NASA Astrophysics Data System (ADS)
Greene, Todd Jeremy
The Turpan-Hami basin is a major physiographic and geologic feature of northwest China, yet considerable uncertainty exists as to the timing of its inception, its late Paleozoic and Mesozoic tectonic history, and the relationship of its petroleum systems to those of the nearby Junggar basin. Mesozoic sedimentary fades, regional unconformities, sediment dispersal patterns, and sediment compositions within the Turpan-Hami and southern Junggar basins suggest that these basins were initially separated between Early Triassic and Early Jurassic time. Prior to separation, Upper Permian profundal lacustrine and fan-delta fades and Triassic coarse-grained braided-fluvial/alluvial fades were deposited across a contiguous Junggar-Turpan-Hami basin. Permian through Triassic fades were derived mainly from the Tian Shan to the south as indicated by northward-directed paleocurrent directions and geochemical provenance of granitoid cobbles. Lower through Middle Jurassic strata begin to reflect ponded coal-forming, lake-plain environments within the Turpan-Hami basin. A sharp change in sedimentary-lithic-rich Lower Jurassic sandstone followed by a return to lithic volcanic-rich Middle Jurassic sandstone points to the initial uplift and unroofing of the largely andesitic Bogda Shan range, which first shed its sedimentary cover as it emerged to become the partition between the Turpan-Hami and southern Junggar basins. In Turpan-Hami, source rock age is one of three major statistically significant discriminators of effective source rocks in the basin. A newly developed biomarker parameter appears to track conifer evolution and can distinguish Permian rocks and their correlative oils from Jurassic coals and mudrocks, and their derivative oils. Source fades is a second key control on petroleum occurrence and character. By erecting rock-to-oil correlation models, the biomarker parameters separate oil families into end-member groups: Group 1 oils---Lower/Middle Jurassic peatland/swamp fades, Group 2 oils---Lower/Middle Jurassic marginal lacustrine fades, and Group 3 oils---Upper Permian lacusbine fades. Burial history exercises a third major control on petroleum in the Turpan-Hami basin. While relatively uninterrupted deep burial in the Tabei Depression exhausted Upper Permian source rocks and brought Lower/Middle Jurassic rocks well into the oil generative window, Late Jurassic uplift in the Tainan Depression eroded much of the Lower/Middle Jurassic section and preserved Upper Permian sourced oils as biodegraded, relict, heavy oils.* *This dissertation includes a CD that is multimedia (contains text and other applications that are not available in a printed format). The CD requires the following applications: Adobe Acrobat, UNIX.
NASA Astrophysics Data System (ADS)
Brookfield, Michael E.; Hashmat, Ajruddin
2001-10-01
The North Afghan platform has a pre-Jurassic basement unconformably overlain by a Jurassic to Paleogene oil- and gas-bearing sedimentary rock platform cover, unconformably overlain by Neogene syn- and post-orogenic continental clastics. The pre-Jurassic basement has four units: (1) An ?Ordovician to Lower Devonian passive margin succession developed on oceanic crust. (2) An Upper Devonian to Lower Carboniferous (Tournaisian) magmatic arc succession developed on the passive margin. (3) A Lower Carboniferous (?Visean) to Permian rift-passive margin succession. (4) A Triassic continental magmatic arc succession. The Mesozoic-Palaeogene cover has three units: (1) A ?Late Triassic to Middle Jurassic rift succession is dominated by variable continental clastics. Thick, coarse, lenticular coal-bearing clastics were deposited by braided and meandering streams in linear grabens, while bauxites formed on the adjacent horsts. (2) A Middle to Upper Jurassic transgressive-regressive succession consists of mixed continental and marine Bathonian to Lower Kimmeridgian clastics and carbonates overlain by regressive Upper Kimmeridgian-Tithonian evaporite-bearing clastics. (3) A Cretaceous succession consists of Lower Cretaceous red beds with evaporites, resting unconformably on Jurassic and older deposits, overlain (usually unconformably) by Cenomanian to Maastrichtian shallow marine limestones, which form a fairly uniform transgressive succession across most of Afghanistan. (4) A Palaeogene succession rests on the Upper Cretaceous limestones, with a minor break marked by bauxite in places. Thin Palaeocene to Upper Eocene limestones with gypsum are overlain by thin conglomerates, which pass up into shales with a restricted brackish-water ?Upper Oligocene-?Lower Miocene marine fauna. The Neogene succession consists of a variable thickness of coarse continental sediments derived from the rising Pamir mountains and adjacent ranges. Almost all the deformation of the North Afghan platform began in the Miocene. Oil and gas traps are mainly in Upper Jurassic carbonates and Lower Cretaceous sandstones