST) software. Results indicated that the intervention could be successfully delivered in the laboratory and the home, and pre- and post- impairment, function and performance assessments were possible. Results also indicated a high level of motivation among the participants. It was concluded that the use of inexpensive hardware and software in conjunction with free Internet videogames has the potential to be very motivating in helping to improve the upper extremity abilities of children with CP. Future work should include results from additional participants and from a control group in a randomized controlled trial to establish efficacy.
Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong
2017-01-01
Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments’ conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*. PMID:28934173
Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong
2017-09-21
Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments' conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.
Metabolic plasticity of nitrogen assimilation by Porphyra umbilicalis (Linnaeus) Kützing
NASA Astrophysics Data System (ADS)
Kim, Jang K.; Kraemer, George P.; Yarish, Charles
2012-12-01
The physical stresses associated with emersion have long been considered major factors determining the vertical zonation of intertidal seaweeds. We examined Porphyra umbilicalis (Linnaeus) Kützing thalli from the vertical extremes in elevation of an intertidal population ( i.e. upper and lower intertidal zones) to determine whether Porphyra thalli acclimate to different vertical elevations on the shore with different patterns of nitrate uptake and nitrate reductase (NR) and glutamine synthetase (GS) activities in response to different degrees of emersion stress. We found that the nitrate uptake and NR recovery in the emersed tissues took longer in lower intertidal sub-population than in upper intertidal sub-population; and GS activity was also significantly affected by emersion and, interestingly, such an activity was enhanced by emersion of thalli from both upper and lower intertidal zones. These results suggested that intra-population variability in post-emersion recovery of physiological functions such as nutrient uptake and NR activity enables local adaptation and contributes to the wide vertical distribution of P. umbilicalis. The high GS activity during periodic emersion stress may be a protective mechanism enabling P. umbilicalis to assimilate nitrogen quickly when it again becomes available, and may also be an evidence of photorespiration during emersion.
NASA Technical Reports Server (NTRS)
Lessard, Steven; Pansodtee, Pattawong; Robbins, Ash; Baltaxe-Admony, Leya Breanna; Teodorescu, Mircea; Kurniawan,Sri; Agogino, Adrian; Kurniawan, Sri
2017-01-01
Wearable robots can potentially offer their users enhanced stability and strength. These augmentations are ideally designed to actuate harmoniously with the users movements and provide extra force as needed. The creation of such robots, however, is particularly challenging due to the complexity of the underlying human body. In this paper, we present a compliant, robotic exosuit for upper-extremities called CRUX. This exosuit, inspired by tensegrity models of the human arm, features a lightweight (1.3 kg), flexible design for portability. We also show how CRUX maintains full flexibility of the upper-extremities for its users while providing multi- DoF augmentative strength to the major muscles of the arm, as evident by tracking the heart rate of an individual exercising said arm. Exosuits such as CRUX may be useful in physical therapy and in extreme environments where users are expected to exert their bodies to the fullest extent.
A randomized intervention trial to reduce mechanical exposures in the Colombian flower industry.
Barrero, L H; Ceballos, C; Ellegast, R; Pulido, J A; Monroy, M; Berrio, S; Quintana, L A
2012-01-01
Evidence on the effectiveness of ergonomic interventions to reduce mechanical demands and upper-extremity MSDs is scarce in agriculture. We conducted an intervention to reduce mechanical exposures during manual flower cutting through job rotation, education and reduction of force requirements. One-hundred and twenty workers (20 to 60 years old; 89% women) from six companies that cultivate roses participated in this study. Three companies were randomly assigned to control and intervention groups. We studied changes between baseline and follow-up in self-reported effort and upper-extremity postures, kinematics and muscular activity. Most of the observed changes were moderate for both groups. The intervention group showed differential improvements compared to the control group for the maximum wrist radial deviation and forearm pronation, and acceleration of the forearm supination-pronation and elbow flexion-extension; and the muscular activity of the flexor and extensor carpi radialis and the flexor carpi ulnaris. However, we also observed that the maximum ulnar deviation, velocity of the wrist flexion-extension and muscular activity of the extensor carpi ulnaris improved more in the control group. These mixed results may be related to limited time for intervention adjustment, and uncontrolled task changes in the control group. Future research should address these issues and test other solutions.
The effects of pilates on balance, mobility and strength in patients with multiple sclerosis.
Guclu-Gunduz, Arzu; Citaker, Seyit; Irkec, Ceyla; Nazliel, Bijen; Batur-Caglayan, Hale Zeynep
2014-01-01
Although there are evidences as to Pilates developing dynamic balance, muscle strength and flexibility in healthy people, evidences related to its effects on Multiple Sclerosis patients are insufficient. The aims of this study were to investigate the effects of Pilates on balance, mobility, and strength in ambulatory patients with Multiple Sclerosis. Twenty six patients were divided into two groups as experimental (n = 18) and control (n = 8) groups for an 8-week treatment program. The experimental group underwent Pilates and the control group did abdominal breathing and active extremity exercises at home. Balance and mobility were measured with Berg Balance Scale and Timed up and go test, upper and lower muscle strength with hand-held dynamometer. Confidence in balance skills while performing daily activities was evaluated with Activities Specific Balance Confidence Scale. Improvements were observed in balance, mobility, and upper and lower extremity muscle strength in the Pilates group (p < 0.05). No significant differences in any outcome measures were observed in the control group (p > 0.05). Due to its structure which is made up of balance and strengthening exercises, Pilates training may develop balance, mobility and muscle strength of MS patients. For this reason, we think that, Pilates exercises which are appropriate for the disability level of the patient may be suggested.
Shoulder model validation and joint contact forces during wheelchair activities.
Morrow, Melissa M B; Kaufman, Kenton R; An, Kai-Nan
2010-09-17
Chronic shoulder impingement is a common problem for manual wheelchair users. The loading associated with performing manual wheelchair activities of daily living is substantial and often at a high frequency. Musculoskeletal modeling and optimization techniques can be used to estimate the joint contact forces occurring at the shoulder to assess the soft tissue loading during an activity and to possibly identify activities and strategies that place manual wheelchair users at risk for shoulder injuries. The purpose of this study was to validate an upper extremity musculoskeletal model and apply the model to wheelchair activities for analysis of the estimated joint contact forces. Upper extremity kinematics and handrim wheelchair kinetics were measured over three conditions: level propulsion, ramp propulsion, and a weight relief lift. The experimental data were used as input to a subject-specific musculoskeletal model utilizing optimization to predict joint contact forces of the shoulder during all conditions. The model was validated using a mean absolute error calculation. Model results confirmed that ramp propulsion and weight relief lifts place the shoulder under significantly higher joint contact loading than level propulsion. In addition, they exhibit large superior contact forces that could contribute to impingement. This study highlights the potential impingement risk associated with both the ramp and weight relief lift activities. Level propulsion was shown to have a low relative risk of causing injury, but with consideration of the frequency with which propulsion is performed, this observation is not conclusive.
Upper extremity prosthesis user perspectives on unmet needs and innovative technology.
Benz, Heather L; Jia Yao; Rose, Laura; Olgac, Okan; Kreutz, Karen; Saha, Anindita; Civillico, Eugene F
2016-08-01
The needs of individuals with upper limb amputation and congenital limb difference are not being fully met by current prostheses, as evidenced by prosthesis rejection, non-wear, and user reports of pain and challenging activities. Emerging technologies such as dexterous sensorized robotic limbs, osseointegrated prostheses, implantable EMG electrodes, and electrical stimulation for sensory feedback have the potential to address unmet needs, but pose additional risks. We plan to assess upper limb prosthesis user needs and perspectives on these new benefits and risks using an extensive quantitative survey. In preparation for this survey, we report here on qualitative interviews with seven individuals with upper limb amputation or congenital limb difference. Unstructured text was mined using topic modeling and the results compared with identified themes. A more complete understanding of how novel technologies could address real user concerns will inform implementation of new technologies and regulatory decision-making.
Upper Extremity Prosthesis User Perspectives on Unmet Needs and Innovative Technology
Benz, Heather L.; Yao, Jia; Rose, Laura; Olgac, Okan; Kreutz, Karen; Saha, Anindita; Civillico, Eugene F.
2017-01-01
The needs of individuals with upper limb amputation and congenital limb difference are not being fully met by current prostheses, as evidenced by prosthesis rejection, non-wear, and user reports of pain and challenging activities. Emerging technologies such as dexterous sensorized robotic limbs, osseointegrated prostheses, implantable EMG electrodes, and electrical stimulation for sensory feedback have the potential to address unmet needs, but pose additional risks. We plan to assess upper limb prosthesis user needs and perspectives on these new benefits and risks using an extensive quantitative survey. In preparation for this survey, we report here on qualitative interviews with seven individuals with upper limb amputation or congenital limb difference. Unstructured text was mined using topic modeling and the results compared with identified themes. A more complete understanding of how novel technologies could address real user concerns will inform implementation of new technologies and regulatory decision-making. PMID:28268333
Upper Extremity Artificial Limb Control as an Issue Related to Movement and Mobility in Daily Living
ERIC Educational Resources Information Center
Wallace, Steve; Anderson, David I.; Trujillo, Michael; Weeks, Douglas L.
2005-01-01
The 1992 NIH Research Planning Conference on Prosthetic and Orthotic Research for the 21st Century (Childress, 1992) recognized that the field of prosthetics lacks theoretical understanding and empirical studies on learning to control an upper-extremity prosthesis. We have addressed this problem using a novel approach in which persons without…
Ulnar nerve injury associated with trampoline injuries.
Maclin, Melvin M; Novak, Christine B; Mackinnon, Susan E
2004-08-01
This study reports three cases of ulnar neuropathy after trampoline injuries in children. A chart review was performed on children who sustained an ulnar nerve injury from a trampoline accident. In all cases, surgical intervention was required. Injuries included upper-extremity fractures in two cases and an upper-extremity laceration in one case. All cases required surgical exploration with internal neurolysis and ulnar nerve transposition. Nerve grafts were used in two cases and an additional nerve transfer was used in one case. All patients had return of intrinsic hand function and sensation after surgery. Children should be followed for evolution of ulnar nerve neuropathy after upper-extremity injury with consideration for electrical studies and surgical exploration if there is no improvement after 3 months.
Wii-based movement therapy to promote improved upper extremity function post-stroke: a pilot study.
Mouawad, Marie R; Doust, Catherine G; Max, Madeleine D; McNulty, Penelope A
2011-05-01
Virtual-reality is increasingly used to improve rehabilitation outcomes. The Nintendo Wii offers an in-expensive alternative to more complex systems. To investigate the efficacy of Wii-based therapy for post-stroke rehabilitation. Seven patients (5 men, 2 women, aged 42-83 years; 1-38 months post-stroke, mean 15.3 months) and 5 healthy controls (3 men, 2 women, aged 41-71 years) undertook 1 h of therapy on 10 consecutive weekdays. Patients progressively increased home practice to 3 h per day. Functional ability improved for every patient. The mean performance time significantly decreased per Wolf Motor Function Test task, from 3.2 to 2.8 s, and Fugl-Meyer Assessment scores increased from 42.3 to 47.3. Upper extremity range-of-motion increased by 20.1º and 14.33º for passive and active movements, respectively. Mean Motor Activity Log (Quality of Movement scale) scores increased from 63.2 to 87.5, reflecting a transfer of functional recovery to everyday activities. Balance and dexterity did not improve significantly. No significant change was seen in any of these measures for healthy controls, despite improved skill levels for Wii games. An intensive 2-week protocol resulted in significant and clinically relevant improvements in functional motor ability post-stroke. These gains translated to improvement in activities of daily living.
Dabaghi-Richerand, A; Haces-García, F; Capdevila-Leonori, R
2015-01-01
The purpose of this study is to determine the prognostic factors of a satisfactory functional outcome in patients using upper extremity prosthetics with a proximal third forearm stump, and above, level of amputation. All patients with longitudinal deficiencies and traumatic amputations of upper extremity with a level of amputation of proximal third forearm and above were included. A total of 49 patients with unilateral upper extremity amputations that had used the prosthetic for a minimum of 2 years were included in the protocol. The Disability arm shoulder hand (DASH) scale was used to determine a good result with a cut-off of less than 40%. The independent variables were the level of amputation, the etiology for its use, initial age of use and number of hours/day using the prosthesis. It was found that patients with a congenital etiology and those that started using the prosthetic before 6 years of age had better functional results. It was found that when adapting a patient with an upper extremity prosthetic, which has a high rejection rate of up to 49%, better functional outcomes are found in those who started using it before 6 years of age, and preferably because of a congenital etiology. It was also found that the number of hours/day strongly correlates with a favorable functional outcome. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.
"Ballistic Six" Upper-Extremity Plyometric Training for the Pediatric Volleyball Players.
Turgut, Elif; Cinar-Medeni, Ozge; Colakoglu, Filiz F; Baltaci, Gul
2017-09-19
The Ballistic Six exercise program includes commonly used upper-body exercises, and the program is recommended for overhead throwing athletes. The purpose of the current study was to investigate the effects of a 12-week the Ballistic Six upper-extremity plyometric training program on upper-body explosive power, endurance, and reaction time in pediatric overhead athletes. Twenty-eight female pediatric volleyball players participated in the study. The participants were randomly divided into 2 study groups: an intervention group (upper-extremity plyometric training in addition to the volleyball training; n = 14) and a control group (the volleyball training only; n = 14). All the participants were assessed before and after a 12-week training program for upper-body power, strength and endurance, and reaction time. Statistical comparison was performed using an analysis of variance test. Comparisons showed that after a 12-week training program, the Ballistic Six upper-body plyometric training program resulted in more improvements in an overhead medicine ball throwing distance and a push-up performance, as well as greater improvements in the reaction time in the nonthrowing arm when compared with control training. In addition, a 12-week training program was found to be effective in achieving improvements in the reaction time in the throwing arm for both groups similarly. Compared with regular training, upper-body plyometric training resulted in additional improvements in upper-body power and strength and endurance among pediatric volleyball players. The findings of the study provide a basis for developing training protocols for pediatric volleyball players.
Systematic review of the effectiveness of mirror therapy in upper extremity function.
Ezendam, Daniëlle; Bongers, Raoul M; Jannink, Michiel J A
2009-01-01
This review gives an overview of the current state of research regarding the effectiveness of mirror therapy in upper extremity function. A systematic literature search was performed to identify studies concerning mirror therapy in upper extremity. The included journal articles were reviewed according to a structured diagram and the methodological quality was assessed. Fifteen studies were identified and reviewed. Five different patient categories were studied: two studies focussed on mirror therapy after an amputation of the upper limb, five studies focussed on mirror therapy after stroke, five studies focussed on mirror therapy with complex regional pain syndrome type 1 (CRPS1) patients, one study on mirror therapy with complex regional pain syndrome type 2 (CRPS2) and two studies focussed on mirror therapy after hand surgery other than amputation. Most of the evidence for mirror therapy is from studies with weak methodological quality. The present review showed a trend that mirror therapy is effective in upper limb treatment of stroke patients and patients with CRPS, whereas the effectiveness in other patient groups has yet to be determined.
Levanon, Yafa; Gefen, Amit; Lerman, Yehuda; Givon, Uri; Ratzon, Navah Z
2012-01-01
Typing is associated with musculoskeletal disorders (MSDs) caused by multiple risk factors. This control study aimed to evaluate the efficacy of a workplace intervention for reducing MSDs among computer workers. Sixty-six subjects with and without MSD were assigned consecutively to one of three groups: ergonomics intervention (work site and body posture adjustments, muscle activity training and exercises) accompanied with biofeedback training, the same ergonomics intervention without biofeedback and a control group. Evaluation of MSDs, body posture, psychosocial status, upper extremity (UE) kinematics and muscle surface electromyography were carried out before and after the intervention in the workplace and the motion lab. Our main hypothesis that significant differences in the reduction of MSDs will exist between subjects in the study groups and controls was confirmed (χ(2) = 13.3; p = 0.001). Significant changes were found in UE kinematics and posture as well. Both ergonomics interventions effectively reduced MSD and improved body posture. This study aimed to test the efficacy of an individual workplace intervention programme among computer workers by evaluating musculoskeletal disorders (MSDs), body posture, upper extremity kinematics, muscle activity and psychosocial factors were tested. The proposed ergonomics interventions effectively reduced MSDs and improved body posture.
Task-oriented rehabilitation robotics.
Schweighofer, Nicolas; Choi, Younggeun; Winstein, Carolee; Gordon, James
2012-11-01
Task-oriented training is emerging as the dominant and most effective approach to motor rehabilitation of upper extremity function after stroke. Here, the authors propose that the task-oriented training framework provides an evidence-based blueprint for the design of task-oriented robots for the rehabilitation of upper extremity function in the form of three design principles: skill acquisition of functional tasks, active participation training, and individualized adaptive training. The previous robotic systems that incorporate elements of task-oriented trainings are then reviewed. Finally, the authors critically analyze their own attempt to design and test the feasibility of a TOR robot, ADAPT (Adaptive and Automatic Presentation of Tasks), which incorporates the three design principles. Because of its task-oriented training-based design, ADAPT departs from most other current rehabilitation robotic systems: it presents realistic functional tasks in which the task goal is constantly adapted, so that the individual actively performs doable but challenging tasks without physical assistance. To maximize efficacy for a large clinical population, the authors propose that future task-oriented robots need to incorporate yet-to-be developed adaptive task presentation algorithms that emphasize acquisition of fine motor coordination skills while minimizing compensatory movements.
Held, Jeremia P O; Klaassen, Bart; Eenhoorn, Albert; van Beijnum, Bert-Jan F; Buurke, Jaap H; Veltink, Peter H; Luft, Andreas R
2018-01-01
Upper-limb impairments in stroke patients are usually measured in clinical setting using standard clinical assessment. In addition, kinematic analysis using opto-electronic systems has been used in the laboratory setting to map arm recovery. Such kinematic measurements cannot capture the actual function of the upper extremity in daily life. The aim of this study is to longitudinally explore the complementarity of post-stroke upper-limb recovery measured by standard clinical assessments and daily-life recorded kinematics. The study was designed as an observational, single-group study to evaluate rehabilitation progress in a clinical and home environment, with a full-body sensor system in stroke patients. Kinematic data were recorded with a full-body motion capture suit during clinical assessment and self-directed activities of daily living. The measurements were performed at three time points for 3 h: (1) 2 weeks before discharge of the rehabilitation clinic, (2) right after discharge, and (3) 4 weeks after discharge. The kinematic analysis of reaching movements uses the position and orientation of each body segment to derive the joint angles. Newly developed metrics for classifying activity and quality of upper extremity movement were applied. The data of four stroke patients (three mildly impaired, one sever impaired) were included in this study. The arm motor function assessment improved during the inpatient rehabilitation, but declined in the first 4 weeks after discharge. A change in the data (kinematics and new metrics) from the daily-life recording was seen in in all patients. Despite this worsening patients increased the number of reaches they performed during daily life in their home environment. It is feasible to measure arm kinematics using Inertial Measurement Unit sensors during daily life in stroke patients at the different stages of rehabilitation. Our results from the daily-life recordings complemented the data from the clinical assessments and illustrate the potential to identify stroke patient characteristics, based on kinematics, reaching counts, and work area. https://clinicaltrials.gov, identifier NCT02118363.
Work-Related Upper Limb Disorders: A Case Report
Stoyneva, Zlatka Borisova; Dermendjiev, Svetlan; Dermendjiev, Tihomir; Dobrev, Hristo
2015-01-01
In this study the complex interrelationship between physical factors, job stress, lifestyle and genetic factors on symptoms of work-related musculoskeletal disorders of the upper limbs is demonstrated by a case report and discussion of the literature. A 58 year old woman with long lasting complaints of the upper limbs with increasing intensity and duration, generalisation, combined with skin thickness, Raynaud’s phenomenon, joint disorders, arterial and pulmonary hypertension, metabolic lipid dysfunctions is presented. Occupational history proves continuous duration of service at a job with occupational physical static load with numerous repetitive monotonous systematic motions of fingers and hands as a weaver of Persian rugs followed by work at an automated loom and variable labour activities. Though the complaints dated since the time she was a manual weaver, the manifestations of generalized joint degenerative changes, system sclerosis with Raynaud’s phenomenon with similar upper extremities signs and symptoms discount upper limbs musculoskeletal disorder as caused only or mainly by occupational risk factors. The main principles and criteria for occupational diagnosis of musculoskeletal upper limb disorders and legislative requirements for their reglamentation are discussed. PMID:27275213
Bot, Sandra D M; Terwee, Caroline B; van der Windt, Daniëlle A W M; van der Beek, Allard J; Bouter, Lex M; Dekker, Joost
2007-08-01
To study work-related physical and psychosocial risk factors for sick leave among patients who have visited their general practitioner for neck or upper extremity complaints. Three hundred and forty two patients with neck or upper extremity complaints completed self-report questionnaires at baseline and after 3 months. Cox regression models were used to investigate the association between work-related risk factors and sick leave (i.e., lost days from work due to neck or upper extremity complaints in 3 months). Effect modification by sick leave at baseline, sex, worrying and musculoskeletal co-morbidity was evaluated by adding product terms to the regression models. In the subgroup of patients who scored high on the pain copying scale "worrying" the hazard ratio of sick leave was 1.32 (95% CI 1.07-1.62) per 10% increase in heavy physical work. The subgroup of patients who were sitting for long periods of time had a reduced risk of sick leave as compared to patients who did not spend a lot of time sitting, again only in patients who scored high on the pain coping scale "worrying" (adjusted HR=0.17, 95%-CI 0.04-0.72). Other work-related risk factors were not significantly related to sick leave. Heavy physical work increased the risk of sick leave and prolonged sitting reduced the risk of sick leave in a subgroup of patients who worried much about their pain. Additional large longitudinal studies of sufficiently large size among employees with neck or upper extremity complaints are needed to confirm our results.
Factors favorable to frequent extreme precipitation in the upper Yangtze River Valley
NASA Astrophysics Data System (ADS)
Tian, Baoqiang; Fan, Ke
2013-08-01
Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land-sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.
Munaretto, Joseph M; McNitt-Gray, Jill L; Flashner, Henryk; Requejo, Philip S
2013-08-01
Repetitive loading during manual wheelchair propulsion (WCP) is associated with overuse injury to the upper extremity (UE). The aim of this study was to determine how RF redirection and load distribution are affected by changes upper extremity kinematic modifications associated with modifications in seat positions during a WCP task. The aim of this study was to determine how RF redirection and load distribution are affected by upper extremity kinematic changes associated with seat position adjustment during a WCP task. Dynamic simulations using an experiment-based multi-link inverse dynamics model were used to generate solutions for redistributing UE mechanical load in different seating positions without decrements in WCP task performance. Experimental RF and kinematic data were collected for one subject propelling at a self-selected speed and used as input into the model. Shoulder/axle distance, wrist angular position, and RF direction were systematically modified to simulate how the mechanical demand imposed on the upper extremity (elbow and shoulder net joint moments (NJMs) and net joint forces) may vary. Load distribution depended on UE orientation relative to the wheel. At peak force, lower shoulder/axle distances and more anterior wrist positions on the pushrim allowed for more extended elbow positions and reduced total NJM load. Simulation results incorporating subject-specific data may provide mechanically based information to guide clinical interventions that aim to maintain WCP performance and redistribute load by modifying RF direction, seat configuration and hand/rim interaction. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tao, C.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Yoshioka, K.; Kita, H.; Yamazaki, A.; Kasaba, Y.; Yoshikawa, I.; Fujimoto, M.
2016-12-01
Aurora is an important indicator representing the momentum transfer from the fast-rotating outer planet to the magnetosphere and the energy input into the atmosphere through the magnetosphere-ionosphere coupling. Long-term monitoring of Jupiter's northern aurora was achieved by the Extreme Ultraviolet (EUV) spectrometer called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) onboard JAXA's Earth-orbiting planetary space telescope Hisaki until today after its launch in September 2013. We have proceeded the statistical survey of the Jupiter's auroral energy input into the upper atmosphere. The auroral electron energy is estimated using a hydrocarbon color ratio (CR) adopted for the wavelength range of EXCEED, and the emission power in the long wavelength range 138.5-144.8 nm is used as an indicator of total emitted power before hydrocarbon absorption and auroral electron energy flux. Temporal dynamic variation of the auroral intensity was detected when Io's volcanic activity and thus EUV emission from the Io plasma torus are enhanced in the early 2015. Average of the total input power over 80 days increases by 10% with sometimes sporadically more than a factor of 3 upto 7, while the CR indicates the auroral electron energy decrease by 20% during the volcanic event compared to the other period. This indicates much more increase in the current system and Joule heating which contributes heating of the upper atmosphere. We will discuss the impact of this event on the upper atmosphere and ionosphere.
Fractures from trampolines: results from a national database, 2002 to 2011.
Loder, Randall T; Schultz, William; Sabatino, Meagan
2014-01-01
No study specifically analyzes trampoline fracture patterns across a large population. The purpose of this study was to determine such patterns. We queried the National Electronic Injury Surveillance System database for trampoline injuries between 2002 and 2011, and the patients were analyzed by age, sex, race, anatomic location of the injury, geographical location of the injury, and disposition from the emergency department (ED). Statistical analyses were performed with SUDAAN 10 software. Estimated expenses were determined using 2010 data. There were an estimated 1,002,735 ED visits for trampoline-related injuries; 288,876 (29.0%) sustained fractures. The average age for those with fractures was 9.5 years; 92.7% were aged 16 years or younger; 51.7% were male, 95.1% occurred at home, and 9.9% were admitted. The fractures were located in the upper extremity (59.9%), lower extremity (35.7%), and axial skeleton (spine, skull/face, rib/sternum) (4.4%-spine 1.0%, skull/face 2.9%, rib/sternum 0.5%). Those in the axial skeleton were older (16.5 y) than the upper extremity (8.7 y) or lower extremity (10.0 y) (P<0.0001) and more frequently male (67.9%). Lower extremity fractures were more frequently female (54.0%) (P<0.0001). The forearm (37%) and elbow (19%) were most common in the upper extremity; elbow fractures were most frequently admitted (20.0%). The tibia/fibula (39.5%) and ankle (31.5%) were most common in the lower extremity; femur fractures were most frequently admitted (57.9%). Cervical (36.4%) and lumbar (24.7%) were most common locations in the spine; cervical fractures were the most frequently admitted (75.6%). The total ED expense for all trampoline injuries over this 10-year period was $1.002 billion and $408 million for fractures. Trampoline fractures most frequently involve the upper extremity followed by the lower extremity, >90% occur in children. The financial burden to society is large. Further efforts for prevention are needed.
Obesity-related differences in neural correlates of force control.
Mehta, Ranjana K; Shortz, Ashley E
2014-01-01
Greater body segment mass due to obesity has shown to impair gross and fine motor functions and reduce balance control. While recent studies suggest that obesity may be linked with altered brain functions involved in fine motor tasks, this association is not well investigated. The purpose of this study was to examine the neural correlates of motor performance in non-obese and obese adults during force control of two upper extremity muscles. Nine non-obese and eight obese young adults performed intermittent handgrip and elbow flexion exertions at 30% of their respective muscle strengths for 4 min. Functional near infrared spectroscopy was employed to measure neural activity in the prefrontal cortex bilaterally, joint steadiness was computed using force fluctuations, and ratings of perceived exertions (RPEs) were obtained to assess perceived effort. Obesity was associated with higher force fluctuations and lower prefrontal cortex activation during handgrip exertions, while RPE scores remained similar across both groups. No obesity-related differences in neural activity, force fluctuation, or RPE scores were observed during elbow flexion exertions. The study is one of the first to examine obesity-related differences on prefrontal cortex activation during force control of the upper extremity musculature. The study findings indicate that the neural correlates of motor activity in the obese may be muscle-specific. Future work is warranted to extend the investigation to monitoring multiple motor-function related cortical regions and examining obesity differences with different task parameters (e.g., longer duration, increased precision demands, larger muscles, etc.).
ERIC Educational Resources Information Center
Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn
2011-01-01
Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five BAMF ordinal scales designed for quick documentation of gross, fine, and oral motor skill levels. Designed to be independent of age and…
ERIC Educational Resources Information Center
Ringenbach, Shannon D. R; Albert, Andrew R.; Chen, Chih-Chia; Alberts, Jay L.
2014-01-01
The aim of this study was to examine the effectiveness of 2 modes of exercise on cognitive and upper extremity movement functioning in adolescents with Down syndrome (DS). Nine participants randomly completed 3 interventions over 3 consecutive weeks. The interventions were: (a) voluntary cycling (VC), in which participants cycled at their…
Identifying compensatory movement patterns in the upper extremity using a wearable sensor system.
Ranganathan, Rajiv; Wang, Rui; Dong, Bo; Biswas, Subir
2017-11-30
Movement impairments such as those due to stroke often result in the nervous system adopting atypical movements to compensate for movement deficits. Monitoring these compensatory patterns is critical for improving functional outcomes during rehabilitation. The purpose of this study was to test the feasibility and validity of a wearable sensor system for detecting compensatory trunk kinematics during activities of daily living. Participants with no history of neurological impairments performed reaching and manipulation tasks with their upper extremity, and their movements were recorded by a wearable sensor system and validated using a motion capture system. Compensatory movements of the trunk were induced using a brace that limited range of motion at the elbow. Our results showed that the elbow brace elicited compensatory movements of the trunk during reaching tasks but not manipulation tasks, and that a wearable sensor system with two sensors could reliably classify compensatory movements (~90% accuracy). These results show the potential of the wearable system to assess and monitor compensatory movements outside of a lab setting.
