Whiplash syndrome: kinematic factors influencing pain patterns.
Cusick, J F; Pintar, F A; Yoganandan, N
2001-06-01
The overall, local, and segmental kinematic responses of intact human cadaver head-neck complexes undergoing an inertia-type rear-end impact were quantified. High-speed, high-resolution digital video data of individual facet joint motions during the event were statistically evaluated. To deduce the potential for various vertebral column components to be exposed to adverse strains that could result in their participation as pain generators, and to evaluate the abnormal motions that occur during this traumatic event. The vertebral column is known to incur a nonphysiologic curvature during the application of an inertial-type rear-end impact. No previous studies, however, have quantified the local component motions (facet joint compression and sliding) that occur as a result of rear-impact loading. Intact human cadaver head-neck complexes underwent inertia-type rear-end impact with predominant moments in the sagittal plane. High-resolution digital video was used to track the motions of individual facet joints during the event. Localized angular motion changes at each vertebral segment were analyzed to quantify the abnormal curvature changes. Facet joint motions were analyzed statistically to obtain differences between anterior and posterior strains. The spine initially assumed an S-curve, with the upper spinal levels in flexion and the lower spinal levels in extension. The upper C-spine flexion occurred early in the event (approximately 60 ms) during the time the head maintained its static inertia. The lower cervical spine facet joints demonstrated statistically greater compressive motions in the dorsal aspect than in the ventral aspect, whereas the sliding anteroposterior motions were the same. The nonphysiologic kinematic responses during a whiplash impact may induce stresses in certain upper cervical neural structures or lower facet joints, resulting in possible compromise sufficient to elicit either neuropathic or nociceptive pain. These dynamic alterations of the upper level (occiput to C2) could impart potentially adverse forces to related neural structures, with subsequent development of a neuropathic pain process. The pinching of the lower facet joints may lead to potential for local tissue injury and nociceptive pain.
Archavlis, Eleftherios; Amr, Nimer; Kantelhardt, Sven Rainer; Giese, Alf
2018-01-01
Minimally invasive pedicle screw placement may have a higher incidence of violation of the superior cephalad unfused facet joint. We investigated the incidence and risk factors of upper facet joint violation in percutaneous robot-assisted instrumentation versus percutaneous fluoroscopy-guided and open transpedicular instrumentation. A retrospective study including all consecutive patients who underwent lumbar instrumentation, fusion, and decompression for spondylolisthetic stenosis and degenerative disk disease was conducted between January 2012 and January 2016. All operations were performed by the same surgeon; the patients were divided into three groups according to the method of instrumentation. Group 1 involved the robot-assisted instrumentation in 58 patients, group 2 consisted of 64 patients treated with a percutaneous transpedicular instrumentation using fluoroscopic guidance, and 72 patients in group 3 received an open midline approach for pedicle screw insertion. Superior segment facet joint violation occurred in 2 patients in the robot-assisted group 1 (7%), in 22 of the percutaneous fluoroscopy-guided group 2 (34%), and in 6 cases of the open group (8%). The incidence of facet joint violation was present in 5% (3) of the screws in group 1, 22% (28) of the screws in group 2, and 3% (4) of the screws in group 3. Meticulous surgical planning of the appropriate entry site (Weinstein's method), trajectory planning, and proper robot-assisted instrumentation of pedicle screws reduced the risk of superior segment facet joint violation. Georg Thieme Verlag KG Stuttgart · New York.
Manchikanti, Laxmaiah; Singh, Vijay; Falco, Frank J. E.; Cash, Kimberly A.; Pampati, Vidyasagar; Fellows, Bert
2012-01-01
Study Design. A randomized, double-blind, active-control trial. Objective. To determine the clinical effectiveness of therapeutic thoracic facet joint nerve blocks with or without steroids in managing chronic mid back and upper back pain. Summary of Background Data. The prevalence of thoracic facet joint pain has been established as 34% to 42%. Multiple therapeutic techniques utilized in managing chronic thoracic pain of facet joint origin include medial branch blocks, radiofrequency neurotomy, and intraarticular injections. Methods. This randomized double-blind active controlled trial was performed in 100 patients with 50 patients in each group who received medial branch blocks with local anesthetic alone or local anesthetic and steroids. Outcome measures included the numeric rating scale (NRS), Oswestry Disability Index (ODI), opioid intake, and work status, at baseline, 3, 6, 12, 18, and 24 months. Results. Significant improvement with significant pain relief and functional status improvement of 50% or more were observed in 80% of the patients in Group I and 84% of the patients in Group II at 2-year followup. Conclusions. Therapeutic medial branch blocks of thoracic facets with or without steroids may provide a management option for chronic function-limiting thoracic pain of facet joint origin. PMID:22851967
Morphological Asymmetry of the Superior Cervical Facets from C3 through C7 due to Degeneration.
Van Vlasselaer, Nicolas; Van Roy, Peter; Cattrysse, Erik
2017-01-01
Knowledge about facet morphology has already been discussed extensively in literature but is limited regarding asymmetry and its relation to facet degeneration. Facet dimensions, surface area, curvature, and degeneration of the superior facets were measured in 85 dried human vertebrae from the anatomical collection of the Vrije Universiteit Brussel. The vertebrae were analysed using the Microscribe G2X digitizer (Immersion Co., San Jose, CA) and a grading system for the evaluation of cervical facet degeneration. Coordinates were processed mathematically to evaluate articular tropism. The statistical analysis includes the paired t -test and the Pearson correlation. On average, no systematic differences between the left and right facets were found concerning morphology and degeneration. However, there were significant differences regardless of the side-occurrence. There was a significant correlation between the dimensions of the total facet surface and the degree of degeneration but not for the recognizable joint surface. Facet tropism of the upper joint facets occurred often in the cervical spine but without side preference. A bigger difference in degeneration asymmetry was associated with a bigger difference in facet joint dimension asymmetry.
Chen, Hua; Li, Huibo; Deng, Yuxiao; Rong, Xin; Gong, Quan; Li, Tao; Song, Yueming; Liu, Hao
2017-04-01
Lateral mass mini-screws used in plated cervical laminoplasty might penetrate into facet joints. The objective is to observe this complication incidence and to identify the optimal areas for 5- and 7-mm-long mini-screws to implant on lateral mass. 47 patients who underwent plated cervical laminoplasty were included. The optimal area for mini-screws implanting was set according to pre-operative 3D CT reconstruction data. Then, each posterior-lateral mass surface was divided into three regions: 7-mm region, 5-mm region, and dangerous area. The mini-screw implanted region was recorded. Post-operative CT images were used to identify whether the mini-screws penetrated into facet joints. 235 mini-plates and 470 lateral mass mini-screws were used in the study. 117 (24.9%) mini-screws penetrated 88 (37.4%) facet joints. The 5-mm-long mini-screw optimal area occupied the upper 72, 65, 65, 64, and 65 % area of the posterior-lateral mass surface for C3-7, while the 7-mm-long mini-screw optimal area encompassed the upper 54, 39, 40, 33, and 32 %. Only 7-mm-long mini-screws were used to fix the plate to the lateral mass. 4 of 240 mini-screws in 7-mm region, 67 of the 179 mini-screws in 5-mm region, and 46 of the 51 mini-screws in dangerous region penetrated into the facet joint. The differences in the rate of facet joint penetration related to region were statistically significant (P < 0.001). The facet joint destruction by mini-screws was not a rare complication in plated cervical laminoplasty. The optimal areas we proposed may help guide the mini-screw implantation positions.
Morphological Asymmetry of the Superior Cervical Facets from C3 through C7 due to Degeneration
Van Roy, Peter
2017-01-01
Introduction Knowledge about facet morphology has already been discussed extensively in literature but is limited regarding asymmetry and its relation to facet degeneration. Method Facet dimensions, surface area, curvature, and degeneration of the superior facets were measured in 85 dried human vertebrae from the anatomical collection of the Vrije Universiteit Brussel. The vertebrae were analysed using the Microscribe G2X digitizer (Immersion Co., San Jose, CA) and a grading system for the evaluation of cervical facet degeneration. Coordinates were processed mathematically to evaluate articular tropism. The statistical analysis includes the paired t-test and the Pearson correlation. Results On average, no systematic differences between the left and right facets were found concerning morphology and degeneration. However, there were significant differences regardless of the side-occurrence. There was a significant correlation between the dimensions of the total facet surface and the degree of degeneration but not for the recognizable joint surface. Conclusions Facet tropism of the upper joint facets occurred often in the cervical spine but without side preference. A bigger difference in degeneration asymmetry was associated with a bigger difference in facet joint dimension asymmetry. PMID:29359153
[CORRELATION OF LUMBAR FACET JOINT DEGENERATION AND SPINE-PELVIC SAGITTAL BALANCE].
Lo, Xin; Zhang, Bin; Liu, Yuan; Dai, Min
2015-08-01
To investigate the relationship between lumbar facet joint degeneration of each segment and spine-pelvic sagittal balance parameters. A retrospective analysis was made the clinical data of 120 patients with lumbar degenerative disease, who accorded with the inclusion criteria between June and November 2014. There were 58 males and 62 females with an average age of 53 years (range, 24-77 years). The disease duration ranged from 3 to 96 months (mean, 6.6 months). Affected segments included L3,4 in 32 cases, L4,5 in 47 cases, and L5, S1 in 52 cases. The CT and X-ray films of the lumbar vertebrae were taken. The facet joint degeneration was graded based on the grading system of Pathria. The spine-pelvic sagittal balance parameters were measured, including lumbar lordosis (LL), upper lumbar lordosis (ULL), lower lumbar lordosis (LLL), pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). According to normal range of PI, the patients were divided into 3 groups: group A (PI was less than normal range), group B (PI was within normal range), and group C (PI was more than normal range). The facet joint degeneration was compared; according to the facet joint degeneration degree, the patients were divided into group N (mild degeneration group) and group M (serious degeneration group) to observe the relationship of lumbar facet joint degeneration of each segment and spine-pelvic sagittal balance parameters. At L4,5 and L5, S1, facet joint degeneration showed significant difference among groups A, B, and C (P < 0.05), more serious facet joint degeneration was observed in group C; no significant difference was found in facet joint degeneration at L3,4 (P > 0.05). There was no significant difference in the other spine-pelvic sagittal balance parameters between groups N and M at each segment (P > 0.05) except for PT (P < 0.05). PI of more than normal range may lead to or aggravate lumbar facet joint degeneration at L4,5 and L5, Si; PT and PI are significantly associated with facet joint degeneration at the lower lumbar spine.
Biomechanical analyses of whiplash injuries using an experimental model.
Yoganandan, Narayan; Pintar, Frank A; Cusick, Joseph F
2002-09-01
Neck pain and headaches are the two most common symptoms of whiplash. The working hypothesis is that pain originates from excessive motions in the upper and lower cervical segments. The research design used an intact human cadaver head-neck complex as an experimental model. The intact head-neck preparation was fixed at the thoracic end with the head unconstrained. Retroreflective targets were placed on the mastoid process, anterior regions of the vertebral bodies, and lateral masses at every spinal level. Whiplash loading was delivered using a mini-sled pendulum device. A six-axis load cell and an accelerometer were attached to the inferior fixation of the specimen. High-speed video cameras were used to obtain the kinematics. During the initial stages of loading, a transient decoupling of the head occurs with respect to the neck exhibiting a lag of the cranium. The upper cervical spine-head undergoes local flexion concomitant with a lag of the head while the lower column is in local extension. This establishes a reverse curvature to the head-neck complex. With continuing application of whiplash loading, the inertia of the head catches up with the neck. Later, the entire head-neck complex is under an extension mode with a single extension curvature. The lower cervical facet joint kinematics demonstrates varying local compression and sliding. While the anterior- and posterior-most regions of the facet joint slide, the posterior-most region of the joint compresses more than the anterior-most region. These varying kinematics at the two ends of the facet joint result in a pinching mechanism. Excessive flexion of the posterior upper cervical regions can be correlated to headaches. The pinching mechanism of the facet joints can be correlated to neck pain. The kinematics of the soft tissue-related structures explain the mechanism of these common whiplash associated disorders.
Head-Neck Biomechanics in Simulated Rear Impact
Yoganandan, Narayan; Pintar, Frank A.; Cusick, Joseph F.; Kleinberger, Michael
1998-01-01
The first objective of this study is to present an overview of the human cadaver studies aimed to determine the biomechanics of the head-neck in a simulated rear crash. The need for kinematic studies to better understand the mechanisms of load transfer to the human head-neck complex is emphasized. Based on this need, a methodology is developed to delineate the dynamic kinematics of the human head-neck complex. Intact human cadaver head-neck complexes were subjected to postero-anterior impact using a mini-sled pendulum device. The integrity of the soft tissues including the musculature and skin were maintained. The kinematic data were recorded using high-speed photography coupled with retroreflective targets placed at various regions of the human head-neck complex. The overall and segmental kinematics of the entire head-neck complex, and the localized facet joint motions were determined. During the initial stages of loading, a transient decoupling of the head occurred with respect to the neck exhibiting a lag of the cranium. The upper cervical spine-head undergoes local flexion concomitant with a lag of the head while the lower cervical spinal column is in local extension. This establishes a reverse curvature to the cervical head-neck complex. With continued loading, head motion ensues and approximately at the end of the loading phase, the entire head-neck complex is under the extension mode with a single curvature. In contrast, the lower cervical spine facet joint kinematics show varying compression and sliding. While both the anterior and posterior-most regions of the facet joint slide, the posterior-most region (mean: 2.84 mm) of the joint compresses more than the anterior-most (mean: 2.02 mm) region. These varying kinematics at the ends of the facet joint result in a pinching mechanism. These biomechanical kinematic findings may be correlated to the presence of headaches and neck pain (Lord, Bogduk et al. 1992; Barnsley, Lord et al. 1995), based on the unique human head-neck anatomy at the upper cervical spine region and the associated facet joint characteristics, and clinical studies.
Manchikanti, Laxmaiah; Hirsch, Joshua A; Pampati, Vidyasagar; Boswell, Mark V
2016-10-01
Increasing utilization of interventional techniques in managing chronic spinal pain, specifically facet joint interventions and sacroiliac joint injections, is a major concern of healthcare policy makers. We analyzed the patterns of utilization of facet and sacroiliac joint interventions in managing chronic spinal pain. The results showed significant increase of facet joint interventions and sacroiliac joint injections from 2000 to 2014 in Medicare FFS service beneficiaries. Overall, the Medicare population increased 35 %, whereas facet joint and sacroiliac joint interventions increased 313.3 % per 100,000 Medicare population with an annual increase of 10.7 %. While the increases were uniform from 2000 to 2014, there were some decreases noted for facet joint interventions in 2007, 2010, and 2013, whereas for sacroiliac joint injections, the decreases were noted in 2007 and 2013. The increases were for cervical and thoracic facet neurolysis at 911.5 % compared to lumbosacral facet neurolysis of 567.8 %, 362.9 % of cervical and thoracic facet joint blocks, 316.9 % of sacroiliac joints injections, and finally 227.3 % of lumbosacral facet joint blocks.
Posterior Branches of Lumbar Spinal Nerves - Part I: Anatomy and Functional Importance.
Kozera, Katarzyna; Ciszek, Bogdan
2016-01-01
The aim of this paper is to compare anatomic descriptions of posterior branches of the lumbar spinal nerves and, on this basis, present the location of these structures. The majority of anatomy textbooks do not describe these nerves in detail, which may be attributable to the fact that for many years they were regarded as structures of minor clinical importance. The state of knowledge on these nerves has changed within the last 30 years. Attention has been turned to their function and importance for both diagnostic practice and therapy of lower back pain. Summarising the available literature, we may conclude that the medial and lateral branches separate at the junction of the facet joint and the distal upper edge of the transverse process; that the size, course and area supplied differ between the lateral and the medial branch; and that facet joints receive multisegmental innervation. It has been demonstrated that medial branches are smaller than the respective lateral branches and they have a more constant course. Medial branches supply the area from the midline to the facet joint line, while lateral branches innervate tissues lateral to the facet joint. The literature indicates difficulties with determining specific anatomic landmarks relative to which the lateral branch and the distal medial branch can be precisely located. Irritation of sensory fibres within posterior branches of the lumbar spinal nerves may be caused by pathology of facet joints, deformity of the spine or abnormalities due to overloading or injury. The anatomic location and course of posterior branches of spinal nerves should be borne in mind to prevent damaging them during low-invasive analgesic procedures.
Correlation of the Features of the Lumbar Multifidus Muscle With Facet Joint Osteoarthritis.
Yu, Bo; Jiang, Kaibiao; Li, Xinfeng; Zhang, Jidong; Liu, Zude
2017-09-01
Facet joint osteoarthritis is considered a consequence of the aging process; however, there is evidence that it may be associated with degenerative changes of other structures. The goal of this study was to investigate the correlation between lumbar multifidus muscle features and facet joint osteoarthritis. This retrospective study included 160 patients who had acute or chronic low back pain and were diagnosed with facet joint osteoarthritis on computed tomography scan. Morphometric parameters, including cross-sectional area, muscle-fat index, and percentage of bilateral multifidus asymmetry at L3-L4, L4-L5, and L5-S1, were evaluated with T2-weighted magnetic resonance imaging. Patients with facet joint osteoarthritis had a smaller cross-sectional area and a higher muscle-fat index than those without facet joint osteoarthritis (P<.001). In multivariate regression analysis, older age and higher muscle-fat index were independently associated with facet joint osteoarthritis at all 3 spinal levels (P<.001). Smaller cross-sectional area was independently associated with facet joint osteoarthritis only at L4-L5 (P=.005). Asymmetry of the bilateral multifidus cross-sectional area was independently associated with facet joint osteoarthritis at L5-S1 (P=.009), but did not seem to be responsible for asymmetric degeneration of the bilateral facet joints. A higher multifidus muscle-fat index was independently associated with facet joint osteoarthritis, and bilateral multifidus size asymmetry was associated with the development of facet joint osteoarthritis at L5-S1. It seems more accurate to consider facet joint osteoarthritis a failure of the whole joint structure, including the paraspinal musculature, rather than simply a failure of the facet joint cartilage. [Orthopedics. 2017; 40(5):e793-e800.]. Copyright 2017, SLACK Incorporated.
Wen, Chuan-Bing; Li, Yong-Zhong; Tang, Qin-Qin; Sun, Lin; Xiao, Hong; Yang, Bang-Xiang; Song, Li; Liu, Hui
2013-03-01
To investigate the feasibility, accuracy of B ultrasound in the examination of joint space of lumbar spine facet joints compared with CT scan. Ten healthy adult volunteers were enrolled. The joint space of lumbar facet joints was measured by ultrasound. To identify the spinal levels, the posterior parasagittal sonograms were obtained at levels L1 to S1. The lumbar facet joints were delineated with the help of transverse sonograms at each level. Meanwhile, the lumbar facet joints were evaluated by spiral CT on the same plane, reformatted to 1-mm axial slices. A total of 88 lumbar facet joints from L1 to S1 were clearly visualized in the 10 volunteers. Both ultrasound and CT measurements showed the same average depth and lateral distance of lumbar facet joint space (P > 0.05). The lumbar facet joint space can be accurately demonstrated by ultrasound.
Migrating lumbar facet joint cysts.
Palmieri, Francesco; Cassar-Pullicino, Victor N; Lalam, Radhesh K; Tins, Bernhard J; Tyrrell, Prudencia N M; McCall, Iain W
2006-04-01
The majority of lumbar facet joint cysts (LFJCs) are located in the spinal canal, on the medial aspect of the facet joint with characteristic diagnostic features. When they migrate away from the joint of origin, they cause diagnostic problems. In a 7-year period we examined by computed tomography (CT) and magnetic resonance (MR) imaging five unusual cases of facet joint cysts which migrated from the facet joint of origin. Three LFJCs were identified in the right S1 foramen, one in the right L5-S1 neural foramen and one in the left erector spinae and multifidus muscles between the levels of L2-L4 spinous process. Awareness that spinal lesions identified at MRI and CT could be due to migrating facet joint cyst requires a high level of suspicion. The identification of the appositional contact of the cyst and the facet joint needs to be actively sought in the presence of degenerative facet joints.
Facet joint laser radiation: tissue effects of a new clinical laser application
NASA Astrophysics Data System (ADS)
Werkmann, Klaus; Thal, Dietmar R.
1996-01-01
Chronic unilateral and bilateral back pain with pseudoradicular symptoms, is a common clinical syndrome, which in many cases can be related to the facet joint syndrome. The pain is caused by mechanical affection of synovial and capsular nerve terminals. Therefore, current therapeutical attempts including physical therapy, intra-articular injection of local anesthetics and steroids and thermocoagulation of the facet joint with a thermocoagulator, are performed. We confirmed laser coagulation of the facet joint. Porcine cadaveric spines were treated immediately after death by intra-articular facet joint laser radiation. With the pulsed Nd:YAG laser (1064 nm) altogether 600 J were applied in three different places 4 mm apart at the top of the facet joint. The results showed that facet joint laser radiation leads to a small (about 1 - 2 mm diameter) lesion restricted to the facet joint cavity and its synovia. Histologically, we found a central carbonization zone and necrosis, including almost the whole cartilage and approximately 0.2 mm of the adjacent bone. These changes are similar to Nd:Yag-laser applications in other skeletal regions. It is suggested that these changes may lead to facet joint denervation by coagulation of the synovial nerve terminals. Cicatration of the laser lesion might cause ankylosis of this joint. In sum, facet joint laser radiation could be an alternative therapeutical tool for lower back pain of the facet joint syndrome type. Therefore, future clinical application of this technique seems to be very promising.
Shi, Wen; Tian, Dan; Liu, Da; Yin, Jing; Huang, Ying
2017-08-01
Besides the study on examining facet joints of lumbar spine by ultrasound in normal population, there has not been any related report about examining normal facet joints of lumbar spine by ultrasound so far. This study was aimed to explore the feasibility of ultrasound assessment of lumber spine facet joints by comparing ultrasound measure values of normal and degenerative lumber spine facet joints, and by comparing measure values of ultrasound and computed tomography (CT) of degenerative lumber spine facet joints.This study included 15 patients who had chronic low back pain because of degenerative change in lumbar vertebrae, and 19 volunteers who did not have low back pain or pain in the lower limb. The ultrasound measure values (height [H] and width [W]) of normal and degenerative lumber spine facet joints were compared. And the differentiation between measure values (H and W) of ultrasound and CT of degenerative lumber spine facet joints was also analyzed.The ultrasound clearly showed abnormal facet joints lesion, which was characterized by hyperostosis on the edge of joints, bone destruction under joints, and thinner or thicker articular cartilage. There were significant differences between the ultrasound measure values of the normal (H: 1.26 ± 0.03 cm, W: 0.18 ± 0.01 cm) and abnormal facet joints (H: 1.43 ± 0.05 cm, W: 0.15 ± 0.02 cm) (all P < .05). However, there were no significant differences between the measure values of the ultrasound (H: 1.43 ± 0.17 cm, W: 0.15 ± 0.03 cm) and CT (H: 1.42 ± 0.16, W: 0.14 ± 0.03) of the degenerative lumber spine facet joints (all P > .05).Ultrasound can clearly show the structure of facet joints of lumbar spine. It is precise and feasible to assess facet joints of lumbar spine by ultrasound. This study has important significance for the diagnosis of lumbar facet joint degeneration.
Seiler, Gabriela S; Häni, Hansjürg; Busato, André R; Lang, Johann
2002-01-01
To evaluate the possible association between facet joint geometry and intervertebral disk degeneration in German Shepherd Dogs. 25 German Shepherd Dogs and 11 control dogs of similar body weight and condition. Facet joint angles in the caudal portion of the lumbar region of the vertebral column (L5-S1) were measured by use of computed tomography, and the intervertebral discs were evaluated microscopically. The relationship between facet joint geometry and disk degeneration was evaluated by use of statistical methods. German Shepherd Dogs had significantly more facet joint tropism than control dogs, but an association with disk degeneration was not found. However, German Shepherd Dogs had a different facet joint conformation, with more sagittally oriented facet joints at L5-L6 and L6-L7 and a larger angle difference between the lumbar and lumbosacral facet joints, compared with control dogs. A large difference between facet joint angles at L6-L7 and L7-S1 in German Shepherd Dogs may be associated with the frequent occurrence of lumbosacral disk degeneration in this breed.
Localized cervical facet joint kinematics under physiological and whiplash loading.
Stemper, Brian D; Yoganandan, Narayan; Gennarelli, Thomas A; Pintar, Frank A
2005-12-01
Although facet joints have been implicated in the whiplash injury mechanism, no investigators have determined the degree to which joint motions in whiplash are nonphysiological. The purpose of this investigation was to quantify the correlation between facet joint and segmental motions under physiological and whiplash loading. Human cadaveric cervical spine specimens were exercise tested under physiological extension loading, and intact human head-neck complexes were exercise tested under whiplash loading to correlate the localized component motions of the C4-5 facet joint with segmental extension. Facet joint shear and distraction kinematics demonstrated a linear correlation with segmental extension under both loading modes. Facet joints responded differently to whiplash and physiological loading, with significantly increased kinematics for the same-segmental angulation. The limitations of this study include removal of superficial musculature and the limited sample size for physiological testing. The presence of increased facet joint motions indicated that synovial joint soft-tissue components (that is, synovial membrane and capsular ligament) sustain increased distortion that may subject these tissues to a greater likelihood of injury. This finding is supported by clinical investigations in which lower cervical facet joint injury resulted in similar pain patterns due to the most commonly reported whiplash symptoms.
Manchikanti, Laxmaiah; Nampiaparampil, Devi E; Candido, Kenneth D; Bakshi, Sanjay; Grider, Jay S; Falco, Frank J E; Sehgal, Nalini; Hirsch, Joshua A
2015-01-01
The high prevalence of chronic persistent neck pain not only leads to disability but also has a significant economic, societal, and health impact. Among multiple modalities of treatments prescribed in the management of neck and upper extremity pain, surgical, interventional and conservative modalities have been described. Cervical epidural injections are also common modalities of treatments provided in managing neck and upper extremity pain. They are administered by either an interlaminar approach or transforaminal approach. To determine the long-term efficacy of cervical interlaminar and transforaminal epidural injections in the treatment of cervical disc herniation, spinal stenosis, discogenic pain without facet joint pain, and post surgery syndrome. The literature search was performed from 1966 to October 2014 utilizing data from PubMed, Cochrane Library, US National Guideline Clearinghouse, previous systematic reviews, and cross-references. The evidence was assessed based on best evidence synthesis with Level I to Level V. There were 7 manuscripts meeting inclusion criteria. Of these, 4 assessed the role of interlaminar epidural injections for managing disc herniation or radiculitis, and 3 assessed these injections for managing central spinal stenosis, discogenic pain without facet joint pain, and post surgery syndrome. There were 4 high quality manuscripts. A qualitative synthesis of evidence showed there is Level II evidence for each etiology category. The evidence is based on one relevant, high quality trial supporting the efficacy of cervical interlaminar epidural injections for each particular etiology. There were no randomized trials available assessing the efficacy of cervical transforaminal epidural injections. Paucity of available literature, specifically conditions other than disc herniation. This systematic review with qualitative best evidence synthesis shows Level II evidence for the efficacy of cervical interlaminar epidural injections with local anesthetic with or without steroids, based on at least one high-quality relevant randomized control trial in each category for disc herniation, discogenic pain without facet joint pain, central spinal stenosis, and post surgery syndrome.
Stelzeneder, David; Messner, Alina; Vlychou, Marianna; Welsch, Goetz H; Scheurecker, Georg; Goed, Sabine; Pieber, Karin; Pflueger, Verena; Friedrich, Klaus M; Trattnig, Siegfried
2011-11-01
To assess the feasibility of T2 mapping of lumbar facet joints and intervertebral discs in a single imaging slab and to compare the findings with morphological grading. Sixty lumbar spine segments from 10 low back pain patients and 5 healthy volunteers were examined by axial T2 mapping and morphological MRI at 3.0 Tesla. Regions of interest were drawn on a single slice for the facet joints and the intervertebral discs (nucleus pulposus, anterior and posterior annulus fibrosus). The Weishaupt grading was used for facet joints and the Pfirrmann score was used for morphological disc grading ("normal" vs. "abnormal" discs). The inter-rater agreement was excellent for the facet joint T2 evaluation (r = 0.85), but poor for the morphological Weishaupt grading (kappa = 0.15). The preliminary results show similar facet joint T2 values in segments with normal and abnormal Pfirrmann scores. There was no difference in mean T2 values between facet joints in different Weishaupt grading groups. Facet joint T2 values showed a weak correlation with T2 values of the posterior annulus (r = 0.32) This study demonstrates the feasibility of a combined T2 mapping approach for the facet joints and intervertebral discs using a single axial slab.
Kras, J V; Kartha, S; Winkelstein, B A
2015-11-01
The objective of the current study is to define whether intra-articular nerve growth factor (NGF), an inflammatory mediator that contributes to osteoarthritic pain, is necessary and sufficient for the development or maintenance of injury-induced facet joint pain and its concomitant spinal neuronal hyperexcitability. Male Holtzman rats underwent painful cervical facet joint distraction (FJD) or sham procedures. Mechanical hyperalgesia was assessed in the forepaws, and NGF expression was quantified in the C6/C7 facet joint. An anti-NGF antibody was administered intra-articularly in additional rats immediately or 1 day following facet distraction or sham procedures to block intra-articular NGF and test its contribution to initiation and/or maintenance of facet joint pain and spinal neuronal hyperexcitability. NGF was injected into the bilateral C6/C7 facet joints in separate rats to determine if NGF alone is sufficient to induce these behavioral and neuronal responses. NGF expression increases in the cervical facet joint in association with behavioral sensitivity after that joint's mechanical injury. Intra-articular application of anti-NGF immediately after a joint distraction prevents the development of both injury-induced pain and hyperexcitability of spinal neurons. Yet, intra-articular anti-NGF applied after pain has developed does not attenuate either behavioral or neuronal hyperexcitability. Intra-articular NGF administered to the facet in naïve rats also induces behavioral hypersensitivity and spinal neuronal hyperexcitability. Findings demonstrate that NGF in the facet joint contributes to the development of injury-induced joint pain. Localized blocking of NGF signaling in the joint may provide potential treatment for joint pain. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Biochemical and biomechanical characterisation of equine cervical facet joint cartilage.
O'Leary, S A; White, J L; Hu, J C; Athanasiou, K A
2018-04-15
The equine cervical facet joint is a site of significant pathology. Located bilaterally on the dorsal spine, these diarthrodial joints work in conjunction with the intervertebral disc to facilitate appropriate spinal motion. Despite the high prevalence of pathology in this joint, the facet joint is understudied and thus lacking in viable treatment options. The goal of this study was to characterise equine facet joint cartilage and provide a comprehensive database describing the morphological, histological, biochemical and biomechanical properties of this tissue. Descriptive cadaver studies. A total of 132 facet joint surfaces were harvested from the cervical spines of six skeletally mature horses (11 surfaces per animal) for compiling biomechanical and biochemical properties of hyaline cartilage of the equine cervical facet joints. Gross morphometric measurements and histological staining were performed on facet joint cartilage. Creep indentation and uniaxial strain-to-failure testing were used to determine the biomechanical compressive and tensile properties. Biochemical assays included quantification of total collagen, sulfated glycosaminoglycan and DNA content. The facet joint surfaces were ovoid in shape with a flat articular surface. Histological analyses highlighted structures akin to articular cartilage of other synovial joints. In general, biomechanical and biochemical properties did not differ significantly between the inferior and superior joint surfaces as well as among spinal levels. Interestingly, compressive and tensile properties of cervical facet articular cartilage were lower than those of articular cartilage from other previously characterised equine joints. Removal of the superficial zone reduced the tissue's tensile strength, suggesting that this zone is important for the tensile integrity of the tissue. Facet surfaces were sampled at a single, central location and do not capture the potential topographic variation in cartilage properties. This is the first study to report the properties of equine cervical facet joint cartilage and may serve as the foundation for the development of future tissue-engineered replacements as well as other treatment strategies. © 2018 EVJ Ltd.
Facet joint disturbance induced by miniscrews in plated cervical laminoplasty
Chen, Hua; Li, Huibo; Wang, Beiyu; Li, Tao; Gong, Quan; Song, Yueming; Liu, Hao
2016-01-01
Abstract A retrospective cohort study. Plated cervical laminoplasty is an increasingly common technique. A unique facet joint disturbance induced by lateral mass miniscrews penetrating articular surface was noticed. Facet joints are important to maintain cervical spine stability and kinetic balance. Whether this facet joint disturbance could affect clinical and radiologic results is still unknown. The objective of this study is to investigate the clinical and radiologic outcomes of patients with facet joints disturbance induced by miniscrews in plated cervical laminoplasty. A total of 105 patients who underwent cervical laminoplasty with miniplate fixation between May 2010 and February 2014 were comprised. Postoperative CT images were used to identify whether facet joints destroyed by miniscrews. According to facet joints destroyed number, all the patients were divided into: group A (none facet joint destroyed), group B (1–2 facet joints destroyed), and group C (≥3 facet joints destroyed). Clinical data (JOA, VAS, and NDI scores), radiologic data (anteroposterior diameter and Palov ratio), and complications (axial symptoms and C5 palsy) were evaluated and compared among the groups. There were 38, 40, and 27 patients in group A, B, and C, respectively. The overall facet joints destroyed rate was 30.7%. All groups gained significant JOA and NDI scores improvement postoperatively. The preoperative JOA, VAS, NDI scores, and postoperative JOA scores did not differ significantly among the groups. The group C recorded significant higher postoperative VAS scores than group A (P = 0.002) and B (P = 0.014) and had significant higher postoperative NDI scores than group A (P = 0.002). The pre- and postoperative radiologic data were not significant different among the groups. The group C had a significant higher axial symptoms incidence than group A (12/27 vs 8/38, P = 0.041). Facet joints disturbance caused by miniscrews in plated cervical laminoplasty may not influence neurological recovery and spinal canal expansion, but may negatively affect postoperative axial symptoms. PMID:27661016
Palea, Ovidiu; Granville, Michelle
2017-01-01
Radiofrequency facet ablation (RFA) has been performed using the same technique for over 50 years. Except for variations in electrode size, tip shape, and change in radiofrequency (RF) stimulation parameters, using standard, pulsed, and cooled RF wavelengths, the target points have remained absolutely unchanged from the original work describing RFA for lumbar pain control. Degenerative changes in the facet joint and capsule are the primary location for the majority of lumbar segmental pathology and pain. Multiple studies show that the degenerated facet joint is richly innervated as a result of the inflammatory overgrowth of the synovium. The primary provocative clinical test to justify an RFA is to perform an injection with local anesthetic into the facet joint and the posterior capsule and confirm pain relief. However, after a positive response, the radiofrequency lesion is made not to the facet joint but to the more proximal fine nerve branches that innervate the joint. The accepted target points for the recurrent sensory branch ignore the characteristic rich innervation of the pathologic lumbar facet capsule and assume that lesioning of these recurrent branches is sufficient to denervate the painful pathologic facet joint. This report describes the additional targets and technical steps for further coagulation points along the posterior capsule of the lumbar facet joint and the physiologic studies of the advantage of the bipolar radiofrequency current in this location. Bipolar RF to the facet capsule is a simple, extra step that easily creates a large thermo-coagulated lesion in this capsule region of the pathologic facet joint. Early studies demonstrate bipolar RF to the facet capsule can provide long-term pain relief when used alone for specific localized facet joint pain, to coagulate lumbar facet cysts to prevent recurrence, and to get more extensive pain control by combining it with traditional lumbar RFA, especially when RFA is repeated. PMID:29119066
Jacobson, Robert E; Palea, Ovidiu; Granville, Michelle
2017-09-01
Radiofrequency facet ablation (RFA) has been performed using the same technique for over 50 years. Except for variations in electrode size, tip shape, and change in radiofrequency (RF) stimulation parameters, using standard, pulsed, and cooled RF wavelengths, the target points have remained absolutely unchanged from the original work describing RFA for lumbar pain control. Degenerative changes in the facet joint and capsule are the primary location for the majority of lumbar segmental pathology and pain. Multiple studies show that the degenerated facet joint is richly innervated as a result of the inflammatory overgrowth of the synovium. The primary provocative clinical test to justify an RFA is to perform an injection with local anesthetic into the facet joint and the posterior capsule and confirm pain relief. However, after a positive response, the radiofrequency lesion is made not to the facet joint but to the more proximal fine nerve branches that innervate the joint. The accepted target points for the recurrent sensory branch ignore the characteristic rich innervation of the pathologic lumbar facet capsule and assume that lesioning of these recurrent branches is sufficient to denervate the painful pathologic facet joint. This report describes the additional targets and technical steps for further coagulation points along the posterior capsule of the lumbar facet joint and the physiologic studies of the advantage of the bipolar radiofrequency current in this location. Bipolar RF to the facet capsule is a simple, extra step that easily creates a large thermo-coagulated lesion in this capsule region of the pathologic facet joint. Early studies demonstrate bipolar RF to the facet capsule can provide long-term pain relief when used alone for specific localized facet joint pain, to coagulate lumbar facet cysts to prevent recurrence, and to get more extensive pain control by combining it with traditional lumbar RFA, especially when RFA is repeated.
Surgical Tips to Preserve the Facet Joint during Microdiscectomy
Park, Man-Kyu; Cho, Dae-Chul; Sung, Joo-Kyung
2013-01-01
Lumbar microdiscectomy (MD) is the gold standard for treatment of lumbar disc herniation. Generally, the surgeon attempts to protect the facet joint in hopes of avoiding postoperative pain/instability and secondary degenerative arthropathy. We believe that preserving the facet joint is especially important in young patients, owing to their life expectancy and activity. However, preserving the facet joint is not easy during lumbar MD. We propose several technical tips (superolateral extension of conventional laminotomy, oblique drilling for laminotomy, and additional foraminotomy) for facet joint preservation during lumbar MD. PMID:24294466
Kras, Jeffrey V.; Kartha, Sonia; Winkelstein, Beth A.
2015-01-01
Objective The objective of the current study is to define whether intra-articular nerve growth factor (NGF), an inflammatory mediator that contributes to osteoarthritic pain, is necessary and sufficient for the development or maintenance of injury-induced facet joint pain and its concomitant spinal neuronal hyperexcitability. Method Male Holtzman rats underwent painful cervical facet joint distraction or sham procedures. Mechanical hyperalgesia was assessed in the forepaws, and NGF expression was quantified in the C6/C7 facet joint. An anti-NGF antibody was administered intra-articularly in additional rats immediately or 1 day following facet distraction or sham procedures to block intra-articular NGF and test its contribution to initiation and/or maintenance of facet joint pain and spinal neuronal hyperexcitability. NGF was injected into the bilateral C6/C7 facet joints in separate rats to determine if NGF alone is sufficient to induce these behavioral and neuronal responses. Results NGF expression increases in the cervical facet joint in association with behavioral sensitivity after that joint’s mechanical injury. Intra-articular application of anti-NGF immediately after a joint distraction prevents the development of both injury-induced pain and hyperexcitability of spinal neurons. Yet, intra-articular anti-NGF applied after pain has developed does not attenuate either behavioral or neuronal hyperexcitability. Intra-articular NGF administered to the facet in naïve rats also induces behavioral hypersensitivity and spinal neuronal hyperexcitability. Conclusion Findings demonstrate that NGF in the facet joint contributes to the development of injury-induced joint pain. Localized blocking of NGF signaling in the joint may provide potential treatment for joint pain. PMID:26521746
Oberkircher, Ludwig; Born, Sebastian; Struewer, Johannes; Bliemel, Christopher; Buecking, Benjamin; Wack, Christina; Bergmann, Martin; Ruchholtz, Steffen; Krüger, Antonio
2014-10-01
Injuries of the subaxial cervical spine including facet joints and posterior ligaments are common. Potential surgical treatments consist of anterior, posterior, or anterior-posterior fixation. Because each approach has its advantages and disadvantages, the best treatment is debated. This biomechanical cadaver study compared the effect of different facet joint injuries on primary stability following anterior plate fixation. Fractures and plate fixation were performed on 15 fresh-frozen intact cervical spines (C3-T1). To simulate a translation-rotation injury in all groups, complete ligament rupture and facet dislocation were simulated by dissecting the entire posterior and anterior ligament complex between C-4 and C-5. In the first group, the facet joints were left intact. In the second group, one facet joint between C-4 and C-5 was removed and the other side was left intact. In the third group, both facet joints between C-4 and C-5 were removed. The authors next performed single-level anterior discectomy and interbody grafting using bone material from the respective thoracic vertebral bodies. An anterior cervical locking plate was used for fixation. Continuous loading was performed using a servohydraulic test bench at 2 N/sec. The mean load failure was measured when the implant failed. In the group in which both facet joints were intact, the mean load failure was 174.6 ± 46.93 N. The mean load failure in the second group where only one facet joint was removed was 127.8 ± 22.83 N. In the group in which both facet joints were removed, the mean load failure was 73.42 ± 32.51 N. There was a significant difference between the first group (both facet joints intact) and the third group (both facet joints removed) (p < 0.05, Kruskal-Wallis test). In this cadaver study, primary stability of anterior plate fixation for dislocation injuries of the subaxial cervical spine was dependent on the presence of the facet joints. If the bone in one or both facet joints is damaged in the clinical setting, anterior plate fixation in combination with bone grafting might not provide sufficient stabilization; additional posterior stabilization may be needed.
2014-01-01
Study design A phantom experiment, two thermocouple experiments, three in vivo pig experiments, and a simulated treatment on a healthy human volunteer were conducted to test the feasibility, safety, and efficacy of magnetic resonance-guided focused ultrasound (MRgFUS) for treating facet joint pain. Objective The goal of the current study was to develop a novel method for accurate and safe noninvasive facet joint ablation using MRgFUS. Summary of background data Facet joints are a common source of chronic back pain. Direct facet joint interventions include medial branch nerve ablation and intra-articular injections, which are widely used, but limited in the short and long term. MRgFUS is a breakthrough technology that enables accurate delivery of high-intensity focused ultrasound energy to create a localized temperature rise for tissue ablation, using MR guidance for treatment planning and real-time feedback. Methods We validated the feasibility, safety, and efficacy of MRgFUS for facet joint ablation using the ExAblate 2000® System (InSightec Ltd., Tirat Carmel, Israel) and confirmed the system's ability to ablate the edge of the facet joint and all terminal nerves innervating the joint. A phantom experiment, two thermocouple experiments, three in vivo pig experiments, and a simulated treatment on a healthy human volunteer were conducted. Results The experiments showed that targeting the facet joint with energies of 150–450 J provides controlled and accurate heating at the facet joint edge without penetration to the vertebral body, spinal canal, or root foramina. Treating with reduced diameter of the acoustic beam is recommended since a narrower beam improves access to the targeted areas. Conclusions MRgFUS can safely and effectively target and ablate the facet joint. These results are highly significant, given that this is the first study to demonstrate the potential of MRgFUS to treat facet joint pain. PMID:24921048
Superior Recess Access of the Lumbar Facet Joint.
Demir-Deviren, Sibel; Singh, Sukhminder; Hanelin, Joshua
2017-04-01
Descriptive approach to accessing the lumbar facet joint by superior recess. This study is aimed to describe an approach to accessing the lumbar facet joint through targeting the superior recess during lumbar facet joint injections. Lumbar facet joint injections are routinely performed for both the diagnosis and treatment of chronic low back pain. Previous studies either did not specify which part of the joint to target, or recommended targeting the inferior aspect of the joint to access the inferior recess. One study did mention the superior recess as an alternative to injecting the inferior recess, but none has focused on description of the technique. This is the first time this technique has been described. The records and fluoroscopic images were reviewed for all patients over a period of 9 months (January-September 2012) using the proposed technique. This resulted in a total of 48 patients; 15 men, 29 women, and a total of 117 facet joint intra-articular injections. Among these 48 patients, injections were repeated in total of 4 cases. The average time of injections among 4 repeat cases was 121 days. The success of the procedure was confirmed with an arthrogram demonstrating contrast flowing from the superior recess inferiorly through the joint space. Successful access of the lumbar facet joint through puncture of the superior recess was seen in 114 cases, with 3 unsuccessful attempts to enter facet joints due to osteophytes at involved levels. There were no complications observed during the procedure. We find this approach to be highly successful, safe, and well tolerated by the patient and recommend it as a technique for access of the lumbar facet joint in those patients in whom direct puncture of the inferior recess is difficult.
Facet joint hypertrophy is a misnomer: A retrospective study.
An, Sang Joon; Seo, Mi Sook; Choi, Soo Il; Lim, Tae-Ha; Shin, So Jin; Kang, Keum Nae; Kim, Young Uk
2018-06-01
One of the major causes of lumbar spinal canal stenosis (LSCS) has been considered facet joint hypertrophy (FJH). However, a previous study asserted that "FJH" is a misnomer because common facet joints are no smaller than degenerative facet joints; however, this hypothesis has not been effectively demonstrated. Therefore, in order to verify that FJH is a misnomer in patients with LSCS, we devised new morphological parameters that we called facet joint thickness (FJT) and facet joint cross-sectional area (FJA).We collected FJT and FJA data from 114 patients with LSCS. A total of 86 control subjects underwent lumbar magnetic resonance imaging (MRI) as part of routine medical examinations, and axial T2-weighted MRI images were obtained from all participants. We measured FJT by drawing a line along the facet area and then measuring the narrowest point at L4-L5. We measured FJA as the whole cross-sectional area of the facet joint at the stenotic L4-L5 level.The average FJT was 1.60 ± 0.36 mm in the control group and 1.11 ± 0.32 mm in the LSCS group. The average FJA was 14.46 ± 5.17 mm in the control group and 9.31 ± 3.47 mm in the LSCS group. Patients with LSCS had significantly lower FJTs (P < .001) and FJAs (P < .001).FJH, a misnomer, should be renamed facet joint area narrowing. Using this terminology would eliminate confusion in descriptions of the facet joint.
Kras, Jeffrey V.; Dong, Ling; Winkelstein, Beth A.
2012-01-01
Study Design This study implemented immunohistochemistry to assay prostaglandin E2 (PGE2) receptor EP2 expression in the dorsal root ganglion (DRG) of rats after painful cervical facet joint injury. Objective The objective of this study was to identify if inflammatory cascades are induced in association with cervical facet joint distraction-induced pain by investigating the time course of EP2 expression in the DRG. Summary of Background Data The cervical facet joint is a common source of neck pain and non-physiological stretch of the facet capsular ligament can initiate pain from the facet joint via mechanical injury. PGE2 levels are elevated in painful inflamed and arthritic joints, and PGE2 sensitizes joint afferents to mechanical stimulation. Although in vitro studies suggest the EP2 receptor subtype contributes to painful joint disease the EP2 response has not been investigated for any association with painful mechanical joint injury. Methods Separate groups of male Holtzman rats underwent either a painful cervical facet joint distraction injury or sham procedure. Bilateral forepaw mechanical allodynia was assessed, and immunohistochemical techniques were used to quantify EP2 expression in the DRG at days 1 and 7. Results Facet joint distraction induced mechanical allodynia that was significant (p<0.024) at all time points. Painful joint injury also significantly elevated total EP2 expression in the DRG at day 1 (p=0.009), which was maintained also at day 7 (p<0.001). Neuronal expression of EP2 in the DRG was only increased over sham levels at day 1 (p=0.013). Conclusions Painful cervical facet joint distraction induces an immediate and sustained increase of EP2 expression in the DRG, implicating peripheral inflammation in the initiation and maintenance of facet joint pain. The transient increase in neuronal EP2 suggests, as in other painful joint conditions, that after joint injury non-neuronal cells may migrate to the DRG, some of which likely express EP2. PMID:22789984
Kristjánsson, Baldur; Limthongkul, Worawat; Yingsakmongkol, Wicharn; Thantiworasit, Pattarawat; Jirathanathornnukul, Napaphat; Honsawek, Sittisak
2016-01-01
A descriptive in vitro study on isolation and differentiation of human mesenchymal stem cells (MSCs) derived from the facet joints and interspinous ligaments. To isolate cells from the facet joints and interspinous ligaments and investigate their surface marker profile and differentiation potentials. Lumbar spinal canal stenosis and ossification of the posterior longitudinal ligament are progressive conditions characterized by the hypertrophy and ossification of ligaments and joints within the spinal canal. MSCs are believed to play a role in the advancement of these diseases and the existence of MSCs has been demonstrated within the ligamentum flavum and posterior longitudinal ligament. The aim of this study was to investigate whether these cells could also be found within facet joints and interspinous ligaments. Samples were harvested from 10 patients undergoing spinal surgery. The MSCs from facet joints and interspinous ligaments were isolated using direct tissue explant technique. Cell surface antigen profilings were performed via flow cytometry. Their lineage differentiation potentials were analyzed. The facet joints and interspinous ligaments-derived MSCs have the tri-lineage potential to be differentiated into osteogenic, adipogenic, and chondrogenic cells under appropriate inductions. Flow cytometry analysis revealed both cell lines expressed MSCs markers. Both facet joints and interspinous ligaments-derived MSCs expressed marker genes for osteoblasts, adipocytes, and chondrocytes. The facet joints and interspinous ligaments may provide alternative sources of MSCs for tissue engineering applications. The facet joints and interspinous ligaments-derived MSCs are part of the microenvironment of the human ligaments of the spinal column and might play a crucial role in the development and progression of degenerative spine conditions.
Albayrak, Akif; Ozkul, Baris; Balioglu, Mehmet Bulent; Atici, Yunus; Gultekin, Muhammet Zeki; Albayrak, Merih Dilan
2016-01-01
Retrospective cohort study. Facet joints are considered a common source of chronic low-back pain. To determine whether pathogens related to the facet joint arthritis have any effect on treatment failure. Facet joint injection was applied to 94 patients treated at our hospital between 2011 and 2012 (mean age 59.5 years; 80 women and 14 men). For the purpose of analysis, the patients were divided into two groups. Patients who only had facet hypertrophy were placed in group A (47 patients, 41 women and 6 men, mean age 55.3 years) and patients who had any additional major pathology to facet hypertrophy were placed in group B (47 patients, 39 women and 8 men, mean age 58.9 years). Injections were applied around the facet joint under surgical conditions utilizing fluoroscopy device guidance. A mixture of methylprednisolone and lidocaine was used as the injection ingredient. In terms of Oswestry Disability Index (ODI) and visual analog scale (VAS) scores, no significant difference was found between preinjection and immediate postinjection values in both groups, and the scores of group A patients were significantly lower (P < 0.005) compared with that of group B patients at the end of the third, sixth, and twelfth month. For low-back pain caused by facet hypertrophy, steroid injection around the facet joint is an effective treatment, but if there is an existing major pathology, it is not as effective.
Yamabe, Daisuke; Murakami, Hideki; Chokan, Kou; Endo, Hirooki; Oikawa, Ryosuke; Sawamura, Shoitsu; Doita, Minoru
2017-12-15
T2 mapping was used to quantify the water content of lumbar spine intervertebral discs (IVDs) and facet joints before and after physiological loading. The aim of this study was to clarify the interaction between lumbar spine IVD and facet joints as load-bearing structures by measuring the water content of their matrix after physiological loading using T2 mapping magnetic resonance imaging (MRI). To date, few reports have functionally evaluated lumbar spine IVD and facet joints, and their interaction in vivo. T2 mapping may help detect changes in the water content of IVD and articular cartilage of facet joints before and after physiological loading, thereby enabling the evaluation of changes in interacted water retention between IVD and facet joints. Twenty asymptomatic volunteers (10 female and 10 male volunteers; mean age, 19.3 years; age range, 19-20 years) underwent MRI before and after physiological loading such as lumbar flexion, extension, and rotation. Each IVD from L1/2 to L5/S1 was sliced at center of the disc space, and the T2 value was measured at the nucleus pulposus (NP), anterior annulus fibrosus (AF), posterior AF, and bilateral facet joints. In the NP, T2 values significantly decreased after exercise at every lumbar spinal level. In the anterior AF, there were no significant differences in T2 values at any level. In the posterior AF, T2 values significantly increased only at L4/5. In the bilateral facet joints, T2 values significantly decreased after exercise at every level. There was a significant decrease in the water content of facet joints and the NP at every lumbar spinal level after dynamic loading by physical lumbar exercise. These changes appear to play an important and interactional role in the maintenance of the interstitial matrix in the IVD NP and cartilage in the facet joint. 3.
A practical guide for performing arthrography under fluoroscopic or ultrasound guidance.
Lungu, Eugen; Moser, Thomas P
2015-12-01
We propose a practical approach for performing arthrography with fluoroscopic or ultrasound guidance. Different approaches to the principal joints of the upper limb (shoulder, elbow, wrist and fingers), lower limb (hip, knee, ankle and foot) as well as the facet joints of the spine are discussed and illustrated with numerous drawings. Whenever possible, we emphasise the concept of targeting articular recesses, which offers many advantages over traditional techniques aiming at the joint space. • Arthrography remains a foremost technique in musculoskeletal radiology • Most joints can be successfully accessed by targeting the articular recess • Targeting the recess offers several advantages over traditional approaches • Ultrasound-guidance is now favoured over fluoroscopy and targeting the recess is equally applicable.
Huang, Ambrose J; Palmer, William E
2012-02-01
To determine the incidence of inadvertent lumbar facet joint injection during an interlaminar epidural steroid injection (ESI). A total of 686 interlaminar lumbar ESIs were performed from January 1, 2009 to December 31, 2009. Archived images from these cases were retrospectively reviewed on the PACS. Positive cases of inadvertent lumbar facet joint injection were identified by the characteristic sigmoid-shaped contrast pattern projecting over the posterior elements on the lateral view and/or ovoid contrast projecting over the facet joints on the anteroposterior (AP) view. Eight positive events were identified (1.2%). There was no statistically significant gender or lumbar level predilection. In 3/8 of the positive cases (37.5%), the inadvertent facet joint injection was recognized by the operator. The needle was repositioned as a result, and contrast within the posterior epidural space was documented by the end of the procedure. In 5/8 of the positive cases (62.5%), the patients reported an immediate decrease in the presenting pain. The incidence of inadvertent lumbar facet joint injection during an interlaminar epidural steroid injection is low. Recognizing the imaging features of this event permits the operator to redirect the needle tip into the epidural space and/or identify the facet joint(s) as a source of the patient's presenting pain.
Manchikanti, Laxmaiah; Singh, Vijay; Falco, Frank J.E.; Cash, Kimberly A.; Pampati, Vidyasagar
2010-01-01
Study Design: A randomized, double-blind, controlled trial. Objective: To determine the clinical effectiveness of therapeutic lumbar facet joint nerve blocks with or without steroids in managing chronic low back pain of facet joint origin. Summary of Background Data: Lumbar facet joints have been shown as the source of chronic pain in 21% to 41% of low back patients with an average prevalence of 31% utilizing controlled comparative local anesthetic blocks. Intraarticular injections, medial branch blocks, and radiofrequency neurotomy of lumbar facet joint nerves have been described in the alleviation of chronic low back pain of facet joint origin. Methods: The study included 120 patients with 60 patients in each group with local anesthetic alone or local anesthetic and steroids. The inclusion criteria was based upon a positive response to diagnostic controlled, comparative local anesthetic lumbar facet joint blocks. Outcome measures included the numeric rating scale (NRS), Oswestry Disability Index (ODI), opioid intake, and work status, at baseline, 3, 6, 12, 18, and 24 months. Results: Significant improvement with significant pain relief of ≥ 50% and functional improvement of ≥ 40% were observed in 85% in Group 1, and 90% in Group II, at 2-year follow-up. The patients in the study experienced significant pain relief for 82 to 84 weeks of 104 weeks, requiring approximately 5 to 6 treatments with an average relief of 19 weeks per episode of treatment. Conclusions: Therapeutic lumbar facet joint nerve blocks, with or without steroids, may provide a management option for chronic function-limiting low back pain of facet joint origin. PMID:20567613
Lv, Xin; Liu, Yuan; Zhou, Song; Wang, Qiang; Gu, Houyun; Fu, Xiaoxing; Ding, Yi; Zhang, Bin; Dai, Min
2016-08-15
Sagittal spinopelvic alignment changes associated with degenerative facet joint arthritis have been assessed in a few studies. It has been documented that patients with facet joint degeneration have higher pelvic incidence, but the relationship between facet joint degeneration and other sagittal spinopelvic alignment parameters is still disputed. Our purpose was to evaluate the correlation between the features of sagittal spinopelvic alignment and facet joint degeneration. Imaging data of 140 individuals were retrospectively analysed. Lumbar lordosis, pelvic tilt (PT), pelvic incidence (PI), sacral slope, and height of the lumbar intervertebral disc were measured on lumbar X-ray plates. Grades of facet joint degeneration were evaluated from the L2 to S1 on CT scans. Spearman's rank correlation coefficient and Student's t-test were used for statistical analyses, and a P-value <0.05 was considered statistically significant. PI was positively associated with degeneration of the facet joint at lower lumbar levels (p < 0.001 r = 0.50 at L5/S1 and P = 0.002 r = 0.25 at L4/5). A significant increase of PT was found in the severe degeneration group compared with the mild degeneration group: 22.0° vs 15.7°, P = 0.034 at L2/3;21.4°vs 15.1°, P = 0.006 at L3/4; 21.0° vs 13.5°, P = 0.000 at L4/5; 20.8° vs 12.1°, P = 0.000 at L5/S1. Our results indicate that a high PI is a predisposing factor for facet joint degeneration at the lower lumbar spine, and that severe facet joint degeneration may accompany with greater PT at lumbar spine.
Subdural empyema following lumbar facet joint injection: An exceeding rare complication.
Fayeye, Oluwafikayo; Silva, Adikarige Haritha Dulanka; Chavda, Swarupsinh; Furtado, Navin Raoul
2016-01-01
Chronic low back pain is extremely common with a life time prevalence estimated at greater than 70%. Facet joint arthrosis is thought to be the causative aetiological substrate in approximately 25% of chronic low back pain cases. Facet joint injection is a routine intervention in the armamentarium for both the diagnostic and therapeutic management of chronic low back pain. In fact, a study by Carrino et al. reported in excess of 94,000 facet joint injection procedures were carried out in the US in 1999. Although generally considered safe, the procedure is not entirely without risk. Complications including bleeding, infection, exacerbation of pain, dural puncture headache, and pneumothorax have been described. We report a rare case of a 47-year-old female patient who developed a left L4/5 facet septic arthrosis with an associated subdural empyema and meningitis following facet joint injection. This case is unique, as to the best of our knowledge no other case of subdural empyema following facet joint injection has been reported in the literature. Furthermore this case serves to highlight the potential serious adverse sequelae of a routine and apparently innocuous intervention. The need for medical practitioners to be alert to and respond rapidly to the infective complications of facet joint injection cannot be understated. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Chang, Min Cheol; Cho, Yun-Woo; Ahn, Da Hyun; Do, Kyung Hee
2018-04-01
Many treatment techniques have been used for refractory lumbar facet joint pain; however, their efficacy has been controversial. In this study, we investigated the clinical efficacy and safety of intra-articular pulsed radiofrequency for the treatment of refractory lumbar facet joint pain in patients with low back pain. Twenty patients with refractory lumbar facet joint pain were recruited, and each patient was treated via intra-articular pulsed radiofrequency. The treatment effects were measured with a numerical rating scale, and the technical accuracy of intra-articular pulsed radiofrequency treatment was evaluated independently by 2 radiologists. Any adverse events or complications also were checked. We performed intra-articular pulsed radiofrequency treatment at 48 levels of the lumbar facet joints in 20 patients (5 men and 15 women; mean age, 64.50 ± 10.65 years) with refractory lumbar facet joint pain. Pain scores were significantly reduced at 1 month, 3 months, and 6 months after treatment (P < 0.05). The face validity revealed good intraarticular pulsed radiofrequency results in all 20 patients, without any serious adverse effects. Treatment using intra-articular pulsed radiofrequency is an alternative to other techniques in patients with refractory lumbar facet joint pain. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhu, Q A; Park, Y B; Sjovold, S G; Niosi, C A; Wilson, D C; Cripton, P A; Oxland, T R
2008-02-01
Experimental measurement of the load-bearing patterns of the facet joints in the lumbar spine remains a challenge, thereby limiting the assessment of facet joint function under various surgical conditions and the validation of computational models. The extra-articular strain (EAS) technique, a non-invasive measurement of the contact load, has been used for unilateral facet joints but does not incorporate strain coupling, i.e. ipsilateral EASs due to forces on the contralateral facet joint. The objectives of the present study were to establish a bilateral model for facet contact force measurement using the EAS technique and to determine its effectiveness in measuring these facet joint contact forces during three-dimensional flexibility tests in the lumbar spine. Specific goals were to assess the accuracy and repeatability of the technique and to assess the effect of soft-tissue artefacts. In the accuracy and repeatability tests, ten uniaxial strain gauges were bonded to the external surface of the inferior facets of L3 of ten fresh lumbar spine specimens. Two pressure-sensitive sensors (Tekscan) were inserted into the joints after the capsules were cut. Facet contact forces were measured with the EAS and Tekscan techniques for each specimen in flexion, extension, axial rotation, and lateral bending under a +/- 7.5 N m pure moment. Four of the ten specimens were tested five times in axial rotation and extension for repeatability. These same specimens were disarticulated and known forces were applied across the facet joint using a manual probe (direct accuracy) and a materials-testing system (disarticulated accuracy). In soft-tissue artefact tests, a separate set of six lumbar spine specimens was used to document the virtual facet joint contact forces during a flexibility test following removal of the superior facet processes. Linear strain coupling was observed in all specimens. The average peak facet joint contact forces during flexibility testing was greatest in axial rotation (71 +/- 25 N), followed by extension (27 +/- 35 N) and lateral bending (25 +/- 28 N), and they were most repeatable in axial rotation (coefficient of variation, 5 per cent). The EAS accuracy was about 20 per cent in the direct accuracy assessment and about 30 per cent in the disarticulated accuracy test. The latter was very similar to the Tekscan accuracy in the same test. Virtual facet loads (r.m.s.) were small in axial rotation (12 N) and lateral bending (20 N), but relatively large in flexion (34 N) and extension (35 N). The results suggested that the bilateral EAS model could be used to determine the facet joint contact forces in axial rotation but may result in considerable error in flexion, extension, and lateral bending.
NASA Astrophysics Data System (ADS)
Liebert, Ann D.; Bicknell, Brian
2017-02-01
Photobiomodulation (PBM) is an effective tool for the management of spinal pain including inflammation of facet joints. Apart from cervical and lumbar joint pain the upper cervical spine facet joint inflammation can result in the CGH (traumatic or atraumatic in origin). This condition affects children, adults and elders and is responsible for 19% of chronic headache and up to 33% of patients in pain clinics. The condition responds well to physiotherapy, facet joint injection, radiofrequency neurotomy and surgery at a rate of 75%. The other 25% being unresponsive to treatment with no identified features of unresponsiveness. In other conditions of chronic unresponsive cervical pain have responded to photobiomodulation at a level of 80% in the short and medium term. A clinical trial was therefore conducted on a cohort of atraumatic patients from the ages of 5-93 (predominantly Neurologist referred / familial sufferers 2/3 generations vertically and laterally) who had responded to a course of PBM and physiotherapy. The CGH sufferers and their non CGH suffering relatives over these generations were then compared for features that distinguish the two groups. Fifty parameters were tested (anthropmetric, movement and neural tension tests included) and there was a noted difference in tandem stance between the groups (.04 significance with repeated measures). As this impairment is common to benign ataxia and migrainous vertigo and in these conditions there is an ion channelopathy (especially potassium channelopathy). A postulated mechanism of action of PBM would involve modulation of ion channels and this is discussed in this presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoretti, Nicolas, E-mail: amorettinicolas@yahoo.fr; Gallo, Giacomo, E-mail: giacomo.gallo83@gmail.com; Bertrand, Anne-Sophie, E-mail: asbertrand3@hotmail.com
We present a case of percutaneous treatment of symptomatic recurrent lumbar facet joint cyst resistant to all medical treatments including facet joint steroid injection. Percutaneous transfacet fixation was then performed at L4–L5 level with a cannulated screw using CT and fluoroscopy guidance. The procedure time was 30 min. Using the visual analog scale (VAS), pain decreased from 9.5, preoperatively, to 0 after the procedure. At 6-month follow-up, an asymptomatic cystic recurrence was observed, which further reduced at the 1-year follow-up. Pain remained stable (VAS at 0) during all follow-ups. CT- and fluoroscopy-guided percutaneous cyst rupture associated with facet screw fixation couldmore » be an alternative to surgery in patients suffering from a symptomatic recurrent lumbar facet joint cyst.« less
Wang, David J; Lownie, Stephen P; Pelz, David; Pandey, Sachin
2016-10-01
Spinal synovial cysts are benign protrusions of facet joint capsules caused by degenerative spondylosis, most frequently involving the L4-5 level, and commonly lead to symptoms of back pain, radiculopathy and neurogenic claudication. Although percutaneous treatment via facet joint steroid injection with cyst rupture can provide significant symptom relief, cyst rupture is not always achievable via an indirect trans-facet approach due to limited access from severe degenerative changes. In this case, we describe a successful approach to direct cyst access using a laser-guided navigational software in a patient with severe facet joint osteophytosis. We provide a brief review of literature. © The Author(s) 2016.
Contact pressure in the facet joint during sagittal bending of the cadaveric cervical spine.
Jaumard, Nicolas V; Bauman, Joel A; Weisshaar, Christine L; Guarino, Benjamin B; Welch, William C; Winkelstein, Beth A
2011-07-01
The facet joint contributes to the normal biomechanical function of the spine by transmitting loads and limiting motions via articular contact. However, little is known about the contact pressure response for this joint. Such information can provide a quantitative measure of the facet joint's local environment. The objective of this study was to measure facet pressure during physiologic bending in the cervical spine, using a joint capsule-sparing technique. Flexion and extension bending moments were applied to six human cadaveric cervical spines. Global motions (C2-T1) were defined using infra-red cameras to track markers on each vertebra. Contact pressure in the C5-C6 facet was also measured using a tip-mounted pressure transducer inserted into the joint space through a hole in the postero-inferior region of the C5 lateral mass. Facet contact pressure increased by 67.6 ± 26.9 kPa under a 2.4 Nm extension moment and decreased by 10.3 ± 9.7 kPa under a 2.7 Nm flexion moment. The mean rotation of the overall cervical specimen motion segments was 9.6 ± 0.8° and was 1.6 ± 0.7° for the C5-C6 joint, respectively, for extension. The change in pressure during extension was linearly related to both the change in moment (51.4 ± 42.6 kPa/Nm) and the change in C5-C6 angle (18.0 ± 108.9 kPa/deg). Contact pressure in the inferior region of the cervical facet joint increases during extension as the articular surfaces come in contact, and decreases in flexion as the joint opens, similar to reports in the lumbar spine despite the difference in facet orientation in those spinal regions. Joint contact pressure is linearly related to both sagittal moment and spinal rotation. Cartilage degeneration and the presence of meniscoids may account for the variation in the pressure profiles measured during physiologic sagittal bending. This study shows that cervical facet contact pressure can be directly measured with minimal disruption to the joint and is the first to provide local pressure values for the cervical joint in a cadaveric model.
Ribeiro, Luiza Helena; Furtado, Rita Nely Vilar; Konai, Monique Sayuri; Andreo, Ana Beatriz; Rosenfeld, Andre; Natour, Jamil
2013-11-01
Randomized clinical trial. To compare the effectiveness of facet joint injection versus systemic steroid in patients with a diagnosis of facet joint syndrome. The term facet joint syndrome has been used to define back pain originating from the facet joints. Treatment is mainly conservative, although interventions, including intra-articular injections and medial branch nerve blocks are used to manage facet-mediated pain. Several studies have evaluated the effectiveness of these interventions. Results of facet joint injection, however, are conflicting. Sixty subjects with a diagnosis of facet joint syndrome were enrolled in the study. They were randomized into experimental and control groups. The experimental group was administered with intra-articular injection of 6 lumbar facet joints with triamcinolone hexacetonide; the control group was administered with triamcinolone acetonide intramuscular injection of 6 lumbar paravertebral points. Visits were taken at baseline and at 1, 4, 12, and 24 weeks after interventions. Outcome measures were used: pain visual analogue scale, pain visual analogue scale during extension of the spine, Likert scale, improvement percentage scale, Roland-Morris, 36-Item Short Form Health Survey, and accountability of medications taken.Homogeneity was tested using the Student t, Pearson χ, and Mann-Whitney tests. Analysis of variance was used to analyze differences in the groups over time and the Student t test to analyze differences between groups at each time evaluation. The groups were similar at baseline. Comparisons between the groups showed, in analysis of variance analysis, an improvement in the experimental group regarding diclofenac intake and quality of life, in the "role physical" profile, assessed by 36-Item Short Form Health Survey.In the analysis at each time point, an improvement in the experimental group was also found in the Roland-Morris questionnaire, in the improvement percentage scale and in the response to treatment, assessed by the Likert scale. Both treatments were effective, with a slight superiority of the intra-articular injection of steroids over intramuscular injection.
Uncovertebral joint injury in cervical facet dislocation: the headphones sign.
Palmieri, Francesco; Cassar-Pullicino, Victor N; Dell'Atti, Claudia; Lalam, Radhesh K; Tins, Bernhard J; Tyrrell, Prudencia N M; McCall, Iain W
2006-06-01
The purpose of our study is to demonstrate the uncovertebral mal-alignment as a reliable indirect sign of cervical facet joint dislocation. We examined the uncovertebral axial plane alignment of 12 patients with unilateral and bilateral cervical facet joint dislocation (UCFJD and BCFJD, respectively), comparing its frequency to the reverse hamburger bun sign on CT and MR axial images. Of the seven cases with BCFJD, five clearly demonstrated the diagnostic reverse facet joint hamburger bun sign on CT and MR images, but in two cases this sign was not detectable. In the five cases with UCFJD, four demonstrated the reverse hamburger bun sign on both CT and MRI. In one case the reverse hamburger bun sign was not seen adequately with either image modality, but the facet dislocation was identified on sagittal imaging. The uncovertebral mal-alignment was detected in all 12 cases. Normally, the two components of the uncovertebral joint enjoy a concentric relationship that in the axial plane is reminiscent of the relationship of headphones with the wearer's head. We name this appearance the 'headphones' sign. Radiologists should be aware of the headphones sign as a reliable indicator of facet joint dislocation on axial imaging used in the assessment of cervical spine injuries.
Kras, Jeffrey V.; Weisshaar, Christine L.; Pall, Parul S.; Winkelstein, Beth A.
2015-01-01
Non-physiological stretch of the cervical facet joint’s capsular ligament induces persistent behavioral hypersensitivity and spinal neuronal hyperexcitability via an intra-articular NGF-dependent mechanism. Although that ligament is innervated by nociceptors, it is unknown if a subpopulation is exclusively responsible for the behavioral and spinal neuronal responses to intra-articular NGF and/or facet joint injury. This study ablated joint afferents using the neurotoxin saporin targeted to neurons involved in either peptidergic ([Sar9,Met(O2)11]-substance P-saporin (SSP-Sap)) or non-peptidergic (isolectin B4-saporin (IB4-Sap)) signaling to investigate the contributions of those neuronal populations to facet-mediated pain. SSP-Sap, but not IB4-Sap, injected into the bilateral C6/C7 facet joints 14 days prior to an intra-articular NGF injection prevents NGF-induced mechanical and thermal hypersensitivity in the forepaws. Similarly, only SSP-Sap prevents the increase in mechanical forepaw stimulation-induced firing of spinal neurons after intra-articular NGF. In addition, intra-articular SSP-Sap prevents both behavioral hypersensitivity and upregulation of NGF in the dorsal root ganglion after a facet joint distraction that normally induces pain. These findings collectively suggest that disruption of peptidergic signaling within the joint may be a potential treatment for facet pain, as well as other painful joint conditions associated with elevated NGF, such as osteoarthritis. PMID:26240991
Kras, Jeffrey V; Weisshaar, Christine L; Pall, Parul S; Winkelstein, Beth A
2015-09-14
Non-physiological stretch of the cervical facet joint's capsular ligament induces persistent behavioral hypersensitivity and spinal neuronal hyperexcitability via an intra-articular NGF-dependent mechanism. Although that ligament is innervated by nociceptors, it is unknown if a subpopulation is exclusively responsible for the behavioral and spinal neuronal responses to intra-articular NGF and/or facet joint injury. This study ablated joint afferents using the neurotoxin saporin targeted to neurons involved in either peptidergic ([Sar(9),Met (O2)(11)]-substance P-saporin (SSP-Sap)) or non-peptidergic (isolectin B4-saporin (IB4-Sap)) signaling to investigate the contributions of those neuronal populations to facet-mediated pain. SSP-Sap, but not IB4-Sap, injected into the bilateral C6/C7 facet joints 14 days prior to an intra- articular NGF injection prevents NGF-induced mechanical and thermal hypersensitivity in the forepaws. Similarly, only SSP- Sap prevents the increase in mechanical forepaw stimulation- induced firing of spinal neurons after intra-articular NGF. In addition, intra-articular SSP-Sap prevents both behavioral hypersensitivity and upregulation of NGF in the dorsal root ganglion after a facet joint distraction that normally induces pain. These findings collectively suggest that disruption of peptidergic signaling within the joint may be a potential treatment for facet pain, as well as other painful joint conditions associated with elevated NGF, such as osteoarthritis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Moussa, Wael Mohamed Mohamed; Khedr, Wael
2016-11-01
Percutaneous radiofrequency denervation of the medial dorsal branch is often used in chronic low back pain of intervertebral facet etiology, which is sometimes difficult to perform and recurrence of pain often ensues. We theorized that shifting the target of RF coagulation to the facet joint capsule would provide an easier target and a longer-lived pain relieving response. A prospective randomized controlled trial where 120 patients diagnosed with CLBP of a confirmed facet origin were randomly divided into three equal groups, the first was submitted to percutaneous radiofrequency coagulation of the facet joint capsule, the second underwent percuataneous denervation of the medial dorsal branch and the third did not receive radiofrequency lesioning. All the three groups received local injection of a mixture of local anesthetic and steroid. Cases were followed for up to 3 years. 87(72.5%) patients were females. By 3 months' post procedure, improvement in VAS was significantly better than pretreatment levels in all groups (p<0.05). The control group lost improvement by 1-year follow-up (p=0.017). At 2 years' follow-up, the joint capsule denervation group maintained significant improvement (p=0.033) whereas the medial branch denervation group lost its significant effect (p=0.479). By the end of follow-up period, only joint capsule denervation group kept significant improvement (p=0.026). In CLBP of facet origin, shifting the target of percutaneous radiofrequency to the facet joint capsule provides an easier technique with an extended period of pain relief compared to the medial dorsal branch of the facet joint. Copyright © 2016 Elsevier B.V. All rights reserved.
Augmented Reality-Guided Lumbar Facet Joint Injections.
Agten, Christoph A; Dennler, Cyrill; Rosskopf, Andrea B; Jaberg, Laurenz; Pfirrmann, Christian W A; Farshad, Mazda
2018-05-08
The aim of this study was to assess feasibility and accuracy of augmented reality-guided lumbar facet joint injections. A spine phantom completely embedded in hardened opaque agar with 3 ring markers was built. A 3-dimensional model of the phantom was uploaded to an augmented reality headset (Microsoft HoloLens). Two radiologists independently performed 20 augmented reality-guided and 20 computed tomography (CT)-guided facet joint injections each: for each augmented reality-guided injection, the hologram was manually aligned with the phantom container using the ring markers. The radiologists targeted the virtual facet joint and tried to place the needle tip in the holographic joint space. Computed tomography was performed after each needle placement to document final needle tip position. Time needed from grabbing the needle to final needle placement was measured for each simulated injection. An independent radiologist rated images of all needle placements in a randomized order blinded to modality (augmented reality vs CT) and performer as perfect, acceptable, incorrect, or unsafe. Accuracy and time to place needles were compared between augmented reality-guided and CT-guided facet joint injections. In total, 39/40 (97.5%) of augmented reality-guided needle placements were either perfect or acceptable compared with 40/40 (100%) CT-guided needle placements (P = 0.5). One augmented reality-guided injection missed the facet joint space by 2 mm. No unsafe needle placements occurred. Time to final needle placement was substantially faster with augmented reality guidance (mean 14 ± 6 seconds vs 39 ± 15 seconds, P < 0.001 for both readers). Augmented reality-guided facet joint injections are feasible and accurate without potentially harmful needle placement in an experimental setting.
Bezci, Semih E; Eleswarapu, Ananth; Klineberg, Eric O; O'Connell, Grace D
2018-02-12
Stresses applied to the spinal column are distributed between the intervertebral disc and facet joints. Structural and compositional changes alter stress distributions within the disc and between the disc and facet joints. These changes influence the mechanical properties of the disc joint, including its stiffness, range of motion, and energy absorption under quasi-static and dynamic loads. There have been few studies evaluating the role of facet joints in torsion. Furthermore, the relationship between biochemical composition and torsion mechanics is not well understood. Therefore, the first objective of this study was to investigate the role of facet joints in torsion mechanics of healthy and degenerated human lumbar discs under a wide range of compressive preloads. To achieve this, each disc was tested under four different compressive preloads (300-1200 N) with and without facet joints. The second objective was to develop a quantitative structure-function relationship between tissue composition and torsion mechanics. Facet joints have a significant contribution to disc torsional stiffness (∼60%) and viscoelasticity, regardless of the magnitude of axial compression. The findings from this study demonstrate that annulus fibrosus GAG content plays an important role in disc torsion mechanics. A decrease in GAG content with degeneration reduced torsion mechanics by more than an order of magnitude, while collagen content did not significantly influence disc torsion mechanics. The biochemical-mechanical and compression-torsion relationships reported in this study allow for better comparison between studies that use discs of varying levels of degeneration or testing protocols and provide important design criteria for biological repair strategies. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Cervical facet force analysis after disc replacement versus fusion.
Patel, Vikas V; Wuthrich, Zachary R; McGilvray, Kirk C; Lafleur, Matthew C; Lindley, Emily M; Sun, Derrick; Puttlitz, Christian M
2017-05-01
Cervical total disc replacement was developed to preserve motion and reduce adjacent-level degeneration relative to fusion, yet concerns remain that total disc replacement will lead to altered facet joint loading and long-term facet joint arthrosis. This study is intended to evaluate changes in facet contact force, pressure and surface area at the treated and superior adjacent levels before and after discectomy, disc replacement, and fusion. Ten fresh-frozen human cadaveric cervical spines were potted from C2 to C7 with pressure sensors placed into the facet joints of C3-C4 and C4-C5 via slits in the facet capsules. Moments were applied to the specimens to produce axial rotation, lateral bending and extension. Facet contact force and pressure were measured at both levels for intact, discectomy at C4-C5, disc replacement with ProDisc-C (Synthes Spine, West Chester, Pennsylvania, USA) at C4-C5, and anterior discectomy and fusion with Cervical Spine Locking Plate (Synthes Spine, West Chester, Pennsylvania, USA) at C4-C5. Facet contact area was calculated from the force and pressure measurements. An analysis of variance was used to determine significant differences with P-values <0.05 indicating significance. Facet contact force was elevated at the treated level under extension following both discectomy and disc replacement, while facet contact pressure and area were relatively unchanged. Facet contact force and area were decreased at the treated level following fusion for all three loading conditions. Total disc replacement preserved facet contact force for all scenarios except extension at the treated level, highlighting the importance of the anterior disco-ligamentous complex. This could promote treated-level facet joint disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mars, Tom; Ellard, David R; Antrobus, James H L; Cairns, Melinda; Underwood, Martin; Haywood, Kirstie; Keohane, Susie; Sandhu, Harbinder; Griffiths, Frances
2015-01-01
Since the publication of guidelines by the UK National Institute for Health and Care Excellence (NICE) and the American Pain Society guidelines for low back pain in 2009 there have been deep divisions in the pain treatment community about the use of therapeutic intraarticular facet joint injections. While evidence for the effectiveness or not of intraarticular facet joint injections remains sparse, uncertainty will remain. The Warwick feasibility study, along with a concurrent study with a different design led by another group, aims to provide a stable platform from which the effectiveness and cost effectiveness of intraarticular facet joint injections added to normal care could be evaluated in randomized controlled trials (RCTs). To reach consensus on key design considerations for the Warwick facet feasibility study from which the study protocol and working manuals will be developed. A consensus conference involving expert professionals and lay members. Preliminary work identified 5 key design considerations for deliberation at our consensus conference. Three concerned patient assessment and treatment: diagnosis of possible facet joint pain, interaarticular facet joint injection technique, and best usual care. Two concerned trial analysis: a priori sub-groups and minimally important difference and are reported elsewhere. We did systematic evidence reviews of the design considerations and summarized the evidence. Our design questions and evidence summaries were distributed to all delegates. This formed the basis for discussions on the day. Clinical experts in all aspects of facet joint injection from across the UK along with lay people were invited via relevant organizations. Nominal group technique was used in 15 facilitated initial small group discussions. Further discussion and ranking was undertaken in plenary. All small group and plenary results were recorded and checked and verified post conference. Where necessary participants were contacted via email to resolve outstanding issues. Fifty-two delegates attended the conference with lay people and all relevant professions represented. Consensus was reached on the details of how to assess patients for facet joint pain, undertake the injections, and deliver usual care. Where post conference checking of results revealed errors in calculating ranking results on the day, consensus was reached by email consultation. All but 3 delegates agreed to be associated with the outcome. Allocating one day for discussing a wide range of topics imposed time pressure on discussion and calculation of the numerous rankings. Through the use of an evidence-based, systematic, inclusive, and transparent process we have established consensus from expert health professionals in the UK, with lay input, on the clinical assessment of suspected facet joint pain, interaarticular injection for facet joint pain, and best usual care for use in a feasibility study for a proposed pragmatic clinical trial of interaarticular facet joint injections. This provides a strong basis for a clinical trial that will be acceptable to the pain treatment community.