across the entire North Afghan block. Upper Jurassic carbonate traps, sealed by evaporites, occur mainly north of the southern limit of the Upper Jurassic salt. Lower Cretaceous traps consist of fine-grained continental sandstones, sealed by Aptian-Albian shales and siltstones. Upper Cretaceous-Palaeocene carbonates, sealed by Palaeogene shales are the main traps along the northern edge of the platform and in the Tajik basin. Almost all the traps are broad anticlines related to Neogene wrench faulting, in this respect, like similar traps along the San Andreas fault. Hydrocarbon sources are in the Mesozoic section. The Lower-Middle Jurassic continental coal-bearing beds provide about 75% of the hydrocarbons; the Callovian-Oxfordian provides about 10%; the Neocomian a meagre 1%, and the Aptian-Albian about 14%. The coal-bearing source rocks decrease very markedly in thickness southwards cross the North Afghan platform. Much of the hydrocarbon generation probably occurred during the Late Cretaceous-Paleogene and migrated to structural traps during Neogene deformation. Since no regional structural dip aids southward hydrocarbon migration, and since the traps are all structural and somewhat small, then there is little chance of very large petroleum fields on the platform. Nevertheless, further studies of the North Afghan platform should be rewarding because: (a) the traps of strike-slip belts are difficult to find without detailed exploration; (b) the troubles of the last 20 years mean that almost no exploration has been done; and, (c) conditions may soon become more favorable. There should be ample potential for oil, and particularly gas, discoveries especially in the northern and western parts of the North Afghan platform.
Bishop, M.G.
1999-01-01
The Bonaparte Gulf Basin Province (USGS #3910) of northern Australia contains three important hydrocarbon source-rock intervals. The oldest source-rock interval and associated reservoir rocks is the Milligans-Carboniferous, Permian petroleum system. This petroleum system is located at the southern end of Joseph Bonaparte Gulf and includes both onshore and offshore areas within a northwest to southeast trending Paleozoic rift that was initiated in the Devonian. The Milligans Formation is a Carboniferous marine shale that sources accumulations of both oil and gas in Carboniferous and Permian deltaic, marine shelf carbonate, and shallow to deep marine sandstones. The second petroleum system in the Paleozoic rift is the Keyling, Hyland Bay-Permian. Source rocks include Lower Permian Keyling Formation delta-plain coals and marginal marine shales combined with Upper Permian Hyland Bay Formation prodelta shales. These source-rock intervals provide gas and condensate for fluvial, deltaic, and shallow marine sandstone reservoirs primarily within several members of the Hyland Bay Formation. The Keyling, Hyland Bay-Permian petroleum system is located in the Joseph Bonaparte Gulf, north of the Milligans-Carboniferous, Permian petroleum system, and may extend northwest under the Vulcan graben sub-basin. The third and youngest petroleum system is the Jurassic, Early Cretaceous-Mesozoic system that is located seaward of Joseph Bonaparte Gulf on the Australian continental shelf, and trends southwest-northeast. Source-rock intervals in the Vulcan graben sub-basin include deltaic mudstones of the Middle Jurassic Plover Formation and organic-rich marine shales of the Upper Jurassic Vulcan Formation and Lower Cretaceous Echuca Shoals Formation. These intervals produce gas, oil, and condensate that accumulates in, shallow- to deep-marine sandstone reservoirs of the Challis and Vulcan Formations of Jurassic to Cretaceous age. Organic-rich, marginal marine claystones and coals of the Plover Formation (Lower to Upper Jurassic), combined with marine claystones of the Flamingo Group and Darwin Formation (Upper Jurassic to Lower Cretaceous) comprise the source rocks for the remaining area of the system. These claystones and coals source oil, gas, and condensate accumulations in reservoirs of continental to marine sandstones of the Plover Formation and Flamingo Group. Shales of the regionally distributed Lower Cretaceous Bathurst Island Group and intraformational shales act as seals for hydrocarbons trapped in anticlines and fault blocks, which are the major traps of the province. Production in the Bonaparte Gulf Basin Province began in 1986 using floating production facilities, and had been limited to three offshore fields located in the Vulcan graben sub-basin. Cumulative production from these fields totaled more than 124 million barrels of oil before the facilities were removed after production fell substantially in 1995. Production began in 1998 from three offshore wells in the Zone of Cooperation through floating production facilities. After forty years of exploration, a new infrastructure of pipelines and facilities are planned to tap already discovered offshore reserves and to support additional development.