Using Free Internet Videogames in Upper Extremity Motor Training for Children with Cerebral Palsy
Sevick, Marisa; Eklund, Elizabeth; Mensch, Allison; Foreman, Matthew; Standeven, John; Engsberg, Jack
2016-01-01
Movement therapy is one type of upper extremity intervention for children with cerebral palsy (CP) to improve function. It requires high-intensity, repetitive and task-specific training. Tedium and lack of motivation are substantial barriers to completing the training. An approach to overcome these barriers is to couple the movement therapy with videogames. This investigation: (1) tested the feasibility of delivering a free Internet videogame upper extremity motor intervention to four children with CP (aged 8–17 years) with mild to moderate limitations to upper limb function; and (2) determined the level of intrinsic motivation during the intervention. The intervention used free Internet videogames in conjunction with the Microsoft Kinect motion sensor and the Flexible Action and Articulated Skeleton Toolkit software (FAAST) software. Results indicated that the intervention could be successfully delivered in the laboratory and the home, and pre- and post- impairment, function and performance assessments were possible. Results also indicated a high level of motivation among the participants. It was concluded that the use of inexpensive hardware and software in conjunction with free Internet videogames has the potential to be very motivating in helping to improve the upper extremity abilities of children with CP. Future work should include results from additional participants and from a control group in a randomized controlled trial to establish efficacy. PMID:27338485
NASA Astrophysics Data System (ADS)
Loikith, Paul C.; Detzer, Judah; Mechoso, Carlos R.; Lee, Huikyo; Barkhordarian, Armineh
2017-10-01
The associations between extreme temperature months and four prominent modes of recurrent climate variability are examined over South America. Associations are computed as the percent of extreme temperature months concurrent with the upper and lower quartiles of the El Niño-Southern Oscillation (ENSO), the Atlantic Niño, the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM) index distributions, stratified by season. The relationship is strongest for ENSO, with nearly every extreme temperature month concurrent with the upper or lower quartiles of its distribution in portions of northwestern South America during some seasons. The likelihood of extreme warm temperatures is enhanced over parts of northern South America when the Atlantic Niño index is in the upper quartile, while cold extremes are often association with the lowest quartile. Concurrent precipitation anomalies may contribute to these relations. The PDO shows weak associations during December, January, and February, while in June, July, and August its relationship with extreme warm temperatures closely matches that of ENSO. This may be due to the positive relationship between the PDO and ENSO, rather than the PDO acting as an independent physical mechanism. Over Patagonia, the SAM is highly influential during spring and fall, with warm and cold extremes being associated with positive and negative phases of the SAM, respectively. Composites of sea level pressure anomalies for extreme temperature months over Patagonia suggest an important role of local synoptic scale weather variability in addition to a favorable SAM for the occurrence of these extremes.
Coenen, Pieter; Willenberg, Lisa; Parry, Sharon; Shi, Joyce W; Romero, Lorena; Blackwood, Diana M; Maher, Christopher G; Healy, Genevieve N; Dunstan, David W; Straker, Leon M
2018-02-01
Given the high exposure to occupational standing in specific occupations, and recent initiatives to encourage intermittent standing among white-collar workers, a better understanding of the potential health consequences of occupational standing is required. We aimed to review and quantify the epidemiological evidence on associations of occupational standing with musculoskeletal symptoms. A systematic review was performed. Data from included articles were extracted and described, and meta-analyses conducted when data were sufficiently homogeneous. Electronic databases were systematically searched. Peer-reviewed articles on occupational standing and musculoskeletal symptoms from epidemiological studies were identified. Of the 11 750 articles screened, 50 articles reporting 49 studies were included (45 cross-sectional and 5 longitudinal; n=88 158 participants) describing the associations of occupational standing with musculoskeletal symptoms, including low-back (39 articles), lower extremity (14 articles) and upper extremity (18 articles) symptoms. In the meta-analysis, 'substantial' (>4 hours/workday) occupational standing was associated with the occurrence of low-back symptoms (pooled OR (95% CI) 1.31 (1.10 to 1.56)). Evidence on lower and upper extremity symptoms was too heterogeneous for meta-analyses. The majority of included studies reported statistically significant detrimental associations of occupational standing with lower extremity, but not with upper extremity symptoms. The evidence suggests that substantial occupational standing is associated with the occurrence of low-back and (inconclusively) lower extremity symptoms, but there may not be such an association with upper extremity symptoms. However, these conclusions are tentative as only limited evidence was found from high-quality, longitudinal studies with fully adjusted models using objective measures of standing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Heavy Tail Behavior of Rainfall Extremes across Germany
NASA Astrophysics Data System (ADS)
Castellarin, A.; Kreibich, H.; Vorogushyn, S.; Merz, B.
2017-12-01
Distributions are termed heavy-tailed if extreme values are more likely than would be predicted by probability distributions that have exponential asymptotic behavior. Heavy-tail behavior often leads to surprise, because historical observations can be a poor guide for the future. Heavy-tail behavior seems to be widespread for hydro-meteorological extremes, such as extreme rainfall and flood events. To date there have been only vague hints to explain under which conditions these extremes show heavy-tail behavior. We use an observational data set consisting of 11 climate variables at 1440 stations across Germany. This homogenized, gap-free data set covers 110 years (1901-2010) at daily resolution. We estimate the upper tail behavior, including its uncertainty interval, of daily precipitation extremes for the 1,440 stations at the annual and seasonal time scales. Different tail indicators are tested, including the shape parameter of the Generalized Extreme Value distribution, the upper tail ratio and the obesity index. In a further step, we explore to which extent the tail behavior can be explained by geographical and climate factors. A large number of characteristics is derived, such as station elevation, degree of continentality, aridity, measures for quantifying the variability of humidity and wind velocity, or event-triggering large-scale atmospheric situation. The link between the upper tail behavior and these characteristics is investigated via data mining methods capable of detecting non-linear relationships in large data sets. This exceptionally rich observational data set, in terms of number of stations, length of time series and number of explaining variables, allows insights into the upper tail behavior which is rarely possible given the typical observational data sets available.
Intraosseous Ganglion Cyst of Olecranon
Zarezadeh, Abolghasem; Nourbakhsh, Mohsen; Shemshaki, Hamidreza; Etemadifar, Mohammad Reza; Mazoochian, Farhad
2012-01-01
Intraosseous ganglia are benign cysts that usually can be seen in lower extremity; especially around ankle. These cysts have fewer incidences in upper extremity, mainly around the wrist. They are extremely rare in olecranon. These lesions are often asymptomatic. Patient was a 75-year-old man who had trauma many years ago. When he came to our clinic, he complained of severe pain around his elbow that he could not do ordinary activity. He had local tenderness in elbow and 30 degree limitation in extension. In radiography, lytic, multiloculated lesion existed in region of olecranon. After excisional biopsy was done, cavity was cleaned completely with curette and was filled with autogenous bone. At 10-year follow-up, the patient was completely asymptomatic. Control radiograph showed cavity filled completely by bone; there was no evidence of relapse. PMID:22973489
ERIC Educational Resources Information Center
Park, Eun Sook; Sim, Eun Geol; Rha, Dong-wook
2011-01-01
The aims of this study were to investigate the nature and extent of upper limb deformities via the use of various classifications, and to analyze the relationship between upper limb deformities and gross motor or upper limb functionality levels. Upper extremity data were collected from 234 children with spastic cerebral palsy (CP) who were…
Online Health Information Seeking in Hand and Upper Extremity Surgery.
Özkan, Sezai; Mellema, Jos J; Nazzal, Adam; Lee, Sang-Gil; Ring, David
2016-12-01
Information gathering is a key component of shared decision making and has a measurable effect on treatment decisions. Access to health information might improve quality of care in hand surgery. Our purpose was to identify socio-demographic, condition-related, and psychosocial factors associated with online information-seeking behavior in patients with hand and upper-extremity conditions. From June 2015 to February 2016, we enrolled 134 patients with an upper-extremity condition who presented to an outpatient hand surgery office at an urban level I trauma center in this cross-sectional study. Participants provided socio-demographic information and completed online questionnaires assessing their online information-seeking behavior, pain intensity, symptoms of depression, and pain interference, and an upper extremity-specific, patient-reported outcome measure. A total of 57 patients (43%) sought information regarding their condition online before their visit. Compared with patients with no online information-seeking behavior, patients who sought information online were more educated. Psychosocial and condition-related factors were not associated with online information seeking. In multivariable analysis, education in years and involvement of the dominant upper limb were independently associated with online information-seeking behavior. Education in years and involvement of the dominant upper limb were independently associated with online information-seeking behavior but psychosocial and condition-related factors were not. As health information seeking is becoming an integral part of the modern day clinical experience, efforts to make online information more appealing and useful to people of all education levels are merited. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Wei, Jiao; Herrler, Tanja; Gu, Bin; Yang, Mei; Li, Qingfeng; Dai, Chuanchang; Xie, Feng
2018-05-01
The repair of extensive upper limb skin lesions in pediatric patients is extremely challenging due to substantial limitations of flap size and donor-site morbidity. We aimed to create an oversize preexpanded flap based on intercostal artery perforators for large-scale resurfacing of the upper extremity in children. Between March 2013 and August 2016, 11 patients underwent reconstructive treatment for extensive skin lesions in the upper extremity using a preexpanded intercostal artery perforator flap. Preoperatively, 2 to 4 candidate perforators were selected as potential pedicle vessels based on duplex ultrasound examination. After tissue expander implantation in the thoracodorsal area, regular saline injections were performed until the expanded flap was sufficient in size. Then, a pedicled flap was formed to resurface the skin lesion of the upper limb. The pedicles were transected 3 weeks after flap transfer. Flap survival, complications, and long-term outcome were evaluated. The average time of tissue expansion was 133 days with a mean final volume of 1713 mL. The thoracoabdominal flaps were based on 2 to 6 pedicles and used to resurface a mean skin defect area of 238 cm ranging from 180 to 357 cm. In all cases, primary donor-site closure was achieved. Marginal necrosis was seen in 5 cases. The reconstructed limbs showed satisfactory outcome in both aesthetic and functional aspects. The preexpanded intercostal artery perforator flap enables 1-block repair of extensive upper limb skin lesions. Due to limited donor-site morbidity and a pedicled technique, this resurfacing approach represents a useful tool especially in pediatric patients.
Lessard, Steven; Pansodtee, Pattawong; Robbins, Ash; Baltaxe-Admony, Leya Breanna; Trombadore, James M; Teodorescu, Mircea; Agogino, Adrian; Kurniawan, Sri
2017-07-01
Wearable robots can potentially offer their users enhanced stability and strength. These augmentations are ideally designed to actuate harmoniously with the user's movements and provide extra force as needed. The creation of such robots, however, is particularly challenging due to the underlying complexity of the human body. In this paper, we present a compliant, robotic exosuit for upper extremities called CRUX. This exosuit, inspired by tensegrity models of the human arm, features a lightweight (1.3 kg), flexible multi-joint design for portable augmentation. We also illustrate how CRUX maintains the full range of motion of the upper-extremities for its users while providing multi-DoF strength amplification to the major muscles of the arm, as evident by tracking the heart rate of an individual exercising said arm. Exosuits such as CRUX may be useful in physical therapy and in extreme environments where users are expected to exert their bodies to the fullest extent.
Extremely Painful Multifocal Acquired Predominant Axonal Sensorimotor Neuropathy of the Upper Limb.
Lieba-Samal, Doris; van Eijk, Jeroen J J; van Rosmalen, Marieke H J; van Balken, Irene M F; Verrips, Aad; Mostert, Jop; Pillen, Sigrid; van Alfen, Nens
2018-06-01
The differential diagnosis of upper extremity mononeuritis multiplex includes neuralgic amyotrophy, vasculitic neuropathy, and Lewis-Sumner syndrome. We describe 3 patients initially suspected of neuralgic amyotrophy, who had an extremely painful, protracted, progressive disease course, not fitting one of these established diagnoses. Nerve ultrasonography showed focal caliber changes of the roots, plexus, and limb nerves. Electromyography showed predominant multifocal axonopathy. Ongoing autoimmune neuropathy was suspected. Steroid treatment provided temporary relief, and intravenous immunoglobulin A sustained pain decrease and functional improvement. These patients appear to have extremely painful axonal inflammatory neuropathy, with a good response to immune-modulating treatment. © 2017 by the American Institute of Ultrasound in Medicine.
Hoga-Miura, Koji; Ae, Michiyoshi; Fujii, Norihisa; Yokozawa, Toshiharu
2016-10-01
This study investigated the function of the upper extremities of elite race walkers during official 20 km races, focusing on the angular momentum about the vertical axis and other parameters of the upper extremities. Sixteen walkers were analysed using the three-dimensional direct linear transformation method during three official men's 20 km walking races. The subjects, included participants at the Olympics and World Championships, who finished without disqualification and had not been disqualified during the two years prior to or following the races analysed in the present study. The angular momenta of the upper and lower body were counterbalanced as in running and normal walking. The momentum of the upper body was mainly generated by the upper extremities. The joint force moment of the right shoulder and the joint torque at the left shoulder just before right toe-off were significantly correlated with the walking speed. These were counterbalanced by other moments and torques to the torso torque, which worked to obtain a large mechanical energy flow from the recovery leg to the support leg in the final phase of the support phase. Therefore, a function of the shoulder torque was to counterbalance the torso torque to gain a fast walking speed with substantial mechanical energy flow.
The Effect of the Weight of Equipment on Muscle Activity of the Lower Extremity in Soldiers
Lindner, Tobias; Schulze, Christoph; Woitge, Sandra; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer
2012-01-01
Due to their profession and the tasks it entails, soldiers are exposed to high levels of physical activity and strain. This can result in overexertion and pain in the locomotor system, partly caused by carrying items of equipment. The aim of this study was to analyse the extent of muscle activity in the lower extremities caused by carrying specific items of equipment. For this purpose, the activity of selected groups of muscles caused by different items of equipment (helmet, carrying strap, backpack, and rifle) in the upper and lower leg was measured by recording dynamic surface electromyograms. Electrogoniometers were also used to measure the angle of the knee over the entire gait cycle. In addition to measuring muscle activity, the study also aimed to determine out what influence increasing weight load has on the range of motion (ROM) of the knee joint during walking. The activity of recorded muscles of the lower extremity, that is, the tibialis anterior, peroneus longus, gastrocnemius lateralis, gastrocnemius medialis, rectus femoris, and biceps femoris, was found to depend on the weight of the items of equipment. There was no evidence, however, that items of equipment weighing a maximum of 34% of their carrier's body weight had an effect on the ROM of the knee joint. PMID:22973179
Taghizadeh, Ghorban; Azad, Akram; Kashefi, Sepiede; Fallah, Soheila; Daneshjoo, Fatemeh
2017-11-14
Blinded randomized controlled trial. Patients with Parkinson disease (PD) have sensory problems, but there is still no accurate understanding of the effects of sensory-motor interventions on PD. To investigate the effects of sensory-motor training (SMT) on hand and upper extremity sensory and motor function in patients with PD. Forty patients with PD were allocated to the SMT group or the control group (CG) (mean ages ± standard deviation: SMT, 61.05 ± 13.9 years; CG, 59.15 ± 11.26 years). The CG received the common rehabilitation therapies, whereas the SMT group received SMT. The SMT included discrimination of temperatures, weights, textures, shapes, and objects and was performed 5 times each week for 2 weeks. Significantly reducing the error rates in the haptic object recognition test (dominant hand [DH]: F = 15.36, P = .001, and effect size [ES] = 0.29; nondominant hand [NDH]: F = 9.33, P = .004, and ES = 0.21) and the error means in the wrist proprioception sensation test (DH: F = 9.11, P = .005, and ES = 0.19; NDH: F = 13.04, P = .001, and ES = 0.26) and increasing matched objects in the hand active sensation test (DH: F = 12.15, P = .001, and ES = 0.24; NDH: F = 5.03, P = .03, and ES = 0.12) founded in the SMT. Also, the DH (F = 6.65, P = .01, and ES = 0.15), both hands (F = 7.61, P = .009, and ES = 0.17), and assembly (F = 7.02, P = .01, and ES = 0.15) subtests of fine motor performance, as well as DH (F = 10.1, P = .003, and ES = 0.21) and NDH (F = 8.37, P = .006, and ES = 0.18) in upper extremity functional performance, were improved in the SMT. SMT improved hand and upper extremity sensory-motor function in patients with PD. The SMT group showed improved sensory and motor function. But these results were limited to levels 1 to 3 of the Hoehn and Yahr Scale. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Revised upper limb module for spinal muscular atrophy: Development of a new module.
Mazzone, Elena S; Mayhew, Anna; Montes, Jacqueline; Ramsey, Danielle; Fanelli, Lavinia; Young, Sally Dunaway; Salazar, Rachel; De Sanctis, Roberto; Pasternak, Amy; Glanzman, Allan; Coratti, Giorgia; Civitello, Matthew; Forcina, Nicola; Gee, Richard; Duong, Tina; Pane, Marika; Scoto, Mariacristina; Pera, Maria Carmela; Messina, Sonia; Tennekoon, Gihan; Day, John W; Darras, Basil T; De Vivo, Darryl C; Finkel, Richard; Muntoni, Francesco; Mercuri, Eugenio
2017-06-01
There is a growing need for a robust clinical measure to assess upper limb motor function in spinal muscular atrophy (SMA), as the available scales lack sensitivity at the extremes of the clinical spectrum. We report the development of the Revised Upper Limb Module (RULM), an assessment specifically designed for upper limb function in SMA patients. An international panel with specific neuromuscular expertise performed a thorough review of scales currently available to assess upper limb function in SMA. This review facilitated a revision of the existing upper limb function scales to make a more robust clinical scale. Multiple revisions of the scale included statistical analysis and captured clinically relevant changes to fulfill requirements by regulators and advocacy groups. The resulting RULM scale shows good reliability and validity, making it a suitable tool to assess upper extremity function in the SMA population for multi-center clinical research. Muscle Nerve 55: 869-874, 2017. © 2016 Wiley Periodicals, Inc.
Pérez-Cruzado, David; Merchán-Baeza, Jose Antonio; González-Sánchez, Manuel; Cuesta-Vargas, Antonio I
2017-04-01
Stroke is a leading cause of disability in developed countries. One of the most widespread techniques in clinical practice is mirror therapy (MT). To determine the effectiveness of MT over other methods of intervention in the recovery of upper limb function in people who have had a stroke. A systematic review was conducted. The search string was established based on the last systematic review about MT that dated from 2009: "upper extremity" OR "upper limb "AND "mirror therapy" AND stroke. For this search Pubmed, Scopus and SciELO databases were used. Fifteen studies were included in the systematic review. Recovery of the upper limb, upper limb function and gross manual dexterity were frequently measured in these studies. In the primary variables in promoting recovery, MT alone showed better results in acute and chronic stroke patients in upper limb functioning than either conventional rehabilitation (CR) or CR plus MT. PROSPERO registration number: CRD42015026869. © 2016 Occupational Therapy Australia.
Krucoff, Max O; Cook, Steven; Adogwa, Owoicho; Moreno, Jessica; Yang, Siyun; Xie, Jichun; Firempong, Alexander O; Lad, Nandan; Bagley, Carlos A
2017-01-01
To examine the influence of race, gender, and socioeconomic factors on presentations and outcomes of adult Chiari I malformations. The charts of 638 adult patients with Chiari I malformations were reviewed, and 287 patients were included in the study. Race, gender, insurance status, symptoms, depth of cerebellar tonsillar herniation, and presence of syringomyelia were examined as covariates in multivariate logistic regression models to identify independent predictors of presentation and outcome. Patients with public insurance had a longer stay in the hospital (P = 0.01). A higher proportion of male patients presented with upper extremity weakness (P = 0.01), lower extremity weakness (P = 0.040), and cranial nerve findings (P = 0.02). Men had shorter onset to diagnosis times (P = 0.02), worse tonsillar herniation (P = 0.03), and more severe symptoms (P = 0.05). White patients more frequently presented with back pain (P = 0.03), and African American patients more frequently presented with lower extremity weakness (P = 0.01). African Americans had worse tonsillar herniation (P < 0.01) and were more likely to present with syringomyelia (P = 0.01). Multivariate regression analysis revealed that back pain (P < 0.01), upper extremity weakness (P ≤ 0.01), upper extremity paresthesias (P < 0.01), and upper with lower extremity paresthesias (P = 0.04) were significant predictors of syringomyelia. The only independent predictor of outcome was size of tonsillar herniation (P = 0.03). Significant differences in presentation of Chiari I malformation resulting from gender, race, and insurance status were quantified for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
This study aimed to statistically and hydrologically assess the performance of four latest and widely used satellite–gauge combined precipitation estimates (SGPEs), namely CRT, BLD, 3B42CDR, and 3B42 for the extreme precipitation and stream'ow scenarios over the upper Yellow river basin (UYRB) in ch...
Upper Extremity Injuries in Tennis Players: Diagnosis, Treatment, and Management
Chung, Kevin C.; Lark, Meghan E.
2016-01-01
Synopsis Upper extremity tennis injuries are most commonly characterized as overuse injuries to the wrist, elbow and shoulder. The complex anatomy of these structures and their interaction with biomechanical properties of tennis strokes contributes to the diagnostic challenges. A thorough understanding of tennis kinetics, in combination with the current literature surrounding diagnostic and treatment methods, will improve clinical decision-making. PMID:27886833
Grobet, Cécile; Marks, Miriam; Tecklenburg, Linda; Audigé, Laurent
2018-04-13
The EuroQol-5 Dimension (EQ-5D) is the most widely used generic instrument to measure quality of life (QoL), yet its application in upper extremity orthopaedics as well as its measurement properties remain largely undefined. We implemented a systematic literature review to provide an overview of the application of EQ-5D in patients with upper extremity disorders and analyse its measurement properties. We searched Medline, EMBASE, Cochrane and Scopus databases for clinical studies including orthopaedic patients with surgical interventions of the upper extremity who completed the EQ-5D. For all included studies, the use of EQ-5D and quantitative QoL data were described. Validation studies of EQ-5D were assessed according to COSMIN guidelines and standard measurement properties were examined. Twenty-three studies were included in the review, 19 of which investigated patients with an intervention carried out at the shoulder region. In 15 studies, EQ-5D assessed QoL as the primary outcome. Utility index scores in non-trauma patients generally improved postoperatively, whereas trauma patients did not regain their recalled pre-injury QoL levels. EQ-5D measurement properties were reported in three articles on proximal humerus fractures and carpal tunnel syndrome. Positive ratings were seen for construct validity (Spearman correlation coefficient ≥ 0.70 with the Short Form (SF)-12 or SF-6D health surveys) and reliability (intraclass correlation coefficient ≥ 0.77) with intermediate responsiveness (standardised response means: 0.5-0.9). However, ceiling effects were identified with 16-48% of the patients scoring the maximum QoL. The methodological quality of the three articles varied from fair to good. For surgical interventions of the upper extremity, EQ-5D was mostly applied to assess QoL as a primary outcome in patients with shoulder disorders. Investigations of the measurement properties were rare, but indicate good reliability and validity as well as moderate responsiveness in patients with upper extremity conditions.
Slijper, Angelique; Svensson, Karin E; Backlund, Per; Engström, Henrik; Sunnerhagen, Katharina Stibrant
2014-03-13
The objective of the present study was to assess whether computer game-based training in the home setting in the late phase after stroke could improve upper extremity motor function. Twelve subjects with prior stroke were recruited; 11 completed the study. The study had a single subject design; there was a baseline test (A1), a during intervention test (B) once a week, a post-test (A2) measured directly after the treatment phase, plus a follow-up (C) 16-18 weeks after the treatment phase. Information on motor function (Fugl-Meyer), grip force (GrippitR) and arm function in activity (ARAT, ABILHAND) was gathered at A1, A2 and C. During B, only Fugl-Meyer and ARAT were measured. The intervention comprised five weeks of game-based computer training in the home environment. All games were designed to be controlled by either the affected arm alone or by both arms. Conventional formulae were used to calculate the mean, median and standard deviations. Wilcoxon's signed rank test was used for tests of dependent samples. Continuous data were analyzed by methods for repeated measures and ordinal data were analyzed by methods for ordered multinomial data using cumulative logistic models. A p-value of < 0.05 was considered statistically significant. Six females and five males, participated in the study with an average age of 58 years (range 26-66). FMA-UE A-D (motor function), ARAT, the maximal grip force and the mean grip force on the affected side show significant improvements at post-test and follow-up compared to baseline. No significant correlation was found between the amount of game time and changes in the outcomes investigated in this study. The results indicate that computer game-based training could be a promising approach to improve upper extremity function in the late phase after stroke, since in this study, changes were achieved in motor function and activity capacity.
Hara, Yukihiro
2008-02-01
In recent years, our understanding of motor learning, neuroplasticity, and functional recovery after the occurrence of brain lesion has grown significantly. New findings in basic neuroscience have stimulated research in motor rehabilitation. Repeated motor practice and motor activity in a real-world environment have been identified in several prospective studies as favorable for motor recovery in stroke patients. Electrical stimulation can be applied in a variety of ways to the hemiparetic upper extremity following stroke. In this paper, an overview of current research into clinical and therapeutic applications of functional electrical stimulation (FES) is presented. In particular, electromyography (EMG)-initiated electrical muscle stimulation--but not electrical muscle stimulation alone--improves the motor function of the hemiparetic arm and hand. Triggered electrical stimulation is reported to be more effective than untriggered electrical stimulation in facilitating upper extremity motor recovery following stroke. Power-assisted FES induces greater muscle contraction by electrical stimulation in proportion to the voluntary integrated EMG signal picked up, which is regulated by a closed-loop control system. Power-assisted FES and motor point block for antagonist muscles have been applied with good results as a new hybrid FES therapy in an outpatient rehabilitation clinic for patients with stroke. Furthermore, a daily home program therapy with power-assisted FES using new equipment has been able to effectively improve wrist and finger extension and shoulder flexion. Proprioceptive sensory feedback might play an important role in power-assisted FES therapy. Although many physiotherapeutic modalities have been established, conclusive proof of their benefit and physiological models of their effects on neuronal structures and processes are still missing. A multichannel near-infrared spectroscopy study to noninvasively and dynamically measure hemoglobin levels in the brain during functional activity has shown that cerebral blood flow in the sensory-motor cortex on the injured side is higher during a power-assisted FES session than during simple active movement or simple electrical stimulation. Nevertheless, evidence-based strategies for motor rehabilitation are more easily available, particularly for patients with hemiparesis.
Hand grips strength effect on motor function in human brain using fMRI: a pilot study
NASA Astrophysics Data System (ADS)
Ismail, S. S.; Mohamad, M.; Syazarina, S. O.; Nafisah, W. Y.
2014-11-01
Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain.
Jensen, Jens Christian; Haahr, Jens Peder; Frost, Poul; Andersen, Johan Hviid
2013-10-01
Musculoskeletal pain conditions remain a major cause of care-seeking in general practice. Not all patients with musculoskeletal pain (MP) seek care at their general practitioner (GP), but for those who do, the GP's knowledge of what work-related factors might have influenced the patient's decision to seek care could be important in order to give more well-founded advice to our patients. The objective of this study was to elucidate the effects of workloads on care-seeking for back pain or upper extremity pain during an eighteen-month follow-up period. This is a prospective study with a baseline questionnaire and eighteen-month follow-up. Among the registered patients of 8 GPs, we identified 8,517 persons between 17 and 65 years of age, who all received the questionnaire. A total of 5,068 (59.5 %) persons answered. During the eighteen months of follow-up, we used the International Classification for Primary Care (ICPC) to identify all care-seekers with either back pain or upper extremity pain. Of these, all currently employed persons were included in our analysis, in all 4,325 persons. For analysis, we used Cox proportional hazards regression analysis. Analyses were stratified by gender. High levels of heavy lifting, defined as the upper tertile on a categorical scale, were associated with care-seeking for back pain (HR 1.90 [95 % CI: 1.14-3.15]) and upper extremity pain (HR 2.09 [95 % CI: 1.30-3.38]) among males, but not in a statistically significant way among females. Repetitive work and psychosocial factors did not have any statistically significant impact on care-seeking for neither back pain nor upper extremity pain. Work-related factors such as heavy lifting do, to some extent, contribute to care-seeking with MP. We suggest that asking the patient about physical workloads should be routinely included in consultations dealing with MP.
Giladi, Aviram M; Shanmugakrishnan, R Raja; Venkatramani, Hari; Raja Sekaran, S; Chung, Kevin C; Sabapathy, S Raja
2017-06-01
At Ganga Hospital in Coimbatore, India, a unique approach is applied to treat massive upper limb injuries. However, long-term outcomes of complex reconstruction performed in the resource-limited setting are not known. This hinders understanding of outcomes and disability from these injuries and prevents systematically addressing care delivery around upper extremity trauma in the developing world. This project aims to analyze the details of the unique Ganga Hospital reconstruction experience and use patient-reported outcome measures for the first time in this patient population to evaluate post-injury recovery and disability . Forty-six patients were evaluated 6 months or more after massive proximal upper extremity reconstruction at Ganga Hospital. Patients completed functional tests, Jebsen-Taylor test (JTT), and patient-reported outcomes (PROs)-Michigan Hand Questionnaire (MHQ), Disability of Arm, Shoulder, and Hand questionnaire (DASH), and Short-Form 36 (SF-36). Correlations between metrics were assessed with Pearson's correlation coefficients. Linear regression modeling evaluated associations between severity, reconstruction, and outcomes. MHQ and DASH results correlated with functional test performance, JTT performance, and SF-36 scores (Pearson's coefficients all ≥0.33, p ≤ 0.05). In this cohort, mean MHQ score was 79 ± 15 and mean DASH score was 13 ± 15, which are not significantly different than scores for long-term outcomes after other complex upper extremity procedures. The following factors predicted PROs and functional performance after reconstruction: extent of soft tissue reconstruction, multi-segmental ulna fractures, median nerve injury, and ability for patients to return to work and maintain their job after injury. Complex proximal upper extremity salvage can be performed in the resource-limited setting with excellent long-term functional and patient-reported outcomes. PRO questionnaires are useful for reporting outcomes that correlate to functional and sensory testing and may be used to assess post-traumatic disability.