Manchikanti, Laxmaiah; Cash, Kimberly A; Pampati, Vidyasagar; Malla, Yogesh
2012-01-01
Background While chronic neck pain is a common problem in the adult population, with a typical 12-month prevalence of 30%–50%, there is a lack of consensus regarding its causes and treatment. Despite limited evidence, cervical epidural injections are one of the commonly performed nonsurgical interventions in the management of chronic neck pain. Methods A randomized, double-blind, active, controlled trial was conducted to evaluate the effectiveness of cervical interlaminar epidural injections of local anesthetic with or without steroids for the management of chronic neck pain with or without upper extremity pain in patients without disc herniation, radiculitis, or facet joint pain. Results One hundred and twenty patients without disc herniation or radiculitis and negative for facet joint pain by means of controlled diagnostic medial branch blocks were randomly assigned to one of two treatment groups, ie, injection of local anesthetic only (group 1) or local anesthetic mixed with nonparticulate betamethasone (group 2). The primary outcome of significant pain relief and improvement in functional status (≥50%) was demonstrated in 72% of group 1 and 68% of group 2. The overall average number of procedures per year was 3.6 in both groups with an average total relief per year of 37–39 weeks in the successful group over a period of 52 weeks. Conclusion Cervical interlaminar epidural injections of local anesthetic with or without steroids may be effective in patients with chronic function-limiting discogenic or axial pain. PMID:22826642
Lowe, Jason A; Routh, Lucas K; Leary, Jeffrey T; Buzhardt, Paul C
2016-01-01
Recent published data have suggested successful union of subtalar and tibiotalar joints without formal debridement during tibiotalocalcaneal (TTC) fusion procedures. Although previous studies have reported on the importance of the proper guidewire starting point and trajectory to obtain appropriate hindfoot alignment for successful fusion, to our knowledge, no studies have quantified the amount of articular damage to the subtalar joint with retrograde reaming. We hypothesized that reaming would destroy >50% of the posterior facet of the subtalar joint. The bilateral lower extremities of 5 cadavers were obtained and the subtalar joints exposed. Retrograde TTC nail guidewires were inserted, and a 12-mm reamer was passed through the subtalar and ankle joints. Pre- and postreaming images of the subtalar joint were obtained to compare the amount of joint destruction after reaming. We found an average of 5.89% articular destruction of the talar posterior facet and an average of 4.01% articular destruction of the posterior facet of the calcaneus. No damage to the middle facets of the subtalar joint was observed. TTC nailing is a successful procedure for ankle and subtalar joint fusion. Published studies have reported successful subtalar union using TTC nailing without formal open debridement of the subtalar joint, preserving the soft tissue envelope. TTC nail insertion using a 12-mm reamer will destroy 5.89% and 4.01% of the respective talar and calcaneal posterior facets of the subtalar joint. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Chambers, Hannah
2013-06-01
The aim of this study was to summarize the available evidence on lumbar facet joint injections and the physiotherapy treatments, land-based lower back mobility exercise, soft tissue massage and lumbar spinal mobilizations for chronic low back pain (CLBP). The plausibility of physiotherapy and lumbar facet joint injections as a combination treatment is discussed. Using a systematic process, an online electronic search was performed using key words utilizing all available databases and hand searching reference lists. Using a critical appraisal tool from the Critical Appraisal Skills Programme (CASP), the literature was screened to include primary research. The main aspects of the research were summarized. The evidence for lumbar facet joint injections suggests an overall short-term positive effect on CLBP. Land-based lower back mobility exercise and soft tissue massage appear to have a positive effect on CLBP in the short term and possibly in the longer term. There is insufficient evidence to draw conclusions for lumbar spinal mobilizations. The review indicates that lumbar facet joint injections create a short period when pain is reduced. Physiotherapy treatments including land-based lower back mobility exercise and soft tissue massage may be of benefit during this time to improve the longer-term outcomes of patients with CLBP. It is not possible to make generalizations or firm conclusions. The current review highlights the need for further research. A randomized controlled trial is recommended to assess the impact of physiotherapy in combination with lumbar facet joint injections on CLBP. Copyright © 2013 John Wiley & Sons, Ltd.
Williams, Richard; Cheung, Jason Pui Yin; Goss, Ben; Rajasekaran, Shanmuganathan; Kawaguchi, Yoshiharu; Acharya, Shankar; Kawakami, Mamoru; Satoh, Shigenobu; Chen, Wen-Jer; Park, Chun-Kun; Lee, Chong-Suh; Foocharoen, Thanit; Nagashima, Hideki; Kuh, Sunguk; Zheng, Zhaomin; Condor, Richard; Ito, Manabu; Iwasaki, Motoki; Jeong, Je Hoon; Luk, Keith D. K.; Prijambodo, Bambang; Rege, Amol; Jahng, Tae-Ahn; Luo, Zhuojing; Tassanawipas, Warat; Acharya, Narayana; Pokharel, Rohit; Shen, Yong; Ito, Takui; Zhang, Zhihai; Aithala P, Janardhana; Kumar, Gomatam Vijay; Jabir, Rahyussalim Ahmad; Basu, Saumyajit; Li, Baojun; Moudgil, Vishal; Sham, Phoebe; Samartzis, Dino
2015-01-01
Study Design A multinational, multiethnic, cross-sectional image-based study was performed in 33 institutions, representing 10 countries, which were part of the AOSpine Asia Pacific Research Collaboration Consortium. Objective Lumbar facet joint orientation has been reported to be associated with the development of degenerative spondylolisthesis (DS). The role of ethnicity regarding facet joint orientation remains uncertain. As such, the following study was performed across a wide-ranging population base to assess the role of ethnicity in facet joint orientation in patients with DS in the Asia Pacific region. Methods Lateral standing X-rays and axial magnetic resonance imaging scans were obtained for patients with lumbar DS. The DS parameters and facet joint angulations were assessed from L3–S1. Sex, age, body mass index (BMI), and ethnicity were also noted. Results The study included 371 patients with known ethnic origin (mean age: 62.0 years; 64% males, 36% females). The mean BMI was 25.6 kg/m2. The level of DS was most prevalent at L4–L5 (74.7%). There were 28.8% Indian, 28.6% Japanese, 18.1% Chinese, 8.6% Korean, 6.5% Thai, 4.9% Caucasian, 2.7% Filipino, and 1.9% Malay patients. Variations in facet joint angulations were noted from L3 to S1 and between patients with and without DS (p < 0.05). No differences were noted with regards to sex and overall BMI to facet joint angulations (p > 0.05); however, increasing age was found to increase the degree of angulation throughout the lumbar spine (p < 0.05). Accounting for age and the presence or absence of DS at each level, no statistically significant differences between ethnicity and degree of facet joint angulations from L3–L5 were noted (p > 0.05). Ethnic variations were noted in non-DS L5–S1 facet joint angulations, predominantly between Caucasian, Chinese, and Indian ethnicities (p < 0.05). Conclusions This study is the first to suggest that ethnicity may not play a role in facet joint orientation in the majority of cases of DS in the Asia-Pacific region. Findings from this study may facilitate future comparative studies in other multiethnic populations. An understanding of ethnic variability may assist in identifying those patients at risk of postsurgical development or progression of DS. This study also serves as a model for large-scale multicenter studies across different ethnic groups and cultural boundaries in Asia. PMID:26835200
Allami, Mostafa; Mousavi, Batool; Masoumi, Mehdi; Modirian, Ehsan; Shojaei, Hadi; Mirsalimi, Fatemeh; Hosseini, Maryam; Pirouzi, Pirouz
2016-01-01
Upper limb amputations are one of the unpleasant war injuries that armed forces are exposed to frequently. The present study aimed to assess the musculoskeletal and peripheral nervous systems in Iraq-Iran war veterans with bilateral upper extremity amputation. The study consisted of taking a history and clinical examinations including demographic data, presence and location of pain, level of amputation, passive and active ranges of movement of the joints across the upper and lower extremities and spine, manual palpation, neurological examination, blood circulation pulses and issues related to a prosthetic limb. In this study, 103 Iranian bilateral upper extremity amputees (206 amputations) from the Iran-Iraq war were evaluated, and a detailed questionnaire was also administered. The most common level of amputation was the finger or wrist level (108, 52.4 %). Based on clinical examination, we found high frequencies of limited active and passive joint range of movement across the scapula, shoulder, elbow, wrist and metacarpophalangeal, interphalangeal and thumb joints. Based on muscle strength testing, we found varying degrees of weakness across the upper limbs. Musculoskeletal disorders included epicondylitis (65, 31.6 %), rotator cuff injury (24, 11.7 %), bicipital tendonitis (69, 33.5 %), shoulder drop (42, 20.4 %) and muscle atrophy (19, 9.2 %). Peripheral nerve disorders included carpal tunnel syndrome in 13 (6.3 %) and unilateral brachial plexus injury in 1 (1 %). Fifty-three (51.5 %) were diagnosed with facet joint syndrome at the level of the cervical spine (the most frequent site). Using a prosthesis was reported by 65 (63.1 %), both left and right sides. The back was the most common site of pain (71.8 %). The high prevalence of neuro-musculoskeletal disorders among bilateral upper extremity amputees indicates that they need regular rehabilitation care.
Pan, Jianjiang; Lu, Xuan; Yang, Ge; Han, Yongmei; Tong, Xiang; Wang, Yue
2017-12-01
A sample of 512 Chinese was studied and we observed that greater disc degeneration on MRI was associated with greater spine DXA BMD. Yet, this association may be confounded by facet joint osteoarthritis. BMD may not be a risk factor for lumbar disc degeneration in Chinese. Evidence suggested that lumbar vertebral bone and intervertebral disc interact with each other in multiple ways. The current paper aims to determine the association between bone mineral density (BMD) and lumbar disc degeneration using a sample of Chinese. We studied 165 patients with back disorders and 347 general subjects from China. All subjects had lumbar spine magnetic resonance (MR) imaging and dual- energy X-ray absorptiometry (DXA) spine BMD studies, and a subset of general subjects had additional hip BMD measurements. On T2-weighted MR images, Pfirrmann score was used to evaluate the degree of lumbar disc degeneration and facet joint osteoarthritis was assessed as none, slight-moderate, and severe. Regression analyses were used to examine the associations between lumbar and hip BMD and disc degeneration, adjusting for age, gender, body mass index (BMI), lumbar region, and facet joint osteoarthritis. Greater facet joint osteoarthritis was associated with greater spine BMD (P < 0.01) in both patients and general subjects. For general subjects, greater spine BMD was associated with severe disc degeneration, controlling for age, gender, BMI, and lumbar region. When facet joint osteoarthritis entered the regression model, however, greater spine BMD was associated with greater facet joint osteoarthritis (P < 0.01) but not greater disc degeneration (P > 0.05). No statistical association was observed between spine BMD and lumbar disc degeneration in patients with back disorders (P > 0.05), and between hip BMD and disc degeneration in general subjects (P > 0.05). BMD may not be a risk factor for lumbar disc degeneration in Chinese. Facet joint osteoarthritis inflates DXA spine BMD measurements and therefore, may confound the association between spine BMD and disc degeneration.
Min, Woo-Kie; Seo, Il; Na, Sang-Bong; Choi, Young-Seo; Choi, Ji-Yeon
2017-01-01
This study aimed to present radiologic analysis of minimal safe distance (MSD) and optimal screw angle (OSA) that enables to fix screws in a lateral mass safely without facet joint violation in open-door laminoplasty using a plate. A retrospective analysis was made of 22 patients (male: 17; female: 5), average age 62 years. Seventy-nine lateral mass screws were fixed among a total of 158 screws. MSD that doesn't allow 5-mm screws to violate a facet joint was measured for C3-C7 and a comparative analysis was performed. If the MSD is not secured, the OSA to be given to the cephalad direction is calculated to avoid violation of the facet joint. The screws violating inferior facet joints accounted for 34.1% of the screws fixed in inferior lateral mass. Joint surface to distal mini-screw distances were 3.18 ± 1.46 mm and 4.75 ± 1.71 mm in groups of facet joint violation and non-facet violation (FV), respectively ( p = 0.001). When 5-mm screws were inserted into a lateral mass, MSD was 4.39 ± 0.83 mm. The average MSD of C3, C4, and C5 was 4.05 ± 0.78 mm, 4.10 ± 0.70 mm, and 4.26 ± 0.74 mm, respectively. There was no significant differences among levels ( p > 0.05). The average MSD of C6 and C7 was 4.92 ± 0.81 mm and 4.80 ± 0.96 mm, respectively, showing significant differences from those of C3, C4, and C5 ( p < 0.05). If 6 mm of the MSD isn't secured, OSA showed in the cephalad direction of 11.5° for 5 mm and 22° for 4 mm approximately. We suggest that mini-screw on lateral mass can be fixed safely without FV, if they are fixed at MSD of 6 mm from a joint surface. Facet joint violation doesn't occur if an OSA is given in the cephalad direction in case of not enough MSD for mini-screws.
The Relationship Between Osteoarthritis of the Lumbar Facet Joints and Lumbosacropelvic Morphology.
Sahin, Mehmet Sukru; Ergün, Adviye; Aslan, Akın
2015-10-01
Cross-sectional study. To investigate the relation between lumbosacropelvic morphology and the presence and degree of facet joint degeneration. Osteoarthritis of the facet joints is one of the most common degenerative changes in the spine. It is considered to be formed secondary to repetitive stress or trauma and spinal deformity with secondary overload. The cause(s) of facet joints osteoarthritis, however, have not been clearly identified. Abdominal computed tomography (CT) images of 723 patients which were taken between the years 2010 and 2014 were evaluated retrospectively. Patients with prior lumbar spinal surgery, serious congenital anomalies on CT, incomplete or complete lumbosacral transition, severe scoliosis, were excluded from the study. To eliminate the age- and sex-related differences in spinopelvic morphology, a study group was formed of the remaining subjects by including patients from a specific age group (30-35 yr) and same sex (females). For each patient the presence and grade of facet joint degeneration was investigated. In addition, pelvic incidence (PI), sacral slope and the angles of L1-L5 lumbar lordosis, sacral table, L5 vertebra posterior, and sacral kyphosis were measured for each patient. Sacral slope, sacral kyphosis, and L1-L5 lumbar lordosis angle were significantly higher in patients with osteoarthritic compared with normal subjects (P = 0.015, P = 0.018, P = 0.016). L5 vertebra posterior and sacral table angle were found to be significantly lower in patients with osteoarthritic than in normal subjects (P = 0.019, P = 0.007). The degree of facet joint degeneration was noticed to increase parallel to the decrease in the sacral table angle and L5 vertebra posterior angle, and to the increase in the L1-L5 lumbar lordosis, PI, and sacral slope. A close relation exists between the presence and degree of degeneration in the facet joint and lumbosacral pelvic morphology. Prevalence and degree of the degeneration in facet joint increases as the angle of sacral slope, L1-L5 lumbar lordosis, and PI increases or the angle of sacral table and L5 vertebra posterior decreases. 4.
Wu, Jiuping; Du, Zhenwu; Lv, Yang; Zhang, Jun; Xiong, Wei; Wang, Ruiqiang; Liu, Rui; Zhang, Guizhen; Liu, Qinyi
2016-01-01
Lumbar facet joint syndrome is currently suggested to be a main source of axial low back pain, and a large portion of axial low back pain is caused by disorders in lumbar facet joints. Intra-articular injection is one of the most common treatment methods in the early clinical application. Therefore, we attempt to seek a new injectable material, autologous platelet rich plasma (PRP), to treat lumbar facet syndrome, as well as to assess its therapeutic effectiveness and safety. A prospective clinic evaluation. The outpatient clinic of a single academic medical center. Total 19 patients with lumbar facet joint syndrome (8 men, 11 women; mean ages: 52.53 ± 6.79 years, range: 38 - 62 years) were enrolled to receive lumbar facet joint injection with autologous PRP under x-ray fluoroscopic control. Patients were followed up immediately, at one week, one month, 2 months, and 3 months following treatment, and the elements of this analysis included low back pain visual analogue scale (VAS) at rest and during flexion, Roland-Morris Disability Questionnaire (RMQ), Oswestry Disability Index (ODI), and modified MacNab criteria for the pain relief. All the 19 patients completed the intra-articular injections with autologous PRP successfully. At one week after treatment, low back pain reduced significantly compared with prior to treatment both at rest and during flexion. The outcomes were assessed as "good" or "excellent" for 9 patients (47.37%) immediately after treatment, 14 patients (73.68%) at one week, 15 patients (78.95%) at one month, 15 patients (78.95%) at 2 months, and 15 patients (78.95%) at 3 months. Statistically significant differences were observed based on RMQ and a more than 10% improvement in lumbar functional capacity was observed based on ODI between pre-treatment and post-treatment. In addition, there were no severe relevant complications during the whole process of injection and follow-up period. A control group and the curative effect observations with longer follow-up may lead to a more convincing result for our study. In the short-term period of 3 months, the new technique of lumbar facet joint injection with autologous PRP is effective and safe for patients with lumbar facet joint syndrome. Key words: Low back pain, lumbar facet joint syndrome, autologous platelet rich plasma, intra-articular injection.
Iizuka, Haku; Iizuka, Yoichi; Okamura, Koichi; Yonemoto, Yukio; Mieda, Tokue; Takagishi, Kenji
2017-09-01
The purpose of this study was to clarify the characteristics of bony ankylosis of the facet joint of the cervical spine in rheumatoid arthritis (RA) patients who required cervical spine surgery, and its relationship to the clinical findings. Eighty consecutive RA patients with cervical spine disorder who received initial surgery were reviewed. The occurrence of bony ankylosis of the facet joint of the cervical spine was investigated using computed tomography (CT) before surgery. We also evaluated the severity of neurological symptoms and the plain wrist radiographs taken before surgery; furthermore, we evaluated each patient's medical history for total knee arthroplasty (TKA) or hip arthroplasty (THA). The preoperative CT imaging demonstrated bony ankylosis of the facet joint of the cervical spine in 45 facet levels of 19 cases (BA + group). In all patients, responsible instability or stenosis was demonstrated just caudal or on the cranial side of those bony ankylosis. Before surgery, the BA + group included significantly more patients showing severe cervical myelopathy (p < 0.05), and significantly more cases showing progressed ankylosis in the wrist joint bilaterally (p < 0.01). There were also significantly more patients who received two or more TKA or THA before the cervical spine surgery in the BA + group (p < 0.01). Bony ankylosis of the facet joint of the cervical spine may be a risk factor of instability or stenosis at the adjacent disc level and severe cervical myelopathy. Furthermore, its ankylosis was demonstrated in RA patients with severe destroyed joints.
Management of lumbar zygapophysial (facet) joint pain
Manchikanti, Laxmaiah; Hirsch, Joshua A; Falco, Frank JE; Boswell, Mark V
2016-01-01
AIM: To investigate the diagnostic validity and therapeutic value of lumbar facet joint interventions in managing chronic low back pain. METHODS: The review process applied systematic evidence-based assessment methodology of controlled trials of diagnostic validity and randomized controlled trials of therapeutic efficacy. Inclusion criteria encompassed all facet joint interventions performed in a controlled fashion. The pain relief of greater than 50% was the outcome measure for diagnostic accuracy assessment of the controlled studies with ability to perform previously painful movements, whereas, for randomized controlled therapeutic efficacy studies, the primary outcome was significant pain relief and the secondary outcome was a positive change in functional status. For the inclusion of the diagnostic controlled studies, all studies must have utilized either placebo controlled facet joint blocks or comparative local anesthetic blocks. In assessing therapeutic interventions, short-term and long-term reliefs were defined as either up to 6 mo or greater than 6 mo of relief. The literature search was extensive utilizing various types of electronic search media including PubMed from 1966 onwards, Cochrane library, National Guideline Clearinghouse, clinicaltrials.gov, along with other sources including previous systematic reviews, non-indexed journals, and abstracts until March 2015. Each manuscript included in the assessment was assessed for methodologic quality or risk of bias assessment utilizing the Quality Appraisal of Reliability Studies checklist for diagnostic interventions, and Cochrane review criteria and the Interventional Pain Management Techniques - Quality Appraisal of Reliability and Risk of Bias Assessment tool for therapeutic interventions. Evidence based on the review of the systematic assessment of controlled studies was graded utilizing a modified schema of qualitative evidence with best evidence synthesis, variable from level I to level V. RESULTS: Across all databases, 16 high quality diagnostic accuracy studies were identified. In addition, multiple studies assessed the influence of multiple factors on diagnostic validity. In contrast to diagnostic validity studies, therapeutic efficacy trials were limited to a total of 14 randomized controlled trials, assessing the efficacy of intraarticular injections, facet or zygapophysial joint nerve blocks, and radiofrequency neurotomy of the innervation of the facet joints. The evidence for the diagnostic validity of lumbar facet joint nerve blocks with at least 75% pain relief with ability to perform previously painful movements was level I, based on a range of level I to V derived from a best evidence synthesis. For therapeutic interventions, the evidence was variable from level II to III, with level II evidence for lumbar facet joint nerve blocks and radiofrequency neurotomy for long-term improvement (greater than 6 mo), and level III evidence for lumbosacral zygapophysial joint injections for short-term improvement only. CONCLUSION: This review provides significant evidence for the diagnostic validity of facet joint nerve blocks, and moderate evidence for therapeutic radiofrequency neurotomy and therapeutic facet joint nerve blocks in managing chronic low back pain. PMID:27190760
Khurelbaatar, Tsolmonbaatar; Kim, Kyungsoo; Hyuk Kim, Yoon
2015-11-01
Computational musculoskeletal models have been developed to predict mechanical joint loads on the human spine, such as the forces and moments applied to vertebral and facet joints and the forces that act on ligaments and muscles because of difficulties in the direct measurement of joint loads. However, many whole-spine models lack certain elements. For example, the detailed facet joints in the cervical region or the whole spine region may not be implemented. In this study, a detailed cervico-thoraco-lumbar multibody musculoskeletal model with all major ligaments, separated structures of facet contact and intervertebral disk joints, and the rib cage was developed. The model was validated by comparing the intersegmental rotations, ligament tensile forces, facet joint contact forces, compressive and shear forces on disks, and muscle forces were to those reported in previous experimental and computational studies both by region (cervical, thoracic, or lumbar regions) and for the whole model. The comparisons demonstrated that our whole spine model is consistent with in vitro and in vivo experimental studies and with computational studies. The model developed in this study can be used in further studies to better understand spine structures and injury mechanisms of spinal disorders.
Radiological and Radionuclide Imaging of Degenerative Disease of the Facet Joints
Shur, Natalie; Corrigan, Alexis; Agrawal, Kanhaiyalal; Desai, Amidevi; Gnanasegaran, Gopinath
2015-01-01
The facet joint has been increasingly implicated as a potential source of lower back pain. Diagnosis can be challenging as there is not a direct correlation between facet joint disease and clinical or radiological features. The purpose of this article is to review the diagnosis, treatment, and current imaging modality options in the context of degenerative facet joint disease. We describe each modality in turn with a pictorial review using current evidence. Newer hybrid imaging techniques such as single photon emission computed tomography/computed tomography (SPECT/CT) provide additional information relative to the historic gold standard magnetic resonance imaging. The diagnostic benefits of SPECT/CT include precise localization and characterization of spinal lesions and improved diagnosis for lower back pain. It may have a role in selecting patients for local therapeutic injections, as well as guiding their location with increased precision. PMID:26170560
Three-dimensional evaluation of the facet joints
NASA Astrophysics Data System (ADS)
Folio, Les R.
1990-04-01
Computerized tomography and magnetic resonance imaging nave revolurionalized analysis of vertebral anatomy and pathology. Further advances with 3-dimensional imaging have recently become an important adjunct for diagnosis and treatment in structural abnormalities. Facets are intimately related to their surrounding musculature and malalignment may cause pain directly or indirectly. High resolution 3-dimensional reformations of CT Scans give us new insight on structure and function of facet joints, since their motion and architecture are ever complex. It is well documented in the literature that facet joint biomecnanics is a partial contributor to the myriad at causes of low back The term "facet Joint syndrome" was coined in 1933 by GhorMley.3 The osteopathic lesion complex is well defined by LeRoy and McCole and comparison of roentgenographic findings before and after manipulation has teen described by Long and Lioyd.4,5 since alterations in facet biamechanics are an important aspect of osteopathic manipulative therapy (OT), 3-dimensional hign resolution imaging will prove to be a great asset in osteopathic research. Rotating the spine allows for different viewing perspectives to provide optimal and consistent measurements of the facet joint. Rotations are performed on the X, Y and 7, axis and measurements pre and post-manipulation are performed and compared on matching axis and perspectives. Rotation about the X, Y and Z axis help appreciate the 3-dimensionality of the vertebral column to project to the viewer a feeling that the spine is floating in space before them. This does give the viewer a 3-D understanding of the object however, only at a perspective at a Lime.
Ebraheim, Nabil A; Liu, Jiayong; Ramineni, Satheesh K; Liu, Xiaochen; Xie, Joe; Hartman, Ryan G; Goel, Vijay K
2009-11-01
Many investigators have conducted studies to determine the biomechanics, causes, complications and treatment of unilateral facet joint dislocation in the cervical spine. However, there is no quantitative data available on morphological changes in the intervertebral foramen of the cervical spine following unilateral facet joint dislocation. These data are important to understand the cause of neurological compromise following unilateral facet joint dislocation. Eight embalmed human cadaver cervical spine specimens ranging from level C1-T1 were used. The nerve roots of these specimens at C5-C6 level were marked by wrapping a 0.12mm diameter wire around them. Unilateral facet dislocation at C5-C6 level was simulated by serially sectioning the corresponding ligamentous structures. A CT scan of the specimens was obtained before and after the dislocation was simulated. A sagittal plane through the centre of the pedicle and facet joint was constructed and used for measurement. The height and area of the intervertebral foramen, the facet joint space, nerve root diameter and area, and vertebral alignment both before and after dislocation were evaluated. The intervertebral foramen area changed from 50.72+/-0.88mm(2) to 67.82+/-4.77mm(2) on the non-dislocated side and from 41.39+/-1.11mm(2) to 113.77+/-5.65mm(2) on the dislocated side. The foraminal heights changed from 9.02+/-0.30mm to 10.52+/-0.50mm on the non-dislocated side and 10.43+/-0.50mm to 17.04+/-0.96mm on the dislocated side. The facet space area in the sagittal plane changed from 6.80+/-0.80mm(2) to 40.02+/-1.40mm(2) on the non-dislocated side. The C-5 anterior displacement showed a great change from 0mm to 5.40+/-0.24mm on the non-dislocated side and from 0mm to 3.42+/-0.20mm on the dislocated side. Neither of the nerve roots on either side showed a significant change in size. The lack of change in nerve root area indicates that the associated nerve injury with unilateral facet joint dislocation is probably due to distraction rather than due to direct nerve root compression.
Kim, Ho-Joong; Jung, Whan-Ik; Chang, Bong-Soon; Lee, Choon-Ki; Kang, Kyoung-Tak; Yeom, Jin S
2017-09-01
The purpose of this study was to compare the accuracy and safety of an instrumented posterior lumbar interbody fusion (PLIF) using a robot-assisted minimally invasive (Robot-PLIF) or a conventional open approach (Freehand-PLIF). Patients undergoing an instrumented PLIF were randomly assigned to be treated using a Robot-PLIF (37 patients) and a Freehand-PLIF (41 patients). For intrapedicular accuracy, there was no significant difference between the groups (P = 0.534). For proximal facet joint accuracy, none of the 74 screws in the Robot-PLIF group violated the proximal facet joint, while 13 of 82 in the Freehand-PLIF group violated the proximal facet joint (P < 0.001). The average distance of the screws from the facets was 5.2 ± 2.1 mm and 2.7 ± 1.6 mm in the Robot-PLIF and Freehand-PLIF groups, respectively (P < 0.001). Robotic-assisted pedicle screw placement was associated with fewer proximal facet joint violations and better convergence orientations. Copyright © 2016 John Wiley & Sons, Ltd.
Lumbar Facet Joint Motion in Patients with Degenerative Disc Disease at Affected and Adjacent Levels
Li, Weishi; Wang, Shaobai; Xia, Qun; Passias, Peter; Kozanek, Michal; Wood, Kirkham; Li, Guoan
2013-01-01
Study Design Controlled laboratory study. Objective To evaluate the effect of lumbar degenerative disc diseases (DDDs) on motion of the facet joints during functional weight-bearing activities. Summary of Background Data It has been suggested that DDD adversely affects the biomechanical behavior of the facet joints. Altered facet joint motion, in turn, has been thought to associate with various types of lumbar spine pathology including facet degeneration, neural impingement, and DDD progression. However, to date, no data have been reported on the motion patterns of the lumbar facet joint in DDD patients. Methods Ten symptomatic patients of DDD at L4–S1 were studied. Each participant underwent magnetic resonance images to obtain three-dimensional models of the lumbar vertebrae (L2–S1) and dual fluoroscopic imaging during three characteristic trunk motions: left-right torsion, left-right bending, and flexion-extension. In vivo positions of the vertebrae were reproduced by matching the three-dimensional models of the vertebrae to their outlines on the fluoroscopic images. The kinematics of the facet joints and the ranges of motion (ROMs) were compared with a group of healthy participants reported in a previous study. Results In facet joints of the DDD patients, there was no predominant axis of rotation and no difference in ROMs was found between the different levels. During left-right torsion, the ROMs were similar between the DDD patients and the healthy participants. During left-right bending, the rotation around mediolateral axis at L4–L5, in the DDD patients, was significantly larger than that of the healthy participants. During flexion-extension, the rotations around anterioposterior axis at L4–L5 and around craniocaudal axis at the adjacent level (L3–L4), in the DDD patients, were also significantly larger, whereas the rotation around mediolateral axis at both L2–L3 and L3–L4 levels in the DDD patients were significantly smaller than those of the healthy participants. Conclusion DDD alters the ROMs of the facet joints. The rotations can increase significantly not only at the DDD levels but also at their adjacent levels when compared to those of the healthy participants. The increase in rotations did not occur around the primary rotation axis of the torso motion but around the coupled axes. This hypermobility in coupled rotations might imply a biomechanical mechanism related to DDD. PMID:21270686
Walraevens, Joris; Liu, Baoge; Meersschaert, Joke; Demaerel, Philippe; Delye, Hans; Depreitere, Bart; Vander Sloten, Jos; Goffin, Jan
2009-03-01
Degeneration of intervertebral discs and facet joints is one of the most frequently encountered spinal disorders. In order to describe and quantify degeneration and evaluate a possible relationship between degeneration and biomechanical parameters, e.g., the intervertebral range of motion and intradiscal pressure, a scoring system for degeneration is mandatory. However, few scoring systems for the assessment of degeneration of the cervical spine exist. Therefore, two separate objective scoring systems to qualitatively and quantitatively assess the degree of cervical intervertebral disc and facet joint degeneration were developed and validated. The scoring system for cervical disc degeneration consists of three variables which are individually scored on neutral lateral radiographs: "height loss" (0-4 points), "anterior osteophytes" (0-3 points) and "endplate sclerosis" (0-2 points). The scoring system for facet joint degeneration consists of four variables which are individually scored on neutral computed tomography scans: "hypertrophy" (0-2 points), "osteophytes" (0-1 point), "irregularity" on the articular surface (0-1 point) and "joint space narrowing" (0-1 point). Each variable contributes with varying importance to the overall degeneration score (max 9 points for the scoring system of cervical disc degeneration and max 5 points for facet joint degeneration). Degeneration of 20 discs and facet joints of 20 patients was blindly assessed by four raters: two neurosurgeons (one senior and one junior) and two radiologists (one senior and one junior), firstly based on first subjective impression and secondly using the scoring systems. Measurement errors and inter- and intra-rater agreement were determined. The measurement error of the scoring system for cervical disc degeneration was 11.1 versus 17.9% of the subjective impression results. This scoring system showed excellent intra-rater agreement (ICC = 0.86, 0.75-0.93) and excellent inter-rater agreement (ICC = 0.78, 0.64-0.88). Surgeons as well as radiologists and seniors as well as juniors obtained excellent inter- and intra-rater agreement. The measurement error of the scoring system for cervical facet joint degeneration was 20.1 versus 24.2% of the subjective impression results. This scoring system showed good intra-rater agreement (ICC = 0.71, 0.42-0.89) and fair inter-rater agreement (ICC = 0.49, 0.26-0.74). Both scoring systems fulfilled the criteria for recommendation proposed by Kettler and Wilke. Our scoring systems can be reliable and objective tools for assessing cervical disc and facet joint degeneration. Moreover, the scoring system of cervical disc degeneration was shown to be experience- and discipline-independent.
The lumbar facet arthrosis syndrome. Clinical presentation and articular surface changes.
Eisenstein, S M; Parry, C R
1987-01-01
We describe a lumbar facet syndrome in which disabling symptoms are associated with normal or near-normal plain radiographs. Local spinal fusion relieved symptoms in 12 patients; the excised facet joint surfaces showed some of the histological changes seen in chondromalacia patellae and in osteoarthritis of other large joints. The most frequent change was focal full-thickness cartilage necrosis or loss of cartilage with exposure of subchondral bone, but osteophyte formation was remarkably absent in all specimens. We suggest that there are both clinical and histological similarities between the facet arthrosis syndrome and chondromalacia patellae. Facet arthrosis may be a relatively important cause of intractable back pain in young and middle-aged adults.
Chakraverty, Robin; Dias, Richard
2004-12-01
The work of a chronic back pain service in secondary care in the West Midlands is reported. The service offers acupuncture, spinal injection procedures, osteopathy and a range of other interventions for patients whose back pain has not responded to conservative management. This section of the report focuses on injection procedures for lumbar facet joint and sacroiliac joint pain, which have been shown to be the cause of chronic low back pain in 16-40% and 13-19% of patients respectively. Diagnosis relies on the use of intra-articular or sensory nerve block injections with local anaesthetic. Possible treatments following diagnosis include intra-articular corticosteroid, radiofrequency denervation (for facet joint pain) or ligament prolotherapy injections (for sacroiliac joint pain). The results of several hospital audits are reported. At six month follow up, 50% of 38 patients undergoing radiofrequency denervation following diagnostic blocks for facet joint pain had improved by more than 50%, compared to 29% of 34 patients treated with intra-articular corticosteroid injection. Sixty three per cent of 19 patients undergoing prolotherapy following diagnostic block injection for sacroiliac joint pain had improved at six months, compared to 33% of 33 who had intra-articular corticosteroid. Both radiofrequency denervation and sacroiliac prolotherapy showed good long-term outcomes at one year.
Palea, Ovidiu; Andar, Haroon M; Lugo, Ramon; Granville, Michelle; Jacobson, Robert E
2018-03-14
Radiofrequency cervical rhizotomy has been shown to be effective for the relief of chronic neck pain, whether it be due to soft tissue injury, cervical spondylosis, or post-cervical spine surgery. The target and technique have traditionally been taught using an oblique approach to the anterior lateral capsule of the cervical facet joint. The goal is to position the electrode at the proximal location of the recurrent branch after it leaves the exiting nerve root and loops back to the cervical facet joint. The standard oblique approach to the recurrent nerve requires the testing of both motor and sensory components to verify the correct position and ensure safety so as to not damage the slightly more anterior nerve root. Bilateral lesions require the repositioning of the patient's neck. Poorly positioned electrodes can also pass anteriorly and contact the nerve root or vertebral artery. The direct posterior approach presented allows electrode positioning over a broader expanse of the facet joint without risk to the nerve root or vertebral artery. Over a four-year period, direct posterior radiofrequency ablation was performed under fluoroscopic guidance at multiple levels without neuro-stimulation testing with zero procedural neurologic events even as high as the C2 spinal segment. The direct posterior approach allows either unipolar or bipolar lesioning at multiple levels. Making a radiofrequency lesion along the larger posterior area of the facet capsule is as effective as the traditional target point closer to the nerve root but technically easier, allowing bilateral access and safety. The article will review the anatomy and innervation of the cervical facet joint and capsule, showing the diffuse nerve supply extending into the capsule of the facet joint that is more extensive than the recurrent medial sensory branches that have been the focus of radiofrequency lesioning.
Palea, Ovidiu; Andar, Haroon M; Lugo, Ramon; Jacobson, Robert E
2018-01-01
Radiofrequency cervical rhizotomy has been shown to be effective for the relief of chronic neck pain, whether it be due to soft tissue injury, cervical spondylosis, or post-cervical spine surgery. The target and technique have traditionally been taught using an oblique approach to the anterior lateral capsule of the cervical facet joint. The goal is to position the electrode at the proximal location of the recurrent branch after it leaves the exiting nerve root and loops back to the cervical facet joint. The standard oblique approach to the recurrent nerve requires the testing of both motor and sensory components to verify the correct position and ensure safety so as to not damage the slightly more anterior nerve root. Bilateral lesions require the repositioning of the patient's neck. Poorly positioned electrodes can also pass anteriorly and contact the nerve root or vertebral artery. The direct posterior approach presented allows electrode positioning over a broader expanse of the facet joint without risk to the nerve root or vertebral artery. Over a four-year period, direct posterior radiofrequency ablation was performed under fluoroscopic guidance at multiple levels without neuro-stimulation testing with zero procedural neurologic events even as high as the C2 spinal segment. The direct posterior approach allows either unipolar or bipolar lesioning at multiple levels. Making a radiofrequency lesion along the larger posterior area of the facet capsule is as effective as the traditional target point closer to the nerve root but technically easier, allowing bilateral access and safety. The article will review the anatomy and innervation of the cervical facet joint and capsule, showing the diffuse nerve supply extending into the capsule of the facet joint that is more extensive than the recurrent medial sensory branches that have been the focus of radiofrequency lesioning. PMID:29765790
Prasad, Prashant Kumar; Salunke, Pravin; Sahni, Daisy; Kalra, Parveen
2017-01-01
Purpose: The existing literature on lateral atlantoaxial joints is predominantly on bony facets and is unable to explain various C1-2 motions observed. Geometric morphometry of facets would help us in understanding the role of cartilages in C1-2 biomechanics/kinematics. Objective: Anthropometric measurements (bone and cartilage) of the atlantoaxial joint and to assess the role of cartilages in joint biomechanics. Materials and Methods: The authors studied 10 cadaveric atlantoaxial lateral joints with the articular cartilage in situ and after removing it, using three-dimensional laser scanner. The data were compared using geometric morphometry with emphasis on surface contours of articulating surfaces. Results: The bony inferior articular facet of atlas is concave in both sagittal and coronal plane. The bony superior articular facet of axis is convex in sagittal plane and is concave (laterally) and convex medially in the coronal plane. The bony articulating surfaces were nonconcordant. The articular cartilages of both C1 and C2 are biconvex in both planes and are thicker than the concavities of bony articulating surfaces. Conclusion: The biconvex structure of cartilage converts the surface morphology of C1-C2 bony facets from concave on concavo-convex to convex on convex. This reduces the contact point making the six degrees of freedom of motion possible and also makes the joint gyroscopic. PMID:29403249
Kalichman, Leonid; Klindukhov, Alexander; Li, Ling; Linov, Lina
2016-11-01
A reliability and cross-sectional observational study. To introduce a scoring system for visible fat infiltration in paraspinal muscles; to evaluate intertester and intratester reliability of this system and its relationship with indices of muscle density; to evaluate the association between indices of paraspinal muscle degeneration and facet joint osteoarthritis. Current evidence suggests that the paraspinal muscles degeneration is associated with low back pain, facet joint osteoarthritis, spondylolisthesis, and degenerative disc disease. However, the evaluation of paraspinal muscles on computed tomography is not radiological routine, probably because of absence of simple and reliable indices of paraspinal degeneration. One hundred fifty consecutive computed tomography scans of the lower back (N=75) or abdomen (N=75) were evaluated. Mean radiographic density (in Hounsfield units) and SD of the density of multifidus and erector spinae were evaluated at the L4-L5 spinal level. A new index of muscle degeneration, radiographic density ratio=muscle density/SD of density, was calculated. To evaluate the visible fat infiltration in paraspinal muscles, we proposed a 3-graded scoring system. The prevalence of facet joint osteoarthritis was also evaluated. Intraclass correlation and κ statistics were used to evaluate inter-rater and intra-rater reliability. Logistic regression examined the association between paraspinal muscle indices and facet joint osteoarthritis. Intra-rater reliability for fat infiltration score (κ) ranged between 0.87 and 0.92; inter-rater reliability between 0.70 and 0.81. Intra-rater reliability (intraclass correlation) for mean density of paraspinal muscles ranged between 0.96 and 0.99, inter-rater reliability between 0.95 and 0.99; SD intra-rater reliability ranged between 0.82 and 0.91, inter-rater reliability between 0.80 and 0.89. Significant associations (P<0.01) were found between facet joint osteoarthritis, fat infiltration score, and radiographic density ratio. Two suggested indices of paraspinal muscle degeneration showed excellent reliability and were significantly associated with facet joint osteoarthritis. Additional studies are needed to evaluate the associations with other spinal degeneration features and low back pain.
Zhou, Yu; Zhou, Zhenyu; Liu, Lifeng; Cao, Xuecheng
2018-03-21
Skeletal and soft tissue damage are often associated with unilateral facet dislocations, which undoubtedly lead to instability of the spine and further increase difficulties in cervical reduction. This type of irreducible facet dislocation is usually accompanied with potential catastrophic consequences including neurological deficit and severe disability. Therefore, a consistent and evidence-based treatment plan is imperative. The literature regarding the management of traumatic unilateral locked cervical facet dislocations was reviewed. Two patient cases (a 30-year-old Asian man and a 25-year-old Asian woman) who suffered irreducible cervical facet dislocations were presented. These two patients received surgical treatments including posterior reduction by poking facet joints, adjacent spinous process fixation by wire rope banding, anterior plate fixation, and intervertebral fusion after the failure of skull traction and closed reduction. At the postoperative 24-month follow-up, intervertebral fusion was achieved and our patients' neurological status improved based on the American Spinal Injury Association scale, compared with their preoperative status. Unilateral facet joint dislocations of subaxial cervical spine are difficult to reduce when complicated with posterior facet fractures or ligamentous injury. Magnetic resonance imaging can be beneficial for identifying ventral and dorsal compressive lesions, as well as ligamentous or capsule rupture. The combination of posterior reduction and anterior fixation with fusion has advantages in terms of clinical safety, ease of operation, and less iatrogenic damage.
Manchikanti, Laxmaiah; Malla, Yogesh; Wargo, Bradley W; Cash, Kimberly A; Pampati, Vidyasagar; Fellows, Bert
2012-01-01
Chronic spinal pain is common along with numerous modalities of diagnostic and therapeutic interventions utilized, creating a health care crisis. Facet joint injections and epidural injections are the 2 most commonly utilized interventions in managing chronic spinal pain. While the literature addressing the effectiveness of facet joint nerve blocks is variable and emerging, there is paucity of literature on adverse effects of facet joint nerve blocks. A prospective, non-randomized study of patients undergoing interventional techniques from May 2008 to December 2009. A private interventional pain management practice, a specialty referral center in the United States. Investigation of the incidence in characteristics of adverse effects and complications of facet joint nerve blocks. The study was carried out over a period of 20 months including almost 7,500 episodes of 43,000 facet joint nerve blocks with 3,370 episodes in the cervical region, 3,162 in the lumbar region, and 950 in the thoracic region. All facet joint nerve blocks were performed under fluoroscopic guidance in an ambulatory surgery center by 3 physicians. The complications encountered during the procedure and postoperatively were evaluated prospectively. This study was carried out over a period of 20 months and included over 7,500 episodes or 43,000 facet joint nerve blocks. All of the interventions were performed under fluoroscopic guidance in an ambulatory surgery center by one of 3 physicians. The complications encountered during the procedure and postoperatively were prospectively evaluated. Measurable outcomes employed were intravascular entry of the needle, profuse bleeding, local hematoma, dural puncture and headache, nerve root or spinal cord irritation with resultant injury, and infectious complications. There were no major complications. Multiple side effects and complications observed included overall intravascular penetration in 11.4% of episodes with 20% in cervical region, 4% in lumbar region, and 6% in thoracic region; local bleeding in 76.3% of episodes with highest in thoracic region and lowest in cervical region; oozing with 19.6% encounters with highest in cervical region and lowest in lumbar region; with local hematoma seen only in 1.2% of the patients with profuse bleeding, bruising, soreness, nerve root irritation, and all other effects such as vasovagal reactions observed in 1% or less of the episodes. Limitations of this study include lack of contrast injection, use of intermittent fluoroscopy and also an observational nature of the study. This study illustrate that major complications are extremely rare and minor side effects are common.
Tower, Dyane E; Wood, Ryan W; Vaardahl, Michael D
2015-01-01
Talocalcaneal joint middle facet coalition is the most common tarsal coalition, occurring in ≤2% of the population. Fewer than 50% of involved feet obtain lasting relief of symptoms after nonoperative treatment, and surgical intervention is commonly used to relieve symptoms, increase the range of motion, improve function, reconstruct concomitant pes planovalgus, and prevent future arthrosis from occurring at the surrounding joints. Several approaches to surgical intervention are available for patients with middle facet coalitions, ranging from resection to hindfoot arthrodesis. We present a series of 4 cases, in 3 adolescent patients, of talocalcaneal joint middle facet coalition resection with interposition of a particulate juvenile hyaline cartilaginous allograft (DeNovo(®) NT Natural Tissue Graft, Zimmer, Inc., Warsaw, IN). With a mean follow-up period of 42.8 ± 2.9 (range 41 to 47) months, the 3 adolescent patients in the present series were doing well with improved subtalar joint motion and decreased pain, and 1 foot showed no bony regrowth on a follow-up computed tomography scan. The use of a particulate juvenile hyaline cartilaginous allograft as interposition material after talocalcaneal middle facet coalition resection combined with adjunct procedures to address concomitant pes planovalgus resulted in good short-term outcomes in 4 feet in 3 adolescent patients. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Henry, James L.; Yashpal, Kiran; Vernon, Howard; Kim, Jaesung; Im, Hee-Jeong
2012-01-01
Objective. To develop a novel animal model of persisting lumbar facet joint pain. Methods. Sprague Dawley rats were anaesthetized and the right lumbar (L5/L6) facet joint was exposed and compressed to ~1 mm with modified clamps applied for three minutes; sham-operated and naïve animals were used as control groups. After five days, animals were tested for hind-paw sensitivity using von Frey filaments and axial deep tissue sensitivity by algometer on assigned days up to 28 days. Animals were sacrificed at selected times for histological and biochemical analysis. Results. Histological sections revealed site-specific loss of cartilage in model animals only. Tactile hypersensitivity was observed for the ipsi- and contralateral paws lasting 28 days. The threshold at which deep tissue pressure just elicited vocalization was obtained at three lumbar levels; sensitivity at L1 > L3/4 > L6. Biochemical analyses revealed increases in proinflammatory cytokines, especially TNF-α, IL-1α, and IL-1β. Conclusions. These data suggest that compression of a facet joint induces a novel model of local cartilage loss accompanied by increased sensitivity to mechanical stimuli and by increases in inflammatory mediators. This new model may be useful for studies on mechanisms and treatment of lumbar facet joint pain and osteoarthritis. PMID:22966427
McCarthy, M; Mehdian, H; Fairbairn, K J; Stevens, A
2004-05-01
Melorheostosis affecting the axial skeleton is a rare condition. We present a case affecting a single thoracic zygoapophyseal (facet) joint that proved to be a diagnostic challenge. CT, MRI and radionuclide imaging with surgical and histopathology findings are discussed.
Yeh, Tsu-Te; Wen, Zhi-Hong; Lee, Herng-Sheng; Lee, Chian-Her; Yang, Zhi; Jean, Yen-Hsuan; Wu, Shing-Sheng; Nimni, Marcel E; Han, Bo
2008-05-01
We aimed to establish an animal model to investigate primary osteoarthritis of the lumbar facet joints after collagenase injection in rats and its effects on chondrocyte apoptosis. We hypothesized that osteoarthritic-like changes would be induced by collagenase injection and that apoptosis of chondrocytes would increase. Collagenase (1, 10, or 50 U) or saline (control) was injected into the lumbar facet joints. The histology and histochemistry of cartilage, synovium, and subchondral bone were examined at 1, 3, and 6 weeks after surgery. Apoptotic cells induced by 1 U of collagenase were quantified using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay. Degeneration of the cartilage and changes to the synovium and subchondral bone were dependent on both the doses of collagenase and the time after surgery. There were significantly more apoptotic chondrocytes in collagenase-treated joints than in control (P < 0.001 at 1 and 3 weeks and P < 0.05 at 6 weeks). Thus, lumbar facet joints subjected to collagenase developed osteoarthritic-like changes that could be quantified and compared. This model provides a useful tool for further study on the effects of compounds that have the potential to inhibit enzyme-associated damage to cartilage.
Juch, Johan N S; Maas, Esther T; Ostelo, Raymond W J G; Groeneweg, J George; Kallewaard, Jan-Willem; Koes, Bart W; Verhagen, Arianne P; van Dongen, Johanna M; Huygen, Frank J P M; van Tulder, Maurits W
2017-07-04
Radiofrequency denervation is a commonly used treatment for chronic low back pain, but high-quality evidence for its effectiveness is lacking. To evaluate the effectiveness of radiofrequency denervation added to a standardized exercise program for patients with chronic low back pain. Three pragmatic multicenter, nonblinded randomized clinical trials on the effectiveness of minimal interventional treatments for participants with chronic low back pain (Mint study) were conducted in 16 multidisciplinary pain clinics in the Netherlands. Eligible participants were included between January 1, 2013, and October 24, 2014, and had chronic low back pain, a positive diagnostic block at the facet joints (facet joint trial, 251 participants), sacroiliac joints (sacroiliac joint trial, 228 participants), or a combination of facet joints, sacroiliac joints, or intervertebral disks (combination trial, 202 participants) and were unresponsive to conservative care. All participants received a 3-month standardized exercise program and psychological support if needed. Participants in the intervention group received radiofrequency denervation as well. This is usually a 1-time procedure, but the maximum number of treatments in the trial was 3. The primary outcome was pain intensity (numeric rating scale, 0-10; whereby 0 indicated no pain and 10 indicated worst pain imaginable) measured 3 months after the intervention. The prespecified minimal clinically important difference was defined as 2 points or more. Final follow-up was at 12 months, ending October 2015. Among 681 participants who were randomized (mean age, 52.2 years; 421 women [61.8%], mean baseline pain intensity, 7.1), 599 (88%) completed the 3-month follow-up, and 521 (77%) completed the 12-month follow-up. The mean difference in pain intensity between the radiofrequency denervation and control groups at 3 months was -0.18 (95% CI, -0.76 to 0.40) in the facet joint trial; -0.71 (95% CI, -1.35 to -0.06) in the sacroiliac joint trial; and -0.99 (95% CI, -1.73 to -0.25) in the combination trial. In 3 randomized clinical trials of participants with chronic low back pain originating in the facet joints, sacroiliac joints, or a combination of facet joints, sacroiliac joints, or intervertebral disks, radiofrequency denervation combined with a standardized exercise program resulted in either no improvement or no clinically important improvement in chronic low back pain compared with a standardized exercise program alone. The findings do not support the use of radiofrequency denervation to treat chronic low back pain from these sources. trialregister.nl Identifier: NTR3531.
Yapuncich, Gabriel S; Boyer, Doug M
2014-01-01
The articular facets of interosseous joints must transmit forces while maintaining relatively low stresses. To prevent overloading, joints that transmit higher forces should therefore have larger facet areas. The relative contributions of body mass and muscle-induced forces to joint stress are unclear, but generate opposing hypotheses. If mass-induced forces dominate, facet area should scale with positive allometry to body mass. Alternatively, muscle-induced forces should cause facets to scale isometrically with body mass. Within primates, both scaling patterns have been reported for articular surfaces of the femoral and humeral heads, but more distal elements are less well studied. Additionally, examination of complex articular surfaces has largely been limited to linear measurements, so that ‘true area' remains poorly assessed. To re-assess these scaling relationships, we examine the relationship between body size and articular surface areas of the talus. Area measurements were taken from microCT scan-generated surfaces of all talar facets from a comprehensive sample of extant euarchontan taxa (primates, treeshrews, and colugos). Log-transformed data were regressed on literature-derived log-body mass using reduced major axis and phylogenetic least squares regressions. We examine the scaling patterns of muscle mass and physiological cross-sectional area (PCSA) to body mass, as these relationships may complicate each model. Finally, we examine the scaling pattern of hindlimb muscle PCSA to talar articular surface area, a direct test of the effect of mass-induced forces on joint surfaces. Among most groups, there is an overall trend toward positive allometry for articular surfaces. The ectal (= posterior calcaneal) facet scales with positive allometry among all groups except ‘sundatherians', strepsirrhines, galagids, and lorisids. The medial tibial facet scales isometrically among all groups except lemuroids. Scaling coefficients are not correlated with sample size, clade inclusivity or behavioral diversity of the sample. Muscle mass scales with slight positive allometry to body mass, and PCSA scales at isometry to body mass. PCSA generally scales with negative allometry to articular surface area, which indicates joint surfaces increase faster than muscles' ability to generate force. We suggest a synthetic model to explain the complex patterns observed for talar articular surface area scaling: whether ‘muscles or mass' drive articular facet scaling is probably dependent on the body size range of the sample and the biological role of the facet. The relationship between ‘muscle vs. mass' dominance is likely bone-and facet-specific, meaning that some facets should respond primarily to stresses induced by larger body mass, whereas others primarily reflect muscle forces. PMID:24219027
Zhang, Ming-cai; Lü, Si-zhe; Cheng, Ying-wu; Gu, Li-xu; Zhan, Hong-sheng; Shi, Yin-yu; Wang, Xiang; Huang, Shi-rong
2011-02-01
To study the effect of vertebrae semi-dislocation on the stress distribution in facet joint and interuertebral disc of patients with cervical syndrome using three dimensional finite element model. A patient with cervical spondylosis was randomly chosen, who was male, 28 years old, and diagnosed as cervical vertebra semidislocation by dynamic and static palpation and X-ray, and scanned from C(1) to C(7) by 0.75 mm slice thickness of CT. Based on the CT data, the software was used to construct the three dimensional finite element model of cervical vertebra semidislocation (C(4)-C(6)). Based on the model,virtual manipulation was used to correct the vertebra semidislocation by the software, and the stress distribution was analyzed. The result of finite element analysis showed that the stress distribution of C(5-6) facet joint and intervertebral disc changed after virtual manipulation. The vertebra semidislocation leads to the abnormal stress distribution of facet joint and intervertebral disc.
Amoretti, Nicolas; Huwart, Laurent; Foti, Pauline; Boileau, Pascal; Amoretti, Marie-Eve; Pellegrin, Amelie; Marcy, Pierre-Yves; Hauger, Olivier
2012-12-01
To evaluate percutaneous computed tomography (CT)-guided intracystic and intra-articular steroid injections for the treatment of lumbar facet joint cyst causing radicular pain. A single-centre prospective study involving 120 consecutive patients with symptomatic lumbar facet joint cyst-induced radicular pain was done (72 women, 48 men). The average age was 68.2 years (52-84). Patients were treated by percutaneous CT-guided intracystic and intra-articular steroid injections. The clinical course of nerve root pain was evaluated after 1 day, and 1, 3 and 6 months, with long-term follow-up after 12 months. Patient follow-ups in our series show supportive results: within 120 patients, 54% of patients were satisfied with a long-lasting result from the first intra-cystic and intra-articular steroid injections (n = 65), while 20.8% were satisfied with a long-lasting result from a second intervention. Combining these two results shows that 75% of patients were satisfied with a long-lasting result. Our results showed that percutaneous treatment of vertebral lumbar facet joint cysts by double injections is an effective and economic therapeutic technical management among 75% of our patients. Thus we recommend that it should be considered as a first choice of treatment. Lumbar facet joint cysts are a common feature of back and radicular pain. They may be treated effectively by interventional radiologists using CT guidance. Percutaneous treatment using double injections can save surgery in 75% of patients.
Maas, E T; Juch, J N S; Ostelo, R W J G; Groeneweg, J G; Kallewaard, J W; Koes, B W; Verhagen, A P; Huygen, F J P M; van Tulder, M W
2017-03-01
Patient history and physical examination are frequently used procedures to diagnose chronic low back pain (CLBP) originating from the facet joints, although the diagnostic accuracy is controversial. The aim of this systematic review is to determine the diagnostic accuracy of patient history and/or physical examination to identify CLBP originating from the facet joints using diagnostic blocks as reference standard. We searched MEDLINE, EMBASE, CINAHL, Web of Science and the Cochrane Collaboration database from inception until June 2016. Two review authors independently selected studies for inclusion, extracted data and assessed the risk of bias. We calculated sensitivity and specificity values, with 95% confidence intervals (95% CI). Twelve studies were included, in which 129 combinations of index tests and reference standards were presented. Most of these index tests have only been evaluated in single studies with a high risk of bias. Four studies evaluated the diagnostic accuracy of the Revel's criteria combination. Because of the clinical heterogeneity, results were not pooled. The published sensitivities ranged from 0.11 (95% CI 0.02-0.29) to 1.00 (95% CI 0.75-1.00), and the specificities ranged from 0.66 (95% CI 0.46-0.82) to 0.91 (95% CI 0.83-0.96). Due to clinical heterogeneity, the evidence for the diagnostic accuracy of patient history and/or physical examination to identify facet joint pain is inconclusive. Patient history and physical examination cannot be used to limit the need of a diagnostic block. The validity of the diagnostic facet joint block should be studied, and high quality studies are required to confirm the results of single studies. Patient history and physical examination cannot be used to limit the need of a diagnostic block. The validity of the diagnostic facet joint block should be studied, and high quality studies are required to confirm the results of single studies. © 2016 European Pain Federation - EFIC®.
Arthrofibrosis involving the middle facet of the talocalcaneal joint in children and adolescents.
El Rassi, George; Riddle, Eric C; Kumar, S Jay
2005-10-01
Pain over the anterolateral aspect of the ankle in a patient with a history of repeated ankle sprains and with restricted subtalar movement may be associated with a tarsal coalition. Nineteen patients presented with such a history, but conventional imaging did not reveal a cartilaginous or osseous coalition. Since symptoms persisted despite nonoperative treatment, the middle facet was explored surgically. The purpose of this study was to discuss the operative findings and to report the results of treatment. Nineteen patients (twenty-three feet) with pain over the anterolateral aspect of the ankle or a history of repeated ankle sprains had restricted subtalar joint motion and inconclusive findings on diagnostic imaging, except for bone-scanning. Their ages ranged from 9.1 to 18.5 years. The middle facet of the subtalar joint was explored surgically through a 3 to 4-cm-long incision centered over the sustentaculum tali. The results at a mean of 5.8 years were classified as good, fair, or poor on the basis of pain, talocalcaneal joint motion, and shoe wear. Routine radiographs, computed tomography, and magnetic resonance imaging revealed no major abnormality, whereas technetium-99m bone scintigraphy consistently showed slightly increased isotope uptake in the middle facet. Surgical removal of a hypervascular and thickened capsule and synovium in the area of the middle facet of the subtalar joint decreased pain and improved subtalar motion. The final result was good in seventeen patients (twenty feet) and fair in two patients (three feet). There were no poor results. A diagnosis of inflammatory arthrofibrosis should be considered when a patient with a painful rigid flatfoot has normal findings on radiographs and hematological studies but increased isotope uptake in the middle facet of the talocalcaneal joint on bone scintigraphy. Excision of the hypervascular capsule and synovium from this area can result in resolution of the symptoms. Therapeutic Level IV.
Mulcahy, D M; McCormack, D M; Stephens, M M
1998-12-01
Intra-articular calcaneal fractures are associated with significant long-term morbidity, and considerable controversy exists regarding the optimum method of treating them. The contact characteristics in the intact subtalar joint were determined at known loads and for different positions of the ankle and subtalar joint, using pressure-sensitive film (Super Low; Fuji, Itochu Canada Ltd, Montreal, Quebec). We measured the contact area to joint area ratio (pressure > 5 kg force/cm2 [kgf/cm2]) which normalizes for differences in joint size and the ratio of high pressure zone (>20 kgf/cm2) as a reflection of overall increase in joint pressure. Three simulated fracture patterns were then created and stabilized with either 1 or 2 mm of articular incongruity. Eight specimens were prepared with a primary fracture line through the posterior facet, eight with a joint depression-type fracture, and six with a central joint depression fracture. A measure of 1 to 2 mm of incongruity in the posterior facet for all three fracture patterns produced significant unloading of the depressed fragment, with a redistribution of the overall pattern of pressure distribution to parts of the facet that were previously unloaded.
Yeh, Tsu-Te; Wen, Zhi-Hong; Lee, Herng-Sheng; Lee, Chian-Her; Yang, Zhi; Jean, Yen-Hsuan; Nimni, Marcel E.; Han, Bo
2008-01-01
We aimed to establish an animal model to investigate primary osteoarthritis of the lumbar facet joints after collagenase injection in rats and its effects on chondrocyte apoptosis. We hypothesized that osteoarthritic-like changes would be induced by collagenase injection and that apoptosis of chondrocytes would increase. Collagenase (1, 10, or 50 U) or saline (control) was injected into the lumbar facet joints. The histology and histochemistry of cartilage, synovium, and subchondral bone were examined at 1, 3, and 6 weeks after surgery. Apoptotic cells induced by 1 U of collagenase were quantified using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay. Degeneration of the cartilage and changes to the synovium and subchondral bone were dependent on both the doses of collagenase and the time after surgery. There were significantly more apoptotic chondrocytes in collagenase-treated joints than in control (P < 0.001 at 1 and 3 weeks and P < 0.05 at 6 weeks). Thus, lumbar facet joints subjected to collagenase developed osteoarthritic-like changes that could be quantified and compared. This model provides a useful tool for further study on the effects of compounds that have the potential to inhibit enzyme-associated damage to cartilage. PMID:18224353
In vivo facet joint loading of the canine lumbar spine.
Buttermann, G R; Schendel, M J; Kahmann, R D; Lewis, J L; Bradford, D S
1992-01-01
This study describes a technique to measure in vivo loads and the resultant load-contact locations in the facet joint of the canine lumbar spine. The technique is a modification of a previously described in vitro method that used calibrated surface strains of the lateral aspect of the right L3 cranial articular process. In the present study, strains were measured during various in vivo static and dynamic activities 3 days after strain gage implantation. The in vivo recording technique and its errors, which depend on the location of the applied facet loads, is described. The results of applying the technique to five dogs gave the following results. Relative resultant contact load locations on the facet tended to be in the central and caudal portion of the facet in extension activities, central and cranial in standing, and cranial and ventral in flexion or right-turning activities. Right-turning contact locations were ventral and cranial to left-turning locations. Resultant load locations at peak loading during walking were in the central region of the facet, whereas resultant load locations at minimum loading during walking were relatively craniad. This resultant load-contact location during a walk gait cycle typically migrated in an arc with a displacement of 4 mm from minimum to maximum loading. Static tests resulted in a range of facet loads of 0 N in flexion and lying to 185 N for two-legged standing erect, and stand resulted in facet loads of 26 +/- 15 N (mean +/- standard deviation [SD]). Dynamic tests resulted in peak facet loads ranging from 55 N while walking erect to 170 N for climbing up stairs. Maximum walk facet loads were 107 +/- 27 N. The technique is applicable to in vivo studies of a canine facet joint osteoarthritis model and may be useful for establishing an understanding of the biomechanics of low-back pain.
Weisshaar, Christine L.; Winkelstein, Beth A.
2014-01-01
The facet joint is a common source of pain especially from mechanical injury. Although chronic pain is associated with altered spinal glial and neuronal responses, the contribution of specific spinal cells to joint pain are not understood. This study used the neurotoxin [Sar9,Met(O2)11]-substance P-saporin (SSP-SAP) to selectively eliminate spinal cells expressing neurokinin-1 receptor (NK1R) in a rat model of painful facet joint injury to determine the role of those spinal neurons in pain from facet injury. Following spinal administration of SSP-SAP or its control (blank-SAP), a cervical facet injury was imposed and behavioral sensitivity assessed. Spinal extracellular recordings were made on day 7 to classify neurons and quantify evoked firing. Spinal glial activation and IL1α expression also were evaluated. SSP-SAP prevented the development of mechanical hyperalgesia that is induced by joint injury and reduced NK1R expression and mechanically-evoked neuronal firing in the dorsal horn. SSP-SAP also prevented a shift toward wide dynamic range neurons that is seen after injury. Spinal astrocytic activation and IL1α expression were reduced to sham levels with SSP-SAP treatment. These results suggest that spinal NK1R-bearing cells are critical in initiating spinal nociception and inflammation associated with a painful mechanical joint injury. Perspective Results demonstrate that cells expressing NK1R in the spinal cord are critical for the development of joint pain and spinal neuroplasticity and inflammation after trauma to the joint. These findings have utility for understanding mechanisms of joint pain and developing potential targets to treat pain. PMID:24389017
Effect of Radiofrequency Denervation on Pain Intensity Among Patients With Chronic Low Back Pain
Juch, Johan N. S.; Ostelo, Raymond W. J. G.; Groeneweg, J. George; Kallewaard, Jan-Willem; Koes, Bart W.; Verhagen, Arianne P.; van Dongen, Johanna M.; Huygen, Frank J. P. M.; van Tulder, Maurits W.
2017-01-01
Importance Radiofrequency denervation is a commonly used treatment for chronic low back pain, but high-quality evidence for its effectiveness is lacking. Objective To evaluate the effectiveness of radiofrequency denervation added to a standardized exercise program for patients with chronic low back pain. Design, Setting, and Participants Three pragmatic multicenter, nonblinded randomized clinical trials on the effectiveness of minimal interventional treatments for participants with chronic low back pain (Mint study) were conducted in 16 multidisciplinary pain clinics in the Netherlands. Eligible participants were included between January 1, 2013, and October 24, 2014, and had chronic low back pain, a positive diagnostic block at the facet joints (facet joint trial, 251 participants), sacroiliac joints (sacroiliac joint trial, 228 participants), or a combination of facet joints, sacroiliac joints, or intervertebral disks (combination trial, 202 participants) and were unresponsive to conservative care. Interventions All participants received a 3-month standardized exercise program and psychological support if needed. Participants in the intervention group received radiofrequency denervation as well. This is usually a 1-time procedure, but the maximum number of treatments in the trial was 3. Main Outcomes and Measures The primary outcome was pain intensity (numeric rating scale, 0-10; whereby 0 indicated no pain and 10 indicated worst pain imaginable) measured 3 months after the intervention. The prespecified minimal clinically important difference was defined as 2 points or more. Final follow-up was at 12 months, ending October 2015. Results Among 681 participants who were randomized (mean age, 52.2 years; 421 women [61.8%], mean baseline pain intensity, 7.1), 599 (88%) completed the 3-month follow-up, and 521 (77%) completed the 12-month follow-up. The mean difference in pain intensity between the radiofrequency denervation and control groups at 3 months was −0.18 (95% CI, −0.76 to 0.40) in the facet joint trial; −0.71 (95% CI, −1.35 to −0.06) in the sacroiliac joint trial; and −0.99 (95% CI, −1.73 to −0.25) in the combination trial. Conclusions and Relevance In 3 randomized clinical trials of participants with chronic low back pain originating in the facet joints, sacroiliac joints, or a combination of facet joints, sacroiliac joints, or intervertebral disks, radiofrequency denervation combined with a standardized exercise program resulted in either no improvement or no clinically important improvement in chronic low back pain compared with a standardized exercise program alone. The findings do not support the use of radiofrequency denervation to treat chronic low back pain from these sources. Trial Registration trialregister.nl Identifier: NTR3531 PMID:28672319
Yuan, Wei; Zhang, Haiping; Zhou, Xiaoshu; Wu, Weidong; Zhu, Yue
2018-05-01
Artificial cervical disc replacement is expected to maintain normal cervical biomechanics. At present, the effect of the Prestige LP prosthesis height on cervical biomechanics has not been thoroughly studied. This finite element study of the cervical biomechanics aims to predict how the parameters, like range of motion (ROM), adjacent intradiscal pressure, facet joint force, and bone-implant interface stress, are affected by different heights of Prestige LP prostheses. The finite element model of intact cervical spine (C3-C7) was obtained from our previous study, and the model was altered to implant Prestige LP prostheses at the C5-C6 level. The effects of the height of 5, 6, and 7 mm prosthesis replacement on ROM, adjacent intradiscal pressure, facet joint force, as well as the distribution of bone-implant interface stress were examined. ROM, adjacent intradiscal pressure, and facet joint force increased with the prosthesis height, whereas ROM and facet joint force decreased at C5-C6. The maximal stress on the inferior surface of the prostheses was greater than that on the superior surface, and the stresses increased with the prosthesis height. The biomechanical changes were slightly affected by the height of 5 and 6 mm prostheses, but were strongly affected by the 7-mm prosthesis. An appropriate height of the Prestige LP prosthesis can preserve normal ROM, adjacent intradiscal pressure, and facet joint force. Prostheses with a height of ≥2 mm than normal can lead to marked changes in the cervical biomechanics and bone-implant interface stress. Copyright © 2018 Elsevier Inc. All rights reserved.
Vertebral rotatory subluxation in degenerative scoliosis: facet joint tropism is related.
Bao, Hongda; Zhu, Feng; Liu, Zhen; Bentley, Mark; Mao, Saihu; Zhu, Zezhang; Ding, Yitao; Qiu, Yong
2014-12-15
A cross-sectional study. To identify facet tropism as one of the possible risk factors leading to vertebral rotatory subluxation (VRS). VRS has been considered as one of the prognostic factors for degenerative scoliosis. Although several risk factors of VRS, including age and Cobb angle, have been investigated, few studies exist that have evaluated the correlation between VRS and anatomical structures of the vertebral column. This retrospective study recruited 23 patients diagnosed with degenerative lumbar scoliosis with VRS and 20 patients with degenerative scoliosis without VRS. The lateral translation on coronal radiographs was measured and 5 mm was used as the cutoff value to define rotatory subluxation. Computed tomographic scans for facet joints were made for all lumbar levels. The difference between right and left facet angles was recorded as ΔFA. Facet tropism was defined as a difference between the bilateral facet angles of more than 10°. In this study, VRS was most commonly found at the L3-L4 level (49%) and, with decreasing frequency at L2-L3 (24%), L4-L5 (20%), and L1-L2 (7%). On the convex side of the main curve, face joints at levels with VRS were more coronally oriented compared with those at levels without VRS (41.64° ± 11.65° vs. 36.30° ± 10.99°, P = 0.034). ΔFA was also significantly different between levels with and without VRS (P = 0.005). A strong correlation was found between ΔFA and lateral translation, with a coefficient of 0.33 (P < 0.001). In addition, ΔFA and a larger Cobb angle were found to be significantly associated with VRS based on binary regression analysis, with an odds ratio of 4.68 and 2.14, respectively. Facet tropism was more significantly observed at levels with VRS. On the convex side of the main curve, facet joints at levels with VRS were more coronally oriented. A larger Cobb angle and severe facet tropism in degenerative scoliosis should be considered to be related to VRS.
Wilson, David J; Owen, Sara; Corkill, Rufus A
2011-08-01
Recent publications compared treatment of vertebral fractures reporting improvement in the majority but with no significant difference between the local anaesthetic and vertebroplasty groups. Potential explanations include placebo response or therapeutic response to the "control procedure". We investigated whether preliminary facet joint injection can identify those patients whose pain arises from paravertebral structures rather than the vertebral insufficiency fracture itself. Patients referred for treatment by vertebroplasty were first offered local anaesthetic and steroid facet joint injection (FJI) at the most painful level. Those who failed to respond were offered a vertebroplasty. Ninety one patients referred, 16 went straight to vertebroplasty. Sixty one of 75 were initially offered FJI. Twenty one were successful; two relapsed, had further FJIs with good results; three declined treatment; 5 had temporary benefit; 1 died from unrelated causes. Of 29 who failed to respond to FJIs, 24 underwent vertebroplasty and 23 had a successful outcome. A third of patients technically suitable for vertebroplasty responded beneficially to FJI. In this group the pain mediator maybe one of instability and overload on the facet joints produced by adjacent wedge fracture. This protocol allows more selective and more successful vertebroplasty.
Xu, W B; Chen, S; Fan, S W; Zhao, F D; Yu, X J; Hu, Z J
2016-08-10
Many studies have explored the relationship between facet tropism and facet joint osteoarthritis, disc degeneration and degenerative spondylolisthesis. However, the associations between facet orientation and tropism, and paraspinal muscles have not been studied. To analyze the associations between facet orientation and tropism, and parameters of paraspinal muscles in patients with chronic low back pain. Ninety-five patients with chronic low back pain were consecutively enrolled. Their facet joint angles were measured on computed tomography (CT) while gross cross-sectional area (GCSA), functional cross-sectional area (FCSA) and T2 signal intensity of lumbar paraspinal and psoas muscle were evaluated on magnetic resonance imaging (MRI). The GCSA and FCSA were significantly smaller for multifidus muscle (P< 0.001), but significantly larger for erector spinae and psoas muscles (P< 0.001), in coronally-orientated group than those in sagittally-orientated group. The differences of bilateral GCSA and FCSA of multifidus muscle were significantly larger in facet tropism group than those in no facet tropism group (P= 0.009 and P= 0.019). Muscular asymmetries may develop in the lumbar region of the spine, which are associated with facet asymmetry in patients with chronic low back pain. Longitudinal studies are needed to understand the causal relationship between facet orientation and tropism and muscular asymmetry in future.
Facet Joint Osteoarthritis Affects Spinal Segmental Motion in Degenerative Spondylolisthesis.
Kitanaka, Shigeyuki; Takatori, Ryota; Arai, Yuji; Nagae, Masateru; Tonomura, Hitoshi; Mikami, Yasuo; Inoue, Nozomu; Ogura, Taku; Fujiwara, Hiroyoshi; Kubo, Toshikazu
2018-06-15
This is a retrospective clinical case series (case-control study). To clarify the influence of facet joint osteoarthritis (FJOA) on the pathology of degenerative spondylolisthesis (DS) using in vivo 3-dimensional image analysis. There are no radical treatments to prevent progression of DS in patients with lumbar spinal canal stenosis associated with DS. Therefore, an effective treatment method based on the pathology of DS should be developed. In total, 50 patients with lumbar spinal canal stenosis involving L4/5 who underwent dynamic computed tomography were divided into 2 groups: with DS [spondylolisthesis (Sp) group; 12 male, 14 female; mean age, 74 y]; and without DS (non-Sp group; 15 male, 9 female; mean age, 70 y). Degeneration of the intervertebral disk and FJOA at L4/5 were evaluated using magnetic resonance imaging. Disk and intervertebral foramen heights, the distance between the craniocaudal edges of the facet joint, and the interspinous distance were measured on dynamic computed tomographic images. Also, in vivo 3-dimensional segmental motion was evaluated using the volume merge method. There were no significant differences in degenerative findings for the intervertebral disk; however, progressive FJOA was detected in the Sp group. Dynamic changes in the distance between the craniocaudal edges of the facet joints were significantly larger in the Sp group. In this study, progressive FJOA and larger segmental motion in the distance between the craniocaudal edges of the facet joints were found in the Sp group. We clarified for the first time that DS involves ligament laxity due to FJOA that affects spinal segmental motion in vivo. We consider that a treatment method based on FJOA would be useful for treating patients with DS. Level IV.
Atlantoaxial manual realignment in a patient with traumatic atlantoaxial joint disruption.
Goel, Atul; Figueiredo, Antonio; Maheshwari, Shradha; Shah, Abhidha
2010-05-01
We report a patient with complex traumatic translatory atlantoaxial dislocation, who we treated by joint exposure and reduction of the dislocation by facet manipulation and subsequent plate and screw atlantoaxial fixation. A 28-year-old male had fallen 7.6m (25 feet), and following the fall had severe neck pain but no neurological deficit. Investigations revealed a fracture at the base of the odontoid process and posterior displacement of the entire atlas over the axis, resulting in a translatory atlantoaxial dislocation. Head traction failed as he developed severe vertigo following its application. The patient was operated upon in a prone position. We opened the atlantoaxial joint and realigned the facets using distraction and manipulation techniques and secured the joint using a plate and screw interarticular method. The patient tolerated the treatment well and was symptom-free after 28 months. Postoperative images showed good craniovertebral alignment. Although technically challenging, direct manipulation of the facets of the atlas and axis can result in excellent craniovertebral realignment.
The retrodural space of Okada.
Murthy, Naveen S; Maus, Timothy P; Aprill, Charles
2011-06-01
The retrodural space of Okada is a potential space that can act as a conduit for the spread of inflammatory or infectious processes, connecting ipsilateral adjacent facet joints, contralateral adjacent facet joints, adjacent neural foramen, paraspinal musculature, and spinous process adventitial bursa (i.e., Baastrup disease). Awareness of these potential retrodural communications during diagnostic imaging interpretation and interventional spine injection procedures can play an important role in patient care and management.
A biomechanical study of artificial cervical discs using computer simulation.
Ahn, Hyung Soo; DiAngelo, Denis J
2008-04-15
A virtual simulation model of the subaxial cervical spine was used to study the biomechanical effects of various disc prosthesis designs. To study the biomechanics of different design features of cervical disc arthroplasty devices. Disc arthroplasty is an alternative approach to cervical fusion surgery for restoring and maintaining motion at a diseased spinal segment. Different types of cervical disc arthroplasty devices exist and vary based on their placement and degrees of motion offered. A virtual dynamic model of the subaxial cervical spine was used to study 3 different prosthetic disc designs (PDD): (1) PDD-I: The center of rotation of a spherical joint located at the mid C5-C6 disc, (2) PDD-II: The center of rotation of a spherical joint located 6.5 mm below the mid C5-C6 disc, and (3) PDD-III: The center of rotation of a spherical joint in a plane located at the C5-C6 disc level. A constrained spherical joint placed at the disc level (PDD-I) significantly increased facet loads during extension. Lowering the rotational axis of the spherical joint towards the subjacent body (PDD-II) caused a marginal increase in facet loading during flexion, extension, and lateral bending. Lastly, unconstraining the spherical joint to move freely in a plane (PDD-III) minimized facet load build up during all loading modes. The simulation model showed the impact simple design changes may have on cervical disc dynamics. The predicted facet loads calculated from computer model have to be validated in the experimental study.
Joint FACET: the Canada-Netherlands initiative to study multisensor data fusion systems
NASA Astrophysics Data System (ADS)
Bosse, Eloi; Theil, Arne; Roy, Jean; Huizing, Albert G.; van Aartsen, Simon
1998-09-01
This paper presents the progress of a collaborative effort between Canada and The Netherlands in analyzing multi-sensor data fusion systems, e.g. for potential application to their respective frigates. In view of the overlapping interest in studying and comparing applicability and performance and advanced state-of-the-art Multi-Sensor Data FUsion (MSDF) techniques, the two research establishments involved have decided to join their efforts in the development of MSDF testbeds. This resulted in the so-called Joint-FACET, a highly modular and flexible series of applications that is capable of processing both real and synthetic input data. Joint-FACET allows the user to create and edit test scenarios with multiple ships, sensor and targets, generate realistic sensor outputs, and to process these outputs with a variety of MSDF algorithms. These MSDF algorithms can also be tested using typical experimental data collected during live military exercises.
Incidence of the coracoclavicular joint in South African populations.
Nalla, S; Asvat, R
1995-01-01
The presence of a diarthrotic coracoclavicular joint, as represented by an articular facet on the conoid tubercle of the clavicle and the superior surface of the coracoid process of the scapula, was investigated. The sample consisted of 60 white and 180 black South African (60 Sotho, 60 Xhosa and 60 Zulu) skeletons. Each group consisted of 30 male and 30 female skeletons. The presence of the articular facet was recorded as either bilateral, unilateral left or unilateral right. The effect of clavicular length, scapular size and first rib angle on the presence of the coracoclavicular joint was also investigated. The presence of the articular facet was noted in 23 (9.6%) of the 240 individuals studied. Of these 23 individuals, 6 (26.1%) were white and 17 (73.9%) were black. Males (56.5%) presented a higher incidence of this anomaly than females (43.5%). The articular facet occurred bilaterally in 47.9% (11/23), unilaterally on the left in 30.4% (7/23) and unilaterally on the right in 21.7% (5/23). Sexual, racial and tribal differences were not statistically significant. Individuals possessing the joint showed statistically significantly (P < 0.01) larger scapulae (increased border lengths and superior angles), longer clavicles and longer first ribs. No statistically significant differences in the first rib angles were observed between individuals who possessed the joint and those who did not, thus implying similar thoracic inlet size. It is proposed that the aforementioned morphometry of the scapulae, clavicles and first ribs may restrict associated movements of the scapulae, resulting in the development of the coracoclavicular joint. Images Fig. 4 Fig. 5 PMID:7559137
Gadgil, Anirudh A; Eisenstein, Stephan M; Darby, Alan; Cassar Pullicino, Victor
2002-10-01
A case of bilateral symptomatic facet joint synovial cysts arising in association with calcium pyrophosphate deposition disease is reported. To present a previously unreported cause for symptomatic synovial cysts of the lumbar spine. Synovial cysts of the facet joints occur most commonly in association with degenerative disease of the spine in older individuals. The association of these cysts with trauma, rheumatoid arthritis, spondylolysis, and kissing spinous processes also has been reported. These cysts can cause symptoms and signs from direct compression of the dura. Chondrocalcinosis has not been previously reported to cause symptomatic synovial cysts. A 67-year-old woman presented with right lower limb sciatica caused by a right L4-L5 facet joint cyst, which resolved after surgical decompression. A year later, she presented with left lower limb sciatica caused by development of a new L4-L5 facet joint cyst, which also resolved after surgical decompression. Histopathologic examination of each cyst showed a cyst wall of fibrous tissue with synovial lining, inflammation, and granulation tissue. Examination of the tissue under polarized light showed positively birefringent, short blunt crystals of calcium pyrophosphate dihydrate. In patients with a history of gout or pseudogout, a rare possibility of a synovial cyst should be considered in the differential diagnosis during investigation for the cause of neural compression resulting in sciatic syndrome.
Osseous associated cervical spondylomyelopathy at the C2-C3 articular facet joint in 11 dogs.