Hampton, B.A.; Ridgway, K.D.; O'Neill, J. M.; Gehrels, G.E.; Schmidt, J.; Blodgett, R.B.
2007-01-01
Mesozoic strata of the northwestern Talkeetna Mountains are located in a regional suture zone between the allochthonous Wrangellia composite terrane and the former Mesozoic continental margin of North America (i.e., the Yukon-Tanana terrane). New geologic mapping, measured stratigraphic sections, and provenance data define a distinct three-part stratigraphy for these strata. The lowermost unit is greater than 290 m thick and consists of Upper Triassic-Lower Jurassic mafic lavas, fossiliferous limestone, and a volcaniclastic unit that collectively we informally refer to as the Honolulu Pass formation. The uppermost 75 m of the Honolulu Pass formation represent a condensed stratigraphic interval that records limited sedimentation over a period of up to ca. 25 m.y. during Early Jurassic time. The contact between the Honolulu Pass formation and the overlying Upper Jurassic-Lower Cretaceous clastic marine strata of the Kahiltna assemblage represents a ca. 20 m.y. depositional hiatus that spans the Middle Jurassic and part of Late Jurassic time. The Kahiltna assemblage may to be up to 3000 m thick and contains detrital zircons that have a robust U-Pb peak probability age of 119.2 Ma (i.e., minimum crystallization age/maximum depositional age). These data suggest that the upper age of the Kahiltna assemblage may be a minimum of 10-15 m.y. younger than the previously reported upper age of Valanginian. Sandstone composition (Q-43% F-30% L-27%-Lv-71% Lm-18% Ls-11%) and U-Pb detrital zircon ages suggest that the Kahiltna assemblage received igneous detritus mainly from the active Chisana arc, remnant Chitina and Talkeetna arcs, and Permian-Triassic plutons (Alexander terrane) of the Wrangellia composite terrane. Other sources of detritus for the Kahiltna assemblage were Upper Triassic-Lower Jurassic plutons of the Taylor Mountains batholith and Devonian-Mississippian plutons; both of these source areas are part of the Yukon-Tanana terrane. The Kahiltna assemblage is overlain by previously unrecognized nonmarine strata informally referred to here as the Caribou Pass formation. This unit is at least 250 m thick and has been tentatively assigned an Albian-Cenomanian-to-younger age based on limited palynomorphs and fossil leaves. Sandstone composition (Q-65% F-9% L-26%-Lv-28% Lm-52% Ls-20%) from this unit suggests a quartz-rich metamorphic source terrane that we interpret as having been the Yukon-Tanana terrane. Collectively, provenance data indicate that there was a fundamental shift from mainly arc-related sediment derivation from sources located south of the study area during Jurassic-Early Cretaceous (Aptian) time (Kahiltna assemblage) to mainly continental margin-derived sediment from sources located north and east of the study area by Albian-Cenomanian time (Caribou Pass formation). We interpret the threepart stratigraphy defined for the northwestern Talkeetna Mountains to represent pre- (the Honolulu Pass formation), syn- (the Kahiltna assemblage), and post- (the Caribou Pass formation) collision of the Wrangellia composite terrane with the Mesozoic continental margin. A similar Mesozoic stratigraphy appears to exist in other parts of south-central and southwestern Alaska along the suture zone based on previous regional mapping studies. New geologic mapping utilizing the three-part stratigraphy interprets the northwestern Talkeetna Mountains as consisting of two northwest-verging thrust sheets. Our structural interpretation is that of more localized thrust-fault imbrication of the three-part stratigraphy in contrast to previous interpretations of nappe emplacement or terrane translation that require large-scale displacements. Copyright ?? 2007 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Li, Shun; Guilmette, Carl; Ding, Lin; Xu, Qiang; Fu, Jia-Jun; Yue, Ya-Hui
2017-10-01