Esmaeilzadeh, Sina; Ozcan, Emel; Capan, Nalan
2014-01-01
The aim of the study was to determine effects of ergonomic intervention on work-related upper extremity musculoskeletal disorders (WUEMSDs) among computer workers. Four hundred computer workers answered a questionnaire on work-related upper extremity musculoskeletal symptoms (WUEMSS). Ninety-four subjects with WUEMSS using computers at least 3 h a day participated in a prospective, randomized controlled 6-month intervention. Body posture and workstation layouts were assessed by the Ergonomic Questionnaire. We used the Visual Analogue Scale to assess the intensity of WUEMSS. The Upper Extremity Function Scale was used to evaluate functional limitations at the neck and upper extremities. Health-related quality of life was assessed with the Short Form-36. After baseline assessment, those in the intervention group participated in a multicomponent ergonomic intervention program including a comprehensive ergonomic training consisting of two interactive sessions, an ergonomic training brochure, and workplace visits with workstation adjustments. Follow-up assessment was conducted after 6 months. In the intervention group, body posture (p < 0.001) and workstation layout (p = 0.002) improved over 6 months; furthermore, intensity (p < 0.001), duration (p < 0.001), and frequency (p = 0.009) of WUEMSS decreased significantly in the intervention group compared with the control group. Additionally, the functional status (p = 0.001), and physical (p < 0.001), and mental (p = 0.035) health-related quality of life improved significantly compared with the controls. There was no improvement of work day loss due to WUEMSS (p > 0.05). Ergonomic intervention programs may be effective in reducing ergonomic risk factors among computer workers and consequently in the secondary prevention of WUEMSDs.
Sensory stimulation augments the effects of massed practice training in persons with tetraplegia.
Beekhuizen, Kristina S; Field-Fote, Edelle C
2008-04-01
To compare functional changes and cortical neuroplasticity associated with hand and upper extremity use after massed (repetitive task-oriented practice) training, somatosensory stimulation, massed practice training combined with somatosensory stimulation, or no intervention, in persons with chronic incomplete tetraplegia. Participants were randomly assigned to 1 of 4 groups: massed practice training combined with somatosensory peripheral nerve stimulation (MP+SS), somatosensory peripheral nerve stimulation only (SS), massed practice training only (MP), and no intervention (control). University medical school setting. Twenty-four subjects with chronic incomplete tetraplegia. Intervention sessions were 2 hours per session, 5 days a week for 3 weeks. Massed practice training consisted of repetitive practice of functional tasks requiring skilled hand and upper-extremity use. Somatosensory stimulation consisted of median nerve stimulation with intensity set below motor threshold. Pre- and post-testing assessed changes in functional hand use (Jebsen-Taylor Hand Function Test), functional upper-extremity use (Wolf Motor Function Test), pinch grip strength (key pinch force), sensory function (monofilament testing), and changes in cortical excitation (motor evoked potential threshold). The 3 groups showed significant improvements in hand function after training. The MP+SS and SS groups had significant improvements in upper-extremity function and pinch strength compared with the control group, but only the MP+SS group had a significant change in sensory scores compared with the control group. The MP+SS and MP groups had greater change in threshold measures of cortical excitability. People with chronic incomplete tetraplegia obtain functional benefits from massed practice of task-oriented skills. Somatosensory stimulation appears to be a valuable adjunct to training programs designed to improve hand and upper-extremity function in these subjects.
Armijo-Olivo, Susan; Woodhouse, Linda J; Steenstra, Ivan A; Gross, Douglas P
2016-12-01
To determine whether the Disabilities of the Arm, Shoulder, and Hand (DASH) tool added to the predictive ability of established prognostic factors, including patient demographic and clinical outcomes, to predict return to work (RTW) in injured workers with musculoskeletal (MSK) disorders of the upper extremity. A retrospective cohort study using a population-based database from the Workers' Compensation Board of Alberta (WCB-Alberta) that focused on claimants with upper extremity injuries was used. Besides the DASH, potential predictors included demographic, occupational, clinical and health usage variables. Outcome was receipt of compensation benefits after 3 months. To identify RTW predictors, a purposeful logistic modelling strategy was used. A series of receiver operating curve analyses were performed to determine which model provided the best discriminative ability. The sample included 3036 claimants with upper extremity injuries. The final model for predicting RTW included the total DASH score in addition to other established predictors. The area under the curve for this model was 0.77, which is interpreted as fair discrimination. This model was statistically significantly different than the model of established predictors alone (p<0.001). When comparing the DASH total score versus DASH item 23, a non-significant difference was obtained between the models (p=0.34). The DASH tool together with other established predictors significantly helped predict RTW after 3 months in participants with upper extremity MSK disorders. An appealing result for clinicians and busy researchers is that DASH item 23 has equal predictive ability to the total DASH score. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Terwee, Caroline B.; van der Windt, Daniëlle A. W. M.; van der Beek, Allard J.; Bouter, Lex M.; Dekker, Joost
2007-01-01
Objectives To study work-related physical and psychosocial risk factors for sick leave among patients who have visited their general practitioner for neck or upper extremity complaints. Methods Three hundred and forty two patients with neck or upper extremity complaints completed self-report questionnaires at baseline and after 3 months. Cox regression models were used to investigate the association between work-related risk factors and sick leave (i.e., lost days from work due to neck or upper extremity complaints in 3 months). Effect modification by sick leave at baseline, sex, worrying and musculoskeletal co-morbidity was evaluated by adding product terms to the regression models. Results In the subgroup of patients who scored high on the pain copying scale “worrying” the hazard ratio of sick leave was 1.32 (95% CI 1.07–1.62) per 10% increase in heavy physical work. The subgroup of patients who were sitting for long periods of time had a reduced risk of sick leave as compared to patients who did not spend a lot of time sitting, again only in patients who scored high on the pain coping scale “worrying” (adjusted HR = 0.17, 95%-CI 0.04–0.72). Other work-related risk factors were not significantly related to sick leave. Conclusions Heavy physical work increased the risk of sick leave and prolonged sitting reduced the risk of sick leave in a subgroup of patients who worried much about their pain. Additional large longitudinal studies of sufficiently large size among employees with neck or upper extremity complaints are needed to confirm our results. PMID:17410376
Stotz, Paula J.; Normandin, Sarah C.; Robinovitch, Stephen N.
2010-01-01
Background Falls are the number one cause of unintentional injury in older adults. The protective response of “breaking the fall” with the outstretched hand is often essential for avoiding injury to the hip and head. In this study, we compared the ability of young and older women to absorb the impact energy of a fall in the outstretched arms. Methods Twenty young (mean age = 21 years) and 20 older (M = 78 years) women were instructed to slowly lower their body weight, similar to the descent phase of a push-up, from body lean angles ranging from 15° to 90°. Measures were acquired of peak upper extremity energy absorption, arm deflection, and hand contact force. Results On average, older women were able to absorb 45% less energy in the dominant arm than young women (1.7 ± 0.5% vs 3.1 ± 0.4% of their body weight × body height; p < .001). These results suggest that, even when both arms participate equally, the average energy content of a forward fall exceeds by 5-fold the average energy that our older participants could absorb and exceeds by 2.7-fold the average energy that young participants could absorb. Conclusions During a descent movement that simulates fall arrest, the energy-absorbing capacity of the upper extremities in older women is nearly half that of young women. Absorbing the full energy of a fall in the upper extremities is a challenging task even for healthy young women. Strengthening of upper extremity muscles should enhance this ability and presumably reduce the risk for injury to the hip and head during a fall. PMID:19861641
Sran, Meena M; Stotz, Paula J; Normandin, Sarah C; Robinovitch, Stephen N
2010-03-01
Falls are the number one cause of unintentional injury in older adults. The protective response of "breaking the fall" with the outstretched hand is often essential for avoiding injury to the hip and head. In this study, we compared the ability of young and older women to absorb the impact energy of a fall in the outstretched arms. Twenty young (mean age = 21 years) and 20 older (M = 78 years) women were instructed to slowly lower their body weight, similar to the descent phase of a push-up, from body lean angles ranging from 15 degrees to 90 degrees . Measures were acquired of peak upper extremity energy absorption, arm deflection, and hand contact force. On average, older women were able to absorb 45% less energy in the dominant arm than young women (1.7 +/- 0.5% vs 3.1 +/- 0.4% of their body weight x body height; p < .001). These results suggest that, even when both arms participate equally, the average energy content of a forward fall exceeds by 5-fold the average energy that our older participants could absorb and exceeds by 2.7-fold the average energy that young participants could absorb. During a descent movement that simulates fall arrest, the energy-absorbing capacity of the upper extremities in older women is nearly half that of young women. Absorbing the full energy of a fall in the upper extremities is a challenging task even for healthy young women. Strengthening of upper extremity muscles should enhance this ability and presumably reduce the risk for injury to the hip and head during a fall.
Imamoğlu, Nail; Karadibak, Didem; Ergin, Gülbin; Yavuzşen, Tuğba
2016-09-01
The aim of this study was to evaluate the effects of education on the upper extremity functions of patients with lymphedema (LE) after breast cancer treatments. Thirty-eight patients with LE after breast cancer treatments participated in the study. The patients were separated into two groups. Group 1 (n = 19) was educated about the causes and symptoms of LE and the methods for minimizing complications from LE, such as skin care, changes that must be made in daily life activities, exercises, and protective clothing. Group 2 (n = 19) was treated through standard means (surgical, chemotherapy, radiotherapy). A universal goniometer was used to assess the range of motion of the upper extremity of the patients. The Disabilities of the Arm, Shoulder and Hand questionnaire (DASH) and the Shoulder Pain and Disability Index (SPADI) were used to assess shoulder function. The measures were carried out once by the same physiotherapist. The chi-square and Mann-Whitney U tests were used to analyze the data. Group 1, educated about LE, performed better than the other group in shoulder flexion range. When shoulder abduction, internal-external rotation, and elbow flexion motions were compared by using the DASH and SPADI, no significant difference was observed between the groups (p > 0.05). However, when shoulder function was compared, Group 1 was better. There was no significant difference between the groups when the severity of LE was compared. This study underscores the need to develop and implement strategies for LE prevention and education for all breast cancer patients.
Yin, Chan Wai; Sien, Ng Yee; Ying, Low Ai; Chung, Stephanie Fook-Chong Man; Tan May Leng, Dawn
2014-11-01
To investigate the effect of virtual reality (VR) rehabilitation on upper extremity motor performance of patients with early stroke. Pilot randomized controlled trial. Rehabilitation wards. Twenty three adults with stroke (mean age (SD) = 58.35 (13.45) years and mean time since stroke (SD) = 16.30 (7.44) days). Participants were randomly assigned to VR group (n=11) or control group (n=12). VR group received nine 30 minutes upper extremity VR therapy in standing (five weekdays in two weeks) plus conventional therapy, which included physical and occupational therapy. Control group received only conventional therapy, which was comparable to total training time received by VR group (mean training hours (SD):VR = 17.07 (2.86); control = 15.50 (2.79)). The main outcome measure was the Fugl-Meyer Assessment (FMA). Secondary outcomes included Action Research Arm Test, Motor Activity Log and Functional Independence Measure. Results were taken at baseline, post intervention and 1-month post intervention. Participants' feedback and adverse effects were recorded. All participants improved in FMA scores (mean change (SD) = 11.65 (8.56), P<.001). These effects were sustained at one month after intervention (mean (SD) change from baseline = 18.67 (13.26), P<.001). All other outcome measures showed similar patterns. There were no significant differences in improvement between both groups. Majority of the participants found VR training useful and enjoyable, with no serious adverse effects reported. Although additional VR training was not superior to conventional therapy alone, this study demonstrates the feasibility of VR training in early stroke. © The Author(s) 2014.
Meaningful task-specific training (MTST) for stroke rehabilitation: a randomized controlled trial.
Arya, Kamal Narayan; Verma, Rajesh; Garg, R K; Sharma, V P; Agarwal, Monika; Aggarwal, G G
2012-01-01
The upper extremity motor deficit is one of the functional challenges in post stroke patients. The objective of the present study was to evaluate the effectiveness of the meaningful task-specific training (MTST) on the upper extremity motor recovery during the subacute phase after a stroke. This was a randomized, controlled, double-blinded trial in the neurology department of a university hospital and occupational therapy unit of a rehabilitation institute. A convenience sample of 103 people, 4 to 24 weeks (mean, 12.15 weeks) after the stroke, was randomized into 2 groups (MTST, 51; standard training group, 52). Subjects in the Brunnstrom stage of arm recovery of 2 to 5 were included in the study. Ninety-five participants completed the 8-week follow-up. Participants were assigned to receive either the MTST or dose-matched standard training program based on the Brunnstrom stage and Bobath neurodevelopmental technique, 4 to 5 days a week for 4 weeks. Fugl-Meyer assessment (FMA), Action Research Arm Test (ARAT), Graded Wolf Motor Function Test (GWMFT), and Motor Activity Log (MAL) were outcome measures The MTST group showed a positive improvement in the mean scores on the outcome measures at post and follow-up assessments in comparison to the control group. Further, statistically significant differences were observed in changes between the groups at post and follow-up assessment for FMA, ARAT, GWMFT, and MAL. The MTST produced statistically significant and clinically relevant improvements in the upper extremity motor recovery of the patients who had a subacute stroke.
A case of cervico-brachial disorder due to tactile interpretation for deaf-blind persons.
Kitahara, Teruyo; Nakamura, Kenji; Taoda, Kazushi; Shigeta, Hiromasa; Hirata, Mamoru
2012-01-01
We herein report a case of cervico-brachial disorder (CBD) due to long-term tactile interpreting. The patient was interviewed to investigate her past history, occupational history, work conditions and clinical course in detail. The case was diagnosed in accordance with the "Diagnostic Criteria for CBD 2007" established by the Research Association for CBD of the Japanese Society for Occupational Health. The patient was a 49-year-old female who has worked as a regular occupational instructor at a welfare work activity center for deaf people since April 22, 2010. Her primary job is to instruct and aid others in learning confectionery manufacturing and coffee shop tasks. She also performs tactile interpreting for two deaf-blind workers during a morning health check and during any meetings. On September 3, 2010, she interpreted by tactile signing for about three hours alone during a meeting, due to the absence of other interpreters. She developed severe pain in her back immediately after carrying out this interpretation, and the pain thereafter continued and developed in the upper extremities. She was diagnosed with a severe and prolonged case of the non-specific type of CBD. Interpretation by tactile signing may impose a heavier burden on the upper extremities, shoulders and neck than that imposed by common sign language. A shorter time of interpretation, ensuring the availability of rest time and supporting tools or methods for the upper extremities, are therefore considered to be necessary to prevent the incidence of CBD among interpreters using tactile signing.
Zečević Luković, Tanja; Ristić, Branko; Jovanović, Zorica; Rančić, Nemanja; Ignjatović Ristić, Dragana; Cuković, Saša
2012-08-01
To evaluate the effects of early started combined therapy in Complex Regional Pain Syndrome-1 (CRPS-1) on the upper extremities. The study included 36 patients in the first stadium of CRPS-1 on the upper extremities The mean age of patients was 42.6±14.6, the majority of them (26 of 36) were females. The right side of the upper extremity was affected much more then the left side. They were treated by combined therapy including analgetics, electrotherapy, magneto therapy and kinesitherapy. The average length of observation was 172.1 days (from 90 to 250 days). The average length of treatment was 91.5±42.16 days. Intensity of pain, swelling of the extremity, the change in skin coloration and cutaneous manifestations were assessed three times, at the beginning of the treatment, after 6 weeks and at the end of the treatment. The pain was registered in all patients at visit 1 (average pain intensity was 5.70 ±1.44 on 100 mm visual analogue scale), and it was progressively decreased during the treatment from 3.60±1.22 at the second visit to 0.34±0.68 at the third visit. Vasodilatation was registered in 30 (83.33%) patients and skin temperature asymmetries was found in 21 (58.33%) patients. The difference of size was detected in 30 (83.33%) patients at the first visit compared to four (11.11%) patients at the end of the treatment. There were six (16.66%) patients without swelling at the beginning compared to 26 (72.22%) at the end of the treatment (p less than 0.000). Complete healing was achieved in 32 patients (88.88%). The carefully chosen physical agents in combination with analgesic and non-steroidal anti-inflammatory drugs may benefit in patients with CRPS-1 on the upper extremity if the treatment starts as soon as possible.
Congenital Median Upper Lip Fistula
al Aithan, Bandar
2012-01-01
Congenital median upper lip fistula (MULF) is an extremely rare condition resulting from abnormal fusion of embryologic structures. We present a new case of congenital medial upper lip fistula located in the midline of the philtrum of a 6 year old girl. PMID:22953305
Stump sensibility in children with upper limb reduction deficiency.
Reinkingh, Marianne; Reinders-Messelink, Heleen A; Dijkstra, Pieter U; Maathuis, Karel G B; van der Sluis, Corry K
2014-01-01
To compare stump sensibility in children with upper limb reduction deficiency with sensibility of the unaffected arm and hand. In addition, to evaluate the associations between stump sensibility, stump length and activity level. Cross-sectional study. Children and young adults aged 6-25 years with upper limb reduction deficiency. Threshold of touch was measured with Semmes-Weinstein monofilaments, stereognosis was measured with the Shape-Texture Identification test and kinaesthesia and activity level was measured with the Child Amputee Prosthetics Project - Functional Status Inventory and the Prosthetic Upper Extremity Functional Index. A total of 31 children with upper limb reduction deficiency (mean age 15 years, 3 prosthesis wearers) were investigated. The threshold of touch of the stump circumference was lower (indicating higher sensibility) than of the unaffected arm (p = 0.006), hand (p = 0.004) and stump end-point (p = < 0.001). Long stumps had higher threshold of touch (indicating lower sensibility) than short stumps (p = 0.046). Twenty-nine children recognized 1 or more shapes or textures with the stump. Kinaesthesia in the affected and unaffected sides was comparable. Sensibility was not correlated with activity level. Threshold of touch, stereognosis and kinaesthesia of the affected sides were excellent. Threshold of touch of the stump circumference was lower (indicating higher sensibility) than of the unaffected arm and hand. High stump sensibility may clarify good functioning in the children without prostheses and contribute to prosthesis rejection.
Lovalekar, Mita; Abt, John P; Sell, Timothy C; Wood, Dallas E; Lephart, Scott M
2016-01-01
The purpose of this analysis was to describe medical chart reviewed musculoskeletal injuries among Naval Special Warfare Sea, Air, and Land Operators. 210 Operators volunteered (age: 28.1 ± 6.0 years, height: 1.8 ± 0.1 m, weight: 85.4 ± 9.3 kg). Musculoskeletal injury data were extracted from subjects' medical charts, and injuries that occurred during 1 year were described. Anatomic location of injury, cause of injury, activity when injury occurred, and injury type were described. The frequency of injuries was 0.025 per Operator per month. Most injuries involved the upper extremity (38.1% of injuries). Frequent anatomic sublocations for injuries were the shoulder (23.8%) and lumbopelvic region of the spine (12.7%). Lifting was the cause of 7.9% of injuries. Subjects were participating in training when 38.1% of injuries occurred and recreational activity/sports when 12.7% of injuries occurred. Frequent injury types were strain (20.6%), pain/spasm/ache (19.0%), fracture (11.1%), and sprain (11.1%). The results of this analysis underscore the need to investigate the risk factors, especially of upper extremity and physical activity related injuries, in this population of Operators. There is a scope for development of a focused, customized injury prevention program, targeting the unique injury profile of this population. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
James, G. Andrew; Lu, Zhong-Lin; VanMeter, John W.; Sathian, K.; Hu, Xiaoping P.; Butler, Andrew J.
2013-01-01
Background A promising paradigm in human neuroimaging is the study of slow (<0.1 Hz) spontaneous fluctuations in the hemodynamic response measured by functional magnetic resonance imaging (fMRI). Spontaneous activity (i.e., resting state) refers to activity that cannot be attributed to specific inputs or outputs, that is, activity intrinsically generated by the brain. Method This article presents pilot data examining neural connectivity in patients with poststroke hemiparesis before and after 3 weeks of upper extremity rehabilitation in the Accelerated Skill Acquisition Program (ASAP). Resting-state fMRI data acquired pre and post therapy were analyzed using an exploratory adaptation of structural equation modeling (SEM) to evaluate therapy-related changes in motor network effective connectivity. Results Each ASAP patient showed behavioral improvement. ASAP patients also showed increased influence of the affected hemisphere premotor cortex (a-PM) upon the unaffected hemisphere premotor cortex (u-PM) following therapy. The influence of a-PM on affected hemisphere primary motor cortex (a-M1) also increased with therapy for 3 of 5 patients, including those with greatest behavioral improvement. Conclusions Our findings suggest that network analyses of resting-state fMRI constitute promising tools for functional characterization of functional brain disorders, for intergroup comparisons, and potentially for assessing effective connectivity within single subjects; all of which have important implications for stroke rehabilitation. PMID:19740732
Dorsi, Michael J; Belzberg, Allan J
2012-01-01
Transverse myelitis (TM) may result in permanent neurologic dysfunction. Nerve transfers have been developed to restore function after peripheral nerve injury. Here, we present a case report of a child with permanent right upper extremity weakness due to TM that underwent nerve transfers. The following procedures were performed: double fascicle transfer from median nerve and ulnar nerve to the brachialis and biceps branches of the musculocutaneous nerve, spinal accessory to suprascapular nerve, and medial cord to axillary nerve end-to-side neurorraphy. At 22 months, the patient demonstrated excellent recovery of elbow flexion with minimal improvement in shoulder abduction. We propose that the treatment of permanent deficits from TM represents a novel indication for nerve transfers in a subset of patients. Copyright © 2011 Wiley Periodicals, Inc.
Upper extremity paraesthesia: clinical assessment and reasoning.
Muscolino, Joseph E
2008-07-01
The art of clinical assessment involves an accurate determination of the cause(s) of a patient's symptoms. Given that a set of symptoms can be influenced by many contributing factors and features, assessment needs to differentially evaluate these. Accurate and appropriate treatment depends on differential assessment based on sound clinical reasoning. Many conditions derive from multiple causes demanding evaluation of as many etiological features as can be identified. The case review presented here involves a patient presenting with paraesthesia spreading into her right upper extremity. A complex history, involving her neck and contralateral upper extremity was assessed. The patient was found to have at least seven underlying, predisposing, and etiological, conditions capable of initiating, aggravating, or maintaining the presenting symptoms. Weighing the relative contributions of these often interacting features, and correlating this with the history, helped to identify a successful course of treatment.
[Laterality of upper extremity movements in infancy: observations at 4 and 9 months of age].
Shiotani, Yuka; Matsuzawa, Shigeyuki; Ikeda, Hiroko; Sawada, Akiko; Okada, Masako; Kutsuki, Aya; Tomiwa, Kiyotaka
2010-07-01
This study investigated the process involved in the lateralization of movements during infancy by observing upper extremity movements in a laboratory setting. Reaching for flying rings, balls, mini toy cars, and small round cookies were observed and recorded by videotape at 4 and 9 months of age. The subjects were 202 infants who participated in Japan Children's Study, a cohort study on the development of sociability. Infants reached for objects significantly more frequently at 9 months (98%) than at 4 months (40%) (p<0.001). Though the lateral preference in reaching for balls at 4 months was ambiguous, reaching for toy cars was performed more frequently with the right hand at 9 months (50%) than with the left one (19%) (p<0.01). Lateralization of the upper extremity movements is thought to appear by 9 months.
Common Injuries in Professional Football Quarterbacks.
Kirsch, Jacob M; Burrus, M Tyrrell; Bedi, Asheesh
2018-03-01
Professional football quarterbacks are at particular risk for upper extremity injuries due to the physical demands of their position coupled with the inherent risks associated with professional football. This review sought to evaluate current clinical literature to better characterize the injury profile unique to this athletic population. Shoulder injuries are the most prevented upper extremity injury among professional football quarterbacks. The quarterback position is disproportionately impacted by shoulder injuries when compared to professional athletes at other positions. Moreover, contrary to other professional throwing athletes, the majority of upper extremity injuries in the professional quarterback result from direct contact as opposed to the throwing motion. The injury profile among professional quarterbacks is unique compared to other positions and other overhead professional throwing athletes. Overall, a paucity of high quality clinical evidence exists to support the management of injuries in this elite population.
Shirota, Camila; Jansa, Jelka; Diaz, Javier; Balasubramanian, Sivakumar; Mazzoleni, Stefano; Borghese, N Alberto; Melendez-Calderon, Alejandro
2016-09-08
Well-developed coordination of the upper extremities is critical for function in everyday life. Interlimb coordination is an intuitive, yet subjective concept that refers to spatio-temporal relationships between kinematic, kinetic and physiological variables of two or more limbs executing a motor task with a common goal. While both the clinical and neuroscience communities agree on the relevance of assessing and quantifying interlimb coordination, rehabilitation engineers struggle to translate the knowledge and needs of clinicians and neuroscientists into technological devices for the impaired. The use of ambiguous definitions in the scientific literature, and lack of common agreement on what should be measured, present large barriers to advancements in this area. Here, we present the different definitions and approaches to assess and quantify interlimb coordination in the clinic, in motor control studies, and by state-of-the-art robotic devices. We then propose a taxonomy of interlimb activities and give recommendations for future neuroscience-based robotic- and sensor-based assessments of upper limb function that are applicable to the everyday clinical practice. We believe this is the first step towards our long-term goal of unifying different fields and help the generation of more consistent and effective tools for neurorehabilitation.
The relationship between independent transfer skills and upper limb kinetics in wheelchair users.
Tsai, Chung-Ying; Hogaboom, Nathan S; Boninger, Michael L; Koontz, Alicia M
2014-01-01
Transfers are one of the most physically demanding wheelchair activities. The purpose of this study was to determine if using proper transfer skills as measured by the Transfer Assessment Instrument (TAI) is associated with reduced loading on the upper extremities. Twenty-three wheelchair users performed transfers to a level-height bench while a series of forces plates, load cells, and a motion capture system recorded the biomechanics of their natural transferring techniques. Their transfer skills were simultaneously evaluated by two study clinicians using the TAI. Logistic regression and multiple linear regression models were used to determine the relationships between TAI scores and the kinetic variables on both arms across all joints. The results showed that the TAI measured transfer skills were closely associated with the magnitude and timing of joint moments (P < .02, model R(2) values ranged from 0.27 to 0.79). Proper completion of the skills which targeted the trailing arm was associated with lower average resultant moments and rates of rise of resultant moments at the trailing shoulder and/or elbow. Some skills involving the leading side had the effect of increasing the magnitude or rate loading on the leading side. Knowledge of the kinetic outcomes associated with each skill may help users to achieve the best load-relieving effects for their upper extremities.
Straudi, Sofia; Fregni, Felipe; Martinuzzi, Carlotta; Pavarelli, Claudia; Salvioli, Stefano; Basaglia, Nino
2016-01-01
Objective. The aim of this exploratory pilot study is to test the effects of bilateral tDCS combined with upper extremity robot-assisted therapy (RAT) on stroke survivors. Methods. We enrolled 23 subjects who were allocated to 2 groups: RAT + real tDCS and RAT + sham-tDCS. Each patient underwent 10 sessions (5 sessions/week) over two weeks. Outcome measures were collected before and after treatment: (i) Fugl-Meyer Assessment-Upper Extremity (FMA-UE), (ii) Box and Block Test (BBT), and (iii) Motor Activity Log (MAL). Results. Both groups reported a significant improvement in FMA-UE score after treatment (p < 0.01). No significant between-groups differences were found in motor function. However, when the analysis was adjusted for stroke type and duration, a significant interaction effect (p < 0.05) was detected, showing that stroke duration (acute versus chronic) and type (cortical versus subcortical) modify the effect of tDCS and robotics on motor function. Patients with chronic and subcortical stroke benefited more from the treatments than patients with acute and cortical stroke, who presented very small changes. Conclusion. The additional use of bilateral tDCS to RAT seems to have a significant beneficial effect depending on the duration and type of stroke. These results should be verified by additional confirmatory studies.
Mechanical energy and power flow analysis of wheelchair use with different camber settings.
Huang, Yueh-Chu; Guo, Lan-Yuen; Tsai, Chung-Ying; Su, Fong-Chin
2013-04-01
It has been suggested that minimisation of energy cost is one of the primary determinants of wheelchair designs. Wheel camber is one important parameter related to wheelchair design and its angle may affect usability during manual propulsion. However, there is little available literature addressing the effect of wheel camber on the mechanical energy or power flow involved in manual wheelchair propulsion. Twelve normal subjects (mean age, 22.3 years; SD, 1.6 years) participated in this study. A video-tracking system and an instrumented wheel were used to collect 3D kinematic and kinetic data. Wheel camber of 0° and 15° was chosen to examine the difference between mechanical power and power flow of the upper extremity during manual wheelchair propulsion. The work calculated from power flow and the discrepancy between the mechanical work and power flow work of upper extremity had significantly greater values with increased camber. The upper arm had a larger active muscle power compared with that in the forearm and hand segments. While propelling the increased camber, the magnitude of both the proximal and distal joint power and proximal muscle power was increased in all three segments. While the propelling wheel with camber not only needs a greater energy cost but also there is greater energy loss.
Hang Them High: A Hands-Free Technique for Upper Extremity Limb Holding During Surgical Preparation.
Aneja, Arun; Leung, Patrick; Marquez-Lara, Alejandro
Lifting and holding upper and lower limbs during the "prep and drape" portion of certain orthopaedic procedures exert strong forces on the holder and may lead to musculoskeletal disorders. To address these challenges during upper extremity procedures, this article describes a hand-free elevation and traction technique of the upper limbs during preoperative skin preparation with the use of items readily available within the operating room (OR). This technique is particularly useful for heavy or fractured limbs that may impose a physical challenge to lift and maintain in a stable position. Implementation of this technique reduces the risk to nurses, OR personnel, and caregivers of developing work-related musculoskeletal injuries while lifting and holding limbs in the orthopaedic OR.
Modifications in Wheelchair Propulsion Technique with Speed.
Russell, Ian M; Raina, Shashank; Requejo, Philip S; Wilcox, Rand R; Mulroy, Sara; McNitt-Gray, Jill L
2015-01-01
Repetitive loading of the upper limb joints during manual wheelchair (WC) propulsion (WCP) has been identified as a factor that contributes to shoulder pain, leading to loss of independence and decreased quality of life. The purpose of this study was to determine how individual manual WC users with paraplegia modify propulsion mechanics to accommodate expected increases in reaction forces (RFs) generated at the pushrim with self-selected increases in WCP speed. Upper extremity kinematics and pushrim RFs were measured for 40 experienced manual WC users with paraplegia while propelling on a stationary ergometer at self-selected free and fast propulsion speeds. Upper extremity kinematics and kinetics were compared within subject between propulsion speeds. Between group and within-subject differences were determined (α = 0.05). Increased propulsion speed was accompanied by increases in RF magnitude (22 of 40, >10 N) and shoulder net joint moment (NJM, 15 of 40, >10 Nm) and decreases in pushrim contact duration. Within-subject comparison indicated that 27% of participants modified their WCP mechanics with increases in speed by regulating RF orientation relative to the upper extremity segments. Reorientation of the RF relative to the upper extremity segments can be used as an effective strategy for mitigating rotational demands (NJM) imposed on the shoulder at increased propulsion speeds. Identification of propulsion strategies that individuals can use to effectively accommodate for increases in RFs is an important step toward preserving musculoskeletal health of the shoulder and improving health-related quality of life.