Cooper, C; Gutierrez-Quintana, R; Penderis, J; Gonçalves, R
2015-11-21
In dogs, vertebral canal stenosis at C2-C3 due to articular facet joint degeneration is only sporadically identified. The authors' aims were to review the clinical presentation, MRI characteristics, treatment and outcome of dogs presenting with this condition. Eleven cases were eligible for inclusion. Neurological examination revealed tetraparesis and proprioceptive ataxia in all 4 limbs in 3/11, proprioceptive tetra-ataxia only in 4/11, pelvic limb proprioceptive ataxia in 2/11 and no gait abnormalities in 2/11 dogs. Cervical hyperaesthesia was present in 7/11 dogs. MRI revealed bilateral articular facet joint degeneration in 10/11 cases and unilateral degeneration in one. Surgery was performed in six cases and medical management elected in five. Long-term follow-up information was available for 11 animals. Four of the surgical cases are alive and have no neurological deficits, one was euthanased for an unrelated condition and one lost to follow-up. Of the cases managed medically, three are alive showing no neurological deficits, one is alive still displaying neurological deficits and one euthanased for an unrelated condition whilst still ataxic. This study shows that both medical and surgical management can result in good outcomes in dogs with vertebral canal stenosis resulting from articular facet joint degeneration at the level of C2-C3. British Veterinary Association.
Goel, A; Pareikh, S; Sharma, P
2005-06-01
We present our experience of treating two cases of rheumatoid arthritis involving the craniovertebral junction and having marked basilar invagination by an alternative treatment method. In both the cases, the facets were osteoporotic and were not suitable for screw implantation. The patients were 66 and 72 years of age and both patients were females. Both the patients presented with complaints of progressively increasing spastic quadriparesis. Surgery involved attempts to reduce the basilar invagination and restore the height of the 'collapsed' lateral mass by manual distraction of the facets of the atlas and axis and forced impaction of titanium spacers in the joint in addition to bone graft harvested from the iliac crest. The procedure also provided stabilization of the region. No other fixation procedure involving wires, screws, plate and rods was carried out simultaneously. Following surgery both the patients showed symptomatic improvement and partial restoration of craniovertebral alignments. Follow-up is of 2 and 24 months. Distraction of the facets of atlas and axis and impaction of metal implant and bone graft in the facet joint can assist in reduction of basilar invagination and fixation of the region in selected cases of rheumatoid arthritis involving the craniovertebral junction.
Painful lumbar spondylolysis among pediatric sports players: a pilot MRI study.
Sairyo, Koichi; Sakai, Toshinori; Mase, Yasuyoshi; Kon, Tamiyo; Shibuya, Isao; Kanamori, Yasuo; Kosugi, Tatsuo; Dezawa, Akira
2011-11-01
For children and adolescents who are very active athletes, fresh lumbar spondylolysis is the main pathologic cause of lower back pain (LBP). However, regarding the terminal-stage spondylolysis (pars defect), there have been few studies to clarify the pathomechanism of LBP. The purpose of this study is to clarify the cause of LBP associated with pars defects in athletes. This is the first report showing a possible pathomechanism of LBP in active athletes with painful pars defect. Six pediatric athletes (5 boys and 1 girl) below 18 years old with painful bilateral lumbar spondylolysis were evaluated. In all cases, spondylolysis was identified as terminal stage (pseudoarthrosis) on CT scan. To evaluate the inflammation around the pars defects, short time inversion recovery (STIR) MRI was performed along with the sagittal section. Fluid collection, which is an indicator of inflammatory events, was evaluated in 12 pars defects as well as in 12 cranial and caudal adjoining facet joints. Inflammation (i.e., fluid collection) was observed in all 12 pars defects in six subjects at the pseudoarthrotic pars defects. In terms of facet joints, 7 of 12 (58%) pars defects showed fluid collection at the cranial and/or caudal adjoining joints on STIR MRI. The present study showed that inflammation was always present at the pars defects and in some cases at the adjoining facet joints. Thus, it is not difficult to understand how, during sports activity, inflammation may first occur at the pseudoarthrotic site and then spread to the adjoining facet joints. This mechanism could cause LBP associated with terminal-stage (pseudoarthrotics) spondylolysis in athletes.
Pesteie, Mehran; Abolmaesumi, Purang; Ashab, Hussam Al-Deen; Lessoway, Victoria A; Massey, Simon; Gunka, Vit; Rohling, Robert N
2015-06-01
Injection therapy is a commonly used solution for back pain management. This procedure typically involves percutaneous insertion of a needle between or around the vertebrae, to deliver anesthetics near nerve bundles. Most frequently, spinal injections are performed either blindly using palpation or under the guidance of fluoroscopy or computed tomography. Recently, due to the drawbacks of the ionizing radiation of such imaging modalities, there has been a growing interest in using ultrasound imaging as an alternative. However, the complex spinal anatomy with different wave-like structures, affected by speckle noise, makes the accurate identification of the appropriate injection plane difficult. The aim of this study was to propose an automated system that can identify the optimal plane for epidural steroid injections and facet joint injections. A multi-scale and multi-directional feature extraction system to provide automated identification of the appropriate plane is proposed. Local Hadamard coefficients are obtained using the sequency-ordered Hadamard transform at multiple scales. Directional features are extracted from local coefficients which correspond to different regions in the ultrasound images. An artificial neural network is trained based on the local directional Hadamard features for classification. The proposed method yields distinctive features for classification which successfully classified 1032 images out of 1090 for epidural steroid injection and 990 images out of 1052 for facet joint injection. In order to validate the proposed method, a leave-one-out cross-validation was performed. The average classification accuracy for leave-one-out validation was 94 % for epidural and 90 % for facet joint targets. Also, the feature extraction time for the proposed method was 20 ms for a native 2D ultrasound image. A real-time machine learning system based on the local directional Hadamard features extracted by the sequency-ordered Hadamard transform for detecting the laminae and facet joints in ultrasound images has been proposed. The system has the potential to assist the anesthesiologists in quickly finding the target plane for epidural steroid injections and facet joint injections.
Proschek, Dirk; Kafchitsas, K.; Rauschmann, M. A.; Kurth, A. A.; Vogl, T. J.
2008-01-01
Interventional procedures are associated with high radiation doses for both patients and surgeons. To reduce the risk from ionizing radiation, it is essential to minimize radiation dose. This prospective study was performed to evaluate the effectiveness in reducing radiation dose during facet joint injection in the lumbar spine and to evaluate the feasibility and possibilities of the new real time image guidance system SabreSource™. A total of 60 patients, treated with a standardized injection therapy of the facet joints L4–L5 or L5–S1, were included in this study. A total of 30 patients were treated by fluoroscopy guidance alone, the following 30 patients were treated using the new SabreSource™ system. Thus a total of 120 injections to the facet joints were performed. Pain, according to the visual analogue scale (VAS), was documented before and 6 h after the intervention. Radiation dose, time of radiation and the number of exposures needed to place the needle were recorded. No significant differences concerning age (mean age 60.5 years, range 51–69), body mass index (mean BMI 26.2, range 22.2–29.9) and preoperative pain (VAS 7.9, range 6–10) were found between the two groups. There was no difference in pain reduction between the two groups (60 vs. 61.5%; P = 0.001) but the radiation dose was significantly smaller with the new SabreSource™ system (reduction of radiation dose 32.7%, P = 0.01; reduction of mean entrance surface dose 32.3%, P = 0.01). The SabreSource™ System significantly reduced the radiation dose received during the injection therapy of the lumbar facet joints. With minimal effort for the setup at the beginning of a session, the system is easy to handle and can be helpful for other injection therapies (e.g. nerve root block therapies). PMID:19082641
Dong, Ling; Smith, Jenell R; Winkelstein, Beth A
2013-05-15
Chronic neck pain affects up to 70% of persons, with the facet joint being the most common source. Intra-articular injection of the non-steroidal anti-inflammatory drug ketorolac reduces post-operative joint-mediated pain; however, the mechanism of its attenuation of facet-mediated pain has not been evaluated. Protease-activated receptor-1 (PAR1) has differential roles in pain maintenance depending on the type and location of painful injury. This study investigated if the timing of intra-articular ketorolac injection after painful cervical facet injury affects behavioral hypersensitivity by modulating spinal astrocyte activation and/or PAR1 expression. Rats underwent a painful joint distraction and received an injection of ketorolac either immediately or 1 day later. Separate control groups included injured rats with a vehicle injection at day 1 and sham operated rats. Forepaw mechanical allodynia was measured for 7 days, and spinal cord tissue was immunolabeled for glial fibrillary acidic protein (GFAP) and PAR1 expression in the dorsal horn on day 7. Ketorolac administered on day 1 after injury significantly reduced allodynia (p=0.0006) to sham levels, whereas injection immediately after the injury had no effect compared with vehicle. Spinal astrocytic activation followed behavioral responses and was significantly decreased (p=0.009) only for ketorolac given at day 1. Spinal PAR1 (p=0.0025) and astrocytic PAR1 (p=0.012) were significantly increased after injury. Paralleling behavioral data, astrocytic PAR1 was returned to levels in sham only when ketorolac was administered on day 1. Yet, spinal PAR1 was significantly reduced (p<0.0001) by ketorolac independent of timing. Spinal astrocyte expression of PAR1 appears to be associated with the maintenance of facet-mediated pain.
Dong, Ling; Smith, Jenell R.
2013-01-01
Abstract Chronic neck pain affects up to 70% of persons, with the facet joint being the most common source. Intra-articular injection of the non-steroidal anti-inflammatory drug ketorolac reduces post-operative joint-mediated pain; however, the mechanism of its attenuation of facet-mediated pain has not been evaluated. Protease-activated receptor-1 (PAR1) has differential roles in pain maintenance depending on the type and location of painful injury. This study investigated if the timing of intra-articular ketorolac injection after painful cervical facet injury affects behavioral hypersensitivity by modulating spinal astrocyte activation and/or PAR1 expression. Rats underwent a painful joint distraction and received an injection of ketorolac either immediately or 1 day later. Separate control groups included injured rats with a vehicle injection at day 1 and sham operated rats. Forepaw mechanical allodynia was measured for 7 days, and spinal cord tissue was immunolabeled for glial fibrillary acidic protein (GFAP) and PAR1 expression in the dorsal horn on day 7. Ketorolac administered on day 1 after injury significantly reduced allodynia (p=0.0006) to sham levels, whereas injection immediately after the injury had no effect compared with vehicle. Spinal astrocytic activation followed behavioral responses and was significantly decreased (p=0.009) only for ketorolac given at day 1. Spinal PAR1 (p=0.0025) and astrocytic PAR1 (p=0.012) were significantly increased after injury. Paralleling behavioral data, astrocytic PAR1 was returned to levels in sham only when ketorolac was administered on day 1. Yet, spinal PAR1 was significantly reduced (p<0.0001) by ketorolac independent of timing. Spinal astrocyte expression of PAR1 appears to be associated with the maintenance of facet-mediated pain. PMID:23126437
[Lumbosacral facet joint stabilization: Mc Bride technique].
Martínez, Ernesto De León; García, J Antonio Vázquez; Castillo, Pablo Atlitec
2008-01-01
We carried out a retrospective study of the clinical results of lumbosacral decompression with Mc Bride technique, in treatment of degenerative unstable lumbar stenosis. Three hundred and forty patients (180 male) were treated during May 1996 to May 2003. Mean age at surgery was 47 years old (22-85) with 3 to 8 years of follow up. All patients fulfilled clinical and image criteria for chronic lumbar pain due to degenerative lumbar stenosis and segmental instability that did not improve with conservative treatment. We found very good results in 114 patients (33.5%), good in 203 patients (59.7%), regular in 16 patients (4.7%), and poor in 6 patients (2%). The Mc Bride technique is based in interlaminar distraction and permits managing lumbar stenosis and arthrodesis of an unstable segment simultaneously. It diminishes compression in the foramen, maintains a position in extension, reduces facet joints subluxation and eliminates the strategic point of intervertebral mobility in facet joints. It allows immediate stabilization and later fusion by placing a bone block.
Modified Goel’s Methods for Basilar Impression: A Case Report with Literature
Asamoto, Shunji; Fukui, Yasuyuki; Nishiyama, Makoto; Ishikawa, Masayuki; Nakamura, Satoshi; Nagashima, Masaki; Muto, Jun; Jimbo, Hiroyuki
2016-01-01
We report the case of a 57-year-old woman who had basilar impression manifesting as severe myelopathy and occipital neuralgia and was treated by distraction and fixation performed using a modification of Goel’s method. Magnetic resonance imaging (MRI) and computed tomography (CT) scans showed severe myelocompression by the dens of the axis from the ventral side and occipitalization of the atlas. After traction using a Halo vest, C1–2 facet distraction and fixation was performed in one stage using a modified Goel’s method. Although Goel et al. used a custom-made spacer to distract the facet joints, we used a threaded titanium cylindrical cage that was inserted into the joint to fix the C1–2 facet joint with posterior fixation from occipital bone to C5. Postoperatively, gradual symptomatic and neurological amelioration were observed. The atlantoaxial joints were bone-fused at 3 years post-operation. Distraction and fixation performed using this modified version of Goel’s method was effective for treating basilar invagination. The threaded titanium cylindrical cage provided adequate C1–2 space and strong initial fixation. PMID:28663991
Lee, Chang-Hyun; Chung, Chun Kee; Kim, Chi Heon
2017-11-01
Radiofrequency denervation is commonly used for the treatment of chronic facet joint pain that has been refractory to more conservative treatments, although the evidence supporting this treatment has been controversial. We aimed to elucidate the precise effects of radiofrequency denervation in patients with low back pain originating from the facet joints relative to those obtained using control treatments, with particular attention to consistency in the denervation protocol. A meta-analysis of randomized controlled trials was carried out. Adult patients undergoing radiofrequency denervation or control treatments (sham or epidural block) for facet joint disease of the lumbar spine comprised the patient sample. Visual analog scale (VAS) pain scores were measured and stratified by response of diagnostic block procedures. We searched PubMed, Embase, Web of Science, and the Cochrane Database for randomized controlled trials regarding radiofrequency denervation and control treatments for back pain. Changes in VAS pain scores of the radiofrequency group were compared with those of the control group as well as the minimal clinically important difference (MCID) for back pain VAS. Meta-regression model was developed to evaluate the effect of radiofrequency treatment according to responses of diagnostic block while controlling for other variables. We then calculated mean differences and 95% confidence intervals (CIs) using random-effects models. We included data from seven trials involving 454 patients who had undergone radiofrequency denervation (231 patients) and control treatments such as sham or epidural block procedures (223 patients). The radiofrequency group exhibited significantly greater improvements in back pain score when compared with the control group for 1-year follow-up. Although the average improvement in VAS scores exceeded the MCID, the lower limit of the 95% CI encompassed the MCID. A subgroup of patients who responded very well to diagnostic block procedures demonstrated significant improvements in back pain relative to the control group at all times. When placed into our meta-regression model, the response to diagnostic block procedure was responsible for a statistically significant portion of treatment effect. Studies published over the last two decades revealed that radiofrequency denervation reduced back pain significantly in patients with facet joint disease compared with the MCID and control treatments. Conventional radiofrequency denervation resulted in significant reductions in low back pain originating from the facet joints in patients showing the best response to diagnostic block over the first 12 months when compared with sham procedures or epidural nerve blocks. Copyright © 2017 Elsevier Inc. All rights reserved.
Gómez Vega, Juan Carlos; Acevedo-González, Juan Carlos
2018-06-14
Lumbar pain affects between 60-90% of people. It is a frequent cause of disability in adults. Pain may be generated by different anatomical structures such as the facet joint. However, nowadays pain produced by the facet joint has no clinical diagnosis. Therefore, the purpose of this article is to propose a clinical diagnostic scale for lumbar facet syndrome. The study was conducted by means of 6 phases as follows, Phase 1, a systematic review of the literature was performed regarding the clinical diagnosis of facet-based lumbar pain based on the PRISMA checklist; Phase 2, a list of signs and symptoms proposed for diagnosis lumbar pain of facet origin was made. Phase 3, the list of signs and symptoms found was submitted to a committee of experts to discriminate the most significant signs and symptoms, these were linked to general sociodemographic variables to develop an evaluation questionnaire; Phase 4, the evaluation questionnaire was applied, including those selected signs and symptoms to a group of patients with clinical diagnosis of facet disease lumbar pain and who underwent a selective facet block. Phase 5, under standard technique selective facet block and subsequent postoperative clinical control at 1 month. Phase 6, given pre and postsurgical results associated with signs present in the patients we propose a clinical scale of diagnosis scale. Descriptive statistics and Stata 12.0 were used as statistical software. A total of 36 signs and symptoms were found for the diagnosis of lumbar facet syndrome that were submitted to the group of experts, where a total of 12 (8 symptoms and 4 signs) were included for the final survey. 31 patients underwent selective lumbar facet blockade, mostly women, with an average of 60±11.5 years, analogous visual scale of preoperative pain of 8/10, postoperative of 1.7/10, the signs and symptoms most frequently found included in a diagnostic scale were: 3 symptoms 1) axial or bilateral axial lumbar pain, 2) improvement with rest, 3) absence of root pattern, may have pseudoradicular pattern, however, the pain is greater lumbar than pain in the leg and 3 clinical signs 1) Kemp sign, 2) pain induced in joint or transverse process, 3) facet stress sign or Acevedo sign. The clinical diagnosis of lumbar facet pain is still debated. Few diagnostic scales have been postulated, with little or no external validity, so the present study proposes a diagnostic scale consisting of 3 symptoms and 3 clinical signs. Copyright © 2018 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.
CT-Guided Transfacet Pedicle Screw Fixation in Facet Joint Syndrome: A Novel Approach
Manfré, Luigi
2014-01-01
Summary Axial microinstability secondary to disc degeneration and consequent chronic facet joint syndrome (CFJS) is a well-known pathological entity, usually responsible for low back pain (LBP). Although posterior lumbar fixation (PIF) has been widely used for lumbar spine instability and LBP, complications related to wrong screw introduction, perineural scars and extensive muscle dissection leading to muscle dysfunction have been described. Radiofrequency ablation (RFA) of facet joints zygapophyseal nerves conventionally used for pain treatment fails in approximately 21% of patients. We investigated a “covert-surgery” minimal invasive technique to treat local spinal instability and LBP, using a novel fully CT-guided approach in patients with axial instability complicated by CFJS resistant to radioablation, by introducing direct fully or partially threaded transfacet screws (transfacet fixation - TFF), to acquire solid arthrodesis, reducing instability and LBP. The CT-guided procedure was well tolerated by all patients in simple analogue sedation, and mean operative time was approximately 45 minutes. All eight patients treated underwent clinical and CT study follow-up at two months, revealing LBP disappearance in six patients, and a significant reduction of lumbar pain in two. In conclusion, CT-guided TFF is a fast and safe technique when facet posterior fixation is needed. PMID:25363265
Choi, Jong-Il; Kim, Se-Hoon; Lim, Dong-Jun; Ha, Sung-Kon; Kim, Sang-Dae
2017-01-01
Arthroplasty maintains the biomechanical features of a healthy disc, decreases the adjacent segment disease rate, and decreases the accelerated degeneration rate of the neighboring discs in traditional fusion procedures. However, there are only a few reports on adjacent disc pressure (DP) and facet strain (FS) after lumbar arthroplasty under a physiologic compressive preload. Baseline DP and FS measurements were obtained from five intact cadaveric human lumbosacral spines for different modes of motion. DP was measured by inserting pressure transducer needle tips into the L3-L4 and L5-S1 discs. FS gauges were fixed on both sides of the laminae near the L3-L4, L4-L5, and L5-S1 facet joints. After SB Charité < sup > TM < /sup > III implantation at the L4-L5 level, the measurements were repeated at preload and compared with those of the intact spine. Under the preload condition, the central DP of the upper disc was decreased during extension and bending, and it significantly increased during rotation (p < 0.05). In the lower disc, the central DP insignificantly decreased during bending and increased during extension and flexion. A statistically significant increase in FS was observed during rotation at the operative facet (p < 0.05). Compared to the intact spine, all FS values were insignificantly decreased during lateral bending but increased during axial rotation. In an ex-vivo physiologic preload setting, the SB Charité < sup > TM < /sup > III provided relatively inconsistent and sometimes increased DP or FS at the operative and adjacent levels after arthroplasty.
Partial lumbosacral transitional vertebra resection for contralateral facetogenic pain.
Brault, J S; Smith, J; Currier, B L
2001-01-15
Case report of surgically treated mechanical low back pain from the facet joint contralateral to a unilateral anomalous lumbosacral articulation (Bertolotti's syndrome). To describe the clinical presentation, diagnostic evaluation, and management of facet-related low back pain in a 17-year-old cheerleader and its successful surgical treatment with resection of a contralateral anomalous articulation. Lumbosacral transitional vertebrae are common in the general population. Bertolotti's syndrome is mechanical low back pain associated with these transitional segments. Little is known about the pathophysiology and mechanics of these vertebral segments and their propensity to be pain generators. Treatment of this syndrome is controversial, and surgical intervention has been infrequently reported. A retrospective chart analysis and radiographic review were performed. Repeated fluoroscopically guided injections implicated a symptomatic L6-S1 facet joint contralateral to an anomalous lumbosacral articulation. Eventually, a successful surgical outcome was achieved with resection of the anomalous articulation. Clinicians should consider the possibility that mechanical low back pain may occur from a facet contralateral to a unilateral anomalous lumbosacral articulation, even in a young patient. Although reports of surgical treatment of Bertolotti's syndrome are infrequent, resection of the anomalous articulation provided excellent results in this patient, presumably because of reduced stresses on the symptomatic facet.
Does increased femoral antetorsion predispose to cartilage lesions of the patellofemoral joint?
Oppermann, Johannes; Bredow, Jan; Wissusek, Boris; Spies, Christian Karl; Boese, Christoph Kolja; Chang, Shi-Min; Eysel, Peer; Dargel, Jens
2017-09-01
The purpose of this study was to investigate whether there was a relationship between femoral neck antetorsion and the presence and pattern of osteoarthritis of the patellofemoral joint. It was hypothesized that an increased femoral neck antetorsion (1) correlates with osteoarthritic changes of the lateral facet of the patellofemoral joint and (2) correlates with an increased lateral trochlear height and a decreased sulcus angle. Seventy-eight formalin-embedded cadaveric lower extremities from thirty-nine subjects with a median age of 74 years (range 60-88) were used. Surrounding soft tissues of the lower limb were removed. The femoral neck antetorsion was measured and referenced to the transepicondylar axis and the posterior condylar line. The height of the medial and lateral facet of the trochlea and the sulcus angle was measured. The location and the degree of patellofemoral cartilage degeneration were recorded. A Pearson's correlation analysis was performed to correlate the femoral neck antetorsion with the measured knee parameters. No significant correlation could be found between the femoral antetorsion and cartilage degeneration of the lateral patellofemoral joint (n.s.), the height of the lateral trochlea (n.s.) and the sulcus angle (n.s.). This study could not document that the femoral neck antetorsion and subsequent internal rotation of the distal femur correlated with the degree of degeneration of the lateral facet of the patellofemoral joint. Clinically, femoral internal rotation may play a minor role in the development of lateral patellofemoral joint degeneration.
Sheng, Sun-Ren; Wang, Ke; Nisar, Majid; Chen, Jiao-Xiang; Wu, Ai-Min; Wang, Xiang-Yang
2018-02-01
We sought to describe the novel technique and report the outcomes of cervical spondylotic radiculopathy caused by facet joint hyperplasia treated with minimally invasive surgery by laminar and lateral mass screw cofixations. In this retrospective study, patients with spondylotic radiculopathy caused by facet joint hyperplasia underwent this technique in our unit between January 2010 and June 2015. Hospital charts, magnetic resonance imaging studies, and follow-up records for all the patients were reviewed. Outcomes were assessed on the basis of neurologic status, magnetic resonance imaging, and visual analog scale for neck and radicular pain and by the short form-36 health survey questionnaire. Thirteen men and 5 women, aged 47-73 years (mean, 61.8 years), were included in this study. The follow-up time ranged from 19-50 months (mean, 32.4 months). The mean visual analog scale scores for radicular pain and neck pain, as well as the scores for all 8 domains of the short form-36 health survey questionnaire, showed significant improvements (P < 0.05). Cervical lordosis showed bending, whereas the height of the targeted disk segment showed no change (P > 0.05). Complications included 2 cases of neck pain that lasted for 3 months. Minimally invasive surgery by lamina and lateral mass screw cofixation is safe and effective for the treatment of cervical spondylotic radiculopathy caused by facet joint hyperplasia. In addition to sufficient decompression, this technique provides relative stability to the cervical spine. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Risk factors for degenerative spondylolisthesis: a systematic review
DeVine, John G.; Schenk-Kisser, Jeannette M.; Skelly, Andrea C.
2012-01-01
Study design: Systematic literature review. Rationale: Many authors have postulated on various risk factors associated with the pathogenesis of degenerative spondylolisthesis (DS), yet controversies regarding those risk factors still exist. Objective: To critically appraise and summarize evidence on risk factors for DS. Methods: Articles published before October 15, 2011, were systematically reviewed using PubMed and bibliographies of key articles. Each article was subject to quality rating and was analyzed by two independent reviewers. Results: From 382 citations, 30 underwent full-text review. Fourteen studies met inclusion criteria. All but two were considered poor quality. Female gender and higher facet joint angle were consistently associated with an increased risk of DS across multiple studies. Multiple studies also consistently reported no association between back pain and prolonged occupational sitting. Associations between age, parity, lumbosacral angle, lumbar lordosis, facet joint tropism, and pelvic inclination angles were inconsistent. Conclusions: There appears to be consistent evidence to suggest that the risk of DS increases with increasing age and is greater for females and people with a greater facet joint angle. PMID:23230415
Satoskar, Savni R.; Goel, Aimee A.; Mehta, Pooja H.; Goel, Atul
2014-01-01
Objective: The authors evaluate the anatomic subtleties of lumbar facets and assess the feasibility and effectiveness of use of ‘Goel facet spacer’ in the treatment of degenerative spinal canal stenosis. Materials and Methods: Twenty-five lumbar vertebral cadaveric dried bones were used for the purpose. A number of morphometric parameters were evaluated both before and after the introduction of Goel facet spacers within the confines of the facet joint. Results: The spacers achieved distraction of facets that was more pronounced in the vertical perspective. Introduction of spacers on both sides resulted in an increase in the intervertebral foraminal height and a circumferential increase in the spinal canal dimensions. Additionally, there was an increase in the disc space or intervertebral body height. The lumbar facets are more vertically and anteroposteriorly oriented when compared to cervical facets that are obliquely and transversely oriented. Conclusions: Understanding the anatomical peculiarities of the lumbar and cervical facets can lead to an optimum utilization of the potential of Goel facet distraction arthrodesis technique in the treatment of spinal degenerative canal stenosis. PMID:25558146
A new technique to treat facet joint pain with pulsed radiofrequency.
Schianchi, Pietro Martino
2015-02-01
Facet joint pain affects 5% to 15% of the population with low back pain and the prevalence increases with age due to progression of arthritis. While conservative treatments are often unsuccessful, the scientific evidence on minimally invasive therapies such as intra-articular steroid infiltration and continuous and pulsed radiofrequency (PRF) of the medial branches is contradictory. Since PRF has recently been reported to successfully treat joint pain, a new application of this method is proposed for facetogenic lumbar pain via an intra-articular subcapsular approach. Here we reported two cases with successful treatment. A 71-year-old patient presented because of persisting pain in the left gluteal region radiating to the lateral thigh and calf when standing. Anti-inflammatory drugs produced only short-lasting insufficient relief. A 52-year-old employee was admitted in June 2012 because of axial lower lumbar pain with intermittent diffuse radiation to the right lower extremity that worsened during walking and lying down despite receiving analgesics and physiotherapy. A new approach to treat lumbar facet joint pain with PRF is simple to perform and without serious complications. In view of the good long-lasting results obtained with the two reported cases, randomized control trials are necessary to validate this new approach.
FacetGist: Collective Extraction of Document Facets in Large Technical Corpora.
Siddiqui, Tarique; Ren, Xiang; Parameswaran, Aditya; Han, Jiawei
2016-10-01
Given the large volume of technical documents available, it is crucial to automatically organize and categorize these documents to be able to understand and extract value from them. Towards this end, we introduce a new research problem called Facet Extraction. Given a collection of technical documents, the goal of Facet Extraction is to automatically label each document with a set of concepts for the key facets ( e.g. , application, technique, evaluation metrics, and dataset) that people may be interested in. Facet Extraction has numerous applications, including document summarization, literature search, patent search and business intelligence. The major challenge in performing Facet Extraction arises from multiple sources: concept extraction, concept to facet matching, and facet disambiguation. To tackle these challenges, we develop FacetGist, a framework for facet extraction. Facet Extraction involves constructing a graph-based heterogeneous network to capture information available across multiple local sentence-level features, as well as global context features. We then formulate a joint optimization problem, and propose an efficient algorithm for graph-based label propagation to estimate the facet of each concept mention. Experimental results on technical corpora from two domains demonstrate that Facet Extraction can lead to an improvement of over 25% in both precision and recall over competing schemes.
FacetGist: Collective Extraction of Document Facets in Large Technical Corpora
Siddiqui, Tarique; Ren, Xiang; Parameswaran, Aditya; Han, Jiawei
2017-01-01
Given the large volume of technical documents available, it is crucial to automatically organize and categorize these documents to be able to understand and extract value from them. Towards this end, we introduce a new research problem called Facet Extraction. Given a collection of technical documents, the goal of Facet Extraction is to automatically label each document with a set of concepts for the key facets (e.g., application, technique, evaluation metrics, and dataset) that people may be interested in. Facet Extraction has numerous applications, including document summarization, literature search, patent search and business intelligence. The major challenge in performing Facet Extraction arises from multiple sources: concept extraction, concept to facet matching, and facet disambiguation. To tackle these challenges, we develop FacetGist, a framework for facet extraction. Facet Extraction involves constructing a graph-based heterogeneous network to capture information available across multiple local sentence-level features, as well as global context features. We then formulate a joint optimization problem, and propose an efficient algorithm for graph-based label propagation to estimate the facet of each concept mention. Experimental results on technical corpora from two domains demonstrate that Facet Extraction can lead to an improvement of over 25% in both precision and recall over competing schemes. PMID:28210517
A Model of Job Facet Satisfaction.
ERIC Educational Resources Information Center
Conway, Patricia G.; And Others
1987-01-01
Elements of the job that lead to overall job satisfaction were surveyed among public employees. The 17-facet model included promotion, training, supervisor, upper management, organization of work tasks, work stress, work challenge and autonomy, physical work space and equipment, work group, organizational structure, pay, etc. (Author/MH)
[Recommendations for Diagnosis and Treatment of Fractures of the Ring of Axis].
Scholz, Matti; Schleicher, Philipp; Kandziora, Frank; Badke, Andreas; Dreimann, Marc; Gebhard, Harry; Gercek, Erol; Gonschorek, Oliver; Hartensuer, René; Jarvers, Jan-Sven Gilbert; Katscher, Sebastian; Kobbe, Philipp; Koepp, Holger; Korge, Andreas; Matschke, Stefan; Mörk, Sven; Müller, Christian W; Osterhoff, Georg; Pécsi, Ferenc; Pishnamaz, Miguel; Reinhold, Maximilian; Schmeiser, Gregor; Schnake, Klaus John; Schneider, Kristian; Spiegl, Ulrich Josef Albert; Ullrich, Bernhard
2018-06-22
In a consensus process with four sessions in 2017, the working group "upper cervical spine" of the German Society for Orthopaedics and Trauma Surgery (DGOU) formulated "Therapeutic Recommendations for the Diagnosis and Treatment of Upper Cervical Fractures", taking their own experience and the current literature into consideration. The following article describes the recommendations for axis ring fractures (traumatic spondylolysis C2). About 19 to 49% of all cervical spine injuries include the axis vertebra. Traumatic spondylolysis of C2 may include potential discoligamentous instability C2/3. The primary aim of the diagnostic process is to detect the injury and to determine potential disco-ligamentous instability C2/3. For classification purposes, the Josten classification or the modified Effendi classification may be used. The Canadian C-spine rule is recommended for clinical screening for C-spine injuries. CT is the preferred imaging modality and an MRI is needed to determine the integrity of the discoligamentous complex C2/3. Conservative treatment is appropriate in case of stable fractures with intact C2/3 motion segment (Josten type 2 and 2). Patients should be closely monitored, in order to detect secondary dislocation as early as possible. Surgical treatment is recommended in cases of primary severe fracture dislocation or discoligamentous instability C2/3 (Josten 3 and 4) and/or secondary fracture dislocation. Anterior cervical decompression and fusion (ACDF) C2/3 is the treatment of choice. However, in case of facet joint luxation C2/3 with looked facet (Josten 4), a primary posterior approach may be necessary. Georg Thieme Verlag KG Stuttgart · New York.
Manchikanti, Laxmaiah; Helm Ii, Standiford; Pampati, Vidyasagar; Racz, Gabor B
2014-01-01
Multiple reviews have shown that interventional techniques for chronic pain have increased dramatically over the years. Of these interventional techniques, both sacroiliac joint injections and facet joint interventions showed explosive growth, followed by epidural procedures. Percutaneous adhesiolysis procedures have not been assessed for their utilization patterns separately from epidural injections. An analysis of the utilization patterns of percutaneous adhesiolysis procedures in managing chronic low back pain in the Medicare population from 2000 to 2011. To assess the utilization and growth patterns of percutaneous adhesiolysis in managing chronic low back pain. The study was performed utilizing the Centers for Medicare and Medicaid Services (CMS) Physician Supplier Procedure Summary Master of Fee-For-Service (FFS) Data from 2000 to 2011. Percutaneous adhesiolysis procedures increased 47% with an annual growth rate of 3.6% in the FFS Medicare population from 2000 to 2011. These growth rates are significantly lower than the growth rates for sacroiliac joint injections (331%), facet joint interventions (308%), and epidural injections (130%), but substantially lower than lumbar transforaminal injections (665%) and lumbar facet joint neurolysis (544%). Study limitations include lack of inclusion of Medicare Advantage patients. In addition, the statewide data is based on claims which may include the contiguous or other states. Percutaneous adhesiolysis utilization increased moderately in Medicare beneficiaries from 2000 to 2011. Overall, there was an increase of 47% in the utilization of adhesiolysis procedures per 100,000 Medicare beneficiaries, with an annual geometric average increase of 3.6%.
Wu, Jiuping; Zhou, Jingjing; Liu, Chibing; Zhang, Jun; Xiong, Wei; Lv, Yang; Liu, Rui; Wang, Ruiqiang; Du, Zhenwu; Zhang, Guizhen; Liu, Qinyi
2017-09-01
To compare the effectiveness and safety between autologous platelet-rich plasma (PRP) and Local Anesthetic (LA)/corticosteroid in intra-articular injection for the treatment of lumbar facet joint syndrome. Forty-six eligible patients with lumbar facet joint syndrome were randomized into group A (intra-articular injection with PRP) and group B (intra-articular injection with LA/corticosteroid). The following contents were evaluated: pain visual analog scale (VAS) at rest and during flexion, and the Roland-Morris Disability Questionnaire (RMQ), Oswestry Disability Index (ODI), and modified MacNab criteria for pain relief and applications of post-treatment drugs. All outcome assessments were performed immediately after and at 1 week, 1, 2, 3, and 6 months after treatment. No significant difference between groups was observed at baseline. Compared with pretreatment, both group A and group B demonstrated statistical improvements in the pain VAS score at rest or during flexion, the RMQ, and the ODI (P < 0.01). And there were significant differences between the 2 groups on the above-mentioned items (P < 0.05). For group B, subjective satisfaction based on the modified MacNab criteria and objective success rate were highest (80% and 85%) after 1 month, but only 50% and 20% after 6 months. However, for group A, they increased over time. In addition, there were no treatment-related complications in either group during follow-up. Both autologous PRP and LA/corticosteroid for intra-articular injection are effective, easy, and safe enough in the treatment of lumbar facet joint syndrome. However, autologous PRP is a superior treatment option for longer duration efficacy. © 2016 World Institute of Pain.
van Tilburg, C W J; Stronks, D L; Groeneweg, J G; Huygen, F J P M
2016-11-01
The aim of this study was to compare the effect of a percutaneous radiofrequency heat lesion at the medial branch of the primary dorsal ramus with a sham procedure, for the treatment of lumbar facet joint pain. A randomised sham-controlled double blind multicentre trial was carried out at the multidisciplinary pain centres of two hospitals. A total of 60 patients aged > 18 years with a history and physical examination suggestive of facet joint pain and a decrease of ≥ 2 on a numerical rating scale (NRS 0 to 10) after a diagnostic facet joint test block were included. In the treatment group, a percutaneous radiofrequency heat lesion (80 o C during 60 seconds per level) was applied to the medial branch of the primary dorsal ramus. In the sham group, the same procedure was undertaken without for the radiofrequency lesion. Both groups also received a graded activity physiotherapy programme. The primary outcome measure was decrease in pain. A secondary outcome measure was the Global Perceived Effect scale (GPE). There was a statistically significant effect on the level of pain in the factor Period (T0-T1). However, there was no statistically significant difference with the passage of time between the groups (Group × Period) or in the factor Group. In the crossover group, 11 of 19 patients had a decrease in NRS of ≥ 2 at one month crossover (p = 0.65). There was no statistically significant difference in satisfaction with the passage of time between the groups (Group × Period). The independent factors Group and Period also showed no statistically significant difference. There was no statistically significant Group × Period effect for recovery, neither an effect of Group or of Period. The null hypothesis of no difference in the decrease in pain and in GPE between the treatment and sham groups cannot be rejected. Post hoc analysis revealed that the age of the patients and the severity of the initial pain significantly predicted a positive outcome. Cite this article: Bone Joint J 2016;98-B:1526-33. ©2016 The British Editorial Society of Bone & Joint Surgery.
Sperry, Megan M.; Ita, Meagan E.; Kartha, Sonia; Zhang, Sijia; Yu, Ya-Hsin; Winkelstein, Beth
2017-01-01
Chronic joint pain is a widespread problem that frequently occurs with aging and trauma. Pain occurs most often in synovial joints, the body's load bearing joints. The mechanical and molecular mechanisms contributing to synovial joint pain are reviewed using two examples, the cervical spinal facet joints and the temporomandibular joint (TMJ). Although much work has focused on the macroscale mechanics of joints in health and disease, the combined influence of tissue mechanics, molecular processes, and nociception in joint pain has only recently become a focus. Trauma and repeated loading can induce structural and biochemical changes in joints, altering their microenvironment and modifying the biomechanics of their constitutive tissues, which themselves are innervated. Peripheral pain sensors can become activated in response to changes in the joint microenvironment and relay pain signals to the spinal cord and brain where pain is processed and perceived. In some cases, pain circuitry is permanently changed, which may be a potential mechanism for sustained joint pain. However, it is most likely that alterations in both the joint microenvironment and the central nervous system (CNS) contribute to chronic pain. As such, the challenge of treating joint pain and degeneration is temporally and spatially complicated. This review summarizes anatomy, physiology, and pathophysiology of these joints and the sensory pain relays. Pain pathways are postulated to be sensitized by many factors, including degeneration and biochemical priming, with effects on thresholds for mechanical injury and/or dysfunction. Initiators of joint pain are discussed in the context of clinical challenges including the diagnosis and treatment of pain. PMID:28056123
Chang, Min Cheol
2018-03-01
To evaluate the effect of pulsed radiofrequency (PRF) stimulation of the thoracic medial branch of the dorsal ramus in patients with chronic thoracic facet joint (TFJ) pain who were refractory to medial branch block (MBB). This was a prospective, observational study. The author retrospectively reviewed data from 72 patients who had received therapeutic MBB with 0.5 mL of 2% lidocaine mixed with 0.5 mL of 0.25% bupivacaine to treat TFJ-origin upper or midback pain. Of these patients, 20 were included to evaluate the effects of PRF on the thoracic medical branch to manage TFJ pain refractory to therapeutic MBB. PRF stimulation was administered at 5 Hz and a 5-millisecond pulsed width for 360 seconds at 45 V. The pain-reducing effect of the PRF procedure was evaluated via the numeric rating scale (NRS) at 1, 2, and 3 months after treatment. Successful pain relief was defined as ≥50% reduction in the NRS score compared with the score before treatment. The NRS scores changed significantly over time (pretreatment, 6.0 ± 1.0; 1 month, 3.3 ± 2.2; 2 months, 3.9 ± 2.1; and 3 months, 4.0 ± 2.2). At 1, 2, and 3 months after the PRF procedure, the NRS scores were significantly reduced compared with the scores before the treatment. Eleven (55%) of 20 patients reported successful pain relief at 3 months after PRF. The author suggests that PRF on the thoracic medial branch is an effective and safe interventional technique for the control of chronic TFJ pain. Copyright © 2017 Elsevier Inc. All rights reserved.
Actis, Jason A; Honegger, Jasmin D; Gates, Deanna H; Petrella, Anthony J; Nolasco, Luis A; Silverman, Anne K
2018-02-08
Low back mechanics are important to quantify to study injury, pain and disability. As in vivo forces are difficult to measure directly, modeling approaches are commonly used to estimate these forces. Validation of model estimates is critical to gain confidence in modeling results across populations of interest, such as people with lower-limb amputation. Motion capture, ground reaction force and electromyographic data were collected from ten participants without an amputation (five male/five female) and five participants with a unilateral transtibial amputation (four male/one female) during trunk-pelvis range of motion trials in flexion/extension, lateral bending and axial rotation. A musculoskeletal model with a detailed lumbar spine and the legs including 294 muscles was used to predict L4-L5 loading and muscle activations using static optimization. Model estimates of L4-L5 intervertebral joint loading were compared to measured intradiscal pressures from the literature and muscle activations were compared to electromyographic signals. Model loading estimates were only significantly different from experimental measurements during trunk extension for males without an amputation and for people with an amputation, which may suggest a greater portion of L4-L5 axial load transfer through the facet joints, as facet loads are not captured by intradiscal pressure transducers. Pressure estimates between the model and previous work were not significantly different for flexion, lateral bending or axial rotation. Timing of model-estimated muscle activations compared well with electromyographic activity of the lumbar paraspinals and upper erector spinae. Validated estimates of low back loading can increase the applicability of musculoskeletal models to clinical diagnosis and treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Photometric model of diffuse surfaces described as a distribution of interfaced Lambertian facets.
Simonot, Lionel
2009-10-20
The Lambertian model for diffuse reflection is widely used for the sake of its simplicity. Nevertheless, this model is known to be inaccurate in describing a lot of real-world objects, including those that present a matte surface. To overcome this difficulty, we propose a photometric model where the surfaces are described as a distribution of facets where each facet consists of a flat interface on a Lambertian background. Compared to the Lambertian model, it includes two additional physical parameters: an interface roughness parameter and the ratio between the refractive indices of the background binder and of the upper medium. The Torrance-Sparrow model--distribution of strictly specular facets--and the Oren-Nayar model--distribution of strictly Lambertian facets--appear as special cases.
Goel, Atul; Shah, Abhidha; Jadhav, Madan; Nama, Santhosh
2013-12-01
The authors report their experience in treating 21 patients by using a novel form of treatment of lumbar degenerative disease that leads to canal stenosis. The surgery involved distraction of the facets using specially designed Goel intraarticular spacers and was aimed at arthrodesis of the spinal segment in a distracted position. The operation is based on the premise that subtle and longstanding facet instability, joint space reduction, and subsequent facet override had a profound and primary influence in the pathogenesis of degenerative lumbar canal stenosis. The surgical technique and the rationale for treatment are discussed. Between April 2006 and January 2011, 21 cases of lumbar degenerative disease resulting in characteristic lumbar canal stenosis were treated in the authors' department with the proposed technique. The patients were prospectively analyzed. There were 15 men and 6 women who ranged in age from 48 to 71 years (mean 58 years). Nine patients underwent 1-level and 12 patients underwent 2-level treatment. Surgery involved wide opening of the articular joint, denuding of the articular capsule/endplate cartilage, distraction of the facets, and forced impaction of Goel intraarticular spacers. Bone graft pieces obtained by sectioning the spinous processes were placed within and over the joint and in the midline over the adequately prepared host area of laminae. The Oswestry Disability Index and visual analog scale were used to clinically assess the patients before and after surgery and at follow-up. The alterations in the physical architecture of spinal canal and intervertebral foramen dimensions were evaluated before and after placement of the intrafacet implant and after at least 6 months of follow-up. All patients had varying degrees of relief from symptoms of local back pain and radiculopathy. Impaction of spacers within the facet joints resulted in an increase in the spinal canal and intervertebral root canal dimensions (mean 2.33 mm), reduction of buckling of the ligamentum flavum, and reduction of the extent of bulge of the disc into the spinal canal. The procedure resulted in firm stabilization and fixation of the spinal segment and provided a ground for arthrodesis. No patient worsened neurologically after treatment. During the follow-up period, all patients had evidence of segmental bone fusion. No patient underwent reexploration or further surgery of the lumbar spine. Impaction of the spacers within the articular cavity after facet distraction resulted in reversal of several effects of spine degeneration that had caused spinal and root canal stenosis. The safe, firm, and secure stabilization at the fulcrum of lumbar spinal movements provided a ground for segmental spinal arthrodesis. The immediate postoperative and lasting recovery from symptoms suggests the validity of the procedure.
Development and Validation of the Faceted Inventory of the Five-Factor Model (FI-FFM).
Watson, David; Nus, Ericka; Wu, Kevin D
2017-06-01
The Faceted Inventory of the Five-Factor Model (FI-FFM) is a comprehensive hierarchical measure of personality. The FI-FFM was created across five phases of scale development. It includes five facets apiece for neuroticism, extraversion, and conscientiousness; four facets within agreeableness; and three facets for openness. We present reliability and validity data obtained from three samples. The FI-FFM scales are internally consistent and highly stable over 2 weeks (retest rs ranged from .64 to .82, median r = .77). They show strong convergent and discriminant validity vis-à-vis the NEO, the Big Five Inventory, and the Personality Inventory for DSM-5. Moreover, self-ratings on the scales show moderate to strong agreement with corresponding ratings made by informants ( rs ranged from .26 to .66, median r = .42). Finally, in joint analyses with the NEO Personality Inventory-3, the FI-FFM neuroticism facet scales display significant incremental validity in predicting indicators of internalizing psychopathology.
Schweitzer, Karl M; Vaccaro, Alexander R; Harrop, James S; Hurlbert, John; Carrino, John A; Rechtine, Glenn R; Schwartz, David G; Alanay, Ahmet; Sharma, Dinesh K; Anderson, D Greg; Lee, Joon Y; Arnold, Paul M
2007-09-01
The Spine Trauma Study Group (STSG) has proposed a novel thoracolumbar injury classification system and score (TLICS) in an attempt to define traumatic spinal injuries and direct appropriate management schemes objectively. The TLICS assigns specific point values based on three variables to generate a final severity score that guides potential treatment options. Within this algorithm, significant emphasis has been placed on posterior ligamentous complex (PLC) integrity. The purpose of this study was to determine the interrater reliability of indicators surgeons use when assessing PLC disruption on imaging studies, including computed tomography (CT) and magnetic resonance imaging (MRI). Orthopedic surgeons and neurosurgeons retrospectively reviewed a series of thoracolumbar injury case studies. Thirteen case studies, including images, were distributed to STSG members for individual, independent evaluation of the following three criteria: (1) diastasis of the facet joints on CT; (2) posterior edema-like signal in the region of PLC components on sagittal T2-weighted fat saturation (FAT SAT) MRI; and (3) disrupted PLC components on sagittal T1-weighted MRI. Interrater agreement on the presence or absence of each of the three criteria in each of the 13 cases was assessed. Absolute interrater percent agreement on diastasis of the facet joints on CT and posterior edema-like signal in the region of PLC components on sagittal T2-weighted FAT SAT MRI was similar (agreement 70.5%). Interrater agreement on disrupted PLC components on sagittal T1-weighted MRI was 48.9%. Facet joint diastasis on CT was the most reliable indicator of PLC disruption as assessed by both Cohen's kappa (kappa = 0.395) and intraclass correlation coefficient (ICC 0.430). The interrater reliability of assessing diastasis of the facet joints on CT had fair to moderate agreement. The reliability of assessing the posterior edema-like signal in the region of PLC components was lower but also fair, whereas the reliability of identifying disrupted PLC components was poor.
Kelekis, Alexios; Filippiadis, Dimitrios K; Velonakis, Georgios; Martin, Jean-Baptist; Oikonomopoulos, Nikolaos; Brountzos, Elias; Kelekis, Nikolaos
2014-01-01
Transforaminal infiltrations in the cervical spine are governed by a higher rate of vascular puncture than in the lumbar spine. The purpose of our study is to assess the safety and efficacy of percutaneous, fluoroscopically guided nerve root infiltrations in cases of cervical radiculopathy. An indirect postero-lateral approach was performed through the ipsilateral facet joint. During the last 2 years, 25 patients experiencing cervical radiculopathy underwent percutaneous, fluoroscopically guided nerve root infiltrations by means of an indirect postero-lateral approach through the ipsilateral facet joint. The intra-articular position of the needle (22-gauge spinal needle) was fluoroscopically verified after injection of a small amount of contrast medium which also verified dispersion of the contrast medium periradicularly and in the epidural space. Then a mixture of long-acting glucocorticosteroid diluted in normal saline (1.5/1 mL) was injected intra-articularly. A questionnaire with a Numeric Visual Scale (NVS) scale helped assess pain relief, life quality, and mobility improvement. A mean of 2.3 sessions was performed in the patients of our study. In the vast majority of our patients 19/25 (76%), the second infiltration was performed within 7-10 days of the first one. Comparing the pain scores prior (mean value 8.80 ± 1.080 NVS units) and after (mean value 1.84 ± 1.405 NVS units), there was a mean decrease of 6.96 ± 1.695 NVS units [median value 7 NVS units (P < 0.001) in terms of pain reduction, effect upon mobility, and life quality. There were no clinically significant complications noted in our study. Fluoroscopically guided transforaminal infiltrations through the ipsilateral facet joint seem to be a feasible, efficacious, and safe approach for the treatment of patients with cervical radiculopathy. This approach facilitates needle placement and minimizes risk of complications.
Moumene, Missoum; Geisler, Fred H
2007-08-01
Finite element model. To estimate the effect of lumbar mobile-core and fixed-core artificial disc design and placement on the loading of the facet joints, and stresses on the polyethylene core. Although both mobile-core and fixed-core lumbar artificial disc designs have been used clinically, the effect of their design and the effect of placement within the disc space on the structural element loading, and in particular the facets and the implant itself, have not been investigated. A 3D nonlinear finite element model of an intact ligamentous L4-L5 motion segment was developed and validated in all 6 df based on previous experiments conducted on human cadavers. Facet loading of a mobile-core TDR and a fixed-core TDR were estimated with 4 different prosthesis placements for 3 different ranges of motion. Placing the mobile-core TDR anywhere within the disc space reduced facet loading by more than 50%, while the fixed-core TDR increased facet loading by more than 10% when compared with the intact disc in axial rotation. For central (ideal) placement, the mobile- and fixed-core implants were subjected to compressive stresses on the order of 3 MPa and 24 MPa, respectively. The mobile-core stresses were not affected by implant placement, while the fixed-core stresses increased by up to 40%. A mobile-core artificial disc design is less sensitive to placement, and unloads the facet joints, compared with a fixed-core design. The decreased core stress may result in a reduced potential for wear in a mobile-core prosthesis compared with a fixed-core prosthesis, which may increase the functional longevity of the device.
ERIC Educational Resources Information Center
New York City Office of the Special Commissioner of Investigation, NY.
In recent years, sex abuse scandals have struck schools around the country. This report contends that the way to address sexual abuse is to face it head on and to develop a comprehensive program to attack every facet of the problem. It is the multi-faceted nature of child sexual abuse that dictates this comprehensive approach. It is recommended…
Role of facet curvature for accurate vertebral facet load analysis.
Holzapfel, Gerhard A; Stadler, Michael
2006-06-01
The curvature of vertebral facet joints may play an important role in the study of load-bearing characteristics and clinical interventions such as graded facetectomy. In previously-published finite element simulations of this procedure, the curvature was either neglected or approximated with a varying degree of accuracy. Here we study the effect of the curvature in three different load situations by using a numerical model which is able to represent the actual curvature without any loss of accuracy. The results show that previously-used approximations of the curvature lead to good results in the analysis of sagittal moment/rotation. However, for sagittal shear-force/displacement and for the contact stress distribution, previous results deviate significantly from our results. These findings are supported through related convergence studies. Hence we can conclude that in order to obtain reliable results for the analysis of sagittal shear-force/displacement and the contact stress distribution in the facet joint, the curvature must not be neglected. This is of particular importance for the numerical simulation of the spine, which may lead to improved diagnostics, effective surgical planning and intervention. The proposed method may represent a more reliable basis for optimizing the biomedical engineering design for tissue engineering or, for example, for spinal implants.
Computed tomography of calcaneal fractures: anatomy, pathology, dosimetry, and clinical relevance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guyer, B.H.; Levinsohn, E.M.; Fredrickson, B.E.
1985-11-01
Eighteen CT examinations were performed in 10 patients for the evaluation of acute intraarticular fractures and their follow-up. Fractures comparable to those in the patients were created in cadavers. The normal anatomy and the traumatically altered anatomy of the calcaneus in the axial, coronal, and sagittal planes are demonstrated by CT and corresponding anatomic sections. Scanning was performed in the axial plane, with subsequent reconstruction in the coronal and sagittal planes. The axial scans show disruption of the inferior part of the posterior facet, calcaneocuboid joint involvement, and widening of the calcaneus. The coronal scans show disruption of the superiormore » part of the posterior facet, sustentaculum tali depression (involvement of middle and anterior facets), peroneal and flexor hallucis longus tendon impingement, and widening and height loss of the calcaneus. The sagittal scans show disruption of the posterior facet, calcaneocuboid joint involvement, and height loss of the calcaneus and allow the evaluation of Boehler's and Gissane's angles. All three planes show the position of major fracture fragments. Radiation dose to the foot was measured to be 0.1 rad (0.001 Gy) for plain film radiography (five exposures), 18 rad (0.18 Gy) for conventional tomography (20 cuts), and 2.6 rad (0.026 Gy) for axial CT examination.« less
Epidemiology, Treatment, and Prevention of Lumbar Spine Injuries in Major League Baseball Players.
Camp, Christopher L; Conti, Matthew S; Sgroi, Terrance; Cammisa, Frank P; Dines, Joshua S
2016-01-01
In recent years, increased attention has been paid to injuries occurring in Major League Baseball (MLB) players. Although most of the current orthopedic literature regarding baseball injuries pertains to the shoulder and elbow, lumbar spine injuries are another common reason for time out of play. Back and core injuries may represent as many as 12% of all injuries that result in time out of play from MLB. This high rate of injury is likely related to the critical role that the spine plays in every major baseball-related movement. Linking the upper extremities to the hips and lower extremities, a healthy, strong, and stable spine and core is a prerequisite for performance in all levels of baseball. It has been well documented that baseball players with poor spinal control and stabilization are at increased risk for future injury. Common etiologies of lumbar injuries include stress fractures, muscle injury, annular tears with or without disc herniation, facet joint pain, sacroiliac joint pain, and stenosis. This review discusses the epidemiology of spinal injuries in baseball. Special attention is paid to the role of the spine in baseball-related activities, common injuries, tips for making the correct diagnosis, treatment options, outcomes, rehabilitation, and injury prevention.
Arslan, G; Ceken, K; Cubuk, M; Ozkaynak, C; Lüleci, E
2001-01-01
To review the prevalence and location of vertebral pneumatocysts and evaluate the CT findings of these benign lesions. Retrospectively we reviewed CT images of 89 patients with suspected disc disease during a 6-month period. Distinctive CT pattern of intraosseous pneumatocysts involving the cervical, thoracic and lumbar spine was found. In 8 patients (9%), 10 vertebral pneumatocysts were detected. Five were located in the vertebral body and 4 of these were associated with vacuum phenomenon in adjacent intervertebral discs. Five were located near the facet joint and all were associated with vacuum phenomenon in adjacent facet joint. Intraosseous pneumatocyst is a benign lesion, therefore biopsy and follow-up are unnecessary. Although vertebral pneumatocysts seem to be uncommon with a few reported cases, this study shows them to be more frequent than previously thought.
Uzel, A-P; Bulla, A; Laurent-Joye, M; Caix, P
2011-08-01
The Henry approach is the classical anterolateral surgical exposure of the volar aspect of the distal radius. This approach does not allow good access to the medial side of the volar distal radius (lunate facet) and the distal radio-ulnar joint, unless it is extended proximally, retracting the tendons and the median nerve medially, which can cause some trauma. The purpose of our study was to investigate the anatomic basis and to outline the advantages of the unusual anteromedial approach, reporting our experience in the treatment of 4 distal radius fractures, with a 90° or 180° twist of the lunate facet, and 10 wrist dissections on cadavers. The average follow-up was 68.8 months (range 18 to 115 months). In our series, this approach did not cause any nerve injuries or any sensory loss of the distal forearm and the palm. All the fractures of the lunate facet and of the radial styloid process healed. One patient with an ulnar styloid process fracture associated showed pseudarthrosis, but with no instability of the distal radio-ulnar joint or pain on the ulnar side. Using the criteria of Green and O'Brien, modified by Cooney, the results were: excellent in two cases, good in one case, and average in another. The evaluation of arthritis according to Knirk and Jupiter's classification showed grade 0 in three cases and grade 3 in one case with osteochondral sclerosis. We showed that the anteromedial approach is reliable and convenient in the case of fractures situated in the antero-medial portion of the radius, for the double objective of reducing the fracture under direct control and checking the congruence of the distal radio-ulnar joint.
Proximal attrition facets: morphometric, demographic, and aging characteristics.
Sarig, Rachel; Hershkovitz, Israel; Shvalb, Nir; Sella-Tunis, Tatiana; May, Hila; Vardimon, Alexander D
2014-08-01
Although interproximal attrition is considered to be limited in modern populations, it has important clinical implications. However, in contrast to occlusal attrition, proximal attrition receives limited scientific attention. The main purpose of the current study was to fill this void. Seven-hundred and sixty-five teeth were collected from 255 skulls of subjects 18-75 yr of age. For each individual, three mandibular teeth (the first and second premolars and the first molar) were examined for proximal attrition facets (PAFs). The results provide detailed information on the size, shape, and location of the facets according to age cohort, gender, and ethnicity. The validity of the method used to measure the facets was also examined. The major findings were as follows: PAFs are usually located on the upper half of the crown proximal aspect; in each tooth, the mesial facet is more lingually positioned and the distal facet is more buccally positioned; the majority of the facets are subrectangular in shape; the size of the facets tends to increase in an anteroposterior direction (from premolars to molars); and facet size and location are age- and sex-dependent and ethnicity-independent. It is our recommendation that dentists bear in mind that interproximal attrition is a dynamic, long-term process and needs to be considered in many clinical scenarios. © 2014 Eur J Oral Sci.
Morphometric Study of Clavicular Facet of Coracoclavicular Joint in Adult Indian Population
Mahajan, Anita; Vasudeva, Neelam
2016-01-01
Introduction Anthropologists have used Coracoclavicular Joint (CCJ), a non-metric anatomical variant in population, as a marker for population migration from prehistoric times to present. Aim The aim of this osteological study was to determine the incidence and morphometry of articular facet of CCJ on conoid tubercle of clavicle in Indian population, as Indian studies are scanty and incomplete. Materials and Methods The study was done on 144 adult human clavicles (76 right and 68 left; 93 males and 51 females) collected from osteology museum in Department of Anatomy, Maulana Azad Medical College, New Delhi, India. The presence of articular facet on the conoid tubercle was determined and Maximum Antero-Posterior (MAPD) and maximum transverse diameter (MTD) was measured by digital vernier calliper. The incidence was compared on the basis of sex, side and with other osteological studies in the world. Statistical analysis was done using the Chi-Square test for nominal categorical data and student’s t-test for normally distributed continuous variables in Microsoft Excel 2007 to assess the relationship between the examined variables. Results Articular facet on conoid tubercle was found in 8 cases (5.6%). Seven (9.2%) were present on the right side and one (1.5%) on the left side. Seven cases (7.5%) were present in males and one case (2%) was found in females. The facets were generally oval, with MAPD and MTD of 12.28 and 17.17 mm respectively. A significant side variation was present with right sided facet being more common. The left sided facet was more transversely elongated than right. In males, the facets were more elongated antero-posteriorly than in females. Conclusion The Indian population showed an incidence of 5.6%, which was comparable to other ethnic groups in world population. The morphometric and side differences could be attributed to the occupational factors and range of movements associated with the CCJ. The CCJ should be borne in mind as a differential diagnosis for thoracic outlet syndrome and in general for shoulder pain. PMID:27190785
Posterior Epidural Migration of an Extruded Lumbar Disc Mimicking a Facet Cyst: A Case Report
Yoo, Young Sun; Ju, Chang Il; Kim, Dong Min
2015-01-01
Dorsal extradural migration of extruded disc material is clinically uncommon. We report a rare case of posterior epidural migration of an extruded lumbar disc mimicking a facet cyst. A 32-year-old man was admitted to our institute with a 2-week history of severe low back pain and radiating pain in the left leg. The magnetic resonance (MR) images revealed a dorsally located, left-sided extradural cystic mass at the L2-3 level. The initial diagnosis was an epidural facet cyst because of the high signal intensity on MR images and its location adjacent to the facet joint. Intraoperatively, an encapsulated mass of soft tissue adherent to the dural sac was observed and excised. The pathological diagnosis was degenerated disc material. After surgery, the patient experienced complete relief from leg pain. PMID:25883662
Cardoso, Mario J; Dmitriev, Anton E; Helgeson, Melvin; Lehman, Ronald A; Kuklo, Timothy R; Rosner, Michael K
2008-12-15
This is an in vitro biomechanical study. The current investigation was performed to evaluate adjacent level kinematic change following unilateral and bilateral facet violation and laminectomy following 1-, 2-, and 3-level reconstruction. The incidence of superior-segment facet violation with lumbar transpedicular fixation has been reported as high as 35%; however, its contribution to biomechanical instability at the supradjacent level is unknown. In addition, superior-segment laminectomy has been implicated as a risk factor for the development of adjacent level disease. The authors assess the acute biomechanical effects of proximal facet violation and subsequent laminectomy in an instrumented posterior fusion model in 10 cadaveric specimens. Biomechanical testing was performed on 10 human cadaveric spines under axial rotation (AR), flexion-extension (FE), and lateral bending (LB) loading. After intact analysis, pedicle screws were inserted from L5-S1 and testing repeated with: (1) preserved L4-L5 facets, (2) unilateral facet breach, (3) bilateral breach, and (4) L5 laminectomy. Following biomechanical analysis, instrumentation was extended to L4, then L3 and biomechanical testing repeated. Full range of motion (ROM) at the proximal adjacent levels were recorded and normalized to intact (100%). Supradjacent level ROM was increased for all groups under all loading methods relative to intact (P < 0.05). However, AR testing revealed progressive instability at the adjacent level in groups 3 and 4, relative to group 1, following 1-, 2- and 3-level fixation (P < 0.05). During FE, supradjacent level ROM was significantly increased for group 4 specimens compared with group 1 after L5-S1 fixation (P < 0.05), and was greater than all other groups for L3-S1 constructs (P < 0.05). Interestingly, under lateral bending, facet joint destabilization did not change adjacent segment ROM. There were significant changes in proximal level ROM immediately after posterior stabilization. However, an additional increase in supradjacent segment ROM was recorded during AR after bilateral facet breach.Subsequent complete laminectomy at the uppermostfixation level further destabilized the supradjacent segment in FE and AR. Therefore, meticulous preservation of the cephalad-most segment facet joints-is paramount to ensure stability.
Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis.
Masharawi, Youssef; Rothschild, Bruce; Dar, Gali; Peleg, Smadar; Robinson, Dror; Been, Ella; Hershkovitz, Israel
2004-08-15
Thoracolumbar facet orientations were measured and analyzed. To establish a comprehensive database for facet orientation in the thoracolumbar vertebrae and to determine the normal human condition. Most studies on facet orientation have based their conclusions on two-dimensional measurements, in small samples or isolated vertebrae. The amount of normal asymmetry in facet orientation is poorly addressed. Transverse and longitudinal facet angles were measured directly from 240 human vertebral columns (males/females, blacks/whites). The specimens' osteologic material is part of the Hamann-Todd Osteological Collection housed at the Cleveland Museum of Natural History (Cleveland, OH). A total of 4,080 vertebrae (T1-L5) from the vertebral columns of individuals 20 to 80 years of age were measured, using a Microscribe three-dimensional apparatus (Immersion Co., San Jose, CA). Data were recorded directly on computer software. Statistical analysis included paired t tests and analysis of variance. RESULTS.: Facet orientation is independent of gender, age, and ethnic group. Asymmetry in facet orientation is found in the thorax. All thoracolumbar facets are positioned in an oblique plane. In the transverse plane, all facets from T1 to T11 are positioned with an anterior inclination of approximately 25 degrees to 30 degrees from the frontal plane. The facets of T12-L2 are oriented closer to the midsagittal plane of the vertebral body (mean range, 25.89 degrees-33.87 degrees), while the facets of L3-L5 are oriented away from that plane (mean range, 40.40 degrees-56.30 degrees). Facet transverse orientation at the thoracolumbar junction is highly variable (approximately 80% with approximately 101 degrees and approximately 20% with 35 degrees). All facets are oriented more vertically from T1 (approximately 150 degrees) to L5 (approximately 170 degrees). The facet sagittal orientations of the lumbar zygoapophyseal joints are not equivalent. CONCLUSIONS.: Asymmetry in facet orientation is a normal characteristic in the thorax.
Computed tomography of calcaneal fractures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heger, L.; Wulff, K.; Seddiqi, M.S.A.
1985-07-01
Computed tomography (CT) of 25 fractured calcanei was performed to investigate the potential of CT in evaluating the pattern and biomechanics of these fractures. The characteristic findings of typical fractures are presented, including the number and type of principal fragments, size and dislocation of the sustentacular fragment, and involvement of the anterior and posterior facets of the subtalar joint. In 17 cases, the calcaneus consisted of four or more fragments. Furthermore, in 17 cases the sustentacular fragment included all or part of the posterior facet joint. In 18 of the 25 cases, the sustentacular fragment was displaced. It is concludedmore » that well performed CT is an invaluable adjunct in understanding the fracture mechanism and in detecting pain-provoking impingement between the fibular malleolus and the tuberosity fragment.« less
Gill, Corey M; Bredella, Miriam A; DeSilva, Jeremy M
2015-11-01
The medial cuneiform, namely the curvature and angulation of its distal facet with metatarsal 1, is crucial as a stabilizer in bipedal locomotion and an axis upon which the great toe medially deviates during arboreal locomotion in extant apes. Previous work has shown that facet curvature and angulation in adult dry-bone specimens can distinguish African apes from Homo, and can even distinguish among species of Gorilla. This study provides the first ontogenetic assessment of medial cuneiform curvature and angulation in juvenile (n = 68) and adult specimens (n = 102) using computed tomography in humans and extant ape specimens, including Pongo. Our data find that modern human juveniles initially have a convex and slightly medially oriented osseous surface of the developing medial cuneiform distal facet that flattens and becomes more distally oriented with age. The same pattern (though of a different magnitude) occurs developmentally in the chimpanzee medial cuneiform, but not in Gorilla or Pongo, whose medial cuneiform facet angulation remains unchanged ontogenetically. These data suggest that the medial cuneiform ossifies in a distinguishable pattern between Pongo, Gorilla, Pan, and Homo, which may in part be due to subtle differences in the loading environment at the hallucal tarsometatarsal joint-a finding that has important implications for interpreting fossil medial cuneiforms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cost Utility Analysis of Cervical Therapeutic Medial Branch Blocks in Managing Chronic Neck Pain
Manchikanti, Laxmaiah; Pampati, Vidyasagar; Kaye, Alan D.; Hirsch, Joshua A.
2017-01-01
Background:Controlled diagnostic studies have established the prevalence of cervical facet joint pain to range from 36% to 67% based on the criterion standard of ≥ 80% pain relief. Treatment of cervical facet joint pain has been described with Level II evidence of effectiveness for therapeutic facet joint nerve blocks and radiofrequency neurotomy and with no significant evidence for intraarticular injections. However, there have not been any cost effectiveness or cost utility analysis studies performed in managing chronic neck pain with or without headaches with cervical facet joint interventions. Study Design:Cost utility analysis based on the results of a double-blind, randomized, controlled trial of cervical therapeutic medial branch blocks in managing chronic neck pain. Objectives:To assess cost utility of therapeutic cervical medial branch blocks in managing chronic neck pain. Methods: A randomized trial was conducted in a specialty referral private practice interventional pain management center in the United States. This trial assessed the clinical effectiveness of therapeutic cervical medial branch blocks with or without steroids for an established diagnosis of cervical facet joint pain by means of controlled diagnostic blocks. Cost utility analysis was performed with direct payment data for the procedures for a total of 120 patients over a period of 2 years from this trial based on reimbursement rates of 2016. The payment data provided direct procedural costs without inclusion of drug treatments. An additional 40% was added to procedural costs with multiplication of a factor of 1.67 to provide estimated total costs including direct and indirect costs, based on highly regarded surgical literature. Outcome measures included significant improvement defined as at least a 50% improvement with reduction in pain and disability status with a combined 50% or more reduction in pain in Neck Disability Index (NDI) scores. Results:The results showed direct procedural costs per one-year improvement in quality adjusted life year (QALY) of United States Dollar (USD) of $2,552, and overall costs of USD $4,261. Overall, each patient on average received 5.7 ± 2.2 procedures over a period of 2 years. Average significant improvement per procedure was 15.6 ± 12.3 weeks and average significant improvement in 2 years per patient was 86.0 ± 24.6 weeks. Limitations:The limitations of this cost utility analysis are that data are based on a single center evaluation. Only costs of therapeutic interventional procedures and physician visits were included, with extrapolation of indirect costs. Conclusion:The cost utility analysis of therapeutic cervical medial branch blocks in the treatment of chronic neck pain non-responsive to conservative management demonstrated clinical effectiveness and cost utility at USD $4,261 per one year of QALY. PMID:29200944
Cost Utility Analysis of Cervical Therapeutic Medial Branch Blocks in Managing Chronic Neck Pain.
Manchikanti, Laxmaiah; Pampati, Vidyasagar; Kaye, Alan D; Hirsch, Joshua A
2017-01-01
Background: Controlled diagnostic studies have established the prevalence of cervical facet joint pain to range from 36% to 67% based on the criterion standard of ≥ 80% pain relief. Treatment of cervical facet joint pain has been described with Level II evidence of effectiveness for therapeutic facet joint nerve blocks and radiofrequency neurotomy and with no significant evidence for intraarticular injections. However, there have not been any cost effectiveness or cost utility analysis studies performed in managing chronic neck pain with or without headaches with cervical facet joint interventions. Study Design: Cost utility analysis based on the results of a double-blind, randomized, controlled trial of cervical therapeutic medial branch blocks in managing chronic neck pain. Objectives: To assess cost utility of therapeutic cervical medial branch blocks in managing chronic neck pain. Methods: A randomized trial was conducted in a specialty referral private practice interventional pain management center in the United States. This trial assessed the clinical effectiveness of therapeutic cervical medial branch blocks with or without steroids for an established diagnosis of cervical facet joint pain by means of controlled diagnostic blocks. Cost utility analysis was performed with direct payment data for the procedures for a total of 120 patients over a period of 2 years from this trial based on reimbursement rates of 2016. The payment data provided direct procedural costs without inclusion of drug treatments. An additional 40% was added to procedural costs with multiplication of a factor of 1.67 to provide estimated total costs including direct and indirect costs, based on highly regarded surgical literature. Outcome measures included significant improvement defined as at least a 50% improvement with reduction in pain and disability status with a combined 50% or more reduction in pain in Neck Disability Index (NDI) scores. Results: The results showed direct procedural costs per one-year improvement in quality adjusted life year (QALY) of United States Dollar (USD) of $2,552, and overall costs of USD $4,261. Overall, each patient on average received 5.7 ± 2.2 procedures over a period of 2 years. Average significant improvement per procedure was 15.6 ± 12.3 weeks and average significant improvement in 2 years per patient was 86.0 ± 24.6 weeks. Limitations: The limitations of this cost utility analysis are that data are based on a single center evaluation. Only costs of therapeutic interventional procedures and physician visits were included, with extrapolation of indirect costs. Conclusion: The cost utility analysis of therapeutic cervical medial branch blocks in the treatment of chronic neck pain non-responsive to conservative management demonstrated clinical effectiveness and cost utility at USD $4,261 per one year of QALY.
... is called the conus medullaris. There is a thread that continues from the conus called the filum ... bodies, the facet joint created by their articular processes, the intervertebral disc between them and the associated ...
Manchikanti, Laxmaiah; Cash, Kimberly A; Pampati, Vidyasagar; Malla, Yogesh
2014-01-01
A randomized, double-blind, active-controlled trial. To assess the effectiveness of cervical interlaminar epidural injections of local anesthetic with or without steroids for the management of axial or discogenic pain in patients without disc herniation, radiculitis, or facet joint pain. Cervical discogenic pain without disc herniation is a common cause of suffering and disability in the adult population. Once conservative management has failed and facet joint pain has been excluded, cervical epidural injections may be considered as a management tool. Despite a paucity of evidence, cervical epidural injections are one of the most commonly performed nonsurgical interventions in the management of chronic axial or disc-related neck pain. One hundred and twenty patients without disc herniation or radiculitis and negative for facet joint pain as determined by means of controlled diagnostic medial branch blocks were randomly assigned to one of the 2 treatment groups. Group I patients received cervical interlaminar epidural injections of local anesthetic (lidocaine 0.5%, 5 mL), whereas Group II patients received 0.5% lidocaine, 4 mL, mixed with 1 mL or 6 mg of nonparticulate betamethasone. The primary outcome measure was ≥ 50% improvement in pain and function. Outcome assessments included numeric rating scale (NRS), Neck Disability Index (NDI), opioid intake, employment, and changes in weight. Significant pain relief and functional improvement (≥ 50%) was present at the end of 2 years in 73% of patients receiving local anesthetic only and 70% receiving local anesthetic with steroids. In the successful group of patients, however, defined as consistent relief with 2 initial injections of at least 3 weeks, significant improvement was illustrated in 78% in the local anesthetic group and 75% in the local anesthetic with steroid group at the end of 2 years. The results reported at the one-year follow-up were sustained at the 2-year follow-up. Cervical interlaminar epidural injections with or without steroids may provide significant improvement in pain and functioning in patients with chronic discogenic or axial pain that is function-limiting and not related to facet joint pain.
Manchikanti, Laxmaiah; Cash, Kimberly A; McManus, Carla D; Pampati, Vidyasagar
2012-01-01
Background Chronic low back pain without disc herniation is common. Various modalities of treatments are utilized in managing this condition, including epidural injections. However, there is continued debate on the effectiveness, indications, and medical necessity of any treatment modality utilized for managing axial or discogenic pain, including epidural injections. Methods A randomized, double-blind, actively controlled trial was conducted. The objective was to evaluate the ability to assess the effectiveness of caudal epidural injections of local anesthetic with or without steroids for managing chronic low back pain not caused by disc herniation, radiculitis, facet joints, or sacroiliac joints. A total of 120 patients were randomized to two groups; one group did not receive steroids (group 1) and the other group did (group 2). There were 60 patients in each group. The primary outcome measure was at least 50% improvement in Numeric Rating Scale and Oswestry Disability Index. Secondary outcome measures were employment status and opioid intake. These measures were assessed at 3, 6, 12, 18, and 24 months after treatment. Results Significant pain relief and functional status improvement (primary outcome) defined as a 50% or more reduction in scores from baseline, were observed in 54% of patients in group 1 and 60% of patients in group 2 at 24 months. In contrast, 84% of patients in group 1 and 73% in group 2 saw significant pain relief and functional status improvement in the successful groups at 24 months. Conclusion Caudal epidural injections of local anesthetic with or without steroids are effective in patients with chronic axial low back pain of discogenic origin without facet joint pain, disc herniation, and/or radiculitis. PMID:23091395
Bilateral and multiple cavitation sounds during upper cervical thrust manipulation
2013-01-01
Background The popping produced during high-velocity, low-amplitude (HVLA) thrust manipulation is a common sound; however to our knowledge, no study has previously investigated the location of cavitation sounds during manipulation of the upper cervical spine. The primary purpose was to determine which side of the spine cavitates during C1-2 rotatory HVLA thrust manipulation. Secondary aims were to calculate the average number of pops, the duration of upper cervical thrust manipulation, and the duration of a single cavitation. Methods Nineteen asymptomatic participants received two upper cervical thrust manipulations targeting the right and left C1-2 articulation, respectively. Skin mounted microphones were secured bilaterally over the transverse process of C1, and sound wave signals were recorded. Identification of the side, duration, and number of popping sounds were determined by simultaneous analysis of spectrograms with audio feedback using custom software developed in Matlab. Results Bilateral popping sounds were detected in 34 (91.9%) of 37 manipulations while unilateral popping sounds were detected in just 3 (8.1%) manipulations; that is, cavitation was significantly (P < 0.001) more likely to occur bilaterally than unilaterally. Of the 132 total cavitations, 72 occurred ipsilateral and 60 occurred contralateral to the targeted C1-2 articulation. In other words, cavitation was no more likely to occur on the ipsilateral than the contralateral side (P = 0.294). The mean number of pops per C1-2 rotatory HVLA thrust manipulation was 3.57 (95% CI: 3.19, 3.94) and the mean number of pops per subject following both right and left C1-2 thrust manipulations was 6.95 (95% CI: 6.11, 7.79). The mean duration of a single audible pop was 5.66 ms (95% CI: 5.36, 5.96) and the mean duration of a single manipulation was 96.95 ms (95% CI: 57.20, 136.71). Conclusions Cavitation was significantly more likely to occur bilaterally than unilaterally during upper cervical HVLA thrust manipulation. Most subjects produced 3–4 pops during a single rotatory HVLA thrust manipulation targeting the right or left C1-2 articulation; therefore, practitioners of spinal manipulative therapy should expect multiple popping sounds when performing upper cervical thrust manipulation to the atlanto-axial joint. Furthermore, the traditional manual therapy approach of targeting a single ipsilateral or contralateral facet joint in the upper cervical spine may not be realistic. PMID:23320608
Zhang, Zhenjun; Fogel, Guy R; Liao, Zhenhua; Sun, Yitao; Liu, Weiqiang
2018-06-01
Lateral lumbar interbody fusion using cage supplemented with fixation has been used widely in the treatment of lumbar disease. A combined fixation (CF) of lateral plate and spinous process plate may provide multiplanar stability similar to that of bilateral pedicle screws (BPS) and may reduce morbidity. The biomechanical influence of the CF on cage subsidence and facet joint stress has not been well described. The aim of this study was to compare biomechanics of various fixation options and to verify biomechanical effects of the CF. The surgical finite element models with various fixation options were constructed based on computed tomography images. The lateral plate and posterior spinous process plate were applied (CF). The 6 motion modes were simulated. Range of motion (ROM), cage stress, endplate stress, and facet joint stress were compared. For the CF model, ROM, cage stress, and endplate stress were the minimum in almost all motion modes. Compared with BPS, the CF reduced ROM, cage stress, and endplate stress in all motion modes. The ROM was reduced by more than 10% in all motion modes except for flexion; cage stress and endplate stress were reduced more than 10% in all motion modes except for rotation-left. After interbody fusion, facet joint stress was reduced substantially compared with the intact conditions in all motion modes except for flexion. The combined plate fixation may offer an alternative to BPS fixation in lateral lumbar interbody fusion. Copyright © 2018 Elsevier Inc. All rights reserved.
Erbulut, D U; Zafarparandeh, I; Lazoglu, I; Ozer, A F
2014-07-01
Different finite element models of the cervical spine have been suggested for evaluating the roles of ligaments, facet joints, and disks in the stability of cervical spine under sagittal moments. However, no comprehensive study on the response of the full cervical spine that has used a detailed finite element (FE) model (C2-T1) that considers the asymmetry about the mid-sagittal plane has been reported. The aims of this study were to consider asymmetry in a FE model of the full cervical spine and to investigate the influences of ligaments, facet joints, and disk nucleus on the stability of the asymmetric model during flexion and extension. The model was validated against various published in vitro studies and FE studies for the three main loading planes. Next, the C4-C5 level was modified to simulate different cases to investigate the role of the soft tissues in segmental stability. The FE model predicted that excluding the interspinous ligament (ISL) from the index level would cause excessive instability during flexion and that excluding the posterior longitudinal ligament (PLL) or the ligamentum flavum (LF) would not affect segmental rotation. During extension, motion increased when the facet joints were excluded. The model without disk nucleus was unstable compared to the intact model at lower loads and exhibited a similar rotation response at higher loads. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
Wu, Wen; Fong, Justin; Crocher, Vincent; Lee, Peter V S; Oetomo, Denny; Tan, Ying; Ackland, David C
2018-04-27
Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject's upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Siegling, Alex B; Petrides, K V
2016-01-01
The field of mindfulness has seen a proliferation of psychometric measures, characterised by differences in operationalisation and conceptualisation. To illuminate the scope of, and offer insights into, the diversity apparent in the burgeoning literature, two distinct samples were used to examine the similarities, validity, and dimensionality of mindfulness facets and subscales across three independent measures: the Five Facet Mindfulness Questionnaire (FFMQ), Philadelphia Mindfulness Scale (PHLMS), and Toronto Mindfulness Scale (TMS). Results revealed problematic associations of FFMQ Observe with the other FFMQ facets and supported a four-factor structure (omitting this facet), while disputing the originally envisaged five-factor model; thus, solidifying a pattern in the literature. Results also confirmed the bidimensional nature of the PHLMS and TMS subscales, respectively. A joint Confirmatory Factor Analysis showed that PHLMS Acceptance could be assimilated within the FFMQ's four-factor model (as a distinct factor). The study offers a way of understanding interrelationships between the available mindfulness scales, so as to help practitioners and researchers make a more informed choice when conceptualising and operationalising mindfulness.