The Bangong-Nujiang suture zone, separating the Lhasa and Qiangtang blocks of the Tibetan Plateau, is marked by remnants of the Bangong-Nujiang oceanic basin. In the Gaize area of central Tibet, Mesozoic sedimentary strata recording the evolution of the basin and subsequent collision between these two blocks include the Upper Triassic-Lower Jurassic turbidites of the Mugagangri Group, the Upper Jurassic-Lower Cretaceous sandstone-dominated Wuga and Shamuluo formations, and the Upper Cretaceous molasse deposits of the Jingzhushan Formation. The Shamuluo and Jingzhushan formations rest unconformably on the underlying Mugagangri Group and Wuga Formation, respectively. In this contribution, we analyze petrographic components of sandstones and U-Pb-Hf isotopic compositions of detrital zircons from the Wuga and Jingzhushan formations for the first time. Based on the youngest detrital zircon ages, the maximum depositional ages of the Wuga and Jingzhushan formations are suggested to be ∼147-150 Ma and ∼79-91 Ma, respectively. Petrographic and isotopic results indicate that sediments in the Wuga Formation were mainly sourced from the accretionary complex (preserved as the Mugagangri Group) in the north, while sediments in the Jingzhushan Formation have mixed sources from the Lhasa block, the Qiangtang block and the intervening suture zone. Provenance analysis, together with regional data, suggests that the Upper Jurassic-Lower Cretaceous Wuga and Shamuluo formations were deposited in a peripheral foreland basin and a residual-sea basin, respectively, in response to the Lhasa-Qiangtang collision, whereas the Upper Cretaceous Jingzhushan Formation reflects continental molasse deposition during the post-collisional stage. The development of the peripheral foreland basin evidenced by deposition of the Wuga Formation reveals that the age of the initial Lhasa-Qiangtang collision might be the latest Jurassic (∼150 Ma).
Jurassic Paleolatitudes, Paleogeography, and Climate Transitions In the Mexican Subcontinen
NASA Astrophysics Data System (ADS)
Molina-Garza, R. S.; Geissman, J. W.; Lawton, T. F.
2014-12-01
Jurassic northward migration of Mexico, trailing the North America plate, resulted in temporal evolution of climate-sensitive depositional environments. Lower-Middle Jurassic rocks in central Mexico contain a record of warm-humid conditions, which are indicated by coal and compositionally mature sandstone deposited in continental environments. Preliminary paleomagnetic data indicate that these rocks were deposited at near-equatorial paleolatitudes. The Middle Jurassic (ca. 170 Ma) Diquiyú volcanic sequence in central Oaxaca give an overall mean of D=82.2º/ I= +4.1º (n=10; k=17.3, α95=12º). In the Late Jurassic, the Gulf of Mexico formed as a subsidiary basin of the Atlantic Ocean, when the supercontinent Pangaea ruptured. Upper Jurassic strata, including eolianite and widespread evaporite deposits, across Mexico indicate dry-arid conditions. Available paleomagnetic data (compaction-corrected) from eolianites in northeast Mexico indicate deposition at ~15-20ºN. As North America moved northward during Jurassic opening of the Atlantic, different latitudinal regions experienced coeval Late Jurassic climatic shifts. Climate transitions have been widely recognized in the Colorado plateau region. The plateau left the horse-latitudes in the late Middle Jurassic to reach temperate humid climates at ~40ºN in the latest Jurassic. In turn, the southern end of the North America plate (central Mexico) reached arid horse-latitudes in the Late Jurassic. At that time, epeiric platforms developed in the circum-Gulf region after a long period of margin extension. We suggest that Upper Jurassic hydrocarbon source rocks in the circum-Gulf region accumulated on these platforms as warm epeiric hypersaline seas and the Gulf of Mexico itself were fertilized by an influx of wind-blown silt from continental regions. Additional nutrients were brought to shallow zones of photosynthesis by ocean upwelling driven by changes in the continental landmass configuration.