Survey of Hand and Upper Extremity Injuries Among Rock Climbers.
Nelson, Clayton E; Rayan, Ghazi M; Judd, Dustin I; Ding, Kai; Stoner, Julie A
2017-07-01
Rock climbing first evolved as a sport in the late 18th century. With its growing popularity, the number of rock climbing-related injuries has potential to increase, spurring a rise in the number of articles associated with it. Despite the available literature, there remains a paucity of information about upper extremity injuries sustained by rock climbers, and no studies to date have focused on gender-specific injuries. A 24-question online survey was distributed to rock climbers about upper extremity injuries sustained during rock climbing. Statistical analysis was used to study association between participants' demographics and injuries. A total of 397 participants responded to the survey. Mean age was 32.5 years with males comprising 85%. No significant differences in demographics or climbing behaviors were found between males and females. Ninety percent of participants reported sustaining an upper extremity injury. Fingers were the most common injury followed by shoulder/arm and elbow/forearm. Our study found females to be more likely to report a rock climbing-related injury, and more likely to undergo surgery for it. Female rock climbers were significantly more likely to report a shoulder/upper arm injury and were also more likely to report undergoing surgery compared with males, where these differences were not due to age or climbing behaviors. Further investigation is warranted into the association between shoulder injuries and female athletes to determine how the gender differences relate to extent of injury as well as health service utilization behaviors.
ERIC Educational Resources Information Center
Thorley, Megan; Lannin, Natasha; Cusick, Anne; Novak, Iona; Boyd, Roslyn
2012-01-01
Aim: To investigate reliability of the Quality of Upper Extremity Skills Test (QUEST) scores for children with cerebral palsy (CP) aged 2-12 years. Method: Thirty-one QUESTs from 24 children with CP were rated once by two raters and twice by one rater. Internal consistency of total scores, inter- and intra-rater reliability findings for total,…
Upper Extremity Injuries in Tennis Players: Diagnosis, Treatment, and Management.
Chung, Kevin C; Lark, Meghan E
2017-02-01
Upper extremity tennis injuries are most commonly characterized as overuse injuries to the wrist, elbow, and shoulder. The complex anatomy of these structures and their interaction with biomechanical properties of tennis strokes contributes to the diagnostic challenges. A thorough understanding of tennis kinetics, in combination with the current literature surrounding diagnostic and treatment methods, will improve clinical decision-making. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Kawamura, Anne; Campbell, Kent; Lam-Damji, Sophie; Fehlings, Darcy
2007-01-01
This study compared the effects of low and high doses of botulinum toxin A (BTX-A) to improve upper extremity function. Thirty-nine children (22 males, 17 females) with a mean age of 6 years 2 months (SD 2y 9mo) diagnosed with spastic hemiplegia or triplegia were enrolled into this double-blind, randomized controlled trial. The high-dose group…
Banks, Kevin P; Ly, Justin Q; Beall, Douglas P; Grayson, David E; Bancroft, Laura W; Tall, Michael A
2005-01-01
Overuse injuries are a very common cause of pain in athletes, accounting for a significant loss of training time and missed competitions. Magnetic resonance imaging (MRI) is playing an increasing role in facilitating the expeditious and safe return of these individuals to their preinjury level of physical performance by allowing accurate diagnosis. Sports physicians are increasingly relying on the exquisite anatomic detail afforded by this technique to formulate diagnoses that assist with the optimal management of these athletic injuries. Some upper extremity overuse entities are well recognized; two examples are medial epicondylitis, classically appearing in baseball pitchers, and lateral epicondylitis, in tennis players. Other less well-known injuries of the upper extremity, such as intersection syndrome in rowers and distal clavicular stress fractures in weightlifters, are frequent occurrences in certain circles of athletes. The following article is a pictorial review of the MRI findings of upper extremity overuse injuries encountered in the competitive athlete, with an emphasis on the sports scenarios in which they occur. We will depict mechanisms of injury and applicable anatomy and show characteristic imaging findings. A wide range of entities are addressed, including but not limited to overuse injuries occurring in baseball, swimming, gymnastics, weightlifting, bowling, and cycling.
Playing piano can improve upper extremity function after stroke: case studies.
Villeneuve, Myriam; Lamontagne, Anouk
2013-01-01
Music-supported therapy (MST) is an innovative approach that was shown to improve manual dexterity in acute stroke survivors. The feasibility of such intervention in chronic stroke survivors and its longer-term benefits, however, remain unknown. The objective of this pilot study was to estimate the short- and long-term effects of a 3-week piano training program on upper extremity function in persons with chronic stroke. A multiple pre-post sequential design was used, with measurements taken at baseline (week0, week3), prior to (week6) and after the intervention (week9), and at 3-week follow-up (week12). Three persons with stroke participated in the 3-week piano training program that combined structured piano lessons to home practice program. The songs, played on an electronic keyboard, involved all 5 digits of the affected hand and were displayed using a user-friendly MIDI program. After intervention, all the three participants showed improvements in their fine (nine hole peg test) and gross (box and block test) manual dexterity, as well as in the functional use of the upper extremity (Jebsen hand function test). Improvements were maintained at follow-up. These preliminary results support the feasibility of using an MST approach that combines structured lessons to home practice to improve upper extremity function in chronic stroke.
Aoyagi, Yoichiro; Tsubahara, Akio
2004-01-01
Upper extremity hemiplegia after stroke is common and disabling. Apart from conventional physical and occupational therapy, a number of additional approaches that use devices such as orthoses, prostheses, electrical stimulation, and robots have been introduced. The purpose of this review was to assess the clinical efficacy of such devices used for the affected upper extremities of acute, subacute, and chronic stroke patients. Assessments of their effectiveness and recommendations were based on the weight of published scientific evidence. The amount of evidence with respect to hand splints and shoulder slings is limited. Further study with a well-designed randomized controlled trial (RCT) is required to investigate accurately their short- and long-term efficacy. A number of studies suggested that the use of electrical stimulation for reducing shoulder subluxation or improving the function of wrist and finger extensors is effective during or shortly after the daily treatment period. The robotic approach to hemiplegic upper extremities appears to be a novel therapeutic strategy that may help improve hand and arm function. However, the longer term effectiveness after discontinuation as well as the motor recovery mechanism of electrical stimulation or robotic devices remains unclear. More research is needed to determine the evidence-based effectiveness of electrical stimulation or other devices for stroke survivors.
Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition
NASA Astrophysics Data System (ADS)
Siregar, R. I.
2018-02-01
This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.
Perceived psychological stress and upper extremity cumulative trauma disorders.
Strasser, P B; Lusk, S L; Franzblau, A; Armstrong, T J
1999-01-01
This report presents data exploring the relationship between perceived psychological stress and several variables implicated in the etiology of upper extremity cumulative trauma disorders (UECTDs). The sample was 354 workers from three different manufacturing companies. The primary job exposure for the subjects was that they were engaged in jobs that involved repetitious movements of the upper extremities, primarily of the hands and arms. Data collection included a detailed health history, a comprehensive physical examination of the upper extremities, limited electrodiagnostic testing, Cohen's Perceived Stress Scale, Karasek's Job Content Questionnaire, demographic information, and a measurement of repetition. Descriptive analyses, analysis of variance, correlational analyses, and multiple linear regression were used to examine the data. Perceived stress, as measured in this study, was only weakly associated with repetition, job dissatisfaction, and subjective complaints related to UECTDs. In addition, factors generally accepted as related to UECTDs (e.g., repetition, female gender, hormonal influences, and existing medical conditions) were not robust predictors of perceived stress. The major limitation is related to the measurement of perceived psychological stress. Like most psychosocial phenomena, perceived stress is a complex construct, one that is difficult to measure and correlate with health outcomes. Further research is necessary to examine what role, if any, perceived stress may have in the etiology of UECTDs.
Gurbuz, Nigar; Afsar, Sevgi Ikbali; Ayaş, Sehri; Cosar, Sacide Nur Saracgil
2016-09-01
[Purpose] This study aimed to evaluate the effectiveness of mirror therapy combined with a conventional rehabilitation program on upper extremity motor and functional recovery in stroke patients. [Subjects and Methods] Thirty-one hemiplegic patients were included. The patients were randomly assigned to a mirror (n=16) or conventional group (n=15). The patients in both groups underwent conventional therapy for 4 weeks (60-120 minutes/day, 5 days/week). The mirror group received mirror therapy, consisting of periodic flexion and extension movements of the wrist and fingers on the non-paralyzed side. The patients in the conventional group performed the same exercises against the non-reflecting face of the mirror. The patients were evaluated at the beginning and end of the treatment by a blinded assessor using the Brunnstrom stage, Fugl-Meyer Assessment (FMA) upper extremity score, and the Functional Independence Measure (FIM) self-care score. [Results] There was an improvement in Brunnstrom stage and the FIM self-care score in both groups, but the post-treatment FMA score was significantly higher in the mirror therapy group than in the conventional treatment group. [Conclusion] Mirror therapy in addition to a conventional rehabilitation program was found to provide additional benefit in motor recovery of the upper extremity in stroke patients.
Gurbuz, Nigar; Afsar, Sevgi Ikbali; Ayaş, Sehri; Cosar, Sacide Nur Saracgil
2016-01-01
[Purpose] This study aimed to evaluate the effectiveness of mirror therapy combined with a conventional rehabilitation program on upper extremity motor and functional recovery in stroke patients. [Subjects and Methods] Thirty-one hemiplegic patients were included. The patients were randomly assigned to a mirror (n=16) or conventional group (n=15). The patients in both groups underwent conventional therapy for 4 weeks (60–120 minutes/day, 5 days/week). The mirror group received mirror therapy, consisting of periodic flexion and extension movements of the wrist and fingers on the non-paralyzed side. The patients in the conventional group performed the same exercises against the non-reflecting face of the mirror. The patients were evaluated at the beginning and end of the treatment by a blinded assessor using the Brunnstrom stage, Fugl-Meyer Assessment (FMA) upper extremity score, and the Functional Independence Measure (FIM) self-care score. [Results] There was an improvement in Brunnstrom stage and the FIM self-care score in both groups, but the post-treatment FMA score was significantly higher in the mirror therapy group than in the conventional treatment group. [Conclusion] Mirror therapy in addition to a conventional rehabilitation program was found to provide additional benefit in motor recovery of the upper extremity in stroke patients. PMID:27799679
Playing Piano Can Improve Upper Extremity Function after Stroke: Case Studies
Villeneuve, Myriam; Lamontagne, Anouk
2013-01-01
Music-supported therapy (MST) is an innovative approach that was shown to improve manual dexterity in acute stroke survivors. The feasibility of such intervention in chronic stroke survivors and its longer-term benefits, however, remain unknown. The objective of this pilot study was to estimate the short- and long-term effects of a 3-week piano training program on upper extremity function in persons with chronic stroke. A multiple pre-post sequential design was used, with measurements taken at baseline (week0, week3), prior to (week6) and after the intervention (week9), and at 3-week follow-up (week12). Three persons with stroke participated in the 3-week piano training program that combined structured piano lessons to home practice program. The songs, played on an electronic keyboard, involved all 5 digits of the affected hand and were displayed using a user-friendly MIDI program. After intervention, all the three participants showed improvements in their fine (nine hole peg test) and gross (box and block test) manual dexterity, as well as in the functional use of the upper extremity (Jebsen hand function test). Improvements were maintained at follow-up. These preliminary results support the feasibility of using an MST approach that combines structured lessons to home practice to improve upper extremity function in chronic stroke. PMID:23533954
Professional musicians with craniomandibular dysfunctions treated with oral splints.
Steinmetz, Anke; Ridder, Paul H; Methfessel, Götz; Muche, Burkhard
2009-10-01
Craniomandibular dysfunction (CMD) symptoms occur frequently in violin/viola and wind players and can be associated with pain in the neck, shoulders and arm. In the current study, the effect of oral splint treatment of CMD on reducing pain and symptoms especially in these areas was investigated. Thirty (30) musicians undergoing CMD treatment with oral splints participated in this study. They completed a questionnaire that addressed CMD symptoms, localization of pain, and subjective changes in symptoms. Pain in the shoulder and/or upper extremity was the most frequent symptom reported by 83% of subjects, followed by neck pain (80%) and pain in the teeth/TMJ regions (63%). Treatment with oral splints contributed to a significant decrease in neck pain in 91%, teeth/TMJ pain in 83%, and shoulder and upper extremity pain in 76% of the musicians. Eighty percent (80%) of the patients reported improvement of their predominant symptoms. CMD can be a potential cause for pain in the neck, shoulders, and upper extremities of musicians. It is paramount that musicians with musculoskeletal problems be examined for CMD symptoms. Treatment with oral splints seems to be valuable. Further prospective, randomized controlled studies are necessary to confirm efficacy of oral splint treatment in CMD-associated pain and problems in the neck, shoulder, and the upper extremities in musicians.
Yamamoto, Nana; Yamamoto, Takumi; Hayashi, Nobuko; Hayashi, Akitatsu; Iida, Takuya; Koshima, Isao
2016-06-01
Volumetry, measurement of extremity volume, is a commonly used method for upper extremity lymphedema (UEL) evaluation. However, comparison between different patients with different physiques is difficult with volumetry, because body-type difference greatly affects arm volume. Seventy arms of 35 participants who had no history of arm edema or breast cancer were evaluated. Arm volume was calculated using a summed truncated cone model, and UEL index was calculated using circumferences and body mass index (BMI). Examinees' BMI was classified into 3 groups, namely, low BMI (BMI, <20 kg/m), middle BMI (BMI, 20-25 kg/m), and high BMI (BMI, >25 kg/m). Arm volume and UEL index were compared with corresponding BMI groups. Mean (SD) arm volume was 1090.9 (205.5) mL, and UEL index 96.9 (5.6). There were significant differences in arm volume between BMI groups [low BMI vs middle BMI vs high BMI, 945.2 (107.4) vs 1045.2 (87.5) vs 1443.1 (244.4) mL, P < 0.001]. There was no significant difference in UEL index between BMI groups [low BMI vs middle BMI vs high BMI, 97.2 (4.2) vs 96.6 (4.6) vs 96.7 (9.9), P > 0.5]. Arm volume significantly increased with increase of BMI, whereas UEL index stayed constant regardless of BMI. Upper extremity lymphedema index would allow better body-type corrected arm volume evaluation compared with arm volumetry.
Salvage of mangled upper extremity using the Masquelet technique in a child: A case report.
Alassaf, Nabil; Alhoukail, Amro; Alsahli, Abdullah; Althubaiti, Ghazi
2017-01-01
To report our experience with the Masquelet concept in a pediatric upper extremity following an open injury to the elbow. A case report and literature review. An 11-year-old boy was transferred to our institution after a motor vehicle collision. There was a primary loss of the ulnohumeral articulation and the surrounding soft tissues as well as the ulnar nerve. Reconstruction used the Masquelet-induced membrane technique and a soft tissue flap. At the 30-month follow-up, the extremity was pain free and functional. This case highlights the value of the Masquelet technique in pediatric extremity injuries, where there is a loss of a major articular segment, as well as significant soft tissue compromise.
Marcolin, Giuseppe; Petrone, Nicola; Moro, Tatiana; Battaglia, Giuseppe; Bianco, Antonino; Paoli, Antonio
2015-11-01
The push-up is a widely used exercise for upper limb strengthening that can be performed with many variants. A comprehensive analysis of muscle activation during the ascendant phase (AP) and descendant phase (DP) in different variants could be useful for trainers and rehabilitators. To obtain information on the effect of different push-up variants on the electromyography (EMG) of a large sample of upper limb muscles and to investigate the role of the trunk and abdomen muscles during the AP and DP. Cross-sectional study. University laboratory. Eight healthy, young volunteers without a history of upper extremity or spine injury. Participants performed a set of 10 repetitions for each push-up variant: standard, wide, narrow, forward (FP), and backward (BP). Surface EMG of 12 selected muscles and kinematics data were synchronously recorded to describe the AP and DP. Mean EMG activity of the following muscles was analyzed: serratus anterior, deltoideus anterior, erector spinae, latissimus dorsi, rectus abdominis, triceps brachii caput longus, triceps brachii caput lateralis, obliquus externus abdominis, pectoralis major sternal head, pectoralis major clavicular head, trapezius transversalis, and biceps brachii. The triceps brachii and pectoralis major exhibited greater activation during the narrow-base variant. The highest activation of abdomen and back muscles was recorded for the FP and BP variants. The DP demonstrated the least electrical activity across all muscles, with less marked differences for the abdominal and erector spinae muscles because of their role as stabilizers. Based on these findings, we suggest the narrow-base variant to emphasize triceps and pectoralis activity and the BP variant for total upper body strength conditioning. The FP and BP variants should be implemented carefully in participants with low back pain because of the greater activation of abdominal and back muscles.
Pirondini, Elvira; Coscia, Martina; Marcheschi, Simone; Roas, Gianluca; Salsedo, Fabio; Frisoli, Antonio; Bergamasco, Massimo; Micera, Silvestro
2016-01-23
Exoskeletons for lower and upper extremities have been introduced in neurorehabilitation because they can guide the patient's limb following its anatomy, covering many degrees of freedom and most of its natural workspace, and allowing the control of the articular joints. The aims of this study were to evaluate the possible use of a novel exoskeleton, the Arm Light Exoskeleton (ALEx), for robot-aided neurorehabilitation and to investigate the effects of some rehabilitative strategies adopted in robot-assisted training. We studied movement execution and muscle activities of 16 upper limb muscles in six healthy subjects, focusing on end-effector and joint kinematics, muscle synergies, and spinal maps. The subjects performed three dimensional point-to-point reaching movements, without and with the exoskeleton in different assistive modalities and control strategies. The results showed that ALEx supported the upper limb in all modalities and control strategies: it reduced the muscular activity of the shoulder's abductors and it increased the activity of the elbow flexors. The different assistive modalities favored kinematics and muscle coordination similar to natural movements, but the muscle activity during the movements assisted by the exoskeleton was reduced with respect to the movements actively performed by the subjects. Moreover, natural trajectories recorded from the movements actively performed by the subjects seemed to promote an activity of muscles and spinal circuitries more similar to the natural one. The preliminary analysis on healthy subjects supported the use of ALEx for post-stroke upper limb robotic assisted rehabilitation, and it provided clues on the effects of different rehabilitative strategies on movement and muscle coordination.
Bullock, Garrett S; Brookreson, Nate; Knab, Amy M; Butler, Robert J
2017-06-01
Abnormal fundamental movement patterns and upper-quarter dynamic balance are proposed mechanisms affecting athletic performance and injury risk. There are few studies investigating functional movement and closed-chain upper-extremity dynamic stability in swimmers. The purpose of this study was to determine differences in fundamental movement competency and closed-chain upper-extremity dynamic balance, using the Functional Movement Screen (FMS) and Upper-Quarter Y Balance Test (YBT-UQ), of high school (HS; n = 70) and collegiate (COL; n = 70) swimmers. Variables included the individual movement tests on the FMS and the average normalized reach (percent limb length [%LL]) for each direction, with the YBT-UQ. Statistical analysis was completed using a chi square for the independent test scores on the FMS while independent samples t-test to examine performance on the YBT-UQ (p ≤ 0.05). HS swimmers exhibited a statistically significant greater percentage of below average performance (score of 0 or 1) on the following FMS tests: lunge (HS: 22.9%, COL: 4.3%), hurdle step (HS: 31.4%, COL: 7.1%), and push-up (HS: 61.4%, COL: 31.4%). Furthermore, COL males performed worse in the lunge (male: 9%, female: 0%), whereas COL females had poorer efficiency in the push-up (male: 17.6%, female: 44%). Significant effects of competition level and sex were observed in YBT-UQ medial reach (HS: female 92.06, male 101.63; COL: female 101.3, male 101.5% LL). Individual fundamental movement patterns that involved lumbopelvic neuromuscular control differed between HS and COL swimmers. General upper-extremity dynamic balance differed between competition levels. These data may be helpful in understanding injury and performance-based normative data for participation and return to swimming.
Causing Factors for Extreme Precipitation in the Western Saudi-Arabian Peninsula
NASA Astrophysics Data System (ADS)
Alharbi, M. M.; Leckebusch, G. C.
2015-12-01
In the western coast of Saudi Arabia the climate is in general semi-arid but extreme precipitation events occur on a regular basis: e.g., on 26th November 2009, when 122 people were killed and 350 reported missing in Jeddah following more than 90mm in just four hours. Our investigation will a) analyse major drivers of the generation of extremes and b) investigate major responsible modes of variability for the occurrence of extremes. Firstly, we present a systematic analysis of station based observations of the most relevant extreme events (1985-2013) for 5 stations (Gizan, Makkah, Jeddah, Yenbo and Wejh). Secondly, we investigate the responsible mechanism on the synoptic to large-scale leading to the generation of extremes and will analyse factors for the time variability of extreme event occurrence. Extreme events for each station are identified in the wet season (Nov-Jan): 122 events show intensity above the respective 90th percentile. The most extreme events are systematically investigated with respect to the responsible forcing conditions which we can identify as: The influence of the Soudan Low, active Red-Sea-Trough situations established via interactions with mid-latitude tropospheric wave activity, low pressure systems over the Mediterranean, the influence of the North Africa High, the Arabian Anticyclone and the influence of the Indian monsoon trough. We investigate the role of dynamical forcing factors like the STJ and the upper-troposphere geopotential conditions and the relation to smaller local low-pressure systems. By means of an empirical orthogonal function (EOF) analysis based on MSLP we investigate the possibility to objectively quantify the influence of existing major variability modes and their role for the generation of extreme precipitation events.
Intra-seasonal Characteristics of Wintertime Extreme Cold Events over South Korea
NASA Astrophysics Data System (ADS)
Park, Taewon; Jeong, Jeehoon; Choi, Jahyun
2017-04-01
The present study reveals the changes in the characteristics of extreme cold events over South Korea for boreal winter (November to March) in terms of the intra-seasonal variability of frequency, duration, and atmospheric circulation pattern. Influences of large-scale variabilities such as the Siberian High activity, the Arctic Oscillation (AO), and the Madden-Julian Oscillation (MJO) on extreme cold events are also investigated. In the early and the late of the winter during November and March, the upper-tropospheric wave-train for a life-cycle of the extreme cold events tends to pass quickly over East Asia. In addition, compared with the other months, the intensity of the Siberian High is weaker and the occurrences of strong negative AO are less frequent. It lead to events with weak amplitude and short duration. On the other hand, the amplified Siberian High and the strong negative AO occur more frequently in the mid of the winter from December to February. The extreme cold events are mainly characterized by a well-organized anticyclonic blocking around the Ural Mountain and the Subarctic. These large-scale circulation makes the extreme cold events for the midwinter last long with strong amplitude. The MJO phases 2-3 which provide a suitable condition for the amplification of extreme cold events occur frequently for November to January when the frequencies are more than twice those for February and March. While the extreme cold events during March have the least frequency, the weakest amplitude, and the shortest duration due to weak impacts of the abovementioned factors, the strong activities of the factors for January force the extreme cold events to be the most frequent, the strongest, and the longest among the boreal winter. Keywords extreme cold event, wave-train, blocking, Siberian High, AO, MJO
Augmentation of blood circulation to the fingers by warming distant body areas
NASA Technical Reports Server (NTRS)
Koscheyev, V. S.; Leon, G. R.; Paul, S.; Tranchida, D.; Linder, I. V.
2000-01-01
Future activities in space will require greater periods of time in extreme environments in which the body periphery will be vulnerable to chilling. Maintaining the hands and fingers in comfortable conditions enhances finger flexibility and dexterity, and thus effects better work performance. We have evaluated the efficacy of promoting heat transfer and release by the extremities by increasing the blood flow to the periphery from more distant parts of the body. The experimental garment paradigm developed by the investigators was used to manipulate the temperature of different body areas. Six subjects, two females and four males, were evaluated in a stage-1 baseline condition, with the inlet temperature of the circulating water in the liquid cooling/warming garment (LCWG) at 33 degrees C. At stage 2 the total LCWG water inlet temperature was cooled to 8 degrees C, and at stage 3 the inlet water temperature in specific segments of the LCWG was warmed (according to protocol) to 45 degrees C, while the inlet temperature in the rest of the LCWG was maintained at 8 degrees C. The following four body-area-warming conditions were studied in separate sessions: (1) head, (2) upper torso/arm, (3) upper torso/arm/head, and (4) legs/feet. Skin temperature, heat flux and blood perfusion of the fingers, and subjective perception of thermal sensations and overall physical comfort were assessed. Finger temperature (T(fing)) analyses showed a statistically significant condition x stage interaction. Post-hoc comparisons (T(fing)) indicated that at stage 3, the upper torso/arm/head warming condition was significantly different from the head, upper torso/arm and legs/feet conditions, showing an increase in T(fing). There was a significant increase in blood perfusion in the fingers at stage 3 in all conditions. Subjective perception of hand warmth, and overall physical comfort level significantly increased in the stage 3 upper torso/arm/head condition. The findings indicate that physiological methods to enhance heat transfer by the blood to the periphery within protective clothing provide an additional tool for increasing total and local human comfort in extreme environments.
Jeon, Somyung; Kim, Young; Jung, Kyoungsim; Chung, Yijung
2017-01-01
The purpose of this study was to examine the effects of task-oriented electromyography-triggered stimulation for shoulder subluxation, muscle activation, pain and upper extremity function in hemiparetic stroke patients. Twenty participants with subacute hemiparetic stroke were recruited for this study and were randomly divided into two groups: experimental group (n = 10) and control group (n = 10). Subjects in the experimental group participated in task-oriented electromyography triggered stimulation for 30 minutes, five times a week for four weeks, whereas the control group received cyclic functional electrical stimulation for 30 minutes, five times a week for four weeks. Subjects in both groups received conventional physical therapy for four weeks (30 min/day, five times/week). Data collected included the degree of shoulder subluxation which had been confirmed by X-ray, muscle activation of the supraspinatus and posterior deltoid muscles by electromyography, pain by the Visual Analogue Scale (VAS), and hand function by the Fugl-Meyer Assessment (FMA) before and after the four week exercise period. The results showed significant improvement in shoulder subluxation, muscle activation, and VAS results in the experimental group, compared with the control group(p < 0.05). FMA scores showed no significant differences between the two groups. In conclusion, task-oriented electromyography-triggered stimulation improved shoulder subluxation, muscle activation, pain and upper extremity function. These results suggest that task-oriented electromyography-triggered stimulation is effective and beneficial for individuals with subacute stroke, and that further studies should be conducted on multivarious anatomical regions.
Parfrey, Kevin; Gibbons, Sean G T; Drinkwater, Eric J; Behm, David G
2014-02-22
Individuals with chronic low back pain (CLBP) have altered activations patterns of the anterior trunk musculature when performing the abdominal hollowing manœuvre (attempt to pull umbilicus inward and upward towards the spine). There is a subgroup of individuals with CLBP who have high neurocognitive and sensory motor deficits with associated primitive reflexes (PR). The objective of the study was to determine if orienting the head and extremities to positions, which mimic PR patterns would alter anterior trunk musculature activation during the hollowing manoeuvre. This study compared surface electromyography (EMG) of bilateral rectus abdominis (RA), external oblique (EO), and internal obliques (IO) of 11 individuals with CLBP and evident PR to 9 healthy controls during the hollowing manoeuvre in seven positions of the upper quarter. Using magnitude based inferences it was likely (>75%) that controls had a higher ratio of left IO:RA activation with supine (cervical neutral), asymmetrical tonic neck reflex (ATNR) left and right, right cervical rotation and cervical extension positions. A higher ratio of right IO:RA was detected in the cervical neutral and ATNR left position for the control group. The CLBP group were more likely to show higher activation of the left RA in the cervical neutral, ATNR left and right, right cervical rotation and cervical flexion positions as well as in the cervical neutral and cervical flexion position for the right RA. Individuals with CLBP and PR manifested altered activation patterns during the hollowing maneuver compared to healthy controls and that altering cervical and upper extremity position can diminish the group differences. Altered cervical and limb positions can change the activation levels of the IO and EO in both groups.
2015-01-01
Kenney, and P. Kenny. 1988. Cardiovascular responses to head -up tilt after an endurance exercise program. Aviat. Space Environ. Med. 59:107–112...the failure of compensatory mechanisms to maintain blood pressure, subsequently leading to cardiovascular decompensation and syncope. Several...the distribution of blood away from the upper body ( head and heart) to the abdomen and lower extremities, eliciting controlled, experimentally induced
Loads Carried by Soldiers: Historical, Physiological, Biomechanical and Medical Aspects
1989-06-01
EMG and cinematographic data in the study of load carriage. They showed that EMG activity of the trapezius, rectus femorls, gastrocnemus and erector... abdominal muscles. Backpack loads of 18 to 27 kg did not change the magnitude of this pressure while walking (45). MEDICAL ASPECTS RUCKSACK PARALYSIS...symptoms included minor pain , paresthesias, numbness and paralysis of the upper extremities. The shoulder girdle and elbow flexor muscle groups were usually
Upper extremity transplantation: current concepts and challenges in an emerging field.
Elliott, River M; Tintle, Scott M; Levin, L Scott
2014-03-01
Loss of an isolated upper limb is an emotionally and physically devastating event that results in significant impairment. Patients who lose both upper extremities experience profound disability that affects nearly every aspect of their lives. While prosthetics and surgery can eventually provide the single limb amputee with a suitable assisting hand, limited utility, minimal haptic feedback, weight, and discomfort are persistent problems with these techniques that contribute to high rates of prosthetic rejection. Moreover, despite ongoing advances in prosthetic technology, bilateral amputees continue to experience high levels of dependency, disability, and distress. Hand and upper extremity transplantation holds several advantages over prosthetic rehabilitation. The missing limb is replaced with one of similar skin color and size. Sensibility, voluntary motor control, and proprioception are restored to a greater degree, and afford better dexterity and function than prosthetics. The main shortcomings of transplantation include the hazards of immunosuppression, the complications of rejection and its treatment, and high cost. Hand and upper limb transplantation represents the most commonly performed surgery in the growing field of Vascularized Composite Allotransplantation (VCA). As upper limb transplantation and VCA have become more widespread, several important challenges and controversies have emerged. These include: refining indications for transplantation, optimizing immunosuppression, establishing reliable criteria for monitoring, diagnosing, and treating rejection, and standardizing outcome measures. This article will summarize the historical background of hand transplantation and review the current literature and concepts surrounding it.