Siegling, Alex B.; Petrides, K. V.
2016-01-01
The field of mindfulness has seen a proliferation of psychometric measures, characterised by differences in operationalisation and conceptualisation. To illuminate the scope of, and offer insights into, the diversity apparent in the burgeoning literature, two distinct samples were used to examine the similarities, validity, and dimensionality of mindfulness facets and subscales across three independent measures: the Five Facet Mindfulness Questionnaire (FFMQ), Philadelphia Mindfulness Scale (PHLMS), and Toronto Mindfulness Scale (TMS). Results revealed problematic associations of FFMQ Observe with the other FFMQ facets and supported a four-factor structure (omitting this facet), while disputing the originally envisaged five-factor model; thus, solidifying a pattern in the literature. Results also confirmed the bidimensional nature of the PHLMS and TMS subscales, respectively. A joint Confirmatory Factor Analysis showed that PHLMS Acceptance could be assimilated within the FFMQ’s four-factor model (as a distinct factor). The study offers a way of understanding interrelationships between the available mindfulness scales, so as to help practitioners and researchers make a more informed choice when conceptualising and operationalising mindfulness. PMID:27055017
77 FR 39560 - International Joint Commission
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... DEPARTMENT OF STATE [Public Notice 7945] International Joint Commission International Joint Commission Invites Public Comment on Upper Great Lakes Report The International Joint Commission (IJC) announced today that it is inviting public comment on the final report of its International Upper Great...
Lemeunier, Nadège; da Silva-Oolup, S; Chow, N; Southerst, D; Carroll, L; Wong, J J; Shearer, H; Mastragostino, P; Cox, J; Côté, E; Murnaghan, K; Sutton, D; Côté, P
2017-09-01
To determine the reliability and validity of clinical tests to assess the anatomical integrity of the cervical spine in adults with neck pain and its associated disorders. We updated the systematic review of the 2000-2010 Bone and Joint Decade Task Force on Neck Pain and its Associated Disorders. We also searched the literature to identify studies on the reliability and validity of Doppler velocimetry for the evaluation of cervical arteries. Two independent reviewers screened and critically appraised studies. We conducted a best evidence synthesis of low risk of bias studies and ranked the phases of investigations using the classification proposed by Sackett and Haynes. We screened 9022 articles and critically appraised 8 studies; all 8 studies had low risk of bias (three reliability and five validity Phase II-III studies). Preliminary evidence suggests that the extension-rotation test may be reliable and has adequate validity to rule out pain arising from facet joints. The evidence suggests variable reliability and preliminary validity for the evaluation of cervical radiculopathy including neurological examination (manual motor testing, dermatomal sensory testing, deep tendon reflexes, and pathological reflex testing), Spurling's and the upper limb neurodynamic tests. No evidence was found for doppler velocimetry. Little evidence exists to support the use of clinical tests to evaluate the anatomical integrity of the cervical spine in adults with neck pain and its associated disorders. We found preliminary evidence to support the use of the extension-rotation test, neurological examination, Spurling's and the upper limb neurodynamic tests.
Functional analyses of the primate upper cervical vertebral column.
Nalley, Thierra K; Grider-Potter, Neysa
2017-06-01
Recent work has highlighted functional correlations between direct measures of head and neck posture and primate cervical bony morphology. Primates with more horizontal necks exhibit middle and lower cervical vertebral features that indicate increased mechanical advantage for deep nuchal musculature and mechanisms for column curvature formation and maintenance. How features of the C1 and C2 reflect quantified measures of posture have yet to be examined. This study incorporates bony morphology from the upper cervical levels from 20 extant primate species in order to investigate further how posture correlates with cervical vertebrae morphology. Results from phylogenetic generalized least-squares analyses indicate that few vertebral features exhibit a significant relationship with posture when accounting for differences in size. When size-adjusted traits were correlated with posture, vertebral variation had a stronger relationship with neck posture than head posture variables. Two C1 traits-relative posterior arch length and superior facet curvature-were correlated with neck posture variables. Relative posterior arch length exhibits a positive relationship with neck posture, while superior articular facet curvature demonstrates a negative relationship, such that as the neck becomes more horizontal, the greater the facet curvature. Four C2 features were also correlated with neck posture: relative pedicle and lamina lengths, relative superior facet orientation, and dens orientation. Relative pedicle and lamina lengths become craniocaudally longer as the neck becomes more horizontal. Relative C2 superior facet orientation and dens orientation exhibit negative correlations with posture, such that as the neck becomes more horizontal, the superior facet becomes more caudally inclined and the dens more dorsally inclined. These results produce a similar functional signal observed in the middle and lower cervical spine. Modeling the cervical vertebrae of more pronograde taxa within a sigmoidal spinal column model is further discussed and may prove useful in refining and testing future hypotheses of primate cervical mechanics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Burnham, Robert
2010-06-01
Describe the clinical presentation, diagnostic evaluation, and successful treatment of a case of symptomatic unilateral lumbosacral junction pseudarticulation using a novel radiofrequency nerve ablation technique. A 56-year-old female patient who had suffered with low back and right upper buttock pain for 16 years experienced incomplete relief with L4/5 facet joint radiofrequency ablation. She was found to have an elongated right L5 transverse process that articulated with the sacral ala (Bertolotti's syndrome). Fluoroscopically guided local anesthetic/corticosteroid injection into the pseudarthrosis eliminated her residual right buttock pain for the duration of the local anesthetic only. Complete pain relief was achieved by injecting local anesthetic circumferentially around the posterior pseudarthrosis articular margin. Accordingly, bipolar radiofrequency strip thermal lesions were created at the same locations. Complete pain relief and full restoration of function was achieved for 16 months postprocedure. This case report describes a novel radiofrequency technique for treating symptomatic lumbosacral junction pseudarticulation that warrants further evaluation.
EPA EMERGENCY PLANNING TOOLBOX
EPA's Office of Research and Development and Office of Water/Water Security Division have jointly developed a Response Protocol Toolbox (RPTB) to address the complex, multi-faceted challenges of a water utility's planning and response to intentional contamination of drinking wate...
Giant, Completely Calcified Lumbar Juxtafacet Cyst: Report of an Unusual Case
Huang, Kevin T.; Owens, Timothy R.; Wang, Teresa S.; Moreno, Jessica R.; Bagley, Jacob H.; Bagley, Carlos A.
2013-01-01
Study Design Case report. Objective To report the case of one patient who developed a giant, completely calcified, juxtafacet cyst. Methods A 57-year-old woman presented with a 2-year history of progressively worsening lower back pain, left leg pain, weakness, and paresthesias. Imaging showed a giant, completely calcified mass arising from the left L5–S1 facet joint, with coexisting grade I L5 on S1 anterolisthesis. The patient was treated with laminectomy, excision of the mass, and L5–S1 fixation and fusion. Results The patient had an uncomplicated postoperative course and had complete resolution of her symptoms as of 1-year follow-up. Conclusions When presented with a solid-appearing, calcified mass arising from the facet joint, a completely calcified juxtafacet cyst should be considered as part of the differential diagnosis. PMID:25083359
Mechanical role of the posterior column components in the cervical spine.
Hartman, Robert A; Tisherman, Robert E; Wang, Cheng; Bell, Kevin M; Lee, Joon Y; Sowa, Gwendolyn A; Kang, James D
2016-07-01
To quantify the mechanical role of posterior column components in human cervical spine segments. Twelve C6-7 segments were subjected to resection of (1) suprasinous/interspinous ligaments (SSL/ISL), (2) ligamenta flavum (LF), (3) facet capsules, and (4) facets. A robot-based testing system performed repeated flexibility testing of flexion-extension (FE), axial rotation (AR), and lateral bending (LB) to 2.5Nm and replayed kinematics from intact flexibility tests for each state. Range-of-motion, stiffness, moment resistance and resultant forces were calculated. The LF contributes largely to moment resistance, particularly in flexion. Facet joints were primary contributors to AR and LB mechanics. Moment/force responses were more sensitive and precise than kinematic outcomes. The LF is mechanically important in the cervical spine; its injury could negatively impact load distribution. Damage to facets in a flexion injury could lead to AR or LB hypermobility. Quantifying the contribution of spinal structures to moment resistance is a sensitive, precise process for characterizing structural mechanics.
Barth, Johannes; Boutsiadis, Achilleas; Narbona, Pablo; Lädermann, Alexandre; Arrigoni, Paolo; Adams, Christopher R; Burkhart, Stephen S; Denard, Patrick J
2017-07-01
The aim of this study was to find reliable anatomic landmarks of the normal acromioclavicular joint (ACJ) that could enable the precise evaluation of the horizontal displacement of the clavicle after dislocation. The hypothesis was that the anterior borders of the acromion and the clavicle are always aligned in intact ACJs. In 30 cadaveric specimens, the anterior and posterior borders of the ACJ's articular facets and the most prominent anterior and posterior bony landmarks of the acromion and the clavicle were identified. The anterior and posterior overhang of the acromion and the clavicle was measured in relation to the borders of the articular facets. Therefore, the possible anterior and posterior alignment of the ACJ was evaluated. Anteriorly, only 18 ACJs (60%) were aligned whereas 7 (24%) had major overhang of the acromion and 3 (10%) had major overhang of the clavicle. Similarly, 18 cases (60%) were posteriorly aligned, whereas 6 (20%) had major clavicular overhang and 4 (14%) had major overhang of the acromion. In 78% of these cases, the ACJ was aligned as well anteriorly as posteriorly (P < .001). Finally, the larger the width of the acromion (P = .032) or the clavicle (P = .049), the better the posterior joint alignment. Our hypothesis was not verified. The acromion and clavicle are not perfectly aligned in a significant number of specimens with intact ACJs (40% of cases). The most reliable landmarks remain their articular facets. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Modified fenestration with restorative spinoplasty for lumbar spinal stenosis.
Matsudaira, Ko; Yamazaki, Takashi; Seichi, Atsushi; Hoshi, Kazuto; Hara, Nobuhiro; Ogiwara, Satoshi; Terayama, Sei; Chikuda, Hirotaka; Takeshita, Katsushi; Nakamura, Kozo
2009-06-01
The authors developed an original procedure, modified fenestration with restorative spinoplasty (MFRS) for the treatment of lumbar spinal stenosis. The first step is to cut the spinous process in an L-shape, which is caudally reflected. This procedure allows easy access to the spinal canal, including lateral recesses, and makes it easy to perform a trumpet-style decompression of the nerve roots without violating the facet joints. After the decompression of neural tissues, the spinous process is anatomically restored (spinoplasty). The clinical outcomes at 2 years were evaluated using the Japanese Orthopaedic Association (JOA) scale and patients' satisfaction. Radiological follow-up included radiographs and CT. Between January 2000 and December 2002, 109 patients with neurogenic intermittent claudication with or without mild spondylolisthesis underwent MFRS. Of these, 101 were followed up for at least 2 years (follow-up rate 93%). The average score on the self-administered JOA scale in 89 patients without comorbidity causing gait disturbance improved from 13.3 preoperatively to 22.9 at 2 years' follow-up. Neurogenic intermittent claudication disappeared in all cases. The patients' assessment of treatment satisfaction was "satisfied" in 74 cases, "slightly satisfied" in 12, "slightly dissatisfied" in 2, and "dissatisfied" in 1 case. In 16 cases (18%), a minimum progression of slippage occurred, but no symptomatic instability or recurrent stenosis was observed. Computed tomography showed that the lateral part of the facet joints was well preserved, and the mean residual ratio was 80%. The MFRS technique produces an adequate and safe decompression of the spinal canal, even in patients with narrow and steep facet joints in whom conventional fenestration is technically demanding.
Kong, Min Ho; Hymanson, Henry J; Song, Kwan Young; Chin, Dong Kyu; Cho, Yong Eun; Yoon, Do Heum; Wang, Jeffrey C
2009-04-01
The authors conducted a retrospective observational study using kinetic MR imaging to investigate the relationship between instability, abnormal sagittal segmental motion, and radiographic variables consisting of intervertebral disc degeneration, facet joint osteoarthritis (FJO), degeneration of the interspinous ligaments, ligamentum flavum hypertrophy (LFH), and the status of the paraspinal muscles. Abnormal segmental motion, defined as > 10 degrees angulation and > 3 mm of translation in the sagittal plane, was investigated in 1575 functional spine units (315 patients) in flexion, neutral, and extension postures using kinetic MR imaging. Each segment was assessed based on the extent of disc degeneration (Grades I-V), FJO (Grades 1-4), interspinous ligament degeneration (Grades 1-4), presence of LFH, and paraspinal muscle fatty infiltration observed on kinetic MR imaging. These factors are often noted in patients with degenerative disease, and there are grading systems to describe these changes. For the first time, the authors attempted to address the relationship between these radiographic observations and the effects on the motion and instability of the functional spine unit. The prevalence of abnormal translational motion was significantly higher in patients with Grade IV degenerative discs and Grade 3 arthritic facet joints (p < 0.05). In patients with advanced disc degeneration and FJO, there was a lesser amount of motion in both segmental translation and angulation when compared with lower grades of degeneration, and this difference was statistically significant for angular motion (p < 0.05). Patients with advanced degenerative Grade 4 facet joint arthritis had a significantly lower percentage of abnormal angular motion compared to patients with normal facet joints (p < 0.001). The presence of LFH was strongly associated with abnormal translational and angular motion. Grade 4 interspinous ligament degeneration and the presence of paraspinal muscle fatty infiltration were both significantly associated with excessive abnormal angular motion (p < 0.05). This kinetic MR imaging analysis showed that the lumbar functional unit with more disc degeneration, FJO, and LFH had abnormal sagittal plane translation and angulation. These findings suggest that abnormal segmental motion noted on kinetic MR images is closely associated with disc degeneration, FJO, and the pathological characteristics of interspinous ligaments, ligamentum flavum, and paraspinal muscles. Kinetic MR imaging in patients with mechanical back pain may prove a valuable source of information about the stability of the functional spine unit by measuring abnormal segmental motion and grading of radiographic parameters simultaneously.
Manchikanti, Laxmaiah; Cash, Kimberly A.; Pampati, Vidyasagar; Malla, Yogesh
2014-01-01
Study Design: A randomized, double-blind, active-controlled trial. Objective: To assess the effectiveness of cervical interlaminar epidural injections of local anesthetic with or without steroids for the management of axial or discogenic pain in patients without disc herniation, radiculitis, or facet joint pain. Summary of Background Data: Cervical discogenic pain without disc herniation is a common cause of suffering and disability in the adult population. Once conservative management has failed and facet joint pain has been excluded, cervical epidural injections may be considered as a management tool. Despite a paucity of evidence, cervical epidural injections are one of the most commonly performed nonsurgical interventions in the management of chronic axial or disc-related neck pain. Methods: One hundred and twenty patients without disc herniation or radiculitis and negative for facet joint pain as determined by means of controlled diagnostic medial branch blocks were randomly assigned to one of the 2 treatment groups. Group I patients received cervical interlaminar epidural injections of local anesthetic (lidocaine 0.5%, 5 mL), whereas Group II patients received 0.5% lidocaine, 4 mL, mixed with 1 mL or 6 mg of nonparticulate betamethasone. The primary outcome measure was ≥ 50% improvement in pain and function. Outcome assessments included numeric rating scale (NRS), Neck Disability Index (NDI), opioid intake, employment, and changes in weight. Results: Significant pain relief and functional improvement (≥ 50%) was present at the end of 2 years in 73% of patients receiving local anesthetic only and 70% receiving local anesthetic with steroids. In the successful group of patients, however, defined as consistent relief with 2 initial injections of at least 3 weeks, significant improvement was illustrated in 78% in the local anesthetic group and 75% in the local anesthetic with steroid group at the end of 2 years. The results reported at the one-year follow-up were sustained at the 2-year follow-up. Conclusions: Cervical interlaminar epidural injections with or without steroids may provide significant improvement in pain and functioning in patients with chronic discogenic or axial pain that is function-limiting and not related to facet joint pain. PMID:24578607
Okuyama, Koichiro; Kido, Tadato; Unoki, Eiki; Chiba, Mitsuho
2007-02-01
To determine the validity of posterior lumbar interbody fusion (PLIF) using a titanium cage filled with excised facet joint bone and a pedicle screw for degenerative spondylolisthesis. PLIF using a titanium cage filled with excised facet joint bone and a pedicle screw was performed in 28 consecutive patients (men 10, women 18). The mean age of the patients was 60 years (range, 52 to 75 y) at the time of surgery. The mean follow-up period was 2.3 years (range, 2.0 to 4.5 y). The operation was done at L3/4 in 5, L4/5 in 20, and L3/4/5 in 3 patients. The mean operative bleeding was 318+/-151 g (mean+/-standard deviation), and the mean operative time was 3.34+/-0.57 hours per fixed segment. Clinical outcome was assessed by Denis' Pain and Work scale. Radiologic assessment was done using Boxell's method. Fusion outcome was assessed using an established criteria. On Pain scale, 20 and 8 patients were rated P4 and P5 before surgery, and 11, 12, 2, 2, and 1 patients were rated P1, P2, P3, P4, and P5 at final follow-up, respectively. On Work scale (for only physical labors), 12 and 9 patients were rated W4 and W5, before surgery, and 12, 5, 1, and 3 patients were rated W1, W2, W3 and W5 at final follow-up, respectively. There was significant difference in clinical outcome (P<0.01, Wilcoxon singled-rank test) The mean %Slip and Slip Angle was 17.9+/-8.1% and 3.9+/-5.8 degrees before surgery. The mean % Slip and Slip Angle was 5.4+/-4.4% and -2.0+/-4.8 degrees at final follow-up. There was a significant difference between the values (P<0.01, paired t test). "Union" and "probable union" was determined in 29 (93.5%) and 2 (6.5%) of 31 operated segments at 2.3 years (range, 2.0 to 4.5 y), postoperatively. PLIF using a titanium cage filled with excised facet joint bone and a pedicle screw provided a satisfactory clinical outcome and an excellent union rate without harvesting and grafting the autologous iliac bone.
Contact characteristics of the subtalar joint after a simulated calcaneus fracture.
Sangeorzan, B J; Ananthakrishnan, D; Tencer, A F
1995-06-01
A simple calcaneus fracture consisting of two parts was modeled in nine fresh cadaver hindfoot specimens to assess changes in subtalar joint contact characteristics with increasing plantar depression of the posterolateral fracture component. To perform the experiment, rods were placed in the tibial and fibular shafts of each specimen, which was mounted in a frame in neutral stance. A pneumatic cylinder was used to deliver a vertical compressive load through the rods into the foot while permitting free motion of the foot in the horizontal plane. Sealed packets of pressure-sensitive film were inserted into the anterior-middle and posterior facets of the talocalcaneal articulation, and a 700-N load was applied. After testing of the intact foot, a primary fracture line was created using a microoscillating saw. The osteotomized posterolateral component was anatomically reduced and fixed, the film inserted, and the load reapplied. The test was repeated after the posterolateral fragment was displaced 2, 5, and 10 mm in a plantar direction. The resulting pressure prints were scanned along with pressure/color density calibration strips using a flat-bed scanner, and an image analysis system was used to determine contact areas within specified pressure intervals. The contact area (> 0.5 MPa) of the posterior facet was significantly decreased with 2, 5, and 10 mm displacements of the posterolateral calcaneus fracture component. The ratio of high-pressure area (< 5.0 MPa) to contact area in the posterior facet was significantly increased only with displacements of 5 and 10 mm. There were no significant changes in any contact parameters in the anterior-middle facet.(ABSTRACT TRUNCATED AT 250 WORDS)
Mao, Ke-ya; Wang, Yan; Xiao, Song-hua; Zhang, Yong-gang; Liu, Bao-wei; Wang, Zheng; Zhang, Xi-Feng; Cui, Geng; Zhang, Xue-song; Li, Peng; Mao, Ke-zheng
2013-08-01
To investigate the feasibility of minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) using hybrid internal fixation of pedicle screws and a translaminar facet screw for recurrent lumbar disc herniation. From January 2010 to December 2011, 16 recurrent lumbar disc herniation patients, 10 male and 6 female patients with an average age of 45 years (35-68 years) were treated with unilateral incision MIS-TLIF through working channel. After decompression, interbody fusion and fixation using unilateral pedicle screws, a translaminar facet screw was inserted from the same incision through spinous process and laminar to the other side facet joint. The results of perioperative parameters, radiographic images and clinical outcomes were assessed. The repeated measure analysis of variance was applied in the scores of visual analogue scale (VAS) and Oswestry disablity index (ODI). All patients MIS-TLIF were accomplished under working channel including decompression, interbody fusion and hybrid fixation without any neural complication. The average operative time was (148 ± 75) minutes, the average operative blood loss was (186 ± 226) ml, the average postoperative ambulation time was (32 ± 15) hours, and the average hospitalization time was (6 ± 4) days. The average length of incision was (29 ± 4) mm, and the average length of translaminar facets screw was (52 ± 6) mm. The mean follow-up was 16.5 months with a range of 12-24 months. The postoperative X-ray and CT images showed good position of the hybrid internal fixation, and all facets screws penetrate through facets joint. The significant improvement could be found in back pain VAS, leg pain VAS and ODI scores between preoperative 1 day and postoperative follow-up at all time-points (back pain VAS:F = 52.845, P = 0.000;leg pain VAS:F = 113.480, P = 0.000;ODI:F = 36.665, P = 0.000). Recurrent lumbar disc herniation could be treated with MIS-TLIF using hybrid fixation through unilateral incision, and the advantage including less invasion and quickly recovery.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-22
...-related skin cracks and corrosion of the skin panel lap joints in the fuselage upper lobe, and repair if... inspections of the fuselage skin at the upper lobe skin lap joints for cracks and evidence of corrosion, and... correct fatigue cracking and corrosion in the fuselage upper lobe skin lap joints, which could lead to...
Goel, Atul; Shah, Abhidha
2011-06-01
The authors discuss their successful preliminary experience with 36 cases of cervical spondylotic disease by performing facetal distraction using specially designed Goel cervical facet spacers. The clinical and radiological results of treatment are analyzed. The mechanism of action of the proposed spacers and the rationale for their use are evaluated. Between 2006 and February 2010, 36 patients were treated using the proposed technique. Of these patients, 18 had multilevel and 18 had single-level cervical spondylotic radiculopathy and/or myelopathy. The average follow-up period was 17 months with a minimum of 6 months. The Japanese Orthopaedic Association classification system, visual analog scale (neck pain and radiculopathy), and Odom criteria were used to monitor the clinical status of the patient. The patients were prospectively analyzed. The technique of surgery involved wide opening of the facet joints, denuding of articular cartilage, distraction of facets, and forced impaction of Goel cervical facet spacers into the articular cavity. Additionally, the interspinous process ligaments were resected, and corticocancellous bone graft from the iliac crest was placed and was stabilized over the adjoining laminae and facets after adequately preparing the host bone. Eighteen patients underwent single-level, 6 patients underwent 2-level, and 12 patients underwent 3-level treatment. The alterations in the physical architecture of spine and canal dimensions were evaluated before and after the placement of intrafacet joint spacers and after at least 6 months of follow-up. All patients had varying degrees of relief from symptoms of pain, radiculopathy, and myelopathy. Analysis of radiological features suggested that the distraction of facets with the spacers resulted in an increase in the intervertebral foraminal dimension (mean 2.2 mm), an increase in the height of the intervertebral disc space (range 0.4-1.2 mm), and an increase in the interspinous distance (mean 2.2 mm). The circumferential distraction resulted in reduction in the buckling of the posterior longitudinal ligament and ligamentum flavum. The procedure ultimately resulted in segmental bone fusion. No patient worsened after treatment. There was no noticeable implant malfunction. During the follow-up period, all patients had evidence of segmental bone fusion. No patient underwent reexploration or further surgery of the neck. Distraction of the facets of the cervical vertebra can lead to remarkable and immediate stabilization-fixation of the spinal segment and increase in space for the spinal cord and roots. The procedure results in reversal of several pathological events related to spondylotic disease. The safe, firm, and secure stabilization at the fulcrum of cervical spinal movements provided a ground for segmental spinal arthrodesis. The immediate postoperative improvement and lasting recovery from symptoms suggest the validity of the procedure.
Patkar, Sushil
2016-08-01
Unilateral anterior retropharyngeal approach was used in a case of basilar invagination with atlanto-axial instability. This approach provided easy access to both atlanto-axial joints. Wedge-shaped titanium cages were used to distract the joints and reduce the basilar invagination. Titanium plates with screws were used to fix the lateral mass of atlas with the body of axis, bilaterally. The anterior atlanto-axial joint distraction procedure has not been described in literature before seems to be an easy option in selected cases of craniovertebral anomalies and needs to be investigated by more surgeons.
Little, Jesse S.; Khalsa, Partap S.
2005-01-01
There is a high incidence of low back pain (LBP) associated with occupations requiring sustained and/or repetitive lumbar flexion (SLF and RLF, respectively), which cause creep of the viscoelastic tissues. The purpose of this study was to determine the effect of creep on lumbar biomechanics and facet joint capsule (FJC) strain. Specimens were flexed for 10 cycles, to a maximum 10 Nm moment at L5-S1, before, immediately after, and 20 min after a 20-min sustained flexion at the same moment magnitude. The creep rates of SLF and RLF were also measured during each phase and compared to the creep rate predicted by the moment relaxation rate function of the lumbar spine. Both SLF and RLF resulted in significantly increased intervertebral motion, as well as significantly increased FJC strains at the L3-4 to L5-S1 joint levels. These parameters remained increased after the 20-min recovery. Creep during SLF occurred significantly faster than creep during RLF. The moment relaxation rate function was able to accurately predict the creep rate of the lumbar spine at the single moment tested. The data suggest that SLF and RLF result in immediate and residual laxity of the joint and stretch of the FJC, which could increase the potential for LBP. PMID:15868730
Bertomeu-Motos, Arturo; Blanco, Andrea; Badesa, Francisco J; Barios, Juan A; Zollo, Loredana; Garcia-Aracil, Nicolas
2018-02-20
End-effector robots are commonly used in robot-assisted neuro-rehabilitation therapies for upper limbs where the patient's hand can be easily attached to a splint. Nevertheless, they are not able to estimate and control the kinematic configuration of the upper limb during the therapy. However, the Range of Motion (ROM) together with the clinical assessment scales offers a comprehensive assessment to the therapist. Our aim is to present a robust and stable kinematic reconstruction algorithm to accurately measure the upper limb joints using only an accelerometer placed onto the upper arm. The proposed algorithm is based on the inverse of the augmented Jaciobian as the algorithm (Papaleo, et al., Med Biol Eng Comput 53(9):815-28, 2015). However, the estimation of the elbow joint location is performed through the computation of the rotation measured by the accelerometer during the arm movement, making the algorithm more robust against shoulder movements. Furthermore, we present a method to compute the initial configuration of the upper limb necessary to start the integration method, a protocol to manually measure the upper arm and forearm lengths, and a shoulder position estimation. An optoelectronic system was used to test the accuracy of the proposed algorithm whilst healthy subjects were performing upper limb movements holding the end effector of the seven Degrees of Freedom (DoF) robot. In addition, the previous and the proposed algorithms were studied during a neuro-rehabilitation therapy assisted by the 'PUPArm' planar robot with three post-stroke patients. The proposed algorithm reports a Root Mean Square Error (RMSE) of 2.13cm in the elbow joint location and 1.89cm in the wrist joint location with high correlation. These errors lead to a RMSE about 3.5 degrees (mean of the seven joints) with high correlation in all the joints with respect to the real upper limb acquired through the optoelectronic system. Then, the estimation of the upper limb joints through both algorithms reveal an instability on the previous when shoulder movement appear due to the inevitable trunk compensation in post-stroke patients. The proposed algorithm is able to accurately estimate the human upper limb joints during a neuro-rehabilitation therapy assisted by end-effector robots. In addition, the implemented protocol can be followed in a clinical environment without optoelectronic systems using only one accelerometer attached in the upper arm. Thus, the ROM can be perfectly determined and could become an objective assessment parameter for a comprehensive assessment.
Identification of temporal pathomechanical factors during the tennis serve.
Martin, Caroline; Kulpa, Richard; Ropars, Mickaël; Delamarche, Paul; Bideau, Benoit
2013-11-01
The purpose of this study was twofold: (a) to measure the effects of temporal parameters on both ball velocity and upper limb joint kinetics to identify pathomechanical factors during the tennis serve and (b) to validate these pathomechanical factors by comparing injured and noninjured players. The serves of expert tennis players were recorded with an optoelectronic motion capture system. These experts were then followed during two seasons to identify overuse injuries of the upper limb. Correlation coefficients assessed the relationships between temporal parameters, ball velocity, and peaks of upper limb joint kinetics to identify pathomechanical factors. Temporal parameters and ball velocity were compared between injured and noninjured groups. Temporal pathomechanical factors were identified. The timings of peak angular velocities of pelvis longitudinal rotation, upper torso longitudinal rotation, trunk sagittal rotation, and trunk transverse rotation and the duration between instants of shoulder horizontal adduction and external rotation were significantly related to upper limb joint kinetics and ball velocity. Injured players demonstrated later timings of trunk rotations, improper differences in time between instants of shoulder horizontal adduction and external rotation, lower ball velocities, and higher joint kinetics. The findings of this study imply that improper temporal mechanics during the tennis serve can decrease ball velocity, increase upper limb joint kinetics, and thus possibly increase overuse injuries of the upper limb.
[Highlateral approach to the lesions around the upper cervical vertebrae and foramen magnum].
Tsutsumi, K; Asano, T; Shigeno, T; Matsui, T; Itoh, S; Kaneko, K
1995-04-01
In the present paper, we describe the surgical techniques of high lateral cervical approach and its feasibility for the excision of tumors located in the ventral or lateral aspect of the upper cervical vertebrae and of the craniovertebral junction. The patient is positioned laterally on the operating table, but the operator's position and the skin incision are slightly altered depending on the location of the tumor. When the lesion is situated below C1, the ipsilateral shoulder is pulled down toward the back. The operator stands rostral to the head. The attachment of the sternocleidomastoid muscle to the mastoid is detached and reflected anteriorly through a retroauricular curved skin incision. The posterior cervical muscles such as the splenius capitis, longissimus capitis, semi-spinalis capitis are detached from the occipit and retracted posteriorly. At this point, the transverse process of C1 and the articular facet of the vertebrae of C2-C4 are identified by palpation. According to the tumor location, the muscles attached to the relevant transverse processes and facets are divided and reflected posteriorly. Through careful dissection, the cervical nerve roots and the vertebral artery are exposed. The root sleeves as well as thecal sac may be exposed by resecting the posterior two-thirds of the superior and inferior articular facets and the adjacent laminae of the vertebrae. In case the whole facet was removed, an iliac bone graft is placed between the remaining transverse processes and the laminae above and below for fixation.(ABSTRACT TRUNCATED AT 250 WORDS)
Ilaslan, Hakan; Arslan, Ahmet; Koç, Omer Nadir; Dalkiliç, Turker; Naderi, Sait
2010-07-01
Sacroiliac joint dysfunction is a disorder presenting with low back and groin pain. It should be taken into consideration during the preoperative differential diagnosis of lumbar disc herniation, lumbar spinal stenosis and facet syndrome. Four cases with sacroiliac dysfunction are presented. The clinical and radiological signs supported the evidence of sacroiliac dysfunction, and exact diagnosis was made after positive response to sacroiliac joint block. A percutaneous sacroiliac fixation provided pain relief in all cases. The mean VAS scores reduced from 8.2 to 2.2. It is concluded that sacroiliac joint dysfunction diagnosis requires a careful physical examination of the sacroiliac joints in all cases with low back and groin pain. The diagnosis is made based on positive response to the sacroiliac block. Sacroiliac fixation was found to be effective in carefully selected cases.
Musculoskeletal disorders of the upper cervical spine in women with episodic or chronic migraine.
Ferracini, Gabriela N; Florencio, Lidiane L; Dach, Fabíola; Bevilaqua Grossi, Débora; Palacios-Ceña, María; Ordás-Bandera, Carlos; Chaves, Thais C; Speciali, José G; Fernández-de-Las-Peñas, César
2017-06-01
The role of musculoskeletal disorders of the cervical spine in migraine is under debate. To investigate differences in musculoskeletal impairments of the neck including active global and upper cervical spine mobility, the presence of symptomatic upper cervical spine joints, cervicocephalic kinesthesia and head/neck posture between women with episodic migraine, chronic migraine, and controls. A cross-sectional study. Tertiary university-based hospital. Fifty-five women with episodic migraine, 16 with chronic migraine, and 22 matched healthy women. Active cervical range of motion, upper cervical spine mobility (i.e., flexion-rotation test), referred pain from upper cervical joints, cervicocephalic kinesthesia (joint position sense error test, JPSE), and head/neck posture (i.e. the cranio-vertebral and cervical lordosis angles) were assessed by an assessor blinded to the subject's condition. Women with migraine showed reduced cervical rotation than healthy women (P=0.012). No differences between episodic and chronic migraine were found in cervical mobility. Significant differences for flexion-rotation test were also reported, suggesting that upper cervical spine mobility was restricted in both migraine groups (P<0.001). Referred pain elicited on manual examination of the upper cervical spine mimicking pain symptoms was present in 50% of migraineurs. No differences were observed on the frequency of symptomatic upper cervical joints between episodic and chronic migraine. No differences on JPSE or posture were found among groups (P>0.121). Women with migraine exhibit musculoskeletal impairments of the upper cervical spine expressed as restricted cervical rotation, decreased upper cervical rotation, and the presence of symptomatic upper cervical joints. No differences were found between episodic or chronic migraine. Identification treatment of the musculoskeletal impairments of the cervical spine may help to clinician for better management of patients with migraine.
Moore, Amy M; Dennison, David G
2014-06-01
The volar lunate facet fragment of a distal radius fracture may not be stabilized with volar-locked plating alone due to the small size and distal location of the fragment. Identification and stabilization of this small fragment is critical as unstable fixation may result in radiocarpal and radioulnar joint subluxation. The addition of spring wire fixation with volar plating can provide stable internal fixation of this critical fracture fragment. A retrospective review (2006-2011) identified nine patients with distal radius fractures with an associated volar lunate facet fragment that were treated with volar-locked plating and spring wire fixation of the volar lunate facet fragment. Radiographic indices, range of motion, grip strength, and postoperative Patient-related wrist evaluation (PRWE) scores were obtained to assess pain and function. All distal radius fractures healed, and the volar lunate facet fragment reduction was maintained. The mean follow-up was 54 weeks. Mean active range of motion was 46° wrist flexion, 51° wrist extension, 80° pronation, and 68° supination. The mean grip strength was 21 Kg, achieving 66 % of the uninjured limb. The average PRWE score was 17. No patient required removal of hardware or had evidence of tendon irritation. The addition of spring wire fixation to volar-locked plating provided stable fixation of the volar lunate facet fragment of distal radius fractures without complication. This technique addresses a limitation of volar-locked plating to control the small volar lunate facet fragment in distal radius fractures otherwise amenable to volar plating. A retrospective case series, Level IV.
NASA Astrophysics Data System (ADS)
Degraff, James M.; Long, Philip E.; Aydin, Atilla
1989-09-01
Thermal contraction joints form in the upper and lower solidifying crusts of basaltic lava flows and grow toward the interior as the crusts thicken. Lava flows are thus divided by vertical joints that, by changes in joint spacing and form, define horizontal intraflow layers known as tiers. Entablatures are tiers with joint spacings less than about 40 cm, whereas colonnades have larger joint spacings. We use structural and petrographic methods to infer heat-transfer processes and to constrain environmental conditions that produce these contrasting tiers. Joint-surface morphology indicates overall joint-growth direction and thus identifies the level in a flow where the upper and lower crusts met. Rock texture provides information on relative cooling rates in the tiers of a flow. Lava flows without entablature have textures that develop by relatively slow cooling, and two joint sets that usually meet near their middles, which indicate mostly conductive cooling. Entablature-bearing flows have two main joint sets that meet well below their middles, and textures that indicate fast cooling of entablatures and slow cooling of colonnades. Entablatures always occur in the upper joint sets and sometimes alternate several times with colonnades. Solidification times of entablature-bearing flows, constrained by lower joint-set thicknesses, are much less than those predicted by a purely conductive cooling model. These results are best explained by a cooling model based on conductive heat transfer near a flow base and water-steam convection in the upper part of an entablature-bearing flow. Calculated solidification rates in the upper parts of such flows exceed that of the upper crust of Kilauea Iki lava lake, where water-steam convection is documented. Use of the solidification rates in an available model of water-steam convection yields permeability values that agree with measured values for fractured crystalline rock. We conclude, therefore, that an entablature forms when part of a flow cools very rapidly by water-steam convection. Flooding of the flow top by surface drainage most likely induces the convection. Colonnades form under conditions of slower cooling by conductive heat transfer in the absence of water.
NASA Astrophysics Data System (ADS)
Sheth, Hetu; Patel, Vanit; Samant, Hrishikesh
2017-08-01
Upper crustal prismatic joints and vesicle cylinders, common in pāhoehoe lava flows, form early and late, respectively, and are therefore independent features. However, small-scale compound pāhoehoe lava lobes on Elephanta Island (western Deccan Traps, India), which resemble S-type (spongy) pāhoehoe in some aspects, contain vesicle cylinders which apparently controlled the locations of upper crustal prismatic joints. The lobes are decimeters thick, did not experience inflation after emplacement, and solidified rapidly. They have meter-scale areas that are exceptionally rich in vesicle cylinders (up to 68 cylinders in 1 m2, with a mean spacing of 12.1 cm), separated by cylinder-free areas, and pervasive upper crustal prismatic jointing with T, curved T, and quadruple joint intersections. A majority (≥76.5%) of the cylinders are located exactly on joints or at joint intersections, and were not simply captured by downward growing joints, as the cylinders show no deflection in vertical section. We suggest that large numbers of cylinders originated in a layer of bubble-rich residual liquid at the top of a basal diktytaxitic crystal mush zone which was formed very early (probably within the first few minutes of the emplacement history). The locations where the rising cylinders breached the crust provided weak points or mechanical flaws towards which any existing joints (formed by thermal contraction) propagated. New joints may also have propagated outwards from the cylinders and linked up laterally. Some cylinders breached the crust between the joints, and thus formed a little later than most others. The Elephanta Island example reveals that, whereas thermal contraction is undoubtedly valid as a standard mechanism for forming upper crustal prismatic joints, abundant mechanical flaws (such as large concentrations of early-formed, crust-breaching vesicle cylinders) can also control the joint formation process.
NASA Technical Reports Server (NTRS)
Grabbe, Shon R.
2017-01-01
This presentation provides a high-level overview of NASA's Future ATM Concepts Evaluation Tool (FACET) with a high-level description of the system's inputs and outputs. This presentation is designed to support the joint simulations that NASA and the Chinese Aeronautical Establishment (CAE) will conduct under an existing Memorandum of Understanding.
EPA's Office of Research and Development and Office of Water/Water Security Division have jointly developed a Response Protocol Toolbox (RPTB) to address the complex, multi-faceted challenges of a water utility's planning and response to intentional contamination of drinking wate...
Gao, Shutao; Lv, Zhengtao; Fang, Huang
2018-04-01
Several studies have revealed that robot-assisted technique might improve the pedicle screw insertion accuracy, but owing to the limited sample sizes in the individual study reported up to now, whether or not robot-assisted technique is superior to conventional freehand technique is indefinite. Thus, we performed this systematic review and meta-analysis based on randomized controlled trials to assess which approach is better. Electronic databases including PubMed, EMBASE, CENTRAL, ISI Web of Science, CNKI and WanFang were systematically searched to identify potentially eligible articles. Main endpoints containing the accuracy of pedicle screw implantation and proximal facet joint violation were evaluated as risk ratio (RR) and the associated 95% confidence intervals (95% CIs), while radiation exposure and surgical duration were presented as mean difference (MD) or standard mean difference (SMD). Meta-analyses were performed using RevMan 5.3 software. Six studies involving 158 patients (688 pedicle screws) in robot-assisted group and 148 patients (672 pedicle screws) in freehand group were identified matching our study. The Grade A accuracy rate in robot-assisted group was superior to freehand group (RR 1.03, 95% CI 1.00, 1.06; P = 0.04), but the Grade A + B accuracy rate did not differ between the two groups (RR 1.01, 95% CI 0.99, 1.02; P = 0.29). With regard to proximal facet joint violation, the combined results suggested that robot-assisted group was associated with significantly fewer proximal facet joint violation than freehand group (RR 0.07, 95% CI 0.01, 0.55; P = 0.01). As was the radiation exposure, our findings suggested that robot-assisted technique could significantly reduce the intraoperative radiation time (MD - 12.38, 95% CI - 17.95, - 6.80; P < 0.0001) and radiation dosage (SMD - 0.64, 95% CI - 0.85, - 0.43; P < 0.00001). But the overall surgical duration was longer in robot-assisted group than conventional freehand group (MD 20.53, 95% CI 5.17, 35.90; P = 0.009). The robot-assisted technique was associated with equivalent accuracy rate of pedicle screw implantation, fewer proximal facet joint violation, less intraoperative radiation exposure but longer surgical duration than freehand technique. Powerful evidence relies on more randomized controlled trials with high quality and larger sample size in the future.
Zhu, Zhenqi; Liu, Chenjun; Wang, Kaifeng; Zhou, Jian; Wang, Jiefu; Zhu, Yi; Liu, Haiying
2015-01-28
The aim of this study was to evaluate the effect of the Topping-off technique in preventing the aggravation of degeneration caused by adjacent segment fusion. Clinical parameters of patients who underwent L5-S1 posterior lumbar interbody fusion + interspinous process at L4-L5 (PLIF + ISP) with the Wallis system (Topping-off group) were compared retrospectively with those of patients who underwent solely PLIF. Pre- and post-operative x-ray measurements, visual analogue scale (VAS) scores, and Japanese Orthopaedic Association (JOA) scores were assessed in all subjects. Normal L1-S1 lumbosacral finite element models were established in accordance with the two types of surgery in our study, respectively. Virtual loading was added to assess the motility, disc pressure, and facet joint stress of L4-L5. There were 22 and 23 valid cases included in the Topping-off and PLIF groups. No degeneration was observed in either group. Both VAS and JOA scores improved significantly post-operatively (P < 0.01). The intervertebral angle and lumbar lordosis of L4-L5 were both significantly increased (t = -2.89 and -2.68, P < 0.05 in the Topping-off group and t = -2.25 and -2.15, P < 0.05 in the PLIF group). In the Topping-off group, x-ray in dynamic position showed no significant difference in the angulation or distance of the anterior movement of the L4-L5 segment. The angle of hyper-extension and distance of the posterior movement of L4 were significantly decreased. In the PLIF group, both hyper-flexion and hyper-extension and posterior movement were increased significantly. In finite element analysis, displacement of the L4 vertebral body, pressure of the annulus fibrosus and nucleus pulposus, and stress of the bilateral facet joint were less in the Topping-off group under loads of anterior flexion and posterior extension. Facet joint stress on the left side of the L4-L5 segment was also less in the Topping-off group under left flexion loads. Short-term efficacy and safety between Topping-off and PLIF were similar, whilst the Topping-off technique could restrict the hyper-extension movement of adjacent segments, prevent back and forth movement of proximal vertebrae, and decrease loads of intervertebral disc and facet joints.
Martin, Caroline; Bideau, Benoit; Bideau, Nicolas; Nicolas, Guillaume; Delamarche, Paul; Kulpa, Richard
2014-11-01
Energy flow has been hypothesized to be one of the most critical biomechanical concepts related to tennis performance and overuse injuries. However, the relationships among energy flow during the tennis serve, ball velocity, and overuse injuries have not been assessed. To investigate the relationships among the quality and magnitude of energy flow, the ball velocity, and the peaks of upper limb joint kinetics and to compare the energy flow during the serve between injured and noninjured tennis players. Case-control study; Level of evidence, 3. The serves of expert tennis players were recorded with an optoelectronic motion capture system. The forces and torques of the upper limb joints were calculated from the motion captures by use of inverse dynamics. The amount of mechanical energy generated, absorbed, and transferred was determined by use of a joint power analysis. Then the players were followed during 2 seasons to identify upper limb overuse injuries with a questionnaire. Finally, players were classified into 2 groups according to the questionnaire results: injured or noninjured. Ball velocity increased and upper limb joint kinetics decreased with the quality of energy flow from the trunk to the hand + racket segment. Injured players showed a lower quality of energy flow through the upper limb kinetic chain, a lower ball velocity, and higher rates of energy absorbed by the shoulder and elbow compared with noninjured players. The findings of this study imply that improper energy flow during the tennis serve can decrease ball velocity, increase upper limb joint kinetics, and thus increase overuse injuries of the upper limb joints. © 2014 The Author(s).
Design and preliminary evaluation of an exoskeleton for upper limb resistance training
NASA Astrophysics Data System (ADS)
Wu, Tzong-Ming; Chen, Dar-Zen
2012-06-01
Resistance training is a popular form of exercise recommended by national health organizations, such as the American College of Sports Medicine (ACSM) and the American Heart Association (AHA). This form of training is available for most populations. A compact design of upper limb exoskeleton mechanism for homebased resistance training using a spring-loaded upper limb exoskeleton with a three degree-of-freedom shoulder joint and a one degree-of-freedom elbow joint allows a patient or a healthy individual to move the upper limb with multiple joints in different planes. It can continuously increase the resistance by adjusting the spring length to train additional muscle groups and reduce the number of potential injuries to upper limb joints caused by the mass moment of inertia of the training equipment. The aim of this research is to perform a preliminary evaluation of the designed function by adopting an appropriate motion analysis system and experimental design to verify our prototype of the exoskeleton and determine the optimal configuration of the spring-loaded upper limb exoskeleton.
Slavens, Brooke A; Harris, Gerald F
2008-01-01
Human motion analysis has evolved from the lower extremity to the upper extremity. Rehabilitation engineering is reliant upon three-dimensional biome-chanical models for a thorough understanding of upper body motions and forces in order to improve treatment methods, rehabilitation strategies and to prevent injury. Due to the complex nature of upper body movements, a standard biomechanical model does not exist. This paper reviews several kinematic and kinetic rehabilitation engineering models from the literature. These models may capture a single joint; multijoints such as the shoulder, elbow and wrist; or a combination of joints and an ambulatory aid, which serves as the extension of the upper arm. With advances in software and hardware, new models continuously arise due to the clinical questions at hand. When designing a biomechanical upper extremity model, several key components must be determined. These include deciding on the anatomic segments of the model, the number of markers and placement on bony landmarks, the definition of joint coordinate systems, and the description of the joint motions. It is critical to apply the proper model to further our understanding of pathologic populations.
EPA's Office of Research and Development and Office of Water/Water Security Division have jointly developed a Response Protocol Toolbox (RPTB) to address the complex, multi-faceted challenges of a water utility's planning and response to intentional contamination of drinking wate...
Developmental Planning: An Introduction for Parents
ERIC Educational Resources Information Center
Noland, Jim
2009-01-01
"Developmental Planning" is the thinking process of using developmental milestones as a general basis for planning and predicting needs for the child within the early years. It considers the time frames associated with normal development across all facets of the child's development. The areas include bone and joint development, movement, sensory…
Laslett, Mark; McDonald, Barry; Tropp, Hans; Aprill, Charles N; Öberg, Birgitta
2005-01-01
Background The tissue origin of low back pain (LBP) or referred lower extremity symptoms (LES) may be identified in about 70% of cases using advanced imaging, discography and facet or sacroiliac joint blocks. These techniques are invasive and availability varies. A clinical examination is non-invasive and widely available but its validity is questioned. Diagnostic studies usually examine single tests in relation to single reference standards, yet in clinical practice, clinicians use multiple tests and select from a range of possible diagnoses. There is a need for studies that evaluate the diagnostic performance of clinical diagnoses against available reference standards. Methods We compared blinded clinical diagnoses with diagnoses based on available reference standards for known causes of LBP or LES such as discography, facet, sacroiliac or hip joint blocks, epidurals injections, advanced imaging studies or any combination of these tests. A prospective, blinded validity design was employed. Physiotherapists examined consecutive patients with chronic lumbopelvic pain and/or referred LES scheduled to receive the reference standard examinations. When diagnoses were in complete agreement regardless of complexity, "exact" agreement was recorded. When the clinical diagnosis was included within the reference standard diagnoses, "clinical agreement" was recorded. The proportional chance criterion (PCC) statistic was used to estimate agreement on multiple diagnostic possibilities because it accounts for the prevalence of individual categories in the sample. The kappa statistic was used to estimate agreement on six pathoanatomic diagnoses. Results In a sample of chronic LBP patients (n = 216) with high levels of disability and distress, 67% received a patho-anatomic diagnosis based on available reference standards, and 10% had more than one tissue origin of pain identified. For 27 diagnostic categories and combinations, chance clinical agreement (PCC) was estimated at 13%. "Exact" agreement between clinical and reference standard diagnoses was 32% and "clinical agreement" 51%. For six pathoanatomic categories (disc, facet joint, sacroiliac joint, hip joint, nerve root and spinal stenosis), PCC was 33% with actual agreement 56%. There was no overlap of 95% confidence intervals on any comparison. Diagnostic agreement on the six most common patho-anatomic categories produced a kappa of 0.31. Conclusion Clinical diagnoses agree with reference standards diagnoses more often than chance. Using available reference standards, most patients can have a tissue source of pain identified. PMID:15943873
Weiss, Bettina G; Bachmann, Lucas M; Pfirrmann, Christian W A; Kissling, Rudolf O; Zubler, Veronika
2016-02-01
Discrimination of diffuse idiopathic skeletal hyperostosis (DISH) and ankylosing spondylitis (AS) can be challenging. Usefulness of whole-body magnetic resonance imaging (WB-MRI) in diagnosing spondyloarthritis has been recently proved. We assessed the value of clinical variables alone and in combination with WB-MRI to distinguish between DISH and AS. Diagnostic case-control study: 33 patients with AS and 15 patients with DISH were included. All patients underwent 1.5 Tesla WB-MRI scanning. MR scans were read by a blinded radiologist using the Canadian-Danish Working Group's recommendation. Imaging and clinical variables were identified using the bootstrap. The most important variables from MR and clinical history were assessed in a multivariate fashion resulting in 3 diagnostic models (MRI, clinical, and combined). The discriminative capacity was quantified using the area under the receiver-operating characteristic (ROC) curve. The strength of diagnostic variables was quantified with OR. Forty-eight patients provided 1545 positive findings (193 DISH/1352 AS). The final MR model contained upper anterior corner fat infiltration (32 DISH/181 AS), ankylosis on the vertebral endplate (4 DISH/60 AS), facet joint ankylosis (4 DISH/49 AS), sacroiliac joint edema (11 DISH/91 AS), sacroiliac joint fat infiltration (2 DISH/114 AS), sacroiliac joint ankylosis (2 DISH/119 AS); area under the ROC curve was 0.71, 95% CI 0.64-0.78. The final clinical model contained patient's age and body mass index (area under the ROC curve 0.90, 95% CI 0.89-0.91). The full diagnostic model containing clinical and MR information had an area under the ROC curve of 0.93 (95% CI 0.92-0.95). WB-MRI features can contribute to the correct diagnosis after a thorough conventional workup of patients with DISH and AS.
Correlation and prediction of dynamic human isolated joint strength from lean body mass
NASA Technical Reports Server (NTRS)
Pandya, Abhilash K.; Hasson, Scott M.; Aldridge, Ann M.; Maida, James C.; Woolford, Barbara J.
1992-01-01
A relationship between a person's lean body mass and the amount of maximum torque that can be produced with each isolated joint of the upper extremity was investigated. The maximum dynamic isolated joint torque (upper extremity) on 14 subjects was collected using a dynamometer multi-joint testing unit. These data were reduced to a table of coefficients of second degree polynomials, computed using a least squares regression method. All the coefficients were then organized into look-up tables, a compact and convenient storage/retrieval mechanism for the data set. Data from each joint, direction and velocity, were normalized with respect to that joint's average and merged into files (one for each curve for a particular joint). Regression was performed on each one of these files to derive a table of normalized population curve coefficients for each joint axis, direction, and velocity. In addition, a regression table which included all upper extremity joints was built which related average torque to lean body mass for an individual. These two tables are the basis of the regression model which allows the prediction of dynamic isolated joint torques from an individual's lean body mass.
Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H
2018-04-27
Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.
Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.
Chen, Yanyan; Li, Ge; Zhu, Yanhe; Zhao, Jie; Cai, Hegao
2014-01-01
In this paper, a 6-DOF wearable upper limb exoskeleton with parallel actuated joints which perfectly mimics human motions is proposed. The upper limb exoskeleton assists the movement of physically weak people. Compared with the existing upper limb exoskeletons which are mostly designed using a serial structure with large movement space but small stiffness and poor wearable ability, a prototype for motion assistance based on human anatomy structure has been developed in our design. Moreover, the design adopts balls instead of bearings to save space, which simplifies the structure and reduces the cost of the mechanism. The proposed design also employs deceleration processes to ensure that the transmission ratio of each joint is coincident.
Biomechanical testing simulation of a cadaver spine specimen: development and evaluation study.
Ahn, Hyung Soo; DiAngelo, Denis J
2007-05-15
This article describes a computer model of the cadaver cervical spine specimen and virtual biomechanical testing. To develop a graphics-oriented, multibody model of a cadaver cervical spine and to build a virtual laboratory simulator for the biomechanical testing using physics-based dynamic simulation techniques. Physics-based computer simulations apply the laws of physics to solid bodies with defined material properties. This technique can be used to create a virtual simulator for the biomechanical testing of a human cadaver spine. An accurate virtual model and simulation would complement tissue-based in vitro studies by providing a consistent test bed with minimal variability and by reducing cost. The geometry of cervical vertebrae was created from computed tomography images. Joints linking adjacent vertebrae were modeled as a triple-joint complex, comprised of intervertebral disc joints in the anterior region, 2 facet joints in the posterior region, and the surrounding ligament structure. A virtual laboratory simulation of an in vitro testing protocol was performed to evaluate the model responses during flexion, extension, and lateral bending. For kinematic evaluation, the rotation of motion segment unit, coupling behaviors, and 3-dimensional helical axes of motion were analyzed. The simulation results were in correlation with the findings of in vitro tests and published data. For kinetic evaluation, the forces of the intervertebral discs and facet joints of each segment were determined and visually animated. This methodology produced a realistic visualization of in vitro experiment, and allowed for the analyses of the kinematics and kinetics of the cadaver cervical spine. With graphical illustrations and animation features, this modeling technique has provided vivid and intuitive information.
Griffin, Sarah A; Samuel, Douglas B
2014-10-01
The Personality Inventory for DSM-5 (PID-5) was developed as a measure of the maladaptive personality trait model included within Section III of the DSM-5. Although preliminary findings have suggested the PID-5 has a five-factor structure that overlaps considerably with the Five-Factor Model (FFM) at the higher order level, there has been much less attention on the specific locations of the 25 lower-order traits. Joint exploratory factor analysis of the PID-5 traits and the 30 facets of the NEO-PI-R were used to determine the lower-order structure of the PID-5. Results indicated the PID-5's domain-level structure closely resembled the FFM. We also explored the placement of several lower-order facets that have not loaded consistently in previous studies. Overall, these results indicate that the PID-5 shares a common structure with the FFM and clarify the placement of some interstitial facets. More research investigating the lower-order facets is needed to determine how they fit into the hierarchical structure and explicate their relationships to existing measures of pathological traits. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Klauser, Andrea; De Zordo, Tobias; Feuchtner, Gudrun; Sögner, Peter; Schirmer, Michael; Gruber, Johann; Sepp, Norbert; Moriggl, Bernhard
2008-11-15
Sacroiliitis is often caused by rheumatic diseases, and besides other therapeutic options, treatment consists of intraarticular injection of corticosteroids. The purpose of this study was to assess the feasibility of ultrasound (US)-guided sacroiliac joint (SI joint) injection at 2 different puncture levels in cadavers and patients when defined sonoanatomic landmarks were considered. After defining sonoanatomic landmarks, US-guided needle insertion was performed in 10 human cadavers (20 SI joints) at 2 different puncture sites. Upper level was defined at the level of the posterior sacral foramen 1 and lower level at the level of the posterior sacral foramen 2. In 10 patients with unilateral sacroiliitis, injection at the most feasible level was attempted. Computed tomography confirmed correct intraarticular needle placement in cadavers by showing the tip of the needle in the joint and intraarticular diffusion of contrast media in 16 (80%) of 20 SI joints (upper level 7 [70%] of 10; lower level 9 [90%] of 10). In all 4 cases in which needle insertion failed, intraarticular SI joint injection at the other level was successful. In patients, 100% of US-guided injections were successful (8 lower level, 2 upper level), with a mean pain relief of 8.6 after 3 months. US guidance of needle insertion into SI joints was feasible at both levels when defined sonoanatomic landmarks were used. If SI joint alterations do not allow for direct visualization of the dorsal joint space of the lower level, which is easier to access, the upper level might offer an appropriate alternative.
Strifling, Kelly M B; Konop, Katherine A; Wang, Mei; Harris, Gerald F
2009-01-01
Walkers are prescribed with the notion that one type of walker will be better for a child than another. One underlying justification for this practice is the theory that one walker may produce less stress on the upper extremities as the patient uses the walker. Nevertheless, upper extremity joint loading is not typically analyzed during walker assisted gait in children with spastic diplegic cerebral palsy. It has been difficult to evaluate the theory of walker prescription based on upper extremity stresses because loading on the upper extremities however has not been quantified until recently. In this study, weight bearing on the glenohumeral joints was analyzed in five children with spastic diplegic cerebral palsy using both anterior and posterior walkers fitted with 6-axis handle transducers. Though walkers' effects on the upper extremities proved to be similar between walker types, the differences between the walkers may have some clinical significance in the long run. In general, posterior walker use created larger glenohumeral joint forces. Though these differences are not statistically significant, over time and with repetitive loading they may be clinically significant.
EPA's Office of Research and Development and Office of Water/Water Security Division have jointly developed a Response Protocol Toolbox (RPTB) to address the complex, multi-faceted challenges of a water utility's planning and response to intentional contamination of drinking wate...
Qin, Jin; Trudeau, Matthieu; Katz, Jeffrey N; Buchholz, Bryan; Dennerlein, Jack T
2011-08-01
Musculoskeletal disorders associated with computer use span the joints of the upper extremity. Computing typically involves tapping in multiple directions. Thus, we sought to describe the loading on the finger, wrist, elbow and shoulder joints in terms of kinematic and kinetic difference across single key switch tapping to directional tapping on multiple keys. An experiment with repeated measures design was conducted. Six subjects tapped with their right index finger on a stand-alone number keypad placed horizontally in three conditions: (1) on single key switch (the number key 5); (2) left and right on number key 4 and 6; (3) top and bottom on number key 8 and 2. A force-torque transducer underneath the keypad measured the fingertip force. An active-marker infrared motion analysis system measured the kinematics of the fingertip, hand, forearm, upper arm and torso. Joint moments for the metacarpophalangeal, wrist, elbow, and shoulder joints were estimated using inverse dynamics. Tapping in the top-bottom orientation introduced the largest biomechanical loading on the upper extremity especially for the proximal joint, followed by tapping in the left-right orientation, and the lowest loading was observed during single key switch tapping. Directional tapping on average increased the fingertip force, joint excursion, and peak-to-peak joint torque by 45%, 190% and 55%, respectively. Identifying the biomechanical loading patterns associated with these fundamental movements of keying improves the understanding of the risks of upper extremity musculoskeletal disorders for computer keyboard users. Copyright © 2010 Elsevier Ltd. All rights reserved.
The morphological characteristics of the antebrachiocarpal joint of the cheetah (Acinonyx jubatus).
Ohale, L O C; Groenewald, H B
2003-03-01
A morphological study of the structures of the antebrachiocarpal (AC) joint of the cheetah was carded out by dissection of eight forelimbs obtained from four adult cheetahs culled from the Kruger National Park, Republic of South Africa. The aim was to evaluate the deviations of this joint from the normal feline pattern and to consider their possible relationship to the cheetah's adaptation to speed. Although published data on the AC joint of the other felids show general resemblance to that of the cheetah, there are nevertheless slight, but significant variations and modifications which tend to suggest adaptation to speed. The shafts of the radius and ulna of the cheetah are relatively straight and slender, with poorly developed distal ends. The ulnar notch is reduced to a very shallow concavity while the corresponding ulnar facet is a barely noticeable convexity, separated from the distal ulnar articular facet by an ill-defined groove. The movement of the distal radio-ulnar joint is highly restricted by the presence of a fibro-cartilaginous structure and a strong interrosseous membrane, limiting pronation and supination normally achieved by the rotation of the radius around the ulna. The extensor grooves at the distal extremity of the radius are deep and narrow and are guarded by prominent ridges. A thick extensor retinaculum anchors the strong extensor tendons in these grooves. The distal articular surface of the radius is concave in all directions except at the point where it moves into its stylold process. At this point it is convex in the dorsopalmar direction, with a surface that is rather deep and narrow. The proximal row of carpal bones presents a strongly convex surface, which is more pronounced in the dorsopalmar direction with the greatest convexity on the lateral aspect. Medially, there is a ridge-like concavity across the base of the tubercle, which rocks on the flexor surface of the radius, limiting excessive flexion as well as restricting lateral deviation of the AC joint.
Dutch Multidisciplinary Guideline for Invasive Treatment of Pain Syndromes of the Lumbosacral Spine.
Itz, Coen J; Willems, Paul C; Zeilstra, Dick J; Huygen, Frank J
2016-01-01
When conservative therapies such as pain medication or exercise therapy fail, invasive treatment may be indicated for patients with lumbosacral spinal pain. The Dutch Society of Anesthesiologists, in collaboration with the Dutch Orthopedic Association and the Dutch Neurosurgical Society, has taken the initiative to develop the guideline "Spinal low back pain," which describes the evidence regarding diagnostics and invasive treatment of the most common spinal low back pain syndromes, that is, facet joint pain, sacroiliac joint pain, coccygodynia, pain originating from the intervertebral disk, and failed back surgery syndrome. The aim of the guideline is to determine which invasive treatment intervention is preferred for each included pain syndrome when conservative treatment has failed. Diagnostic studies were evaluated using the EBRO criteria, and studies on therapies were evaluated with the Grading of Recommendations Assessment, Development and Evaluation system. For the evaluation of invasive treatment options, the guideline committee decided that the outcome measures of pain, function, and quality of life were most important. The definition, epidemiology, pathophysiological mechanism, diagnostics, and recommendations for invasive therapy for each of the spinal back pain syndromes are reported. The guideline committee concluded that the categorization of low back pain into merely specific or nonspecific gives insufficient insight into the low back pain problem and does not adequately reflect which therapy is effective for the underlying disorder of a pain syndrome. Based on the guideline "Spinal low back pain," facet joint pain, pain of the sacroiliac joint, and disk pain will be part of a planned nationwide cost-effectiveness study. © 2015 World Institute of Pain.
Mesfar, Wissal; Moglo, Kodjo
2013-10-01
In order to diagnosis a transverse ligament rupture in the cervical spine, clinicians normally measure the atlas-dens interval by using CT scan images. However, the impact of this tear on the head and neck complex biomechanics is not widely studied. The transverse ligament plays a very important role in stabilizing the joint and its alteration may have a substantial effect on the whole head and neck complex. A finite element model consisting of bony structures along with cartilage, intervertebral discs and all ligaments was developed based on CT and MRI images. The effect of head weights (compressive load) of 30 N to 57 N was investigated in the cases of intact and ruptured transverse ligament joints. The model was validated based on experimental studies investigating the response of the cervical spine under the extension-flexion moment. The predictions indicate a significant alteration of the kinematics and load distribution at the facet joints of the cervical spine with a transverse ligament tear. The vertebrae flexion, the contact force at the facets joints and the atlas-dens interval increase with the rupture of the transverse ligament and are dependent to the head weight. A transverse ligament tear increases the flexion angle of the head and the vertebrae as well as the atlas-dens interval. The atlas-dens interval reaches a critical value when the compressive loading exceeds 40 N. Supporting the head after an injury should be considered to avoid compression of the spinal cord and permanent neurologic damage. © 2013.
Kitagawa, Yuichi; Yasuki, Tsuyoshi; Hasegawa, Junji
2006-11-01
Many efforts have been made to understand the mechanism of whiplash injury. Recently, the cervical facet joint capsules have been focused on as a potential site of injury. An experimental approach has been taken to analyze the vertebral motion and to estimate joint capsule stretch that was thought to be a potential cause of pain. The purpose of this study is to analyze the kinematics of the cervical facet joint using a human FE model in order to better understand the injury mechanism. The Total Human Model for Safety (THUMS) was used to visually analyze the local and global kinematics of the spine. Soft tissues in the neck were newly modeled and introduced into THUMS for estimating the loading level in rear impacts. The model was first validated against human test data in the literature by comparing vertebrae motion as well as head and neck responses. Joint capsule strain was estimated from a maximum principal strain output from the elements representing the capsule tissues. A rear-end collision was then simulated using THUMS and a prototype seat model, assuming a delta-V of 25 km/h. The trajectory of the vertebrae was analyzed in a local coordinate system defined along the joint surface. Strain growth in the joint capsules was explained, as related to contact events between the occupant and the seat. A new seat concept was proposed to help lessen the loading level to the neck soft tissues. The foam material of the seat back was softened, the initial gap behind the head was reduced and the head restraint was stiffened for firm support. The lower seat back frame was also reinforced to withstand the impact severity at the given delta-V. Another rear impact simulation was conducted using the new seat concept model to examine the effectiveness of the new concept. The joint capsule strain was found to be relatively lower with the new seat concept. The study also discusses the influence of seat parameters to the vertebral motion and the resultant strain in the joint capsules. The meaning of the contact timing of the head to the head restraint was examined based on the results in terms of correlation with injury indicators such as NIC and the joint capsule strain.
A hybrid joint based controller for an upper extremity exoskeleton
NASA Astrophysics Data System (ADS)
Mohd Khairuddin, Ismail; Taha, Zahari; Majeed, Anwar P. P. Abdul; Hakeem Deboucha, Abdel; Azraai Mohd Razman, Mohd; Aziz Jaafar, Abdul; Mohamed, Zulkifli
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton. The Euler-Lagrange formulation was used in deriving the dynamic modelling of both the human upper limb as well as the exoskeleton that consists of the upper arm and the forearm. The human model is based on anthropometrical measurements of the upper limb. The proportional-derivative (PD) computed torque control (CTC) architecture is employed in this study to investigate its efficacy performing joint-space control objectives specifically in rehabilitating the elbow and shoulder joints along the sagittal plane. An active force control (AFC) algorithm is also incorporated into the PD-CTC to investigate the effectiveness of this hybrid system in compensating disturbances. It was found that the AFC- PD-CTC performs well against the disturbances introduced into the system whilst achieving acceptable trajectory tracking as compared to the conventional PD-CTC control architecture.
Shuang, Feng; Zhou, Ying; Hou, Shu-Xun; Zhu, Jia-Liang; Liu, Yan; Zhang, Chun-Li; Tang, Jia-Guang
2015-05-20
Indian Hedgehog (HH) has been shown to be involved in osteoarthritis (OA) in articular joints, where there is evidence that Indian HH blockade could ameliorate OA. It seems to play a prominent role in development of the intervertebral disc (IVD) and in postnatal maintenance. There is little work on IHH in the IVD. Hence the aim of the current study was to investigate the role of Indian Hedgehog in the pathology of facet joint (FJ) OA. 24 patients diagnosed with lumbar intervertebral disk herniation or degenerative spinal stenosis were included. Preoperative magnetic resonance imaging (MRI) and Osteoarthritis Research Society International (OARSI) histopathology grading system was correlated to the mRNA levels of GLI1, PTCH1, and HHIP in the FJs. The Weishaupt grading and OARSI scores showed high positive correlation (r = 0.894) (P < 0.01). MRI Weishaupt grades showed positive correlation with GLI1 (r = 0.491), PTCH1 (r = 0.444), and HHIP (r = 0.654) mRNA levels (P < 0.05 in each case). OARSI scores were also positively correlated with GLI1 (r = 0. 646), PTCH1 (r = 0. 518), and HHIP (r = 0.762) mRNA levels (P < 0.01 in each case). Cumulatively our findings indicate that Indian HH signaling is increased in OA and is perhaps a key component in OA pathogenesis and progression.
Dreischarf, Marcel; Schmidt, Hendrik; Putzier, Michael; Zander, Thomas
2015-09-18
Total disc replacement has been introduced to overcome negative side effects of spinal fusion. The amount of iatrogenic distraction, preoperative disc height and implant positioning have been considered important for surgical success. However, their effect on the postoperative range of motion (RoM) and loading of the facets merits further discussion. A validated osteoligamentous finite element model of the lumbosacral spine was employed and extended with four additional models to account for different disc heights. An artificial disc with a fixed center of rotation (CoR) was implemented in L5-S1. In 4000 simulations, the influence of distraction and the CoR's location on the RoM, facet joint forces (FJFs) and facet capsule ligament forces (FCLFs) was investigated. Distraction substantially altered segmental kinematics in the sagittal plane by decreasing range of flexion (0.5° per 1mm of distraction), increasing range of extension (0.7°/mm) and slightly affecting complete sagittal RoM (0.2°/mm). The distraction already strongly increased the FCLFs during surgery (up to 230N) and in flexion (~12N/mm), with higher values in models with larger preoperative disc heights, and increased FJFs in extension. A more anterior implant location decreased the RoM in all planes. In most loading cases, a more posterior location of the implant's CoR increased the FJFs and FCLFs, whereas a more caudal location increased the FCLFs but decreased the FJFs. The results of this study may explain the worse clinical results in patients with overdistraction after TDR. The complete RoM in the sagittal plane appears to be insensitive to detecting surgery-related biomechanical changes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Monie, Aubrey P; Price, Roger I; Lind, Christopher R P; Singer, Kevin P
2017-06-01
A test-retest cohort study was conducted to assess the use of a novel computer-aided, combined movement examination (CME) to measure change in low back movement after pain management intervention in 17 cases of lumbar spondylosis. Additionally we desired to use a CME normal reference range (NRR) to compare and contrast movement patterns identified from 3 specific structural pathologic conditions: intervertebral disc, facet joint, and nerve root compression. Computer-aided CME was used before and after intervention, in a cohort study design, to record lumbar range of movement along with pain, disability, and health self-report questionnaires in 17 participants who received image-guided facet, epidural, and/or rhizotomy intervention. In the majority of cases, CME was reassessed after injection together with 2 serial self-reports after an average of 2 and 14 weeks. A minimal clinically important difference of 30% was used to interpret meaningful change in self-reports. A CME NRR (n = 159) was used for comparison with the 17 cases. Post hoc observation included subgrouping cases into 3 discrete pathologic conditions, intervertebral disc, facet dysfunction, and nerve root compression, in order to report intergroup differences in CME movement. Seven of the 17 participants stated that a "combined" movement was their most painful CME direction. Self-report outcome data indicated that 4 participants experienced significant improvement in health survey, 5 improved by ≥30% on low back function, and 8 reported that low back pain was more bothersome than stiffness, 6 of whom achieved the minimal clinically important difference for self-reported pain. Subgrouping of cases into structure-specific groups provided insight to different CME movement patterns. The use of CME assists in identifying atypical lumbar movement relative to an age and sex NRR. Data from this study, exemplified by representative case studies, provide preliminary evidence for distinct intervertebral disc, facet joint, and nerve root compression CME movement patterns in cases of chronic lumbar spondylosis. Copyright © 2017. Published by Elsevier Inc.
Upper limb joint motion of two different user groups during manual wheelchair propulsion
NASA Astrophysics Data System (ADS)
Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Lee, Jinbok; Kim, Youngho
2013-02-01
Manual wheelchair users have a high risk of injury to the upper extremities. Recent studies have focused on kinematic and kinetic analyses of manual wheelchair propulsion in order to understand the physical demands on wheelchair users. The purpose of this study was to investigate upper limb joint motion by using a motion capture system and a dynamometer with two different groups of wheelchair users propelling their wheelchairs at different speeds under different load conditions. The variations in the contact time, release time, and linear velocity of the experienced group were all larger than they were in the novice group. The propulsion angles of the experienced users were larger than those of the novices under all conditions. The variances in the propulsion force (both radial and tangential) of the experienced users were larger than those of the novices. The shoulder joint moment had the largest variance with the conditions, followed by the wrist joint moment and the elbow joint moment. The variance of the maximum shoulder joint moment was over four times the variance of the maximum wrist joint moment and eight times the maximum elbow joint moment. The maximum joint moments increased significantly as the speed and load increased in both groups. Quick and significant manipulation ability based on environmental changes is considered an important factor in efficient propulsion. This efficiency was confirmed from the propulsion power results. Sophisticated strategies for efficient manual wheelchair propulsion could be understood by observation of the physical responses of each upper limb joint to changes in load and speed. We expect that the findings of this study will be utilized for designing a rehabilitation program to reduce injuries.
Seal Analysis for the Ares-I Upper Stage Fuel Tank Manhole Cover
NASA Technical Reports Server (NTRS)
Phillips, Dawn R.; Wingate, Robert J.
2010-01-01
Techniques for studying the performance of Naflex pressure-assisted seals in the Ares-I Upper Stage liquid hydrogen tank manhole cover seal joint are explored. To assess the feasibility of using the identical seal design for the Upper Stage as was used for the Space Shuttle External Tank manhole covers, a preliminary seal deflection analysis using the ABAQUS commercial finite element software is employed. The ABAQUS analyses are performed using three-dimensional symmetric wedge finite element models. This analysis technique is validated by first modeling a heritage External Tank liquid hydrogen tank manhole cover joint and correlating the results to heritage test data. Once the technique is validated, the Upper Stage configuration is modeled. The Upper Stage analyses are performed at 1.4 times the expected pressure to comply with the Constellation Program factor of safety requirement on joint separation. Results from the analyses performed with the External Tank and Upper Stage models demonstrate the effects of several modeling assumptions on the seal deflection. The analyses for Upper Stage show that the integrity of the seal is successfully maintained.
Expansion joint for guideway for magnetic levitation transportation system
Rossing, Thomas D.
1993-01-01
An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The sidewalls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging sidewalls so that the cuts have a substantially dove-tail shape.
Expansion joint for guideway for magnetic levitation transportation system
Rossing, T.D.
1993-02-09
An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The side walls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging side walls so that the cuts have a substantially dove-tail shape.
Joint Manipulation: Toward a General Theory of High-Velocity, Low-Amplitude Thrust Techniques.
Harwich, Andrew S
2017-12-01
The objective of this study was to describe the initial stage of a generalized theory of high-velocity, low-amplitude thrust (HVLAT) techniques for joint manipulation. This study examined the movements described by authors from the fields of osteopathy, chiropractic, and physical therapy to produce joint cavitation in both the metacarpophalangeal (MCP) joint and the cervical spine apophysial joint. This study qualitatively compared the kinetics, the similarities, and the differences between MCP cavitation and cervical facet joint cavitation. A qualitative vector analysis of forces and movements was undertaken by constructing computer-generated, simplified graphical models of the MCP joint and a typical cervical apophysial joint and imposing the motions dictated by the clinical technique. Comparing the path to cavitation of 2 modes of HVLAT for the MCP joint, namely, distraction and hyperflexion, it was found that the hyperflexion method requires an axis of rotation, the hinge axis, which is also required for cervical HVLAT. These results show that there is an analogue of cervical HVLAT in one of the MCP joint HVLATs. The study demonstrated that in a theoretical model, the path to joint cavitation is the same for asymmetric separation of the joint surfaces in the cervical spine and the MCP joints.
Relative ratios of collagen composition of periarticular tissue of joints of the upper limb.
Cheah, A; Harris, A; Le, W; Huang, Y; Yao, J
2017-07-01
We investigated the relative ratios of collagen composition of periarticular tissue of the elbow, wrist, metacarpophalangeal, proximal and distal interphalangeal joints. Periarticulat tissue, which we defined as the ligaments, palmar plate and capsule, was harvested from ten fresh-frozen cadaveric upper limbs, yielding 50 samples. The mean paired differences (95% confidence interval) of the relative ratios of collagen between the five different joints were estimated using mRNA expression of collagen in the periarticular tissue. We found that the relative collagen composition of the elbow was not significantly different to that of the proximal interphalangeal joint, nor between the proximal interphalangeal joint and distal interphalangeal joint, whereas the differences in collagen composition between all the other paired comparisons of the joints had confidence intervals that did not include zero.
Fundamental Principles of Tremor Propagation in the Upper Limb.
Davidson, Andrew D; Charles, Steven K
2017-04-01
Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist and included coupled joint inertia, damping, and stiffness. We deliberately implemented a simple model to focus first on the most basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to establish fundamental principles describing how input parameters (torque location and frequency) and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the methods and principles presented here will serve as the groundwork for future refining studies to understand the origin, propagation, and distribution of tremor throughout the upper limb in order to enable the future development of optimal tremor-suppressing devices.
Fundamental Principles of Tremor Propagation in the Upper Limb
Davidson, Andrew D.; Charles, Steven K.
2017-01-01
Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist and included coupled joint inertia, damping, and stiffness. We deliberately implemented a simple model to focus first on the most basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to establish fundamental principles describing how input parameters (torque location and frequency) and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the methods and principles presented here will serve as the groundwork for future refining studies to understand the origin, propagation, and distribution of tremor throughout the upper limb in order to enable the future development of optimal tremor-suppressing devices. PMID:27957608
A Systems Biology Approach to Synovial Joint Lubrication in Health, Injury, and Disease
Hui, Alexander Y.; McCarty, William J.; Masuda, Koichi; Firestein, Gary S.; Sah, Robert L.
2013-01-01
The synovial joint contains synovial fluid (SF) within a cavity bounded by articular cartilage and synovium. SF is a viscous fluid that has lubrication, metabolic, and regulatory functions within synovial joints. SF contains lubricant molecules, including proteoglycan-4 and hyaluronan. SF is an ultrafiltrate of plasma with secreted contributions from cell populations lining and within the synovial joint space, including chondrocytes and synoviocytes. Maintenance of normal SF lubricant composition and function are important for joint homeostasis. In osteoarthritis, rheumatoid arthritis, and joint injury, changes in lubricant composition and function accompany alterations in the cytokine and growth factor environment and increased fluid and molecular transport through joint tissues. Thus, understanding the synovial joint lubrication system requires a multi-faceted study of the various parts of the synovial joint and their interactions. Systems biology approaches at multiple scales are being used to describe the molecular, cellular, and tissue components and their interactions that comprise the functioning synovial joint. Analyses of the transcriptome and proteome of SF, cartilage, and synovium suggest that particular molecules and pathways play important roles in joint homeostasis and disease. Such information may be integrated with physicochemical tissue descriptions to construct integrative models of the synovial joint that ultimately may explain maintenance of health, recovery from injury, or development and progression of arthritis. PMID:21826801
Analysis of Open-Ended Statistics Questions with Many Facet Rasch Model
ERIC Educational Resources Information Center
Güler, Nese
2014-01-01
Problem Statement: The most significant disadvantage of open-ended items that allow the valid measurement of upper level cognitive behaviours, such as synthesis and evaluation, is scoring. The difficulty associated with objectively scoring the answers to the items contributes to the reduction of the reliability of the scores. Moreover, other…
Seal Joint Analysis and Design for the Ares-I Upper Stage LOX Tank
NASA Technical Reports Server (NTRS)
Phillips, Dawn R.; Wingate, Robert J.
2011-01-01
The sealing capability of the Ares-I Upper Stage liquid oxygen tank-to-sump joint is assessed by analyzing the deflections of the joint components. Analyses are performed using three-dimensional symmetric wedge finite element models and the ABAQUS commercial finite element software. For the pressure loads and feedline interface loads, the analyses employ a mixed factor of safety approach to comply with the Constellation Program factor of safety requirements. Naflex pressure-assisted seals are considered first because they have been used successfully in similar seal joints in the Space Shuttle External Tank. For the baseline sump seal joint configuration with a Naflex seal, the predicted joint opening greatly exceeds the seal design specification. Three redesign options of the joint that maintain the use of a Naflex seal are studied. The joint openings for the redesigned seal joints show improvement over the baseline configuration; however, these joint openings still exceed the seal design specification. RACO pressure-assisted seals are considered next because they are known to also be used on the Space Shuttle External Tank, and the joint opening allowable is much larger than the specification for the Naflex seals. The finite element models for the RACO seal analyses are created by modifying the models that were used for the Naflex seal analyses. The analyses show that the RACO seal may provide sufficient sealing capability for the sump seal joint. The results provide reasonable data to recommend the design change and plan a testing program to determine the capability of RACO seals in the Ares-I Upper Stage liquid oxygen tank sump seal joint.
Cervical spondylotic myelopathy.
Tracy, Jennifer A; Bartleson, J D
2010-05-01
Cervical spondylosis is part of the aging process and affects most people if they live long enough. Degenerative changes affecting the intervertebral disks, vertebrae, facet joints, and ligamentous structures encroach on the cervical spinal canal and damage the spinal cord, especially in patients with a congenitally small cervical canal. Cervical spondylotic myelopathy (CSM) is the most common cause of myelopathy in adults. The anatomy, pathophysiology, clinical presentation, differential diagnosis, diagnostic investigation, natural history, and treatment options for CSM are summarized. Patients present with signs and symptoms of cervical spinal cord dysfunction with or without cervical nerve root injury. The condition may or may not be accompanied by pain in the neck and/or upper limb. The differential diagnosis is broad. Imaging, typically with magnetic resonance imaging, is the most useful diagnostic tool. Electrophysiologic testing can help exclude alternative diagnoses. The effectiveness of conservative treatments is unproven. Surgical decompression improves neurologic function in some patients and prevents worsening in others, but is associated with risk. Neurologists should be familiar with this very common condition. Patients with mild signs and symptoms of CSM can be monitored. Surgical decompression from an anterior or posterior approach should be considered in patients with progressive and moderate to severe neurologic deficits.