Southern Dobrogea coastal potable water sources and Upper Quaternary Black Sea level changes
NASA Astrophysics Data System (ADS)
Caraivan, Glicherie; Stefanescu, Diana
2013-04-01
Southern Dobrogea is a typical geologic platform unit, placed in the south-eastern part of Romania, with a Pre-Cambrian crystalline basement and a Paleozoic - Quaternary sedimentary cover. It is bordered to the north by the Capidava - Ovidiu fault and by the Black Sea to the east. A regional WNW - ESE and NNE - SSW fault system divides the Southern Dobrogea structure in several tectonic blocks. Four drinking water sources have been identified: surface water, phreatic water, medium depth Sarmatian aquifer, and deep Upper Jurassic - Lower Cretaceous aquifer. Surface water sources are represented by several springs emerged from the base of the loess cliff, and a few small rivers, barred by coastal beaches. The phreatic aquifer develops at the base of the loess deposits, on the impervious red clay, overlapping the Sarmatian limestones. The medium depth aquifer is located in the altered and karstified Sarmatian limestones, and discharges into the Black Sea. The Sarmatian aquifer is unconfined where covered by silty loess deposits, and locally confined, where capped by clayey loess deposits. The aquifer is supplied from the Pre-Balkan Plateau. The Deep Upper Jurassic - Lower Cretaceous aquifer, located in the limestone and dolomite deposits, is generally confined and affected by the regional WNW - ESE and NNE - SSW fault system. In the south-eastern Dobrogea, the deep aquifer complex is separated from the Sarmatian aquifer by a Senonian aquitard (chalk and marls). The natural boundary of the Upper Jurassic - Lower Cretaceous aquifer is the Capidava - Ovidiu Fault. The piezometric heads show that the Upper Jurassic - Lower Cretaceous aquifer is supplied from the Bulgarian territory, where the Upper Jurassic deposits crop out. The aquifer discharges into the Black Sea to the east and into Lake Siutghiol to the northeast. The cyclic Upper Quaternary climate changes induced drastic remodeling of the Black Sea level and the corresponding shorelines. During the Last Glacial Maximum (MIS 2), the shoreline retreats eastwards, reaching the 100-120 m isobaths. In these conditions, the surface drainage base level was very low. Phreatic nape closely followed the river valleys dynamics. Mean depth aquifer discharged on the inner shelf , where Sarmatian limestones outcrop. The deep aquifer discharge was restricted by the Capidava- Ovidiu Fault to the north-east and by a presumed seawards longitudinal Fault. This process enabled the migration of the prehistoric human communities, from Asia to Europe, who established settlements on the newly created alluvial plain on the western Black Sea shelf. The Holocene Transgression (MIS 1) determined a sea level rise up to the modern one, and probably higher. Under the pressure of these environmental changes, the Neolithic settlements slowly retreated upstream. During the Greek colonization, the rising sea level caused the salinisation of the previous drinking water phreatic sources. In these conditions, in the Roman Age, a new hydraulic infrastructure had to be developed, using aqueducts for available inland water delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsharahan, A.S.; Whittle, G.L.
1995-08-01
Deposition of Jurassic epeiric shelf carbonates and evaporates were controlled by epeirogenic movement and sea level fluctuations which formed an excellent combination of source rocks, reservoirs and seats in Abu Dhabi. At the end of the Triassic, a relative drop in sea level, caused by eustatic sea level lowering in conjunction with minor tectonic uplift, resulted in non-deposition or erosion. In the Toarcian, deposition of carbonates and terrigenous, clastics produced the Marrat Formation. In the mid-Aalenian, a drop in sea level eroded much of the Marrat and some of the Triassic in offshore U.A.E. The deposition of the Hamlah Formationmore » followed, under neritic, well-oxygenated conditions. The Middle Jurassic was characterized by widespread, normal marine shelf carbonates which formed the cyclic Izhara and Araej formations (reservoirs). In the Upper Jurassic, the carbonate shelf became differentiated into a broad shelf with a kerogen-rich intrashelf basin, formed in response to a eustatic rise coupled with epeirogenic downwarping and marine flooding. The intrashelf basin fill of muddy carbonate sediments constitutes the Diyab Formation and its onshore equivalent, the Dukhan Formation (source rocks). In the late Upper Jurassic, the climate became more arid and cyclic deposition of carbonates and evaporates prevailed, forming alternating peritidal anhydrite, dolomite and limestone in the Arab Formation (reservoir). Arid conditions continued into the Tithonian, fostering the extensive anhydrite of the Hith Formation (seal) in a sabkha/lagoonal setting on the shallow peritidal platform, the final regressive supratidal stage of this major depositional cycle.« less
The Jurassic section along McElmo Canyon in southwestern Colorado
O'Sullivan, Robert B.