Adamovich, Sergei; Fluet, Gerard G.; Merians, Alma S.; Mathai, Abraham; Qiu, Qinyin
2010-01-01
Current neuroscience has identified several constructs to increase the effectiveness of upper extremity rehabilitation. One is the use of progressive, skill acquisition-oriented training. Another approach emphasizes the use of bilateral activities. Building on these principles, this paper describes the design and feasibility testing of a robotic / virtual environment system designed to train the arm of persons who have had strokes. The system provides a variety of assistance modes, scalable workspaces and hand-robot interfaces allowing persons with strokes to train multiple joints in three dimensions. The simulations utilize assistance algorithms that adjust task difficulty both online and offline in relation to subject performance. Several distinctive haptic effects have been incorporated into the simulations. An adaptive master-slave relationship between the unimpaired and impaired arm encourages active movement of the subject's hemiparetic arm during a bimanual task. Adaptive anti-gravity support and damping stabilize the arm during virtual reaching and placement tasks. An adaptive virtual spring provides assistance to complete the movement if the subject is unable to complete the task in time. Finally, haptically rendered virtual objects help to shape the movement trajectory during a virtual placement task. A proof of concept study demonstrated this system to be safe, feasible and worthy of further study. PMID:19666345
Perez-Marcos, Daniel; Chevalley, Odile; Schmidlin, Thomas; Garipelli, Gangadhar; Serino, Andrea; Vuadens, Philippe; Tadi, Tej; Blanke, Olaf; Millán, José D R
2017-11-17
Technology-mediated neurorehabilitation is suggested to enhance training intensity and therefore functional gains. Here, we used a novel virtual reality (VR) system for task-specific upper extremity training after stroke. The system offers interactive exercises integrating motor priming techniques and embodied visuomotor feedback. In this pilot study, we examined (i) rehabilitation dose and training intensity, (ii) functional improvements, and (iii) safety and tolerance when exposed to intensive VR rehabilitation. Ten outpatient stroke survivors with chronic (>6 months) upper extremity paresis participated in a ten-session VR-based upper limb rehabilitation program (2 sessions/week). All participants completed all sessions of the treatment. In total, they received a median of 403 min of upper limb therapy, with 290 min of effective training. Within that time, participants performed a median of 4713 goal-directed movements. Importantly, training intensity increased progressively across sessions from 13.2 to 17.3 movements per minute. Clinical measures show that despite being in the chronic phase, where recovery potential is thought to be limited, participants showed a median improvement rate of 5.3% in motor function (Fugl-Meyer Assessment for Upper Extremity; FMA-UE) post intervention compared to baseline, and of 15.4% at one-month follow-up. For three of them, this improvement was clinically significant. A significant improvement in shoulder active range of motion (AROM) was also observed at follow-up. Participants reported very low levels of pain, stress and fatigue following each session of training, indicating that the intensive VR intervention was well tolerated. No severe adverse events were reported. All participants expressed their interest in continuing the intervention at the hospital or even at home, suggesting high levels of adherence and motivation for the provided intervention. This pilot study showed how a dedicated VR system could deliver high rehabilitation doses and, importantly, intensive training in chronic stroke survivors. FMA-UE and AROM results suggest that task-specific VR training may be beneficial for further functional recovery both in the chronic stage of stroke. Longitudinal studies with higher doses and sample sizes are required to confirm the therapy effectiveness. This trial was retrospectively registered at ClinicalTrials.gov database (registration number NCT03094650 ) on 14 March 2017.
Texting on mobile phones and musculoskeletal disorders in young adults: A five-year cohort study.
Gustafsson, Ewa; Thomée, Sara; Grimby-Ekman, Anna; Hagberg, Mats
2017-01-01
The aim was to examine whether texting on a mobile phone is a risk factor for musculoskeletal disorders in the neck and upper extremities in a population of young adults. In a longitudinal population-based cohort study with Swedish young adults (aged 20-24 years) data were collected via a web-based questionnaire at baseline (n = 7092) and after one and five years. Cross-sectional associations were found between text messaging and reported ongoing symptoms in neck and upper extremities (odds ratios, ORs 1.3-2.0). Among symptom-free at baseline prospective associations were only found between text messaging and new cases of reported symptoms in the hand/fingers (OR 2.0) at one year follow up. Among those with symptoms at baseline prospective associations were found between text messaging and maintained pain in neck/upper back (OR 1.6). The results imply mostly short-term effects, and to a lesser extent, long-term effects on musculoskeletal disorders in neck and upper extremities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Quantification of human upper extremity nerves and fascicular anatomy.
Brill, Natalie A; Tyler, Dustin J
2017-09-01
In this study we provide detailed quantification of upper extremity nerve and fascicular anatomy. The purpose is to provide values and trends in neural features useful for clinical applications and neural interface device design. Nerve cross-sections were taken from 4 ulnar, 4 median, and 3 radial nerves from 5 arms of 3 human cadavers. Quantified nerve features included cross-sectional area, minor diameter, and major diameter. Fascicular features analyzed included count, perimeter, area, and position. Mean fascicular diameters were 0.57 ± 0.39, 0.6 ± 0.3, 0.5 ± 0.26 mm in the upper arm and 0.38 ± 0.18, 0.47 ± 0.18, 0.4 ± 0.27 mm in the forearm of ulnar, median, and radial nerves, respectively. Mean fascicular diameters were inversely proportional to fascicle count. Detailed quantitative anatomy of upper extremity nerves is a resource for design of neural electrodes, guidance in extraneural procedures, and improved neurosurgical planning. Muscle Nerve 56: 463-471, 2017. © 2016 Wiley Periodicals, Inc.
Preliminary research of a novel center-driven robot for upper extremity rehabilitation.
Cao, Wujing; Zhang, Fei; Yu, Hongliu; Hu, Bingshan; Meng, Qiaoling
2018-01-19
Loss of upper limb function often appears after stroke. Robot-assisted systems are becoming increasingly common in upper extremity rehabilitation. Rehabilitation robot provides intensive motor therapy, which can be performed in a repetitive, accurate and controllable manner. This study aims to propose a novel center-driven robot for upper extremity rehabilitation. A new power transmission mechanism is designed to transfer the power to elbow and shoulder joints from three motors located on the base. The forward and inverse kinematics equations of the center-driven robot (CENTROBOT) are deduced separately. The theoretical values of the scope of joint movements are obtained with the Denavit-Hartenberg parameters method. A prototype of the CENTROBOT is developed and tested. The elbow flexion/extension, shoulder flexion/extension and shoulder adduction/abduction can be realized of the center-driven robot. The angles value of joints are in conformity with the theoretical value. The CENTROBOT reduces the overall size of the robot arm, the influence of motor noise, radiation and other adverse factors by setting all motors on the base. It can satisfy the requirements of power and movement transmission of the robot arm.
An evolutionary perspective on the history of flap reconstruction in the upper extremity.
Fang, Frank; Chung, Kevin C
2014-05-01
Examining the evolution of flap reconstruction of the upper extremity is similar to studying the evolution of biological species. This analogy provides a perspective to appreciate the contributing factors that led to the development of the current arsenal of techniques. It shows the trajectory for the future and provides a glimpse of the factors that that will be influential in the future. Copyright © 2014 Elsevier Inc. All rights reserved.
Aki, Esra; Atasavun, Songül; Kayihan, Holya
2008-06-01
Kinesthetic sense plays an important role in writing. Children with low vision lack sensory input from the environment given their loss of vision. This study assessed the effect of upper extremity kinesthetic sense on writing function in two groups, one of students with low vision (9 girls and 11 boys, 9.4 +/- 1.9 yr. of age) and one of sighted students (10 girls and 10 boys, 10.1 +/- 1.3 yr. of age). All participants were given the Kinesthesia Test and Jebsen Hand Function Test-Writing subtest. Students with low vision scored lower on kinesthetic perception and writing performance than sighted peers. The correlation between scores for writing performance and upper extremity kinesthetic sense in the two groups was significant (r = -.34). The probability of deficiencies in kinesthetic information in students with low vision must be remembered.
Vitse, J; Bekara, F; Bertheuil, N; Sinna, R; Chaput, B; Herlin, C
2017-02-01
Current data on upper extremity propeller flaps are poor and do not allow the assessment of the safety of this technique. A systematic literature review was conducted searching PubMed, EMBASE, and the Cochrane Library electronic databases, and the selection process was adapted from the preferred reporting items for systematic reviews and meta-analysis statement. The final analysis included ten relevant articles involving 117 flaps. The majority of flaps were used for the hand, distal wrist, and elbow. The radial artery perforator and ulnar artery perforator were the most frequently used flaps. The were 7% flaps with venous congestion and 3% with complete necrosis. No difference in complications rate was found for different flaps sites. Perforator-based propeller flaps appear to be an interesting procedure for covering soft tissue defects involving the upper extremities, even for large defects, but the procedure requires experience and close monitoring. II.
Bone Lengthening in the Pediatric Upper Extremity.
Farr, Sebastian; Mindler, Gabriel; Ganger, Rudolf; Girsch, Werner
2016-09-07
➤Bone lengthening has been used successfully for several congenital and acquired conditions in the pediatric clavicle, humerus, radius, ulna, and phalanges.➤Common indications for bone lengthening include achondroplasia, radial longitudinal deficiency, multiple hereditary exostosis, brachymetacarpia, symbrachydactyly, and posttraumatic and postinfectious growth arrest.➤Most authors prefer distraction rates of <1 mm/day for each bone in the upper extremity except the humerus, which can safely be lengthened by 1 mm/day.➤Most authors define success by the amount of radiographic bone lengthening, joint motion after lengthening, and subjective patient satisfaction rather than validated patient-related outcome measures.➤Bone lengthening of the upper extremity is associated with a high complication rate, with complications including pin-track infections, fixation device failure, nerve lesions, nonunion, fracture of regenerate bone, and joint dislocations. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Tsukahara, Yuka; Iwamoto, Jun; Iwashita, Kosui; Shinjo, Takuma; Azuma, Koichiro; Matsumoto, Hideo
2016-01-01
Background Whole-body vibration (WBV) exercise is widely used for training and rehabilitation. However, the optimal posture for training both the upper and lower extremities simultaneously remains to be established. Objectives The objective of this study was to search for an effective posture to conduct vibration from the lower to the upper extremities while performing WBV exercises without any adverse effects. Methods Twelve healthy volunteers (age: 22–34 years) were enrolled in the study. To measure the magnitude of vibration, four accelerometers were attached to the upper arm, back, thigh, and calf of each subject. Vibrations were produced using a WBV platform (Galileo 900) with an amplitude of 4 mm at two frequencies, 15 and 30 Hz. The following three postures were examined: posture A, standing posture with the knees flexed at 30°; posture B, crouching position with no direct contact between the knees and elbows; and posture C, crouching position with direct contact between the knees and elbows. The ratio of the magnitude of vibration at the thigh, back, and upper arm relative to that at the calf was used as an index of vibration conduction. Results Posture B was associated with a greater magnitude of vibration to the calf than posture A at 15 Hz, and postures B and C were associated with greater magnitudes of vibration than posture A at 30 Hz. Posture C was associated with a vibration conduction to the upper arm that was 4.62 times and 8.26 times greater than that for posture A at 15 and 30 Hz, respectively. Conclusion This study revealed that a crouching position on a WBV platform with direct contact between the knees and elbows was effective for conducting vibration from the lower to the upper extremities. PMID:26793008
Responsiveness of outcome measures for upper limb prosthetic rehabilitation.
Resnik, Linda; Borgia, Matthew
2016-02-01
There is limited research on responsiveness of prosthetic rehabilitation outcome measures. To examine responsiveness of the Box and Block test, Jebsen-Taylor Hand Function tests, Upper Extremity Functional Scale, University of New Brunswick skill and spontaneity tests, Activity Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale. This was a quasi-experimental study with repeated measurements in a convenience sample of upper limb amputees. Measures were collected before, during, and after training with the DEKA Arm. Largest effect sizes were observed for Patient-Specific Functional Scale (effect size: 1.59, confidence interval: 1.00, 2.14), Activity Measure for Upper Limb Amputation (effect size: 1.33, confidence interval: 0.73, 1.90), and University of New Brunswick skill test (effect size: 1.18, confidence interval: 0.61, 1.73). Other measures that were responsive to change were Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, and University of New Brunswick spontaneity test. Responsiveness and pattern of responsiveness varied by prosthetic level. The Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, University of New Brunswick skill and spontaneity tests, Activities Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale were responsive to change during prosthetic training. These findings have implications for choice of measures for research and practice and inform clinicians about the amount of training necessary to maximize outcomes with the DEKA Arm. Findings on responsiveness of outcome measures have implications for the choice of measures for clinical trials and practice. Findings regarding the responsiveness to change over the course of training can inform clinicians about the amount of training that may be necessary to maximize specific outcomes with the DEKA Arm. © The International Society for Prosthetics and Orthotics 2014.
Necrotizing Fasciitis of the Upper Extremity, Case Report and Review of the Literature
Nazerani, Shahram; Maghari, Ahmad; Kalantar Motamedi, Mohammad Hosein; Vahedian Ardakani, Jalal; Rashidian, Nikdokht; Nazerani, Tina
2012-01-01
ABSTRACT Necrotizing fasciitis is a rare, life-threatening infection most commonly seen in patients with diabetes mellitus, intravenous drug abuse, and immunocompromised conditions. The extremities are the primary sites of involvement in as many as two thirds of the cases. In a significant proportion of patients, the extremities are involved as a result of trauma, needle puncture or extravasation of drugs. The infection is usually polymicrobial. Treatment involves broad-spectrum antibiotics and multiple surgical debridements or amputation. We present a patient with necrotizing fasciitis of the upper limb and present our experience with this often lethal condition. PMID:24350113
Faria-Fortini, Iza; Michaelsen, Stella Maris; Cassiano, Janine Gomes; Teixeira-Salmela, Luci Fuscaldi
2011-01-01
Upper limb (UL) impairments are the most common disabling deficits after stroke and have complex relationships with activity and participation domains. However, relatively few studies have applied the ICF model to identify the contributions of specific UL impairments, such as muscular weakness, pain, and sensory loss, as predictors of activity and participation. The purposes of this predictive study were to evaluate the relationships between UL variables related to body functions/structures, activity, and participation domains and to determine which would best explain activity and participation with 55 subjects with chronic stroke. Body functions/structures were assessed by measures of grip, pinch, and UL strength, finger tactile sensations, shoulder pain, and cognition (MMSE); activity domain by measures of observed performance (BBT, NHPT, and TEMPA); and participation by measures of quality of life (SSQOL). Upper-limb and grip strength were related to all activity measures (0.52
Tucker, W Steven; Campbell, Brian M; Swartz, Erik E; Armstrong, Charles W
2008-01-01
The Cuff Link is a closed kinetic chain rehabilitation apparatus for the upper extremity. Limited research has established its effectiveness to elicit muscle activation of the scapular muscles. To determine if scapular muscle activation differs in response to 2 upper extremity closed kinetic chain exercises: Cuff Link and standard push-up. A single-group, repeated-measures design. Controlled laboratory. Twenty-eight healthy individuals (13 women: age = 19.69 +/- 1.55 years, height = 167.44 +/- 9.52 cm, mass = 61.00 +/- 8.79 kg; 15 men: age = 22.00 +/- 3.91 years, height = 181.44 +/- 6.60 cm, mass = 82.36 +/- 13.23 kg) with no history of shoulder or low back injury volunteered to participate in this study. Participants performed 10 trials of complete revolutions on the Cuff Link and 10 full-weight-bearing push-ups. We controlled trial velocity and randomized order. Trunk and shoulder positions were normalized to the participant's height. Using surface electromyography, we recorded muscle activity of the serratus anterior, middle trapezius, and lower trapezius. Rectified and smoothed electromyography data for the serratus anterior, middle trapezius, and lower trapezius were normalized as a percentage of the maximal voluntary isometric contractions (%MVIC). Mean muscle activity of the serratus anterior, middle trapezius, and lower trapezius. We used paired-samples t tests to analyze the mean data for each condition. The alpha level was adjusted to .016 to avoid a type I error. Middle trapezius %MVIC was greater during push-ups (27.01 +/- 20.40%) than during use of the Cuff Link (11.49 +/- 9.46%) (P = .001). Lower trapezius %MVIC was greater during push-ups (36.07 +/- 18.99%) than during use of the Cuff Link (16.29 +/- 8.64%) (P = .001). There was no difference in %MVIC for the serratus anterior between conditions. The push-up demonstrated greater middle trapezius and lower trapezius activation levels compared with the Cuff Link. However, the push-up had a high participant failure rate. Because serratus anterior activation levels were similar, the Cuff Link may be an appropriate alternative for individuals lacking the upper body strength to perform a push-up.
Necessary and sufficient criterion for extremal quantum correlations in the simplest Bell scenario
NASA Astrophysics Data System (ADS)
Ishizaka, Satoshi
2018-05-01
In the study of quantum nonlocality, one obstacle is that the analytical criterion for identifying the boundaries between quantum and postquantum correlations has not yet been given, even in the simplest Bell scenario. We propose a plausible, analytical, necessary and sufficient condition ensuring that a nonlocal quantum correlation in the simplest scenario is an extremal boundary point. Our extremality condition amounts to certifying an information-theoretical quantity; the probability of guessing a measurement outcome of a distant party optimized using any quantum instrument. We show that this quantity can be upper and lower bounded from any correlation in a device-independent way, and we use numerical calculations to confirm that coincidence of the upper and lower bounds appears to be necessary and sufficient for the extremality.
Salvage of mangled upper extremity using the Masquelet technique in a child: A case report
Alassaf, Nabil; Alhoukail, Amro; Alsahli, Abdullah; Althubaiti, Ghazi
2017-01-01
Aim: To report our experience with the Masquelet concept in a pediatric upper extremity following an open injury to the elbow. Methods: A case report and literature review. Results: An 11-year-old boy was transferred to our institution after a motor vehicle collision. There was a primary loss of the ulnohumeral articulation and the surrounding soft tissues as well as the ulnar nerve. Reconstruction used the Masquelet-induced membrane technique and a soft tissue flap. At the 30-month follow-up, the extremity was pain free and functional. Conclusion: This case highlights the value of the Masquelet technique in pediatric extremity injuries, where there is a loss of a major articular segment, as well as significant soft tissue compromise. PMID:29201370
Duma, Stefan M; Hansen, Gail A; Kennedy, Eric A; Rath, Amber L; McNally, Craig; Kemper, Andrew R; Smith, Eric P; Brolinson, P Gunnar; Stitzel, Joel D; Davis, Martin B; Bass, Cameron R; Brozoski, Frederick T; McEntire, B Joseph; Alem, Nabih M; Crowley, John S
2004-11-01
This paper describes a three part analysis to characterize the interaction between the female upper extremity and a helicopter cockpit side airbag system and to develop dynamic hyperextension injury criteria for the female elbow joint. Part I involved a series of 10 experiments with an original Army Black Hawk helicopter side airbag. A 5(th) percentile female Hybrid III instrumented upper extremity was used to demonstrate side airbag upper extremity loading. Two out of the 10 tests resulted in high elbow bending moments of 128 Nm and 144 Nm. Part II included dynamic hyperextension tests on 24 female cadaver elbow joints. The energy source was a drop tower utilizing a three-point bending configuration to apply elbow bending moments matching the previously conducted side airbag tests. Post-test necropsy showed that 16 of the 24 elbow joint tests resulted in injuries. Injury severity ranged from minor cartilage damage to more moderate joint dislocations and severe transverse fractures of the distal humerus. Peak elbow bending moments ranged from 42.4 Nm to 146.3 Nm. Peak bending moment proved to be a significant indicator of any elbow injury (p = 0.02) as well as elbow joint dislocation (p = 0.01). Logistic regression analyses were used to develop single and multiple variate injury risk functions. Using peak moment data for the entire test population, a 50% risk of obtaining any elbow injury was found at 56 Nm while a 50% risk of sustaining an elbow joint dislocation was found at 93 Nm for the female population. These results indicate that the peak elbow bending moments achieved in Part I are associated with a greater than 90% risk for elbow injury. Subsequently, the airbag was re-designed in an effort to mitigate this as well as the other upper extremity injury risks. Part III assessed the redesigned side airbag module to ensure injury risks had been reduced prior to implementing the new system. To facilitate this, 12 redesigned side airbag deployments were conducted using the same procedures as Part I. Results indicate that the re-designed side airbag has effectively mitigated elbow injury risks induced by the original side airbag design. It is anticipated that this study will provide researchers with additional injury criteria for assessing upper extremity injury risk caused by both military and automotive side airbag deployments.
The PROMIS physical function correlates with the QuickDASH in patients with upper extremity illness.
Overbeek, Celeste L; Nota, Sjoerd P F T; Jayakumar, Prakash; Hageman, Michiel G; Ring, David
2015-01-01
To assess disability more efficiently with less burden on the patient, the National Institutes of Health has developed the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function-an instrument based on item response theory and using computer adaptive testing (CAT). Initially, upper and lower extremity disabilities were not separated and we were curious if the PROMIS Physical Function CAT could measure upper extremity disability and the Quick Disability of Arm, Shoulder and Hand (QuickDASH). We aimed to find correlation between the PROMIS Physical Function and the QuickDASH questionnaires in patients with upper extremity illness. Secondarily, we addressed whether the PROMIS Physical Function and QuickDASH correlate with the PROMIS Depression CAT and PROMIS Pain Interference CAT instruments. Finally, we assessed factors associated with QuickDASH and PROMIS Physical Function in multivariable analysis. A cohort of 93 outpatients with upper extremity illnesses completed the QuickDASH and three PROMIS CAT questionnaires: Physical Function, Pain Interference, and Depression. Pain intensity was measured with an 11-point ordinal measure (0-10 numeric rating scale). Correlation between PROMIS Physical Function and the QuickDASH was assessed. Factors that correlated with the PROMIS Physical Function and QuickDASH were assessed in multivariable regression analysis after initial bivariate analysis. There was a moderate correlation between the PROMIS Physical Function and the QuickDASH questionnaire (r=-0.55, p<0.001). Greater disability as measured with the PROMIS and QuickDASH correlated most strongly with PROMIS Depression (r=-0.35, p<0.001 and r=0.34, p<0.001 respectively) and Pain Interference (r=-0.51, p<0.001 and r=0.74, p<0.001 respectively). The factors accounting for the variability in PROMIS scores are comparable to those for the QuickDASH except that the PROMIS Physical Function is influenced by other pain conditions while the QuickDASH is not. The PROMIS Physical Function instrument may be used as an upper extremity disability measure, as it correlates with the QuickDASH questionnaire, and both instruments are influenced most strongly by the degree to which pain interferes with achieving goals. Level III, diagnostic study. See the Instructions for Authors for a complete description of levels of evidence.
Population-based utilities for upper extremity functions in the setting of tetraplegia.
Ram, Ashwin N; Curtin, Catherine M; Chung, Kevin C
2009-11-01
People with tetraplegia face substantial physical and financial hardships. Although upper extremity reconstruction has been advocated for people with tetraplegia, these procedures are markedly underused in the United States. Population-based preference evaluation of upper extremity reconstruction is important to quantify the value of these reconstructive procedures. This study sought to establish the preferences for 3 health states: tetraplegia, tetraplegia with corrected pinch function, and tetraplegia with corrected elbow extension function. A computer-based, time trade-off survey was administered to a cohort of 81 able-bodied second-year medical students who served as a surrogate for the general public. This survey instrument has undergone pilot testing and has established face validity to evaluate the 3 health states of interest. Utilities were calculated based on an estimated 20 years of remaining life. The mean utility for the tetraplegic health state was low. On average, respondents gave up 10.8 +/- 5.0 out of a hypothetical 20 years for perfect health, for a utility of tetraplegia equal to 0.46. For recovery of pinch function, respondents gave up an average of 6.5 +/- 4.3 years, with a corresponding health utility of 0.68. For recovery of elbow extension function, respondents gave up an average of 7.6 +/- 4.5 years, with a corresponding health utility of 0.74. This study established the preferences for 2 upper extremity surgical interventions: tetraplegia with pinch and tetraplegia with elbow extension. The findings from this study place a high value on upper-limb reconstructive procedures with tetraplegia.
Arya, Kamal Narayan; Pandian, Shanta
2013-01-01
Mirror therapy (MT) is an alternative therapeutic intervention that uses the interaction of visuomotor-proprioception inputs to enhance movement performance of the impaired limb. Despite strong evidence for task-specific training in stroke, MT has been investigated using nontask movements. The aim of this pilot study was to assess the effectiveness of task-based MT on motor recovery of the upper extremity in chronic stroke patients. In a pretest-posttest single-group design, a convenience sample of 13 chronic stroke patients at an occupational therapy department of a rehabilitation institute was assessed on a task-based MT intervention. Participants received a task-based MT program, performing various tasks by the less affected upper extremity and observing in the mirror box along with conventional management, 4 days per week for 4 weeks. Fugl-Meyer Assessment (FMA), which includes subsection upper extremity (FMA-UE) and subpart upper arm (FMA-UA) and hand (FMA-WH), was used as an outcome measure. Participants showed no significant improvement for FMA-UE and FMA-UA at postassessment. FMA-UE changed from 43% to 51%. Post FMA-UA score showed only 2% improvement. However, there was statistically significant improvement on mean scores of FMA-WH at postassessment (16.21 ± 3.06) as compared with the prescores (12.29 ± 3.1; P < .05). FMA-WH improved from 41% to 54%. The preliminary findings suggest that task-based MT is effective in improving wrist and hand motor recovery in chronic stroke patients. Further studies in the form of randomized trials are needed to validate its effectiveness.
Merians, Alma S; Fluet, Gerard G; Qiu, Qinyin; Saleh, Soha; Lafond, Ian; Davidow, Amy; Adamovich, Sergei V
2011-05-16
Recovery of upper extremity function is particularly recalcitrant to successful rehabilitation. Robotic-assisted arm training devices integrated with virtual targets or complex virtual reality gaming simulations are being developed to deal with this problem. Neural control mechanisms indicate that reaching and hand-object manipulation are interdependent, suggesting that training on tasks requiring coordinated effort of both the upper arm and hand may be a more effective method for improving recovery of real world function. However, most robotic therapies have focused on training the proximal, rather than distal effectors of the upper extremity. This paper describes the effects of robotically-assisted, integrated upper extremity training. Twelve subjects post-stroke were trained for eight days on four upper extremity gaming simulations using adaptive robots during 2-3 hour sessions. The subjects demonstrated improved proximal stability, smoothness and efficiency of the movement path. This was in concert with improvement in the distal kinematic measures of finger individuation and improved speed. Importantly, these changes were accompanied by a robust 16-second decrease in overall time in the Wolf Motor Function Test and a 24-second decrease in the Jebsen Test of Hand Function. Complex gaming simulations interfaced with adaptive robots requiring integrated control of shoulder, elbow, forearm, wrist and finger movements appear to have a substantial effect on improving hemiparetic hand function. We believe that the magnitude of the changes and the stability of the patient's function prior to training, along with maintenance of several aspects of the gains demonstrated at retention make a compelling argument for this approach to training.
2011-01-01
Background Recovery of upper extremity function is particularly recalcitrant to successful rehabilitation. Robotic-assisted arm training devices integrated with virtual targets or complex virtual reality gaming simulations are being developed to deal with this problem. Neural control mechanisms indicate that reaching and hand-object manipulation are interdependent, suggesting that training on tasks requiring coordinated effort of both the upper arm and hand may be a more effective method for improving recovery of real world function. However, most robotic therapies have focused on training the proximal, rather than distal effectors of the upper extremity. This paper describes the effects of robotically-assisted, integrated upper extremity training. Methods Twelve subjects post-stroke were trained for eight days on four upper extremity gaming simulations using adaptive robots during 2-3 hour sessions. Results The subjects demonstrated improved proximal stability, smoothness and efficiency of the movement path. This was in concert with improvement in the distal kinematic measures of finger individuation and improved speed. Importantly, these changes were accompanied by a robust 16-second decrease in overall time in the Wolf Motor Function Test and a 24-second decrease in the Jebsen Test of Hand Function. Conclusions Complex gaming simulations interfaced with adaptive robots requiring integrated control of shoulder, elbow, forearm, wrist and finger movements appear to have a substantial effect on improving hemiparetic hand function. We believe that the magnitude of the changes and the stability of the patient's function prior to training, along with maintenance of several aspects of the gains demonstrated at retention make a compelling argument for this approach to training. PMID:21575185
Quantitative measures with WREX usage.
Shank, Tracy M; Wee, Jinyong; Ty, Jennifer; Rahman, Tariq
2017-07-01
This paper presents the results of two surveys conducted with users of a functional upper extremity orthosis called the Wilmington Robotic EXoskeleton (WREX). The WREX is a passive anti-gravity arm orthosis that allows people with neuromuscular disabilities to move their arms in three dimensions. An online user survey with 55 patients was conducted to determine the benefits of the WREX. The survey asked 10 questions related to upper extremity function with and without the WREX as well as subjective impressions of the device. A second survey used a phone interview based on the Canadian Occupational Performance Measure (COPM). Parents rated their child's performance and satisfaction while partaking in important activities both with and without the exoskeleton device. Scores were assessed for change between the two conditions. Twenty-five families responded to this survey. Twenty-four out of 25 subjects reported greater levels of performance and satisfaction when they were wearing the WREX. The mean change in performance score was 3.61 points, and the mean change in satisfaction score was 4.44 points. Results show a statistically significant improvement in arm function for everyday tasks with the WREX.
Evidence-based therapies for upper extremity dysfunction.