The Contribution of Upper Body Movements to Dynamic Balance Regulation during Challenged Locomotion
Boström, Kim J.; Dirksen, Tim; Zentgraf, Karen; Wagner, Heiko
2018-01-01
Recent studies suggest that in addition to movements between ankle and hip joints, movements of the upper body, in particular of the arms, also significantly contribute to postural control. In line with these suggestions, we analyzed regulatory movements of upper and lower body joints supporting dynamic balance regulation during challenged locomotion. The participants walked over three beams of varying width and under three different verbally conveyed restrictions of arm posture, to control the potential influence of arm movements on the performance: The participants walked (1) with their arms stretched out perpendicularly in the frontal plane, (2) spontaneously, i.e., without restrictions to the arm movements, and (3) with their hands on their thighs. After applying an inverse-dynamics analysis to the measured joint kinematics, we investigated the contribution of upper and lower body joints to balance regulation in terms of torque amplitude and variation. On the condition with the hands on the thighs, the contribution of the upper body remains significantly lower than the contribution of the lower body irrespective of beam widths. For spontaneous arm movements and for outstretched arms we find that the upper body (including the arms) contributes to the balancing to a similar extent as the lower body. Moreover, when the task becomes more difficult, i.e., for narrower beam widths, the contribution of the upper body increases, while the contribution of the lower body remains nearly constant. These findings lend further support to the hypothetical existence of an “upper body strategy” complementing the ankle and hip strategies especially during challenging dynamic balance tasks. PMID:29434544
Modelling and control of an upper extremity exoskeleton for rehabilitation
NASA Astrophysics Data System (ADS)
Taha, Zahari; Majeed, Anwar P. P. Abdul; Tze, Mohd Yashim Wong Paul; Abdo Hashem, Mohammed; Mohd Khairuddin, Ismail; Azraai Mohd Razman, Mohd
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton for rehabilitation. The Lagrangian formulation was employed to obtain the dynamic modelling of both the anthropometric based human upper limb as well as the exoskeleton that comprises of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed to investigate its efficacy performing a joint task trajectory tracking in performing flexion/extension on the elbow joint as well as the forward adduction/abduction on the shoulder joint. An active force control (AFC) algorithm is also incorporated into the aforementioned controller to examine its effectiveness in compensating disturbances. It was found from the study that the AFC-PD performed well against the disturbances introduced into the system without compromising its tracking performances as compared to the conventional PD control architecture.
Manchikanti, Laxmaiah; Cash, Kimberly A; Pampati, Vidyasagar; Wargo, Bradley W; Malla, Yogesh
2010-01-01
Chronic neck pain is a common problem in the adult population with a typical 12-month prevalence of 30% to 50%. However, there is a lack of consensus regarding the causes and treatments of chronic neck pain. Despite limited evidence, cervical epidural injections are one of the commonly performed non-surgical interventions in the management of chronic neck pain. A randomized, double-blind, active control trial. An interventional pain management practice, a specialty referral center, a private practice setting in the United States. To evaluate the effectiveness of cervical interlaminar epidural injections with local anesthetic with or without steroids in the management of chronic neck pain with or without upper extremity pain in patients without disc herniation or radiculitis or facet joint pain. Patients without disc herniation or radiculitis and negative for facet joint pain by means of controlled diagnostic medial branch blocks were randomly assigned to one of 2 groups: injection of local anesthetic only or local anesthetic mixed with non-particulate betamethasone. Seventy patients were included in this analysis. Randomization was performed by computer-generated random allocation sequence by simple randomization. Multiple outcome measures were utilized including the Numeric Rating Scale (NRS), the Neck Disability Index (NDI), employment status, and opioid intake with assessment at 3, 6, and 12 months post-treatment. Significant pain relief or functional status was defined as a 50% or more reduction. Significant pain relief (> or = 50%) was demonstrated in 80% of patients in both groups and functional status improvement (> or = 50%) in 69% of Group I and 80% of Group II. The overall average procedures per year were 3.9 +/- 1.01 in Group I and 3.9 +/- 0.8 in Group II with an average total relief per year of 40.3 +/- 14.1 weeks in Group I and 42.1 +/- 9.9 weeks in Group II over a period of 52 weeks in the successful group. The results of this study are limited by the lack of a placebo group and a preliminary report of 70 patients, with 35 patients in each group. Cervical interlaminar epidural injections with local anesthetic with or without steroids may be effective in patients with chronic function-limiting discogenic.
Park, Jung Ho; Kim, Hee-Chun; Lee, Jae Hoon; Kim, Jin Soo; Roh, Si Young; Yi, Cheol Ho; Kang, Yoon Kyoo; Kwon, Bum Sun
2009-05-01
While the lower extremities support the weight and move the body, the upper extremities are essential for the activities of daily living, which require many detailed movements. Therefore, a disability of the upper extremity function should include a limitation of all motions of the joints and sensory loss, which affects the activities. In this study, disabilities of the upper extremities were evaluated according to the following conditions: 1) amputation, 2) joint contracture, 3) diseases of upper extremity, 4) weakness, 5) sensory loss of the finger tips, and 6) vascular and lymphatic diseases. The order of 1) to 6) is the order of major disability and there is no need to evaluate a lower order disability when a higher order one exists in the same joint or a part of the upper extremity. However, some disabilities can be either added or substituted when there are special contributions from multiple disabilities. An upper extremity disability should be evaluated after the completion of treatment and full adaptation when further functional changes are not expected. The dominance of the right or left hand before the disability should not be considered when there is a higher rate of disability.
Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.
Guo, Lan-Yuen; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan
2003-02-01
To investigate the characteristics of mechanical energy and power flow of the upper limb during wheelchair propulsion. Mechanical energy and power flow of segments were calculated. Very few studies have taken into account the mechanical energy and power flow of the musculoskeletal system during wheelchair propulsion. Mechanical energy and power flow have proven to be useful tools for investigating locomotion disorders during human gait. Twelve healthy male adults (mean age, 23.5 years) were recruited for this study. Three-dimensional kinematic and kinetic data of the upper extremity were collected during wheelchair propulsion using a Hi-Res Expert Vision system and an instrumented wheel, respectively. During the initiation of the propulsion phase, joint power is generated in the upper arm or is transferred from the trunk downward to the forearm and hand to propel the wheel forward. During terminal propulsion, joint power is transferred upward to the trunk from the forearm and upper arm. The rate of change of mechanical energy and power flow for the forearm and hand have similar patterns, but the upper arm values differ. Joint power plays an important role in energy transfer as well as the energy generated and absorbed by muscles spanning the joints during wheelchair propulsion. Energy and power flow information during wheelchair propulsion allows us to gain a better understanding of the coordination of the movement by the musculoskeletal system.
Ellard, David R; Underwood, Martin; Achana, Felix; Antrobus, James Hl; Balasubramanian, Shyam; Brown, Sally; Cairns, Melinda; Griffin, James; Griffiths, Frances; Haywood, Kirstie; Hutchinson, Charles; Lall, Ranjit; Petrou, Stavros; Stallard, Nigel; Tysall, Colin; Walsh, David A; Sandhu, Harbinder
2017-05-01
The National Institute for Health and Care Excellence (NICE) 2009 guidelines for persistent low back pain (LBP) do not recommend the injection of therapeutic substances into the back as a treatment for LBP because of the absence of evidence for their effectiveness. This feasibility study aimed to provide a stable platform that could be used to evaluate a randomised controlled trial (RCT) on the clinical effectiveness and cost-effectiveness of intra-articular facet joint injections (FJIs) when added to normal care. To explore the feasibility of running a RCT to test the hypothesis that, for people with suspected facet joint back pain, adding the option of intra-articular FJIs (local anaesthetic and corticosteroids) to best usual non-invasive care is clinically effective and cost-effective. The trial was a mixed design. The RCT pilot protocol development involved literature reviews and a consensus conference followed by a randomised pilot study with an embedded mixed-methods process evaluation. Five NHS acute trusts in England. Participants were patients aged ≥ 18 years with moderately troublesome LBP present (> 6 months), who had failed previous conservative treatment and who had suspected facet joint pain. The study aimed to recruit 150 participants (approximately 30 per site). Participants were randomised sequentially by a remote service to FJIs combined with 'best usual care' (BUC) or BUC alone. All participants were to receive six sessions of a bespoke BUC rehabilitation package. Those randomised into the intervention arm were, in addition, given FJIs with local anaesthetic and steroids (at up to six injection sites). Randomisation occurred at the end of the first BUC session. Process and clinical outcomes. Clinical outcomes included a measurement of level of pain on a scale from 0 to 10, which was collected daily and then weekly via text messaging (or through a written diary). Questionnaire follow-up was at 3 months. Fifty-two stakeholders attended the consensus meeting. Agreement informed several statistical questions and three design considerations: diagnosis, the process of FJI and the BUC package and informing the design for the randomised pilot study. Recruitment started on 26 June 2015 and was terminated by the funder (as a result of poor recruitment) on 11 December 2015. In total, 26 participants were randomised. Process data illuminate some of the reasons for recruitment problems but also show that trial processes after enrolment ran smoothly. No between-group analysis was carried out. All pain-related outcomes show the expected improvement between baseline and follow-up. The mean total cost of the overall treatment package (injection £419.22 and BUC £264.00) was estimated at £683.22 per participant. This is similar to a NHS tariff cost for a course of FJIs of £686.84. Poor recruitment was a limiting factor. This feasibility study achieved consensus on the main challenges in a trial of FJIs for people with persistent non-specific low back pain. Further work is needed to test recruitment from alternative clinical situations. EudraCT 2014-000682-50 and Current Controlled Trials ISRCTN93184143. This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment ; Vol. 21, No. 30. See the NIHR Journals Library website for further project information.
Tips, techniques and suggestions for improving learning from escaped prescribed fire reviews
Anne Black; Dave Thomas; Jennifer Ziegler; Jim Saveland
2012-01-01
In 2011, we held five 2-day workshops at various locations around the US as part of a Joint Fire Science Program project to understand 'learning from escaped prescribed fire reviews'. Each workshop drew an interagency audience with representation from all facets of fire management, from ground personnel to local line officers, regional, and national positions...
Anne Black; Dave Thomas; Jennifer Ziegler; Jim Saveland
2012-01-01
In 2011, we held five 2-day workshops at various locations around the US as part of a Joint Fire Science Program project to understand 'learning from escaped prescribed fire reviews'. Each workshop drew an interagency audience with representation from all facets of fire management, from ground personnel to local line officers, regional, and national positions...
ERIC Educational Resources Information Center
Yanez, Betina; Edmondson, Donald; Stanton, Annette L.; Park, Crystal L.; Kwan, Lorna; Ganz, Patricia A.; Blank, Thomas O.
2009-01-01
Spirituality is a multidimensional construct, and little is known about how its distinct dimensions jointly affect well-being. In longitudinal studies (Study 1, n = 418 breast cancer patients; Study 2, n = 165 cancer survivors), the authors examined 2 components of spiritual well-being (i.e., meaning/peace and faith) and their interaction, as well…
Quantifying anti-gravity torques for the design of a powered exoskeleton.
Ragonesi, Daniel; Agrawal, Sunil K; Sample, Whitney; Rahman, Tariq
2013-03-01
Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the joint torques due to gravity and joint stiffness, as well as, active residual force capabilities of users. The objective of this research paper is to describe the characteristics of the upper limb of children with upper limb impairment. This paper describes the experimental measurements of the torque on the upper limb due to gravity and joint stiffness of three groups of subjects: able-bodied adults, able-bodied children, and children with neuromuscular disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the resultant force at the forearm. This force is then converted to torques at the elbow and shoulder. These data are compared to a two-link lumped mass model based on anthropomorphic data. Results show that the torques based on anthropometry deviate from experimentally measured torques as the arm goes through the range. Subjects with disabilities also maximally pushed and pulled against the force sensor to measure maximum strength as a function of arm orientation. For all subjects, the maximum voluntary applied torque at the shoulder and elbow in the sagittal plane was found to be lower than gravity torques throughout the disabled subjects' range of motion. This experiment informs designers of upper limb orthoses on the contribution of passive human joint torques due to gravity and joint stiffness and the strength capability of targeted users.
NASA Astrophysics Data System (ADS)
Shuang, Feng; Zhou, Ying; Hou, Shu-Xun; Zhu, Jia-Liang; Liu, Yan; Zhang, Chun-Li; Tang, Jia-Guang
2015-05-01
Indian Hedgehog (HH) has been shown to be involved in osteoarthritis (OA) in articular joints, where there is evidence that Indian HH blockade could ameliorate OA. It seems to play a prominent role in development of the intervertebral disc (IVD) and in postnatal maintenance. There is little work on IHH in the IVD. Hence the aim of the current study was to investigate the role of Indian Hedgehog in the pathology of facet joint (FJ) OA. 24 patients diagnosed with lumbar intervertebral disk herniation or degenerative spinal stenosis were included. Preoperative magnetic resonance imaging (MRI) and Osteoarthritis Research Society International (OARSI) histopathology grading system was correlated to the mRNA levels of GLI1, PTCH1, and HHIP in the FJs. The Weishaupt grading and OARSI scores showed high positive correlation (r = 0.894) (P < 0.01). MRI Weishaupt grades showed positive correlation with GLI1 (r = 0.491), PTCH1 (r = 0.444), and HHIP (r = 0.654) mRNA levels (P < 0.05 in each case). OARSI scores were also positively correlated with GLI1 (r = 0. 646), PTCH1 (r = 0. 518), and HHIP (r = 0.762) mRNA levels (P < 0.01 in each case). Cumulatively our findings indicate that Indian HH signaling is increased in OA and is perhaps a key component in OA pathogenesis and progression.
Development of a versatile intra-articular pressure sensing array.
Welcher, J B; Popovich, J M; Hedman, T P
2011-10-01
A new sensor array intended to accurately and directly measure spatial and time-dependent pressures within a highly curved biological intra-articular joint was developed and tested. To evaluate performance of the new sensor array for application within intra-articular joints generally, and specifically to fit within the relatively restrictive space of the lumbar spine facet joint, geometric constraints of length, width, thickness and sensor spatial resolution were evaluated. Additionally, the effects of sensor array curvature, frequency response, linearity, drift, hysteresis, repeatability, and total system cost were assessed. The new sensor array was approximately 0.6mm in thickness, scalable to below the nominal 12 mm wide by 15 high lumbar spine facet joint size, offered no inherent limitations on the number or spacing of the sensors with less than 1.7% cross talk with sensor immediately adjacent to one another. No difference was observed in sensor performance down to a radius of curvature of 7 mm and a 0.66±0.97% change in sensor sensitivity was observed at a radius of 5.5mm. The sensor array had less than 0.07 dB signal loss up to 5.5 Hz, linearity was 0.58±0.13% full scale (FS), drift was less than 0.2% FS at 250 s and less than 0.6% FS at 700 s, hysteresis was 0.78±0.18%. Repeatability was excellent with a coefficient of variation less than 2% at pressures between 0 and 1.000 MPa. Total system cost was relatively small as standard commercially available data acquisition systems could be utilized, with no specialized software, and individual sensors within an array can be replaced as needed. The new sensor array had small and scalable geometry and very acceptable intrinsic performance including minimal to no alteration in performance at physiologically relevant ranges of joint curvature. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Cervical myelopathy associated with extradural synovial cysts in 4 dogs.
Levitski, R E; Chauvet, A E; Lipsitz, D
1999-01-01
Three Mastiffs and 1 Great Dane were presented to the University of Wisconsin Veterinary Medical Teaching Hospital for cervical myelopathy based on history and neurologic examination. All dogs were males and had progressive ataxia and tetraparesis. Degenerative arthritis of the articular facet joints was noted on survey spinal radiographs. Myelography disclosed lateral axial compression of the cervical spinal cord medial to the articular facets. Extradural compressive cystic structures adjacent to articular facets were identified on magnetic resonance imaging (1 dog). High protein concentration was the most important finding on cerebrospinal fluid analysis. Dorsal laminectomies were performed in all dogs for spinal cord decompression and cyst removal. Findings on cytologic examination of the cystic fluid were consistent with synovial fluid, and histopathologic results supported the diagnosis of synovial cysts. All dogs are ambulatory and 3 are asymptomatic after surgery with a follow-up time ranging from 1 to 8 months. This is the 1st report of extradural synovial cysts in dogs, and synovial cysts should be a differential diagnosis for young giant breed dogs with cervical myelopathy.
Upper limb joint forces and moments during underwater cyclical movements.
Lauer, Jessy; Rouard, Annie Hélène; Vilas-Boas, João Paulo
2016-10-03
Sound inverse dynamics modeling is lacking in aquatic locomotion research because of the difficulty in measuring hydrodynamic forces in dynamic conditions. Here we report the successful implementation and validation of an innovative methodology crossing new computational fluid dynamics and inverse dynamics techniques to quantify upper limb joint forces and moments while moving in water. Upper limb kinematics of seven male swimmers sculling while ballasted with 4kg was recorded through underwater motion capture. Together with body scans, segment inertial properties, and hydrodynamic resistances computed from a unique dynamic mesh algorithm capable to handle large body deformations, these data were fed into an inverse dynamics model to solve for joint kinetics. Simulation validity was assessed by comparing the impulse produced by the arms, calculated by integrating vertical forces over a stroke period, to the net theoretical impulse of buoyancy and ballast forces. A resulting gap of 1.2±3.5% provided confidence in the results. Upper limb joint load was within 5% of swimmer׳s body weight, which tends to supports the use of low-load aquatic exercises to reduce joint stress. We expect this significant methodological improvement to pave the way towards deeper insights into the mechanics of aquatic movement and the establishment of practice guidelines in rehabilitation, fitness or swimming performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.
2014-05-01
Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.
Kweon, Tae Dong; Kim, Ji Young; Lee, Hye Yeon; Kim, Myung Hwa; Lee, Youn-Woo
2014-01-01
Cervical medial branch blocks are used to treat patients with chronic neck pain. The aim of this study was to clarify the anatomical aspects of the cervical medial branches to improve the accuracy and safety of radiofrequency denervation. Twenty cervical specimens were harvested from 20 adult cadavers. The anatomical parameters of the C4-C7 cervical medial branches were measured. The 3-dimensional computed tomography reconstruction images of the bone were also analyzed. Based on cadaveric analysis, most of the cervical dorsal rami gave off 1 medial branch; however, the cervical dorsal rami gave off 2 medial branches in 27%, 15%, 2%, and 0% at the vertebral level C4, C5, C6, and C7, respectively. The diameters of the medial branches varied from 1.0 to 1.2 mm, and the average distance from the notch of inferior articular process to the medial branches was about 2 mm. Most of the bifurcation sites were located at the medial side of the posterior tubercle of the transverse process. On the analysis of 3-dimensional computed tomography reconstruction images, cervical medial branches (C4 to C6) passed through the upper 49% to 53% of a line between the tips of 2 consecutive superior articular processes (anterior line). Also, cervical medial branches passed through the upper 28% to 35% of a line between the midpoints of 2 consecutive facet joints (midline). The present anatomical study may help improve accuracy and safety during radiofrequency denervation of the cervical medial branches.
A finite element evaluation of the moment arm hypothesis for altered vertebral shear failure force.
Howarth, Samuel J; Karakolis, Thomas; Callaghan, Jack P
2015-01-01
The mechanism of vertebral shear failure is likely a bending moment generated about the pars interarticularis by facet contact, and the moment arm length (MAL) between the centroid of facet contact and the location of pars interarticularis failure has been hypothesised to be an influential modulator of shear failure force. To quantitatively evaluate this hypothesis, anterior shear of C3 over C4 was simulated in a finite element model of the porcine C3-C4 vertebral joint with each combination of five compressive force magnitudes (0-60% of estimated compressive failure force) and three postures (flexed, neutral and extended). Bilateral locations of peak stress within C3's pars interarticularis were identified along with the centroids of contact force on the inferior facets. These measurements were used to calculate the MAL of facet contact force. Changes in MAL were also related to shear failure forces measured from similar in vitro tests. Flexed and extended vertebral postures respectively increased and decreased the MAL by 6.6% and 4.8%. The MAL decreased by only 2.6% from the smallest to the largest compressive force. Furthermore, altered MAL explained 70% of the variance in measured shear failure force from comparable in vitro testing with larger MALs being associated with lower shear failure forces. Our results confirmed that the MAL is indeed a significant modulator of vertebral shear failure force. Considering spine flexion is necessary when assessing low-back shear injury potential because of the association between altered facet articulation and lower vertebral shear failure tolerance.
Neandertal talus bones from El Sidrón site (Asturias, Spain): A 3D geometric morphometrics analysis.
Rosas, Antonio; Ferrando, Anabel; Bastir, Markus; García-Tabernero, Antonio; Estalrrich, Almudena; Huguet, Rosa; García-Martínez, Daniel; Pastor, Juan Francisco; de la Rasilla, Marco
2017-10-01
The El Sidrón tali sample is assessed in an evolutionary framework. We aim to explore the relationship between Neandertal talus morphology and body size/shape. We test the hypothesis 1: talar Neandertal traits are influenced by body size, and the hypothesis 2: shape variables independent of body size correspond to inherited primitive features. We quantify 35 landmarks through 3D geometric morphometrics techniques to describe H. neanderthalensis-H. sapiens shape variation, by Mean Shape Comparisons, Principal Component, Phenetic Clusters, Minimum spanning tree analyses and partial least square and regression of talus shape on body variables. Shape variation correlated to body size is compared to Neandertals-Modern Humans (MH) evolutionary shape variation. The Neandertal sample is compared to early hominins. Neandertal talus presents trochlear hypertrophy, a larger equality of trochlear rims, a shorter neck, a more expanded head, curvature and an anterior location of the medial malleolar facet, an expanded and projected lateral malleolar facet and laterally expanded posterior calcaneal facet compared to MH. The Neandertal talocrural joint morphology is influenced by body size. The other Neandertal talus traits do not co-vary with it or not follow the same co-variation pattern as MH. Besides, the trochlear hypertrophy, the trochlear rims equality and the short neck could be inherited primitive features; the medial malleolar facet morphology could be an inherited primitive feature or a secondarily primitive trait; and the calcaneal posterior facet would be an autapomorphic feature of the Neandertal lineage. © 2017 Wiley Periodicals, Inc.
Research study on neck injury lessening with active head restraint using human body FE model.
Kitagawa, Yuichi; Yasuki, Tsuyoshi; Hasegawa, Junji
2008-12-01
The objective of this study is to examine the effectiveness of the active head restraint system in reducing neck injury risk of car occupants in low-speed rear impacts. A human body FE model "THUMS" was used to simulate head and neck kinematics of the occupant and to evaluate loading to the neck. Joint capsule strain was calculated to predict neck injury risk as well as NIC. The validity of the model was confirmed comparing its mechanical responses to those in human subjects in the literatures. Seat FE models were also prepared representing one with a fixed head restraint and the other one with an active head restraint system. The active head restraint system was designed to move the head restraint forward and upward when the lower unit was lower unit was loaded by the pelvis. Rear impact simulations were performed assuming a triangular acceleration pulse at a delta-V of 25 km/h. The model reproduced similar head and neck motions to those measured in the human volunteer test, except for active muscular responses. The calculated joint capsule strain also showed a good match with those of PMHS tests in the literature. A rear-impact simulation was conducted using the model with the fixed head restraint. The result revealed that NIC was strongly correlated with the relative acceleration between the head and the torso and that its maximum peak appeared when the head contacted the head restraint. It was also found that joint capsule strain grew in later timing synchronizing with the relative displacement. Another simulation with the active head restraint system showed that both NIC and joint capsule strain were lowered owing to the forward and upward motion of the head restraint. A close investigation of the vertebral motion indicated that the active head restraint reduced the magnitude of shear deformation in the facet joint, which contributed to the strain growth in the fixed head restraint case. Rear-impact simulations were conducted using a human body FE model, THUMS, representing an average-size male occupant. The cervical system including the facet joint capsules was incorporated to the model. The validity of the model was examined comparing its mechanical responses to those in the literature such as the whole body motion of the volunteer subject and the vertebral motion in the PMHS tests. Rear-impact simulations were conducted using the validated THUMS model and two prototype seat models; one had a fixed head restraint and the other one was equipped with an active head restraint system. The active head restraint system works moving the head restraint forward and upward when the lower unit is loaded by the pelvis. The head and neck kinematics and responses were analyzed from the simulation results. The force and acceleration rose at the pelvis first, followed by T1 and the head. The early timing of force rise and its magnitude indicated that the pelvis force was a good trigger for the active head restraint system. The results showed that the head was supported earlier in a case with the active head restraint system, and both NIC and joint capsule strain were lowered. The study also analyzed the mechanism of strain growth in the joint capsules. Relatively greater strain was observed in the direction of the facet joint surface, which was around 45 degrees inclined to the spinal column. The forward and upward motion of the active head restraint were aligned with the direction of the joint deformation and contributed to lower strain in the joint capsules. The results indicated that the active head restraint could help reduce the neck injury risk not only by supporting the head at an early timing but also through its trajectory stopping the joint deformation.
Li, Cheng; Li, Lei; Duan, Jingzhu; Zhang, Lijun; Liu, Zhenjiang
2018-05-01
This study aimed to describe the case of a 3-year-old girl with old bilateral facet dislocation on cervical vertebrae 6 and 7, who had spinal cord transection, received surgical treatment, and achieved a relative satisfactory therapeutic effect. A 3-year-old girl was urgently transferred to the hospital after a car accident. DIAGNOSES:: she was diagnosed with splenic rupture, intracranial hemorrhage, cervical dislocation, spinal transection, and Monteggia fracture of the left upper limb. The girl underwent emergency splenectomy and was transferred to the intensive care unit of the hospital 15 days later. One-stage anterior-posterior approach surgery (anterior discectomy, posterior laminectomy, and pedicle screw fixation) was performed when the patient stabilized after 45-day symptomatic treatment. The operation was uneventful. The reduction of lower cervical dislocation was satisfactory, with sufficient spinal cord decompression. The internal fixation position was good, and the spinal sequence was well restored. The girl was discharged 2 weeks later after the operation and followed up for 2 years. The major nerve function of both upper limbs was recovered, with no obvious retardation of the growth of immature spine. A satisfactory therapeutic effect was achieved for a pediatric old subaxial cervical dislocation with bilateral locked facets using anterior discectomy, posterior laminectomy, and pedicle screw fixation. The posterior pedicle screw fixation provided a good three-dimensional stability of the spine, with reduced risk and complications caused by anterior internal fixation. The growth of immature spine was not obviously affected during the 2-year follow-up.
Degenerative joint disease in weight-lifters. Fact or fiction?
Fitzgerald, B.; McLatchie, G. R.
1980-01-01
A clinical and radiological study of upper and lower limb joints was carried out on 25 experienced weight-lifters to identify the extent of degenerative joint disease (Osteoarthrosis) produced by this sport. Although significant degenerative changes were found in five lifters (20%). This figure is not greater than that found in the general population within the age group studied. There were more degenerative changes found in Olympic style weight-lifters (30.7%) than in power lifters (8.3%). The significance of these figures is discussed. The upper limb joints were almost completely free of degenerative changes. Images p97-a p97-b PMID:7407459
Dikes, joints, and faults in the upper mantle
NASA Astrophysics Data System (ADS)
Wilshire, H. G.; Kirby, S. H.
1989-04-01
Three different types of macroscopic fractures are recognized in upper-mantle and lower-crustal xenoliths in volcanic rocks from around the world: (1) joints that are tensile fractures not occupied by crystallized magma products (2) dikes that are tensile fractures occupied by mafic magmas crystallized to pyroxenites, gabbros or hydrous-mineral-rich rocks, (3) faults that are unfilled shear fractures with surface markings indicative of shear displacement. In addition to intra-xenolith fractures, xenoliths commonly have polygonal or faceted shapes that represent fractures exploited during incorporation of the xenoliths into the host magma that brought them to the surface. The various types of fractures are considered to have formed in response to the pressures associated with magmatic fluids and to the ambient tectonic stress field. The presence of fracture sets and crosscutting relations indicate that both magma-filled and unfilled fractures can be contemporaneous and that the local stress field can change with time, leading to repeated episodes of fracture. These observations give insight into the nature of deep fracture processes and the importance of fluid-peridotite interactions in the mantle. We suggest that unfilled fractures were opened by volatile fluids exsolved from ascending magmas to the tops of growing dikes. These volatile fluids are important because they are of low viscosity and can rapidly transmit fluid pressure to dike and fault tips and because they lower the energy and tectonic stresses required to extend macroscopic cracks and to allow sliding on pre-existing fractures. Mantle seismicity at depths of 20-65 km beneath active volcanic centers in Hawaii corresponds to the depth interval where CO 2-rich fluids are expected to be liberated from ascending basaltic magmas, suggesting that such fluids play an important role in facilitating earthquake instabilities in the presence of tectonic stresses. Other phenomena related to the fractures include permeation of peridotite by fluid inclusions derived by degassing of magmas, partial melting of peridotite and dike rocks, and metasomatic alteration of peridotite host rock by magmas emplaced in fractures. These effects of magmatism generally reduce the bulk density of peridotite and might also reduce seismic velocities. The velocity contrasts between fractured and unfractured peridotite might be detected by seismic-velocity profiling techniques.
Economic Development in Indonesia
1960-11-21
Deficit Spending and Economic Development..,.. 1 What Follows Rupiah Rehabilitation 9 Private Capital and the Cooperative Movement 14 Some Facets of...the American dollar. 13 PRIVATE CAPITAL AND THE COOPERATIVE MOVEMENT J^he following is a full translation of an article-Wägten by R. P. Suroso...bent themselves energetically to the realization of the ideals and principles enunciated in the Joint Declaration, then the cooperative movement can
Yeom, Jin S; Riew, K Daniel; Kang, Sung Shik; Yi, Jemin; Lee, Gun Woo; Yeom, Arim; Chang, Bong-Soon; Lee, Choon-Ki; Kim, Ho-Joong
2015-10-15
Prospective observational cohort study. To compare the outcomes of our new technique, distraction arthrodesis of C1-C2 facet joint with C2 root preservation (Study group), to those of conventional C1-C2 fusion with C2 root transection (Control group) for the management of intractable occipital neuralgia caused by C2 root compression. We are not aware of any report concerning C2 root decompression during C1-C2 fusion. Inclusion criteria were visual analogue scale (VAS) score for occipital neuralgia 7 or more; C2 root compression at the collapsed C1-C2 neural foramen; and follow-up 12 months or more. The Study group underwent surgery with our new technique including (1) C1-C2 facet joint distraction and bone block insertion while preserving the C2 root; and (2) use of C1 posterior arch screws instead of conventional lateral mass screws during C1-C2 segmental screw fixation. The Control group underwent C2 root transection with C1-C2 segmental screw fixation and fusion. We compared the prospectively collected outcomes data. There were 15 patients in the Study group and 8 in the Control group. Although there was no significant difference in the VAS score for the occipital neuralgia between the 2 groups preoperatively (8.2 ± 0.9 vs. 7.9 ± 0.6, P = 0.39), it was significantly lower in the Study group at 1, 3, and 6 months postoperatively (P < 0.01, respectively). At 12 months, it was 0.4 ± 0.6 versus 2.5 ± 2.6 (P = 0.01). There was no significant difference in improvement in the VAS score for neck pain and neck disability index and Japanese Orthopedic Association recovery rate, which are minimally influenced by occipital neuralgia. Our novel technique of distraction arthrodesis with C2 root preservation can be an effective option for the management of intractable occipital neuralgia caused by C2 root compression.
Subtalar joint stress imaging with tomosynthesis.
Teramoto, Atsushi; Watanabe, Kota; Takashima, Hiroyuki; Yamashita, Toshihiko
2014-06-01
The purpose of this study was to perform stress imaging of hindfoot inversion and eversion using tomosynthesis and to assess the subtalar joint range of motion (ROM) of healthy subjects. The subjects were 15 healthy volunteers with a mean age of 29.1 years. Coronal tomosynthesis stress imaging of the subtalar joint was performed in a total of 30 left and right ankles. A Telos stress device was used for the stress load, and the load was 150 N for both inversion and eversion. Tomographic images in which the posterior talocalcaneal joint could be confirmed on the neutral position images were used in measurements. The angle of the intersection formed by a line through the lateral articular facet of the posterior talocalcaneal joint and a line through the surface of the trochlea of the talus was measured. The mean change in the angle of the calcaneus with respect to the talus was 10.3 ± 4.8° with inversion stress and 5.0 ± 3.8° with eversion stress from the neutral position. The result was a clearer depiction of the subtalar joint, and inversion and eversion ROM of the subtalar joint was shown to be about 15° in healthy subjects. Diagnostic, Level IV.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... fatigue-related skin cracks and corrosion of the skin panel lap joints in the fuselage upper lobe, and... of corrosion, and related investigative and corrective actions. This AD reduces the maximum interval... and correct fatigue cracking and corrosion in the fuselage upper lobe skin lap joints, which could...
EMG-Torque correction on Human Upper extremity using Evolutionary Computation
NASA Astrophysics Data System (ADS)
JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly
2016-09-01
There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.
Kinematic and fatigue biomechanics of an interpositional facet arthroplasty device.
Dahl, Michael C; Freeman, Andrew L
2016-04-01
Although approximately 30% of chronic lumbar pain can be attributed to the facets, limited surgical options exist for patients. Interpositional facet arthroplasty (IFA) is a novel treatment for lumbar facetogenic pain designed to provide patients who gain insufficient relief from medical interventional treatment options with long-term relief, filling a void in the facet pain treatment continuum. This study aimed to quantify the effect of IFA on segmental range of motion (ROM) compared with the intact state, and to observe device position and condition after 10,000 cycles of worst-case loading. In situ biomechanical analysis of the lumbar spine following implantation of a novel IFA device was carried out. Twelve cadaveric functional spinal units (L2-L3 and L5-S1) were tested in 7.5 Nm flexion-extension, lateral bending, and torsion while intact and following device implantation. Additionally, specimens underwent 10,000 cycles of worst-case complex loading and were testing in ROM again. Load-displacement and fluoroscopic data were analyzed to determine ROM and to evaluate device position during cyclic testing. Devices and facets were evaluated post testing. Institutional support for implant evaluation was received by Zyga Technology. Range of motion post implantation decreased versus intact, and then was restored post cyclic-testing. Of the tested devices, 6.5% displayed slight movement (0.5-2 mm), all from tight L2-L3 facet joints with misplaced devices or insufficient cartilage. No damage was observed on the devices, and wear patterns were primarily linear. The results from this in situ cadaveric biomechanics and cyclic fatigue study demonstrate that a low-profile, conformable IFA device can maintain position and facet functionality post implantation and through 10,000 complex loading cycles. In vivo conditions were not accounted for in this model, which may affect implant behavior not predictable via a biomechanical study. However, these data along with published 1-year clinical results suggest that IFA may be a valid treatment option in patients with chronic lumbar zygapophysial pain who have exhausted medical interventional options. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Whittaker, Rachel L; Park, Woojin; Dickerson, Clark R
2018-04-27
Efficient and holistic identification of fatigue-induced movement strategies can be limited by large between-subject variability in descriptors of joint angle data. One promising alternative to traditional, or computationally intensive methods is the symbolic motion structure representation algorithm (SMSR), which identifies the basic spatial-temporal structure of joint angle data using string descriptors of temporal joint angle trajectories. This study attempted to use the SMSR to identify changes in upper extremity time series joint angle data during a repetitive goal directed task causing muscle fatigue. Twenty-eight participants (15 M, 13 F) performed a seated repetitive task until fatigued. Upper extremity joint angles were extracted from motion capture for representative task cycles. SMSRs, averages and ranges of several joint angles were compared at the start and end of the repetitive task to identify kinematic changes with fatigue. At the group level, significant increases in the range of all joint angle data existed with large between-subject variability that posed a challenge to the interpretation of these fatigue-related changes. However, changes in the SMSRs across participants effectively summarized the adoption of adaptive movement strategies. This establishes SMSR as a viable, logical, and sensitive method of fatigue identification via kinematic changes, with novel application and pragmatism for visual assessment of fatigue development. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullen, W.K.; Keating, R.F.
1997-02-01
In the Spring and Fall of 1994, and the Spring of 1995, crack-like indications were found in the upper hybrid expansion joint (HEJ) region of Steam Generator (S/G) tubes which had been sleeved using Westinghouse HEJ sleeves. As a result of these findings, analytic and test evaluations were performed to assess the effect of the degradation on the structural, and leakage, integrity of the sleeve/tube joint relative to the requirements of the United States Nuclear Regulatory Commission`s (NRC) draft Regulatory Guide (RG) 1.121. The results of these evaluations demonstrated that tubes with implied or known crack-like circumferential parent tube indicationsmore » (PTIs) located 1.1 inches or farther below the bottom of the hardroll upper transition, have sufficient, and significant, integrity relative to the requirements of RG 1.121. Thus, the purpose of this report is to provide background information related to the justification of the modified tube repair boundary.« less
Fujiya, Mikihiro; Sakatani, Aki; Dokoshi, Tatsuya; Tanaka, Kazuyuki; Ando, Katsuyoshi; Ueno, Nobuhiro; Gotoh, Takuma; Kashima, Shin; Tominaga, Motoya; Inaba, Yuhei; Ito, Takahiro; Moriichi, Kentaro; Tanabe, Hiroki; Ikuta, Katsuya; Ohtake, Takaaki; Yokota, Kinnichi; Watari, Jiro; Saitoh, Yusuke; Kohgo, Yutaka
2015-09-01
The clinical importance of Crohn's disease (CD)-specific lesions in the upper gastrointestinal tract (upper GIT) has not been sufficiently established. The aim of this case-control study is to investigate the characteristic findings of CD in the upper GIT. In 2740 patients who underwent gastroduodenoscopy at Asahikawa Medical University between April 2011 and December 2012, 81 CD patients, 81 gender- and age-matched non-IBD patients, and 66 ulcerative colitis (UC) patients were investigated in the present study. (1) The diagnostic ability and odds ratio of each endoscopic finding (a bamboo joint-like appearance in the cardia, erosions, and/or ulcers in the antrum, notched signs, and erosions and/or ulcers in the duodenum) were compared between the CD and non-IBD patients or UC patients. (2) The interobserver agreement of the diagnosis based on the endoscopic findings was evaluated by 3 experienced and 3 less-experienced endoscopists. The incidence of detecting a bamboo joint-like appearance, notched signs, and erosions and/or ulcers in the duodenum was significantly higher in the CD patients than in the non-IBD and UC patients. In addition, the diagnostic ability and odds ratio of a bamboo joint-like appearance for CD were higher than those for the other findings. Kendall's coefficients of concordance in the group of experienced and less-experienced endoscopists were relatively high for a bamboo joint-like appearance (0.748 and 0.692, respectively). A cardiac bamboo joint-like appearance is a useful finding for identifying high-risk groups of CD patients using only gastroduodenoscopy.
Effect of postural changes on 3D joint angular velocity during starting block phase.
Slawinski, Jean; Dumas, Raphaël; Cheze, Laurence; Ontanon, Guy; Miller, Christian; Mazure-Bonnefoy, Alice
2013-01-01
Few studies have focused on the effect of posture during sprint start. The aim of this study was to measure the effect of the modification of horizontal distance between the blocks during sprint start on three dimensional (3D) joint angular velocity. Nine trained sprinters started using three different starting positions (bunched, medium and elongated). They were equipped with 63 passive reflective markers, and an opto-electronic Motion Analysis system was used to collect the 3D marker trajectories. During the pushing phase on the blocks, norm of the joint angular velocity (NJAV), 3D Euler angular velocity (EAV) and pushing time on the blocks were calculated. The results demonstrated that the decrease of the block spacing induces an opposite effect on the angular velocity of joints of the lower and the upper limbs. The NJAV of the upper limbs is greater in the bunched start, whereas the NJAV of the lower limbs is smaller. The modifications of NJAV were due to a combination of the movement of the joints in the different degrees of freedom. The medium start seems to be the best compromise because it leads, in a short pushing time, to a combination of optimal joint velocities for upper and lower segments.
Correlation between varus knee malalignment and patellofemoral osteoarthritis.
Otsuki, Shuhei; Nakajima, Mikio; Okamoto, Yoshinori; Oda, Shuhei; Hoshiyama, Yoshiaki; Iida, Go; Neo, Masashi
2016-01-01
To evaluate the relationship between patellofemoral osteoarthritis (OA) and varus OA of the knee with a focus on the location of joint space narrowing. Eighty-five patients scheduled to undergo total knee arthroplasty caused by varus OA were enrolled in this study. The relationship between patellofemoral OA and varus knee malalignment was elucidated. To determine the alignment of the patellofemoral joint in varus knees, patellar tilt, and the tibial tuberosity-trochlear groove (TT-TG) distance were measured, and patellofemoral OA was classified using computed tomography. The femorotibial angles in patients with stage II-IV patellofemoral OA were significantly larger than those in patients with stage I patellofemoral OA, and the patellar tilt in patients with stage II-IV patellofemoral OA and the TT-TG distance in patients with stage IV patellofemoral OA were significantly larger than those in patients with stage I patellofemoral OA. The TT-TG distance was strongly correlated with patellar tilt (R(2) = 0.41, P < 0.001). Patellofemoral joint space narrowing was mainly noted at the lateral facet, and it was found on both sides as patellofemoral OA worsened. Varus knee malalignment was induced by patellofemoral OA, especially at the lateral facet. Patellar tilt and the TT-TG distance are considered critical factors for the severity of patellofemoral OA. Understanding the critical factors for patellofemoral OA in varus knees such as the TT-TG distance and patellar will facilitate the prevention of patellofemoral OA using procedures such as high tibial osteotomy and total knee arthroplasty to correct knee malalignment. Retrospective cohort study, Level III.
Duma, Stefan M; Hansen, Gail A; Kennedy, Eric A; Rath, Amber L; McNally, Craig; Kemper, Andrew R; Smith, Eric P; Brolinson, P Gunnar; Stitzel, Joel D; Davis, Martin B; Bass, Cameron R; Brozoski, Frederick T; McEntire, B Joseph; Alem, Nabih M; Crowley, John S
2004-11-01
This paper describes a three part analysis to characterize the interaction between the female upper extremity and a helicopter cockpit side airbag system and to develop dynamic hyperextension injury criteria for the female elbow joint. Part I involved a series of 10 experiments with an original Army Black Hawk helicopter side airbag. A 5(th) percentile female Hybrid III instrumented upper extremity was used to demonstrate side airbag upper extremity loading. Two out of the 10 tests resulted in high elbow bending moments of 128 Nm and 144 Nm. Part II included dynamic hyperextension tests on 24 female cadaver elbow joints. The energy source was a drop tower utilizing a three-point bending configuration to apply elbow bending moments matching the previously conducted side airbag tests. Post-test necropsy showed that 16 of the 24 elbow joint tests resulted in injuries. Injury severity ranged from minor cartilage damage to more moderate joint dislocations and severe transverse fractures of the distal humerus. Peak elbow bending moments ranged from 42.4 Nm to 146.3 Nm. Peak bending moment proved to be a significant indicator of any elbow injury (p = 0.02) as well as elbow joint dislocation (p = 0.01). Logistic regression analyses were used to develop single and multiple variate injury risk functions. Using peak moment data for the entire test population, a 50% risk of obtaining any elbow injury was found at 56 Nm while a 50% risk of sustaining an elbow joint dislocation was found at 93 Nm for the female population. These results indicate that the peak elbow bending moments achieved in Part I are associated with a greater than 90% risk for elbow injury. Subsequently, the airbag was re-designed in an effort to mitigate this as well as the other upper extremity injury risks. Part III assessed the redesigned side airbag module to ensure injury risks had been reduced prior to implementing the new system. To facilitate this, 12 redesigned side airbag deployments were conducted using the same procedures as Part I. Results indicate that the re-designed side airbag has effectively mitigated elbow injury risks induced by the original side airbag design. It is anticipated that this study will provide researchers with additional injury criteria for assessing upper extremity injury risk caused by both military and automotive side airbag deployments.
ERIC Educational Resources Information Center
Coopers & Lybrand, New York, NY.
Covered in this report of the 1978 project of the Joint Committee on Printing are aspects of three selected areas. Part one, Management Review and Assessment, contains a summary of management and user interviews, a review of GPO's goals and organizational structure, and an assessment of management systems and procedures. The accounting system is…
Tang, Shujie; Meng, Xueying
2011-01-01
The restoration of disc space height of fused segment is essential in anterior lumbar interbody fusion, while the disc space height in many cases decreased postoperatively, which may adversely aggravate the adjacent segmental degeneration. However, no literature available focused on the issue. A normal healthy finite element model of L3-5 and four anterior lumbar interbody fusion models with different disc space height of fused segment were developed. 800 N compressive loading plus 10 Nm moments simulating flexion, extension, lateral bending and axial rotation were imposed on L3 superior endplate. The intradiscal pressure, the intersegmental rotation, the tresca stress and contact force of facet joints in L3-4 were investigated. Anterior lumbar interbody fusion with severely decreased disc space height presented with the highest values of the four parameters, and the normal healthy model presented with the lowest values except, under extension, the contact force of facet joints in normal healthy model is higher than that in normal anterior lumbar interbody fusion model. With disc space height decrease, the values of parameters in each anterior lumbar interbody fusion model increase gradually. Anterior lumbar interbody fusion with decreased disc space height aggravate the adjacent segmental degeneration more adversely.
Yeo, Caitlin T; Ungi, Tamas; U-Thainual, Paweena; Lasso, Andras; McGraw, Robert C; Fichtinger, Gabor
2011-07-01
The purpose of this study was to determine if augmented reality image overlay and laser guidance systems can assist medical trainees in learning the correct placement of a needle for percutaneous facet joint injection. The Perk Station training suite was used to conduct and record the needle insertion procedures. A total of 40 volunteers were randomized into two groups of 20. 1) The Overlay group received a training session that consisted of four insertions with image and laser guidance, followed by two insertions with laser overlay only. 2) The Control group received a training session of six classical freehand insertions. Both groups then conducted two freehand insertions. The movement of the needle was tracked during the series of insertions. The final insertion procedure was assessed to determine if there was a benefit to the overlay method compared to the freehand insertions. The Overlay group had a better success rate (83.3% versus 68.4%, p=0.002), and potential for less tissue damage as measured by the amount of needle movement inside the phantom (3077.6 mm(2) versus 5607.9 mm(2) , p =0.01). These results suggest that an augmented reality overlay guidance system can assist medical trainees in acquiring technical competence in a percutaneous needle insertion procedure. © 2011 IEEE
Park, Junghyun; Park, Hue Jung; Moon, Dong Eon; Sa, Gye Jeol; Kim, Young Hoon
2015-01-01
Sacroiliac intraarticular injection by the traditional technique can be challenging to perform when the joint is covered with osteophytes or is extremely narrow. To examine whether there is enough space for the needle to be advanced from the L5-S1 interspinous space to the upper one-third sacroiliac joint (SIJ) by magnetic resonance image (MRI) analysis as an alternative to fluoroscopically guided SIJ injection with the lower one-third joint technique, and to determine the feasibility of this novel technique in clinical practice. MRI analysis and observational study. An interventional pain management practice at a university hospital. We analyzed 200 axial T2-weighted MRIs between the L5 and S1 vertebrae of 100 consecutive patients. The following measurements were obtained on both sides: 1) the thickness of fat in the midline; 2) the distance between the midline (Point C) and the junction (Point A) of the skin and the imaginary line that connects the SIJ and the most medial cortex of the ilium; 3) the distance between the midline (Point C) and the junction (Point B) of the skin and the imaginary line that connects the SIJ and the L5 spinous process; 4) the distance between the SIJ and midline (Point C) on the skin, or between the SIJ and the midpoint (Point C') of the line from Point A to Point B; and 5) the angle between the sagittal line and the imaginary line that connects the SIJ and the midline on the skin. The upper one-third joint technique was performed to establish the feasibility of the alternative technique in 20 patients who had unsuccessful sacroiliac intraarticular injections using the lower one-third joint technique. The mean distances from the midline to Point A and to Point B were 21.9 ± 13.7 mm and 27.8 ± 13.6 mm, respectively. The mean distance between the SIJ and Point C (or Point C') was 81.0 ± 13.3 mm. The angle between the sagittal line and the imaginary line that connects the SIJ and the midline on the skin was 42.8 ± 5.1°. The success rate of sacroiliac intraarticular injections with the upper one-third joint technique was 90% (18/20). This was an observational study and lacked a control group. Sacroiliac intraarticular injections with the upper one-third joint technique are advisable when it is hard to perform them with the lower one-third joint technique.
[Spondylarthrosis of the cervical spine. Therapy].
Radl, R; Leixner, G; Stihsen, C; Windhager, R
2013-09-01
Chronic neck pain is often associated with spondylarthrosis, whereby segments C4/C5 (C: cervical) are most frequently affected. Spondylarthrosis can be the sole complaint, but it is associated with a degenerative cascade of the spine. The umbrella term for neck pain is the so-called cervical syndrome, which can be differentiated into segmental dysfunction and/or morphological changes of the intervertebral discs and small joints of the vertebral column. Conservative therapy modalities include physical therapy, subcutaneous application of local anesthetics, muscle, nerve and facet joint injections in addition to adequate analgesic and muscle relaxant therapy. If surgery is required, various techniques via dorsal and ventral approaches, depending on the clinic and morphologic changes, can be applied.
Ren, Yupeng; Kang, Sang Hoon; Park, Hyung-Soon; Wu, Yi-Ning; Zhang, Li-Qun
2013-05-01
Arm impairments in patients post stroke involve the shoulder, elbow and wrist simultaneously. It is not very clear how patients develop spasticity and reduced range of motion (ROM) at the multiple joints and the abnormal couplings among the multiple joints and the multiple degrees-of-freedom (DOF) during passive movement. It is also not clear how they lose independent control of individual joints/DOFs and coordination among the joints/DOFs during voluntary movement. An upper limb exoskeleton robot, the IntelliArm, which can control the shoulder, elbow, and wrist, was developed, aiming to support clinicians and patients with the following integrated capabilities: 1) quantitative, objective, and comprehensive multi-joint neuromechanical pre-evaluation capabilities aiding multi-joint/DOF diagnosis for individual patients; 2) strenuous and safe passive stretching of hypertonic/deformed arm for loosening up muscles/joints based on the robot-aided diagnosis; 3) (assistive/resistive) active reaching training after passive stretching for regaining/improving motor control ability; and 4) quantitative, objective, and comprehensive neuromechanical outcome evaluation at the level of individual joints/DOFs, multiple joints, and whole arm. Feasibility of the integrated capabilities was demonstrated through experiments with stroke survivors and healthy subjects.
Lauche, Romy; Schumann, Dania; Sibbritt, David; Adams, Jon; Cramer, Holger
2017-07-01
Yoga exercises have been associated with joint problems recently, indicating that yoga practice might be potentially dangerous for joint health. This study aimed to analyse whether regular yoga practice is associated with the frequency of joint problems in upper middle-aged Australian women. Women aged 62-67 years from the Australian Longitudinal Study on Women's Health (ALSWH) were questioned in 2013 whether they experienced regular joint pain or problems in the past 12 months and whether they regularly practiced yoga. Associations of joint problems with yoga practice were analysed using Chi-squared tests and multiple logistic regression modelling. Of 9151 women, 29.8% reported regular problems with stiff or painful joints, and 15.2, 11.9, 18.1 and 15.9% reported regular problems with shoulders, hips, knees and feet, respectively, in the past 12 months. Yoga was practiced sometimes by 10.1% and often by 8.4% of women. Practicing yoga was not associated with upper or lower limb joint problems. No association between yoga practice and joint problems has been identified. Further studies are warranted for conclusive judgement of benefits and safety of yoga in relation to joint problems.
NASA Technical Reports Server (NTRS)
Pandya, Abhilash; Maida, James; Hasson, Scott; Greenisen, Michael; Woolford, Barbara
1993-01-01
As manned exploration of space continues, analytical evaluation of human strength characteristics is critical. These extraterrestrial environments will spawn issues of human performance which will impact the designs of tools, work spaces, and space vehicles. Computer modeling is an effective method of correlating human biomechanical and anthropometric data with models of space structures and human work spaces. The aim of this study is to provide biomechanical data from isolated joints to be utilized in a computer modeling system for calculating torque resulting from any upper extremity motions: in this study, the ratchet wrench push-pull operation (a typical extravehicular activity task). Established here are mathematical relationships used to calculate maximum torque production of isolated upper extremity joints. These relationships are a function of joint angle and joint velocity.
[Conservative therapy of cartilage defects of the upper ankle joint].
Smolenski, U C; Best, N; Bocker, B
2008-03-01
Cartilage defects of the upper ankle joint reflect the problem that great force is transmitted and balanced out over a relatively small surface area. As a pathophysiological factor, cartilage-bone contusions play a significant role in the development of cartilage defects of the upper ankle joint. Physiotherapeutic procedures belong to the standard procedures of conservative therapy. The use and selection of the type of therapy is based on empirical considerations and experience and investigations on effectiveness of particular therapies are relatively rare. At present a symptom-oriented therapy of cartilage defects of the upper ankle joint seems to be the most sensible approach. It can be assumed that it makes sense that the symptomatic treatment of cartilage defects or initial stages of arthritis also includes the subsequent symptoms of pain, irritated condition and limited function. This leads to starting points for physiotherapy with respect to pain therapy, optimisation of pressure relationships, avoidance of pressure points, improvement of diffusion and pressure release. In addition to the differential physiotherapeutic findings, the determination of a curative, preventive or rehabilitative procedure is especially important. In physical therapy special importance is placed on a scheduled serial application corresponding to the findings, employing the necessary methods, such as physiotherapy, sport therapy, medical mechanics, manual therapy, massage, electrotherapy and warmth therapy. From this the findings-related therapy is proposed as a practical therapy concept: locomotive apparatus pain therapy, optimisation of pressure relationships, improvement of diffusion and decongestion therapy. Therapy options have been selected base on the current literature and are summarised in tabular form. The art of symptomatic therapy of cartilage defects of the upper ankle joint does not lie in the multitude of sometimes speculative procedures, but in the targeted selection of a therapy regime based on the therapeutic goal, a corresponding application dose and serial design.
Sardhara, Jayesh; Pavaman, Sindgikar; Das, Kuntal; Srivastava, Arun; Mehrotra, Anant; Behari, Sanjay
2016-11-01
Congenital spondylolytic spondylolisthesis of C2 vertebra resulting from deficient posterior element of the axis is rarely described in the literature. We describe a unique case of agenesis of posterior elements of C2 with craniovertebral junction anomalies consisting of osseous, vascular, and soft tissue anomalies. A 26-year-old man presented with symptoms of upper cervical myelopathy of 12 months' duration. A computed tomography scan of the cervical spine including the craniovertebral junction revealed spondylolisthesis of C2 over C3, atlantoaxial dislocation, occipitalization of the atlas, hypoplasia of the odontoid, and cleft posterior C1 arch. Additionally, the axis vertebra was found devoid of its posterior elements except bilaterally rudimentary pedicles. Magnetic resonance imaging revealed tonsilar herniation, suggesting associated Chiari type I malformation. CT angiogram of the vertebral arteries displayed persistent bilateral first intersegmental arteries crossing the posterior aspect of the C1/2 facet joint. This patient underwent foramen magnum decompression, C3 laminectomy with occipito-C3/C4 posterior fusion using screw and rod to maintain the cervical alignment and stability. We report this rare constellation of congenital craniovertebral junction anomaly and review the relevant literature. Copyright © 2016 Elsevier Inc. All rights reserved.
Powered Upper Limb Orthosis Actuation System Based on Pneumatic Artificial Muscles
NASA Astrophysics Data System (ADS)
Chakarov, Dimitar; Veneva, Ivanka; Tsveov, Mihail; Venev, Pavel
2018-03-01
The actuation system of a powered upper limb orthosis is studied in the work. To create natural safety in the mutual "man-robot" interaction, an actuation system based on pneumatic artificial muscles (PAM) is selected. Experimentally obtained force/contraction diagrams for bundles, consisting of different number of muscles are shown in the paper. The pooling force and the stiffness of the pneumatic actuators is assessed as a function of the number of muscles in the bundle and the supply pressure. Joint motion and torque is achieved by antagonistic actions through pulleys, driven by bundles of pneumatic muscles. Joint stiffness and joint torques are determined on condition of a power balance, as a function of the joint position, pressure, number of muscles and muscles
[Study on the center-driven multiple degrees of freedom upper limb rehabilitation training robot].
Huang, Xiaohai; Yu, Hongliu; Wang, Jinchao; Dong, Qi; Zhang, Linling; Meng, Qiaoling; Li, Sujiao; Wang, Duojin
2018-03-01
With the aging of the society, the number of stroke patients has been increasing year by year. Compared with the traditional rehabilitation therapy, the application of upper limb rehabilitation robot has higher efficiency and better rehabilitation effect, and has become an important development direction in the field of rehabilitation. In view of the current development status and the deficiency of upper limb rehabilitation robot system, combined with the development trend of all kinds of products of the upper limb rehabilitation robot, this paper designed a center-driven upper limb rehabilitation training robot for cable transmission which can help the patients complete 6 degrees of freedom (3 are driven, 3 are underactuated) training. Combined the structure of robot with more joints rehabilitation training, the paper choosed a cubic polynomial trajectory planning method in the joint space planning to design two trajectories of eating and lifting arm. According to the trajectory equation, the movement trajectory of each joint of the robot was drawn in MATLAB. It laid a foundation for scientific and effective rehabilitation training. Finally, the experimental prototype is built, and the mechanical structure and design trajectories are verified.
Self-perceived health-related quality of life of Indian children with specific learning disability.
Karande, S; Venkataraman, R
2012-01-01
Specific learning disability (SpLD) often remains undetected, resulting in the afflicted child experiencing chronic poor school performance. To measure and analyze the self-perceived health-related quality of life (HRQoL) of children with newly-diagnosed SpLD. Cross-sectional questionnaire-based study in our clinic. From February to December 2008, 150 children consecutively diagnosed as having SpLD were enrolled and their HRQoL documented using the DISABKIDS chronic generic module self-report version instrument. Multiple regression analysis was carried out for determining the 'independent' impact that each of the clinical and socio-demographic variables had on a poor facet score outcome and on a poor total score outcome. Clinically significant deficits were detected in all 6 facets, namely: 'large deficits (effect size ≥-0.8)' in "social exclusion", "emotion", "limitation", "treatment", and "independence"; and 'medium deficit (effect size -0.5 to <-0.8)' in "social inclusion"; and 'large deficit' in "total score". Multivariate analysis revealed that: (i) not belonging to the upper socio-economic strata of society was an independent predictor of a poor "independence" facet outcome (P=0.010, OR=1.99, 95% CI: 1.18 to 3.37); (ii) not having experienced class detainment was an independent predictor of a poor "emotion" facet outcome (P=0.008, OR=3.04, 95% CI: 1.34 to 6.85); (iii) first-born status was an independent predictor of a poor "limitation" facet outcome (P=0.022, OR=2.60, 95% CI: 1.15 to 5.90); and (iv) female gender was an independent predictor of a poor "social exclusion" facet outcome (P=0.024, OR=0.28, 95% CI: 0.09 to 0.85) and a poor "overall health" outcome (P=0.025, OR=0.32, 95% CI: 0.12 to 0.87). Children with newly-diagnosed SpLD perceive their psychosocial, physical, and overall HRQoL to be significantly compromised.
[Relevance of nerve blocks in treating and diagnosing low back pain--is the quality decisive?].
Hildebrandt, J
2001-12-01
Diagnostic nerve blocks: The popularity of neural blockade as a diagnostic tool in painful conditions, especially in the spine, is due to features like the unspecific character of spinal pain, the irrelevance of radiological findings and the purely subjective character of pain. It is said that apart from specific causes of pain and clear radicular involvement with obvious neurological deficits and corresponding findings of a prolapsed disc in MRI or CT pictures, a diagnosis of the anatomical cause of the pain can only be established if invasive tests are used [5]. These include zygapophyseal joint blocks, sacroiliacal joint blocks, disc stimulation and nerve root blocks. Under controlled conditions, it has been shown that among patients with chronic nonradicular low back pain, some 10-15% have zygapophyseal joint pain [58], some 15-20% have sacroiliacal joint pain [36, 59] and 40% have pain from internal disc disruption [60]. The diagnostic use of neural blockade rests on three premises. First, pathology causing pain is located in an exact peripheral location, and impulses from this site travel via a unique and consistent neural root. Second, injection of local aneasthetic totally abolishes sensory function of intended nerves and does not affect other nerves. Third, relief of pain after local anaesthetic block is attributable solely to block of the target afferent neural pathway. The validity of these assumptions is limited by complexities of anatomy, physiology, and psychology of pain perception and the effect of local anaesthetics on impulse conduction [28]. Facet joints: The prevalence of zygapophyseal joint pain among patients with low back pain seems to be between 15% and 40% [62], but apparently only 7% of patients have pure facet pain [8, 29]. Facet blockade is achieved either by injection of local anaesthetic into the joint space or around the medial branches of the posterior medial rami of the spinal nerves that innervate the joint. There are several problems with intraarticular facet injections, mainly failure to enter the joint capsule and rupture of the capsule during the injection [11]. There is no physiological means to test the adaequacy of medial nerve block, because the lower branches have no cutaneous innervation. Medial ramus blocks (for one joint two nerves have to be infiltrated) are as effective as intraarticular joint blocks [37]. Reproducibility of the test is not high, the specifity is only 65% [61]. For diagnosis of facet pain fluoroscopic control is always necessary as in the other diagnostic blocks. Sacroiliacal joint: Definitely the sacroiliacal joint can be the source of low back pain. Stimulation of the joint by injection in subjects without pain produces pain in the buttock, in the posterior thigh and the knee. There are many clinical tests which confirm the diagnosis, but the interrater reliability is moderate [53]. Intraarticular injection can be achieved in the lower part of the joint with fluoroscopic guidance only, but an accurate intraarticular injection, which is confirmed by contrast medium, even at this place is often difficult. It is not clear whether intraarticular spread is necessary to achieve efficacy. Discography: Two primary syndromes concerning the ventral compartment have been described: anular fissures of the disc and instability of the motion segment. In the syndrome of anular tear, leakage of nucleus pulposus material into the anulus fibrosus is considered to be the source of pain. The studies of Vaharanta [71] and Moneta [41] show a clear and significant correlation between disc pain and grade 3 fissures of the anulus fibrosus. intervertebral discs are difficult to anaesthetize. Intradiskal injections of local anaesthetics may succeed in relieving the patient's pain, but such injections are liable to yield false negative results if the injected agent fails to adequately infiltrate the nerve endings in the outer anulus fibrosus that mediate the patient's pain. In the majority of cases MRI provide adaequate information, but discography may be superior in early stages of anular tear and in clarifying the relation between imaging data and pain [71]. Selective spinal nerve injection: In patients with complicated radiculopathy, the contribution of root inflammation to pain may not be certain, or the level of pathology may be unclear. Diagnostic root blocks are indicated in the following situations: atypical topography of radicular pain, disc prolapses or central spinal stenosis at more than one level and monoradicular pain, lateral spinal stenosis, postnucleotomysyndrome. Injection of individual spinal nerves by paravertebral approach has to be used to elucidate the mechanism and source of pain in this unclear situations. The premise is that needle contact will identify the nerve that produces the patient's characteristic pain and that local anaesthetic delivered to the pathogenic nerve will be uniquely analgesic. Often, this method is used for surgical planning, such as determining the site of foraminotomy. All diagnostic nerve root blocks have to be done under fluoroscopic guidance. Pain relief with blockade of a spinal nerve cannot distinguish between pathology of the proximal nerve in the intervertebral foramen or pain transmitted from distal sites by that nerve. Besides, the tissue injury in the nerve's distribution and neuropathic pain (for instance as a result of root injury) likewise would be relieved by a proximal block of the nerve. Satisfactory needle placement could not be achieved in 10% of patient's at L4, 15% at L5 and 30% at S1 [28]. The positive predictive value of indicated radiculopathy confirmed by surgery ranged between 87-100% [14, 22]. The negative predictive value is poorly studied, because few patients in the negative test group had surgery. Negative predictive values were 27% and 38% of the small number of patients operated on despite a negative test. Only one prospective study was published, which showed a positive predictive value of 95% and an untested negative predictive value [66]. Some studies repeatedly demonstrated that pain relief by nerve root block does not predict success by neuroablative procedures, neither by dorsal rhyzotomy nor by dorsal gangliectomy [46]. Therapeutic nerve blocks - facet joints: Intraarticular injection of steroids offer no greater benefit than injections of normal saline [8, 15] and long lasting success is lacking. In this case, a denervation of the medial branches can be considered. To date three randomized controlled studies of radiofrequency facet denervation have been published. One study [20] reported only modest outcomes and its results remained inconclusive, another study [72] with a double blind controlled design showed some effects in a small selected group of patients (adjusted odds ratio 4.8) 3, 6 and 12 months after treatment, concerning not only reduction of pain but alleviating functional disability also. The third study (34a) showed no effect 3 months after treatment. Discogenic pain: Intradiscal radiofrequency lesions, intradiscal injections of steroids and phenol have been advocated, but there are no well controlled studies. Just recently, intradiscal lesion and denervation of the anulus has been described with promising results, but a randomized controlled study is lacking up to now [31, 55]. Epidural Steroids: Steroids relieve pain by reducing inflammation and by blocking transmission of nociceptive C-fiber input. Koes et al. [33] reviewed the randomized trials of epidural steroids: To date, 15 trials have been performed to evaluate the efficacy, 11 of which showed method scores of 50 points (from 100) ore more. The trials showed inconsistent results of epidural injections. Of the 15 trials, 8 reported positive results and 7 others reported negative results. Consequently the efficacy of epidural steroid injections has not yet been established. The benefits of epidural steroid injections seem to be of short duration only. Future efficacy studies, which are clearly needed, should take into account the apparent methological shortcomings. Furthermore, it is unclear which patients benefit from these injections. In our hands the injection technique can be much improved by fluoroscopic guidance of the needle, with a prone position of the patient, and lateral injection at the relevant level and with a small volume (1-2 ml) and low dose of corticosteroid (20 mg triamcinolone in the case of a monoradicular pain, for example). In the case of epidural adhesions in postoperative radicular pain [50], the study of Heafner showed that the additional effect of hyaloronidase and hypertonic saline to steroids was minimal. In our hands there was no effect in chronic radicular pain 3 months after the injection.
Sequences of upper and lower extremity motions in javelin throwing.
Liu, Hui; Leigh, Steve; Yu, Bing
2010-11-01
Javelin throwing is technically demanding. Sequences of upper and lower extremity motions are important for javelin throwing performance. The purpose of this study was to determine the general sequences of upper and lower extremity motions of elite male and female javelin throwers. Three-dimensional kinematic data were collected for 32 female and 30 male elite javelin throwers during competitions. Shoulder, elbow, wrist, hip, knee, ankle, lower trunk, and upper trunk joint and segment angles were reduced for the best trial of each participant. Beginning times of 6 upper extremity and 10 lower extremity joint and segment angular motions were identified. Sequences of the upper and lower extremity motions were determined through statistical analyses. Upper and lower extremity motions of the male and female elite javelin throwers followed specific sequences (P ≤ 0.050). Upper extremity motions of the male and female elite javelin throwers did not follow a proximal-to-distal sequence as suggested in the literature. Male and female elite javelin throwers apparently employed different sequences for upper and lower extremity motions (P < 0.001). Further studies are needed to determine the effects of sequences of upper and lower extremity motions on javelin throwing performance.
Taylor, Michael P; Wedel, Mathew J
2013-01-01
The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised.
Taylor, Michael P.; Wedel, Mathew J.
2013-01-01
The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised. PMID:24205163
Manchikanti, Laxmaiah; Cash, Kimberly A; McManus, Carla D; Pampati, Vidyasagar; Benyamin, Ramsin
2012-01-01
Among the multiple causes of chronic low back pain, axial and discogenic pain are common. Various modalities of treatments are utilized in managing discogenic and axial low back pain including epidural injections. However, there is a paucity of evidence regarding the effectiveness, indications, and medical necessity of any treatment modality utilized for managing axial or discogenic pain, including epidural injections. In an interventional pain management practice in the US, a randomized, double-blind, active control trial was conducted. The objective was to assess the effectiveness of lumbar interlaminar epidural injections of local anesthetic with or without steroids for managing chronic low back pain of discogenic origin. However, disc herniation, radiculitis, facet joint pain, or sacroiliac joint pain were excluded. Two groups of patients were studied, with 60 patients in each group receiving either local anesthetic only or local anesthetic mixed with non-particulate betamethasone. Primary outcome measures included the pain relief-assessed by numeric rating scale of pain and functional status assessed by the, Oswestry Disability Index, Secondary outcome measurements included employment status, and opioid intake. Significant improvement or success was defined as at least a 50% decrease in pain and disability. Significant improvement was seen in 77% of the patients in Group I and 67% of the patients in Group II. In the successful groups (those with at least 3 weeks of relief with the first two procedures), the improvement was 84% in Group I and 71% in Group II. For those with chronic function-limiting low back pain refractory to conservative management, it is concluded that lumbar interlaminar epidural injections of local anesthetic with or without steroids may be an effective modality for managing chronic axial or discogenic pain. This treatment appears to be effective for those who have had facet joints as well as sacroiliac joints eliminated as the pain source. PMID:23055773
Automatic locking orthotic knee device
NASA Technical Reports Server (NTRS)
Weddendorf, Bruce C. (Inventor)
1993-01-01
An articulated tang in clevis joint for incorporation in newly manufactured conventional strap-on orthotic knee devices or for replacing such joints in conventional strap-on orthotic knee devices is discussed. The instant tang in clevis joint allows the user the freedom to extend and bend the knee normally when no load (weight) is applied to the knee and to automatically lock the knee when the user transfers weight to the knee, thus preventing a damaged knee from bending uncontrollably when weight is applied to the knee. The tang in clevis joint of the present invention includes first and second clevis plates, a tang assembly and a spacer plate secured between the clevis plates. Each clevis plate includes a bevelled serrated upper section. A bevelled shoe is secured to the tank in close proximity to the bevelled serrated upper section of the clevis plates. A coiled spring mounted within an oblong bore of the tang normally urges the shoes secured to the tang out of engagement with the serrated upper section of each clevic plate to allow rotation of the tang relative to the clevis plate. When weight is applied to the joint, the load compresses the coiled spring, the serrations on each clevis plate dig into the bevelled shoes secured to the tang to prevent relative movement between the tang and clevis plates. A shoulder is provided on the tang and the spacer plate to prevent overextension of the joint.
Cervical spondylosis anatomy: pathophysiology and biomechanics.
Shedid, Daniel; Benzel, Edward C
2007-01-01
Cervical spondylosis is the most common progressive disorder in the aging cervical spine. It results from the process of degeneration of the intervertebral discs and facet joints of the cervical spine. Biomechanically, the disc and the facets are the connecting structures between the vertebrae for the transmission of external forces. They also facilitate cervical spine mobility. Symptoms related to myelopathy and radiculopathy are caused by the formation of osteophytes, which compromise the diameter of the spinal canal. This compromise may also be partially developmental. The developmental process, together with the degenerative process, may cause mechanical pressure on the spinal cord at one or multiple levels. This pressure may produce direct neurological damage or ischemic changes and, thus, lead to spinal cord disturbances. A thorough understanding of the biomechanics, the pathology, the clinical presentation, the radiological evaluation, as well as the surgical indications of cervical spondylosis, is essential for the management of patients with cervical spondylosis.
[Degenerative adult scoliosis].
García-Ramos, C L; Obil-Chavarría, C A; Zárate-Kalfópulos, B; Rosales-Olivares, L M; Alpizar-Aguirre, A; Reyes-Sánchez, A A
2015-01-01
Adult scoliosis is a complex three-dimensional rotational deformity of the spine, resulting from the progressive degeneration of the vertebral elements in middle age, in a previously straight spine; a Cobb angle greater than 10° in the coronal plane, which also alters the sagittal and axial planes. It originates an asymmetrical degenerative disc and facet joint, creating asymmetrical loads and subsequently deformity. The main symptom is axial, radicular pain and neurological deficit. Conservative treatment includes drugs and physical therapy. The epidural injections and facet for selectively blocking nerve roots improves short-term pain. Surgical treatment is reserved for patients with intractable pain, radiculopathy and/ or neurological deficits. There is no consensus for surgical indications, however, it must have a clear understanding of the symptoms and clinical signs. The goal of surgery is to decompress neural elements with restoration, modification of the three-dimensional shape deformity and stabilize the coronal and sagittal balance.
Draicchio, F; Silvetti, A; Ranavolo, A; Iavicoli, S
2008-01-01
We analyzed the coordination patterns between elbow, shoulder and trunk in a motor task consisting of reaching out, picking up a cylinder, and transporting it back by using the Dynamical Systems Theory and calculating the continuous relative phase (CRP), a continuous measure of the coupling between two interacting joints. We used an optoelectronic motion analysis system consisting of eight infra-red ray cameras to detect the movements of nine skin-mounted markers. We calculated the root square of the adjusted coefficient of determination, the coefficient of multiple correlation (CMC), in order to investigate the repeatability of the joints coordination. The data confirm that the CNS establishes both synergic (i.e. coupling between shoulder and trunk on the frontal plane) and hierarchical (i.e. coupling between elbow-shoulder-trunk on the horizontal plane) relationships among the available degrees of freedom to overcome the complexity due to motor redundancy. The present study describes a method to investigate the organization of the kinematic degrees of freedom during upper limb multi-joint motor tasks that can be useful to assess upper limb repetitive movements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Toomey, Bridget
Evolving power systems with increasing levels of stochasticity call for a need to solve optimal power flow problems with large quantities of random variables. Weather forecasts, electricity prices, and shifting load patterns introduce higher levels of uncertainty and can yield optimization problems that are difficult to solve in an efficient manner. Solution methods for single chance constraints in optimal power flow problems have been considered in the literature, ensuring single constraints are satisfied with a prescribed probability; however, joint chance constraints, ensuring multiple constraints are simultaneously satisfied, have predominantly been solved via scenario-based approaches or by utilizing Boole's inequality asmore » an upper bound. In this paper, joint chance constraints are used to solve an AC optimal power flow problem while preventing overvoltages in distribution grids under high penetrations of photovoltaic systems. A tighter version of Boole's inequality is derived and used to provide a new upper bound on the joint chance constraint, and simulation results are shown demonstrating the benefit of the proposed upper bound. The new framework allows for a less conservative and more computationally efficient solution to considering joint chance constraints, specifically regarding preventing overvoltages.« less
Manchikanti, Laxmaiah; Hansen, Hans; Pampati, Vidyasagar; Falco, Frank J E
2013-01-01
The high prevalence of persistent low back pain and growing number of diagnostic and therapeutic modalities employed to manage chronic low back pain and the subsequent impact on society and the economy continue to hold sway over health care policy. Among the multiple causes responsible for chronic low back pain, the contributions of the sacroiliac joint have been a subject of debate albeit a paucity of research. At present, there are no definitive conservative, interventional or surgical management options for managing sacroiliac joint pain. It has been shown that the increases were highest for facet joint interventions and sacroiliac joint blocks with an increase of 310% per 100,000 Medicare beneficiaries from 2000 to 2011. There has not been a systematic assessment of the utilization and growth patterns of sacroiliac joint injections. Analysis of the growth patterns of sacroiliac joint injections in Medicare beneficiaries from 2000 to 2011. To evaluate the utilization and growth patterns of sacroiliac joint injections. This assessment was performed utilizing Centers for Medicare and Medicaid Services (CMS) Physician/Supplier Procedure Summary (PSPS) Master data from 2000 to 2011. The findings of this assessment in Medicare beneficiaries from 2000 to 2011 showed a 331% increase per 100,000 Medicare beneficiaries with an annual increase of 14.2%, compared to an increase in the Medicare population of 23% or annual increase of 1.9%. The number of procedures increased from 49,554 in 2000 to 252,654 in 2011, or a rate of 125 to 539 per 100,000 Medicare beneficiaries. Among the various specialists performing sacroiliac joint injections, physicians specializing in physical medicine and rehabilitation have shown the most increase, followed by neurology with 1,568% and 698%, even though many physicians from both specialties have been enrolling in interventional pain management and pain management. Even though the numbers were small for nonphysician providers including certified registered nurse anesthetists, nurse practitioners, and physician assistants, these numbers increased substantially at a rate of 4,526% per 100,000 Medicare beneficiaries with 21 procedures performed in 2000 increasing to 4,953 procedures in 2011. The, majority of sacroiliac joint injections were performed in an office setting. The utilization of sacroiliac joint injections by state from 2008 to 2010 showed increases of more than 20% in New Hampshire, Alabama, Minnesota, Vermont, Oregon, Utah, Massachusetts, Kansas, and Maine. Similarly, some states showed significant decreases of 20% or more, including Oklahoma, Louisiana, Maryland, Arkansas, New York, and Hawaii. Overall, there was a 1% increase per 100,000 Medicare population from 2008 to 2010. However, 2011 showed significant increases from 2010. The limitations of this study included a lack of inclusion of Medicare participants in Medicare Advantage plans, the availability of an identifiable code for only sacroiliac joint injections, and the possibility that state claims data may include claims from other states. . This study illustrates the explosive growth of sacroiliac joint injections even more than facet joint interventions. Furthermore, certain groups of providers showed substantial increases. Overall, increases from 2008 to 2010 were nominal with 1%, but some states showed over 20% increases whereas some others showed over 20% decreases.
Bone Lengthening in the Pediatric Upper Extremity.
Farr, Sebastian; Mindler, Gabriel; Ganger, Rudolf; Girsch, Werner
2016-09-07
➤Bone lengthening has been used successfully for several congenital and acquired conditions in the pediatric clavicle, humerus, radius, ulna, and phalanges.➤Common indications for bone lengthening include achondroplasia, radial longitudinal deficiency, multiple hereditary exostosis, brachymetacarpia, symbrachydactyly, and posttraumatic and postinfectious growth arrest.➤Most authors prefer distraction rates of <1 mm/day for each bone in the upper extremity except the humerus, which can safely be lengthened by 1 mm/day.➤Most authors define success by the amount of radiographic bone lengthening, joint motion after lengthening, and subjective patient satisfaction rather than validated patient-related outcome measures.➤Bone lengthening of the upper extremity is associated with a high complication rate, with complications including pin-track infections, fixation device failure, nerve lesions, nonunion, fracture of regenerate bone, and joint dislocations. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Functional Multijoint Position Reproduction Acuity in Overhead-Throwing Athletes
Tripp, Brady L; Uhl, Timothy L; Mattacola, Carl G; Srinivasan, Cidambi; Shapiro, Robert
2006-01-01
Context: Baseball players rely on the sensorimotor system to uphold the balance between upper extremity stability and mobility while maintaining athletic performance. However, few researchers have studied functional multijoint measures of sensorimotor acuity in overhead-throwing athletes. Objective: To compare sensorimotor acuity between 2 high-demand functional positions and among planes of motion within individual joints and to describe a novel method of measuring sensorimotor function. Design: Single-session, repeated-measures design. Setting: University musculoskeletal research laboratory. Patients or Other Participants: Twenty-one National Collegiate Athletic Association Division I baseball players (age = 20.8 ± 1.5 years, height = 181.3 ± 5.1 cm, mass = 87.8 ± 9.1 kg) with no history of upper extremity injury or central nervous system disorder. Main Outcome Measure(s): We measured active multijoint position reproduction acuity in multiple planes using an electromagnetic tracking device. Subjects reproduced 2 positions: arm cock and ball release. We calculated absolute and variable error for individual motions at the scapulothoracic, glenohumeral, elbow, and wrist joints and calculated overall joint acuity with 3-dimensional variable error. Results: Acuity was significantly better in the arm-cock position compared with ball release at the scapulothoracic and glenohumeral joints. We observed significant differences among planes of motion within the scapulothoracic and glenohumeral joints at ball release. Scapulothoracic internal rotation and glenohumeral horizontal abduction and rotation displayed less acuity than other motions. Conclusions: We established the reliability of a functional measure of upper extremity sensorimotor system acuity in baseball players. Using this technique, we observed differences in acuity between 2 test positions and among planes of motion within the glenohumeral and scapulothoracic joints. Clinicians may consider these differences when designing and implementing sensorimotor system training. Our error scores are similar in magnitude to those reported using single-joint and single-plane measures. However, 3-dimensional, multijoint measures allow practical, unconstrained test positions and offer additional insight into the upper extremity as a functional unit. PMID:16791298
Preliminary research of a novel center-driven robot for upper extremity rehabilitation.
Cao, Wujing; Zhang, Fei; Yu, Hongliu; Hu, Bingshan; Meng, Qiaoling
2018-01-19
Loss of upper limb function often appears after stroke. Robot-assisted systems are becoming increasingly common in upper extremity rehabilitation. Rehabilitation robot provides intensive motor therapy, which can be performed in a repetitive, accurate and controllable manner. This study aims to propose a novel center-driven robot for upper extremity rehabilitation. A new power transmission mechanism is designed to transfer the power to elbow and shoulder joints from three motors located on the base. The forward and inverse kinematics equations of the center-driven robot (CENTROBOT) are deduced separately. The theoretical values of the scope of joint movements are obtained with the Denavit-Hartenberg parameters method. A prototype of the CENTROBOT is developed and tested. The elbow flexion/extension, shoulder flexion/extension and shoulder adduction/abduction can be realized of the center-driven robot. The angles value of joints are in conformity with the theoretical value. The CENTROBOT reduces the overall size of the robot arm, the influence of motor noise, radiation and other adverse factors by setting all motors on the base. It can satisfy the requirements of power and movement transmission of the robot arm.