1997-01-01
In McElmo Canyon, Jurassic rocks are 1500-1600 ft thick. Lower Jurassic rocks of the Glen Canyon Group include (in ascending order) Wingate Sandstone, Kayenta Formation and Navajo Sandstone. Middle Jurassic rocks are represented by the San Rafael Group, which includes the Entrada Sandstone and overlying Wanakah Formation. Upper Jurassic rocks comprise the Junction Creek Sandstone overlain by the Morrison Formation. The Burro Canyon Formation, generally considered to be Lower Cretaceous, may be Late Jurassic in the McElmo Canyon area and is discussed with the Jurassic. The Upper Triassic Chinle Formation in the subsurface underlies, and the Upper Cretaceous Dakota Sandstone overlies, the Jurassic section. An unconformity is present at the base of the Glen Canyon Group (J-0), at the base of the San Rafael Group (J-2), and at the base of the Junction Creek Sandstone (J-5). Another unconformity of Cretaceous age is at the base of the Dakota Sandstone. Most of the Jurassic rocks consist of fluviatile, lacustrine and eolian deposits. The basal part of the Entrada Sandstone and the Wanakah Formation may be of marginal marine origin.
Petroleum systems of the Southeast Tertiary basins and Marbella area, Southeast Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuentes, F.
1996-08-01
This study was done in an area where insufficient organic-rich rocks were available for a reliable oil-source rock correlation. However, oil-rock correlations, molecular characteristics of key horizons, paleofacies maps, maturation and potential migration pathways suggest the Tithonian as a major source rock. Moreover, there is good evidence of high quality source rocks in Oxfordian, Kimmeridgian, Middle-Upper Cretaceous and Paleogene (mainly in the Eocene). Plays were identified in Upper Jurassic oolitic sequences, Early-Middle Cretaceus carbonate platform rocks and breccias, Late Cretaceous basinal fracture carbonates, Paleogene carbonates and breccias, Early-Middle Miocene mounds and submarine fans and isolated carbonate platform sediments and Miocene-Recentmore » turbidites. Seal rocks are shaly carbonates and anhydrites from Tithonian, basinal carbonates and anhydrites from Middle-Upper Cretaceous, basinal carbonates and marls from Upper Cretaceous and Paleogene shales, and bathyal shales from Early Miocene-Recent. The first phase of oil migration from upper Jurassic-Early Cretaceous source rocks occurred in the Early-Middle Cretaceous. In the Upper Cretaceous the Chortis block collided with Chiapas, and as a result mild folding and some hydrocarbons were emplaced to the structural highs. The main phase of structuration and folding of the Sierra de Chiapas started in the Miocene, resulting in well-defined structural traps. Finally, in Plio-Pleistocene the Chortis block was separated, the major compressional period finished and the southern portion of Sierra de Chiapas was raised isostatically. As a result of major subsidence, salt withdrawal and increased burial depth, conditions were created for the generation of liquid hydrocarbons from the Paleogene shales.« less
Chapter 1: An overview of the petroleum geology of the Arctic
Spencer, A.M.; Embry, A.F.; Gautier, D.L.; Stoupakova, A.V.; Sorensen, K.
2011-01-01
Nine main petroleum provinces containing recoverable resources totalling 61 Bbbl liquids + 269 Bbbloe of gas are known in the Arctic. The three best known major provinces are: West Siberia-South Kara, Arctic Alaska and Timan-Pechora. They have been sourced principally from, respectively, Upper Jurassic, Triassic and Devonian marine source rocks and their hydrocarbons are reservoired principally in Cretaceous sandstones, Triassic sandstones and Palaeozoic carbonates. The remaining six provinces except for the Upper Cretaceous-Palaeogene petroleum system in the Mackenzie Delta have predominantly Mesozoic sources and Jurassic reservoirs. There are discoveries in 15% of the total area of sedimentary basins (c. 8 ?? 106 km2), dry wells in 10% of the area, seismic but no wells in 50% and no seismic in 25%. The United States Geological Survey estimate yet-to-find resources to total 90 Bbbl liquids + 279 Bbbloe gas, with four regions - South Kara Sea, Alaska, East Barents Sea, East Greenland - dominating. Russian estimates of South Kara Sea and East Barents Sea are equally positive. The large potential reflects primarily the large undrilled areas, thick basins and widespread source rocks. ?? 2011 The Geological Society of London.