Liepert, Joachim
2010-12-01
The diversity of interventions aimed at improving upper extremity dysfunction is increasing. This article reviews the effectiveness of different therapeutic approaches that have been published in 2009 and 2010. Evidence is based on randomized controlled trials, systematic reviews, and meta-analyses. Application of constraint-induced movement therapy in acute stroke patients was not more effective than a control intervention, and a more intense therapy may even be harmful. Botulinum toxin injections do not only reduce spasticity but, in children, also improve motor functions if combined with occupational therapy. Strength training improves arm function but not necessarily activities of daily living. Bilateral arm training is as effective as other interventions. Extrinsic feedback and sensory training may further improve motor functions. Mirror therapy was particularly effective for patients with initial hand plegia. For some interventions (e.g. constraint-induced movement therapy, botulinum toxin), efficacy is evident, for others (e.g. mental practice, virtual reality), well designed studies with sufficient numbers of patients are needed. The ultimate goal still is to develop evidence-based therapies for all different degrees of motor impairment.
Celik, Ozkan; O’Malley, Marcia K.; Boake, Corwin; Levin, Harvey S.; Yozbatiran, Nuray; Reistetter, Timothy A.
2016-01-01
In this paper, we analyze the correlations between four clinical measures (Fugl–Meyer upper extremity scale, Motor Activity Log, Action Research Arm Test, and Jebsen-Taylor Hand Function Test) and four robotic measures (smoothness of movement, trajectory error, average number of target hits per minute, and mean tangential speed), used to assess motor recovery. Data were gathered as part of a hybrid robotic and traditional upper extremity rehabilitation program for nine stroke patients. Smoothness of movement and trajectory error, temporally and spatially normalized measures of movement quality defined for point-to-point movements, were found to have significant moderate to strong correlations with all four of the clinical measures. The strong correlations suggest that smoothness of movement and trajectory error may be used to compare outcomes of different rehabilitation protocols and devices effectively, provide improved resolution for tracking patient progress compared to only pre-and post-treatment measurements, enable accurate adaptation of therapy based on patient progress, and deliver immediate and useful feedback to the patient and therapist. PMID:20388607
Carlsen, Brian T; Prigge, Pat; Peterson, Jennifer
2014-01-01
For several decades, prosthetic use was the only option to restore function after upper extremity amputation. Recent years have seen advances in the field of prosthetics. Such advances include prosthetic design and function, activity-specific devices, improved aesthetics, and adjunctive surgical procedures to improve both form and function. Targeted reinnervation is one exciting advance that allows for more facile and more intuitive function with prosthetics following proximal amputation. Another remarkable advance that holds great promise in nearly all fields of medicine is the transplantation of composite tissue, such as hand and face transplantation. Hand transplantation holds promise as the ultimate restorative procedure that can provide form, function, and sensation. However, this procedure still comes with a substantial cost in terms of the rehabilitation and toxic immunosuppression and should be limited to carefully selected patients who have failed prosthetic reconstruction. Hand transplantation and prosthetic reconstruction should not be viewed as competing options. Rather, they are two treatment options with different risk/benefit profiles and different indications and, hence vastly different implications. Copyright © 2014 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Remsik, Alexander; Young, Brittany; Vermilyea, Rebecca; Kiekoefer, Laura; Abrams, Jessica; Elmore, Samantha Evander; Schultz, Paige; Nair, Veena; Edwards, Dorothy; Williams, Justin; Prabhakaran, Vivek
2016-01-01
Stroke is a leading cause of acquired disability resulting in distal upper extremity functional motor impairment. Stroke mortality rates continue to decline with advances in healthcare and medical technology. This has led to an increased demand for advanced, personalized rehabilitation. Survivors often experience some level of spontaneous recovery shortly after their stroke event; yet reach a functional plateau after which there is exiguous motor recovery. Nevertheless, studies have demonstrated the potential for recovery beyond this plateau. Non-traditional neurorehabilitation techniques, such as those incorporating the brain-computer interface (BCI), are being investigated for rehabilitation. BCIs may offer a gateway to the brain’s plasticity and revolutionize how humans interact with the world. Non-invasive BCIs work by closing the proprioceptive feedback loop with real-time, multi-sensory feedback allowing for volitional modulation of brain signals to assist hand function. BCI technology potentially promotes neuroplasticity and Hebbian-based motor recovery by rewarding cortical activity associated with sensory-motor rhythms through use with a variety of self-guided and assistive modalities. PMID:27112213
Force Myography to Control Robotic Upper Extremity Prostheses: A Feasibility Study
Cho, Erina; Chen, Richard; Merhi, Lukas-Karim; Xiao, Zhen; Pousett, Brittany; Menon, Carlo
2016-01-01
Advancement in assistive technology has led to the commercial availability of multi-dexterous robotic prostheses for the upper extremity. The relatively low performance of the currently used techniques to detect the intention of the user to control such advanced robotic prostheses, however, limits their use. This article explores the use of force myography (FMG) as a potential alternative to the well-established surface electromyography. Specifically, the use of FMG to control different grips of a commercially available robotic hand, Bebionic3, is investigated. Four male transradially amputated subjects participated in the study, and a protocol was developed to assess the prediction accuracy of 11 grips. Different combinations of grips were examined, ranging from 6 up to 11 grips. The results indicate that it is possible to classify six primary grips important in activities of daily living using FMG with an accuracy of above 70% in the residual limb. Additional strategies to increase classification accuracy, such as using the available modes on the Bebionic3, allowed results to improve up to 88.83 and 89.00% for opposed thumb and non-opposed thumb modes, respectively. PMID:27014682
Movement Repetitions in Physical and Occupational Therapy during Spinal Cord Injury Rehabilitation
Zbogar, Dominik; Eng, Janice J; Miller, William C; Krassioukov, Andrei V; Verrier, Molly C
2016-01-01
Study Design Longitudinal observational study. Objective To quantify the amount of upper and lower extremity movement repetitions (i.e., voluntary movements as part of a functional task or specific motion) occurring during inpatient spinal cord injury (SCI) physical (PT) and occupational therapy (OT), and examine changes over the inpatient rehabilitation stay. Setting Two stand-alone inpatient SCI rehabilitation centres. Methods Participants 103 patients were recruited through consecutive admissions to SCI rehabilitation. Interventions Trained assistants observed therapy sessions and obtained clinical outcome measures in the second week following admission and in the second to last week prior to discharge. Main Outcome Measures PT and OT time, upper and lower extremity repetitions, and changes in these outcomes over the rehabilitation stay. Results We observed 561 PT and 347 OT sessions. Therapeutic time comprised two-thirds of total therapy time. Summed over PT and OT, median upper extremity repetitions in patients with paraplegia were 7 repetitions and in patients with tetraplegia, 42 repetitions. Lower extremity repetitions and steps primarily occurred in ambulatory patients and amounted to 218 and 115, respectively (summed over PT and OT sessions at discharge). Wilcoxon signed rank tests revealed that most repetition variables did not change significantly over the inpatient rehabilitation stay. In contrast, clinical outcomes for the arm and leg improved over this time period. Conclusions Repetitions of upper and lower extremity movement are markedly low during PT and OT sessions. Despite improvements in clinical outcomes, there was no significant increase in movement repetitions over the inpatient rehabilitation stay. PMID:27752057
Amniotic Constriction Bands: Secondary Deformities and Their Treatments.
Drury, Benjamin T; Rayan, Ghazi M
2018-01-01
The purpose of this study was to report the surgical treatment experience of patients with amniotic constriction bands (ACB) over a 35-year interval and detail consequential limb deformities with emphasis on hands and upper extremities, along with the nature and frequency of their surgical treatment methods. Fifty-one patients were identified; 26 were males and 25 females. The total number of deformities was listed. The total number of operations, individual procedures, and operations plus procedures that were done for each patient and their frequency were recorded. The total number of operations was 117, and total number of procedures was 341. More procedures were performed on the upper extremity (85%) than the lower extremity (15%). Including the primary deformity ACB, 16 different hand deformities secondary to ACB were encountered. Sixteen different surgical methods for the upper extremity were utilized; a primary procedure for ACB and secondary reconstructions for all secondary deformities. Average age at the time of the first procedure was 9.3 months. The most common procedures performed, in order of frequency, were excision of ACB plus Z-plasty, release of partial syndactyly, release of fenestrated syndactyly, full-thickness skin grafts, resection of digital bony overgrowth from amputation stumps, and deepening of first and other digital web spaces. Many hand and upper extremity deformities secondary to ACB are encountered. Children with ACB may require more than one operation including multiple procedures. Numerous surgical methods of reconstruction for these children's secondary deformities are necessary in addition to the customary primary procedure of excision of ACB and Z-plasty.
Physiologically Relevant Prosthetic Limb Movement Feedback for Upper and Lower Extremity Amputees
2016-10-01
upper arm (elbow movement), Upper leg (knee movement) and lower leg ( ankle movement) to provide a physiologically relevant sense of limb movement...Additionally a BOA cable tensioning system is passed through these plates and anchored to the external surface of the socket. When tension is applied the
Control of robot assistant for rehabilitation of upper extremities.
Kostić, Miloš D; Popović, Mirjana B; Popović, Dejan B
2012-01-01
The assisted movement in humans with paresis of upper extremities is becoming popular for neurorehabilitation. We propose a novel method for trajectory selection and assistance control. This paper presents simulation of a planar two degrees of freedom robot that assists horizontal movement of the hand. The control assumes that during the exercise the hand needs to follow healthy alike trajectories. The robot is assumed to provide minimal assistance and operate as a teacher of the movement.
Vining, Robert D; Gosselin, Donna M; Thurmond, Jeb; Case, Kimberlee; Bruch, Frederick R
2017-08-01
This report describes interdisciplinary rehabilitation for a 51-year-old male recovering from incomplete cervical spinal cord injury (SCI) and multiple comorbidities following an automobile accident. The patient was admitted to a rehabilitation specialty hospital approximately 2 months post SCI and 2 separate surgical fusion procedures (C3-C6). Clinical presentation at the rehabilitation hospital included moderate to severe motor strength loss in both upper and lower extremities, a percutaneous endoscopic gastronomy tube (PEG), dysphagia, bowel/bladder incontinence, dependence on a mechanical lift and tilting wheelchair due to severe orthostatic hypotension, and pre-existing shoulder pain from bilateral joint degeneration. The interdisciplinary team formally coordinated rehabilitative care from multiple disciplines. Internal medicine managed medications, determined PEG removal, monitored co-morbid conditions, and overall progress. Chiropractic care focused on alleviating shoulder and thoracic pain and improving spinal and extremity mobility. Physical therapy addressed upright tolerance, transfer, gait, and strength training. Occupational therapy focused on hand coordination and feeding/dressing activities. Psychology assisted with coping strategies. Nursing ensured medication adherence, nutrient intake, wound prevention, and incontinence management, whereas physiatry addressed abnormal muscle tone. Eleven months post-admission the patient's progress allowed discharge to a long-term care facility. At this time he was without dysphagia or need for a PEG. Orthostatic hypotension and bilateral shoulder pain symptoms were also resolved while bowel/bladder incontinence and upper and lower extremity motor strength loss remained. He was largely independent in transferring from bed to wheelchair and in upper body dressing. Lower body dressing/bathing required maximal assistance. Gait with a 2-wheeled walker was possible up to 150 feet with verbal cues and occasional stabilizing assistance. Several specialties functioning within an interdisciplinary team fulfilled complementary roles to support rehabilitation for a patient with SCI.
Scapular kinematics and shoulder elevation in a traditional push-up.
Suprak, David N; Bohannon, Jennifer; Morales, Gabriel; Stroschein, Joseph; San Juan, Jun G
2013-01-01
Proper scapulothoracic motion is critical for the health and function of the shoulder and represents a principal focus in the rehabilitation setting. Variants of the traditional push-up are used frequently to help restore proper scapular kinematics. To date, substantial research has focused on muscle activation levels of rotator cuff and scapular-stabilizing musculature, whereas a dearth of literature exists regarding scapular kinematics during push-up variants. To examine the effect of shoulder position on scapular kinematics across the range of motion (ROM) of a traditional push-up. Cross-sectional study. University laboratory. Sixteen healthy participants without a history of upper extremity or spine injury requiring rehabilitation or surgery. Participants performed a traditional push-up while kinematic measurements were acquired from multiple upper extremity segments. The 3 shoulder position conditions were (1) self-selected position, (2) shoulder adducted upon ascent (at side), and (3) shoulder elevated to approximately 90°. Scapular posterior tilt, upward rotation, and external rotation were examined across elbow-extension ROM and compared across conditions. Posterior tilt was greater in the self-selected and at-side conditions than in the elevated condition and increased linearly with elbow extension. External rotation was greater in the self-selected and at-side conditions compared with that in the elevated condition. In the at-side condition, upward rotation began lower than in the other conditions at the start of the concentric phase but increased above the others soon after the elbow started to extend. Performing a traditional push-up with the shoulders elevated may place the scapula in a position of impingement. Clinicians should be cognizant of shoulder elevation when prescribing and monitoring exercise progression. The results of this study will provide further direction for clinicians in prescribing rehabilitation exercises for the upper extremity, especially closed chain exercises for shoulder conditions.
Grimm, Florian; Gharabaghi, Alireza
2016-01-01
Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement.
Grimm, Florian; Gharabaghi, Alireza
2016-01-01
Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement. PMID:27445658
Talaei-Khoei, Mojtaba; Nemati-Rezvani, Hora; Fischerauer, Stefan F; Ring, David; Chen, Neal; Vranceanu, Ana-Maria
2017-05-01
The Gross process model of emotion regulation holds that emotion-eliciting situations (e.g. musculoskeletal illness) can be strategically regulated to determine the final emotional and behavioral response. Also, there is some evidence that innate emotional traits may predispose an individual to a particular regulating coping style. We enrolled 107 patients with upper extremity musculoskeletal illness in this cross-sectional study. They completed self-report measures of positive and negative affect, emotion regulation strategies (cognitive reappraisal and expressive suppression), upper extremity physical function, pain intensity, and demographics. We used Preacher and Hayes' bootstrapping approach to process analysis to infer the direct effect of positive and negative affect on physical function as well as their indirect effects through activation of emotion regulation strategies. Negative affect was associated with decreased physical function. The association was partly mediated by expressive suppression (b (SE)=-.10 (.05), 95% BCa CI [-.21, -.02]). Positive affect was associated with increased physical function. Cognitive reappraisal partially mediated this association (b (SE)=.11 (.05), 95% BCa CI [.03, .24]). After controlling for pain intensity, the ratio of the mediated effect to total effect grew even larger in controlled model comparing to uncontrolled model (33% vs. 26% for expressive suppression and 32% vs. 30% for cognitive reappraisal). The relationships between affect, emotion regulation strategies and physical function appear to be more dependent on the emotional response to an orthopedic condition rather than the intensity of the nociceptive stimulation of the pain. Findings support integration of emotion regulation training in skill-based psychotherapy in this population to mitigate the effect of negative affect and enhance the influence of positive affect on physical function. Copyright © 2017 Elsevier Inc. All rights reserved.
Suprak, David N; Dawes, Jay; Stephenson, Mark D
2011-02-01
The push-up is a popular upper-extremity weight-bearing exercise. However, limited information is available regarding its effectiveness. Much of the past research has focused on muscle activation levels, whereas very little has examined the forces encountered during push-up variants. The purpose of the present study was to examine the effect of position within the range of motion on the percentage of body mass (BM) supported by the upper extremities during the traditional and modified (knees-down) push-up. Twenty-eight highly strength-trained male subjects were positioned with their hands on a force platform in 4 static positions, consisting of the up and down position in both the traditional and modified push-up exercise. The performance measures included the average vertical ground reaction force (GRF), expressed as a percentage of BM, supported in each of the 4 static positions and the percentage of change between the up and down positions in each push-up exercise. In both the traditional and modified push-ups, subjects supported less weight in the up vs. the down position. The percentage change in % BM from the up to the down position was greater in the modified push-up variant. The pattern of resistances to the push-up exercises observed in this study may be a result of differing moment arms between the support surface contact point (knees or feet) and the hands. These results may be useful in prescribing programs for strengthening and/or rehabilitation for both the prime movers and stabilizers of the upper extremity. Further, range of motion may need to be altered to accommodate strength differences in beginners and clients rehabilitating from injury.
Dogru Huzmeli, Esra; Yildirim, Sibel Aksu; Kilinc, Muhammed
2017-04-01
Some studies show that sensorial rehabilitation is effective on functionality. The aim of this study is to investigate the effect of sensory training of the posterior thigh on the functionality of upper extremity and trunk control in stroke patients. Thirteen subjects (53.23 ± 6.82 years) were included in the intervention group and 13 subjects (58.69 ± 5.94 years) in the control group. The control and intervention groups were treated for ten sessions. The control group was treated only with neurodevelopmental treatment, and the intervention group was treated with sensorial training on the posterior thigh in addition to the neurodevelopmental treatment. Subjects were evaluated three times, pre- and post-treatment and 10 days after finishing the treatment. Trunk control was assessed by the Trunk Impairment Scale, reaching function by the Functional Reach Test, balance by the Berg Balance Test, upper extremity symptom and disability severity by the Disabilities of the Arm, Shoulder, Hand and Minnesota, independence level in daily living activities by the Barthel Index, and sensory function of the posterior thigh by sensorial tests. In the post-treatment assessment, it was found that the intervention group was better than the control group in the parameter of functional reach while sitting (p < 0.005). In the third assessment, reaching while sitting and independence level were better in the intervention group than the control group (p < 0.005). There was no difference in sensorial assessment between the groups. Sensory training of the posterior thigh should be included in the rehabilitation programme of stroke patients.
Komar, Alyssa; Ashley, Kelsey; Hanna, Kelly; Lavallee, Julia; Woodhouse, Janet; Bernstein, Janet; Andres, Matthew; Reed, Nick
2016-01-01
A pretest-posttest retrospective design was used to evaluate the impact of a group-based modified constraint-induced movement therapy (mCIMT) program on upper extremity function and occupational performance. 20 children ages 3 to 18 years with hemiplegia following an acquired brain injury participated in a 2-week group mCIMT program. Upper extremity function was measured with the Assisting Hand Assessment (AHA) and subtests from the Quality of Upper Extremity Skills Test (QUEST). Occupational performance and satisfaction were assessed using the Canadian Occupational Performance Measure (COPM). Data were analyzed using a Wilcoxon signed-ranks test. Group-based analysis revealed upper extremity function and occupational performance attained statistically significant improvements from pre- to postintervention on all outcome measures (AHA: Z = -3.63, p = <.001; QUEST Grasps: Z = -3.10, p = .002; QUEST Dissociated Movement: Z = -2.51, p = .012; COPM Performance: Z = -3.64, p = <.001; COPM Satisfaction: Z = -3.64, p = <.001). Across individuals, clinically significant improvements were found in 65% of participants' AHA scores. 80% of COPM Performance scores and 70% of COPM Satisfaction scores demonstrated clinically significant improvements in at least one identified goal. This study is an initial step in evaluating and providing preliminary evidence supporting the effectiveness of a group-based mCIMT program for children with hemiplegia following an acquired brain injury.
Rasouli, Mohammad R; Moini, Majid; Khaji, Ali
2009-12-01
The determination of the pattern of traumatic vascular injuries of the upper extremity in Iran was the aim of this study. Data of the Iranian national trauma project were used to identify patients with upper extremity vascular injuries. This project was conducted in 8 major cities from 2000-2004. A total of 113 cases with 130 vascular injuries were found, including 2 axillary, 18 brachial, and 69 radial and ulnar arteries. In 91 cases (81%), penetrating trauma was responsible. Associated nerve and/or upper extremity fractures were seen in 20% and 18% of cases, respectively. End-to-end anastomosis, interposition of saphenous graft, and ligation were used for the management of 44%, 28%, and 17%, respectively, of brachial artery injuries. Ulnar and radial artery injuries had been either ligated (n = 36; 52%) or sutured (n = 33; 48%). Median, ulnar, and radial nerve injuries, except for one, had all been sutured primarily. No patients needed fasciotomy. Amputation and mortality resulting from associated injuries occurred in 3 (2.6%) and 5 (4.4%) patients, respectively. This study revealed that stabbings are the most frequent causes of these injuries in Iran, in spite of the management of patients in level 3 trauma centers; the rate of amputation is acceptable. However, this study does not provide limb functions of the patients.
Monsivais, J J; Sun, Y; Rajashekhar, T P
1995-07-01
Neck pain, headaches, upper thoracic pain, and dystonic scalene muscles are common findings in patients who have severe entrapment neuropathies of the upper extremities. This problem was taken to the laboratory in an attempt to discover the correlation between distal entrapment neuropathies, brachial plexus entrapments, and prominent scalenus muscles. When increased pressure (over 40 mmHg) was applied to the median and ulnar nerves in the forelimbs of eight goats, increased electromyographic activity was noted in the ipsilateral scalenus muscle. Pressures ranging from 100 to 150 mmHg caused increased electromyographic activity on the contralateral scalene muscle, and the authors postulate that it is mediated by the gamma afferent and efferent system. This relationship may explain the commonly found neck pain and muscle spasm in patients with peripheral neuropathies, and it represents a link between the somatic efferent nerves and the gamma motor neuron system. At present, the same phenomenon has been documented in 30 humans with the diagnosis of brachial plexus entrapment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mor, Rivay; Netzer, Hagai; Trakhtenbrot, Benny
We report new Herschel observations of 25 z {approx_equal} 4.8 extremely luminous optically selected active galactic nuclei (AGNs). Five of the sources have extremely large star-forming (SF) luminosities, L{sub SF}, corresponding to SF rates (SFRs) of 2800-5600 M{sub Sun} yr{sup -1} assuming a Salpeter initial mass function. The remaining sources have only upper limits on their SFRs, but stacking their Herschel images results in a mean SFR of 700 {+-} 150 M{sub Sun} yr{sup -1}. The higher SFRs in our sample are comparable to the highest observed values so far at any redshift. Our sample does not contain obscured AGNs,more » which enables us to investigate several evolutionary scenarios connecting supermassive black holes and SF activity in the early universe. The most probable scenario is that we are witnessing the peak of SF activity in some sources and the beginning of the post-starburst decline in others. We suggest that all 25 sources, which are at their peak AGN activity, are in large mergers. AGN feedback may be responsible for diminishing the SF activity in 20 of them, but is not operating efficiently in 5 others.« less
Dankel, Scott J; Loenneke, Jeremy P; Loprinzi, Paul D
2018-02-01
Skeletal muscle strength and engagement in muscle-strengthening activities are each inversely associated with all-cause mortality; however, less is known on their relationship with cancer-specific mortality. Data from the 1999-2002 National Health and Nutrition Examination Survey were used assessing 2773 individuals aged 50 years or older. Individuals being dichotomized at the 75th percentile for knee extensor strength, and engagement in muscle-strengthening activities was acquired through self-report with ≥2 sessions per week were classified as meeting guidelines. With respect to cancer-specific mortality, individuals in the upper quartile for muscle strength were at a 50% reduced risk (hazard ratio = 0.50; 95% confidence interval, 0.29-0.85; P = .01) and those meeting muscle-strengthening activities were at a nonsignificant 8% reduced risk (hazard ratio = 0.92; 95% confidence interval, 0.45-1.86, P = .81) of cancer-specific mortality after adjusting for covariates. Clinicians should routinely assess lower extremity strength and promote engagement in muscle-strengthening activities aimed at increasing muscle strength.
Saposnik, Gustavo; Cohen, Leonardo G; Mamdani, Muhammad; Pooyania, Sepideth; Ploughman, Michelle; Cheung, Donna; Shaw, Jennifer; Hall, Judith; Nord, Peter; Dukelow, Sean; Nilanont, Yongchai; De Los Rios, Felipe; Olmos, Lisandro; Levin, Mindy; Teasell, Robert; Cohen, Ashley; Thorpe, Kevin; Laupacis, Andreas; Bayley, Mark
2016-09-01
Non-immersive virtual reality is an emerging strategy to enhance motor performance for stroke rehabilitation. There has been rapid adoption of non-immersive virtual reality as a rehabilitation strategy despite the limited evidence about its safety and effectiveness. Our aim was to compare the safety and efficacy of virtual reality with recreational therapy on motor recovery in patients after an acute ischaemic stroke. In this randomised, controlled, single-blind, parallel-group trial we enrolled adults (aged 18-85 years) who had a first-ever ischaemic stroke and a motor deficit of the upper extremity score of 3 or more (measured with the Chedoke-McMaster scale) within 3 months of randomisation from 14 in-patient stroke rehabilitation units from four countries (Canada [11], Argentina [1], Peru [1], and Thailand [1]). Participants were randomly allocated (1:1) by a computer-generated assignment at enrolment to receive a programme of structured, task-oriented, upper extremity sessions (ten sessions, 60 min each) of either non-immersive virtual reality using the Nintendo Wii gaming system (VRWii) or simple recreational activities (playing cards, bingo, Jenga, or ball game) as add-on therapies to conventional rehabilitation over a 2 week period. All investigators assessing outcomes were masked to treatment assignment. The primary outcome was upper extremity motor performance measured by total time to complete the Wolf Motor Function Test (WMFT) at the end of the 2 week intervention period, analysed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NTC01406912. The study was done between May 12, 2012, and Oct 1, 2015. We randomly assigned 141 patients: 71 received VRWii therapy and 70 received recreational activity. 121 (86%) patients (59 in the VRWii group and 62 in the recreational activity group) completed the final assessment and were included in the primary analysis. Each group improved WMFT performance time relative to baseline (decrease in median time from 43·7 s [IQR 26·1-68·0] to 29·7 s [21·4-45·2], 32·0% reduction for VRWii vs 38·0 s [IQR 28·0-64·1] to 27·1 s [21·2-45·5], 28·7% reduction for recreational activity). Mean time of conventional rehabilitation during the trial was similar between groups (VRWii, 373 min [SD 322] vs recreational activity, 397 min [345]; p=0·70) as was the total duration of study intervention (VRWii, 528 min [SD 155] vs recreational activity, 541 min [142]; p=0·60). Multivariable analysis adjusted for baseline WMFT score, age, sex, baseline Chedoke-McMaster, and stroke severity revealed no significant difference between groups in the primary outcome (adjusted mean estimate of difference in WMFT: 4·1 s, 95% CI -14·4 to 22·6). There were three serious adverse events during the trial, all deemed to be unrelated to the interventions (seizure after discharge and intracerebral haemorrhage in the recreational activity group and heart attack in the VRWii group). Overall incidences of adverse events and serious adverse events were similar between treatment groups. In patients who had a stroke within the 3 months before enrolment and had mild-to-moderate upper extremity motor impairment, non-immersive virtual reality as an add-on therapy to conventional rehabilitation was not superior to a recreational activity intervention in improving motor function, as measured by WMFT. Our study suggests that the type of task used in motor rehabilitation post-stroke might be less relevant, as long as it is intensive enough and task-specific. Simple, low-cost, and widely available recreational activities might be as effective as innovative non-immersive virtual reality technologies. Heart and Stroke Foundation of Canada and Ontario Ministry of Health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Saposnik, Gustavo; Cohen, Leonardo G; Mamdani, Muhammad; Pooyania, Sepideth; Ploughman, Michelle; Cheung, Donna; Shaw, Jennifer; Hall, Judith; Nord, Peter; Dukelow, Sean; Nilanont, Yongchai; De los Rios, Felipe; Olmos, Lisandro; Levin, Mindy; Teasell, Robert; Cohen, Ashley; Thorpe, Kevin; Laupacis, Andreas; Bayley, Mark
2016-01-01
Summary Background Non-immersive virtual reality is an emerging strategy to enhance motor performance for stroke rehabilitation. There has been rapid adoption of non-immersive virtual reality as a rehabilitation strategy despite the limited evidence about its safety and effectiveness. Our aim was to compare the safety and efficacy of virtual reality with recreational therapy on motor recovery in patients after an acute ischaemic stroke. Methods In this randomised, controlled, single-blind, parallel-group trial we enrolled adults (aged 18–85 years) who had a first-ever ischaemic stroke and a motor deficit of the upper extremity score of 3 or more (measured with the Chedoke-McMaster scale) within 3 months of randomisation from 14 in-patient stroke rehabilitation units from four countries (Canada [11], Argentina [1], Peru [1], and Thailand [1]). Participants were randomly allocated (1:1) by a computer-generated assignment at enrolment to receive a programme of structured, task-oriented, upper extremity sessions (ten sessions, 60 min each) of either non-immersive virtual reality using the Nintendo Wii gaming system (VRWii) or simple recreational activities (playing cards, bingo, Jenga, or ball game) as add-on therapies to conventional rehabilitation over a 2 week period. All investigators assessing outcomes were masked to treatment assignment. The primary outcome was upper extremity motor performance measured by total time to complete the Wolf Motor Function Test (WMFT) at the end of the 2 week intervention period, analysed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NTC01406912. Findings The study was done between May 12, 2012, and Oct 1, 2015. We randomly assigned 141 patients: 71 received VRWii therapy and 70 received recreational activity. 121 (86%) patients (59 in the VRWii group and 62 in the recreational activity group) completed the final assessment and were included in the primary analysis. Each group improved WMFT performance time relative to baseline (decrease in median time from 43·7 s [IQR 26·1–68·0] to 29·7 s [21·4–45·2], 32·0% reduction for VRWii vs 38·0 s [IQR 28·0–64·1] to 27·1 s [21·2–45·5], 28·7% reduction for recreational activity). Mean time of conventional rehabilitation during the trial was similar between groups (VRWii, 373 min [SD 322] vs recreational activity, 397 min [345] ; p=0·70) as was the total duration of study intervention (VRWii, 528 min [SD 155] vs recreational activity, 541 min [142]; p=0·60). Multivariable analysis adjusted for baseline WMFT score, age, sex, baseline Chedoke-McMaster, and stroke severity revealed no significant difference between groups in the primary outcome (adjusted mean estimate of difference in WMFT: 4·1 s, 95% CI −14·4 to 22·6). There were three serious adverse events during the trial, all deemed to be unrelated to the interventions (seizure after discharge and intracerebral haemorrhage in the recreational activity group and heart attack in the VRWii group). Overall incidences of adverse events and serious adverse events were similar between treatment groups. Interpretation In patients who had a stroke within the 3 months before enrolment and had mild-to-moderate upper extremity motor impairment, non-immersive virtual reality as an add-on therapy to conventional rehabilitation was not superior to a recreational activity intervention in improving motor function, as measured by WMFT. Our study suggests that the type of task used in motor rehabilitation post-stroke might be less relevant, as long as it is intensive enough and task-specific. Simple, low-cost, and widely available recreational activities might be as effective as innovative non-immersive virtual reality technologies. Funding Heart and Stroke Foundation of Canada and Ontario Ministry of Health. PMID:27365261
Well-circumscribed deep-seated lipomas of the upper extremity. A report of 13 cases.