Matgé, Guy; Berthold, Christophe; Gunness, Vimal Raj Nitish; Hana, Ardian; Hertel, Frank
2015-03-01
Although cervical total disc replacement (TDR) has shown equivalence or superiority to anterior cervical discectomy and fusion (ACDF), potential problems include nonphysiological motion (hypermobility), accelerated degeneration of the facet joints, particulate wear, and compromise of the mechanical integrity of the endplate during device fixation. Dynamic cervical stabilization is a novel motion-preserving concept that facilitates controlled, limited flexion and extension, but prevents axial rotation and lateral bending, thereby reducing motion across the facet joints. Shock absorption of the Dynamic Cervical Implant (DCI) device is intended to protect adjacent levels from accelerated degeneration. The authors conducted a prospective evaluation of 53 consecutive patients who underwent DCI stabilization for the treatment of 1-level (n = 42), 2-level (n = 9), and 3-level (n = 2) cervical disc disease with radiculopathy or myelopathy. Forty-seven patients (89%) completed all clinical and radiographic outcomes at a minimum of 24 months. Clinical outcomes consisted of Neck Disability Index (NDI) and visual analog scale (VAS) scores, neurological function at baseline and at latest follow-up, as well as patient satisfaction. Flexion-extension radiography was evaluated for device motion, implant migration, subsidence, and heterotopic ossification. Cervical sagittal alignment (Cobb angle), functional spinal unit (FSU) angle, and range of motion (ROM) at index and adjacent levels were evaluated with WEB 1000 software. The NDI score, VAS neck and arm pain scores, and neurological deficits were significantly reduced at each postoperative time point compared with baseline (p < 0.0001). At 24 months postoperatively, 91% of patients were very satisfied and 9% somewhat satisfied, while 89% would definitely and 11% would probably elect to have the same surgery again. In 47 patients with 58 operated levels, the radiographic assessment showed good motion (5°-12°) of the device in 57%, reduced motion (2°-5°) in 34.5%, and little motion (0-2°) in 8.5%. The Cobb and FSU angles improved, showing a clear tendency for lordosis with the DCI. Motion greater than 2° of the treated segment could be preserved in 91.5%, while 8.5% had a near segmental fusion. Mean ROM at index levels demonstrated satisfying motion preservation with DCI. Mean ROM at upper and lower adjacent levels showed maintenance of adjacent-level kinematics. Heterotopic ossification, including 20% minor and 15% major, had no direct impact on clinical results. There were 2 endplate subsidences detected with an increased segmental lordosis. One asymptomatic anterior device migration required reoperation. Three patients underwent a secondary surgery in another segment during follow-up, twice for a new disc herniation and once for an adjacent degeneration. There was no posterior migration and no device breakage. Preliminary results indicate that the DCI implanted using a proper surgical technique is safe and facilitates excellent clinical outcomes, maintains index-and adjacent-level ROM in the majority of cases, improves sagittal alignment, and may be suitable for patients with facet arthrosis who would otherwise not be candidates for cervical TDR. Shock absorption together with maintained motion in the DCI may protect adjacent levels from early degeneration in longer follow-up.
Analysis of elbow-joints misalignment in upper-limb exoskeleton.
Malosio, Matteo; Pedrocchi, Nicola; Vicentini, Federico; Tosatti, Lorenzo Molinari
2011-01-01
This paper presents advantages of introducing elbow-joints misalignments in an exoskeleton for upper limb rehabilitation. Typical exoskeletons are characterized by axes of the device as much as possible aligned to the rotational axes of human articulations. This approach leads to advantages in terms of movements and torques decoupling, but can lead to limitations nearby the elbow singular configuration. A proper elbow axes misalignment between the exoskeleton and the human can improve the quality of collaborative rehabilitation therapies, in which a correct torque transmission from human articulations to mechanical joints of the device is required to react to torques generated by the patient. © 2011 IEEE
System Characterization of MAHI EXO-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation
French, James A.; Rose, Chad G.; O'Malley, Marcia K.
2015-01-01
This paper presents the performance characterization of the MAHI Exo-II, an upper extremity exoskeleton for stroke and spinal cord injury (SCI) rehabilitation, as a means to validate its clinical implementation and to provide depth to the literature on the performance characteristics of upper extremity exoskeletons. Individuals with disabilities arising from stroke and SCI need rehabilitation of the elbow, forearm, and wrist to restore the ability to independently perform activities of daily living (ADL). Robotic rehabilitation has been proposed to address the need for high intensity, long duration therapy and has shown promising results for upper limb proximal joints. However, upper limb distal joints have historically not benefitted from the same focus. The MAHI Exo-II, designed to address this shortcoming, has undergone a static and dynamic performance characterization, which shows that it exhibits the requisite qualities for a rehabilitation robot and is comparable to other state-of-the-art designs. PMID:25984380
System Characterization of MAHI EXO-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation.
French, James A; Rose, Chad G; O'Malley, Marcia K
2014-10-01
This paper presents the performance characterization of the MAHI Exo-II, an upper extremity exoskeleton for stroke and spinal cord injury (SCI) rehabilitation, as a means to validate its clinical implementation and to provide depth to the literature on the performance characteristics of upper extremity exoskeletons. Individuals with disabilities arising from stroke and SCI need rehabilitation of the elbow, forearm, and wrist to restore the ability to independently perform activities of daily living (ADL). Robotic rehabilitation has been proposed to address the need for high intensity, long duration therapy and has shown promising results for upper limb proximal joints. However, upper limb distal joints have historically not benefitted from the same focus. The MAHI Exo-II, designed to address this shortcoming, has undergone a static and dynamic performance characterization, which shows that it exhibits the requisite qualities for a rehabilitation robot and is comparable to other state-of-the-art designs.
Dubory, Arnaud; Bouloussa, Houssam; Riouallon, Guillaume; Wolff, Stéphane
2017-12-01
Widely used in traumatic pelvic ring fractures, the iliosacral (IS) screw technique for spino-pelvic fixation remains anecdotal in adult spinal deformity. The objective of this study was to assess anatomical variability of the adult upper sacrum and to provide a user guide of spino-pelvic fixation with IS screws in adult spinal deformity. Anatomical variability of the upper sacrum according to age, gender, height and weight was sought on 30 consecutive pelvic CT-scans. Thus, a user guide of spino-pelvic fixation with IS screws was modeled and assessed on ten CT-scans as described below. Two invariable landmarks usable during the surgical procedure were defined: point A (corresponding to the connector binding the IS screw to the spinal rod), equidistant from the first posterior sacral hole and the base of the S1 articular facet and 10 mm-embedded into the sacrum; point B (corresponding to the tip of the IS screw) located at the junction of the anterior third and middle third of the sacral endplate in the sagittal plane and at the middle of the endplate in the coronal plane. Point C corresponded to the intersection between the A-B direction and the external facet of the iliac wing. Three-dimensional reconstructions modeling the IS screw optimal direction according to the A-B-C straight line were assessed. Age had no effect on the anatomy of the upper sacrum. The distance between the base of the S1 superior articular facet and the top of the first posterior sacral hole was correlated with weight (r = 0.6; 95% CI [0.6-0.9]); p < 0.001). Sacral end-plate thickness increased for male patients (p < 0.001) and was strongly correlated with height (r = 0.6; 95% CI [0.29-0.75]); p < 0.001) and weight (r = 0.8; 95% CI [0.6-0.9]); p < 0.001). The thickness of the inferior part of the S1 vertebral body increased in male patients (p < 0.001). Other measured parameters slightly varied according to gender, height and weight. Simulating the described technique of pelvic fixation, no misplaced IS screw was found whatever the age, gender and morphologic parameters. This user guide of spinopelvic fixation with IS screws seems to be reliable and reproducible independently of age, gender and morphologic characteristics but needs clinical assessment. Level IV.
Characteristics of upper limb muscular strength in male wheelchair tennis players
Moon, Hyo-Bin; Park, Seung-Jae; Kim, Al-Chan; Jang, Jee-Hun
2013-01-01
The purpose of this study was to identify the characteristics of muscular strength in upper limb and to present the preliminary information for development of sports injury prevention program and exercise rehabilitation program in wheelchair tennis players. Participants were 12 male wheelchair tennis players. Muscular strength was measured in shoulder and elbow joints with isokinetic dynamometer. Ipsilateral (IR) and bilateral (BR) balance ratio were calculated with isokinetic strength at 60°/sec. As a result, extension strength (ES) was significantly higher than flexion strength (FS) (P< 0.001), and IR in both sides and BR in ES were maintained within normal range whereas BR in FS was lower than normal range in shoulder joint. In elbow joint FS was significantly higher than ES (P< 0.05), and IR and BR were lower than normal range. Consequently, the different tendency in IR between shoulder and elbow joints and lower IR and BR in elbow joints could be the characteristics in male wheelchair tennis players. It is suggested that flexor strengthening program in nondominant shoulder joint, extensor strengthening program in both elbow joint, and flexor strengthening program in non-dominant elbow joint should be introduced for male wheelchair tennis players. PMID:24278887
Chou, Roger; Atlas, Steven J; Stanos, Steven P; Rosenquist, Richard W
2009-05-01
Systematic review. To systematically assess benefits and harms of nonsurgical interventional therapies for low back and radicular pain. Although use of certain interventional therapies is common or increasing, there is also uncertainty or controversy about their efficacy. Electronic database searches on Ovid MEDLINE and the Cochrane databases were conducted through July 2008 to identify randomized controlled trials and systematic reviews of local injections, botulinum toxin injection, prolotherapy, epidural steroid injection, facet joint injection, therapeutic medial branch block, sacroiliac joint injection, intradiscal steroid injection, chemonucleolysis, radiofrequency denervation, intradiscal electrothermal therapy, percutaneous intradiscal radiofrequency thermocoagulation, Coblation nucleoplasty, and spinal cord stimulation. All relevant studies were methodologically assessed by 2 independent reviewers using criteria developed by the Cochrane Back Review Group (for trials) and by Oxman (for systematic reviews). A qualitative synthesis of results was performed using methods adapted from the US Preventive Services Task Force. For sciatica or prolapsed lumbar disc with radiculopathy, we found good evidence that chemonucleolysis is moderately superior to placebo injection but inferior to surgery, and fair evidence that epidural steroid injection is moderately effective for short-term (but not long-term) symptom relief. We found fair evidence that spinal cord stimulation is moderately effective for failed back surgery syndrome with persistent radiculopathy, though device-related complications are common. We found good or fair evidence that prolotherapy, facet joint injection, intradiscal steroid injection, and percutaneous intradiscal radiofrequency thermocoagulation are not effective. Insufficient evidence exists to reliably evaluate other interventional therapies. Few nonsurgical interventional therapies for low back pain have been shown to be effective in randomized, placebo-controlled trials.
Multibody system of the upper limb including a reverse shoulder prosthesis.
Quental, C; Folgado, J; Ambrósio, J; Monteiro, J
2013-11-01
The reverse shoulder replacement, recommended for the treatment of several shoulder pathologies such as cuff tear arthropathy and fractures in elderly people, changes the biomechanics of the shoulder when compared to the normal anatomy. Although several musculoskeletal models of the upper limb have been presented to study the shoulder joint, only a few of them focus on the biomechanics of the reverse shoulder. This work presents a biomechanical model of the upper limb, including a reverse shoulder prosthesis, to evaluate the impact of the variation of the joint geometry and position on the biomechanical function of the shoulder. The biomechanical model of the reverse shoulder is based on a musculoskeletal model of the upper limb, which is modified to account for the properties of the DELTA® reverse prosthesis. Considering two biomechanical models, which simulate the anatomical and reverse shoulder joints, the changes in muscle lengths, muscle moment arms, and muscle and joint reaction forces are evaluated. The muscle force sharing problem is solved for motions of unloaded abduction in the coronal plane and unloaded anterior flexion in the sagittal plane, acquired using video-imaging, through the minimization of an objective function related to muscle metabolic energy consumption. After the replacement of the shoulder joint, significant changes in the length of the pectoralis major, latissimus dorsi, deltoid, teres major, teres minor, coracobrachialis, and biceps brachii muscles are observed for a reference position considered for the upper limb. The shortening of the teres major and teres minor is the most critical since they become unable to produce active force in this position. Substantial changes of muscle moment arms are also observed, which are consistent with the literature. As expected, there is a significant increase of the deltoid moment arms and more fibers are able to elevate the arm. The solutions to the muscle force sharing problem support the biomechanical advantages attributed to the reverse shoulder design and show an increase in activity from the deltoid, teres minor, and coracobrachialis muscles. The glenohumeral joint reaction forces estimated for the reverse shoulder are up to 15% lower than those in the normal shoulder anatomy. The data presented here complements previous publications, which, all together, allow researchers to build a biomechanical model of the upper limb including a reverse shoulder prosthesis.
Lemelin, Pierre; Hamrick, Mark W; Richmond, Brian G; Godfrey, Laurie R; Jungers, William L; Burney, David A
2008-03-01
A partial, associated skeleton of Hadropithecus stenognathus (AHA-I) was discovered in 2003 at Andrahomana Cave in southeastern Madagascar. Among the postcranial elements found were the first hand bones (right scaphoid, right hamate, left first metacarpal, and right and left fifth metacarpals) attributed to this rare subfossil lemur. These hand bones were compared to those of extant strepsirrhines and catarrhines in order to infer the positional adaptations of Hadropithecus, and they were compared to those of Archaeolemur in order to assess variation in hand morphology among archaeolemurids. The scaphoid tubercle does not project palmarly as in suspensory and climbing taxa, and the hamate has no hook at all (just a small tubercle), which also points to a poorly developed carpal tunnel. There is a distinctive, radioulnarly directed "spiral" facet for articulation with the triquetrum that is most similar in orientation to that of more terrestrial primates (i.e., Lemur catta, Papio, and Gorilla). The first metacarpal is very reduced and represents only 48% of the length of metacarpal V, as in Archaeolemur, which suggests that pollical grasping of arboreal supports was not important. Compared to Archaeolemur, the shaft of metacarpal V is gracile, and the head has no dorsal ridge and lacks characteristics functionally associated with digitigrade, extended metacarpophalangeal joint postures. Proximally, the articular facet for the hamate is oriented more dorsally. Thus, the carpometacarpal joint V appears to have a distinctive hyperextended set, which has no analog among living or extinct primates. The carpals of Hadropithecus are diagnostic of a pronograde, arboreal and terrestrial (although not digitigrade) locomotor repertoire that typifies Lemur catta and some Old World monkeys. No clinging, suspensory, or climbing specializations that characterize indriids or lorises can be found in the hand of this subfossil lemur. The hand of Hadropithecus likely had similar ranges of movement at the radiocarpal and midcarpal joints as of those of pronograde primates, such as lemurids, for which the hand is held in a more extended, pronated, and neutral (i.e., showing less ulnar deviation) position during locomotion in comparison to that of vertical clingers or slow climbers. Although highly autapomorphic, the hand of Hadropithecus resembles that of its sister taxon, Archaeolemur, in having a very reduced pollex and an articular facet on the scaphoid for a sizeable prepollex. These unusual hand features reinforce the monophyly of the Archaeolemuridae.
... good posture in general to keep your shoulder blade and joint in their right positions. Other tips ... joint Good range of motion of your shoulder blade and upper spine No pain during certain physical ...
Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
Gorce, P; Louis, N
2012-01-01
Biomechanical studies have linked the handrim wheelchair propulsion with a prevalence of upper limb musculoskeletal disorders. The purpose of this study was to examine the influence of the wheelchair settings on upper limb kinematics during wheelchair propulsion. Recordings were made under various wheelchair configuration conditions to understand the effect of wheelchair settings on kinematics parameters such shoulder, elbow and wrist angles. Ten experts and ten beginners' subjects propelled an experimental wheelchair on a roller ergometer system at a comfortable speed. Twelve wheelchair configurations were tested. Kinematics were recorded for each configuration. Based on the hand position relatively to the handrim, the main kinematic parameters of wheelchair propulsion were investigated on the whole propulsion cycle and a key event such as handrim contact and release. Compared to the beginner subjects, all the experts' subjects generally present higher joint amplitude and propulsion speeds. Seat height and antero-posterior axle position influence usage of the hand-rim, timing parameters and configurations of upper limb joints. Results seem to confirm that low and backward seat position allow a greater efficiency. Nevertheless, according that proximity of joint limit is a well known factor of musculoskeletal disorders, our results let us think that too low and backward seat position, increasing joints positions and amplitudes, could increase the risk of upper limb injuries in relation with manual wheelchair propulsion. Kinematic differences highlight that future studies on wheelchair propulsion should only be done with impaired experienced subjects. Furthermore, this study provides indications on how wheelchair settings can be used for upper limb injury prevention. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kirchner, Fernando; Anitua, Eduardo
2016-01-01
Low back pain (LBP) is a complex and disabling condition, and its treatment becomes a challenge. The aim of our study was to assess the clinical outcome of plasma rich in growth factors (PRGF-Endoret) infiltrations (one intradiscal, one intra-articular facet, and one transforaminal epidural injection) under fluoroscopic guidance-control in patients with chronic LBP. PRGF-Endoret which has been shown to be an efficient treatment to reduce joint pain. The study was designed as an observational retrospective pilot study. Eighty-six patients with a history of chronic LBP and degenerative disease of the lumbar spine who met inclusion and exclusion criteria were recruited between December 2010 and January 2012. One intradiscal, one intra-articular facet, and one transforaminal epidural injection of PRGF-Endoret under fluoroscopic guidance-control were carried out in 86 patients with chronic LBP in the operating theater setting. Descriptive statistics were performed using absolute and relative frequency distributions for qualitative variables and mean values and standard deviations for quantitative variables. The nonparametric Friedman statistical test was used to determine the possible differences between baseline and different follow-up time points on pain reduction after treatment. Pain assessment was determined using a visual analog scale (VAS) at the first visit before (baseline) and after the procedure at 1, 3, and 6 months. The pain reduction after the PRGF-Endoret injections showed a statistically significant drop from 8.4 ± 1.1 before the treatment to 4 ± 2.6, 1.7 ± 2.3, and 0.8 ± 1.7 at 1, 3, and 6 months after the treatment, respectively, with respect to all the time evaluations ( P < 0.0001) except for the pain reduction between the 3 rd and 6 th month whose signification was lower ( P < 0.05). The analysis of the VAS over time showed that at the end point of the study (6 months), 91% of patients showed an excellent score, 8.1% showed a moderate improvement, and 1.2% were in the inefficient score. Fluoroscopy-guided infiltrations of intervertebral discs and facet joints with PRGF in patients with chronic LBP resulted in significant pain reduction assessed by VAS.
Kirchner, Fernando; Anitua, Eduardo
2016-01-01
Context: Low back pain (LBP) is a complex and disabling condition, and its treatment becomes a challenge. Aims: The aim of our study was to assess the clinical outcome of plasma rich in growth factors (PRGF-Endoret) infiltrations (one intradiscal, one intra-articular facet, and one transforaminal epidural injection) under fluoroscopic guidance-control in patients with chronic LBP. PRGF-Endoret which has been shown to be an efficient treatment to reduce joint pain. Settings and Design: The study was designed as an observational retrospective pilot study. Eighty-six patients with a history of chronic LBP and degenerative disease of the lumbar spine who met inclusion and exclusion criteria were recruited between December 2010 and January 2012. Subjects and Methods: One intradiscal, one intra-articular facet, and one transforaminal epidural injection of PRGF-Endoret under fluoroscopic guidance-control were carried out in 86 patients with chronic LBP in the operating theater setting. Statistical Analysis Used: Descriptive statistics were performed using absolute and relative frequency distributions for qualitative variables and mean values and standard deviations for quantitative variables. The nonparametric Friedman statistical test was used to determine the possible differences between baseline and different follow-up time points on pain reduction after treatment. Results: Pain assessment was determined using a visual analog scale (VAS) at the first visit before (baseline) and after the procedure at 1, 3, and 6 months. The pain reduction after the PRGF-Endoret injections showed a statistically significant drop from 8.4 ± 1.1 before the treatment to 4 ± 2.6, 1.7 ± 2.3, and 0.8 ± 1.7 at 1, 3, and 6 months after the treatment, respectively, with respect to all the time evaluations (P < 0.0001) except for the pain reduction between the 3rd and 6th month whose signification was lower (P < 0.05). The analysis of the VAS over time showed that at the end point of the study (6 months), 91% of patients showed an excellent score, 8.1% showed a moderate improvement, and 1.2% were in the inefficient score. Conclusions: Fluoroscopy-guided infiltrations of intervertebral discs and facet joints with PRGF in patients with chronic LBP resulted in significant pain reduction assessed by VAS. PMID:27891035
Proietti, Tommaso; Guigon, Emmanuel; Roby-Brami, Agnès; Jarrassé, Nathanaël
2017-06-12
The possibility to modify the usually pathological patterns of coordination of the upper-limb in stroke survivors remains a central issue and an open question for neurorehabilitation. Despite robot-led physical training could potentially improve the motor recovery of hemiparetic patients, most of the state-of-the-art studies addressing motor control learning, with artificial virtual force fields, only focused on the end-effector kinematic adaptation, by using planar devices. Clearly, an interesting aspect of studying 3D movements with a robotic exoskeleton, is the possibility to investigate the way the human central nervous system deals with the natural upper-limb redundancy for common activities like pointing or tracking tasks. We asked twenty healthy participants to perform 3D pointing or tracking tasks under the effect of inter-joint velocity dependant perturbing force fields, applied directly at the joint level by a 4-DOF robotic arm exoskeleton. These fields perturbed the human natural inter-joint coordination but did not constrain directly the end-effector movements and thus subjects capability to perform the tasks. As a consequence, while the participants focused on the achievement of the task, we unexplicitly modified their natural upper-limb coordination strategy. We studied the force fields direct effect on pointing movements towards 8 targets placed in the 3D peripersonal space, and we also considered potential generalizations on 4 distinct other targets. Post-effects were studied after the removal of the force fields (wash-out and follow up). These effects were quantified by a kinematic analysis of the pointing movements at both end-point and joint levels, and by a measure of the final postures. At the same time, we analysed the natural inter-joint coordination through PCA. During the exposition to the perturbative fields, we observed modifications of the subjects movement kinematics at every level (joints, end-effector, and inter-joint coordination). Adaptation was evidenced by a partial decrease of the movement deviations due to the fields, during the repetitions, but it occurred only on 21% of the motions. Nonetheless post-effects were observed in 86% of cases during the wash-out and follow up periods (right after the removal of the perturbation by the fields and after 30 minutes of being detached from the exoskeleton). Important inter-individual differences were observed but with small variability within subjects. In particular, a group of subjects showed an over-shoot with respect to the original unexposed trajectories (in 30% of cases), but the most frequent consequence (in 55% of cases) was the partial persistence of the modified upper-limb coordination, adopted at the time of the perturbation. Temporal and spatial generalizations were also evidenced by the deviation of the movement trajectories, both at the end-effector and at the intermediate joints and the modification of the final pointing postures towards targets which were never exposed to any field. Such results are the first quantified characterization of the effects of modification of the upper-limb coordination in healthy subjects, by imposing modification through viscous force fields distributed at the joint level, and could pave the way towards opportunities to rehabilitate pathological arm synergies with robots.
Coracoclavicular joint: osteologic study of 1020 human clavicles
Gumina, S; Salvatore, M; De Santis, P; Orsina, L; Postacchini, F
2002-01-01
We examined 1020 dry clavicles from cadavers of Italian origin to determine the prevalence of the coracoclavicular joint (ccj), a diarthrotic synovial joint occasionally present between the conoid tubercle of the clavicle and the superior surface of the horizontal part of the coracoid process. Five hundred and nine clavicles from individuals of different ages were submitted to X-ray examination. Using radiography, we measured the entire length and the index of sinuosity of the anterior lateral curve, on which the distance between the conoid tubercle and the coracoid process depends. We also used radiography to record the differences in prevalence of arthritis in two neighbouring joints, the acromioclavicular and sternoclavicular joints. Of the 1020 clavicles, eight (0.8%) displayed the articular facet of the ccj. No statistical correlation was found between clavicular length and the index of sinuosity of the anterior lateral curve. The prevalence of arthritis in clavicles with ccj was higher than that revealed in clavicles without ccj. The prevalence of ccj in the studied clavicles is lower than that observed in Asian cohorts. Furthermore, ccj is not conditioned by either length or sinuosity of the anterior lateral curve of the clavicle. Finally, the assumption that ccj is a predisposing factor for degenerative changes of neighbouring joints is statistically justified. PMID:12489763
NASA Astrophysics Data System (ADS)
Chowdhury, S. M.; Chen, D. L.; Bhole, S. D.; Powidajko, E.; Weckman, D. C.; Zhou, Y.
2011-07-01
The microstructures, tensile properties, strain hardening, and fatigue strength of fiber-laser-welded (FLW) and diode-laser-welded (DLW) AZ31B-H24 magnesium alloys were studied. Columnar dendrites near the fusion zone (FZ) boundary and equiaxed dendrites at the center of FZ, with divorced eutectic β-Mg17Al12 particles, were observed. The FLW joints had smaller dendrite cell sizes with a narrower FZ than the DLW joints. The heat-affected zone consisted of recrystallized grains. Although the DLW joints fractured at the center of FZ and exhibited lower yield strength (YS), ultimate tensile strength (UTS), and fatigue strength, the FLW joints failed at the fusion boundary and displayed only moderate reduction in the YS, UTS, and fatigue strength with a joint efficiency of ~91 pct. After welding, the strain rate sensitivity basically vanished, and the DLW joints exhibited higher strain-hardening capacity. Stage III hardening occurred after yielding in both base metal (BM) and welded samples. Dimple-like ductile fracture characteristics appeared in the BM, whereas some cleavage-like flat facets together with dimples and river marking were observed in the welded samples. Fatigue crack initiated from the specimen surface or near-surface defects, and crack propagation was characterized by the formation of fatigue striations along with secondary cracks.
Anderson, Jaime L; Sellbom, Martin; Bagby, R Michael; Quilty, Lena C; Veltri, Carlo O C; Markon, Kristian E; Krueger, Robert F
2013-06-01
The DSM-5 Personality and Personality Disorders workgroup and their consultants have developed the 220-item, self-report Personality Inventory for the DSM-5 (PID-5) for direct assessment of the proposed personality trait system for DSM-5; however, most practicing clinical psychologists will likely continue to rely on separate omnibus measures to index symptoms and traits associated with psychopathology. The Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) is one such measure and assesses the Personality Psychopathology Five (PSY-5) domains, which are conceptual cognates of the DSM-5 trait domains. The current study examined the associations between the MMPI-2-RF PSY-5 scales and the DSM-5 trait domains and facets indexed by the PID-5. A clear pattern of convergence was found indicating that each of the PSY-5 scales was most highly correlated with its conceptually expected PID-5 counterpart (rs = .44-.67; Mdn r = .53) and facet correlations generally showed the same pattern. Similarly, when each of the PSY-5 scales was regressed onto the PID-5 domains, the conceptually expected pattern of associations emerged even more clearly. Finally, a joint exploratory factor analysis with the PSY-5 and PID-5 trait facet scales indicated a five-factor solution that clearly resembled both of the PSY-5/DSM-5 trait domains. These results show clear evidence that the MMPI-2-RF has utility in the assessment of dimensional personality traits proposed for the upcoming DSM-5.
Biomechanical analysis of a new lumbar interspinous device with optimized topology.
Chen, Chen-Sheng; Shih, Shih-Liang
2018-01-06
Interspinous spacers used stand-alone preserve joint movement but provide little protection for diseased segments of the spine. Used as adjuncts with fusion, interspinous spacers offer rigid stability but may accelerate degeneration on adjacent levels. Our new device is intended to balance the stability and preserves motion provided by the implant. A new interspinous spacer was devised according to the results of topology optimization studies. Four finite element (FE) spine models were created that consisted of an intact spine without an implant, implantation of the novel, the device for intervertebral assisted motion (DIAM system), and the Dynesys system. All models were loaded with moments, and their range of motions (ROMs), peak disc stresses, and facet contact forces were analyzed. The limited motion segment ROMs, shielded disc stresses, and unloaded facet contact forces of the new devices were greater than those of the DIAM and Dynesys system at L3-L4 in almost all directions of movements. The ROMs, disc stresses, and facet contact forces of the new devices at L2-L3 were slightly greater than those in the DIAM system, but much lower than those in the Dynesys system in most directions. This study demonstrated that the new device provided more stability at the instrumented level than the DIAM system did, especially in lateral rotation and the bending direction. The device caused fewer adjacent ROMs, lower disc stresses, and lower facet contact forces than the Dynesys system did. Additionally, this study conducted topology optimization to design the new device and created a smaller implant for minimal invasive surgery.
Figueiredo, Priscilla Rezende Pereira; Silva, Paula Lanna; Avelar, Bruna Silva; da Fonseca, Sérgio Teixeira; Bootsma, Reinoud J; Mancini, Marisa Cotta
2015-04-01
Individuals with unilateral cerebral palsy (CP) demonstrate reduced performance in upper limb tasks compared to typically developing (TD) peers. We examined whether task conditions modify differences between teenagers with and without CP during a reciprocal aiming task. Twenty teenagers (nine CP and 11 TD) moved a pointer between two targets as fast as possible without missing a target. Task conditions were manipulated by changing the targets' size, by modifying the inertial properties of the pointer and by varying the upper limb used to perform the task (preferred/non-affected and non-preferred/affected upper limbs). While compared to TD peers, CP teenagers exhibited lower performance (longer movement times). Such differences were attenuated when the task was performed with the preferred upper limb and when accuracy requirements were less stringent. CP teenagers were not differentially affected by the pointer inertia manipulation. Task conditions not only affected performance but also joint kinematics. CP teenagers revealed less movement at the elbow and more movement at the shoulder when performing the task with their less skilled upper limb. However, both CP and TD teenagers demonstrated a larger contribution of trunk movement when facing more challenging task conditions. The overall pattern of results indicated that the joint kinematics employed by individuals with unilateral CP constituted adaptive responses to task requirements. Thus, the explanation of the effects of unilateral CP on upper limb behavior needs to go beyond a context-indifferent manifestation of the brain injury to include the interaction between task demands and action capabilities.
2008-09-01
improved resolution for shallow geologic structures . Jointly inverting these datasets with seismic body wave (S) travel times provides additional...constraints on the shallow structure and an enhanced 3D shear wave model for our study area in western China. 2008 Monitoring Research Review...for much of Eurasia, although the Arabian Shield and Arctic are less well recovered. The upper velocity gradient was tested for 10-degree cells
Crustal and Upper Mantle Structure from Joint Inversion of Body Wave and Gravity Data
2012-09-01
CRUSTAL AND UPPER MANTLE STRUCTURE FROM JOINT INVERSION OF BODY WAVE AND GRAVITY DATA Eric A. Bergman1, Charlotte Rowe2, and Monica Maceira2...for these events include many readings of direct crustal P and S phases, as well as regional (Pn and Sn) and teleseismic phases. These data have been...the usefulness of the gravity data, we apply high-pass filtering, yielding gravity anomalies that possess higher resolving power for crustal and
Femoral articular geometry and patellofemoral stability.
Iranpour, Farhad; Merican, Azhar M; Teo, Seow Hui; Cobb, Justin P; Amis, Andrew A
2017-06-01
Patellofemoral instability is a major cause of anterior knee pain. The aim of this study was to examine how the medial and lateral stability of the patellofemoral joint in the normal knee changes with knee flexion and measure its relationship to differences in femoral trochlear geometry. Twelve fresh-frozen cadaveric knees were used. Five components of the quadriceps and the iliotibial band were loaded physiologically with 175N and 30N, respectively. The force required to displace the patella 10mm laterally and medially at 0°, 20°, 30°, 60° and 90° knee flexion was measured. Patellofemoral contact points at these knee flexion angles were marked. The trochlea cartilage geometry at these flexion angles was visualized by Computed Tomography imaging of the femora in air with no overlying tissue. The sulcus, medial and lateral facet angles were measured. The facet angles were measured relative to the posterior condylar datum. The lateral facet slope decreased progressively with flexion from 23°±3° (mean±S.D.) at 0° to 17±5° at 90°. While the medial facet angle increased progressively from 8°±8° to 36°±9° between 0° and 90°. Patellar lateral stability varied from 96±22N at 0°, to 77±23N at 20°, then to 101±27N at 90° knee flexion. Medial stability varied from 74±20N at 0° to 170±21N at 90°. There were significant correlations between the sulcus angle and the medial facet angle with medial stability (r=0.78, p<0.0001). These results provide objective evidence relating the changes of femoral profile geometry with knee flexion to patellofemoral stability. Copyright © 2017 Elsevier B.V. All rights reserved.
Rong, Wei; Li, Waiming; Pang, Mankit; Hu, Junyan; Wei, Xijun; Yang, Bibo; Wai, Honwah; Zheng, Xiaoxiang; Hu, Xiaoling
2017-04-26
It is a challenge to reduce the muscular discoordination in the paretic upper limb after stroke in the traditional rehabilitation programs. In this study, a neuromuscular electrical stimulation (NMES) and robot hybrid system was developed for multi-joint coordinated upper limb physical training. The system could assist the elbow, wrist and fingers to conduct arm reaching out, hand opening/grasping and arm withdrawing by tracking an indicative moving cursor on the screen of a computer, with the support from the joint motors and electrical stimulations on target muscles, under the voluntary intention control by electromyography (EMG). Subjects with chronic stroke (n = 11) were recruited for the investigation on the assistive capability of the NMES-robot and the evaluation of the rehabilitation effectiveness through a 20-session device assisted upper limb training. In the evaluation, the movement accuracy measured by the root mean squared error (RMSE) during the tracking was significantly improved with the support from both the robot and NMES, in comparison with those without the assistance from the system (P < 0.05). The intra-joint and inter-joint muscular co-contractions measured by EMG were significantly released when the NMES was applied to the agonist muscles in the different phases of the limb motion (P < 0.05). After the physical training, significant improvements (P < 0.05) were captured by the clinical scores, i.e., Modified Ashworth Score (MAS, the elbow and the wrist), Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Wolf Motor Function Test (WMFT). The EMG-driven NMES-robotic system could improve the muscular coordination at the elbow, wrist and fingers. ClinicalTrials.gov. NCT02117089 ; date of registration: April 10, 2014.
Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients
Jarrassé, Nathanaël; Proietti, Tommaso; Crocher, Vincent; Robertson, Johanna; Sahbani, Anis; Morel, Guillaume; Roby-Brami, Agnès
2014-01-01
Upper-limb impairment after stroke is caused by weakness, loss of individual joint control, spasticity, and abnormal synergies. Upper-limb movement frequently involves abnormal, stereotyped, and fixed synergies, likely related to the increased use of sub-cortical networks following the stroke. The flexible coordination of the shoulder and elbow joints is also disrupted. New methods for motor learning, based on the stimulation of activity-dependent neural plasticity have been developed. These include robots that can adaptively assist active movements and generate many movement repetitions. However, most of these robots only control the movement of the hand in space. The aim of the present text is to analyze the potential of robotic exoskeletons to specifically rehabilitate joint motion and particularly inter-joint coordination. First, a review of studies on upper-limb coordination in stroke patients is presented and the potential for recovery of coordination is examined. Second, issues relating to the mechanical design of exoskeletons and the transmission of constraints between the robotic and human limbs are discussed. The third section considers the development of different methods to control exoskeletons: existing rehabilitation devices and approaches to the control and rehabilitation of joint coordinations are then reviewed, along with preliminary clinical results available. Finally, perspectives and future strategies for the design of control mechanisms for rehabilitation exoskeletons are discussed. PMID:25520638
Jurkojć, Jacek; Michnik, Robert; Czapla, Krzysztof
2017-06-01
This article deals with kinematic and kinetic conditions in volleyball attack and identifies loads in the shoulder joint. Joint angles and velocities of individual segments of upper limb were measured with the use of the motion capture system XSENS. Muscle forces and loads in skeletal system were calculated by means of mathematical model elaborated in AnyBody system. Spikes performed by players in the best and worst way were compared with each other. The relationships were found between reactions in shoulder joint and flexion/extension, abduction/adduction and rotation angles in the same joint and flexion/extension in the elbow joint. Reactions in shoulder joint varied from 591 N to 2001 N (in relation to body weight [BW] 83-328%). The analysis proved that hand velocity at the moment of the ball hit (which varied between 6.8 and 13.3 m s -1 ) influences on the value of reaction in joints, but positions of individual segments relative to each other are also crucial. It was also proved in objective way, that position of the upper limb during spike can be more or less harmful assuming that bigger reaction increases possibility of injury, what can be an indication for trainers and physiotherapists how to improve injury prevention.
Extrinsic and intrinsic index finger muscle attachments in an OpenSim upper-extremity model.
Lee, Jong Hwa; Asakawa, Deanna S; Dennerlein, Jack T; Jindrich, Devin L
2015-04-01
Musculoskeletal models allow estimation of muscle function during complex tasks. We used objective methods to determine possible attachment locations for index finger muscles in an OpenSim upper-extremity model. Data-driven optimization algorithms, Simulated Annealing and Hook-Jeeves, estimated tendon locations crossing the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints by minimizing the difference between model-estimated and experimentally-measured moment arms. Sensitivity analysis revealed that multiple sets of muscle attachments with similar optimized moment arms are possible, requiring additional assumptions or data to select a single set of values. The most smooth muscle paths were assumed to be biologically reasonable. Estimated tendon attachments resulted in variance accounted for (VAF) between calculated moment arms and measured values of 78% for flex/extension and 81% for ab/adduction at the MCP joint. VAF averaged 67% at the PIP joint and 54% at the DIP joint. VAF values at PIP and DIP joints partially reflected the constant moment arms reported for muscles about these joints. However, all moment arm values found through optimization were non-linear and non-constant. Relationships between moment arms and joint angles were best described with quadratic equations for tendons at the PIP and DIP joints.
Carmo, A.A.; Kleiner, A.F.R.; Lobo da Costa, P.H.; Barros, R.M.L.
2012-01-01
The aim of this study was to analyze the alterations of arm and leg movements of patients during stroke gait. Joint angles of upper and lower limbs and spatiotemporal variables were evaluated in two groups: hemiparetic group (HG, 14 hemiparetic men, 53 ± 10 years) and control group (CG, 7 able-bodied men, 50 ± 4 years). The statistical analysis was based on the following comparisons (P ≤ 0.05): 1) right versus left sides of CG; 2) affected (AF) versus unaffected (UF) sides of HG; 3) CG versus both the affected and unaffected sides of HG, and 4) an intracycle comparison of the kinematic continuous angular variables between HG and CG. This study showed that the affected upper limb motion in stroke gait was characterized by a decreased range of motion of the glenohumeral (HG: 6.3 ± 4.5, CG: 20.1 ± 8.2) and elbow joints (AF: 8.4 ± 4.4, UF: 15.6 ± 7.6) on the sagittal plane and elbow joint flexion throughout the cycle (AF: 68.2 ± 0.4, CG: 46.8 ± 2.7). The glenohumeral joint presented a higher abduction angle (AF: 14.2 ± 1.6, CG: 11.5 ± 4.0) and a lower external rotation throughout the cycle (AF: 4.6 ± 1.2, CG: 22.0 ± 3.0). The lower limbs showed typical alterations of the stroke gait patterns. Thus, the changes in upper and lower limb motion of stroke gait were identified. The description of upper limb motion in stroke gait is new and complements gait analysis. PMID:22473324
The effects of music on pain perception of stroke patients during upper extremity joint exercises.
Kim, Soo Ji; Koh, Iljoo
2005-01-01
The purpose of this study was to determine the effects of music therapy on pain perception of stroke patients during upper extremity joint exercises. Ten stroke patients (1 male and 9 females) ranging in age from 61 to 73 participated in the study. Music conditions used in the study consisted of: (a) song, (b) karaoke accompaniment (same music to condition A except singers' voices), and (c) no music. Exercise movements in this study included hand, wrist, and shoulder joints. During the 8-week period music therapy sessions, subjects repeated 3 conditions according to the randomized orders and subjects rated their perceived pain on a scale immediately after each condition. The General Linear Model (GLM) Repeated Measures ANOVA revealed that there were no significant differences in pain rating across the three music conditions. However, positive affects and verbal responses, while performing upper extremity exercises with both music and karaoke accompaniment music, were observed using video observations.
Clarençon, Frédéric; Law-Ye, Bruno; Bienvenot, Peggy; Cormier, Évelyne; Chiras, Jacques
2016-08-01
Degenerative disease of the spine is a leading cause of back pain and radiculopathy, and is a frequent indication for spine MR imaging. Disc degeneration, disc protrusion/herniation, discarhtrosis, spinal canal stenosis, and facet joint arthrosis, as well as interspinous processes arthrosis, may require an MR imaging workup. This review presents the MR imaging patterns of these diseases and describes the benefit of the MR imaging in these indications compared with the other imaging modalities like plain radiographs or computed tomography scan. Copyright © 2016 Elsevier Inc. All rights reserved.
Work-Related Upper Limb Disorders: A Case Report
Stoyneva, Zlatka Borisova; Dermendjiev, Svetlan; Dermendjiev, Tihomir; Dobrev, Hristo
2015-01-01
In this study the complex interrelationship between physical factors, job stress, lifestyle and genetic factors on symptoms of work-related musculoskeletal disorders of the upper limbs is demonstrated by a case report and discussion of the literature. A 58 year old woman with long lasting complaints of the upper limbs with increasing intensity and duration, generalisation, combined with skin thickness, Raynaud’s phenomenon, joint disorders, arterial and pulmonary hypertension, metabolic lipid dysfunctions is presented. Occupational history proves continuous duration of service at a job with occupational physical static load with numerous repetitive monotonous systematic motions of fingers and hands as a weaver of Persian rugs followed by work at an automated loom and variable labour activities. Though the complaints dated since the time she was a manual weaver, the manifestations of generalized joint degenerative changes, system sclerosis with Raynaud’s phenomenon with similar upper extremities signs and symptoms discount upper limbs musculoskeletal disorder as caused only or mainly by occupational risk factors. The main principles and criteria for occupational diagnosis of musculoskeletal upper limb disorders and legislative requirements for their reglamentation are discussed. PMID:27275213
Juul-Kristensen, Birgit; Østengaard, Lasse; Hansen, Sebrina; Boyle, Eleanor; Junge, Tina; Hestbaek, Lise
2017-05-30
Generalised Joint Hypermobility (GJH) is a hereditary condition with an ability to exceed the joints beyond the normal range. The prevalence of GJH in the adult population and its impact on upper body musculoskeletal health and quality of life has mostly been studied in selected populations. The aims of this study were therefore, firstly to study the prevalence of GJH and GJH including shoulder hypermobility (GJHS), in the general Danish adult population; secondly to test the associations between GJH or GJHS and upper body musculoskeletal symptoms and health-related quality of life (HRQoL). The study was cross-sectional where 2072 participants, aged 25-65, randomly extracted from the Danish Civil Registration System), were invited to answer a questionnaire battery (Five-Part Questionnaire for classification of GJH, Standardised Nordic Questionnaire for musculoskeletal symptoms, EuroQoL-5D for HRQoL). Totally 1006 (49%) participants responded. The prevalence of GJH and GJHS were 30% (n = 300) and 5% (n = 51), respectively. Compared with Non GJH (NGJH), participants with GJH and GJHS had Odds Ratio (OR) of 1.5-3.5 for upper body musculoskeletal symptoms within the last 12 months (mostly shoulders and hands/wrists). GJH and GJHS also had OR 1.6-4.4 for being prevented from usual activities, mostly due to shoulder and neck symptoms. Furthermore, GJH and GJHS had OR 2.2-3.1 for upper body musculoskeletal symptoms lasting for more than 90 days (neck, shoulders, hand/wrists), and 1.5-3.5 for reduced HRQoL (all dimensions, but anxiety/depression) compared with NGJH. Generally, most OR for GJHS were about twice as high as for those having GJH alone. GJH and GJHS are frequently self-reported musculoskeletal conditions in the Danish adult population. Compared with NGJH, GJH and especially GJHS, present with higher OR for upper body musculoskeletal symptoms, more severe symptoms and decreased HRQoL.
NASA Astrophysics Data System (ADS)
Ji, Shude; Li, Zhengwei
2017-11-01
Using magnesium alloy as upper sheet, 3 mm-thick AZ31 magnesium alloy and 6061 aluminum alloy were joined using friction stir lap welding assisted by stationary shoulder. The effects of tool rotating speed on cross-sections, microstructure and mechanical properties of Mg/Al lap joints were mainly discussed. Results showed that stationary shoulder contributed to joint formation, by which stir zones (SZ) were characterized by big onion rings after welding. Because of the big forging force exerted by stationary shoulder, the upper region of hook was well bonded. SZ showed much higher hardness because of intermetallic compounds (IMCs). The bonding conditions at the base material (BM)/SZ interface at advancing side and the hook region played important roles on joint lap shear properties. The X-ray diffraction pattern analysis revealed that the main IMCs were Al3Mg2 and Al12Mg17.
Bohl, Michael A; Goswami, Roopa; Strassner, Brett; Stanger, Paula
2016-08-01
The purpose of this investigation was to evaluate the potential of using the ACR's Dose Index Registry(®) to meet The Joint Commission's requirements to identify incidents in which the radiation dose index from diagnostic CT examinations exceeded the protocol's expected dose index range. In total, 10,970 records in the Dose Index Registry were statistically analyzed to establish both an upper and lower expected dose index for each protocol. All 2015 studies to date were then retrospectively reviewed to identify examinations whose total examination dose index exceeded the protocol's defined upper threshold. Each dose incident was then logged and reviewed per the new Joint Commission requirements. Facilities may leverage their participation in the ACR's Dose Index Registry to fully meet The Joint Commission's dose incident identification review and external benchmarking requirements. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Laser radiation in tennis elbow treatment: a new minimally invasive alternative
NASA Astrophysics Data System (ADS)
Paganini, Stefan; Thal, Dietmar R.; Werkmann, Klaus
1998-01-01
The epicondylitis humeri radialis (EHR) (tennis elbow), is a common disease in elbow joint pain syndromes. We treated patients with chronic pain for at least one year and no improvement with conservative or operative therapies with a new minimal invasive method, the EHR-Laser radiation (EHR- LR). With this method periepicondylar coagulations were applied to the trigger points of the patients. For this the previously established technique of facet joint coagulation with the Nd:Yag-laser was modified. In a follow-up study of between 6 weeks and 2 years all patients reported either a significant pain reduction or were symptom free. EHR-LR is a new method situated between conservative and surgical treatments for minimal invasive therapy of EHR. Several therapeutic rationales were discussed for the resulting pain reduction.
Upper ankle joint space detection on low contrast intraoperative fluoroscopic C-arm projections
NASA Astrophysics Data System (ADS)
Thomas, Sarina; Schnetzke, Marc; Brehler, Michael; Swartman, Benedict; Vetter, Sven; Franke, Jochen; Grützner, Paul A.; Meinzer, Hans-Peter; Nolden, Marco
2017-03-01
Intraoperative mobile C-arm fluoroscopy is widely used for interventional verification in trauma surgery, high flexibility combined with low cost being the main advantages of the method. However, the lack of global device-to- patient orientation is challenging, when comparing the acquired data to other intrapatient datasets. In upper ankle joint fracture reduction accompanied with an unstable syndesmosis, a comparison to the unfractured contralateral site is helpful for verification of the reduction result. To reduce dose and operation time, our approach aims at the comparison of single projections of the unfractured ankle with volumetric images of the reduced fracture. For precise assessment, a pre-alignment of both datasets is a crucial step. We propose a contour extraction pipeline to estimate the joint space location for a prealignment of fluoroscopic C-arm projections containing the upper ankle joint. A quadtree-based hierarchical variance comparison extracts potential feature points and a Hough transform is applied to identify bone shaft lines together with the tibiotalar joint space. By using this information we can define the coarse orientation of the projections independent from the ankle pose during acquisition in order to align those images to the volume of the fractured ankle. The proposed method was evaluated on thirteen cadaveric datasets consisting of 100 projections each with manually adjusted image planes by three trauma surgeons. The results show that the method can be used to detect the joint space orientation. The correlation between angle deviation and anatomical projection direction gives valuable input on the acquisition direction for future clinical experiments.
Sukal-Moulton, Theresa; Krosschell, Kristin J; Gaebler-Spira, Deborah J; Dewald, Julius P A
2014-01-01
Extensive neuromotor development occurs early in human life, and the timing of brain injury may affect the resulting motor impairment. In Part I of this series, it was demonstrated that the distribution of weakness in the upper extremity depended on the timing of brain injury in individuals with childhood-onset hemiparesis. The goal of this study was to characterize how timing of brain injury affects joint torque synergies, or losses of independent joint control. Twenty-four individuals with hemiparesis were divided into 3 groups based on the timing of their injury: before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), and after 6 months of age (POST-natal, n = 8). Individuals with hemiparesis and 8 typically developing peers participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks while their efforts were recorded by a multiple degree-of-freedom load cell. Motor output in 4 joints of the upper extremity was concurrently measured during 8 primary torque generation tasks to quantify joint torque synergies. There were a number of significant coupling patterns identified in individuals with hemiparesis that differed from the typically developing group. POST-natal differences were most noted in the coupling of shoulder abductors with elbow, wrist, and finger flexors, while the PRE-natal group demonstrated significant distal joint coupling with elbow flexion. The torque synergies measured provide indirect evidence for the use of bulbospinal pathways in the POST-natal group, while those with earlier injury may use relatively preserved ipsilateral corticospinal motor pathways.
Selectively Lockable Knee Brace
NASA Technical Reports Server (NTRS)
Myers, W. Neill (Inventor); Shadoan, Michael D. (Inventor); Forbes, John C. (Inventor); Baker, Kevin J. (Inventor); Rice, Darron C. (Inventor)
1996-01-01
A knee brace for aiding in rehabilitation of damaged leg muscles includes upper and lower housings normally pivotable one relative to the other about the knee joint axis of a patient. The upper housing is attachable to the thigh of the patient above the knee joint while the lower housing is secured to a stirrup which extends downwardly along the patient's leg and is attached to the patient's shoe. An actuation rod is carried within the lower housing and is coupled to a cable. The upper and lower housings carry cooperative clutch/brake elements which normally are disengaged to permit relative movement between the upper and lower housings. When the cable is extended the clutch/brake elements engage and lock the housings together. A heel strike mechanism fastened to the stirrup and the heel of the shoe is connected to the cable to selectively extend the cable and lock the brace in substantially any position when the patient places weight on the heel.
Miller, Nathaniel; Lizarralde, Daniel
2016-01-01
Effects of serpentine-filled fault zones on seismic wave propagation in the upper mantle at the outer rise of subduction zones are evaluated using acoustic wave propagation models. Modeled wave speeds depend on azimuth, with slowest speeds in the fault-normal direction. Propagation is fastest along faults, but, for fault widths on the order of the seismic wavelength, apparent wave speeds in this direction depend on frequency. For the 5–12 Hz Pn arrivals used in tomographic studies, joint-parallel wavefronts are slowed by joints. This delay can account for the slowing seen in tomographic images of the outer rise upper mantle. At the Middle America Trench, confining serpentine to fault zones, as opposed to a uniform distribution, reduces estimates of bulk upper mantle hydration from ~3.5 wt % to as low as 0.33 wt % H2O.
Selectively lockable knee brace
NASA Technical Reports Server (NTRS)
Myers, Neill (Inventor); Shadoan, Mike (Inventor); Forbes, John (Inventor); Baker, Kevin (Inventor)
1994-01-01
A knee brace for aiding in rehabilitation of damaged leg muscles includes upper and lower housings, normally pivotable, one relative to the other about the knee joint axis of a patient. The upper housing is attachable to the thigh of the patient above the knee joint, while the lower housing is secured to a stirrup which extends downwardly along the patient's leg and is attached to the patient's shoe. An actuation rod is carried within the lower housing and is coupled to a cable. The upper and lower housings carry cooperative clutch/brake elements which normally are disengaged to permit relative movement between the upper and lower housings. When the cable is extended, the clutch/brake elements engage and lock the housings together. A heel strike mechanism fastened to the stirrup and the heel of the shoe is connected to the cable to selectively extend the cable and lock the brace in substantially any position when the patient places weight on the heel.
[Operative treatment of displaced intra-articular calcaneal fractures].
Zwipp, H; Rammelt, S; Amlang, M; Pompach, M; Dürr, C
2013-12-01
Anatomic reduction of displaced intra-articular calcaneal fractures with restoration of height, length, and axial alignment and reconstruction of the subtalar and calcaneocuboid joints. Displaced intra-articular calcaneal fractures with incongruity of the posterior facet of the subtalar joint, loss of height, and axial malalignment. High perioperative risk, soft tissue infection, advanced peripheral arterial disease (stage III), neurogenic osteoarthropathy, poor patient compliance (e. g., substance abuse). Extended lateral approach with the patient placed on the uninjured side. Reduction of the anatomic shape and joint surfaces according to the preoperative CT-based planning. Reduction of the medial wall and step-wise reconstruction of the posterior facet from medial to lateral. Reduction of the tuberosity and anterior process fragments to the posterior joint block and temporary fixation with Kirschner wires. Internal fixation with an anatomic lateral plate in a locking or nonlocking mode. Alternatively less invasive internal fixation with a calcaneus nail over a sinus tarsi approach for less severe fracture types. The lower leg is immobilized in a brace until the wound is healed. Range of motion exercises of the ankle and subtalar joints are initiated on the second postoperative day. Patients are mobilized in their own shoe with partial weight bearing of 20 kg for 6-12 weeks depending on fracture severity and bone quality. Over a 4-year period, 163 patients with 184 displaced, intra-articular calcaneal fractures were treated with a lateral plate via an extended approach. In all, 102 patients with 116 fractures were followed for a mean of 8 years. A surgical revision was necessary in 4 cases (3.4%) of postoperative hematoma, 2 (1.7%) superficial and 5 (4.3%) deep infections. Of the latter, 2 patients needed a free flap for definite wound coverage, no calcanectomy or amputation was needed. Secondary subtalar fusion for symptomatic posttraumatic arthritis was performed in 9 cases (7.8%). At follow-up, the AOFAS Ankle/Hindfoot Score averaged 70.2, the Zwipp Score averaged 76.0, the German versions of the Foot Function Index and SF-36 physical component averaged 32.8 and 42.2, respectively. Scores were significantly lower with increasing fracture severity according to the Sanders and Zwipp classifications, bilateral fractures, open fractures, and with work-related injuries. With less invasive fixation using a calcaneal nail, superficial wound edge necrosis was seen in 2 of 75 cases (2.7%).
Trumpet Laminectomy Microdecompression for Lumbal Canal Stenosis
Yasuda, Muneyoshi; Arifin, Muhammad Zafrullah; Takayasu, Masakazu; Faried, Ahmad
2014-01-01
Microsurgery techniques are useful innovations towards minimizing the insult of canal stenosis. Here, we describe the trumpet laminectomy microdecompression (TLM) technique, advantages and disadvantages. Sixty-two TLM patients with lumbar disc herniation, facet hypertrophy or yellow ligament or intracanal granulation tissue. The symptoms are low back pain, dysesthesia and severe pain on both legs. Spine levels operated Th11-S1; the patients who had trumpet-type fenestration, 62.9% had hypertrophy of the facet joint, 11.3% had intracanal granulation tissue, 79.1% had hypertrophy of the yellow ligament and 64.5% had disc herniation. The average of procedure duration was 68.9 min and intraoperative blood loss was 47.4 mL. Intraoperative complications were found in 3.2% of patients, with dural damage but without cerebrospinal fluid leakage. The TLM can be performed for all ages and all levels of spinal canal stenosis, without the complication of spondilolistesis. The TLM has a shorter duration, with minimal intraoperative blood loss. PMID:25346821
NASA Astrophysics Data System (ADS)
Wu, Tao; Wu, Zhensen; Linghu, Longxiang
2017-10-01
Study of characteristics of sea clutter is very important for signal processing of radar, detection of targets on sea surface and remote sensing. The sea state is complex at Low grazing angle (LGA), and it is difficult with its large irradiation area and a great deal simulation facets. A practical and efficient model to obtain radar clutter of dynamic sea in different sea condition is proposed, basing on the physical mechanism of interaction between electromagnetic wave and sea wave. The classical analysis method for sea clutter is basing on amplitude and spectrum distribution, taking the clutter as random processing model, which is equivocal in its physical mechanism. To achieve electromagnetic field from sea surface, a modified phase from facets is considered, and the backscattering coefficient is calculated by Wu's improved two-scale model, which can solve the statistical sea backscattering problem less than 5 degree, considering the effects of the surface slopes joint probability density, the shadowing function, the skewness of sea waves and the curvature of the surface on the backscattering from the ocean surface. We make the assumption that the scattering contribution of each facet is independent, the total field is the superposition of each facet in the receiving direction. Such data characters are very suitable to compute on GPU threads. So we can make the best of GPU resource. We have achieved a speedup of 155-fold for S band and 162-fold for Ku/Χ band on the Tesla K80 GPU as compared with Intel® Core™ CPU. In this paper, we mainly study the high resolution data, and the time resolution is millisecond, so we may have 10,00 time points, and we analyze amplitude probability density distribution of radar clutter.
Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Horn, Paul S
2014-02-01
The osseous morphology of the patellofemoral joint is an independent factor that affects the biomechanics of patellofemoral instability. The purpose of this study is to determine age- and gender-related differences in the osseous morphology of the patellofemoral joint in children during skeletal maturation. This study was approved by the institutional review board and was HIPAA-compliant. We included 97 children and young adults (age range 5-22 years; 51 girls and 46 boys, mean ages 14.3 years and 13.7 years, respectively). We studied 1.5-T knee MR exams, measuring the osseous morphology of the patellofemoral joint (lateral trochlear inclination, trochlear facet asymmetry, trochlear depth, patellar height ratio, tibial tubercle-trochlear groove distance, and lateral patellofemoral angle) for each MR exam. We compared measurements to published values for patellofemoral instability. Physeal patency (open or closing/closed) was determined on MR. We assessed the associations between MR osseous measurements and gender, age and physeal patency using Wilcoxon rank sum test and least square means regression models. The osseous patellofemoral joint morphology measurements were all within a normal range. There were no significant correlations between MR osseous measurements and age, gender or physeal patency. During skeletal maturation, age and gender do not affect the osseous morphology or congruency of the patellofemoral joint.
Manchikanti, Laxmaiah; Boswell, Mark V; Singh, Vijay; Derby, Richard; Fellows, Bert; Falco, Frank J E; Datta, Sukdeb; Smith, Howard S; Hirsch, Joshua A
2009-01-01
Understanding the neurophysiological basis of chronic spinal pain and diagnostic interventional techniques is crucial in the proper diagnosis and management of chronic spinal pain. Central to the understanding of the structural basis of chronic spinal pain is the provision of physical diagnosis and validation of patient symptomatology. It has been shown that history, physical examination, imaging, and nerve conduction studies in non-radicular or discogenic pain are unable to diagnose the precise cause in 85% of the patients. In contrast, controlled diagnostic blocks have been shown to determine the cause of pain in as many as 85% of the patients. To provide evidence-based clinical practice guidelines for diagnostic interventional techniques. Best evidence synthesis. Strength of evidence was assessed by the U.S. Preventive Services Task Force (USPSTF) criteria utilizing 5 levels of evidence ranging from Level I to III with 3 subcategories in Level II. Diagnostic criteria established by systematic reviews were utilized with controlled diagnostic blocks. Diagnostic criteria included at least 80% pain relief with controlled local anesthetic blocks with the ability to perform multiple maneuvers which were painful prior to the diagnostic blocks for facet joint and sacroiliac joint blocks, whereas for provocation discography, the criteria included concordant pain upon stimulation of the target disc with 2 adjacent discs producing no pain at all. The indicated level of evidence for diagnostic lumbar, cervical, and thoracic facet joint nerve blocks is Level I or II-1. The indicated evidence is Level II-2 for lumbar and cervical discography, whereas it is Level II-3 for thoracic provocation discography. The evidence for diagnostic sacroiliac joint nerve blocks is Level II-2. Level of evidence for selective nerve root blocks for diagnostic purposes is Level II-3. Limitations of this guideline preparation include a continued paucity of literature and conflicts in preparation of systematic reviews and guidelines. These guidelines include the evaluation of evidence for diagnostic interventional procedures in managing chronic spinal pain and recommendations. However, these guidelines do not constitute inflexible treatment recommendations. These guidelines also do not represent a "standard of care."
Al-Delayme, Ra'ed M Ayoub; Alnuamy, Shefaa H; Hamid, Firas Taha; Azzamily, Tariq Jassim; Ismaeel, Salah AbdulMahdy; Sammir, R; Hadeel, M; Nabeel, Jafaar; Shwan, R; Alfalahi, Shahad Jamal; Yasin, Alaa
2017-03-01
The objective of this study was to determine average improvement during the rest and active mouth opening after ultrasound guided platelets rich plasma injection in the tempromandibular superior joint space for the patients complaining from non-reducing disk displacement. Thirty-four patients with non-reducing disk displacement underwent guided ultrasound injection of platelet rich plasma to the upper joint space. The extent of maximal mouth opening, chewing efficiency, sound intensity of the TMJ, and tenderness of the TMJ and the masticatory muscles at rest, motion and mastication were thoroughly assessed at the beginning of the study and scheduled for next follow-up at 1st, 3rd, and 6th months. Injection with platelets rich plasma was significantly more effective in improvements of the extent of maximal mouth opening, statistics result demonstrated a significant reduction in the VAS values of pain at rest, motion and mastication compared to the baseline VAS values. PRP injection to the upper temporomandibular joint space provided improvement in signs and symptoms of patient with non-reducing disk displacement of the temporomandibular joint.
Manchikanti, Laxmaiah; Nampiaparampil, Devi E.; Manchikanti, Kavita N.; Falco, Frank J.E.; Singh, Vijay; Benyamin, Ramsin M.; Kaye, Alan D.; Sehgal, Nalini; Soin, Amol; Simopoulos, Thomas T.; Bakshi, Sanjay; Gharibo, Christopher G.; Gilligan, Christopher J.; Hirsch, Joshua A.
2015-01-01
Background: The efficacy of epidural and facet joint injections has been assessed utilizing multiple solutions including saline, local anesthetic, steroids, and others. The responses to these various solutions have been variable and have not been systematically assessed with long-term follow-ups. Methods: Randomized trials utilizing a true active control design were included. The primary outcome measure was pain relief and the secondary outcome measure was functional improvement. The quality of each individual article was assessed by Cochrane review criteria, as well as the criteria developed by the American Society of Interventional Pain Physicians (ASIPP) for assessing interventional techniques. An evidence analysis was conducted based on the qualitative level of evidence (Level I to IV). Results: A total of 31 trials met the inclusion criteria. There was Level I evidence that local anesthetic with steroids was effective in managing chronic spinal pain based on multiple high-quality randomized controlled trials. The evidence also showed that local anesthetic with steroids and local anesthetic alone were equally effective except in disc herniation, where the superiority of local anesthetic with steroids was demonstrated over local anesthetic alone. Conclusion: This systematic review showed equal efficacy for local anesthetic with steroids and local anesthetic alone in multiple spinal conditions except for disc herniation where the superiority of local anesthetic with steroids was seen over local anesthetic alone. PMID:26005584
Suwankong, N; Meij, B P; Voorhout, G; de Boer, A H; Hazewinkel, H A W
2008-01-01
The medical records of 156 dogs with degenerative lumbosacral stenosis (DLS) that underwent decompressive surgery were reviewed for signalment, history, clinical signs, imaging and surgical findings. The German Shepherd Dog (GSD) was most commonly affected (40/156, 25.6%). Pelvic limb lameness, caudal lumbar pain and pain evoked by lumbosacral pressure were the most frequent clinical findings. Radiography showed lumbosacral step formation in 78.8% (93/118) of the dogs which was associated with elongation of the sacral lamina in 18.6% (22/118). Compression of the cauda equina was diagnosed by imaging (epidurography, CT, or MRI) in 94.2% (147/156) of the dogs. Loss of the bright nucleus pulposus signal of the L7-S1 disc was found on T2-weighted MR images in 73.5% (25/34) of the dogs. The facet joint angle at L7-S1 was significantly smaller, and the tropism greater in GSD than in the other dog breeds. The smaller facet joint angle and higher incidence of tropism seen in the GSD may predispose this breed to DLS. Epidurography, CT, and MRI allow adequate visualization of cauda equina compression. During surgery, disc protrusion was found in 70.5% (110/156) of the dogs. Overall improvement after surgery was recorded in the medical records in 79.0% (83/105) of the dogs. Of the 38 owners that responded to questionnaires up to five years after surgery, 29 (76%) perceived an improvement.
Anatomy of the pelvic joints--a review.
Dietrichs, E
1991-01-01
In adults, after the os ilium, os ischii and os pubis have joined together by ossification to form the os coxae, there is usually one joint between the hip bones ventrally (the pubic symphysis) and several more complex joints between the hip bones and os sacrum dorsally (sacroiliac, "axial sacroiliac" and accessory sacroiliac joints). These joints carry the weight of the upper part of the body, but they shall also enable pelvic distention during labour. Pathological conditions in these joints are common, and increased knowledge concerning their normal antomy is important for better understanding of these conditions.
Kankipati, Padmaja; Boninger, Michael L; Gagnon, Dany; Cooper, Rory A; Koontz, Alicia M
2015-07-01
Repeated measures design. This study compared the upper extremity (UE) joint kinetics between three transfer techniques. Research laboratory. Twenty individuals with spinal cord injury performed three transfer techniques from their wheelchair to a level tub bench. Two of the techniques involved a head-hips method with leading hand position close (HH-I) and far (HH-A) from the body, and the third technique with the trunk upright (TU) and hand far from body. Motion analysis equipment recorded upper body movements and force sensors recorded their hand and feet reaction forces during the transfers. Several significant differences were found between HH-A and HH-I and TU and HH-I transfers indicating that hand placement was a key factor influencing the UE joint kinetics. Peak resultant hand, elbow, and shoulder joint forces were significantly higher for the HH-A and TU techniques at the trailing arm (P < 0.036) and lower at the leading arm (P < 0.021), compared to the HH-I technique. Always trailing with the same arm if using HH-A or TU could predispose that arm to overuse related pain and injuries. Technique training should focus on initial hand placement close to the body followed by the amount of trunk flexion needed to facilitate movement.
Analysis of Medical Events among Battlefield Airmen Trainees
2012-04-01
Strain/ Sprain of Knee/Leg 31 Strain/ Sprain of Shoulder/Upper Arm 12 Strain/ Sprain of Ankle /Foot 7 Strain/ Sprain of Back 5...disorders of the joint, most of which were joint pain of the lower leg. The largest subcategory within “injury and poisoning” was “ sprains and...disorders of the joint, most of which were joint pain of the lower leg. The largest subcategory within “injury and poisoning” was “ sprains and strains
Oh, Hyung-Taek; Hwangbo, Gak
2018-04-01
[Purpose] The aim of this study was to determine the effect of short-term self-joint mobilization of the upper spine using a Kaltenborn wedge on the pain and cervical dysfunction of patients with neck pain. [Subjects and Methods] Twenty-seven patients with neck pain were divided into two groups; the self-mobilization group (SMG, n=13) and the self-stretching group (SSG, n=14). The SMG performed upper thoracic self-mobilization and the SSG performed self-stretching exercises as a short-term intervention for a week. To assess the degree of neck pain, the visual analog scale (VAS) was utilized, and to measure the joint range of motion at the flexion-extension, it was compared and analyzed by using the goniometer. [Results] Both SMG and SSG show a significant decrease in the visual analog scale and a significant increase in joint range of motion within the group. In the comparison of groups, there was no significant difference, but it indicated effects on improving the range of motion of extension in SMG. [Conclusion] Self-mobilization of the upper spine, using a Kaltenborn wedge, was useful in alleviating pain in and dysfunction of the cervical spine, and in particular, in improving cervical spine extension in this study.
Less common upper limb mononeuropathies.
Williams, Faren H; Kumiga, Bryan
2013-05-01
This article will focus on the less commonly injured nerves of the upper extremity. These nerves may be involved when trauma results in fractures, dislocations, or swelling with resultant nerve compression. Tumors and ganglions can also compress nerves, causing pain and, over time, demyelination or axon degeneration with weakness. Other mechanisms for upper limb nerve injury include participation in high-level sports, that is, those that generate torque about the arm and shoulder, abnormal stresses about the joints and muscles, or muscle hypertrophy, which may result in nerve injury. The goals of this review are to discuss the clinical presentation and possible causes of upper extremity nerve entrapments and to formulate an electrodiagnostic plan for evaluation. Descriptions of the appropriate nerve conduction studies or needle electromyographic protocols are included for specific nerves. The purpose of the electrodiagnostic examination is to evaluate the degree of nerve injury, axon loss over time, and later, evidence for reinnervation to assist with prognostication. The latter has implications for management of the neuropathy, including the type of exercises and therapy that may be indicated to help maintain the stability and motion of the involved joint(s) and promote strengthening over time as the nerve regenerates. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Siemionow, Kris; Janusz, Piotr; Phillips, Frank M; Youssef, Jim A; Isaacs, Robert; Tyrakowski, Marcin; McCormack, Bruce
2016-11-01
Background Indirect posterior cervical nerve root decompression and fusion performed by placing bilateral posterior cervical cages in the facet joints from a posterior approach has been proposed as an option to treat select patients with cervical radiculopathy. The purpose of this study was to report 2-year clinical and radiologic results of this treatment method. Methods Patients who failed nonsurgical management for single-level cervical radiculopathy were recruited. Surgical treatment involved a posterior approach with decortication of the lateral mass and facet joint at the treated level followed by placement of the DTRAX Expandable Cage (Providence Medical Technology, Lafayette, California, United States) into both facet joints. Iliac crest bone autograft was mixed with demineralized bone matrix and used in all cases. The Neck Disability Index (NDI), visual analog scale (VAS) for neck and arm pain, and SF-12 v.2 questionnaire were evaluated preoperatively and 2 years postoperatively. Segmental (treated level) and overall C2-C7 cervical lordosis, disk height, adjacent segment degeneration, and fusion were assessed on computed tomography scans and radiographs acquired preoperatively and 2 years postoperatively. Results Overall, 53 of 60 enrolled patients were available at 2-year follow-up. There were 35 females and 18 males with a mean age of 53 years (range: 40-75 years). The operated level was C3-C4 ( N = 3), C4-C5 ( N = 6), C5-C6 ( N = 36), and C6-C7 ( N = 8). The mean preoperative and 2-year scores were NDI: 32.3 versus 9.1 ( p < 0.0001); VAS Neck Pain: 7.4 versus 2.6 ( p < 0.0001); VAS Arm Pain: 7.4 versus 2.6 ( p < 0.0001); SF-12 Physical Component Summary: 34.6 versus 43.6 ( p < 0.0001), and SF-12 Mental Component Summary: 40.8 versus 51.4 ( p < 0.0001). No significant changes in overall or segmental lordosis were noted after surgery. Radiographic fusion rate was 98.1%. There was no device failure, implant lucency, or surgical reinterventions. Conclusions Indirect decompression and posterior cervical fusion using an expandable intervertebral cage may be an effective tissue-sparing option in select patients with single-level cervical radiculopathy. Georg Thieme Verlag KG Stuttgart · New York.
Gamie, Sherief; El-Maghraby, Tarek
2008-01-01
Bone scintigraphy including Single Photon Emission Computed Tomography (SPECT) is known for its role in the diagnosis of low back pain disorders. Positron Emission Tomography (PET) with (18)F (Flouride-18) as a tracer can be used to carry out bone scans with improved image quality. With the addition of CT, simultaneous PET/CT fused images provide more accurate anatomical details. The objectives of this work are to assess the use of (18)F-PET/CT in patients with back pain and suspected facetogenic pain, and to find the frequency of facet arthropathy versus disc disease abnormalities. 67 patients who presented with back pain underwent routine X-ray, CT and/or MRI, which failed to identify a clear cause, were referred to (18)F-PET/CT. Among the main group, a subset of 25 patients had previous spine surgery consisting of laminectomy or discectomy (17 patients) and lumbar fusion (8 patients). The PET/CT scan was acquired on a GE VCT 64-Slice combined scanner. Imaging started 45-60 minutes after administration of 12-15 mCi (444-555 MBq) of (18)F-Fluoride. The PET scan was acquired from the skull base through the inguinal region in 3D mode at 2 minutes/bed. A lowresolution, non-contrast CT scan was also acquired for anatomic localization and attenuation correction. The (18)F-PET/CT showed abnormal uptake in the spine in 56 patients, with an overall detection ability of 84%. Facet joints as a cause of back pain was much more frequent (25 with abnormal scans). One-third (36%) of the patients showed multiple positive uptake in both facet joints and disc areas (20/56). The patients were further divided into two groups. Group A consisted of 42 patients (63%) with back pain and no previous operative procedures, and the (18)F-PET/CT showed a high sensitivity (88%) in identifying the source of pain in 37/42 patients. Group B included 25 patients (37%) with prior lumbar fusion or laminectomy, in which the PET/CT showed positive uptake in 76% (19/25 patients). (18)F-PET/CT showed positive uptake in all patients (100%) with a history of pain after lumbar fusion, while in the laminectomy subgroup only 11 cases (65%) showed positive focal uptake. (18)F-PET/CT has a potential use in evaluating adult patients with back pain. It has a promising role in identifying causes of persistent back pain following vertebral surgical interventions.
Referred pain location depends on the affected section of the sacroiliac joint.
Kurosawa, Daisuke; Murakami, Eiichi; Aizawa, Toshimi
2015-03-01
Pain referred from the sacroiliac joint (SIJ) may originate in the joint's posterior ligamentous region. The site of referred pain may depend on which SIJ section is affected. This study aimed to determine the exact origin of pain referred from four SIJ sections. The study included 50 patients with SIJ dysfunction, confirmed by more than 70 % pain relief after periarticular injection of local anesthetic into the SIJ. The posterior SIJ was divided into four sections-upper, middle, lower, and other (cranial portion of the ilium outside the SIJ)-designated sections 1, 2, 3, and 0, respectively. We then inserted a needle into the periarticular SIJ under fluoroscopy. After the patient identified the area(s) in which the needle insertion produced referred pain, we injected a mixture of 2 % lidocaine and contrast medium into the corresponding SIJ section. Referred pain from SIJ section 0 was mainly located in the upper buttock along the iliac crest; pain from section 1, around the posterosuperior iliac spine; pain from section 2, in the middle buttock area; pain from section 3, in the lower buttock. In all, 22 (44.0 %) patients complained of groin pain, which was slightly relieved by lidocaine injection into SIJ sections 1 and 0. Dysfunctional upper sections of the SIJ are associated with pain in the upper buttock and lower sections with pain in the lower buttock. Groin pain might be referred from the upper SIJ sections.
28. BRIDGE NO. 9 APRON AND BRIDGE HINGE JOINT AND ...
28. BRIDGE NO. 9 APRON AND BRIDGE HINGE JOINT AND BRIDGE SUSPENSION SYSTEM SHOWING EYEBAR AND CABLE CONNECTIONS. LOOKING WEST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ
Decompression sickness during simulated extravehicular activity: ambulation vs. non-ambulation.
Webb, James T; Beckstrand, Devin P; Pilmanis, Andrew A; Balldin, Ulf I
2005-08-01
Extravehicular activity (EVA) is required from the International Space Station on a regular basis. Because of the weightless environment during EVA, physical activity is performed using mostly upper-body movements since the lower body is anchored for stability. The adynamic model (restricted lower-body activity; non-ambulation) was designed to simulate this environment during earthbound studies of decompression sickness (DCS) risk. DCS symptoms during ambulatory (walking) and non-ambulatory high altitude exposure activity were compared. The objective was to determine if symptom incidences during ambulatory and non-ambulatory exposures are comparable and provide analogous estimates of risk under otherwise identical conditions. A retrospective analysis was accomplished on DCS symptoms from 2010 ambulatory and 330 non-ambulatory exposures. There was no significant difference between the overall incidence of DCS or joint-pain DCS in the ambulatory (49% and 40%) vs. the non-ambulatory exposures (53% and 36%; p > 0.1). DCS involving joint pain only in the lower body was higher during ambulatory exposures (28%) than non-ambulatory exposures (18%; p < 0.01). Non-ambulatory exposures terminated more frequently with non-joint-pain DCS (17%) or upper-body-only joint pain (18%) as compared with ambulatory exposures, 9% and 11% (p < 0.01), respectively. These findings show that lower-body, weight-bearing activity shifts the incidence of joint-pain DCS from the upper body to the lower body without altering the total incidence of DCS or joint-pain DCS. Use of data from previous and future subject exposures involving ambulatory activity while decompressed appears to be a valid analogue of non-ambulatory activity in determining DCS risk during simulated EVA studies.
1984-09-01
7D-Rt46 982 JOINT DOD VERSUS NAVY SPECIFIC LEAD GENERATION j/j ADVERTISING : COMPARISON OF..(U) J B FUGUR SCHOOL OF N BUSINESS DURHAM NC R C MOREY...REPORT I PEPIO0 COV9cO JOINT DOD VERSUS NAVY SPECIFIC LEAD GENERATION Technical Report ADVERTISING : Comparison of Conversion Rates to (0 Quality...block number) . Upper-Mental, High School Degree, enlistment contracts, national leads, Z Joint DOD advertising , Service Specific Advertising , conversion
29. BRIDGE NO. 13 APRON AND BRIDGE HINGE JOINT AND ...
29. BRIDGE NO. 13 APRON AND BRIDGE HINGE JOINT AND BRIDGE SUSPENSION SYSTEM (OLDER STYLE) SHOWING EYEBAR AND CABLE CONNECTIONS. LOOKING WEST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ
Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime
NASA Astrophysics Data System (ADS)
Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao
2016-03-01
In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.
Accuracy of Kinect's skeleton tracking for upper body rehabilitation applications.
Mobini, Amir; Behzadipour, Saeed; Saadat Foumani, Mahmoud
2014-07-01
Games and their use in rehabilitation have formed a new and rapidly growing area of research. A critical hardware component of rehabilitation programs is the input device that measures the patients' movements. After Microsoft released Kinect, extensive research has been initiated on its applications as an input device for rehabilitation. However, since most of the works in this area rely on a qualitative determination of the joints' movements rather than an accurate quantitative one, detailed analysis of patients' movements is hindered. The aim of this article is to determine the accuracy of the Kinect's joint tracking. To fulfill this task, a model of upper body was fabricated. The displacements of the joint centers were estimated by Kinect at different positions and were then compared with the actual ones from measurement. Moreover, the dependency of Kinect's error on distance and joint type was measured and analyzed. It measures and reports the accuracy of a sensor that can be directly used for monitoring physical therapy exercises. Using this sensor facilitates remote rehabilitation.
Treatment of rheumatoid joint inflammation with intrasynovial triamcinolone hexacetonide.
McCarty, D J; Harman, J G; Grassanovich, J L; Qian, C
1995-09-01
To determine the effectiveness of intrasynovial triamcinolone hexacetonide coupled with joint rest (3 weeks upper extremity; 6 weeks lower extremity) in the treatment of joint and tendon sheath inflammation in patients with seropositive rheumatoid arthritis (RA). The medical records of 169 patients with seropositive RA treated by a single rheumatologist for at least one year between 1974 and 1992 were abstracted. Nine hundred fifty-six injections were given to 140 patients; approximately 75% of injected synovial structures remained in remission during a mean followup 7 years; 218 injections were given into previously treated structures. The injection rate was about 2 per patient in the first year, half of which were given at the time of the first visit. The rate then approximated 0.6 injections per patient-year for the next 15 years. Joints in the right upper extremity were injected significantly (p = 0.01) more frequently than those on the left. Intrasynovial triamcinolone hexacetonide followed by rest is a very useful adjunctive modality in the treatment of seropositive rheumatoid arthritis.
Investigation of motorcyclist cervical spine trauma using HUMOS model.
Sun, Jingchao; Rojas, Alban; Bertrand, Pierre; Petit, Yvan; Kraenzler, Reinhard; Arnoux, Pierre Jean
2012-09-01
With 16 percent of the total road user fatalities, motorcyclists represent the second highest rate of road fatalities in France after car occupants. Regarding road accidents, a large proportion of trauma was on the lower cervical spine. According to different clinical studies, it is postulated that the cervical spine fragility areas are located on the upper and lower cervical spine. In motorcycle crashes, impact conditions occur on the head segment with various orientations and impact directions, leading to a combination of rotations and compression. Hence, motorcyclist vulnerability was investigated considering many impact conditions. Using the human model for safety (HUMOS), a finite element model, this work aims to provide an evaluation of the cervical spine weaknesses based on an evaluation of injury mechanisms. This evaluation consisted of defining 2 injury risk factors (joint injury and bone fracture) using a design of experiment including various velocities, impact directions, and impact orientations. The results confirmed previously reported clinical and epidemiological work on the fragility of the lower cervical spine and the upper cervical spine segments. Joint injuries appeared before bone fractures on both the upper and lower cervical spine. Bone fracture risk was greater on the lower cervical spine than on the upper cervical spine. The compression induced by a high impact angle was identified as an important injury severity factor. It significantly increased the injury incidence for both joint injuries and bone fractures. It also induced a shift in injury location from the lower to the upper cervical spine. The impact velocity exhibited a linear relationship with injury risks and severity. It also shifted the bone fracture risk from the lower to upper spinal segments.
Colen, Sascha; Haverkamp, Daniel; Mulier, Michiel; van den Bekerom, Michel P J
2012-04-01
The use of intra-articular hyaluronic acid (HA) is a well known treatment in patients with knee osteoarthritis (OA). In other joints, less evidence is available about the efficacy of treatment with intra-articular HA. HA is also used intra-articularly in the metatarsophalangeal-1 joint, the ankle, the hip, the sacroiliac joint, the facet joints, the carpometacarpal-1 joint, the shoulder and the temporo-mandibular joint. In this systematic review we include all prospective studies about the effects of intra-articular HA in the above-mentioned joints. Its use in the knee joint, however, will be discussed in a separate article in this journal. A systematic review was conducted using databases including MEDLINE, Cochrane Database of Systematic Reviews, Cochrane Clinical Trial Register, and EMBASE. After performing a solid systematic review using a rigid methodology and trying to pool the outcomes of different studies, we noticed that, compared with baseline, there is statistical evidence for a positive effect of intra-articular HA. However, there is limited evidence HA is superior to placebo and no evidence that intra-articular HA is better than corticosteroids or other conservative therapies. Our recommendation for future research is that one should focus on adequately powered randomized trials comparing HA treatment with other types of intra-articular or conservative treatment. We think it is useless to further perform and publish (large) non-comparative prospective studies about the use of HA in the treatment of problems caused by OA. It is well perceived that HA exerts positive effects in the treatment of OA, but up to now there is no (strong) evidence available that HA is superior to other treatments of OA such as corticosteroids, physiotherapy or other conservative measures.