Mancini, E.A.; Li, P.; Goddard, D.A.; Ramirez, V.O.; Talukdar, S.C.
2008-01-01
The Mesozoic (Upper Jurassic-Lower Cretaceous) deeply buried gas reservoir play in the central and eastern Gulf coastal plain of the United States has high potential for significant gas resources. Sequence-stratigraphic study, petroleum system analysis, and resource assessment were used to characterize this developing play and to identify areas in the North Louisiana and Mississippi Interior salt basins with potential for deeply buried gas reservoirs. These reservoir facies accumulated in Upper Jurassic to Lower Cretaceous Norphlet, Haynesville, Cotton Valley, and Hosston continental, coastal, and marine siliciclastic environments and Smackover and Sligo nearshore marine shelf, ramp, and reef carbonate environments. These Mesozoic strata are associated with transgressive and regressive systems tracts. In the North Louisiana salt basin, the estimate of secondary, nonassociated thermogenic gas generated from thermal cracking of oil to gas in the Upper Jurassic Smackover source rocks from depths below 3658 m (12,000 ft) is 4800 tcf of gas as determined using software applications. Assuming a gas expulsion, migration, and trapping efficiency of 2-3%, 96-144 tcf of gas is potentially available in this basin. With some 29 tcf of gas being produced from the North Louisiana salt basin, 67-115 tcf of in-place gas remains. Assuming a gas recovery factor of 65%, 44-75 tcf of gas is potentially recoverable. The expelled thermogenic gas migrated laterally and vertically from the southern part of this basin to the updip northern part into shallower reservoirs to depths of up to 610 m (2000 ft). Copyright ?? 2008. The American Association of Petroleum Geologists. All rights reserved.
Geological studies of the COST No. B-3 Well, United States Mid-Atlantic continental slope area
Scholle, Peter A.
1980-01-01
The COST No. B-3 well is the first deep stratigraphic test to be drilled on the Continental Slope off the Eastern United States. The well was drilled in 2,686 ft (819 m) of water in the Baltimore Canyon trough area to a total depth of 15,820 ft (4,844 m) below the drill platform. It penetrated a section composed of mudstones, calcareous mudstones, and limestones of generally deep water origin to a depth of about 8.200 ft (2,500 m) below the drill floor. Light-colored, medium- to coarse-grained sandstones with intercalated gray and brown shales, micritic limestones, and minor coal and dolomite predominate from about 8,200 to 12,300 ft (2,500 to 3,750 m). From about 12,300 ft (3,750 m) to the bottom, the section consists of limestones (including oolitic and intraclastic grainstones) with interbedded fine-to medium-grained sandstones, dark-colored fissile shales, and numerous coal seams. Biostratigraphic examination has shown that the section down to approximately 6,000 ft (1,830 m) is Tertiary. The boundary between the Lower and Upper Cretaceous sections is placed between 8,600 and 9,200 ft (2,620 and 2,800 m) by various workers. Placement of the Jurassic-Cretaceous boundary shows an even greater range based on different organisms; it is placed variously between 12,250 and 13,450 ft (3,730 and 5,000 m). The oldest unit penetrated in the well is considered to be Upper Jurassic (Kimmeridgian) by some workers and Middle Jurassic (Callovian) by others. The Lower Cretaceous and Jurassic parts of the section represent nonmarine to shallow-marine shelf sedimentation. Upper Cretaceous and Tertiary units reflect generally deeper water conditions at the B-3 well site and show a general transition from deposition at shelf to slope water depths. Examination of cores, well cuttings, and electric logs indicates that potential hydrocarbon-reservoir units are present throughout the Jurassic and Cretaceous section. Porous and moderately permeable limestones and sandstones have been found in the Jurassic section, and significant thicknesses of sandstone with porosities as high as 30 percent and permeabilities in excess of 100 md have been encountered in the Cretaceous interval from about 7,000 to 12,000 ft (2,130 to 3,650 m). Studies of organic geochemistry, vitrinite reflectance, and color alteration of visible organic matter indicate that the Tertiary section, especially in its upper part, contains organic-carbon-rich sediments that are good potential oil source rocks. However, this part of the section is thermally immature and is unlikely to have acted as a source rock anywhere in the area of the B-3 well. The Cretaceous section is generally lean in organic carbon, the organic matter which is present is generally gas-prone, and the interval is thermally immature (although the lowest part of this section is approaching thermal maturity). The deepest part of the well, the Jurassic section, shows the onset of thermal maturity. The lower half of the Jurassic rocks has high organic-carbon contents with generally gas-prone organic matter. This interval is therefore considered to be an excellent possible gas source; it has a very high methane content. The combination of gas-prone source rocks, thermal maturity, significant gas shows in the well at 15,750 ft (4,801 m) and porous reservoir rocks in the deepest parts of the well indicate a considerable potential for gas production from the Jurassic section in the area of the COST No. B-3 well. Wells drilled farther downslope from the B03 site may encounter more fully marine or deeper marine sections that may have a greater potential for oil (rather than gas) generation.