Elbardouni, A; Kharmaz, M; Salah Berrada, M; Mahfoud, M; Elyaacoubi, M
2011-04-01
The purpose of this study is to determine if giant size is of bad prognosis in deep lipomas of the upper extremity. We report a retrospective study of 13 patients with deep-seated lipomas of the upper extremity treated during the period from April 1997 to April 2008. We evaluated the clinical and radiological characteristics, treatment and evolution profile of these patients. There were 10 women and three men, with an average age of 53 years (range 30-79 years). Seven of these lipomas were in the arm, one in the shoulder, and five in the forearm. Six lipomas were intramuscular, six intermuscular (three of them being attached to bone and labelled parosteal lipoma) and one epivaginal lipoma of the flexor tendon sheath. All patients presented a progressive slow-growing mass that was associated with radial paralysis in one case and carpal tunnel syndrome in one case. Plain radiographs showed a radiolucent soft-tissue image in all cases and an associated osteochondroma in one parosteal lipoma. Computer tomography (CT) or magnetic resonance imaging (MRI) suggested the lipomatous nature and benign characteristics of these deep lipomas that were giant in all cases (mean size: 7 cm). Lipoma marginal excision was performed and histopathological examination demonstrated features consistent with a benign lipoma. There was good function and no clinical recurrence was observed after a mean follow-up of three years. Giant deep-seated lipomas of the upper extremity are uncommon and can be intermuscular or intramuscular. A painless soft-tissue mass is the most frequent chief complaint. MRI with fat suppression suggests the diagnosis and studies the extension of deep lipoma. Marginal excision is the treatment of choice and histopathology eliminates diagnosis of well-differentiated liposarcoma. Appropriate evaluation of deep lipoma is to rule out malignancy by systematically performing MRI and biopsy. In contrast to deep-seated lipomas of the lower extremity or the retroperitoneal space, the prognosis of deep-seated lipomas of the upper extremity is good irrelevant of their size. Recurrence and the degeneration are very rare. Level 4. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Jung, Kyoungsim; Jung, Jinhwa; In, Taesung; Kim, Taehoon; Cho, Hwi-Young
2017-01-01
This study investigated the efficacy of Task-Related Training (TRT) Combined with Transcutaneous Electrical Nerve Stimulation (TENS) on the improvement of upper limb muscle activation in chronic stroke survivors with mild or moderate paresis. A single-blind, randomized clinical trial was conducted with 46stroke survivors with chronic paresis. They were randomly allocated two groups: the TRT+TENS group (n = 23) and the TRT+ placebo TENS (TRT+PLBO) group (n = 23). The TRT+TENS group received 30 minutes of high-frequency TENS on wrist and elbow extensors, while the TRT+PLBO group received placebo TENS that was not real ES. Both groups did 30 minutes of TRT after TENS application. Intervention was given five days a week for four weeks. The primary outcomes of upper limb muscle activation were measured by integrated EMG (IEMG), a digital manual muscle tester for muscle strength, active range of motion (AROM) and Fugl-Meyer Assessment of the upper extremity (FMA-UE). The measurements were performed before and after the 4 weeks intervention period. Both groups demonstrated significant improvements of outcomes in IEMG, AROM, muscle strength and FMA-UE during intervention period. When compared with the TRT+PLBO group, the TRT+TENS group showed significantly greater improvement in muscle activation (wrist extensors, P = 0.045; elbow extensors, P = 0.004), muscle strength (wrist extensors, P = 0.044; elbow extensors, P = 0.012), AROM (wrist extension, P = 0.042; elbow extensors, P = 0.040) and FMA-UE (total, P < 0.001; shoulder/elbow/forearm, P = 0.001; wrist, P = 0.002; coordination, P = 0.008) at the end of intervention. Our findings indicate that TRT Combined with TENS can improve paretic muscle activity in upper limb paresis, highlighting the benefits of somatosensory stimulation from TENS.
The influence of air bags and restraining devices on extremity injuries in motor vehicle collisions.
McGovern, M K; Murphy, R X; Okunski, W J; Wasser, T E
2000-05-01
The influence of air bags and other restraining devices on injury after motor vehicle collisions is not well defined. This study examined the relationship between the use of restraining devices and the incidence of extremity injuries in motor vehicle collisions. A retrospective analysis was performed on motor vehicle collision data submitted to the Pennsylvania Trauma Outcome Study database from 1990 through 1995. Criteria for submission included trauma patients who were admitted to the intensive care unit, who died during hospitalization, who were hospitalized for more than 72 hours, or who were transferred in or out of the receiving hospital. A total of 21,875 patients met these criteria. These patients were analyzed for the presence or absence of upper and lower extremity injuries and were compared based on their use of restraining devices. Restraining devices were categorized into four groups: air bag alone, air bag and seat belt, seat belt or carseat without air bag, and no restraining device. Statistical analysis was performed using the chi-squared test of association. For contingency tables with small expected frequencies, Fisher's exact test was used. Study participants included 11,688 men and 10,185 women with a mean age of 38 +/- 20 years. There were 16,033 drivers and 5,842 passengers. Air bags were deployed in 472 instances. In 297 of these cases, additional restraint was provided with a seat belt. In 6,632 cases, air bags were not deployed; however, patients were restrained with either a seat belt or a carseat. In 14,771 cases, patients were not restrained. When comparing restraining devices as a group vs. no restraint, there was a significant decrease in the incidence of upper (p = 0.018) and lower (p < 0.001) extremity injuries. Air bags, however, were associated with an increased incidence of both upper (p = 0.033) and lower (p = 0.002) extremity injuries when compared with no restraint or when compared among patients who were restrained. As a group, restraining devices decrease the incidence of upper and lower extremity trauma sustained by patients injured in motor vehicle collisions. Air bags, however, are associated with an increased incidence of upper and lower extremity injuries when compared with seat belts alone or when no restraining devices are used.
Evaluating biomechanics of user-selected sitting and standing computer workstation.
Lin, Michael Y; Barbir, Ana; Dennerlein, Jack T
2017-11-01
A standing computer workstation has now become a popular modern work place intervention to reduce sedentary behavior at work. However, user's interaction related to a standing computer workstation and its differences with a sitting workstation need to be understood to assist in developing recommendations for use and set up. The study compared the differences in upper extremity posture and muscle activity between user-selected sitting and standing workstation setups. Twenty participants (10 females, 10 males) volunteered for the study. 3-D posture, surface electromyography, and user-reported discomfort were measured while completing simulated tasks with each participant's self-selected workstation setups. Sitting computer workstation associated with more non-neutral shoulder postures and greater shoulder muscle activity, while standing computer workstation induced greater wrist adduction angle and greater extensor carpi radialis muscle activity. Sitting computer workstation also associated with greater shoulder abduction postural variation (90th-10th percentile) while standing computer workstation associated with greater variation for should rotation and wrist extension. Users reported similar overall discomfort levels within the first 10 min of work but had more than twice as much discomfort while standing than sitting after 45 min; with most discomfort reported in the low back for standing and shoulder for sitting. These different measures provide understanding in users' different interactions with sitting and standing and by alternating between the two configurations in short bouts may be a way of changing the loading pattern on the upper extremity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Plavsić, Aleksandra; Svirtlih, Laslo; Stefanović, Aleksandra; Jović, Stevan; Durović, Aleksandar; Popović, Mirjana
2011-01-01
New neurorehabilitation together with conventional techniques provide methods and technologies for maximizing what is preserved from the sensory motor system after cerebrovascular insult. The rehabilitation technique named functional electrical therapy was investigated in more than 60 patients in acute, subacute and chronic phase after cerebrovascular insult. The functional sensory information generated by functional electrical therapy was hypothesized to result in the intensive functional brain training of the activities performed. Functional electrical therapy is a combination of functional exercise and electrical therapy. The functional electrical therapy protocol comprises voluntary movement of the paretic arm in synchrony with the electrically assisted hand functions in order to perform typical daily activities. The daily treatment of 30 minutes lasts three weeks. The outcome measures include several tests for the evaluation of arm/hand functionality: upper extremity function test, drawing test, modified Aschworth scale, motor activity log and passive range of movement. Results from our several clinical studies showed that functional electrical therapy, if applied in acute and subacute stroke patients, leads to faster and greater improvement of functioning of the hemiplegic arm/hand compared to the control group. The outcomes were significantly superior at all times after the treatment for the higher functioning group. Additional well-planned clinical studies are needed to determine the adequate dose of treatment (timing, duration, intensity) with functional electrical therapy regarding the patient's status. A combination with other techniques should be further investigated.
Upper Limb Absence: Predictors of Work Participation and Work Productivity.
Postema, Sietke G; Bongers, Raoul M; Brouwers, Michael A; Burger, Helena; Norling-Hermansson, Liselotte M; Reneman, Michiel F; Dijkstra, Pieter U; van der Sluis, Corry K
2016-06-01
To analyze work participation, work productivity, contributing factors, and physical work demands of individuals with upper limb absence (ULA). Cross-sectional study: postal survey (response rate, 45%). Twelve rehabilitation centers and orthopedic workshops. Individuals (n=207) with unilateral transverse upper limb reduction deficiency (RD) or acquired amputation (AA), at or proximal to the carpal level, between the ages of 18 and 65 years, and a convenience sample of control subjects (n=90) matched on age and sex. Not applicable. Employment status, self-reported work productivity measured with the Quality-Quantity method, and self-reported upper extremity work demands measured with the Upper Extremity Work Demands scale. Seventy-four percent of the individuals with RD and 57% of the individuals with AA were employed (vs 82% of the control group and 66% of the general population). Male sex, younger age, a medium or higher level of education, prosthesis use, and good general health were predictors of work participation. Work productivity was similar to that of the control group. Higher work productivity was inversely related to musculoskeletal complaint-related pain. When having predominantly mentally demanding work, individuals with ULA perceived higher upper extremity work demands compared with controls. Work participation of individuals with RD was slightly higher compared with that of the general population, whereas employment rates of individuals with AA were slightly lower. Furthermore, work productivity did not differ between individuals with RD, AA, and controls. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Hasegawa, Kazuhiro; Homma, Takao; Chiba, Yoshikazu
2007-03-15
Retrospective analysis. To test the hypothesis that spinal cord lesions cause postoperative upper extremity palsy. Postoperative paresis, so-called C5 palsy, of the upper extremities is a common complication of cervical surgery. Although there are several hypotheses regarding the etiology of C5 palsy, convincing evidence with a sufficient study population, statistical analysis, and clear radiographic images illustrating the nerve root impediment has not been presented. We hypothesized that the palsy is caused by spinal cord damage following the surgical decompression performed for chronic compressive cervical disorders. The study population comprised 857 patients with chronic cervical cord compressive lesions who underwent decompression surgery. Anterior decompression and fusion was performed in 424 cases, laminoplasty in 345 cases, and laminectomy in 88 cases. Neurologic characteristics of patients with postoperative upper extremity palsy were investigated. Relationships between the palsy, and patient sex, age, diagnosis, procedure, area of decompression, and preoperative Japanese Orthopaedic Association score were evaluated with a risk factor analysis. Radiographic examinations were performed for all palsy cases. Postoperative upper extremity palsy occurred in 49 cases (5.7%). The common features of the palsy cases were solely chronic compressive spinal cord disorders and decompression surgery to the cord. There was no difference in the incidence of palsy among the procedures. Cervical segments beyond C5 were often disturbed with frequent multiple segment involvement. There was a tendency for spontaneous improvement of the palsy. Age, decompression area (anterior procedure), and diagnosis (ossification of the posterior longitudinal ligament) are the highest risk factors of the palsy. The results of the present study support our hypothesis that the etiology of the palsy is a transient disturbance of the spinal cord following a decompression procedure. It appears to be caused by reperfusion after decompression of a chronic compressive lesion of the cervical cord. We recommend that physicians inform patients and surgeons of the potential risk of a spinal cord deficit after cervical decompression surgery.
Fujiwara, Yasushi; Manabe, Hideki; Izumi, Bunichiro; Tanaka, Hiroyuki; Kawai, Kazumi; Tanaka, Nobuhiro
2016-05-01
Prospective study. To investigate the efficacy of transcranial electrically stimulated muscle-evoked potentials (TcE-MsEPs) for predicting postoperative segmental upper extremity palsy following cervical laminoplasty. Postoperative segmental upper extremity palsy, especially in the deltoid and biceps (so-called C5 palsy), is the most common complication following cervical laminoplasty. Some papers have reported that postoperative C5 palsy cannot be predicted by TcE-MsEPs, although others have reported that it can be predicted. This study included 160 consecutive cases that underwent open-door laminoplasty, and TcE-MsEP monitoring was performed in the biceps brachii, triceps brachii, abductor digiti minimi, tibialis anterior, and abductor hallucis. A >50% decrease in the wave amplitude was defined as an alarm point. According to the monitoring alarm, interventions were performed, which include steroid administration, foraminotomies, etc. Postoperative deltoid and biceps palsy occurred in 5 cases. Among the 155 cases without segmental upper extremity palsy, there were no monitoring alarms. Among the 5 deltoid and biceps palsy cases, 3 had significant wave amplitude decreases in the biceps during surgery, and palsy occurred when the patients awoke from anesthesia (acute type). In the other 2 cases in which the palsy occurred 2 days after the operation (delayed type), there were no significant wave decreases. In all of the cases, the palsy was completely resolved within 6 months. The majority of C5 palsies have been reported to occur several days after surgery, but some of them have been reported to occur immediately after surgery. Our results demonstrated that TcE-MsEPs can predict the acute type, whereas the delayed type cannot be predicted. A >50% wave amplitude decrease in the biceps is useful to predict acute-type segmental upper extremity palsy. Further examination about the interventions for monitoring alarm will be essential for preventing palsy.
MERIANS, A. S.; TUNIK, E.; FLUET, G. G.; QIU, Q.; ADAMOVICH, S. V.
2017-01-01
Aim Upper-extremity interventions for hemiparesis are a challenging aspect of stroke rehabilitation. Purpose of this paper is to report the feasibility of using virtual environments (VEs) in combination with robotics to assist recovery of hand-arm function and to present preliminary data demonstrating the potential of using sensory manipulations in VE to drive activation in targeted neural regions. Methods We trained 8 subjects for 8 three hour sessions using a library of complex VE’s integrated with robots, comparing training arm and hand separately to training arm and hand together. Instrumented gloves and hand exoskeleton were used for hand tracking and haptic effects. Haptic Master robotic arm was used for arm tracking and generating three-dimensional haptic VEs. To investigate the use of manipulations in VE to drive neural activations, we created a “virtual mirror” that subjects used while performing a unimanual task. Cortical activation was measured with functional MRI (fMRI) and transcranial magnetic stimulation. Results Both groups showed improvement in kinematics and measures of real-world function. The group trained using their arm and hand together showed greater improvement. In a stroke subject, fMRI data suggested virtual mirror feedback could activate the sensorimotor cortex contralateral to the reflected hand (ipsilateral to the moving hand) thus recruiting the lesioned hemisphere. Conclusion Gaming simulations interfaced with robotic devices provide a training medium that can modify movement patterns. In addition to showing that our VE therapies can optimize behavioral performance, we show preliminary evidence to support the potential of using specific sensory manipulations to selectively recruit targeted neural circuits. PMID:19158659
Eliminating Preoperative Lymphoscintigraphy in Extremity Melanomas
McGregor, Andrew; Pavri, Sabrina N.; Kim, Samuel; Xu, Xiaolu
2018-01-01
Background: Preoperative lymphoscintigraphy (LSG) is an imaging procedure routinely used to identify the draining nodal basin in melanomas. At our institute, we have traditionally performed preoperative LSG followed by intraoperative LSG for logistical and evaluative reasons. We sought to determine if preoperative LSG could be safely eliminated in the treatment of extremity melanomas, which exhibit consistent and predictable lymphatic drainage patterns. Methods: We reviewed the Yale Melanoma Registry 1308012545 for cutaneous extremity melanomas treated at our institution. From this registry, we calculated the incidence of atypical lymph node drainage patterns outside the axillary and inguinal regions. Based on these data, we eliminated preoperative LSG in 21 cases (8 upper extremities and 13 lower extremities). Additionally, we calculated the potential hospital charge reduction of forgoing preoperative LSG. Results: Upper and lower extremity melanomas treated at our institution exhibited atypical lymph node drainage at a rate of 3.4% and 2.0%, respectively. The sites of atypical drainage were to the epitrochlear and popliteal regions. In all 21 cases where preoperative LSG was eliminated, we were able to correctly identify the sentinel lymph node. The potential hospital charge reduction of forgoing preoperative LSG totaled $2,393. Conclusions: Preoperative LSG can be safely eliminated in the management of upper and lower extremity melanomas. Exceptions may be considered for primary lesions of the posterior calf, ankle, and heel as well as for patients with history of prior surgery or radiation. Forgoing preoperative LSG results in a hospital charge reduction of $2,393 and provides additional benefits to the patient. Ultimately, there is potential for significant charge reduction if applied across health care systems. PMID:29707448
Isokinetic profile of elbow flexion and extension strength in elite junior tennis players.
Ellenbecker, Todd S; Roetert, E Paul
2003-02-01
Descriptive study. To determine whether bilateral differences exist in concentric elbow flexion and extension strength in elite junior tennis players. The repetitive nature of tennis frequently produces upper extremity overuse injuries. Prior research has identified tennis-specific strength adaptation in the dominant shoulder and distal upper extremity musculature of elite players. No previous study has addressed elbow flexion and extension strength. Thirty-eight elite junior tennis players were bilaterally tested for concentric elbow flexion and extension muscle performance on a Cybex 6000 isokinetic dynamometer at 90 degrees/s, 210 degrees/s, and 300 degrees/s. Repeated-measures ANOVAs were used to test for differences between extremities, muscle groups, and speed. Significantly greater (P<0.002) dominant-arm elbow extension peak torque values were measured at 90 degrees/s, 210 degrees/s, and 300 degrees/s for males. Significantly greater (P<0.002) dominant-arm single-repetition work values were also measured at 90 degrees/s and 210 degrees/s for males. No significant difference was measured between extremities in elbow flexion muscular performance in males and for elbow flexion or extension peak torque and single-repetition work values in females. No significant difference between extremities was measured in elbow flexion/extension strength ratios in females and significant differences between extremities in this ratio were only present at 210 degrees/s in males (P<0.002). These data indicate muscular adaptations around the dominant elbow in male elite junior tennis players but not females. These data have ramifications for clinicians rehabilitating upper extremity injuries in patients from this population.
The Relationship between Independent Transfer Skills and Upper Limb Kinetics in Wheelchair Users
Boninger, Michael L.; Koontz, Alicia M.
2014-01-01
Transfers are one of the most physically demanding wheelchair activities. The purpose of this study was to determine if using proper transfer skills as measured by the Transfer Assessment Instrument (TAI) is associated with reduced loading on the upper extremities. Twenty-three wheelchair users performed transfers to a level-height bench while a series of forces plates, load cells, and a motion capture system recorded the biomechanics of their natural transferring techniques. Their transfer skills were simultaneously evaluated by two study clinicians using the TAI. Logistic regression and multiple linear regression models were used to determine the relationships between TAI scores and the kinetic variables on both arms across all joints. The results showed that the TAI measured transfer skills were closely associated with the magnitude and timing of joint moments (P < .02, model R2 values ranged from 0.27 to 0.79). Proper completion of the skills which targeted the trailing arm was associated with lower average resultant moments and rates of rise of resultant moments at the trailing shoulder and/or elbow. Some skills involving the leading side had the effect of increasing the magnitude or rate loading on the leading side. Knowledge of the kinetic outcomes associated with each skill may help users to achieve the best load-relieving effects for their upper extremities. PMID:25162039
Bang, Dae-Hyouk; Shin, Won-Seob; Choi, Ho-Suk
2015-01-01
Reducing the compensatory mechanism by restraining the unnecessary movement may be helpful in relearning the upper-limb movement. To investigate the effects of a modified constraint-induced movement therapy (mCIMT) with trunk restraint (TR) in chronic stroke patients with moderate impairment. Eighteen participants with hemiparesis were randomly assigned to mCIMT + TR or mCIMT. Each group underwent 20 (1 h/d) intervention session (5 d/wk for 4 weeks). Patients were assessed with the action research arm test (ARAT), the Fugl-Meyer assessment upper extremity (FMA-UE), the modified Barthel index (MBI), and the motor activity log (MAL-AOU and MAL-QOM). The mCIMT combined with trunk restraint group exhibited greater changes in the ARAT, FMA, MBI, and MAL (MAL-AOU and MAL-QOM) compared with the mCIMT group. Statistical analyses showed significantly different in ARAT (Z = -2.17, P = 0.03), FMA-UE (Z = -2.49, P = 0.01), MBI (Z = -2.44, P = 0.02), MAL-AOU (Z = -2.17, P = 0.03), and MAL-QOM (Z = -2.17, P = 0.03) between groups. These finding suggest that mCIMT combined with trunk restraint is more helpful to improve upper-extremity function than mCIMT only in patient with chronic stroke.
The first results of the development and implementation of the upper extremity exoskeleton "EXAR"
NASA Astrophysics Data System (ADS)
Vorobiev, A. A.; Krivonozhkina, P. S.; Zasypkina, O. A.; Andrewshenko, F. A.
2015-11-01
This research considers the first results of the development and implementation of the upper extremity exoskeleton "EXAR". Made anatomical parameterization developed the device the testing of the apparatus have been conducted in accordance with the bioethics regulations with the girl I. Sh. at the age of 4 years suffering the artrogryposis. The parameters of the exoskeleton "EXAR" selected according to our methods allowed us to conduct its use in the period of 4 months. There have been no defects at all. By the analysis of the first results of the passive upper limb skeleton EXAR development we should consider them as positive and worthy of the widespread adoption in the remedial practice.
Holtz, Kaila A; O'Connor, Russell J
2018-01-01
Softball is a popular sport with a high incidence of upper extremity injuries. The Kerlan-Jobe Orthopaedic Clinic (KJOC) questionnaire is a validated performance and functional assessment tool used in overhead athletes. Upper extremity pain patterns and baseline KJOC scores have not been reported for active female youth softball pitchers. The purpose of this study was to establish the prevalence of upper extremity pain and its effect in female youth softball pitchers over a competitive season. We hypothesized that participants who missed time due to injury in the past year would have lower KJOC scores. Cross-sectional study; Level of evidence, 3. Fifty-three female softball pitchers aged 12 to 18 years were recruited from softball clinics in Vancouver, British Columbia, Canada. All participants self-identified as a pitcher on a competitive travel team. Participants were administered the KJOC questionnaire before and during the playing season. Missed time due to injury in the past year, current pain patterns, and KJOC scores were primary outcomes. The mean (±SD) preseason KJOC score was 87.2 ± 10.6. In the preseason, 22.6% of pitchers reported playing with arm trouble, and 32.1% missed time due to injury in the past year. The mean KJOC score for pitchers reporting a previous injury (n = 17) was significantly lower compared with those without an injury (n = 36) (79.5 ± 13.8 vs 90.9 ± 6.2, respectively; P = .02). The posterior shoulder was the most commonly reported pain location. For the cohort completing the questionnaire both before and during the playing season (n = 35), mean KJOC scores did not change significantly over the playing season ( P = .64). Lower preseason KJOC scores were significantly related to the in-season injury risk ( P = .016). Pitchers with a preseason score of less than 90 had a 3.5 (95% CI, 1.1-11.2) times greater risk of reporting an in-season injury. Female youth softball pitchers have a high baseline functional status. However, 1 in 3 pitchers reported missed time due to injury in the previous year, and shoulder pain was more prevalent than elbow pain. The KJOC questionnaire can be used by coaches, researchers, and clinicians to identify youth softball pitchers at risk for injuries who may benefit from interventions.
Holtz, Kaila A.; O’Connor, Russell J.
2018-01-01
Background: Softball is a popular sport with a high incidence of upper extremity injuries. The Kerlan-Jobe Orthopaedic Clinic (KJOC) questionnaire is a validated performance and functional assessment tool used in overhead athletes. Upper extremity pain patterns and baseline KJOC scores have not been reported for active female youth softball pitchers. Purpose/Hypothesis: The purpose of this study was to establish the prevalence of upper extremity pain and its effect in female youth softball pitchers over a competitive season. We hypothesized that participants who missed time due to injury in the past year would have lower KJOC scores. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Fifty-three female softball pitchers aged 12 to 18 years were recruited from softball clinics in Vancouver, British Columbia, Canada. All participants self-identified as a pitcher on a competitive travel team. Participants were administered the KJOC questionnaire before and during the playing season. Missed time due to injury in the past year, current pain patterns, and KJOC scores were primary outcomes. Results: The mean (±SD) preseason KJOC score was 87.2 ± 10.6. In the preseason, 22.6% of pitchers reported playing with arm trouble, and 32.1% missed time due to injury in the past year. The mean KJOC score for pitchers reporting a previous injury (n = 17) was significantly lower compared with those without an injury (n = 36) (79.5 ± 13.8 vs 90.9 ± 6.2, respectively; P = .02). The posterior shoulder was the most commonly reported pain location. For the cohort completing the questionnaire both before and during the playing season (n = 35), mean KJOC scores did not change significantly over the playing season (P = .64). Lower preseason KJOC scores were significantly related to the in-season injury risk (P = .016). Pitchers with a preseason score of less than 90 had a 3.5 (95% CI, 1.1-11.2) times greater risk of reporting an in-season injury. Conclusion: Female youth softball pitchers have a high baseline functional status. However, 1 in 3 pitchers reported missed time due to injury in the previous year, and shoulder pain was more prevalent than elbow pain. The KJOC questionnaire can be used by coaches, researchers, and clinicians to identify youth softball pitchers at risk for injuries who may benefit from interventions. PMID:29349094
Concurrent neuromechanical and functional gains following upper-extremity power training post-stroke
2013-01-01
Background Repetitive task practice is argued to drive neural plasticity following stroke. However, current evidence reveals that hemiparetic weakness impairs the capacity to perform, and practice, movements appropriately. Here we investigated how power training (i.e., high-intensity, dynamic resistance training) affects recovery of upper-extremity motor function post-stroke. We hypothesized that power training, as a component of upper-extremity rehabilitation, would promote greater functional gains than functional task practice without deleterious consequences. Method Nineteen chronic hemiparetic individuals were studied using a crossover design. All participants received both functional task practice (FTP) and HYBRID (combined FTP and power training) in random order. Blinded evaluations performed at baseline, following each intervention block and 6-months post-intervention included: Wolf Motor Function Test (WMFT-FAS, Primary Outcome), upper-extremity Fugl-Meyer Motor Assessment, Ashworth Scale, and Functional Independence Measure. Neuromechanical function was evaluated using isometric and dynamic joint torques and concurrent agonist EMG. Biceps stretch reflex responses were evaluated using passive elbow stretches ranging from 60 to 180º/s and determining: EMG onset position threshold, burst duration, burst intensity and passive torque at each speed. Results Primary outcome: Improvements in WMFT-FAS were significantly greater following HYBRID vs. FTP (p = .049), regardless of treatment order. These functional improvements were retained 6-months post-intervention (p = .03). Secondary outcomes: A greater proportion of participants achieved minimally important differences (MID) following HYBRID vs. FTP (p = .03). MIDs were retained 6-months post-intervention. Ashworth scores were unchanged (p > .05). Increased maximal isometric joint torque, agonist EMG and peak power were significantly greater following HYBRID vs. FTP (p < .05) and effects were retained 6-months post-intervention (p’s < .05). EMG position threshold and burst duration were significantly reduced at fast speeds (≥120º/s) (p’s < 0.05) and passive torque was reduced post-washout (p < .05) following HYBRID. Conclusions Functional and neuromechanical gains were greater following HYBRID vs. FPT. Improved stretch reflex modulation and increased neuromuscular activation indicate potent neural adaptations. Importantly, no deleterious consequences, including exacerbation of spasticity or musculoskeletal complaints, were associated with HYBRID. These results contribute to an evolving body of contemporary evidence regarding the efficacy of high-intensity training in neurorehabilitation and the physiological mechanisms that mediate neural recovery. PMID:23336711
Patten, Carolynn; Condliffe, Elizabeth G; Dairaghi, Christine A; Lum, Peter S
2013-01-21
Repetitive task practice is argued to drive neural plasticity following stroke. However, current evidence reveals that hemiparetic weakness impairs the capacity to perform, and practice, movements appropriately. Here we investigated how power training (i.e., high-intensity, dynamic resistance training) affects recovery of upper-extremity motor function post-stroke. We hypothesized that power training, as a component of upper-extremity rehabilitation, would promote greater functional gains than functional task practice without deleterious consequences. Nineteen chronic hemiparetic individuals were studied using a crossover design. All participants received both functional task practice (FTP) and HYBRID (combined FTP and power training) in random order. Blinded evaluations performed at baseline, following each intervention block and 6-months post-intervention included: Wolf Motor Function Test (WMFT-FAS, Primary Outcome), upper-extremity Fugl-Meyer Motor Assessment, Ashworth Scale, and Functional Independence Measure. Neuromechanical function was evaluated using isometric and dynamic joint torques and concurrent agonist EMG. Biceps stretch reflex responses were evaluated using passive elbow stretches ranging from 60 to 180º/s and determining: EMG onset position threshold, burst duration, burst intensity and passive torque at each speed. Improvements in WMFT-FAS were significantly greater following HYBRID vs. FTP (p = .049), regardless of treatment order. These functional improvements were retained 6-months post-intervention (p = .03). A greater proportion of participants achieved minimally important differences (MID) following HYBRID vs. FTP (p = .03). MIDs were retained 6-months post-intervention. Ashworth scores were unchanged (p > .05). Increased maximal isometric joint torque, agonist EMG and peak power were significantly greater following HYBRID vs. FTP (p < .05) and effects were retained 6-months post-intervention (p's < .05). EMG position threshold and burst duration were significantly reduced at fast speeds (≥120º/s) (p's < 0.05) and passive torque was reduced post-washout (p < .05) following HYBRID. Functional and neuromechanical gains were greater following HYBRID vs. FPT. Improved stretch reflex modulation and increased neuromuscular activation indicate potent neural adaptations. Importantly, no deleterious consequences, including exacerbation of spasticity or musculoskeletal complaints, were associated with HYBRID. These results contribute to an evolving body of contemporary evidence regarding the efficacy of high-intensity training in neurorehabilitation and the physiological mechanisms that mediate neural recovery.