[Conventional X-Rays of Ankle Joint Fractures in Older Patients are Not Always Predictive].
Jubel, A; Faymonville, C; Andermahr, J; Boxberg, S; Schiffer, G
2017-02-01
Background: Ankle fractures are extremely common in the elderly, with an incidence of up to 39 fractures per 100,000 persons per year. We found a discrepancy between intraoperative findings and preoperative X-ray findings. It was suggested that many relevant lesions of the ankle joint in the elderly cannot be detected with plain X-rays. Methods: Complete data sets and preoperative X-rays of 84 patients aged above 60 years with ankle fractures were analysed retrospectively. There were 59 women and 25 men, with a mean age of 69.9 years. Operation reports and preoperative X-rays were analysed with respect to four relevant lesions: multifragmentary fracture pattern of the lateral malleolus, involvement of the medial malleolus, posterior malleolar fractures and bony avulsion of anterior syndesmosis. Sensitivity, specificity, positive predictive value, negative predictive value, accuracy and prevalence were calculated. Results: The prevalence of specific ankle lesions in the analyzed cohort was 24 % for the multifragmentary fracture pattern of the lateral malleolus, 38 % for fractures of the medial malleolus, 25 % for posterior malleolar fractures and 22.6 % for bony avulsions of the anterior syndesmosis. Multifragmentary fracture patterns of the lateral malleolus (sensitivity 0 %) and bony avulsions of the anterior syndesmosis (sensitivity 5 %) could not be detected in plain X-rays of the ankle joint at all. Fractures of the medial malleolus and involvement of the dorsal tibial facet were detected with a sensitivity of 96.8 % and 76.2 %, respectively, and specificity of 100 % in both cases. Conclusions: This study confirms that complex fracture patterns, such as multifragmentary involvement of the lateral malleolus, additional fracture of the medial malleolus, involvement of the dorsal tibial facet or bony avulsion of the anterior syndesmosis are common in ankle fractures of the elderly. Therefore, CT scans should be routinely considered for primary diagnosis, in addition to plain X-rays. Georg Thieme Verlag KG Stuttgart · New York.
Cattrysse, Erik; Baeyens, Jean-Pierre; Van Roy, Peter; Van de Wiele, Olivier; Roosens, Tom; Clarys, Jan-Pieter
In sport, leisure and certain occupational activities, joint lesions of the upper limb are very common. To understand their aetiology in order to prevent and treat these pathologies on a scientific basis, a comprehensive knowledge of the involved stress and kinematics is imperative. For many years intra-articular joint kinematics have been described hypothetically in terms of the convex-concave principle. This principle, however, has not been validated. The in vitro research on the acromioclavicular, glenohumeral and elbow joints was performed using an electromagnetic tracking device (Flock of Birds). By recalculating the positions of the trackers to an embedded coordinate system on the joint surface, the intra-articular joint movements can be analysed. Therefore, the bony configurations and articular surface features were registered with a 3D drawing stylus (Microscribe). Thirteen acromioclavicular joints, six glenohumeral joints and seven elbows were studied. The coupled intra-articular movements were analysed using the Euler angles and finite helical axis approaches. The results of the acromioclavicular joint analysis indicate that during movements in the scapular plane a superior rotation of the clavicle was coupled with an inferior translation and vice versa, whilst during movements in the plane perpendicular to the scapular plane the anterior rotation was coupled with an anterior translation and vice versa. In the glenohumeral joint, the abduction-elevation was coupled with an external rotation. In the humero-ulnar joint, the extension was coupled with an external rotation and varus movement. This intra-articular behaviour was in contradiction to currently accepted convex-concave concepts in arthrokinematics and manual therapy. The results may have major implications for manual therapy and orthopaedic medical practice.
Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults
Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.
2014-01-01
Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203
NASA Technical Reports Server (NTRS)
Sheehan, Anne F.; Solomon, Sean C.
1991-01-01
Measurements were carried out for SS-S differential travel time residuals for nearly 500 paths crossing the northern Mid-Atlantic Ridge, assuming that the residuals are dominated by contributions from the upper mantle near the surface bounce point of the reflected phase SS. Results indicate that the SS-S travel time residuals decrease linearly with square root of age, to an age of 80-100 Ma, in general agreement with the plate cooling model. A joint inversion was formulated of travel time residuals and geoid and bathymetric anomalies for lateral variation in the upper mantle temperature and composition. The preferred inversion solutions were found to have variations in upper mantle temperature along the Mid-Atlantic Ridge of about 100 K. It was calculated that, for a constant bulk composition, such a temperature variation would produce about a 7-km variation in crustal thickness, larger than is generally observed.
Konop, Katherine A; Strifling, Kelly M B; Wang, Mei; Cao, Kevin; Schwab, Jeffrey P; Eastwood, Daniel; Jackson, Scott; Ackman, Jeffrey D; Harris, Gerald F
2009-10-01
Upper extremity (UE) joint kinetics during aided ambulation is an area of research that is not well characterized in the current literature. Biped UE joints are not anatomically designed to be weight bearing, therefore it is important to quantify UE kinetics during assisted gait. This will help to better understand the biomechanical implications of UE weight bearing, and enable physicians to prescribe more effective methods for treatment and therapy, perhaps minimizing excessive loads and torques. To address this challenge, an UE model that incorporates both kinematics and kinetics has been developed for use with walkers instrumented with load cells. In this study, the UE joint kinetics are calculated for 10 children with cerebral palsy using both anterior and posterior walkers. Three-dimensional joint reaction forces and moments are fully characterized for the wrist, elbow, and shoulder (glenohumeral) joints for both walker types. Statistical analysis methods are used to quantify the differences in forces or moments between the two walker types. Comparisons showed no significant differences in kinetic joint parameters between walker types. Results from a power analysis of the current data are provided which may be useful for planning longer term clinical studies. If risk factors for UE joint pathology can be identified early, perhaps a change in gait training routine, walker prescription, or walker design could prevent further harm.
ERIC Educational Resources Information Center
Smorenburg, Ana R. P.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.
2011-01-01
This study examined the active joint-position sense in children with Spastic Hemiparetic Cerebral Palsy (SHCP) and the effect of static visual feedback and static mirror visual feedback, of the non-moving limb, on the joint-position sense. Participants were asked to match the position of one upper limb with that of the contralateral limb. The task…
Kankipati, Padmaja; Boninger, Michael L.; Gagnon, Dany; Cooper, Rory A.; Koontz, Alicia M.
2015-01-01
Study design Repeated measures design. Objective This study compared the upper extremity (UE) joint kinetics between three transfer techniques. Setting Research laboratory. Methods Twenty individuals with spinal cord injury performed three transfer techniques from their wheelchair to a level tub bench. Two of the techniques involved a head–hips method with leading hand position close (HH-I) and far (HH-A) from the body, and the third technique with the trunk upright (TU) and hand far from body. Motion analysis equipment recorded upper body movements and force sensors recorded their hand and feet reaction forces during the transfers. Results Several significant differences were found between HH-A and HH-I and TU and HH-I transfers indicating that hand placement was a key factor influencing the UE joint kinetics. Peak resultant hand, elbow, and shoulder joint forces were significantly higher for the HH-A and TU techniques at the trailing arm (P < 0.036) and lower at the leading arm (P < 0.021), compared to the HH-I technique. Conclusion Always trailing with the same arm if using HH-A or TU could predispose that arm to overuse related pain and injuries. Technique training should focus on initial hand placement close to the body followed by the amount of trunk flexion needed to facilitate movement. PMID:25130053
Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
Borbély, Bence J; Szolgay, Péter
2017-01-17
Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.
Ebner, Susanne; Fabritius, Cornelia; Ritschl, Paul; Oberhuber, Rupert; Günther, Julia; Kotsch, Katja
2014-10-01
A joint meeting organized by the European (ESOT) and The Transplantation (TTS) Societies for basic science research was organized in Paris, France, on November 7-9, 2013. Focused on new ideas and concepts in translational transplantation, the meeting served as a venue for state-of-the-art developments in basic transplantation immunology, such as the potential for tolerance induction through regulation of T-cell signaling. This meeting report summarizes important insights which were presented in Paris. It not only offers an overview of established aspects, such as the role of Tregs in transplantation, presented by Nobel laureate Rolf Zinkernagel, but also highlights novel facets in the field of transplantation, that is cell-therapy-based immunosuppression or composite tissue transplantation as presented by the emotional story given by Vasyly Rohovyy, who received two hand transplants. The ESOT/TTS joint meeting was an overall productive and enjoyable platform for basic science research in translational transplantation and fulfilled all expectations by giving a promising outlook for the future of research in the field of immunological transplantation research. © 2014 Steunstichting ESOT.
Li, Jingwen; Ye, Qing; Ding, Li; Liao, Qianfang
2017-07-01
Extravehicular activity (EVA) is an inevitable task for astronauts to maintain proper functions of both the spacecraft and the space station. Both experimental research in a microgravity simulator (e.g. neutral buoyancy tank, zero-g aircraft or a drop tower/tube) and mathematical modeling were used to study EVA to provide guidance for the training on Earth and task design in space. Modeling has become more and more promising because of its efficiency. Based on the task analysis, almost 90% of EVA activity is accomplished through upper limb motions. Therefore, focusing on upper limb models of the body and space suit is valuable to this effort. In previous modeling studies, some multi-rigid-body systems were developed to simplify the human musculoskeletal system, and the space suit was mostly considered as a part of the astronaut body. With the aim to improve the reality of the models, we developed an astronauts' upper limb model, including a torque model and a muscle-force model, with the counter torques from the space suit being considered as a boundary condition. Inverse kinematics and the Maggi-Kane's method was applied to calculate the joint angles, joint torques and muscle force given that the terminal trajectory of upper limb motion was known. Also, we validated the muscle-force model using electromyogram (EMG) data collected in a validation experiment. Muscle force calculated from our model presented a similar trend with the EMG data, supporting the effectiveness and feasibility of the muscle-force model we established, and also, partially validating the joint model in kinematics aspect.
Hoga-Miura, Koji; Ae, Michiyoshi; Fujii, Norihisa; Yokozawa, Toshiharu
2016-10-01
This study investigated the function of the upper extremities of elite race walkers during official 20 km races, focusing on the angular momentum about the vertical axis and other parameters of the upper extremities. Sixteen walkers were analysed using the three-dimensional direct linear transformation method during three official men's 20 km walking races. The subjects, included participants at the Olympics and World Championships, who finished without disqualification and had not been disqualified during the two years prior to or following the races analysed in the present study. The angular momenta of the upper and lower body were counterbalanced as in running and normal walking. The momentum of the upper body was mainly generated by the upper extremities. The joint force moment of the right shoulder and the joint torque at the left shoulder just before right toe-off were significantly correlated with the walking speed. These were counterbalanced by other moments and torques to the torso torque, which worked to obtain a large mechanical energy flow from the recovery leg to the support leg in the final phase of the support phase. Therefore, a function of the shoulder torque was to counterbalance the torso torque to gain a fast walking speed with substantial mechanical energy flow.
Use of rapid prototyping drill template for the expansive open door laminoplasty: A cadaveric study.
Rong, Xin; Wang, Beiyu; Chen, Hua; Ding, Chen; Deng, Yuxiao; Ma, Lipeng; Ma, Yanzhao; Liu, Hao
2016-11-01
Trough preparation is a technically demanding yet critical procedure for successful expansive open door laminoplasty (EOLP), requiring both proper position and appropriate bone removal. We aimed to use the specific rapid prototyping drill template to achieve such requirement. The 3D model of the cadaveric cervical spine was reconstructed using the Mimics 17.0 and Geomagic Studio 12.0 software. The drilling template was designed in the 3-Matic software. The trough position was simulated at the medial margin of the facet joint. Two holders were designed on both sides. On the open side, the holder would just allow the drill penetrate the ventral cortex of the lamina. On the hinge side, the holder was designed to keep the ventral cortex of the lamina intact. One orthopedic resident performed the surgery using the rapid prototyping drill template on four cadavers (template group). A control group of four cadavers were operated upon without the use of the template. The deviation of the final trough position from the simulated trough position was 0.18mm±0.51mm in the template group. All the troughs in the template group and 40% of the troughs in the control group were at the medial side of the facet joint. The complete hinge fracture rate was 5% in the template group, significantly lower than that (55%) in the control group (P=0.01). The rapid prototyping drill template could help the surgeon accomplish proper trough position and appropriate bone removal in EOLP on the cadaveric cervical spine. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Tae Seong; Lee, Joon Woo; Lee, Eugene
ObjectiveTo evaluate the effects of facet joint injection (FJI) reducing the need for percutaneous vertebroplasty (PVP) in cases of vertebral compression fracture (VCF).Materials and MethodsA total of 169 patients who were referred to the radiology department of our institution for PVP between January 2011 and December 2014 were retrospectively evaluated. The effectiveness of FJI was evaluated by the proportion of patients who cancelled PVP and who experienced reduced pain. In addition, by means of medical chart and MRI review, those clinical factors (age, sex, history of trauma, amount of injected steroids and interval days elapsed between VCF and FJI) andmore » MR image factors (kyphosis angle, height loss, single or multiple level of VCF, burst fracture, central canal compromise, posterior element injury) that were believed to be significant for the effectiveness of FJI were statistically analysed.ResultsIn the 26 patients with FJI prior to PVP, six (23 %) patients cancelled PVP with considerable improvement in reported pain. In the 20 patients with PVP after FJI, improvement in pain after FJI was reported by six patients, resulting in a total of 12 patients (46 %) who experienced reduced pain after FJI. Clinical factors and MR image factors did not show any statistically significant difference between those groups, divided by PVP cancellation and by improvement of pain.ConclusionAfter FJI prior to PVP, about one quarter of patients cancelled PVP due to reduced pain and overall about half of the patients experienced reduced pain.« less
U.S. Army Deployment Injury Surveillance Summary, CY 2007 1 January 2007 - 31 December 2007
2007-12-31
8217lim C>o ::::IJ:j Total Vertebral Column (VCI) Upper Lower Other, Unspecified InflammatIon and PaIn (Overuse) Joint IJoint Derangement...inflammation and pain (overuse) (51 percent), joint derangement (22 percent), and joint derangement with nerve pain (13 percent). • The spine/back (49 percent...13 percent). • The leading specific injury-related musculoskeletal conditions were inflammation and pain (overuse) involving the lumbar spine (16
Formation of a physiological reverse shoulder joint.
Lerner, Markus; Turkmen, Ismail; Bernd, Ludger
2016-01-20
Congenital shoulder deformities are rarely seen in orthopaedic practice. Proximal humeral defects and glenoid hypoplasia have been reported separately in the literature. We present a case involving a 31-year-old woman having a cosmetic problem with her upper arm who was diagnosed with reverse shoulder joint deformity. This article presents the clinical, radiological and biomechanical findings of a physiological reverse shoulder joint. This is the first such reported case. 2016 BMJ Publishing Group Ltd.
Rustagi, Tarush; Iwanaga, Joe; Sardi, Juan P; Alonso, Fernando; Oskouian, Rod J; Tubbs, R Shane
2017-11-01
Degenerative changes in the upper cervical spine may be age related degeneration or a pathological process such as rheumatoid arthritis. However, to our knowledge, the relationship between the apical and alar ligaments and these anomalies has not been discussed. We present anatomical variations of the anterior atlantodental joint observed during cadaveric dissection of adult craniovertebral junctions, the relationship with the alar and apical ligaments and discuss possible origins and clinical implications. The upper cervical spine including part of the occiput was dissected from cadavers whose mean age at death was 78.9 years-old. The anterior atlantodental joint and apical and alar ligaments were observed and any atypical findings were noted. In eleven specimens, seven had a dens corona, three had an os odontoideum and one had a dens aureola, which arose from the upper part of the anterior arch of the atlas. Only four specimens had an apical ligament. The possible etiologies and the clinical applications of these craniovertebral anomalies in a geriatric population should be appreciated by the clinician treating patients with disease in this area or interpreting imaging in the region. Copyright © 2017 Elsevier Inc. All rights reserved.
Ostlie, Kristin; Franklin, Rosemary J; Skjeldal, Ola H; Skrondal, Anders; Magnus, Per
2011-10-01
To describe physical function in adult acquired major upper-limb amputees (ULAs) by combining self-assessed arm function and physical measures obtained by clinical examinations; to estimate associations between background factors and self-assessed arm function in ULAs; and to assess whether clinical examination findings may be used to detect reduced arm function in unilateral ULAs. postal questionnaires and clinical examinations. Norwegian ULA population. Clinical examinations performed at 3 clinics. Questionnaires: population-based sample (n=224; 57.4% response rate). Clinical examinations: combined referred sample and convenience sample of questionnaire responders (n=70; 83.3% of those invited). SURVEY inclusion criteria: adult acquired major upper-limb amputation, resident in Norway, mastering of spoken and written Norwegian. Not applicable. The Disabilities of the Arm, Shoulder and Hand (DASH) Outcome Questionnaire, and clinical examination of joint motion and muscle strength with and without prostheses. Mean DASH score was 22.7 (95% confidence interval [CI], 20.3-25.0); in bilateral amputees, 35.7 (95% CI, 23.0-48.4); and in unilateral amputees, 22.1 (95% CI, 19.8-24.5). A lower unilateral DASH score (better function) was associated with paid employment (vs not in paid employment: adjusted regression coefficient [aB]=-5.40, P=.033; vs students: aB=-13.88, P=.022), increasing postamputation time (aB=-.27, P=.001), and Norwegian ethnicity (aB=-14.45, P<.001). At clinical examination, we found a high frequency of impaired neck mobility and varying frequencies of impaired joint motion and strength at the shoulder, elbow, and forearm level. Prosthesis wear was associated with impaired joint motion in all upper-limb joints (P<.006) and with reduced shoulder abduction strength (P=.002). Impaired without-prosthesis joint motion in shoulder flexion (ipsilateral: aB=12.19, P=.001) and shoulder abduction (ipsilateral: aB=12.01, P=.005; contralateral: aB=28.82, P=.004) was associated with increased DASH scores. Upper-limb loss clearly affects physical function. DASH score limitation profiles may be useful in individual clinical assessments. Targeted clinical examination may indicate patients with extra rehabilitational needs. Such examinations may be of special importance in relation to prosthesis function. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Ashton, Michael C; Lee, Kibeom; de Vries, Reinout E; Hendrickse, Joshua; Born, Marise Ph
2012-10-01
The Personality Inventory for DSM-5 (PID-5), a new measure of maladaptive personality traits, has recently been developed by the DSM-5 Personality and Personality Disorders Workgroup. The PID-5 variables were examined within the seven-factor space defined by the six HEXACO factors and the Schizotypy/Dissociation factor (Ashton & Lee, 2012) using participant samples from Canada (N = 378) and the Netherlands (N = 476). Extension analyses showed that several PID-5 facet-level scales represented each of the Honesty-Humility, Emotionality, Extraversion, Conscientiousness, and Schizotypy/Dissociation factors. In contrast, only one PID-5 scale loaded strongly on HEXACO Agreeableness, and no PID-5 scales loaded strongly on Openness to Experience. In addition, a joint factor analysis involving the PID-5 variables and facets of the Five-Factor Model was conducted in the Canadian sample and recovered a set of seven factors corresponding rather closely to the HEXACO factors plus Schizotypy/Dissociation. The authors discuss implications for the assessment and structure of normal and abnormal personality.
Comparison of neuromuscular abnormalities between upper and lower extremities in hemiparetic stroke.
Mirbagheri, M M; AliBiglou, L; Thajchayapong, M; Lilaonitkul, T; Rymer, W Z
2006-01-01
We studied the neuromuscular mechanical properties of the elbow and ankle joints in chronic, hemiparetic stroke patients and healthy subjects. System identification techniques were used to characterize the mechanical abnormalities of these joints and to identify the contribution of intrinsic and reflex stiffness to these abnormalities. Modulation of intrinsic and reflex stiffness with the joint angle was studied by applying PRBS perturbations to the joint at different joint angles. The experiments were performed for both spastic (stroke) and contralateral (control) sides of stroke patients and one side of healthy (normal) subjects. We found reflex stiffness gain (GR) was significantly larger in the stroke than the control side for both elbow and ankle joints. GR was also strongly position dependent in both joints. However, the modulation of GR with position was slightly different in two joints. GR was also larger in the control than the normal joints but the differences were significant only for the ankle joint. Intrinsic stiffness gain (K) was also significantly larger in the stroke than the control joint at elbow extended positions and at ankle dorsiflexed positions. Modulation of K with the ankle angle was similar for stroke, control and normal groups. In contrast, the position dependency of the elbow was different. K was larger in the control than normal ankle whereas it was lower in the control than normal elbow. However, the differences were not significant for any joint. The findings demonstrate that both reflex and intrinsic stiffness gain increase abnormally in both upper and lower extremities. However, the major contribution of intrinsic and reflex stiffness to the abnormalities is at the end of ROM and at the middle ROM, respectively. The results also demonstrate that the neuromuscular properties of the contralateral limb are not normal suggesting that it may not be used as a suitable control at least for the ankle study.
2001-10-25
axis during passive elbow extension. A padded shoulder block was placed superior to the subject’s acromioclavicular joint to stabilize the shoulder...girdle position. A pressure sensor was used between the padded shoulder block and the acromioclavicular joint to monitor and standardize the pressure
Pehlivan, Ali Utku; Rose, Chad; O'Malley, Marcia K
2013-06-01
Rehabilitation of the distal joints of the upper extremities is crucial to restore the ability to perform activities of daily living to patients with neurological lesions resulting from stroke or spinal cord injury. Robotic rehabilitation has been identified as a promising new solution, however, much of the existing technology in this field is focused on the more proximal joints of the upper arm. A recently presented device, the RiceWrist-S, focuses on the rehabilitation of the forearm and wrist, and has undergone a few important design changes. This paper first addresses the design improvements achieved in the recent design iteration, and then presents the system characterization of the new device. We show that the RiceWrist-S has capabilities beyond other existing devices, and exhibits favorable system characteristics as a rehabilitation device, in particular torque output, range of motion, closed loop position performance, and high spatial resolution.
A finite element investigation of upper cervical instrumentation.
Puttlitz, C M; Goel, V K; Traynelis, V C; Clark, C R
2001-11-15
The finite element technique was used to predict changes in biomechanics that accompany the application of a novel instrumentation system designed for use in the upper cervical spine. To determine alterations in joint loading, kinematics, and instrumentation stresses in the craniovertebral junction after application of a novel instrumentation system. Specifically, this design was used to assess the changes in these parameters brought about by two different cervical anchor types: C2 pedicle versus C2-C1 transarticular screws, and unilateral versus bilateral instrumentation. Arthrodesis procedures can be difficult to obtain in the highly mobile craniovertebral junction. Solid fusion is most likely achieved when motion is eliminated. Biomechanical studies have shown that C1-C2 transarticular screws provide good stability in craniovertebral constructs; however, implantation of these screws is accompanied by risk of vertebral artery injury. A novel instrumentation system that can be used with transarticular screws or with C2 pedicle screws has been developed. This design also allows for unilateral or bilateral implantation. However, the authors are unaware of any reports to date on the changes in joint loading or instrumentation stresses that are associated with the choice of C2 anchor or unilateral/bilateral use. A ligamentous, nonlinear, sliding contact, three-dimensional finite element model of the C0-C1-C2 complex and a novel instrumentation system was developed. Validation of the model has been previously reported. Finite element models representing combinations of cervical anchor type (C1-C2 transarticular screws vs. C2 pedicle screws) and unilateral versus bilateral instrumentation were evaluated. All models were subjected to compression with pure moments in either flexion, extension, or lateral bending. Kinematic reductions with respect to the intact (uninjured and without instrumentation) case caused by instrumentation use were reported. Changes in loading profiles through the right and left C0-C1 and C1-C2 facets, transverse ligament-dens, and dens-anterior ring of C1 articulations were calculated by the finite element model. Maximum von Mises stresses within the instrumentation were predicted for each model variant and loading scenario. Bilateral instrumentation provided greater motion reductions than the unilateral instrumentation. When used bilaterally, C2 pedicle screws approximate the kinematic reductions and instrumentation stresses (except in lateral bending) that are seen with C1-C2 transarticular screws. The finite element model predicted that the maximum stress was always in the region in which the plate transformed into the rod. To the best of the authors' knowledge, this is the first report of predicting changes in loading in the upper cervical spine caused by instrumentation. The most significant conclusion that can be drawn from the finite element model predictions is that C2 pedicle screw fixation provides the same relative stability and instrumentation stresses as C1-C2 transarticular screw use. C2 pedicle screws can be a good alternative to C2-C1 transarticular screws when bilateral instrumentation is applied.
Influence of rotator cuff tears on glenohumeral stability during abduction tasks.
Hölscher, Thomas; Weber, Tim; Lazarev, Igor; Englert, Carsten; Dendorfer, Sebastian
2016-09-01
One of the main goals in reconstructing rotator cuff tears is the restoration of glenohumeral joint stability, which is subsequently of utmost importance in order to prevent degenerative damage such as superior labral anterior posterior (SLAP) lesion, arthrosis, and malfunction. The goal of the current study was to facilitate musculoskeletal models in order to estimate glenohumeral instability introduced by muscle weakness due to cuff lesions. Inverse dynamics simulations were used to compute joint reaction forces for several static abduction tasks with different muscle weakness. Results were compared with the existing literature in order to ensure the model validity. Further arm positions taken from activities of daily living, requiring the rotator cuff muscles were modeled and their contribution to joint kinetics computed. Weakness of the superior rotator cuff muscles (supraspinatus; infraspinatus) leads to a deviation of the joint reaction force to the cranial dorsal rim of the glenoid. Massive rotator cuff defects showed higher potential for glenohumeral instability in contrast to single muscle ruptures. The teres minor muscle seems to substitute lost joint torque during several simulated muscle tears to maintain joint stability. Joint instability increases with cuff tear size. Weakness of the upper part of the rotator cuff leads to a joint reaction force closer to the upper glenoid rim. This indicates the comorbidity of cuff tears with SLAP lesions. The teres minor is crucial for maintaining joint stability in case of massive cuff defects and should be uprated in clinical decision-making. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1628-1635, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Spondylolisthesis Identified Using Ultrasound Imaging.
Beneck, George J; Gard, Andrea N; Fodran, Kimberly A
2017-12-01
57-year-old woman was recruited for a research study of muscle activation in persons with low back pain. She described a progressive worsening of left lower lumbar pain, which began 5 years prior without any precipitating incident, and intermittent pain at the left gluteal fold (diagnosed as a proximal hamstring tear 2 years prior). Ultrasound revealed marked anterior displacement of the L3-4 and L4-5 facet joints. The subject was recommended for a radiograph using a lateral recumbent view, which demonstrated a grade II spondylolisthesis. J Orthop Sports Phys Ther 2017;47(12):970. doi:10.2519/jospt.2017.7363.
Can lumbar hemorrhagic synovial cyst cause acute radicular compression? Case report
Timbó, Luciana Sátiro; Rosemberg, Laercio Alberto; Brandt, Reynaldo André; Peres, Ricardo Botticini; Nakamura, Olavo Kyosen; Guimarães, Juliana Frota
2014-01-01
Lumbar synovial cysts are an uncommon cause of back pain and radiculopathy, usually manifesting with gradual onset of symptoms, secondary to involvement of the spinal canal. Rarely, intracyst hemorrhage occurs, and may acutely present as radicular - or even spinal cord - compression syndrome. Synovial cysts are generally associated with degenerative facets, although the pathogenesis has not been entirely established. We report a case of bleeding complication in a synovial cyst at L2-L3, adjacent to the right interfacet joint, causing acute pain and radiculopathy in a patient on anticoagulation therapy who required surgical resection. PMID:25628207
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
... of its International Upper Great Lakes Study Board, Lake Superior Regulation: Addressing Uncertainty... for comments has also been extended to September 30, 2012. The Study examines whether the regulation of outflows from Lake Superior through the compensating works and power dams on the St. Marys River...
NASA Astrophysics Data System (ADS)
Rohmer, Jeremy; Verdel, Thierry
2017-04-01
Uncertainty analysis is an unavoidable task of stability analysis of any geotechnical systems. Such analysis usually relies on the safety factor SF (if SF is below some specified threshold), the failure is possible). The objective of the stability analysis is then to estimate the failure probability P for SF to be below the specified threshold. When dealing with uncertainties, two facets should be considered as outlined by several authors in the domain of geotechnics, namely "aleatoric uncertainty" (also named "randomness" or "intrinsic variability") and "epistemic uncertainty" (i.e. when facing "vague, incomplete or imprecise information" such as limited databases and observations or "imperfect" modelling). The benefits of separating both facets of uncertainty can be seen from a risk management perspective because: - Aleatoric uncertainty, being a property of the system under study, cannot be reduced. However, practical actions can be taken to circumvent the potentially dangerous effects of such variability; - Epistemic uncertainty, being due to the incomplete/imprecise nature of available information, can be reduced by e.g., increasing the number of tests (lab or in site survey), improving the measurement methods or evaluating calculation procedure with model tests, confronting more information sources (expert opinions, data from literature, etc.). Uncertainty treatment in stability analysis usually restricts to the probabilistic framework to represent both facets of uncertainty. Yet, in the domain of geo-hazard assessments (like landslides, mine pillar collapse, rockfalls, etc.), the validity of this approach can be debatable. In the present communication, we propose to review the major criticisms available in the literature against the systematic use of probability in situations of high degree of uncertainty. On this basis, the feasibility of using a more flexible uncertainty representation tool is then investigated, namely Possibility distributions (e.g., Baudrit et al., 2007) for geo-hazard assessments. A graphical tool is then developed to explore: 1. the contribution of both types of uncertainty, aleatoric and epistemic; 2. the regions of the imprecise or random parameters which contribute the most to the imprecision on the failure probability P. The method is applied on two case studies (a mine pillar and a steep slope stability analysis, Rohmer and Verdel, 2014) to investigate the necessity for extra data acquisition on parameters whose imprecision can hardly be modelled by probabilities due to the scarcity of the available information (respectively the extraction ratio and the cliff geometry). References Baudrit, C., Couso, I., & Dubois, D. (2007). Joint propagation of probability and possibility in risk analysis: Towards a formal framework. International Journal of Approximate Reasoning, 45(1), 82-105. Rohmer, J., & Verdel, T. (2014). Joint exploration of regional importance of possibilistic and probabilistic uncertainty in stability analysis. Computers and Geotechnics, 61, 308-315.
Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël
2014-01-01
This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.
Functional anatomy of the temporomandibular joint (I).
Sava, Anca; Scutariu, Mihaela Monica
2012-01-01
Jaw movement is analyzed as the action between two rigid components jointed together in a particular way, the movable mandible against the stabilized cranium. Jaw articulation distinguishes form most other synovial joints of the body by the coincidence of certain characteristic features. Its articular surfaces are not covered by hyaline cartilage as elsewhere. The two jointed components carry teeth the shape, position and occlusion of which having a unique influence on specific positions and movements within the joint. A fibrocartilaginous disc is interposed between upper and lower articular surfaces; this disc compensates for the incongruities in opposing parts and allows sliding, pivoting, and rotating movements between the bony components. These are the reasons for our review of the functional anatomy of the temporomandibular joint.
NASA Astrophysics Data System (ADS)
Toth-Tascau, Mirela; Balanean, Flavia; Krepelka, Mircea
2013-10-01
Musculoskeletal impairment of the upper limb can cause difficulties in performing basic daily activities. Three dimensional motion analyses can provide valuable data of arm movement in order to precisely determine arm movement and inter-joint coordination. The purpose of this study was to develop a method to evaluate the degree of impairment based on the influence of shoulder movements in the amplitude of elbow flexion and extension based on the assumption that a lack of motion of the elbow joint will be compensated by an increased shoulder activity. In order to develop and validate a statistical model, one healthy young volunteer has been involved in the study. The activity of choice simulated blowing the nose, starting from a slight flexion of the elbow and raising the hand until the middle finger touches the tip of the nose and return to the start position. Inter-joint coordination between the elbow and shoulder movements showed significant correlation. Statistical regression was used to fit an equation model describing the influence of shoulder movements on the elbow mobility. The study provides a brief description of the kinematic analysis protocol and statistical models that may be useful in describing the relation between inter-joint movements of daily activities.
Fan, Wei-Li; Sun, Hong-Zhen; Wu, Si-Yu; Wang, Ai-Min
2013-03-01
The most common treatment for old calcaneal fractures accompanied by subtalar joint injury is the use of subtalar in situ arthrodesis and subtalar distraction bone-block arthrodesis or osteotomy. This article describes the introduction of a novel surgical treatment, gradual subtalar distraction with external fixation and restoration of the calcaneal height, and presents an assessment of its efficacy. The protruding lateral calcaneus and the articular surfaces and subchondral bone of the posterior facet of the subtalar joint were surgically removed. An external fixator, attached with 2 pins in the subcutaneous tibia and 2 pins in the posterolateral calcaneus, was used to fix the subtalar joint for 7 to 10 days followed by gradual subtalar distraction at 1 mm/d. The lengthening procedure was stopped when the calcaneal height was restored according to radiography. The external fixator was removed after bone fusion. Seven cases of old calcaneal fractures accompanied by severe subtalar joint injury (8 feet) were treated using this method. Average follow-up was 14.3 months (range, 7-36 months). In all 7 cases (1 case of both feet), the postoperative wound healed primarily. The calcaneal heights of all 8 feet were partially restored. Subtalar joint bone fusion was completed within 4 to 6 months after the operation. The average preoperative American Orthopedic Foot & Ankle Society (AOFAS) hindfoot score was 25.3, and the average postoperative AOFAS score was 76.3. Subtalar distraction osteogenesis with external fixation was a novel and effective method for the treatment of old calcaneal fractures accompanied by severe subtalar joint injury in this small group of patients. Level IV, retrospective case series.
Oyama, Sakiko; Yu, Bing; Blackburn, J Troy; Padua, Darin A; Li, Li; Myers, Joseph B
2014-09-01
In a properly coordinated throwing motion, peak pelvic rotation velocity is reached before peak upper torso rotation velocity, so that angular momentum can be transferred effectively from the proximal (pelvis) to distal (upper torso) segment. However, the effects of trunk rotation sequence on pitching biomechanics and performance have not been investigated. The aim of this study was to investigate the effects of trunk rotation sequence on ball speed and on upper extremity biomechanics that are linked to injuries in high school baseball pitchers. The hypothesis was that pitchers with improper trunk rotation sequence would demonstrate lower ball velocity and greater stress to the joint. Descriptive laboratory study. Three-dimensional pitching kinematics data were captured from 72 high school pitchers. Subjects were considered to have proper or improper trunk rotation sequences when the peak pelvic rotation velocity was reached either before or after the peak upper torso rotation velocity beyond the margin of error (±3.7% of the time from stride-foot contact to ball release). Maximal shoulder external rotation angle, elbow extension angle at ball release, peak shoulder proximal force, shoulder internal rotation moment, and elbow varus moment were compared between groups using independent t tests (α < 0.05). Pitchers with improper trunk rotation sequences (n = 33) demonstrated greater maximal shoulder external rotation angle (mean difference, 7.2° ± 2.9°, P = .016) and greater shoulder proximal force (mean difference, 9.2% ± 3.9% body weight, P = .021) compared with those with proper trunk rotation sequences (n = 22). No other variables differed significantly different between groups. High school baseball pitchers who demonstrated improper trunk rotation sequences demonstrated greater maximal shoulder external rotation angle and shoulder proximal force compared with pitchers with proper trunk rotation sequences. Improper sequencing of the trunk and torso alter upper extremity joint loading in ways that may influence injury risk. As such, exercises that reinforce the use of a proper trunk rotation sequence during the pitching motion may reduce the stress placed on the structures around the shoulder joint and lead to the prevention of injuries. © 2014 The Author(s).
2012-05-10
Basin, China , the crust and subduction zone beneath western Colombia, and a thermally active region within Utah in the central United States...Burlacu, R., Rowe, C., and Y. Yang (2009). Joint geophysical imaging of the geothermal sites in the Utah area using seismic body waves, surface waves and
An International Survey of Shock and Vibration Technology
1979-03-01
Rept. No. APL- UW -7615, RPR-24.4, (Aug. 1976). PB-269 585/6GA. 4-21 29. Angiola, A.J. and Chen, T.C., "An Applied Statistical Approach to Highway Noise...pp 27-42, (June 1975). 61. Wilkinson, T.L., ’Vibrational Loading of Mechanically Fastened Wood Joints’, Forest Products Lab., Madison , WI, Rept. No...Joints using a lumped param- eter model of the upper torso and head. The main objective was to predict lumbar intervertebral joint deformations. Smith
Rotational joint assembly for the prosthetic leg
NASA Technical Reports Server (NTRS)
Owens, L. J.; Jones, W. C. (Inventor)
1977-01-01
A rotational joint assembly for a prosthetic leg has been devised, which enables an artificial foot to rotate slightly when a person is walking, running or turning. The prosthetic leg includes upper and lower tubular members with the rotational joint assembly interposed between them. The assembly includes a restrainer mechanism which consists of a pivotably mounted paddle element. This device applies limiting force to control the rotation of the foot and also restores torque to return the foot back to its initial position.
1984-09-01
Management Information System (ALMIS) to address them. Literature was surveyed and problems were summarized and developed into a questionnaire. Structured interviews were then conducted with over 100 different Air Force and civilian upper and middle JSAP managers. Many general and specific problems and issues were identified and validated using statistical and qualitative methods. General use of ALMIS to address certain joint service problem areas was confirmed. Potential use and desirable capabilities for ALMIS were also determined. Recommendations for ALMIS
Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.
Jacobs, L L; Winkler, D A; Murry, P A
1989-07-01
Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribosphenic molars, which characterize marsupials and placentals, the two most abundant and diverse extant groups of mammals. A tooth from the Early Cretaceous (110 million years before present) of Texas tests previous predictions (based on lower molars) of the morphology of upper molars in early tribosphenic dentitions. The lingual cusp (protocone) is primitively without shear facets, as expected, but the cheek side of the tooth is derived (advanced) in having distinctive cusps along the margin. The tooth, although distressingly inadequate to define many features of the organism, demonstrates unexpected morphological diversity at a strategic stage of mammalian evolution and falsifies previous claims of the earliest occurrence of true marsupials.
Kukke, Sahana N.; Curatalo, Lindsey A.; de Campos, Ana Carolina; Hallett, Mark; Alter, Katharine E.; Damiano, Diane L.
2015-01-01
Functional reaching is impaired in dystonia. Here, we analyze upper extremity kinematics to quantify timing and coordination abnormalities during unimanual reach-to-grasp movements in individuals with childhood-onset unilateral wrist dystonia. Kinematics were measured during movements of both upper limbs in a patient group (n = 11, age = 17.5 ± 5 years), and a typically developing control group (n = 9, age = 16.6 ± 5 years). Hand aperture was computed to study the coordination of reach and grasp. Time-varying joint synergies within one upper limb were calculated using a novel technique based on principal component analysis to study intra-limb coordination. In the non-dominant arm, results indicate reduced coordination between reach and grasp in patients who could not lift the grasped object compared to those who could lift it. Lifters exhibit incoordination in distal upper extremity joints later in the movement and non-lifters lacked coordination throughout the movement and in the whole upper limb. The amount of atypical coordination correlates with dystonia severity in patients. Reduced coordination during movement may reflect deficits in the execution of simultaneous movements, motor planning, or muscle activation. Rehabilitation efforts can focus on particular time points when kinematic patterns deviate abnormally to improve functional reaching in individuals with childhood-onset dystonia. PMID:26208359
Kukke, Sahana N; Curatalo, Lindsey A; de Campos, Ana Carolina; Hallett, Mark; Alter, Katharine E; Damiano, Diane L
2016-05-01
Functional reaching is impaired in dystonia. Here, we analyze upper extremity kinematics to quantify timing and coordination abnormalities during unimanual reach-to-grasp movements in individuals with childhood-onset unilateral wrist dystonia. Kinematics were measured during movements of both upper limbs in a patient group ( n = 11, age = 17.5 ±5 years), and a typically developing control group ( n = 9, age = 16.6 ±5 years). Hand aperture was computed to study the coordination of reach and grasp. Time-varying joint synergies within one upper limb were calculated using a novel technique based on principal component analysis to study intra-limb coordination. In the non-dominant arm, results indicate reduced coordination between reach and grasp in patients who could not lift the grasped object compared to those who could lift it. Lifters exhibit incoordination in distal upper extremity joints later in the movement and non-lifters lacked coordination throughout the movement and in the whole upper limb. The amount of atypical coordination correlates with dystonia severity in patients. Reduced coordination during movement may reflect deficits in the execution of simultaneous movements, motor planning, or muscle activation. Rehabilitation efforts can focus on particular time points when kinematic patterns deviate abnormally to improve functional reaching in individuals with childhood-onset dystonia.
Upper Primary School Teachers' Mathematical Knowledge for Teaching Functional Thinking in Algebra
ERIC Educational Resources Information Center
Wilkie, Karina J.
2014-01-01
This article is based on a project that investigated teachers' knowledge in teaching an important aspect of algebra in the middle years of schooling--functions, relations and joint variation. As part of the project, 105 upper primary teachers were surveyed during their participation in Contemporary Teaching and Learning of Mathematics, a research…
49 CFR 572.86 - Test conditions and dummy adjustment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...
49 CFR 572.86 - Test conditions and dummy adjustment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...
49 CFR 572.86 - Test conditions and dummy adjustment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...
49 CFR 572.86 - Test conditions and dummy adjustment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...
49 CFR 572.86 - Test conditions and dummy adjustment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...
Kinematic models of the upper limb joints for multibody kinematics optimisation: An overview.
Duprey, Sonia; Naaim, Alexandre; Moissenet, Florent; Begon, Mickaël; Chèze, Laurence
2017-09-06
Soft tissue artefact (STA), i.e. the motion of the skin, fat and muscles gliding on the underlying bone, may lead to a marker position error reaching up to 8.7cm for the particular case of the scapula. Multibody kinematics optimisation (MKO) is one of the most efficient approaches used to reduce STA. It consists in minimising the distance between the positions of experimental markers on a subject skin and the simulated positions of the same markers embedded on a kinematic model. However, the efficiency of MKO directly relies on the chosen kinematic model. This paper proposes an overview of the different upper limb models available in the literature and a discussion about their applicability to MKO. The advantages of each joint model with respect to its biofidelity to functional anatomy are detailed both for the shoulder and the forearm areas. Models capabilities of personalisation and of adaptation to pathological cases are also discussed. Concerning model efficiency in terms of STA reduction in MKO algorithms, a lack of quantitative assessment in the literature is noted. In priority, future studies should concern the evaluation and quantification of STA reduction depending on upper limb joint constraints. Copyright © 2016 Elsevier Ltd. All rights reserved.
Funabashi, Martha; Nougarou, François; Descarreaux, Martin; Prasad, Narasimha; Kawchuk, Greg
In order to define the relation between spinal manipulative therapy (SMT) input parameters and the distribution of load within spinal tissues, the aim of this study was to determine the influence of force magnitude and application site when SMT is applied to cadaveric spines. In 10 porcine cadavers, a servo-controlled linear actuator motor provided a standardized SMT simulation using 3 different force magnitudes (100N, 300N, and 500N) to 2 different cutaneous locations: L3/L4 facet joint (FJ), and L4 transverse processes (TVP). Vertebral kinematics were tracked optically using indwelling bone pins, the motion segment removed and mounted in a parallel robot equipped with a 6-axis load cell. The kinematics of each SMT application were replicated robotically. Serial dissection of spinal structures was conducted to quantify loading characteristics of discrete spinal tissues. Forces experienced by the L3/L4 segment and spinal structures during SMT replication were recorded and analyzed. Spinal manipulative therapy force magnitude and application site parameters influenced spinal tissues loading. A significant main effect (P < .05) of force magnitude was observed on the loads experienced by the intact specimen and supra- and interspinous ligaments. The main effect of application site was also significant (P < .05), influencing the loading of the intact specimen and facet joints, capsules, and ligamentum flavum (P < .05). Spinal manipulative therapy input parameters of force magnitude and application site significantly influence the distribution of forces within spinal tissues. By controlling these SMT parameters, clinical outcomes may potentially be manipulated. Copyright © 2017. Published by Elsevier Inc.
Peloso, Paul M; Khan, Mahweesh; Gross, Anita R; Carlesso, Lisa; Santaguida, Lina; Lowcock, Janet; MacDermid, Joy C; Walton, Dave; Goldsmith, Charlie H; Langevin, Pierre; Shi, Qiyun
2013-01-01
Objectives: To conduct an overview (review-of-reviews) on pharmacological interventions for neck pain. Search Strategy: Computerized databases and grey literature were searched from 2006 to 2012. Selection Criteria: Systematic reviews of randomized controlled trials (RCT) in adults with acute to chronic neck pain reporting effects of pharmacological interventions including injections on pain, function/disability, global perceived effect, quality of life and patient satisfaction. Data Collection & Analysis: Two independent authors selected articles, assessed risk of bias and extracted data The GRADE tool was used to evaluate the body of evidence and an external panel provided critical review. Main Results: We found 26 reviews reporting on 47 RCTs. Most pharmacological interventions had low to very low quality methodologic evidence with three exceptions. For chronic neck pain, there was evidence of: a small immediate benefit for eperison hydrochloride (moderate GRADE, 1 trial, 157 participants);no short-term pain relieving benefit for botulinum toxin-A compared to saline (strong GRADE; 5 trial meta-analysis, 258 participants) nor for subacute/chronic whiplash (moderate GRADE; 4 trial meta-analysis, 183 participants) including reduced pain, disability or global perceived effect; andno long-term benefit for medial branch block of facet joints with steroids (moderate GRADE; 1 trial, 120 participants) over placebo to reduce pain or disability; Reviewers' Conclusions: While in general there is a lack of evidence for most pharmacological interventions, current evidence is against botulinum toxin-A for chronic neck pain or subacute/chronic whiplash; against medial branch block with steroids for chronic facet joint pain; but in favour of the muscle relaxant eperison hydrochloride for chronic neck pain. PMID:24155805
Anterior ankle arthroscopy, distraction or dorsiflexion?
de Leeuw, Peter A J; Golanó, Pau; Clavero, Joan A; van Dijk, C Niek
2010-05-01
Anterior ankle arthroscopy can basically be performed by two different methods; the dorsiflexion- or distraction method. The objective of this study was to determine the size of the anterior working area for both the dorsiflexion and distraction method. The anterior working area is anteriorly limited by the overlying anatomy which includes the neurovascular bundle. We hypothesize that in ankle dorsiflexion the anterior neurovascular bundle will move away anteriorly from the ankle joint, whereas in ankle distraction the anterior neurovascular bundle is pulled tight towards the joint, thereby decreasing the safe anterior working area. Six fresh frozen ankle specimens, amputated above the knee, were scanned with computed tomography. Prior to scanning the anterior tibial artery was injected with contrast fluid and subsequently each ankle was scanned both in ankle dorsiflexion and in distraction. A special device was developed to reproducibly obtain ankle dorsiflexion and distraction in the computed tomography scanner. The distance between the anterior border of the inferior tibial articular facet and the posterior border of the anterior tibial artery was measured. The median distance from the anterior border of the inferior tibial articular facet to the posterior border of the anterior tibial artery in ankle dorsiflexion and distraction was 0.9 cm (range 0.7-1.5) and 0.7 cm (range 0.5-0.8), respectively. The distance in ankle dorsiflexion significantly exceeded the distance in ankle distraction (P = 0.03). The current study shows a significantly increased distance between the anterior distal tibia and the overlying anterior neurovascular bundle with the ankle in a slightly dorsiflexed position as compared to the distracted ankle position. We thereby conclude that the distracted ankle position puts the neurovascular structures more at risk for iatrogenic damage when performing anterior ankle arthroscopy.
Anterior ankle arthroscopy, distraction or dorsiflexion?
Golanó, Pau; Clavero, Joan A.; van Dijk, C. Niek
2010-01-01
Anterior ankle arthroscopy can basically be performed by two different methods; the dorsiflexion- or distraction method. The objective of this study was to determine the size of the anterior working area for both the dorsiflexion and distraction method. The anterior working area is anteriorly limited by the overlying anatomy which includes the neurovascular bundle. We hypothesize that in ankle dorsiflexion the anterior neurovascular bundle will move away anteriorly from the ankle joint, whereas in ankle distraction the anterior neurovascular bundle is pulled tight towards the joint, thereby decreasing the safe anterior working area. Six fresh frozen ankle specimens, amputated above the knee, were scanned with computed tomography. Prior to scanning the anterior tibial artery was injected with contrast fluid and subsequently each ankle was scanned both in ankle dorsiflexion and in distraction. A special device was developed to reproducibly obtain ankle dorsiflexion and distraction in the computed tomography scanner. The distance between the anterior border of the inferior tibial articular facet and the posterior border of the anterior tibial artery was measured. The median distance from the anterior border of the inferior tibial articular facet to the posterior border of the anterior tibial artery in ankle dorsiflexion and distraction was 0.9 cm (range 0.7–1.5) and 0.7 cm (range 0.5–0.8), respectively. The distance in ankle dorsiflexion significantly exceeded the distance in ankle distraction (P = 0.03). The current study shows a significantly increased distance between the anterior distal tibia and the overlying anterior neurovascular bundle with the ankle in a slightly dorsiflexed position as compared to the distracted ankle position. We thereby conclude that the distracted ankle position puts the neurovascular structures more at risk for iatrogenic damage when performing anterior ankle arthroscopy. PMID:20217392
Goode, A P; Nelson, A E; Kraus, V B; Renner, J B; Jordan, J M
2017-10-01
To determine differences in biomarker levels between radiographic phenotypes of facet joint osteoarthritis (FOA) only, spine OA only ((disc space narrowing (DSN) and vertebral osteophytes (OST)) or the combination of FOA and spine OA. A cross-sectional analysis of data from 555 participants in the Johnston County Osteoarthritis Project was performed. Lumbar spine levels were graded by severity (OST and DSN) and presence (FOA) of degeneration. Biomarkers included hyaluronan (HA) and type II collagen (CTX-II). Adjusted risk ratios (aRRR) were estimated using multinomial regression, with adjustment for age, race, sex, body mass index (BMI), and radiographic OA (knee, hip, hand). Interactions were tested between sex, race and low back symptoms. FOA only was present in 22.4%, 14.5% had spine OA only, and 34.6% had the combination of FOA and spine OA. Compared to the reference group of neither FOA or spine OA, a one unit higher ln HA level was associated with 31% higher relative risk ratio (RRR = 1.31 (95% 1.03, 1.67)) of having FOA only, while, a one unit higher lnuCTX-II level was associated with 84% higher relative risk ratio (RRR = 1.84 (95% CI 1.19, 2.84)) of having spine OA only. No significant interactions were identified. Interestingly, OA affecting the synovial facet joint was associated with a marker of inflammation (HA). Spine OA, affecting intervertebral discs that contain collagen type II, was associated with a marker reflecting collagen type II degradation (CTX-II). These findings suggest that biomarkers may reflect the different pathophysiologic processes of lumbar spine OA phenotypes. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Can We Achieve Intuitive Prosthetic Elbow Control Based on Healthy Upper Limb Motor Strategies?
Merad, Manelle; de Montalivet, Étienne; Touillet, Amélie; Martinet, Noël; Roby-Brami, Agnès; Jarrassé, Nathanaël
2018-01-01
Most transhumeral amputees report that their prosthetic device lacks functionality, citing the control strategy as a major limitation. Indeed, they are required to control several degrees of freedom with muscle groups primarily used for elbow actuation. As a result, most of them choose to have a one-degree-of-freedom myoelectric hand for grasping objects, a myoelectric wrist for pronation/supination, and a body-powered elbow. Unlike healthy upper limb movements, the prosthetic elbow joint angle, adjusted prior to the motion, is not involved in the overall upper limb movements, causing the rest of the body to compensate for the lack of mobility of the prosthesis. A promising solution to improve upper limb prosthesis control exploits the residual limb mobility: like in healthy movements, shoulder and prosthetic elbow motions are coupled using inter-joint coordination models. The present study aims to test this approach. A transhumeral amputated individual used a prosthesis with a residual limb motion-driven elbow to point at targets. The prosthetic elbow motion was derived from IMU-based shoulder measurements and a generic model of inter-joint coordinations built from healthy individuals data. For comparison, the participant also performed the task while the prosthetic elbow was implemented with his own myoelectric control strategy. The results show that although the transhumeral amputated participant achieved the pointing task with a better precision when the elbow was myoelectrically-controlled, he had to develop large compensatory trunk movements. Automatic elbow control reduced trunk displacements, and enabled a more natural body behavior with synchronous shoulder and elbow motions. However, due to socket impairments, the residual limb amplitudes were not as large as those of healthy shoulder movements. Therefore, this work also investigates if a control strategy whereby prosthetic joints are automatized according to healthy individuals' coordination models can lead to an intuitive and natural prosthetic control. PMID:29456499
Kim, Jun Young; Kwon, Jae Yeol; Kim, Moon Seok; Lee, Jeong Jae; Kim, Il Sup; Hong, Jae Taek
2018-03-01
To compare the morphometry of subaxial cervical spine between cerebral palsy (CP) and normal control. We retrospectively analyzed 72 patients with CP, as well as 72 patients from normal population. The two groups were matched for age, sex, and body mass index. Pedicle, lateral mass (LM), and vertebral foramen were evaluated using computed tomography (CT) imaging. Pedicle diameter, LM height, thickness, width and vertebral foramen asymmetry (VFA) were measured and compared between the two groups. Cervical dynamic motion, disc and facet joint degeneration were investigated. Additionally, we compared the morphology of LM between convex side and concave side with cervical scoliotic CP patients. LM height was smaller in CP group. LM thickness and width were larger in CP group at mid-cervical level. In 40 CP patients with cervical scoliosis, there were no height and width differences between convex and concave side. Pedicle outer diameter was not statistically different between two groups. Pedicle inner diameter was significantly smaller in CP group. Pedicle sclerosis was more frequent in CP patients. VFA was larger in CP group at C3, C4, and C5. Disc/facet degeneration grade was higher in the CP group. Cervical motion of CP group was smaller than those of the control group. LM morphology of CP patients was different from normal population. Sclerotic pedicles and vertebral foramen asymmetry were more commonly identified in CP patients. CP patients were more likely to demonstrate progressive disc/facet degeneration. This data may provide useful information on cervical posterior instrumentation in CP patients.
The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion
2012-01-01
Background The rear-wheel camber, defined as the inclination of the rear wheels, is usually used in wheelchair sports, but it is becoming increasingly employed in daily propulsion. Although the rear-wheel camber can increase stability, it alters physiological performance during propulsion. The purpose of the study is to investigate the effects of rear-wheel cambers on temporal-spatial parameters, joint angles, and propulsion patterns. Methods Twelve inexperienced subjects (22.3±1.6 yr) participated in the study. None had musculoskeletal disorders in their upper extremities. An eight-camera motion capture system was used to collect the three-dimensional trajectory data of markers attached to the wheelchair-user system during propulsion. All participants propelled the same wheelchair, which had an instrumented wheel with cambers of 0°, 9°, and 15°, respectively, at an average velocity of 1 m/s. Results The results show that the rear-wheel camber significantly affects the average acceleration, maximum end angle, trunk movement, elbow joint movement, wrist joint movement, and propulsion pattern. The effects are especially significant between 0° and 15°. For a 15° camber, the average acceleration and joint peak angles significantly increased (p < 0.01). A single loop pattern (SLOP) was adopted by most of the subjects. Conclusions The rear-wheel camber affects propulsion patterns and joint range of motion. When choosing a wheelchair with camber adjustment, the increase of joint movements and the base of support should be taken into consideration. PMID:23173938
The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion.
Tsai, Chung-Ying; Lin, Chien-Ju; Huang, Yueh-Chu; Lin, Po-Chou; Su, Fong-Chin
2012-11-22
The rear-wheel camber, defined as the inclination of the rear wheels, is usually used in wheelchair sports, but it is becoming increasingly employed in daily propulsion. Although the rear-wheel camber can increase stability, it alters physiological performance during propulsion. The purpose of the study is to investigate the effects of rear-wheel cambers on temporal-spatial parameters, joint angles, and propulsion patterns. Twelve inexperienced subjects (22.3±1.6 yr) participated in the study. None had musculoskeletal disorders in their upper extremities. An eight-camera motion capture system was used to collect the three-dimensional trajectory data of markers attached to the wheelchair-user system during propulsion. All participants propelled the same wheelchair, which had an instrumented wheel with cambers of 0°, 9°, and 15°, respectively, at an average velocity of 1 m/s. The results show that the rear-wheel camber significantly affects the average acceleration, maximum end angle, trunk movement, elbow joint movement, wrist joint movement, and propulsion pattern. The effects are especially significant between 0° and 15°. For a 15° camber, the average acceleration and joint peak angles significantly increased (p < 0.01). A single loop pattern (SLOP) was adopted by most of the subjects. The rear-wheel camber affects propulsion patterns and joint range of motion. When choosing a wheelchair with camber adjustment, the increase of joint movements and the base of support should be taken into consideration.
Yau, Michelle S; Demissie, Serkalem; Zhou, Yanhua; Anderson, Dennis E; Lorbergs, Amanda L; Kiel, Douglas P; Allaire, Brett T; Yang, Laiji; Cupples, L Adrienne; Travison, Thomas G; Bouxsein, Mary L; Karasik, David; Samelson, Elizabeth J
2017-01-01
Hyperkyphosis is a common spinal disorder in older adults, characterized by excessive forward curvature of the thoracic spine and adverse health outcomes. The etiology of hyperkyphosis has not been firmly established, but may be related to changes that occur with aging in the vertebrae, discs, joints, and muscles, which function as a unit to support the spine. Determining the contribution of genetics to thoracic spine curvature and the degree of genetic sharing among co-occurring measures of spine health may provide insight into the etiology of hyperkyphosis. The purpose of our study was to estimate heritability of thoracic spine curvature using T4–T12 kyphosis (Cobb) angle and genetic correlations between thoracic spine curvature and vertebral fracture, intervertebral disc height narrowing, facet joint osteoarthritis (OA), lumbar spine volumetric bone mineral density (vBMD), and paraspinal muscle area and density, which were all assessed from computed tomography (CT) images. Participants included 2063 women and men in the second and third generation offspring of the original cohort of the Framingham Study. Heritability of kyphosis angle, adjusted for age, sex, and weight, was 54% (95% confidence interval [CI], 43% to 64%). We found moderate genetic correlations between kyphosis angle and paraspinal muscle area ( ρ^G, −0.46; 95% CI, −0.67 to −0.26), vertebral fracture ( ρ^G, 0.39; 95% CI, 0.18 to 0.61), vBMD ( ρ^G,−0.23; 95% CI, −0.41 to −0.04), and paraspinal muscle density ( ρ^G,−0.22; 95% CI, −0.48 to 0.03). Genetic correlations between kyphosis angle and disc height narrowing ( ρ^G, 0.17; 95% CI, −0.05 to 0.38) and facet joint OA ( ρ^G, 0.05; 95% CI, −0.15 to 0.24) were low. Thoracic spine curvature may be heritable and share genetic factors with other age-related spine traits including trunk muscle size, vertebral fracture, and bone mineral density. PMID:27455046
Pandis, Petros; Prinold, Joe A.I.; Bull, Anthony M.J.
2015-01-01
Background Driving is one of the most common everyday tasks and the rotator cuff muscles are the primary shoulder stabilisers. Muscle forces during driving are not currently known, yet knowledge of these would influence important clinical advice such as return to activities after surgery. The aim of this study is to quantify shoulder and rotator cuff muscle forces during driving in different postures. Methods A musculoskeletal modelling approach is taken, using a modified driving simulator in combination with an upper limb musculoskeletal model (UK National Shoulder Model). Motion data and external force vectors were model inputs and upper limb muscle and joint forces were the outputs. Findings Comparisons of the predicted glenohumeral joint forces were compared to in vivo literature values, with good agreement demonstrated (61 SD 8% body weight mean peak compared to 60 SD 1% body weight mean peak). High muscle activation was predicted in the rotator cuff muscles; particularly supraspinatus (mean 55% of the maximum and up to 164 SD 27 N). This level of loading is up to 72% of mean failure strength for supraspinatus repairs, and could therefore be dangerous for some cases. Statistically significant and large differences are shown to exist in the joint and muscle forces for different driving positions as well as steering with one or both hands (up to 46% body weight glenohumeral joint force). Interpretation These conclusions should be a key consideration in rehabilitating the shoulder after surgery, preventing specific upper limb injuries and predicting return to driving recommendations. PMID:26139549
Upper-limb kinematic reconstruction during stroke robot-aided therapy.
Papaleo, E; Zollo, L; Garcia-Aracil, N; Badesa, F J; Morales, R; Mazzoleni, S; Sterzi, S; Guglielmelli, E
2015-09-01
The paper proposes a novel method for an accurate and unobtrusive reconstruction of the upper-limb kinematics of stroke patients during robot-aided rehabilitation tasks with end-effector machines. The method is based on a robust analytic procedure for inverse kinematics that simply uses, in addition to hand pose data provided by the robot, upper arm acceleration measurements for computing a constraint on elbow position; it is exploited for task space augmentation. The proposed method can enable in-depth comprehension of planning strategy of stroke patients in the joint space and, consequently, allow developing therapies tailored for their residual motor capabilities. The experimental validation has a twofold purpose: (1) a comparative analysis with an optoelectronic motion capturing system is used to assess the method capability to reconstruct joint motion; (2) the application of the method to healthy and stroke subjects during circle-drawing tasks with InMotion2 robot is used to evaluate its efficacy in discriminating stroke from healthy behavior. The experimental results have shown that arm angles are reconstructed with a RMSE of 8.3 × 10(-3) rad. Moreover, the comparison between healthy and stroke subjects has revealed different features in the joint space in terms of mean values and standard deviations, which also allow assessing inter- and intra-subject variability. The findings of this study contribute to the investigation of motor performance in the joint space and Cartesian space of stroke patients undergoing robot-aided therapy, thus allowing: (1) evaluating the outcomes of the therapeutic approach, (2) re-planning the robotic treatment based on patient needs, and (3) understanding pathology-related motor strategies.
Kumar, Yogaprakash; Yen, Shih-Cheng; Tay, Arthur; Lee, Wangwei; Gao, Fan; Zhao, Ziyi; Li, Jingze; Hon, Benjamin; Tian-Ma Xu, Tim; Cheong, Angela; Koh, Karen; Ng, Yee-Sien; Chew, Effie; Koh, Gerald
2015-02-01
Range-of-motion (ROM) assessment is a critical assessment tool during the rehabilitation process. The conventional approach uses the goniometer which remains the most reliable instrument but it is usually time-consuming and subject to both intra- and inter-therapist measurement errors. An automated wireless wearable sensor system for the measurement of ROM has previously been developed by the current authors. Presented is the correlation and accuracy of the automated wireless wearable sensor system against a goniometer in measuring ROM in the major joints of upper (UEs) and lower extremities (LEs) in 19 healthy subjects and 20 newly disabled inpatients through intra (same) subject comparison of ROM assessments between the sensor system against goniometer measurements by physical therapists. In healthy subjects, ROM measurements using the new sensor system were highly correlated with goniometry, with 95% of differences < 20° and 10° for most movements in major joints of UE and LE, respectively. Among inpatients undergoing rehabilitation, ROM measurements using the new sensor system were also highly correlated with goniometry, with 95% of the differences being < 20° and 25° for most movements in the major joints of UE and LE, respectively.
NASA Astrophysics Data System (ADS)
Wang, Dan; Shen, Jun; Wang, Lin-Zhi
2012-03-01
The effects of the types of overlap on the mechanical properties of the friction stir spot welding (FSSW) welded AZ series magnesium alloy joints were investigated by microstructural observations, microhardness tests, and tensile tests. The results show that the microstructure of the stir zone adjacent to the periphery of the rotating pin is mainly composed of the upper sheet. The average distance D between the longitudinal segment of the curved interface and the keyhole periphery, the tensile shear force, and the microhardness of the stir zone of the FSSW welded AZ61 alloy joint are the highest in all samples. During FSSW of AZ31 and AZ61 dissimilar magnesium alloys, the irregular deformation of the longitudinal segment of the curved interface appears, while the microhardness of the stir zone is higher when AZ61 alloy is the upper sheet. Moreover, the microhardness of the stir zone increases initially and then decreases sharply in the longitudinal test position.
NASA Astrophysics Data System (ADS)
Khairuddin, I. M.; Sidek, S. N.; Yusof, H. Md; Majeed, A. P. P. Abdul; Puzi, A. Ahmad; Mat Rosly, H.
2018-04-01
Rehabilitation is a necessary restoration process of recovering impaired joint motion and muscle strength. Recent trends of rehabilitation have also moved towards providing more participation of the patient in therapy rather than simple passive treatments as it has been demonstrated to be non-trivial in promoting neural plasticity meant to promote motor recovery process. This paper presents an assistive control strategy based on impedance control technique. Dynamic modelling of upper arm is obtained by utilising the Euler-Lagrange formulation. The proportional-derivative (PD), computed torque control (CTC) impedance based framework is applied to examine its effectiveness in performing joint-space control with objectives specified in rehabilitating the elbow joint along the sagittal plane. A feasibility study through simulation was carried out to investigate the efficacy of the proposed controller on acceleration-based impedance model. The results show that impedance controller is more suitable as it allows the cooperative effort of the patient.
Intensive Titan exploration begins.
Mahaffy, Paul R
2005-05-13
The Cassini Orbiter spacecraft first skimmed through the tenuous upper atmosphere of Titan on 26 October 2004. This moon of Saturn is unique in our solar system, with a dense nitrogen atmosphere that is cold enough in places to rain methane, the feedstock for the atmospheric chemistry that produces hydrocarbons, nitrile compounds, and Titan's orange haze. The data returned from this flyby supply new information on the magnetic field and plasma environment around Titan, expose new facets of the dynamics and chemistry of Titan's atmosphere, and provide the first glimpses of what appears to be a complex, fluid-processed, geologically young Titan surface.
Upper-limb biomechanical analysis of wheelchair transfer techniques in two toilet configurations.
Tsai, Chung-Ying; Boninger, Michael L; Bass, Sarah R; Koontz, Alicia M
2018-06-01
Using proper technique is important for minimizing upper limb kinetics during wheelchair transfers. The objective of the study was to 1) evaluate the transfer techniques used during toilet transfers and 2) determine the impact of technique on upper limb joint loading for two different toilet configurations. Twenty-six manual wheelchair users (23 men and 3 women) performed transfers in a side and front wheelchair-toilet orientation while their habitual transfer techniques were evaluated using the Transfer Assessment Instrument. A motion analysis system and force sensors were used to record biomechanical data during the transfers. More than 20% of the participants failed to complete five transfer skills in the side setup compared to three skills in the front setup. Higher quality skills overall were associated with lower peak forces and moments in both toilet configurations (-0.68 < r < -0.40, p < 0.05). In the side setup, participants who properly placed their hands in a stable position and used proper leading handgrips had lower shoulder resultant joint forces and moments than participants who did not perform these skills correctly (p ≤ 0.04). In the front setup, positioning the wheelchair within three inches of the transfer target was associated with reduced peak trailing forces and moments across all three upper limb joints (p = 0.02). Transfer skills training, making toilet seats level with the wheelchair seat, positioning the wheelchair closer to the toilet and mounting grab bars in a more ideal location for persons who do sitting pivot transfers may facilitate better quality toilet transfers. Published by Elsevier Ltd.
Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël
2014-01-01
This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players. PMID:25117871
Lessard, Steven; Pansodtee, Pattawong; Robbins, Ash; Baltaxe-Admony, Leya Breanna; Trombadore, James M; Teodorescu, Mircea; Agogino, Adrian; Kurniawan, Sri
2017-07-01
Wearable robots can potentially offer their users enhanced stability and strength. These augmentations are ideally designed to actuate harmoniously with the user's movements and provide extra force as needed. The creation of such robots, however, is particularly challenging due to the underlying complexity of the human body. In this paper, we present a compliant, robotic exosuit for upper extremities called CRUX. This exosuit, inspired by tensegrity models of the human arm, features a lightweight (1.3 kg), flexible multi-joint design for portable augmentation. We also illustrate how CRUX maintains the full range of motion of the upper-extremities for its users while providing multi-DoF strength amplification to the major muscles of the arm, as evident by tracking the heart rate of an individual exercising said arm. Exosuits such as CRUX may be useful in physical therapy and in extreme environments where users are expected to exert their bodies to the fullest extent.
About the Lung and Upper Aerodigestive Cancer Research Group | Division of Cancer Prevention
The Lung and Upper Aerodigestive Cancer Research Group conducts and supports research on the prevention and early detection of lung and head and neck cancers, as well as new approaches to clinical prevention studies including cancer immunoprevention.Phase 0/I/II Cancer Prevention Clinical Trials ProgramThe group jointly administers the Phase 0/I/II Cancer Prevention Clinical
Troncossi, Marco; Borghi, Corrado; Chiossi, Marco; Davalli, Angelo; Parenti-Castelli, Vincenzo
2009-05-01
The application of a design methodology for the determination of the optimal prosthesis architecture for a given upper limb amputee is presented in this paper along with the discussion of its results. In particular, a novel procedure was used to provide the main guidelines for the design of an actuated shoulder articulation for externally powered prostheses. The topology and the geometry of the new articulation were determined as the optimal compromise between wearability (for the ease of use and the patient's comfort) and functionality of the device (in terms of mobility, velocity, payload, etc.). This choice was based on kinematic and kinetostatic analyses of different upper limb prosthesis models and on purpose-built indices that were set up to evaluate the models from different viewpoints. Only 12 of the 31 simulated prostheses proved a sufficient level of functionality: among these, the optimal solution was an articulation having two actuated revolute joints with orthogonal axes for the elevation of the upper arm in any vertical plane and a frictional joint for the passive adjustment of the humeral intra-extra rotation. A prototype of the mechanism is at the clinical test stage.
Zhang, Lijuan; Fan, Aiqun; Yan, Jun; He, Yan; Zhang, Huiting; Zhang, Huizhen; Zhong, Qiaoling; Liu, Feng; Luo, Qinghua; Zhang, Liping; Tang, Hailin; Xin, Mingzhu
2016-06-01
Upper limb lymphedema is a common complication after radical mastectomy in patients with breast cancer. In this study, we examined the efficacy of self-manual lymph drainage (MLD) after modified radical mastectomy for the prevention of upper limb lymphedema, scar formation, or shoulder joint dysfunction in breast cancer patients. Breast cancer patients scheduled for modified radical mastectomy were randomly apportioned to undergo physical exercise only (PE group, the control; n = 500) or self-MLD as well as exercise (MLD group; n = 500) after surgery. In the PE group, patients started to undertake remedial exercises and progressive weight training after recovery from anesthesia. In the MLD group, in addition to receiving the same treatments as in the PE group, the patients were trained to perform self-MLD on the surgical incision for 10 min/session, 3 sessions/day, beginning after suture removal and incision closure (10 to 30 days after the surgery). Scar formation was evaluated at one week, and 1, 3, 6, and 12 months after the surgery, respectively. Upper limb circumference and shoulder abduction were measured 24 h before surgery, and at one week, and 1, 3, 6 and 12 months after the surgery. Compared to those in the PE group, patients in MLD group experienced significant improvements in scar contracture, shoulder abduction, and upper limb circumference. Self-MLD, in combination with physical exercise, is beneficial for breast cancer patients in preventing postmastectomy scar formation, upper limb lymphedema, and shoulder joint dysfunction.
Macke, C; Winkelmann, M; Mommsen, P; Probst, C; Zelle, B; Krettek, C; Zeckey, C
2017-02-01
To analyse the influence of upper extremity trauma on the long-term outcome of polytraumatised patients. A total of 629 multiply injured patients were included in a follow-up study at least ten years after injury (mean age 26.5 years, standard deviation 12.4). The extent of the patients' injury was classified using the Injury Severity Score. Outcome was measured using the Hannover Score for Polytrauma Outcome (HASPOC), Short Form (SF)-12, rehabilitation duration, and employment status. Outcomes for patients with and without a fracture of the upper extremity were compared and analysed with regard to specific fracture regions and any additional brachial plexus lesion. In all, 307 multiply-injured patients with and 322 without upper extremity injuries were included in the study. The groups with and without upper limb injuries were similar with respect to demographic data and injury pattern, except for midface trauma. There were no significant differences in the long-term outcome. In patients with brachial plexus lesions there were significantly more who were unemployed, required greater retraining and a worse HASPOC. Injuries to the upper extremities seem to have limited effect on long-term outcome in patients with polytrauma, as long as no injury was caused to the brachial plexus. Cite this article: Bone Joint J 2017;99-B:255-60. ©2017 The British Editorial Society of Bone & Joint Surgery.
Kingston, David C; Riddell, Maureen F; McKinnon, Colin D; Gallagher, Kaitlin M; Callaghan, Jack P
2016-02-01
We evaluated the effect of work surface angle and input hardware on upper-limb posture when using a hybrid computer workstation. Offices use sit-stand and/or tablet workstations to increase worker mobility. These workstations may have negative effects on upper-limb joints by increasing time spent in non-neutral postures, but a hybrid standing workstation may improve working postures. Fourteen participants completed office tasks in four workstation configurations: a horizontal or sloped 15° working surface with computer or tablet hardware. Three-dimensional right upper-limb postures were recorded during three tasks: reading, form filling, and writing e-mails. Amplitude probability distribution functions determined the median and range of upper-limb postures. The sloped-surface tablet workstation decreased wrist ulnar deviation by 5° when compared to the horizontal-surface computer when reading. When using computer input devices (keyboard and mouse), the shoulder, elbow, and wrist were closest to neutral joint postures when working on a horizontal work surface. The elbow was 23° and 15° more extended, whereas the wrist was 6° less ulnar deviated, when reading compared to typing forms or e-mails. We recommend that the horizontal-surface computer configuration be used for typing and the sloped-surface tablet configuration be used for intermittent reading tasks in this hybrid workstation. Offices with mobile employees could use this workstation for alternating their upper-extremity postures; however, other aspects of the device need further investigation. © 2015, Human Factors and Ergonomics Society.
Andrés, Juan; Gracia, Lourdes; Gouveia, Amanda Fernandes; Ferrer, Mateus Meneghetti; Longo, Elson
2015-10-09
Morphology is a key property of materials. Owing to their precise structure and morphology, crystals and nanocrystals provide excellent model systems for joint experimental and theoretical investigations into surface-related properties. Faceted polyhedral crystals and nanocrystals expose well-defined crystallographic planes depending on the synthesis method, which allow for thoughtful investigations into structure-reactivity relationships under practical conditions. This feature article introduces recent work, based on the combined use of experimental findings and first-principles calculations, to provide deeper knowledge of the electronic, structural, and energetic properties controlling the morphology and the transformation mechanisms of different metals and metal oxides: Ag, anatase TiO2, BaZrO3, and α-Ag2WO4. According to the Wulff theorem, the equilibrium shapes of these systems are obtained from the values of their respective surface energies. These investigations are useful to gain further understanding of how to achieve morphological control of complex three-dimensional crystals by tuning the ratio of the surface energy values of the different facets. This strategy allows the prediction of possible morphologies for a crystal and/or nanocrystal by controlling the relative values of surface energies.
Multilevel cervical laminectomy and fusion with posterior cervical cages
Bou Monsef, Jad N; Siemionow, Krzysztof B
2017-01-01
Context: Cervical spondylotic myelopathy (CSM) is a progressive disease that can result in significant disability. Single-level stenosis can be effectively decompressed through either anterior or posterior techniques. However, multilevel pathology can be challenging, especially in the presence of significant spinal stenosis. Three-level anterior decompression and fusion are associated with higher nonunion rates and prolonged dysphagia. Posterior multilevel laminectomies with foraminotomies jeopardize the bone stock required for stable fixation with lateral mass screws (LMSs). Aims: This is the first case series of multilevel laminectomy and fusion for CSM instrumented with posterior cervical cages. Settings and Design: Three patients presented with a history of worsening neck pain, numbness in bilateral upper extremities and gait disturbance, and examination findings consistent with myeloradiculopathy. Cervical magnetic resonance imaging demonstrated multilevel spondylosis resulting in moderate to severe bilateral foraminal stenosis at three cervical levels. Materials and Methods: The patients underwent a multilevel posterior cervical laminectomy and instrumented fusion with intervertebral cages placed between bilateral facet joints over three levels. Oswestry disability index and visual analog scores were collected preoperatively and at each follow-up. Pre- and post-operative images were analyzed for changes in cervical alignment and presence of arthrodesis. Results: Postoperatively, all patients showed marked improvement in neurological symptoms and neck pain. They had full resolution of radicular symptoms by 6 weeks postoperatively. At 12-month follow-up, they demonstrated solid arthrodesis on X-rays and computed tomography scan. Conclusions: Posterior cervical cages may be an alternative option to LMSs in multilevel cervical laminectomy and fusion for cervical spondylotic myeloradiculopathy. PMID:29403242
The synergistic effect of prosociality and physical attractiveness on mate desirability.
Ehlebracht, Daniel; Stavrova, Olga; Fetchenhauer, Detlef; Farrelly, Daniel
2017-12-17
Mate selection requires a prioritization and joint evaluation of different traits present or absent in potential mates. Herein, we focus on two such traits - physical attractiveness and prosociality - and examine how they jointly shape impressions of overall desirability. We report on two related experiments which make use of an innovative methodology combining large samples of raters and target persons (i.e., stimuli) and information on targets' behaviour in economic games representing altruistic behaviour (Experiment 1) and trustworthiness (Experiment 2), two important facets of prosociality. In accordance with predictions derived from a cognitive perspective on mate choice and sexual strategies theory, the results show that the impact of being prosocial on an individual's overall desirability was increased further by them also being physically attractive, but only in long-term mating contexts. Furthermore, we show that men's mate preferences for certain prosocial traits (i.e., trustworthiness) were more context-dependent than women's due to differential evolutionary pressures for ancestral men and women. © 2017 The British Psychological Society.
Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems.
Strausfeld, Nicholas J; Ma, Xiaoya; Edgecombe, Gregory D; Fortey, Richard A; Land, Michael F; Liu, Yu; Cong, Peiyun; Hou, Xianguang
2016-03-01
Four types of eyes serve the visual neuropils of extant arthropods: compound retinas composed of adjacent facets; a visual surface populated by spaced eyelets; a smooth transparent cuticle providing inwardly directed lens cylinders; and single-lens eyes. The first type is a characteristic of pancrustaceans, the eyes of which comprise lenses arranged as hexagonal or rectilinear arrays, each lens crowning 8-9 photoreceptor neurons. Except for Scutigeromorpha, the second type typifies Myriapoda whose relatively large eyelets surmount numerous photoreceptive rhabdoms stacked together as tiers. Scutigeromorph eyes are facetted, each lens crowning some dozen photoreceptor neurons of a modified apposition-type eye. Extant chelicerate eyes are single-lensed except in xiphosurans, whose lateral eyes comprise a cuticle with a smooth outer surface and an inner one providing regular arrays of lens cylinders. This account discusses whether these disparate eye types speak for or against divergence from one ancestral eye type. Previous considerations of eye evolution, focusing on the eyes of trilobites and on facet proliferation in xiphosurans and myriapods, have proposed that the mode of development of eyes in those taxa is distinct from that of pancrustaceans and is the plesiomorphic condition from which facetted eyes have evolved. But the recent discovery of enormous regularly facetted compound eyes belonging to early Cambrian radiodontans suggests that high-resolution facetted eyes with superior optics may be the ground pattern organization for arthropods, predating the evolution of arthrodization and jointed post-protocerebral appendages. Here we provide evidence that compound eye organization in stem-group euarthropods of the Cambrian can be understood in terms of eye morphologies diverging from this ancestral radiodontan-type ground pattern. We show that in certain Cambrian groups apposition eyes relate to fixed or mobile eyestalks, whereas other groups reveal concomitant evolution of sessile eyes equipped with optics typical of extant xiphosurans. Observations of fossil material, including that of trilobites and eurypterids, support the proposition that the ancestral compound eye was the apposition type. Cambrian arthropods include possible precursors of mandibulate eyes. The latter are the modified compound eyes, now sessile, and their underlying optic lobes exemplified by scutigeromorph chilopods, and the mobile stalked compound eyes and more elaborate optic lobes typifying Pancrustacea. Radical divergence from an ancestral apposition type is demonstrated by the evolution of chelicerate eyes, from doublet sessile-eyed stem-group taxa to special apposition eyes of xiphosurans, the compound eyes of eurypterids, and single-lens eyes of arachnids. Different eye types are discussed with respect to possible modes of life of the extinct species that possessed them, comparing these to extant counterparts and the types of visual centers the eyes might have served. Copyright © 2015 Elsevier Ltd. All rights reserved.
Arthrographic and clinical findings in patients with hemiplegic shoulder pain.