Akar, Olcay; Günay, Ersin; Sarinc Ulasli, Sevinc; Ulasli, Alper Murat; Kacar, Emre; Sariaydin, Muzaffer; Solak, Özlem; Celik, Sefa; Ünlü, Mehmet
2017-11-01
Serious problems on muscle strength and functional status can be seen in bedridden-patients with chronic obstructive pulmonary diseases (COPD) receiving mechanical ventilation. We aimed to investigate the impact of active extremity mobilization and neuromuscular electrical stimulation (NMES) on weaning processes, discharge from hospital and inflammatory mediators in COPD patients receiving mechanical ventilation. Thirty conscious COPD patients (F/M:15/15) hospitalized in the intensive care unit (ICU) with diagnosis of respiratory failure were enrolled to this study. Patients were randomized into three groups, including 10 patients for each. Active extremity-exercise training and NMES were applied to Group-1, only NMES was applied to Group-2 and active extremity exercise training was applied to Group-3. Muscle strengths, mobilization duration and weaning situation were evaluated. Serum cytokine levels were evaluated. Lower extremity muscle-strength was significantly improved in Group-1 (from 3.00 to 5.00, P = 0.014) and 2 (from 4.00 to 5.00, P = 0.046). Upper extremity muscle strength was also significantly improved in all three groups (from 4.00 to 5.00 for all groups, P = 0.038, P = 0.046 and P = 0.034, respectively). Duration of mobilization and discharge from the ICU were similar among groups. There was a significant decrease in serum interleukin (IL)-6 level in Group-1 and in serum IL-8 level in Group-1 and Group-2 after rehabilitation. This study indicates that pulmonary rehabilitation can prevent loss of muscle strength in ICU. Nevertheless, we consider that further studies with larger populations are needed to examine the impact of NMES and/or active and passive muscle training in bedridden ICU patients who are mechanically ventilated. © 2015 John Wiley & Sons Ltd.
Edelman, Frederick; Naddaf, Elie; Waclawik, Andrew J
2015-06-01
We present a 10-year-old boy with a predominantly motor multifocal neuropathy with demyelinating and axonal changes with sensory involvement, affecting only one upper extremity. Laboratory studies revealed an elevated titer of immunoglobulin M (IgM) antibodies against the NS6S antigen. He responded to treatment with high dose intravenous immunoglobulins. Focal or multifocal immune-mediated neuropathies are not common in children and may be underdiagnosed. © The Author(s) 2014.
A dynamic traction splint for the management of extrinsic tendon tightness.
Dovelle, S; Heeter, P K; Phillips, P D
1987-02-01
The dynamic traction splint designed by therapists at Walter Reed Army Medical Center is used for the management of extrinsic extensor tendon tightness commonly seen in brachial plexus injuries and traumatic soft tissue injuries of the upper extremity. The two components of the splint allow for simultaneous maximum flexion of the MCP and IP joints. This simple and economical splint provides an additional modality to any occupational therapy service involved in the management of upper extremity disorders.
The potential power of robotics for upper extremity stroke rehabilitation.
Dukelow, Sean P
2017-01-01
Two decades of research on robots and upper extremity rehabilitation has resulted in recommendations from systematic reviews and guidelines on their use in stroke. Robotics are often cited for their ability to encourage mass practice as a means to enhance recovery of movement. Yet, stroke recovery is a complex process occurring across many aspects of neurologic function beyond movement. As newer devices are developed and enhanced assessments are integrated into treatment protocols, the potential of robotics to advance rehabilitation will continue to grow.
Climate Change Impact on Variability of Rainfall Intensity in Upper Blue Nile Basin, Ethiopia
NASA Astrophysics Data System (ADS)
Worku, L. Y.
2015-12-01
Extreme rainfall events are major problems in Ethiopia with the resulting floods that usually could cause significant damage to agriculture, ecology, infrastructure, disruption to human activities, loss of property, loss of lives and disease outbreak. The aim of this study was to explore the likely changes of precipitation extreme changes due to future climate change. The study specifically focuses to understand the future climate change impact on variability of rainfall intensity-duration-frequency in Upper Blue Nile basin. Precipitations data from two Global Climate Models (GCMs) have been used in the study are HadCM3 and CGCM3. Rainfall frequency analysis was carried out to estimate quantile with different return periods. Probability Weighted Method (PWM) selected estimation of parameter distribution and L-Moment Ratio Diagrams (LMRDs) used to find the best parent distribution for each station. Therefore, parent distributions for derived from frequency analysis are Generalized Logistic (GLOG), Generalized Extreme Value (GEV), and Gamma & Pearson III (P3) parent distribution. After analyzing estimated quantile simple disaggregation model was applied in order to find sub daily rainfall data. Finally the disaggregated rainfall is fitted to find IDF curve and the result shows in most parts of the basin rainfall intensity expected to increase in the future. As a result of the two GCM outputs, the study indicates there will be likely increase of precipitation extremes over the Blue Nile basin due to the changing climate. This study should be interpreted with caution as the GCM model outputs in this part of the world have huge uncertainty.
... attached to a pulse volume recorder (plethysmograph) that displays each pulse wave. The test compares the systolic blood pressure of the lower extremity to the upper extremity, to help rule out disease that blocks the arteries in the ...
Impact of an implanted neuroprosthesis on community ambulation in incomplete SCI.
Lombardo, Lisa M; Kobetic, Rudolf; Pinault, Gilles; Foglyano, Kevin M; Bailey, Stephanie N; Selkirk, Stephen; Triolo, Ronald J
2018-03-01
Test the effect of a multi-joint control with implanted electrical stimulation on walking after spinal cord injury (SCI). Single subject research design with repeated measures. Hospital-based biomechanics laboratory and user assessment of community use. Female with C6 AIS C SCI 30 years post injury. Lower extremity muscle activation with an implanted pulse generator and gait training. Walking speed, maximum distance, oxygen consumption, upper extremity (UE) forces, kinematics and self-assessment of technology. Short distance walking speed at one-year follow up with or without stimulation was not significantly different from baseline. However, average walking speed was significantly faster (0.22 m/s) with stimulation over longer distances than volitional walking (0.12 m/s). In addition, there was a 413% increase in walking distance from 95 m volitionally to 488 m with stimulation while oxygen consumption and maximum upper extremity forces decreased by 22 and 16%, respectively. Stimulation also produced significant (P ≤ 0.001) improvements in peak hip and knee flexion, ankle angle at foot off and at mid-swing. An implanted neuroprosthesis enabled a subject with incomplete SCI to walk longer distances with improved hip and knee flexion and ankle dorsiflexion resulting in decreased oxygen consumption and UE support. Further research is required to determine the robustness, generalizability and functional implications of implanted neuroprostheses for community ambulation after incomplete SCI.
Brink, Yolandi; Crous, Lynette Christine; Louw, Quinette Abigail; Grimmer-Somers, Karen; Schreve, Kristiaan
2009-12-01
Prolonged sitting and psychosocial factors have been associated with musculoskeletal symptoms among adolescents. However, the impact of prolonged static sitting on musculoskeletal pain among South African high school students is uncertain. A prospective observational study was performed to determine whether sitting postural alignment and psychosocial factors contribute to the development of upper quadrant musculoskeletal pain (UQMP) in grade ten high school students working on desktop computers. The sitting postural alignment, depression, anxiety and computer use of 104 asymptomatic students were measured at baseline. At three and six months post baseline, the prevalence of UQMP was determined. Twenty-seven students developed UQMP due to seated or computer-related activities. An extreme cervical angle (<34.75 degrees or >43.95 degrees; OR 2.8; 95% CI: 1.1-7.3) and a combination of extreme cervical and thoracic angles (<63.1 degrees or >71.1 degrees; OR 2.2; 95% CI: 1.1-5.6) were significant postural risk factors for the development of UQMP. Boys with any extreme angle were more likely to suffer pain compared with boys with all middle range angles (OR 4.9; 95% CI: 1.0-24.5). No similar effect was found for girls. There was no strong relationship between depression, anxiety, computer exposure and UQMP among South African high school students.
Epidemiology of Figure Skating Injuries: A Review of the Literature.
Han, Julie S; Geminiani, Ellen T; Micheli, Lyle J
2018-05-01
As the popularity and technical demands of figure skating increase, so will the number of athletes presenting with sport-related problems. Searches were performed across PubMed from 1980 to 2017. The keywords searched were skating, skaters, incidence, and injuries. The search was limited to English-language articles and human participants. Relevant articles were cross-referenced. Clinical review. Level 5. Previous studies suggest an increase in incidence of figure skating injuries from 1982 to 2003. When combining all disciplines of figure skating, there is a similar proportion of acute and overuse injuries. Within disciplines, overuse injuries appear to be more common in singles skating, while acute injuries are more common in pairs skating, ice dancing, and synchronized skating. Lower extremity injuries are more common than upper extremity injuries in all disciplines, and pairs skating accounts for the majority of upper extremity injuries. Ankle sprains are the most common skating injury, and patellar tendinitis is the most common overuse injury across all disciplines. Stress fractures are the most common overuse injury in female singles skaters. The predominance of overuse injuries in singles disciplines reflects their increasing technical difficulty, with more difficult jumps and longer training hours. Partner disciplines are more likely to involve acute injuries and upper extremity injuries due to high-risk throws and lifts. Emphasis should be placed on properly fitting skating boots, intrinsic foot and ankle strengthening, and lower extremity flexibility, which may prevent many of the common lower extremity and back injuries in figure skating.
Galanakos, Spyridon P; Bot, Arjan G J; Zoubos, Aristides B; Soucacos, Panayotis N
2014-03-01
Upper extremity trauma and resulting disability is a stressful event and can affect a patient's personality. Several studies have shown that this injury type has serious psychological and/or social consequences. We systematically reviewed the evidence on the consequences of disability after a complex trauma (combination of soft tissue, osseous, vascular, and nerve involvement) of the upper extremity. We tried to find out the potential crucial factors that could determine the final hand function. In addition, we considered the challenges that need to be addressed to eliminate the adverse or negative effects that arise from upper limb trauma. In the literature, there is a growing interest to study changes in patients' quality of life and return to work. Psychological morbidity is an important part of patients' perceived general health. These issues could play an important role in the final functional outcome of the therapy. An early identification and treatment of trauma-related distress in patients may prevent progression of psychological pathology and mitigate negative effects on general health status. It may be important to evaluate the amount of psychological distress when caring for patients with hand injuries. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Popović, Dejan B; Popović, Mirjana B
2006-01-01
This paper suggests that the optimal method for promoting of the recovery of upper extremity function in hemiplegic individuals is the use of hybrid assistive systems (HAS). The suggested HAS is a combination of stimulation of paralyzed distal segments (hand) in synchrony with robot controlled movements of proximal segments (upper arm and forearm). The use of HAS is envisioned as part of voluntary activation of preserved sensory-motor systems during task related exercise. This HAS design follows our results from functional electrical therapy, constraint induced movement therapy, intensive exercise therapy, and use of robots for rehabilitation. The suggestion is also based on strong evidences that cortical plasticity is best promoted by task related exercise and patterned electrical stimulation.
Hip and upper extremity kinematics in youth baseball pitchers.
Holt, Taylor; Oliver, Gretchen D
2016-01-01
The purpose of this study was to examine the relationship between dynamic hip rotational range of motion and upper extremity kinematics during baseball pitching. Thirty-one youth baseball pitchers (10.87 ± 0.92 years; 150.03 ± 5.48 cm; 44.83 ± 8.04 kg) participated. A strong correlation was found between stance hip rotation and scapular upward rotation at maximum shoulder external rotation (r = 0.531, P = 0.002) and at ball release (r = 0.536, P = 0.002). No statistically significant correlations were found between dynamic hip rotational range of motion and passive hip range of motion. Hip range of motion deficits can constrain pelvis rotation and limit energy generation in the lower extremities. Shoulder pathomechanics can then develop as greater responsibility is placed on the shoulder to generate the energy lost from the proximal segments, increasing risk of upper extremity injury. Additionally, it appears that passive seated measurements of hip range of motion may not accurately reflect the dynamic range of motion of the hips through the progression of the pitch cycle.
Ciuffolo, Fabio; Ferritto, Anna L; Muratore, Filippo; Tecco, Simona; Testa, Mauro; D'Attilio, Michele; Festa, Felice
2006-01-01
This purpose of this study was to investigate the immediate effects of plantar inputs on both the upper half muscle activity (anterior temporal, masseter, digastric, sternocleidomastoid, upper and lower trapezius, cervical) and the body posture, by means of electromyography (EMG) and vertical force platform, respectively. Twenty four (24) healthy adults, between the ages of 24 and 31 years (25.3 +/- 1.9), with no history of craniomandibular disorder or systemic musculoskeletal dysfunction, were randomly divided into two groups: test group (fourteen subjects) and control group (ten subjects). A first recording session (TO) measured the baseline EMG and postural patterns of both groups. After this session, the test group wore test shoes with insoles that stimulated the plantar surfaces, while the control group wore placebo shoes. After one hour, a second set of measurements (T1) were performed. Significant differences between the groups at baseline were observed in the left anterior temporal, left cervical, and left upper trapezius, as well as at T1 in the left anterior temporal and right upper trapezius (p < 0.05). Within-test group analysis showed a significant increase of the right upper trapezius activity (p < 0.05), whereas no changes were found by within-control group analysis. Lower risk of asymmetric muscle patterns and postural blindness in the test group compared to the control group was observed. Further studies are warranted to investigate the short and long-term effects of this type of insole, in patients with both craniomandibular-cervical and lower extremity disorders.
Biomechanical investigation of head impacts in football
Withnall, C; Shewchenko, N; Gittens, R; Dvorak, J
2005-01-01
Objectives: This study sought to measure the head accelerations induced from upper extremity to head and head to head impact during the game of football and relate this to the risk of mild traumatic brain injury using the Head Impact Power (HIP) index. Furthermore, measurement of upper neck forces and torques will indicate the potential for serious neck injury. More stringent rules or punitive sanctions may be warranted for intentional impact by the upper extremity or head during game play. Methods: Game video of 62 cases of head impact (38% caused by the upper extremity and 30% by the head of the opposing player) was provided by F-MARC. Video analysis revealed the typical impact configurations and representative impact speeds. Upper extremity impacts of elbow strike and lateral hand strike were re-enacted in the laboratory by five volunteer football players striking an instrumented Hybrid III pedestrian model crash test manikin. Head to head impacts were re-enacted using two instrumented test manikins. Results: Elbow to head impacts (1.7–4.6 m/s) and lateral hand strikes (5.2–9.3 m/s) resulted in low risk of concussion (<5%) and severe neck injury (<5%). Head to head impacts (1.5–3.0 m/s) resulted in high concussion risk (up to 67%) but low risk of severe neck injury (<5%). Conclusion: The laboratory simulations suggest little risk of concussion based on head accelerations and maximum HIP. There is no biomechanical justification for harsher penalties in this regard. However, deliberate use of the head to impact another player's head poses a high risk of concussion, and justifies a harsher position by regulatory bodies. In either case the risk of serious neck injury is very low. PMID:16046356
Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes
Immerzeel, W. W.; Kraaijenbrink, P. D. A.; Shrestha, A. B.; Bierkens, M. F. P.
2016-01-01
The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin’s water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members. PMID:27828994
Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes.
Lutz, A F; Immerzeel, W W; Kraaijenbrink, P D A; Shrestha, A B; Bierkens, M F P
2016-01-01
The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin's water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members.
Klussmann, André; Gebhardt, Hansjuergen; Liebers, Falk; Rieger, Monika A
2008-01-01
Background The aim of this study was to determine the prevalence and the predictors of musculoskeletal symptoms in the upper extremities and neck at visual display terminal (VDT) workstations. Methods In a cross-sectional study 1,065 employees working at VDT > 1 h/d completed a standardised questionnaire. Workstation conditions were documented in a standardised checklist, and a subgroup of 82 employees underwent a physical examination. Results Using the Nordic Questionnaire, the 12-month prevalence of symptoms of the neck, shoulder region, hand/wrist, or elbow/lower arm was 55%, 38%, 21%, and 15% respectively. The duration of VDT work had a significant impact on the frequency of neck symptoms in employees performing such work > 6 h/d. Conclusion With regard to musculoskeletal symptoms of the upper extremities, preventive measures at VDT workstations should be focused on neck and shoulder symptoms (e.g. ergonomic measures, breaks to avoid sitting over long periods). PMID:18588677
Feuerstein, Michael; Huang, Grant D; Ortiz, Jose M; Shaw, William S; Miller, Virginia I; Wood, Patricia M
2003-08-01
An integrated case management (ICM) approach (ergonomic and problem-solving intervention) to work-related upper-extremity disorders was examined in relation to patient satisfaction, future symptom severity, function, and return to work (RTW). Federal workers with work-related upper-extremity disorder workers' compensation claims (n = 205) were randomly assigned to usual care or ICM intervention. Patient satisfaction was assessed after the 4-month intervention period. Questionnaires on clinical outcomes and ergonomic exposure were administered at baseline and at 6- and 12-months postintervention. Time from intervention to RTW was obtained from an administrative database. ICM group assignment was significantly associated with greater patient satisfaction. Regression analyses found higher patient satisfaction levels predicted decreased symptom severity and functional limitations at 6 months and a shorter RTW. At 12 months, predictors of positive outcomes included male gender, lower distress, lower levels of reported ergonomic exposure, and receipt of ICM. Findings highlight the utility of targeting workplace ergonomic and problem solving skills.
Oke, A J; Olaolorun, D A; Meier, D E; Tarpley, J L
2011-06-01
Sixty-eight (68) patients with serious upper extremity suppurative infections, presenting within a period of fifteen (15) months, were prospectively studied clinically, Gram stain of aspirates/pus were performed, specimen cultured, planted, and where indicated glucose levels and haemoglobin genotype determined. Half of the patients had hand infections. Staphylococcus aureus was isolated from thirty-nine (39) patients. Gram Negative bacilli, including Salmonella were more isolated from patients with diabetes mellitus or Hgb SS or SC. The Gram stain results correlated with the culture result 90%. When Gram Positive cocci were demonstrated in the primary microscopic examination, cultures were not mandatory. When no organism was demonstrated on primary Gram stain or the patient was diabetic or a sickler, cultures of the specimens were done. The Gram stain, well performed, remains a useful, inexpensive, technologically appropriate laboratory test for abetting decision making in patients with upper extremity suppurative infections. Organisms encountered in this study included: Staphylococcus aureus, Streptococcus pyogenes, Salmonella typhi, Proteus mirabilis, Pseudomonas aeruginosa, and Coliforms.
The effects of music on pain perception of stroke patients during upper extremity joint exercises.
Kim, Soo Ji; Koh, Iljoo
2005-01-01
The purpose of this study was to determine the effects of music therapy on pain perception of stroke patients during upper extremity joint exercises. Ten stroke patients (1 male and 9 females) ranging in age from 61 to 73 participated in the study. Music conditions used in the study consisted of: (a) song, (b) karaoke accompaniment (same music to condition A except singers' voices), and (c) no music. Exercise movements in this study included hand, wrist, and shoulder joints. During the 8-week period music therapy sessions, subjects repeated 3 conditions according to the randomized orders and subjects rated their perceived pain on a scale immediately after each condition. The General Linear Model (GLM) Repeated Measures ANOVA revealed that there were no significant differences in pain rating across the three music conditions. However, positive affects and verbal responses, while performing upper extremity exercises with both music and karaoke accompaniment music, were observed using video observations.
Jakubietz, Rafael G; Jakubietz, Michael G; Kloss, Danni F; Gruenert, Joerg G
2009-02-01
After massive upper extremity injuries, prosthetic use might be complicated by the formation of pressure ulcerations. Especially the coverage with insensate free flaps may predispose the patient for developing chronic ulcerations when using an upper extremity prosthesis. This complication may be reduced when sensate local flaps are used to cover bony prominences. A new operative technique is described. Immediate sensate soft tissue coverage improves prosthetic fitting. Successful manipulation of the prosthesis can be quickly achieved with a decreased risk for pressure ulceration. This challenging procedure helps to achieve durable and sensate coverage of bony prominences. The use of local sensate tissue to cover bony prominences reduces the risk for pressure ulceration when wearing a prosthesis. Areas where prosthetic use causes only low pressure and shearing forces are adequately covered with free flaps. Immediate sensibility of local flaps allows prosthetic fitting and use as soon as wound healing has occurred. Return to work is thus expedited.
Mirror Therapy and Task-Oriented Training for People With a Paretic Upper Extremity.
Bondoc, Salvador; Booth, Julie; Budde, Grace; Caruso, Katelyn; DeSousa, Michelle; Earl, Brittany; Hammerton, Kaitlynn; Humphreys, Jill
This study investigates the effect of mirror therapy and task-oriented training on the paretic upper extremity function and occupational performance of people with stroke. This study used a repeated-measures, case-series design in which 4 participants completed a 4-wk intervention consisting of mirror therapy and task-specific training. The intervention was conducted 2×/wk in the clinic and 4×/wk at home. All participants displayed clinically meaningful improvements in self-identified goals at the end of the intervention and at follow-up. Three participants showed clinically meaningful changes in motor function. Although only 1 participant improved in his reported amount of use, all participants showed clinically meaningful improvements in perceived movement quality at varying points of assessment. Mirror therapy, when used as priming for task-oriented training, can produce clinical improvements in upper extremity function and occupational performance in people with hemiparesis. Copyright © 2018 by the American Occupational Therapy Association, Inc.
In situ cephalic vein bypasses from axillary to the brachial artery after catheterization injuries.
Hudorovic, Narcis; Lovricevic, Ivo; Ahel, Zaky
2010-07-01
The need to bypass to the brachial artery is rare. Over a five-year period, 16 patients had suffered iatrogenic post-catheterization injuries of the upper extremity. We have performed 16 bypasses, in 16 patients, mean age was 65 years (range 47-75), to the brachial artery originating from an artery proximal to the shoulder joint. In all cases, the axillary artery was the donor artery. All bypasses were created by using the cephalic vein with the in situ technique and distal anastomoses were made to a distance-free section of brachial artery. No operative mortality, neurological complications or major upper-extremity amputation was associated with the procedure. Life-long-conduit analysis showed 75% patency in the five-year period. After iatrogenic post-catheterization trauma of arterial system of upper extremity, bypasses from axillary to brachial artery with the cephalic vein with the in situ technique is a safe operation with satisfactory long-term patency.
Surke, Carsten; Ducommun Dit Boudry, Pascal; Vögelin, Esther
2015-08-01
The loss of the upper extremity implicates a grave insult in the life of the involved person. To compensate for the loss of function different powered prosthetic devices are available. Ever since their first development 70 years ago numerous improvements in terms of size, weight and wearing comfort have been developed, but issues regarding the control of upper extremity prostheses remain. Slow grasping speed, limited grip positions and especially failure to provide a sensory feedback limit the acceptance in patients. Recent developments are aimed to allow a more intuitive control of the prosthetic device and to provide a sensory feedback to the amputee. Targeted reinnervation reassignes existing muscles to different peripheral nerves thereby enabling them to fulfill alternate functions. Implanting electrodes into muscle bellies of the forearm allows a more accurate control of the prosthesis. Promising results are being achieved by implanting nerve electrodes by establishing bilateral communication between patient and prosthesis. The following review summarizes the current developments of bionic prostheses in the upper extremity.
Effects of wrist tendon vibration on targeted upper-arm movements in poststroke hemiparesis.
Conrad, Megan O; Scheidt, Robert A; Schmit, Brian D
2011-01-01
Impaired motor control of the upper extremity after stroke may be related to lost sensory, motor, and integrative functions of the brain. Artificial activation of sensory afferents might improve control of movement by adding excitatory drive to sensorimotor control structures. The authors evaluated the effect of wrist tendon vibration (TV) on paretic upper-arm stability during point-to-point planar movements. TV (70 Hz) was applied to the forearm wrist musculature of 10 hemiparetic stroke patients as they made center-out planar arm movements. End-point stability, muscle activity, and grip pressure were compared as patients stabilized at the target position for trials completed before, during, and after the application of the vibratory stimulus. Prior to vibration, hand position fluctuated as participants attempted to maintain the hand at the target after movement termination. TV improved arm stability, as evidenced by decreased magnitude of hand tangential velocity at the target. Improved stability was accompanied by a decrease in muscle activity throughout the arm as well as a mean decrease in grip pressure. These results suggest that vibratory stimulation of the distal wrist musculature enhances stability of the proximal arm and can be studied further as a mode for improving end-point stability during reaching in hemiparetic patients.
Molina Rueda, F; Rivas Montero, F M; Pérez de Heredia Torres, M; Alguacil Diego, I M; Molero Sánchez, A; Miangolarra Page, J C
2012-01-01
As a result of neurophysiological injury, stroke patients have mobility limitations, mainly on the side of the body contralateral to the lesioned hemisphere. The purpose of this study is to quantify motor compensation strategies in stroke patients during the activity of drinking water from a glass. Four male patient with cerebrovascular disease and four right-handed, healthy male control subjects. The motion analysis was conducted using the Vicon Motion System(®) and surface electromyography equipment ZeroWire Aurion(®). We analysed elbow, shoulder and trunk joint movements and performed a qualitative analysis of the sequence of muscle activation. Trunk, shoulder and elbow movements measured in the stroke patient along the sagittal plane decreased during the drinking from a glass activity, while the movements in the shoulder in the coronal plane and trunk increased. As for the sequence of muscle activation, anterior, middle and posterior deltoid all contracted in the patient group during the task, while the upper trapezius activation remained throughout the activity. Quantitative analysis of movement provides quantitative information on compensation strategies used by stroke patients, and is therefore, clinically relevant. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
How extreme is extreme hourly precipitation?
NASA Astrophysics Data System (ADS)
Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos
2016-04-01
The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.
Dawson, Jesse; Pierce, David; Dixit, Anand; Kimberley, Teresa J; Robertson, Michele; Tarver, Brent; Hilmi, Omar; McLean, John; Forbes, Kirsten; Kilgard, Michael P; Rennaker, Robert L; Cramer, Steven C; Walters, Matthew; Engineer, Navzer
2016-01-01
Recent animal studies demonstrate that vagus nerve stimulation (VNS) paired with movement induces movement-specific plasticity in motor cortex and improves forelimb function after stroke. We conducted a randomized controlled clinical pilot study of VNS paired with rehabilitation on upper-limb function after ischemic stroke. Twenty-one participants with ischemic stroke >6 months before and moderate to severe upper-limb impairment were randomized to VNS plus rehabilitation or rehabilitation alone. Rehabilitation consisted of three 2-hour sessions per week for 6 weeks, each involving >400 movement trials. In the VNS group, movements were paired with 0.5-second VNS. The primary objective was to assess safety and feasibility. Secondary end points included change in upper-limb measures (including the Fugl-Meyer Assessment-Upper Extremity). Nine participants were randomized to VNS plus rehabilitation and 11 to rehabilitation alone. There were no serious adverse device effects. One patient had transient vocal cord palsy and dysphagia after implantation. Five had minor adverse device effects including nausea and taste disturbance on the evening of therapy. In the intention-to-treat analysis, the change in Fugl-Meyer Assessment-Upper Extremity scores was not significantly different (between-group difference, 5.7 points; 95% confidence interval, -0.4 to 11.8). In the per-protocol analysis, there was a significant difference in change in Fugl-Meyer Assessment-Upper Extremity score (between-group difference, 6.5 points; 95% confidence interval, 0.4 to 12.6). This study suggests that VNS paired with rehabilitation is feasible and has not raised safety concerns. Additional studies of VNS in adults with chronic stroke will now be performed. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01669161. © 2015 The Authors.
Pierce, David; Dixit, Anand; Kimberley, Teresa J.; Robertson, Michele; Tarver, Brent; Hilmi, Omar; McLean, John; Forbes, Kirsten; Kilgard, Michael P.; Rennaker, Robert L.; Cramer, Steven C.; Walters, Matthew; Engineer, Navzer
2016-01-01
Background and Purpose— Recent animal studies demonstrate that vagus nerve stimulation (VNS) paired with movement induces movement-specific plasticity in motor cortex and improves forelimb function after stroke. We conducted a randomized controlled clinical pilot study of VNS paired with rehabilitation on upper-limb function after ischemic stroke. Methods— Twenty-one participants with ischemic stroke >6 months before and moderate to severe upper-limb impairment were randomized to VNS plus rehabilitation or rehabilitation alone. Rehabilitation consisted of three 2-hour sessions per week for 6 weeks, each involving >400 movement trials. In the VNS group, movements were paired with 0.5-second VNS. The primary objective was to assess safety and feasibility. Secondary end points included change in upper-limb measures (including the Fugl–Meyer Assessment-Upper Extremity). Results— Nine participants were randomized to VNS plus rehabilitation and 11 to rehabilitation alone. There were no serious adverse device effects. One patient had transient vocal cord palsy and dysphagia after implantation. Five had minor adverse device effects including nausea and taste disturbance on the evening of therapy. In the intention-to-treat analysis, the change in Fugl–Meyer Assessment-Upper Extremity scores was not significantly different (between-group difference, 5.7 points; 95% confidence interval, −0.4 to 11.8). In the per-protocol analysis, there was a significant difference in change in Fugl–Meyer Assessment-Upper Extremity score (between-group difference, 6.5 points; 95% confidence interval, 0.4 to 12.6). Conclusions— This study suggests that VNS paired with rehabilitation is feasible and has not raised safety concerns. Additional studies of VNS in adults with chronic stroke will now be performed. Clinical Trial Registration— URL: https://www.clinicaltrials.gov. Unique identifier: NCT01669161. PMID:26645257