Lo, Sui-Foon; Chen, Shu-Ya; Lin, Hsiu-Chen; Jim, Yick-Fung; Meng, Nai-Hsin; Kao, Mu-Jung
2003-12-01
To identify the etiology of hemiplegic shoulder pain by arthrographic and clinical examinations and to determine the correlation between arthrographic measurements and clinical findings in patients with hemiplegic shoulder pain. Case series. Medical center of a 1582-bed teaching institution in Taiwan. Thirty-two consecutive patients with hemiplegic shoulder pain within a 1-year period after first stroke were recruited. Not applicable. Clinical examinations included Brunnstrom stage, muscle spasticity distribution, presence or absence of subluxation and shoulder-hand syndrome, and passive range of motion (PROM) of the shoulder joint. Arthrographic measurements included shoulder joint volume and capsular morphology. Most patients had onset of hemiplegic shoulder pain less than 2 months after stroke. Adhesive capsulitis was the main cause of shoulder pain, with 50% of patients having adhesive capsulitis, 44% having shoulder subluxation, 22% having rotator cuff tears, and 16% having shoulder-hand syndrome. Patients with adhesive capsulitis showed significant restriction of passive shoulder external rotation and abduction and a higher incidence of shoulder-hand syndrome (P=.017). Those with irregular capsular margins had significantly longer shoulder pain duration and more restricted passive shoulder flexion (P=.017) and abduction (P=.020). Patients with shoulder subluxation had significantly larger PROM (flexion, P=.007; external rotation, P<.001; abduction, P=.001; internal rotation, P=.027), lower muscle tone (P=.001), and lower Brunnstrom stages of the proximal upper extremity (P=.025) and of the distal upper extremity (P=.001). Muscle spasticity of the upper extremity was slightly negatively correlated with shoulder PROM. Shoulder joint volume was moderately positively correlated with shoulder PROM. After investigating the hemiplegic shoulder joint through clinical and arthrographic examinations, we found that the causes of hemiplegic shoulder pain are complicated. Adhesive capsulitis was the leading cause of shoulder pain, followed by shoulder subluxation. Greater PROM of the shoulder joint, associated with larger joint volume, decreased the occurrence of adhesive capsulitis. Proper physical therapy and cautious handling of stroke patients to preserve shoulder mobility and function during early rehabilitation are important for a good outcome.
A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements
NASA Astrophysics Data System (ADS)
Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji
2017-02-01
Objective. Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Approach. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Main results. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81 ± 0.09, 0.85 ± 0.09, and 0.76 ± 0.13, respectively) and the patients (e.g. 0.91 ± 0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. Significance. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.
A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji
2017-02-01
Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81 ± 0.09, 0.85 ± 0.09, and 0.76 ± 0.13, respectively) and the patients (e.g. 0.91 ± 0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.
Elbow joint fatigue and bench-press training.
Huang, Yen-Po; Chou, You-Li; Chen, Feng-Chun; Wang, Rong-Tyai; Huang, Ming-Jer; Chou, Paul Pei-Hsi
2014-01-01
Bench-press exercises are among the most common form of training exercise for the upper extremity because they yield a notable improvement in both muscle strength and muscle endurance. The literature contains various investigations into the effects of different bench-press positions on the degree of muscle activation. However, the effects of fatigue on the muscular performance and kinetics of the elbow joint are not understood fully. To investigate the effects of fatigue on the kinetics and myodynamic performance of the elbow joint in bench-press training. Controlled laboratory study. Motion research laboratory. A total of 18 physically healthy male students (age = 19.6 ± 0.8 years, height = 168.7 ± 5.5 cm, mass = 69.6 ± 8.6 kg) participated in the investigation. All participants were right-hand dominant, and none had a history of upper extremity injuries or disorders. Participants performed bench-press training until fatigued. Maximal possible number of repetitions, cycle time, myodynamic decline rate, elbow-joint force, and elbow-joint moment. We observed a difference in cycle time in the initial (2.1 ± 0.42 seconds) and fatigue (2.58 ± 0.46 seconds) stages of the bench-press exercise (P = .04). As the participants fatigued, we observed an increase in the medial-lateral force (P = .03) and internal-external moment (P ≤ .04) acting on the elbow joint. Moreover, a reduction in the elbow muscle strength was observed in the elbow extension-flexion (P ≤ .003) and forearm supination-pronation (P ≤ .001) conditions. The results suggest that performing bench-press exercises to the point of fatigue increases elbow-joint loading and may further increase the risk of injury. Therefore, when clinicians design bench-press exercise regimens for general athletic training, muscle strengthening, or physical rehabilitation, they should control carefully the maximal number of repetitions.
Rahman, Hafizur; Currier, Eric; Johnson, Marshall; Goding, Rick; Johnson, Amy Wagoner; Kersh, Mariana E
2017-11-01
Rotator cuff tears (RCTs) are one of the primary causes of shoulder pain and dysfunction in the upper extremity accounting over 4.5 million physician visits per year with 250,000 rotator cuff repairs being performed annually in the U.S. While the tear is often considered an injury to a specific tendon/tendons and consequently treated as such, there are secondary effects of RCTs that may have significant consequences for shoulder function. Specifically, RCTs have been shown to affect the joint cartilage, bone, the ligaments, as well as the remaining intact tendons of the shoulder joint. Injuries associated with the upper extremities account for the largest percent of workplace injuries. Unfortunately, the variable success rate related to RCTs motivates the need for a better understanding of the biomechanical consequences associated with the shoulder injuries. Understanding the timing of the injury and the secondary anatomic consequences that are likely to have occurred are also of great importance in treatment planning because the approach to the treatment algorithm is influenced by the functional and anatomic state of the rotator cuff and the shoulder complex in general. In this review, we summarized the contribution of RCTs to joint stability in terms of both primary (injured tendon) and secondary (remaining tissues) consequences including anatomic changes in the tissues surrounding the affected tendon/tendons. The mechanical basis of normal shoulder joint function depends on the balance between active muscle forces and passive stabilization from the joint surfaces, capsular ligaments, and labrum. Evaluating the role of all tissues working together as a system for maintaining joint stability during function is important to understand the effects of RCT, specifically in the working population, and may provide insight into root causes of shoulder injury.
Begon, Mickaël; Andersen, Michael Skipper; Dumas, Raphaël
2018-03-01
Multibody kinematics optimization (MKO) aims to reduce soft tissue artefact (STA) and is a key step in musculoskeletal modeling. The objective of this review was to identify the numerical methods, their validation and performance for the estimation of the human joint kinematics using MKO. Seventy-four papers were extracted from a systematized search in five databases and cross-referencing. Model-derived kinematics were obtained using either constrained optimization or Kalman filtering to minimize the difference between measured (i.e., by skin markers, electromagnetic or inertial sensors) and model-derived positions and/or orientations. While hinge, universal, and spherical joints prevail, advanced models (e.g., parallel and four-bar mechanisms, elastic joint) have been introduced, mainly for the knee and shoulder joints. Models and methods were evaluated using: (i) simulated data based, however, on oversimplified STA and joint models; (ii) reconstruction residual errors, ranging from 4 mm to 40 mm; (iii) sensitivity analyses which highlighted the effect (up to 36 deg and 12 mm) of model geometrical parameters, joint models, and computational methods; (iv) comparison with other approaches (i.e., single body kinematics optimization and nonoptimized kinematics); (v) repeatability studies that showed low intra- and inter-observer variability; and (vi) validation against ground-truth bone kinematics (with errors between 1 deg and 22 deg for tibiofemoral rotations and between 3 deg and 10 deg for glenohumeral rotations). Moreover, MKO was applied to various movements (e.g., walking, running, arm elevation). Additional validations, especially for the upper limb, should be undertaken and we recommend a more systematic approach for the evaluation of MKO. In addition, further model development, scaling, and personalization methods are required to better estimate the secondary degrees-of-freedom (DoF).
Direct adenovirus-mediated gene delivery to the temporomandibular joint in guinea-pigs.
Kuboki, T; Nakanishi, T; Kanyama, M; Sonoyama, W; Fujisawa, T; Kobayashi, K; Ikeda, T; Kubo, T; Yamashita, A; Takigawa, M
1999-09-01
Adenovirus vector system is expected to be useful for direct gene therapy for joint disease. This study first sought to confirm that foreign genes can be transferred to articular chondrocytes in primary culture. Next, recombinant adenovirus vectors harbouring beta-galactosidase gene (LacZ) was injected directly into the temporomandibular joints of Hartley guinea-pigs to clarify the in vivo transfer availability of the adenovirus vectors. Specifically, recombinant adenovirus harbouring LacZ gene (AxlCALacZ) was injected into the upper joint cavities of both mandibular joints of four male 6-week-old Hartley guinea-pigs. Either the same amount of recombinant adenovirus without LacZ gene (Axlw) suspension (placebo) or the same amount of phosphate-buffered saline solution (control) were injected into the upper joint cavities of both joints of another four male guinea-pigs. At 1, 2, 3 and 4 weeks after injection, the joints were dissected and the expression of delivered LacZ was examined by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal) staining and reverse transcriptase-polymerase chain reaction (RT-PCR). To investigate the expression of transferred gene in other organs, total RNA was extracted from liver, kidney, heart and brain and the expression of LacZ mRNA and 18 S ribosomal RNA were analysed by RT-PCR. Clear expression of LacZ was observed in the articular surfaces of the temporal tubercle, articular disc and synovium of the temporomandibular joints even 4 weeks after injection in the AxlCALacZ-injected group, while no expression was detected in placebo and control groups. Histological examination confirmed that LacZ activity was clearly detected in a few cell layers of the articular surface tissues, which is much more efficient than in a previously study of the knee joint. In the other organs, expression of the delivered transgene was not observed. Based on these findings, direct gene delivery into the articular surface of the temporomandibular joint using the adenovirus vector is feasible as an effective in vivo method.
Lo, Kuo-Cheng; Hsieh, Yung-Chun
2016-06-01
This study compared the kinetic roles of the upper extremities in racket impact force generation between the open stance (OS) and square stance (SS) for tennis players with different skill levels in two-handed backhand strokes. Twelve male tennis players were divided into an advanced group (AG) (L3-L2 skill level) and intermediate group (IG) (L7-L6 skill level), and their data were used in a three-dimensional kinetic analysis. Their motions were captured using 21 reflective markers attached to anatomic landmarks for two-handed backhand stroke motion data collection. During the acceleration phase, significant differences were not observed between both stances, but they were observed between the groups with different skill levels for the force of the upper extremities (p = 0.027). The joint forces were significantly lower in the AG than in the IG. Players performing the SS had significantly larger pronation and supination of the wrist joint moment than those in the OS (p = 0.032) during the acceleration phase, irrespective of the playing level. Higher internal rotation moment after impact was observed at each joint, particularly among young intermediate tennis players, regardless of their stance. The AG demonstrated a higher joint force and moment at every joint compared with the IG at impact. Moreover, the AG demonstrated superior stroke efficiency and effectively reduced joint moment after impact and sports injury. Key pointsAdvanced players, regardless of open stance or square stance, have larger joint force and moment at each joint before ball impact resulting in better stroke efficiency and reduced chance of injury.Intermediate players, regardless of stance, have higher internal rotation moment at each joint instead of larger joint force as compared to advanced players before ball impact. The higher internal rotation moment will induce higher joint impact force which makes the player injury-prone.Young intermediate tennis players may want to avoid excessive follow-through movement after ball impact to prevent injury in their early career.
Gritsenko, Karina; Caldwell, William; Shaparin, Naum; Vydyanathan, Amaresh; Kosharskyy, Boleslav
2014-01-01
Tinnitus is described as an auditory phantom perception analogous to central neuropathic pain. Despite the high prevalence of this debilitating symptom, no intervention is recognized that reliably eliminates tinnitus symptoms; a cause has yet to be determined. A 65-year-old healthy man presented with a 3 year history of left-sided tinnitus. Full workup performed by the primary care physician including blood tests for electrolyte imbalance, consultations by 2 independent otholaryngologists, and imaging did not reveal abnormalities to provide etiology of the tinnitus. No other complaints were noted except for occasional minimal left sided neck pain. Cervical spine x-ray showed degenerative changes with facet hypertrophy more pronounced on the left side. Subsequently, the patient underwent diagnostic left-sided C2-C3 medial branch block, resulting in complete resolution of tinnitus for more than 6 hours. After successful radiofrequency ablation of left C2-C3 medial branches, the patient became asymptomatic. At one year follow-up, he continued to be symptom free. Sparce studies have shown interaction between the somatosensory and auditory system at dorsal cochlear nucleus (DCN), inferior colliculus, and parietal association areas. Upper cervical nerve (C2) electrical stimulation evokes potentials in the DCN, eliciting strong patterns of inhibition and weak excitation of the DCN principal cells. New evidence demonstrated successful transcutaneous electrical nerve stimulation (TENS) of upper cervical nerve (C2) for treatment of somatic tinnitus in 240 patients. This case indicates that C2-C3 facet arthropathy may cause tinnitus and radiofrequency ablation of C2-C3 medial branches can provide an effective approach not previously considered.
Hu, Chunying; Huang, Qiuchen; Yu, Lili; Hu, Yue; Rongming, Xia; Li, Zhou; Xiaojiao, Fu; Gu, Rui; Cui, Yao; Ge, Meng; Xu, Yanfeng; Liu, Jianfeng
2016-05-01
[Purpose] The purpose of this study was to examine immediate effects of strength training and NJF distal resistance training in wrist joints by using writing time and evaluation of proprioception using the JPE test. [Subjects and Methods] The subjects were 12 young healthy people (24.2 ± 3.1 y, 169.7 ± 6.5 cm, 65.3 ± 12.6 kg). Two isotonic contraction techniques were applied on the wrist joint: wrist joint extension muscle strength training (MST) and the wrist joint extension pattern of NJF. The uppercase English alphabet writing time and joint position errors of the left upper limb were measured before and after one intervention session of MST and NJF. [Results] The decrease in errors in wrist extension angle repetition and the writing time represented the improvement resulting from NJF. [Conclusion] This result suggests that the subdominant hands wrist joint proprioception and writing function can be improved by NJF together with proximal resistance training.
X-ray - pelvis ... Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... hip joint Tumors of the bones of the pelvis Sacroiliitis (inflammation of the area where the sacrum ...
Wells, D J M; Alderson, J A; Dunne, J; Elliott, B C; Donnelly, C J
2017-01-25
To appropriately use inverse kinematic (IK) modelling for the assessment of human motion, a musculoskeletal model must be prepared 1) to match participant segment lengths (scaling) and 2) to align the model׳s virtual markers positions with known, experimentally derived kinematic marker positions (marker registration). The purpose of this study was to investigate whether prescribing joint co-ordinates during the marker registration process (within the modelling framework OpenSim) will improve IK derived elbow kinematics during an overhead sporting task. To test this, the upper limb kinematics of eight cricket bowlers were recorded during two testing sessions, with a different tester each session. The bowling trials were IK modelled twice: once with an upper limb musculoskeletal model prepared with prescribed participant specific co-ordinates during marker registration - MR PC - and once with the same model prepared without prescribed co-ordinates - MR; and by an established direct kinematic (DK) upper limb model. Whilst both skeletal model preparations had strong inter-tester repeatability (MR: Statistical Parametric Mapping (SPM1D)=0% different; MR PC : SPM1D=0% different), when compared with DK model elbow FE waveform estimates, IK estimates using the MR PC model (RMSD=5.2±2.0°, SPM1D=68% different) were in closer agreement than the estimates from the MR model (RMSD=44.5±18.5°, SPM1D=100% different). Results show that prescribing participant specific joint co-ordinates during the marker registration phase of model preparation increases the accuracy and repeatability of IK solutions when modelling overhead sporting tasks in OpenSim. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hu, Chunying; Huang, Qiuchen; Yu, Lili; Zhou, Yue; Gu, Rui; Cui, Yao; Ge, Meng; Xu, Yanfeng; Liu, Jianfeng
2016-08-01
[Purpose] The aim of this study was to examine the immediate effects of muscle strength training and neuromuscular joint facilitation distal resistance training on wrist joints by using electromechanical reaction time. [Subjects and Methods] The subjects were 12 healthy young people (24.2 ± 3.1 years, 169.7 ± 6.5 cm, 65.3 ± 12.6 kg). Two kinds of isotonic contraction techniques were applied on the wrist joint: the wrist joint extension muscle strength training and the wrist joint extension pattern of neuromuscular joint facilitation. The electromechanical reaction time, premotor time, and motor time of the left upper limb were measured before and after each intervention session of muscle strength training and neuromuscular joint facilitation. [Results] The neuromuscular joint facilitation group showed significant shortening of the electromechanical reaction time and motor time after the intervention. [Conclusion] These results suggest that the electromechanical reaction time and motor time of the wrist joint can be improved by neuromuscular joint facilitation together with proximal resistance training, which can be used as a new form of exercise for improving the functions of subdominant hand wrist joints.
New Exoskeleton Arm Concept Design And Actuation For Haptic Interaction With Virtual Objects
NASA Astrophysics Data System (ADS)
Chakarov, D.; Veneva, I.; Tsveov, M.; Tiankov, T.
2014-12-01
In the work presented in this paper the conceptual design and actuation of one new exoskeleton of the upper limb is presented. The device is designed for application where both motion tracking and force feedback are required, such as human interaction with virtual environment or rehabilitation tasks. The choice is presented of mechanical structure kinematical equivalent to the structure of the human arm. An actuation system is selected based on braided pneumatic muscle actuators. Antagonistic drive system for each joint is shown, using pulley and cable transmissions. Force/displacement diagrams are presented of two antagonistic acting muscles. Kinematics and dynamic estimations are performed of the system exoskeleton and upper limb. Selected parameters ensure in the antagonistic scheme joint torque regulation and human arm range of motion.
Facchini, Giancarlo; Spinnato, Paolo; Guglielmi, Giuseppe; Bazzocchi, Alberto
2017-01-01
Objective: The objective of this review was to evaluate the efficacy of pulsed radiofrequency (PRF) treatment of pain associated with different spinal conditions. The mechanisms of action and biological effects are shortly discussed to provide the scientific basis for this radiofrequency modality. Methods: We systematically searched for clinical studies on spinal clinical conditions using PRF. We searched the MEDLINE (PubMed) database. We classified the information in one table focusing on randomized controlled trials (RCTs) and other types of studies. Date of last electronic search was October 2016. Results: We found four RCTs that evaluated the efficacy of PRF on cervical radicular pain and five observational studies. Two trials and three observational studies were conducted in patients with facet pain. For disc-related pathology, we found one RCT with PRF applied intradiscally and three RCTs for dorsal root ganglia PRF modulation lumbosacral radicular pain. For sacroiliac joint pain, spondylolisthesis, malignancies and other minor spinal pathology, limited studies were conducted. Conclusion: From the available evidence, the use of PRF to the dorsal root ganglion in cervical radicular pain is compelling. With regard to its lumbosacral counterpart, the use of PRF cannot be similarly advocated in view of the absence of standardization of PRF parameters, enrolment criteria and different methods in reporting results; but, the evidence is interesting. The use of PRF in lumbar facet pain was found to be less effective than conventional RF techniques. For the other different spinal conditions, we need further studies to assess the effectiveness of PRF. Advances in knowledge: The use of PRF in lumbar facet pain was found to be less effective than conventional RF techniques. For the other different spinal conditions, we need further studies to assess the effectiveness of PRF. PMID:28186832
Homogeneity of Mechanical Properties of Underwater Friction Stir Welded 2219-T6 Aluminum Alloy
NASA Astrophysics Data System (ADS)
Liu, H. J.; Zhang, H. J.; Yu, L.
2011-11-01
Underwater friction stir welding (FSW) has been demonstrated to be available for the improvement in tensile strength of normal FSW joints. In order to illuminate the intrinsic reason for strength improvement through underwater FSW, a 2219 aluminum alloy was underwater friction stir welded and the homogeneity of mechanical properties of the joint was investigated by dividing the joint into three layers. The results indicate that the tensile strength of the three layers of the joint is all improved by underwater FSW, furthermore, the middle and lower layers have larger extent of strength improvement than the upper layer, leading to an increase in the homogeneity of mechanical properties of the joint. The minimum hardness value of each layer, especially the middle and lower layers, is improved under the integral water cooling effect, which is the intrinsic reason for the strength improvement of underwater joint.
Control of joint motion simulators for biomechanical research
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.
1992-01-01
The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.
Pasternak, Braulio; Sousa Neto, Manoel Damião de; Dionísio, Valdeci Carlos; Pécora, Jesus Djalma; Silva, Ricardo Gariba
2012-02-01
This study assessed the muscular activity during root canal preparation through kinematics, kinetics, and electromyography (EMG). The operators prepared one canal with RaCe rotary instruments and another with Flexo-files. The kinematics of the major joints was reconstructed using an optoelectronic system and electromyographic responses of the flexor carpi radialis, extensor carpi radialis, brachioradialis, biceps brachii, triceps brachii, middle deltoid, and upper trapezius were recorded. The joint torques of the shoulder, elbow and wrist were calculated using inverse dynamics. In the kinematic analysis, angular movements of the wrist and elbow were classified as low risk factors for work-related musculoskeletal disorders. With respect to the shoulder, the classification was medium-risk. There was no significant difference revealed by the kinetic reports. The EMG results showed that for the middle deltoid and upper trapezius the rotary instrumentation elicited higher values. The flexor carpi radialis and extensor carpi radialis, as well as the brachioradialis showed a higher value with the manual method. The muscular recruitment for accomplishment of articular movements for root canal preparation with either the rotary or manual techniques is distinct. Nevertheless, the rotary instrument presented less difficulty in the generation of the joint torque in each articulation, thus, presenting a greater uniformity of joint torques.
Fantozzi, Silvia; Giovanardi, Andrea; Magalhães, Fabrício Anício; Di Michele, Rocco; Cortesi, Matteo; Gatta, Giorgio
2016-01-01
The analysis of the joint kinematics during swimming plays a fundamental role both in sports conditioning and in clinical contexts. Contrary to the traditional video analysis, wearable inertial-magnetic measurements units (IMMUs) allow to analyse both the underwater and aerial phases of the swimming stroke over the whole length of the swimming pool. Furthermore, the rapid calibration and short data processing required by IMMUs provide coaches and athletes with an immediate feedback on swimming kinematics during training. This study aimed to develop a protocol to assess the three-dimensional kinematics of the upper limbs during swimming using IMMUs. Kinematics were evaluated during simulated dry-land swimming trials performed in the laboratory by eight swimmers. A stereo-photogrammetric system was used as the gold standard. The results showed high coefficient of multiple correlation (CMC) values, with median (first-third quartile) of 0.97 (0.93-0.95) and 0.99 (0.97-0.99) for simulated front-crawl and breaststroke, respectively. Furthermore, the joint angles were estimated with an accuracy increasing from distal to proximal joints, with wrist indices showing median CMC values always higher than 0.90. The present findings represent an important step towards the practical use of technology based on IMMUs for the kinematic analysis of swimming in applied contexts.
PASTERNAK-JÚNIOR, Braulio; de SOUSA NETO, Manoel Damião; DIONÍSIO, Valdeci Carlos; PÉCORA, Jesus Djalma; SILVA, Ricardo Gariba
2012-01-01
Objective This study assessed the muscular activity during root canal preparation through kinematics, kinetics, and electromyography (EMG). Material and Methods The operators prepared one canal with RaCe rotary instruments and another with Flexo-files. The kinematics of the major joints was reconstructed using an optoelectronic system and electromyographic responses of the flexor carpi radialis, extensor carpi radialis, brachioradialis, biceps brachii, triceps brachii, middle deltoid, and upper trapezius were recorded. The joint torques of the shoulder, elbow and wrist were calculated using inverse dynamics. In the kinematic analysis, angular movements of the wrist and elbow were classified as low risk factors for work-related musculoskeletal disorders. With respect to the shoulder, the classification was medium-risk. Results There was no significant difference revealed by the kinetic reports. The EMG results showed that for the middle deltoid and upper trapezius the rotary instrumentation elicited higher values. The flexor carpi radialis and extensor carpi radialis, as well as the brachioradialis showed a higher value with the manual method. Conclusion The muscular recruitment for accomplishment of articular movements for root canal preparation with either the rotary or manual techniques is distinct. Nevertheless, the rotary instrument presented less difficulty in the generation of the joint torque in each articulation, thus, presenting a greater uniformity of joint torques. PMID:22437679
Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.
Jacobs, L L; Winkler, D A; Murry, P A
1989-01-01
Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribosphenic molars, which characterize marsupials and placentals, the two most abundant and diverse extant groups of mammals. A tooth from the Early Cretaceous (110 million years before present) of Texas tests previous predictions (based on lower molars) of the morphology of upper molars in early tribosphenic dentitions. The lingual cusp (protocone) is primitively without shear facets, as expected, but the cheek side of the tooth is derived (advanced) in having distinctive cusps along the margin. The tooth, although distressingly inadequate to define many features of the organism, demonstrates unexpected morphological diversity at a strategic stage of mammalian evolution and falsifies previous claims of the earliest occurrence of true marsupials. Images PMID:2740336
Design of a lattice-based faceted classification system
NASA Technical Reports Server (NTRS)
Eichmann, David A.; Atkins, John
1992-01-01
We describe a software reuse architecture supporting component retrieval by facet classes. The facets are organized into a lattice of facet sets and facet n-tuples. The query mechanism supports precise retrieval and flexible browsing.
Origin of Florida Canyon and the role of spring sapping on the formation of submarine box canyons
Paull, Charles K.; Spiess, Fred N.; Curray, Joseph R.; Twichell, David C.
1990-01-01
Florida Canyon, one of a series of major submarine canyons on the southwestern edge of the Florida Platform, was surveyed using GLORIA, SeaBeam, and Deep-Tow technologies, and it was directly observed during three DSRV Alvin dives. Florida Canyon exhibits two distinct morphologies: a broad V-shaped upper canyon and a deeply entrenched, flat-floored, U-shaped lower canyon. The flat- floored lower canyon extends 20 km into the Florida Platform from the abyssal Gulf. The lower canyon ends abruptly at an ∼3 km in diameter semicircular headwall that rises 750 m with a >60° slope angle to the foot of the upper canyon. The sides of the lower canyon are less steep than its headwall and are characterized by straight faces that occur along preferred orientations and indicate a strong joint control. The upper canyon is characterized by a gently sloping, straight V-shaped central valley cut into a broad terrace. The flat floor of the upper canyon continues as terraces along the upper walls of the lower canyon. On the flanks of the upper canyon, there are five >50-m-deep, >0.5-km-wide, closed sink-hole-like depressions which indicate subsurface dissolution within the platform. The origin of the lower canyon is difficult to explain with traditional models of submarine canyon formation by external physical processes. The movement of ground water, probably with high salinities and reduced compounds along regional joints, may have focused the corrosive force of submarine spring sapping at the head of the lower canyon to produce the canyon's present shape.
de França, Henrique Silvestre; Branco, Paulo Alexandre Nordeste; Guedes Junior, Dilmar Pinto; Gentil, Paulo; Steele, James; Teixeira, Cauê Vazquez La Scala
2015-08-01
The aim of this study was compare changes in upper body muscle strength and size in trained men performing resistance training (RT) programs involving multi-joint plus single-joint (MJ+SJ) or only multi-joint (MJ) exercises. Twenty young men with at least 2 years of experience in RT were randomized in 2 groups: MJ+SJ (n = 10; age, 27.7 ± 6.6 years) and MJ (n = 10; age, 29.4 ± 4.6 years). Both groups trained for 8 weeks following a linear periodization model. Measures of elbow flexors and extensors 1-repetition maximum (1RM), flexed arm circumference (FAC), and arm muscle circumference (AMC) were taken pre- and post-training period. Both groups significantly increased 1RM for elbow flexion (4.99% and 6.42% for MJ and MJ+SJ, respectively), extension (10.60% vs 9.79%, for MJ and MJ+SJ, respectively), FAC (1.72% vs 1.45%, for MJ and MJ+SJ, respectively), and AMC (1.33% vs 3.17% for MJ and MJ+SJ, respectively). Comparison between groups revealed no significant difference in any variable. In conclusion, 8 weeks of RT involving MJ or MJ+SJ resulted in similar alterations in muscle strength and size in trained participants. Therefore, the addition of SJ exercises to a RT program involving MJ exercises does not seem to promote additional benefits to trained men, suggesting MJ-only RT to be a time-efficient approach.
Shoulder model validation and joint contact forces during wheelchair activities.
Morrow, Melissa M B; Kaufman, Kenton R; An, Kai-Nan
2010-09-17
Chronic shoulder impingement is a common problem for manual wheelchair users. The loading associated with performing manual wheelchair activities of daily living is substantial and often at a high frequency. Musculoskeletal modeling and optimization techniques can be used to estimate the joint contact forces occurring at the shoulder to assess the soft tissue loading during an activity and to possibly identify activities and strategies that place manual wheelchair users at risk for shoulder injuries. The purpose of this study was to validate an upper extremity musculoskeletal model and apply the model to wheelchair activities for analysis of the estimated joint contact forces. Upper extremity kinematics and handrim wheelchair kinetics were measured over three conditions: level propulsion, ramp propulsion, and a weight relief lift. The experimental data were used as input to a subject-specific musculoskeletal model utilizing optimization to predict joint contact forces of the shoulder during all conditions. The model was validated using a mean absolute error calculation. Model results confirmed that ramp propulsion and weight relief lifts place the shoulder under significantly higher joint contact loading than level propulsion. In addition, they exhibit large superior contact forces that could contribute to impingement. This study highlights the potential impingement risk associated with both the ramp and weight relief lift activities. Level propulsion was shown to have a low relative risk of causing injury, but with consideration of the frequency with which propulsion is performed, this observation is not conclusive.
High-Powered, Ultrasonically Assisted Thermal Stir Welding
NASA Technical Reports Server (NTRS)
Ding, Robert
2013-01-01
This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a distance equal to the thickness of the material being welded. The TSW process can be significantly improved by reducing the draw forces. This can be achieved by reducing the friction forces between the weld workpieces and the containment plates. High-power ultrasonic (HPU) vibrations of the containment plates achieve friction reduction in the TSW process. Furthermore, integration of the HPU energy into the TSW stir rod can increase tool life of the stir rod, and can reduce shear forces to which the stir rod is subjected during the welding process. TSW has been used to successfully join 0.500-in (˜13-mm) thick commercially pure (CP) titanium, titanium 6AL- 4V, and titanium 6AL-4V ELI in weld joint lengths up to 9 ft (˜2.75-m) long. In addition, the TSW process was used to fabricate a sub-scale hexagonally shaped gun turret component for the U.S. Navy. The turret is comprised of six 0.5000-in (˜13-mm) thick angled welds. Each angled weld joint was prepared by machining the mating surfaces to 120deg. The angled weld joint was then fixtured using an upper and lower containment plate of the same geometry of the angled weld joint. The weld joint was then stirred by the stir rod as it and the upper and lower containment plates traverse through the angled joint prep.
Goel, Atul; Sharma, Praveen
2004-09-01
We present our experience of treating nine consecutive cases of rheumatoid arthritis involving the craniovertebral junction by atlantoaxial joint manipulation and attempts towards restoration of craniovertebral region alignments. Between November 2001 and March 2004, nine cases of rheumatoid arthritis involving the craniovertebral junction were treated in our department of neurosurgery. Six patients had basilar invagination and 'fixed' atlantoaxial dislocation and three patients had a retroodontoid process pannus and mobile and incompletely reducible atlantoaxial dislocation. The patients ranged from 24 to 74 years in age. Six patients were males and three were females. Neck pain and spastic quadriparesis were the most prominent symptoms. Surgery involved attempts to reduce the atlantoaxial dislocation and basilar invagination by manual distraction of the facets of the atlas and axis. Reduction of the atlantoaxial dislocation and of basilar invagination and stabilization of the region was achieved by placement of bone graft and metal spacers within the joint and direct inter-articular plate and screw method of atlantoaxial fixation. Following surgery all the patients showed symptomatic improvement and restoration of craniovertebral alignments. Follow-up ranged from four to 48 months (average 28 months). Manipulation of the atlantoaxial joints and restoring the anatomical craniovertebral alignments in selected cases of rheumatoid arthritis involving the craniovertebral junction leads to remarkable and sustained clinical recovery.
Goel, Atul; Sharma, Praveen
2005-10-01
Twelve selected patients, eight males and four females aged 14 to 50 years, with syringomyelia associated with congenital craniovertebral bony anomalies including basilar invagination and fixed atlantoaxial dislocation, and associated Chiari I malformation in eight, were treated by atlantoaxial joint manipulation and restoration of the craniovertebral region alignment between October 2002 and March 2004. Three patients had a history of trauma prior to the onset of symptoms. Spastic quadriparesis and ataxia were the most prominent symptoms. The mean duration of symptoms was 11 months. The atlantoaxial dislocation and basilar invagination were reduced by manual distraction of the facets of the atlas and axis, stabilization by placement of bone graft and metal spacers within the joint, and direct atlantoaxial fixation using an inter-articular plate and screw method technique. Following surgery all patients showed symptomatic improvement and restoration of craniovertebral alignment during follow up from 3 to 20 months (mean 7 months). Radiological improvement of the syrinx could not be evaluated as stainless steel metal plates, screws, and spacers were used for fixation. Manipulation of the atlantoaxial joints and restoring the anatomical craniovertebral alignments in selected cases of syringomyelia leads to remarkable and sustained clinical recovery, and is probably the optimum surgical treatment.
Near-Inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean
2010-06-01
meridional transport of heat (Hoskins and Valdes, 1990). Formation of North Atlantic Subtropical Mode Water is thought to take place during the...North Atlantic Ocean MIT/WHOI Joint Program in Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole...Oceanographic Institution MITIWHOI 2010-16 Near-inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean by
Upper and Lower Limb Muscle Architecture of a 104 Year-Old Cadaver
Infantolino, Benjamin
2016-01-01
Muscle architecture is an important component to typical musculoskeletal models. Previous studies of human muscle architecture have focused on a single joint, two adjacent joints, or an entire limb. To date, no study has presented muscle architecture for the upper and lower limbs of a single cadaver. Additionally, muscle architectural parameters from elderly cadavers are lacking, making it difficult to accurately model elderly populations. Therefore, the purpose of this study was to present muscle architecture of the upper and lower limbs of a 104 year old female cadaver. The major muscles of the upper and lower limbs were removed and the musculotendon mass, tendon mass, musculotendon length, tendon length, pennation angle, optimal fascicle length, physiological cross-sectional area, and tendon cross-sectional area were determined for each muscle. Data from this complete cadaver are presented in table format. The data from this study can be used to construct a musculoskeletal model of a specific individual who was ambulatory, something which has not been possible to date. This should increase the accuracy of the model output as the model will be representing a specific individual, not a synthesis of measurements from multiple individuals. Additionally, an elderly individual can be modeled which will provide insight into muscle function as we age. PMID:28033339
Upper and Lower Limb Muscle Architecture of a 104 Year-Old Cadaver.
Ruggiero, Marissa; Cless, Daniel; Infantolino, Benjamin
2016-01-01
Muscle architecture is an important component to typical musculoskeletal models. Previous studies of human muscle architecture have focused on a single joint, two adjacent joints, or an entire limb. To date, no study has presented muscle architecture for the upper and lower limbs of a single cadaver. Additionally, muscle architectural parameters from elderly cadavers are lacking, making it difficult to accurately model elderly populations. Therefore, the purpose of this study was to present muscle architecture of the upper and lower limbs of a 104 year old female cadaver. The major muscles of the upper and lower limbs were removed and the musculotendon mass, tendon mass, musculotendon length, tendon length, pennation angle, optimal fascicle length, physiological cross-sectional area, and tendon cross-sectional area were determined for each muscle. Data from this complete cadaver are presented in table format. The data from this study can be used to construct a musculoskeletal model of a specific individual who was ambulatory, something which has not been possible to date. This should increase the accuracy of the model output as the model will be representing a specific individual, not a synthesis of measurements from multiple individuals. Additionally, an elderly individual can be modeled which will provide insight into muscle function as we age.
Hommel, Alyson L; Jewett, Tamison; Mortenson, Megan; Caress, James B
2016-10-01
Juvenile muscular atrophy of the distal upper extremities (JMADUE) is a rare, sporadic disorder that affects adolescent males and is characterized by progressive but self-limited weakness of the distal upper extremities. The etiology is unknown, but cervical hyperflexion has been hypothesized. We report a case of an adolescent male who presented with typical JMADUE but also had joint hypermobility and multiple congenital anomalies, including periventricular heterotopias, suggesting a multisystem syndrome. Subsequent diagnostic testing confirmed a diagnosis of JMADUE, and sequencing of the filamin-A gene showed a novel, pathogenic mutation that confirmed an additional diagnosis of X-linked periventricular heterotopias with features of Ehlers-Danlos syndrome (XLPH-EDS). The concurrent diagnosis of these 2 rare conditions suggests a pathogenic connection. It is likely that the joint hypermobility from XLPH-EDS predisposed this patient to developing JMADUE. This supports the cervical hyperflexion theory of pathogenesis. This case also expands the phenotype associated with FLNA mutations. Muscle Nerve 54: 794-797, 2016. © 2016 Wiley Periodicals, Inc.
Lu, Di; Xu, Wei-xing; Ding, Wei-Guo; Guo, Qiao-Feng; Ma, Gou-ping; Zhu, Wei-min
2013-03-01
To study the clinical efficacy of needle-knife to cut off the medial branch of the lumbar posterior ramus under C-arm guiding to treat low back pain caused by lumbar facet osteoarthritis. From July 2009 to June 2011, 60 patients with low back pain caused by lumbar facet osteoarthritis were reviewed,including 34 males and 26 females, ranging in age from 39 to 73 years old,averaged 61.9 years old; the duration of the disease ranged from 6 to 120 months, with a mean of 18.9 months. All the patients were divided into two groups, 30 patients (18 males and 12 females, ranging in age from 39 to 71 years old, needle-knife group) were treated with needle-knife to cut off medial branch of the lumbar posterior ramus under C -arm guiding and the other 30 patients(16 males and 14 females, ranging in age from 41 to 73 years old, hormone injection group) were treated with hormone injection in lumbar facet joint under C-arm guiding. The preoperative JOA scores and the scores at the 1st, 12th and 26th weeks after treatment were analyzed. Before treatment,the JOA scores between the two groups had no significant difference (P= 0.479); after 1 week of treatment, the JOA scores between the two groups had significant difference (P= 0.040), the improvement rate of hormone injection group was superior than that of the needle-knife group,which were (58.73+/-18.20)% in needle-knife group and (71.10+/-22.19)% in hormone injection group; after 12 weeks of treatment, the JOA scores between the two groups had no significant difference(P=0.569), and the improvement rate between the two groups had no significant difference,which were (50.09+/-19.33)% in the needle-knife group and (48.70+/-18.36)%) in the hormone injection group; after 26 weeks of treatment,the JOA scores between the two groups had significant difference (P=0.000), the improvement rate of hormone injection group was superior than that of the needle-knife group,which were (48.56+/-28.24)% in needle-knife group and (15.62+/-11.23 )% in hormone injection group. Using needle-knife to cut off the medial branch of the lumbar posterior ramus could get longer efficacy than hormone injection in the treatment of lumbar facet osteoarthritis.
Neural joint control for Space Shuttle Remote Manipulator System
NASA Technical Reports Server (NTRS)
Atkins, Mark A.; Cox, Chadwick J.; Lothers, Michael D.; Pap, Robert M.; Thomas, Charles R.
1992-01-01
Neural networks are being used to control a robot arm in a telerobotic operation. The concept uses neural networks for both joint and inverse kinematics in a robotic control application. An upper level neural network is trained to learn inverse kinematic mappings. The output, a trajectory, is then fed to the Decentralized Adaptive Joint Controllers. This neural network implementation has shown that the controlled arm recovers from unexpected payload changes while following the reference trajectory. The neural network-based decentralized joint controller is faster, more robust and efficient than conventional approaches. Implementations of this architecture are discussed that would relax assumptions about dynamics, obstacles, and heavy loads. This system is being developed to use with the Space Shuttle Remote Manipulator System.
Reliability aspects of a composite bolted scarf joint. [in wing skin splice
NASA Technical Reports Server (NTRS)
Reed, D. L.; Eisenmann, J. R.
1975-01-01
The design, fabrication, static test, and fatigue test of both tension and compression graphite-epoxy candidates for a wing splice representative of a next-generation transport aircraft was the objective of the reported research program. A single-scarf bolted joint was selected as the design concept. Test specimens were designed and fabricated to represent an upper-surface and a lower-surface panel containing the splice. The load spectrum was a flight-by-flight random-load history including ground-air-ground loads. The results of the fatigue testing indicate that, for this type of joint, the inherent fatigue resistance of the laminate is reflected in the joint behavior and, consequently, the rate of damage accumulation is very slow under realistic fatigue loadings.
Painful lumbosacral melorheostosis treated by fusion.
Robertson, Peter A; Don, Angus S; Miller, Mary V
2003-06-15
A case report of low back pain associated with a diagnosis of melorheostosis of the lumbosacral spine. To describe a rare presentation of melorheostosis and subsequent successful surgical treatment. Melorheostosis is a rare condition and spinal pain has not been described in association with the condition. A patient with disabling low back pain and suspected melorheostosis of the lumbosacral spine responded favorably to diagnostic facet joint blocks. Treatment was lumbosacral fusion and biopsy of the abnormal bone. The densely sclerotic bone presented technical difficulties requiring modification of surgical technique. Dramatic pain and disability reduction occurred following lumbosacral fusion. Histologic examination was consistent with melorheostosis. Melorheostosis rarely causes severe low back pain that can respond favorably to fusion surgery.
An unusual fracture of the talus in a snowboarder.
Vlahovich, A Tanja; Mehin, Ramin; O'Brien, Peter J
2005-08-01
Fractures of the talus are uncommon. However, snow- boarding and skateboarding are 2 activities that are specifically associated with talus fractures. These patients sustain occult lateral talus process fractures that present as a severe ankle injury. The diagnosis is difficult because of subtle clinical and plain radiographic findings. Computed tomography is a very useful tool for the assessment of these injuries. Although the majority of these athletes have lateral sided talus fractures, there are variants. We present an unusual case of a displaced intra-articular fracture of the subtalar joint involving the middle articular facet of the talus with extension of the fracture into the talar head. This highlights the importance of carefully assessing snowboarders' "ankle injuries."
Seichi, Atsushi
2014-10-01
Lumbar spondylosis is a chronic, noninflammatory disease caused by degeneration of lumbar disc and/or facet joints. The etiology of lumbar spondylosis is multifactorial. Patients with lumbar spondylosis complain of a broad variety of symptoms including discomfort in the low back lesion, whereas some of them have radiating leg pain or neurologenic intermittent claudication (lumbar spinal stenosis). The majority of patients with spondylosis and stenosis of the lumbosacral spine can be treated nonsurgically. Nonsteroidal anti-inflammatory drugs and COX-2 inhibitors are helpful in controlling symptoms. Prostaglandin, epidural injection, and transforaminal injection are also helpful for leg pain and intermittent claudication. Operative therapy for spinal stenosis or spondylolisthesis is reserved for patients who are totally incapacitated by their condition.
Pakzaban, Peyman
2011-02-01
Two patients with occipital neuralgia due to severe arthropathy of the C1-2 facet joint were treated using atlantoaxial fusion with transarticular screws without decompression of the C-2 nerve root. Both patients experienced immediate postoperative relief of occipital neuralgia. The resultant motion elimination at C1-2 eradicated not only the movement-evoked pain, but also the paroxysms of true occipital neuralgia occurring at rest. A possible pathophysiological explanation for this improvement is presented in the context of the ignition theory of neuralgic pain. This represents the first report of C1-2 transarticular screw fixation for the treatment of arthropathy-associated occipital neuralgia.
Modelling the strength of an aluminium-steel nailed joint
NASA Astrophysics Data System (ADS)
Goldspiegel, Fabien; Mocellin, Katia; Michel, Philippe
2018-05-01
For multi-material applications in automotive industry, a cast aluminium (upper layer) and dual-phase steel (lower layer) superposition joined with High-Speed Nailing process is investigated through an experimental vs numerical framework. Using FORGE® finite-element software, results from joining simulations have been inserted into models in charge of nailed-joint mechanical testings. Numerical Shear and Cross-tensile tests are compared to experimental ones to discuss discrepancy and possible improvements.
Joint Force Quarterly. Number 13, Autumn 1996
1996-10-01
specifically ac- knowledges a 1986 study, “Ecuadorian- Peruvian Rivalry in the Upper Amazon,” as his source. That inaccurate account by William Krieg—based...joint Peruvian -Ecuadorian and U.S. records dating from 1942 to 1949 (released this year by Peru’s foreign ministry) clarify the historical account...despite the fact that Peruvian and Ecuadorian experts agreed in September 1948 to define the small stretch of the Cordillera del Cóndor which remains
Modifications in Wheelchair Propulsion Technique with Speed.
Russell, Ian M; Raina, Shashank; Requejo, Philip S; Wilcox, Rand R; Mulroy, Sara; McNitt-Gray, Jill L
2015-01-01
Repetitive loading of the upper limb joints during manual wheelchair (WC) propulsion (WCP) has been identified as a factor that contributes to shoulder pain, leading to loss of independence and decreased quality of life. The purpose of this study was to determine how individual manual WC users with paraplegia modify propulsion mechanics to accommodate expected increases in reaction forces (RFs) generated at the pushrim with self-selected increases in WCP speed. Upper extremity kinematics and pushrim RFs were measured for 40 experienced manual WC users with paraplegia while propelling on a stationary ergometer at self-selected free and fast propulsion speeds. Upper extremity kinematics and kinetics were compared within subject between propulsion speeds. Between group and within-subject differences were determined (α = 0.05). Increased propulsion speed was accompanied by increases in RF magnitude (22 of 40, >10 N) and shoulder net joint moment (NJM, 15 of 40, >10 Nm) and decreases in pushrim contact duration. Within-subject comparison indicated that 27% of participants modified their WCP mechanics with increases in speed by regulating RF orientation relative to the upper extremity segments. Reorientation of the RF relative to the upper extremity segments can be used as an effective strategy for mitigating rotational demands (NJM) imposed on the shoulder at increased propulsion speeds. Identification of propulsion strategies that individuals can use to effectively accommodate for increases in RFs is an important step toward preserving musculoskeletal health of the shoulder and improving health-related quality of life.
Jurkojć, Jacek; Wodarski, Piotr; Michnik, Robert A; Bieniek, Andrzej; Gzik, Marek; Granek, Arkadiusz
2017-01-01
Indexing methods are very popular in terms of determining the degree of disability associated with motor dysfunctions. Currently, indexing methods dedicated to the upper limbs are not very popular, probably due to difficulties in their interpretation. This work presents the calculation algorithm of new SDDI index and the attempt is made to determine the level of physical dysfunction along with description of its kind, based on the interpretation of the calculation results of SDDI and PULMI indices. 23 healthy people (10 women and 13 men), which constituted a reference group, and a group of 3 people with mobility impairments participated in the tests. In order to examine possibilities of the utilization of the SDDI index the participants had to repetitively perform two selected rehabilitation movements of upper extremities. During the tests the kinematic value was registered using inertial motion analysis system MVN BIOMECH. The results of the test were collected in waveforms of 9 anatomical angles in 4 joints of upper extremities. Then, SDDI and PULMI indices were calculated for each person with mobility impairments. Next, the analysis was performed to check which abnormalities in upper extremity motion can influence the value of both indexes and interpretation of those indexes was shown. Joint analysis of the both indices provides information on whether the patient has correctly performed the set sequence of movement and enables the determination of possible irregularities in the performance of movement given.
Co-Graft of Acellular Dermal Matrix and Autogenous Microskin in a Child with Extensive Burns
Chen, X.L.; Xia, Z.F.; Fang, L.S.; Wang, Y.J.; Wang, C.H.
2008-01-01
Summary A 6-yr-old boy was the victim of a burns accident in a public bathhouse. The burns involved the face, neck, upper and lower extremities, anterior and posterior trunk, and both buttocks, covering 72% of the total body surface area (TBSA). The lesions in the lower extremities and parts of the right upper extremity were deep partial-thickness, comprising 40% TBSA. On day 5 post-burn, the lesions in both lower extremities were excised to the extent of the fascia under general anaesthesia. Meshed J1 Jayya Acellular Dermis®, a kind of acellular allodermal (ADM) matrix, was then placed on the left knee joint. The right knee joint served as control. The wounds in both lower extremities were then overlaid with microskin autografting. At 19 days post-application, the lesions in both lower extremities had almost completely resurfaced. Follow-up at six months revealed well-healed and stable skin of acellular ADM and microskin autografts on the left knee. However, the skin of the right knee was unstable and there was a chronic residual ulcer. Both legs showed some significant hypertrophic scars. The left knee joint (acellular ADM grafted site) showed mild contractures, while the right knee joint developed a significant contracture. The "skin" of the co-graft covered site appeared thicker and more elastic. The movement range of the left knee joint was much larger than that of the right knee joint. These results suggest that co-graft of acellular dermal matrix and autogenous microskin may be an effective way to repair this functional site in children with extensive burns and to improve the functional and cosmetic results. PMID:21991120
Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J
2012-05-06
The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.
2012-01-01
Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required. PMID:22559852
WAMDII: The Wide Angle Michelson Doppler Imaging Interferometer
NASA Technical Reports Server (NTRS)
1992-01-01
As part of an effort to learn more about the upper atmosphere and how it is linked to the weather experienced each day, NASA and NRCC are jointly sponsoring the Wide Angle Michelson Doppler Imaging Interferometer (WAMDII) Mission. WAMDII will measure atmospheric temperature and wind speed in the upper atmosphere. In addition to providing data on the upper atmosphere, the wind speed and temperature readings WAMDII takes will also be highly useful in developing and updating computer simulated models of the upper atmosphere. These models are used in the design and testing of equipment and software for Shuttles, satellites, and reentry vehicles. In making its wind speed and temperature measurements, WAMDII examines the Earth's airglow, a faint photochemical luminescence caused by the influx of solar ultraviolet energy into the upper atmosphere. During periods of high solar flare activity, the amount of this UV energy entering the upper atmosphere increases, and this increase may effect airglow emissions.
Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
Wu, Kuan-Yi; Su, Yin-Yu; Yu, Ying-Lung; Lin, Kuei-You; Lan, Chao-Chieh
2017-07-01
Powered exoskeletons can facilitate rehabilitation of patients with upper limb disabilities. Designs using rotary motors usually result in bulky exoskeletons to reduce the problem of moving inertia. This paper presents a new linearly actuated elbow exoskeleton that consists of a slider crank mechanism and a linear motor. The linear motor is placed beside the upper arm and closer to shoulder joint. Thus better inertia properties can be achieved while lightweight and compactness are maintained. A passive joint is introduced to compensate for the exoskeleton-elbow misalignment and intersubject size variation. A linear series elastic actuator (SEA) is proposed to obtain accurate force and impedance control at the exoskeleton-elbow interface. Bidirectional actuation between exoskeleton and forearm is verified, which is required for various rehabilitation processes. We expect this exoskeleton can provide a means of robot-aided elbow rehabilitation.
Acute hand and wrist injuries sustained during recreational mountain biking: a prospective study.
Bush, Kevin; Meredith, Steve; Demsey, Daniel
2013-12-01
Recreational mountain biking continues to increase in popularity and is a significant source of traumatic injury, including injuries to the hand and wrist. A prospective survey of all hand and wrist injuries sustained while participating in recreational mountain biking presenting to the emergency department at the Municipality of Whistler and the District of Squamish was conducted over a 12-month consecutive period. An analysis of 765 unique emergency department visits with 1,079 distinct injuries was performed. Of these injuries, 511 were sustained to the upper limb. Injury to the metacarpal and metacarpal phalangeal joints was the most common hand injury (52) followed by proximal phalanx and proximal interphalangeal joint (20). Mountain biking is a frequent source of a variety of upper limb trauma, and preventative efforts are necessary to minimize the burden of these injuries.
All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Hardt, A.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kranz, O.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McWilliams, S.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow–Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Stein, L. C.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tseng, K.; Tucker, E.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-06-01
We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration ≲1s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range ˜5×10-22Hz-1/2 to ˜1×10-20Hz-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.
Oyama, Sakiko; Yu, Bing; Blackburn, J Troy; Padua, Darin A; Li, Li; Myers, Joseph B
2013-10-01
There is a growing number of pitching-related upper extremity injuries among young baseball pitchers; however, there is a lack of data on the identification of injury prevention strategies, particularly the prevention of injuries through the instruction/modification of technique. The identification of technical parameters that are associated with increased joint loading is needed. To investigate the effects of excessive contralateral trunk tilt, a common technique identifiable by video observation, on pitching biomechanics and performance in high school baseball pitchers. The hypothesis was that this strategy is associated with greater joint loading and poor pitching performance. Descriptive laboratory study; Level of evidence, 3. The 3-dimensional pitching biomechanics, ball speed, and frontal view of the pitching technique from 72 high school baseball pitchers were captured on video and analyzed. The videos were reviewed to determine if the pitcher's trunk was excessively contralaterally tilted at the instant of maximal shoulder external rotation by examining whether the side of the pitcher's head ipsilateral to the throwing limb deviated by more than a head width from a vertical line passing through the pitcher's stride foot ankle. Upper extremity kinetics and upper extremity/trunk kinematics between pitchers with and without excessive contralateral trunk tilt were compared using independent t tests. Compared with pitchers who did not demonstrate excessive contralateral trunk tilt, those with excessive contralateral trunk tilt pitched at a higher ball speed (mean, 32.6 ± 2.2 vs 31.1 ± 2.9 m/s, respectively; P = .019) and experienced a greater elbow proximal force (mean, 103.9 ± 12.7 vs 93.2 ± 13.9 %weight, respectively; P = .001), shoulder proximal force (mean, 104.8 ± 14.1 vs 94.3 ± 15.5 %weight, respectively; P = .004), elbow varus moment (mean, 4.29 ± 0.73 vs 3.84 ± 0.8 %height*weight, respectively; P = .017), and shoulder internal rotation moment (mean, 4.21 ± 0.71 vs 3.75 ± 0.78 %height*weight, respectively; P = .011). Pitchers with excessive contralateral trunk tilt demonstrated less upper torso flexion at stride foot contact, less upper torso rotation, and greater upper torso contralateral flexion at maximal shoulder external rotation and ball release (P < .05). Excessive contralateral trunk tilt is a strategy that is associated with higher ball speeds and increased joint loading. Pitching with excessive contralateral trunk tilt, which can be identified through screening of the pitching technique, is associated with a benefit in performance and increased joint loading. Future study is warranted to determine if this strategy should be encouraged or discouraged by baseball coaches.
MultiFacet: A Faceted Interface for Browsing Large Multimedia Collections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael J.; Hampton, Shawn D.; Endert, Alexander
2013-10-31
Faceted browsing is a common technique for exploring collections where the data can be grouped into a number of pre-defined categories, most often generated from textual metadata. Historically, faceted browsing has been applied to a single data type such as text or image data. However, typical collections contain multiple data types, such as information from web pages that contain text, images, and video. Additionally, when browsing a collection of images and video, facets are often created based on the metadata which may be incomplete, inaccurate, or missing altogether instead of the actual visual content contained within those images and video.more » In this work we address these limitations by presenting MultiFacet, a faceted browsing interface that supports multiple data types. MultiFacet constructs facets for images and video in a collection from the visual content using computer vision techniques. These visual facets can then be browsed in conjunction with text facets within a single interface to reveal relationships and phenomena within multimedia collections. Additionally, we present a use case based on real-world data, demonstrating the utility of this approach towards browsing a large multimedia data collection.« less
Mehl, Julian; Feucht, Matthias J; Bode, Gerrit; Dovi-Akue, David; Südkamp, Norbert P; Niemeyer, Philipp
2016-03-01
To compare the geometry of the patellofemoral joint on magnetic resonance images (MRI) between patients with isolated cartilage defects of the patella and a gender- and age-matched control group of patients without patellar cartilage defects. A total of 43 patients (17 female, 26 male) with arthroscopically verified grade III and IV patellar cartilage defects (defect group) were compared with a matched-pair control group of patients with isolated traumatic rupture of the anterior cruciate ligament without cartilage defects of the patellofemoral joint. Preoperative MRI images were analysed retrospectively with regard to patellar geometry (width, thickness, facet angle), trochlear geometry (dysplasia according to Dejour, sulcus angle, sulcus depth, lateral condyle index, trochlea facet asymmetry, lateral trochlea inclination) and patellofemoral alignment (tibial tuberosity-trochlear groove distance, patella height, lateral patella displacement, lateral patellofemoral angle, patella tilt, congruence angle). In addition to the comparison of group values, the measured values were compared to normal values reported in the literature, and the frequency of patients with pathologic findings was compared between both groups. The defect group demonstrated a significantly higher proximal chondral sulcus angle (p < 0.001), a significantly higher distal osseal sulcus angle (p = 0.004), a significantly lower distal sulcus depth (p = 0.047), a significantly lower lateral condyle index (p = 0.045), a significantly lower Caton-Deschamps index (p = 0.020) and a significantly higher Insall-Salvati index (p = 0.010). A major trochlear dysplasia (grade B-D) was significantly more common in the defect group (54 vs. 19%; p < 0.001). Eighty-eight per cent of patients in the defect group demonstrated at least one pathologic finding, compared to 63% in the control group (p = 0.006). Two or more pathologic findings were observed in 42% of the defect group and in 19% of the control group (p = 0.019). There was no significant correlation between the localization of the chondral defects and the results of the measured parameters. Cartilage defects of the patella are associated with the geometry of the patellofemoral joint. In particular, a flat and shallow trochlea, trochlea dysplasia and patella alta seem to contribute to the development of patellar cartilage defects, which must be taken into consideration when planning to do surgical cartilage repair at the patella. III.
Toshniwal, Gokul; Sunder, Rani; Thomas, Ronald; Dureja, G P
2012-01-01
Interventional pain management techniques play an important role in the multidisciplinary approach to management of complex regional pain syndrome (CRPS). In this preliminary study we compared the efficacy of continuous stellate ganglion (CSG) block with that of continuous infraclavicular brachial plexus (CIBP) block in management of CRPS type I of upper extremity. Thirty-three patients with CRPS type I of upper extremity were randomly assigned to either CSG or CIBP group. Patients were treated for 1 week with continuous infusion of 0.125% bupivacaine at 2and 5mL/h, respectively. Catheter was removed at 1 week and patients were followed up for 4 weeks. The outcome was evaluated in terms of neuropathic pain scale score (NPSS), edema scores (Grades 0-2), and range of motion (ROM) of all upper extremity joints (Grades 0-2). CIBP group showed statistically significant improvement in NPSS compared with CSG group during the first 12 hours after the procedures (P value <0.05). After 12 hours, the NPSS was comparable between the groups. At 4 weeks, both groups showed clinically significant improvement in edema score and ROM of all upper extremity joints when compared with the baseline. This preliminary study suggests that CIBP block and CSG block may be feasible and effective interventional techniques for the management of CRPS type I of upper extremities. Hence, we recommend a larger well-randomized, well-controlled, clinical trial to confirm our findings and determine if any significant difference exists between the groups in terms of long-term pain relief and functional restoration. Wiley Periodicals, Inc.
Oral, Sukru; Tumturk, Abdulfettah; Kucuk, Ahmet; Menku, Ahmet
2018-01-01
The surgical approaches for spinal tumors, to a great extent, have been developed in accordance with the developments in medical technology. Today, many surgical techniques are implemented as anterior, anterolateral, posterior, posterolateral and combined approaches. Due to its low morbidity, the posterior approach is the more preferred one. Laminectomy is a widely used technique, especially in neoplastic lesions. However, following laminectomy, there are numerous complications such as instability, kyphotic deformity and scar formation. In this paper, the excision of a tumor that was located intradural-extramedullary at the C3-C7 level with the cervical hemilaminoplasty technique is described. A 47-year-old female patient presented to our clinic with increasing complaints of neck and left arm pain, left arm numbness and searing pain for the last 10 years. On examination, hypoesthesia at the C4-7 dermatomes in the left upper extremity, an increase in deep tendon reflexes, and bilateral positive Hoffmann reflexes were observed. C3-C7 laminae were opened unilaterally on the right side with a midline skin incision. The laminae were drilled with a high-speed drill to provide a wide opening, both on the midline obliquely and from the border of the lamina-facet joint. After the tumor was totally excised, hemilaminae were placed into the previous position and reconstructed with mini-plates and screws. Cervical hemilaminoplasty provides a wide field of vision in tumor surgery of this region. Besides, the reconstruction of hemilaminae is important for stability. As the integrity of the spinal canal is preserved during reoperations of this region, the risk of complications is decreased.
The effects of muscle weakness on degenerative spondylolisthesis: A finite element study.
Zhu, Rui; Niu, Wen-Xin; Zeng, Zhi-Li; Tong, Jian-Hua; Zhen, Zhi-Wei; Zhou, Shuang; Yu, Yan; Cheng, Li-Ming
2017-01-01
Whether muscle weakness is a cause, or result, of degenerative spondylolisthesis is not currently well understood. Little biomechanical evidence is available to offer an explanation for the mechanism behind exercise therapy. Therefore, the aim of this study is to investigate the effects of back muscle weakness on degenerative spondylolisthesis and to tease out the biomechanical mechanism of exercise therapy. A nonlinear 3-D finite element model of L3-L5 was constructed. Forces representing global back muscles and global abdominal muscles, follower loads and an upper body weight were applied. The force of the global back muscles was reduced to 75%, 50% and 25% to simulate different degrees of back muscle weakness. An additional boundary condition which represented the loads from other muscles after exercise therapy was set up to keep the spine in a neutral standing position. Shear forces, intradiscal pressure, facet joint forces and von Mises equivalent stresses in the annuli were calculated. The intervertebral rotations of L3-L4 and L4-L5 were within the range of in vitro experimental data. The calculated intradiscal pressure of L4-L5 for standing was 0.57MPa, which is similar to previous in vivo data. With the back muscles were reduced to 75%, 50% and 25% force, the shear force moved increasingly in a ventral direction. Due to the additional stabilizing force and moment provided by boundary conditions, the shear force varied less than 15%. Reducing the force of global back muscles might lead to, or aggravate, degenerative spondylolisthesis with forward slipping from biomechanical point of view. Exercise therapy may improve the spinal biomechanical environment. However, the intrinsic correlation between back muscle weakness and degenerative spondylolisthesis needs more clinical in vivo study and biomechanical analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Elbow Joint Fatigue and Bench-Press Training
Huang, Yen-Po; Chou, You-Li; Chen, Feng-Chun; Wang, Rong-Tyai; Huang, Ming-Jer; Chou, Paul Pei-Hsi
2014-01-01
Context: Bench-press exercises are among the most common form of training exercise for the upper extremity because they yield a notable improvement in both muscle strength and muscle endurance. The literature contains various investigations into the effects of different bench-press positions on the degree of muscle activation. However, the effects of fatigue on the muscular performance and kinetics of the elbow joint are not understood fully. Objective: To investigate the effects of fatigue on the kinetics and myodynamic performance of the elbow joint in bench-press training. Design: Controlled laboratory study. Setting: Motion research laboratory. Patients or Other Participants: A total of 18 physically healthy male students (age = 19.6 ± 0.8 years, height = 168.7 ± 5.5 cm, mass = 69.6 ± 8.6 kg) participated in the investigation. All participants were right-hand dominant, and none had a history of upper extremity injuries or disorders. Intervention(s): Participants performed bench-press training until fatigued. Main Outcome Measure(s): Maximal possible number of repetitions, cycle time, myodynamic decline rate, elbow-joint force, and elbow-joint moment. Results: We observed a difference in cycle time in the initial (2.1 ± 0.42 seconds) and fatigue (2.58 ± 0.46 seconds) stages of the bench-press exercise (P = .04). As the participants fatigued, we observed an increase in the medial-lateral force (P = .03) and internal-external moment (P ≤ .04) acting on the elbow joint. Moreover, a reduction in the elbow muscle strength was observed in the elbow extension-flexion (P ≤ .003) and forearm supination-pronation (P ≤ .001) conditions. Conclusions: The results suggest that performing bench-press exercises to the point of fatigue increases elbow-joint loading and may further increase the risk of injury. Therefore, when clinicians design bench-press exercise regimens for general athletic training, muscle strengthening, or physical rehabilitation, they should control carefully the maximal number of repetitions. PMID:24533529
Gohritz, Andreas; Kaiser, Erich; Guggenheim, Merlin; Dellon, Arnold Lee
2018-01-01
Selective joint denervation has become a reliable palliative treatment, especially for painful joints in the upper and lower extremity. This article highlights the life and work of Nikolaus Rüdinger (1832-1896) who first described joint innervation which became the basis of later techniques of surgical joint denervation. The historical evolution of this method is outlined. Rüdinger made a unique career from apprentice barber to military surgeon and anatomy professor in Munich, Germany. His first description of articular innervation of temporomandibular, shoulder, elbow, wrist, finger, sacroiliac, hip, knee, ankle, foot, and toe joints in 1857 stimulated the subsequent history of surgical joint denervation. Comparing his investigations with modern joint denervation methods, developed by pioneers like Albrecht Wilhelm or A. Lee Dellon, shows his great exactitude and anatomical correspondence despite different current terminology. Clinical series of modern surgical joint denervations reveal success rates of up to 80% with reliable long-term results. The history of joint denervation with Rüdinger as its important protagonist offers inspiring insights into the evolution of surgical techniques and exemplifies the value of descriptive functional anatomy, even if surgical application may not have been realized until a century later. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Hartmann, Hagen; Wirth, Klaus; Klusemann, Markus
2013-10-01
It has been suggested that deep squats could cause an increased injury risk of the lumbar spine and the knee joints. Avoiding deep flexion has been recommended to minimize the magnitude of knee-joint forces. Unfortunately this suggestion has not taken the influence of the wrapping effect, functional adaptations and soft tissue contact between the back of thigh and calf into account. The aim of this literature review is to assess whether squats with less knee flexion (half/quarter squats) are safer on the musculoskeletal system than deep squats. A search of relevant scientific publications was conducted between March 2011 and January 2013 using PubMed. Over 164 articles were included in the review. There are no realistic estimations of knee-joint forces for knee-flexion angles beyond 50° in the deep squat. Based on biomechanical calculations and measurements of cadaver knee joints, the highest retropatellar compressive forces and stresses can be seen at 90°. With increasing flexion, the wrapping effect contributes to an enhanced load distribution and enhanced force transfer with lower retropatellar compressive forces. Additionally, with further flexion of the knee joint a cranial displacement of facet contact areas with continuous enlargement of the retropatellar articulating surface occurs. Both lead to lower retropatellar compressive stresses. Menisci and cartilage, ligaments and bones are susceptible to anabolic metabolic processes and functional structural adaptations in response to increased activity and mechanical influences. Concerns about degenerative changes of the tendofemoral complex and the apparent higher risk for chondromalacia, osteoarthritis, and osteochondritis in deep squats are unfounded. With the same load configuration as in the deep squat, half and quarter squat training with comparatively supra-maximal loads will favour degenerative changes in the knee joints and spinal joints in the long term. Provided that technique is learned accurately under expert supervision and with progressive training loads, the deep squat presents an effective training exercise for protection against injuries and strengthening of the lower extremity. Contrary to commonly voiced concern, deep squats do not contribute increased risk of injury to passive tissues.
Alignment and focus of mirrored facets of a heliosat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yellowhair, Julius E; Ho, Clifford Kuofei; Diver, Richard B
2013-11-12
Various technologies pertaining to aligning and focusing mirrored facets of a heliostat are described herein. Updating alignment and/or focus of mirrored facets is undertaken through generation of a theoretical image, wherein the theoretical image is indicative of a reflection of the target via the mirrored facets when the mirrored facets are properly aligned. This theoretical image includes reference points that are overlaid on an image of the target as reflected by the mirrored facets of the heliostat. A technician adjusts alignment/focus of a mirrored facet by causing reflected reference markings to become aligned with the reference points in the theoreticalmore » image.« less
A novel anchoring system for use in a nonfusion scoliosis correction device.
Wessels, Martijn; Homminga, Jasper J; Hekman, Edsko E G; Verkerke, Gijsbertus J
2014-11-01
Insertion of a pedicle screw in the mid- and high thoracic regions has a serious risk of facet joint damage. Because flexible implant systems require intact facet joints, we developed an enhanced fixation that is less destructive to spinal structures. The XSFIX is a posterior fixation system that uses cables that are attached to the transverse processes of a vertebra. To determine whether a fixation to the transverse process using the XSFIX is strong enough to withstand the loads applied by the XSLATOR (a novel, highly flexible nonfusion implant system) and thus, whether it is a suitable alternative for pedicle screw fixation. The strength of a novel fixation system using transverse process cables was determined and compared with the strength of a similar fixation using polyaxial pedicle screws on different vertebral levels. Each of the 58 vertebrae, isolated from four adult human cadavers, was instrumented with either a pedicle screw anchor (PSA) system or a prototype of the XSFIX. The PSA consisted of two polyaxial pedicle screws and a 5 mm diameter rod. The XSFIX prototype consisted of two bodies that were fixed to the transverse processes, interconnected with a similar rod. Each fixation system was subjected to a lateral or an axial torque. The PSA demonstrated fixation strength in lateral loading and torsion higher than required for use in the XSLATOR. The XSFIX demonstrated high enough fixation strength (in both lateral loading and torsion), only in the high and midthoracic regions (T10-T12). This experiment showed that the fixation strength of XSFIX is sufficient for use with the XSLATOR only in mid- and high thoracic regions. For the low thoracic and lumbar region, the PSA is a more rigid fixation. Because the performance of the new fixation system appears to be favorable in the high and midthoracic regions, a clinical study is the next challenge. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nuebler-Moritz, Michael; Niederdellmann, Herbert; Hering, Peter; Deuerling, Christian; Dammer, Ralf; Behr, M.
1995-04-01
The following paper introduces the results of an interdisciplinary research project. With the aid of photomacroscopic examination, light and scanning electron microscope investigations, changes to temporomandibular joint structures were detected in vitro after irradiation with an Erbium:YAG laser system. The solid-state Erbium:YAG laser, operating at a wavelength of 2.94 micrometers was used in the normal- spiking mode. The free-running laser beam was focussed onto freshly excised porcine tissue samples using a 108-mm sapphire lens. In this study the output was generally pulsed at a repetition rate of 4 Hz, with a pulse duration varying from 120 microsecond(s) to 500 microsecond(s) . Between 50 mJ and 500 mJ per pulse were applied to create pinpoint lesions. The optimum average energy density and pulse duration of the Erbium:YAG laser radiation for the purpose of TMJ-surgery (as far as it concerns meniscus and articulating facets) - which means efficient etch rate and minimal adjacent injury - seems to be about 24-42 J/cm2 and 120 microsecond(s) -240 microsecond(s) , respectively.
The Characteristics of Fatigue Damage in the Fuselage Riveted Lap Splice Joint
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.
1997-01-01
An extensive data base has been developed to form the physical basis for new analytical methodology to predict the onset of widespread fatigue damage in the fuselage lap splice joint. The results of detailed destructive examinations have been cataloged to describe the physical nature of MSD in the lap splice joint. ne catalog includes a detailed description, e.g., crack initiation, growth rates, size, location, and fracture morphology, of fatigue damage in the fuselage lap splice joint structure. Detailed examinations were conducted on a lap splice joint panel removed from a full scale fuselage test article after completing a 60,000 cycle pressure test. The panel contained a four bay region that exhibited visible outer skin cracks and regions of crack link-up along the upper rivet row. Destructive examinations revealed undetected fatigue damage in the outer skin, inner skin, and tear strap regions. Outer skin fatigue cracks were found to initiate by fretting damage along the faying surface. The cracks grew along the faying surface to a length equivalent to two to three skin thicknesses before penetrating the outboard surface of the outer skin. Analysis of fracture surface marker bands produced during full scale testing revealed that all upper rivet row fatigue cracks contained in a dim bay region grow at similar rates; this important result suggests that fracture mechanics based methods can be used to predict the growth of outer skin fatigue cracks in lap splice structure. Results are presented showing the affects of MSD and out-of-plane pressure loads on outer skin crack link-up.
Stabilization of the sacroiliac joint.
Shaffrey, Christopher I; Smith, Justin S
2013-07-01
Lower back pain and pain involving the area of the posterior iliac spine are extremely common. Degeneration of the sacroiliac joint (SIJ) is one potential cause for lower back pain and pain radiating into the groin or buttocks. Degenerative changes to the lumbar spine and sacroiliac joints are common. A recent study evaluating SIJ abnormalities in a primary low back pain population demonstrated 31.7% of patients demonstrated SI joint abnormalities. (4) As is the case for the evaluation and management of isolated lower back pain, the evaluation, management, and role for surgical intervention in SIJ pain is very controversial. Many patients have degenerative changes of the disc, facet joints, and SIJs. A recent systematic review performed to determine the diagnostic accuracy of tests available to clinicians to identify the disc, facet joint, or SIJ as the source of low back pain concluded that tests do exist that change the probability of the disc or SIJ (but not the facet joint) as the source of low back pain. (3) It was also concluded that the usefulness of these tests in clinical practice, particularly for guiding treatment selection, remains unclear. (3) Although there is general agreement that SIJ pathological changes are a potential cause of pain, there is far less agreement about the optimal management of these conditions. A variety of conditions can cause SIJ dysfunction including degenerative and inflammatory arthritis, trauma, prior lumbosacral fusion, hip arthritis, limb length inequality, infections, and neoplasia. (8) There is increasing evidence that image intensifier-guided single periarticular injection can correctly localize pain to the SIJ but the optimal management strategy remains controversial. Recent publications have compared surgical versus injection treatments and fusion versus denervation procedures. (1 , 8) A systematic review found improvement regardless of the treatment, with most studies reporting over 40% improvement in pain as measured by VAS or NRS scores. (8) It cautioned that one of the studies reported 17.6% of patients experiencing mild/no pain compared with 82.4% experiencing marked/severe pain at 39 months after SIJ fusion procedures. (6 , 8) This systematic review also noted that despite improvements in reported pain, less than half of patients who had work status reported as returning to work. (8) Because of the functional and socioeconomic consequences of chronic lower back pain, numerous surgical treatments to improve this condition have been attempted by spinal surgeons through the years. Arthrodesis of the SIJ is a surgical procedure with a long history dating to the beginnings of spinal surgery. (7) Poor results, high complication rates and the need for additional surgical procedures have generally diminished the enthusiasm for this procedure until recently. (6) A variety of "minimally invasive" procedures have been recently introduced that have rekindled enthusiasm for the surgical management of SIJ pathology. The technique demonstrated in the "Stabilization of the SIJ with SI-Bone" is one of these new techniques. There has been a recent publication detailing the very short term clinical outcomes with this technique that reported encouraging results. (5) In this series of 50 patients, quality of life questionnaires were available for 49 patients preoperatively, 41 patients at 3 months, 40 at 6 months and only 27 at 12 months, complicating the ability to accurately assess true outcomes. Although the focus of this video by Geisler is on the surgical technique, there should have been more information provided on the expected surgical outcomes and potential complications of SIJ fusion. (2) The video only gives minimal information on how to appropriately select patients with potential SIJ pathology for surgical intervention. There are insufficient recommendations on the clinical and radiographic follow-up needed for this procedure. A concern with this implant is whether the porous plasma spray coating on the implant actually results in bone growth across the SIJ or only serves as a stabilizer. If true fusion does not result, deterioration in the clinical result could occur over time. This video nicely demonstrates the surgical technique of stabilization of the SIJ with SI-Bone product. There are numerous unanswered questions regarding patient selection for SIJ fusion or stabilization. There are an increasing number of surgical techniques for treating SIJ pathology and it is not clear which method may provide the best outcomes. Without prospective trials with nonconflicted surgeons and standardized selection criteria, the true role for SIJ fusion procedures in the management of chronic lower back pain will remain murky. The consequences of the unsupported enthusiasm for the surgical management of discogenic back pain still negatively impacts the public perception of spinal surgeons. Much more high quality information is needed regarding the surgical management of SIJ pathology before widespread use of this technique should be adopted.
Shanmuganathan, K; Mirvis, S E; Levine, A M
1994-11-01
Imaging studies of patients with rotational facet injuries of the cervical spine were retrospectively reviewed to determine the prevalence and pattern of associated fractures, to correlate injury pattern with recommended surgical stabilization, and to assess neurologic outcome. Radiographs and CT scans obtained for 40 consecutive patients with rotational facet injuries of the cervical spine during a 70-month period were retrospectively reviewed to determine injury level, presence, and orientation of facet fractures, and concurrent nonfacet injuries. Imaging findings were reviewed to assess the likelihood of instability and to determine the most appropriate stabilization requirement. Medical records were reviewed to ascertain mechanism of injury, initial neurologic deficit, and surgical findings. Among the 40 patients with cervical rotational facet injuries, 11 (27%) had pure unilateral facet dislocation or subluxation without associated fractures, and 29 (73%) had concurrent facet fractures involving the inferior facet of the rotated vertebra (n = 13), the superior facet of the subjacent vertebra (n = 9), or both (n = 7). Injury of the rotated vertebra was unilateral in 22 patients but bilateral in 18 patients. Facet fractures frequently extended into the ipsilateral lamina or articular pillar or both. An avulsion fracture from the posteroinferior aspect of the rotated vertebral body, indicating disk disruption, occurred in 10 patients (25%), and seven patients (17%) had complete isolation of an articular pillar. Facet fractures were confirmed for 27 patients who underwent surgical stabilization. Neurologic deficits developed in 29 (73%) of the 40 patients and included radiculopathy in 11 patients and cord syndromes in 18 patients. Pure dislocation without a facet fracture was more likely to lead to a cord syndrome (p = .006). Cervical rotational facet injuries are often accompanied by facet fractures and bilateral damage of the rotated vertebra. These injuries contribute to rotational instability and require specific internal fixation based on a precise delineation of all injuries. Facet dislocations without fractures have a significantly higher association with cord syndromes than do rotational facet injuries with fractures. CT, particularly with parasagittal reformations, is valuable in identifying all injuries of the rotated and subjacent vertebrae.
Quiet Short-Haul Research Aircraft Joint Navy/NASA Sea Trials
NASA Technical Reports Server (NTRS)
Queen, S.; Cochrane, J.
1982-01-01
The Quiet Short-Haul Research Aircraft (QSRA) is a flight facility which Ames Research Center is using to conduct a broad program of terminal area and low-speed, propulsive-life flight research. A joint Navy/NASA flight research program used the QSRA to investigate the application of advanced propulsive-lift technology to the naval aircraft-carrier environment. Flight performance of the QSRA is presented together with the results or the joint Navy/NASA flight program. During the joint program, the QSRA operated aboard the USS Kitty Hawk for 4 days, during which numerous unarrested landings and free deck takeoffs were accomplished. These operations demonstrated that a large aircraft incorporating upper-surface-blowing, propulsive-life technology can be operated in the aircraft-carrier environment without any unusual problems.
Bokov, Andrey; Isrelov, Alexey; Skorodumov, Alexander; Aleynik, Alexander; Simonov, Alexander; Mlyavykh, Sergey
2011-01-01
Despite the evident progress in treating vertebral column degenerative diseases, the rate of a so-called "failed back surgery syndrome" associated with pain and disability remains relatively high. However, this term has an imprecise definition and includes several different morbid conditions following spinal surgery, not all of which directly illustrate the efficacy of the applied technology; furthermore, some of them could even be irrelevant. To evaluate and systematize the reasons for persistent pain syndromes following surgical nerve root decompression. Prospective, nonrandomized, cohort study of 138 consecutive patients with radicular pain syndromes, associated with nerve root compression caused by lumbar disc herniation, and resistant to conservative therapy for at least one month. The minimal period of follow-up was 18 months. Hospital outpatient department, Russian Federation Pre-operatively, patients were examined clinically, applying the visual analog scale (VAS), Oswestry Disability Index (ODI), magnetic resonance imaging (MRI), discography and computed tomography (CT). According to the disc herniation morphology and applied type of surgery, all participants were divided into the following groups: for those with disc extrusion or sequester, microdiscectomy was applied (n = 65); for those with disc protrusion, nucleoplasty was applied (n = 46); for those with disc extrusion, nucleoplasty was applied (n = 27). After surgery, participants were examined clinically and the VAS and ODI were applied. All those with permanent or temporary pain syndromes were examined applying MRI imaging, functional roentgenograms, and, to validate the cause of pain syndromes, different types of blocks were applied (facet joint blocks, paravertebral muscular blocks, transforaminal and caudal epidural blocks). Group 1 showed a considerable rate of pain syndromes related to tissue damage during the intervention; the rates of radicular pain caused by epidural scar and myofascial pain were 12.3% and 26.1% respectively. Facet joint pain was found in 23.1% of the cases. Group 2 showed a significant rate of facet joint pain (16.9%) despite the minimally invasive intervention. The specificity of Group 3 was the very high rate of unresolved or recurred nerve root compression (63.0%); in other words, in the majority of cases, the aim of the intervention was not achieved. The results of the applied intervention were considered clinically significant if 50% pain relief on the VAS and a 40% decrease in the ODI were achieved. This study is limited because of the loss of participants to follow-up and because it is nonrandomized; also it could be criticized because the dynamics of numeric scores were not provided. The results of our study show that an analysis of the reasons for failures and partial effects of applied interventions for nerve root decompression may help to understand better the efficacy of the interventions and could be helpful in improving surgical strategies, otherwise the validity of the conclusion could be limited because not all sources of residual pain illustrate the applied technology efficacy. In the majority of cases, the cause of the residual or recurrent pain can be identified, and this may open new possibilities to improve the condition of patients presenting with failed back surgery syndrome.
Data condensed synthesis regarding kinesiotherapeutic procedures used in spasticity therapy
Moraru, E; Onose, G
2014-01-01
Abstract Spasticity represents an important feature of the upper motoneuron syndrome (UMNS). The clinical signs, such as the abnormal movement models, the unwanted muscular co-contractions, the muscular and joint rigidity with a consecutive deformity can be signs of spasticity and, also of upper motoneuron lesion. The different therapeutic options applied in the management of spasticity are a basic component of UMNS treatment scheme. This article presents the main kinesiotherapeutic procedures used in spasticity therapy. PMID:25408747
2008-04-23
Kotler , P.M. (1997). Marketing management: Analysis, planning, implementation, and control. Upper Saddle River, NJ: Prentice Hall...needed to provide needed items. Production needed to be stable so suppliers could more easily meet demand ( Kotler , 1997, pp. 214-215). The Robotics