NASA Astrophysics Data System (ADS)
Abdlmutalib, Ammar; Abdullatif, Osman
2017-04-01
Jurassic carbonates represent an important part of the Mesozoic petroleum system in the Arabian Peninsula in terms of source rocks, reservoirs, and seals. Jurassic Outcrop equivalents are well exposed in central Saudi Arabia and which allow examining and measuring different scales of geological heterogeneities that are difficult to collect from the subsurface due to limitations of data and techniques. Identifying carbonates Discontinuities characteristics at outcrops might help to understand and predict their properties and behavior in the subsurface. The main objective of this study is to identify the lithofacies and the discontinuities properties of the upper Jurassic carbonates of the Arab D member and the Jubaila Formation (Arab-D reservoir) based on their outcrop equivalent strata in central Saudi Arabia. The sedimentologic analysis revealed several lithofacies types that vary in their thickness, abundances, cyclicity and vertical and lateral stacking patterns. The carbonates lithofacies included mudstone, wackestone, packstone, and grainstone. These lithofacies indicate deposition within tidal flat, skeletal banks and shallow to deep lagoonal paleoenvironmental settings. Field investigations of the outcrops revealed two types of discontinuities within Arab D Member and Upper Jubaila. These are depositional discontinuities and tectonic fractures and which all vary in their orientation, intensity, spacing, aperture and displacements. It seems that both regional and local controls have affected the fracture development within these carbonate rocks. On the regional scale, the fractures seem to be structurally controlled by the Central Arabian Graben System, which affected central Saudi Arabia. While, locally, at the outcrop scale, stratigraphic, depositional and diagenetic controls appear to have influenced the fracture development and intensity. The fracture sets and orientations identified on outcrops show similarity to those fracture sets revealed in the upper Jurassic carbonates in the subsurface which suggest inter-relationships. Therefore, the integration of discontinuities characteristics revealed from the Arab-D outcrop with subsurface data might help to understand and predict discontinuity properties and patterns of the Arab-D reservoir in the subsurface.
Upper jurassic dinosaur egg from utah.
Hirsch, K F; Stadtman, K L; Miller, W E; Madsen, J H
1989-03-31
The Upper Jurassic egg described here is the first known egg from the 100-million-year gap in the fossil record between Lower Jurassic (South Africa) and upper Lower Cretaceous (Utah). The discovery of the egg, which was found mixed in with thousands of dinosaur bones rather than in a nest, the pathological multilayering of the eggshell as found in modern and fossil reptilians, and the pliable condition of the eggshell at the time of burial indicate an oviducal retention of the egg at the time of burial.
Tectonics and hydrocarbon potential of the Barents Megatrough
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baturin, D.; Vinogradov, A.; Yunov, A.
1991-08-01
Interpretation of geophysical data shows that the geological structure of the Eastern Barents Shelf, named Barents Megatrough (BM), extends sublongitudinally almost from the Baltic shield to the Franz Josef Land archipelago. The earth crust within the axis part of the BM is attenuated up to 28-30 km, whereas in adjacent areas its thickness exceeds 35 km. The depression is filled with of more than 15 km of Upper Paleozoic, Mesozoic, and Cenozoic sediments overlying a folded basement of probable Caledonian age. Paleozoic sediments, with exception of the Upper Permian, are composed mainly of carbonates and evaporites. Mesozoic-Cenozoic sediments are mostlymore » terrigenous. The major force in the development of the BM was due to extensional tectonics. Three rifting phases are recognizable: Late Devonian-Early Carboniferous, Early Triassic, and Jurassic-Early Cretaceous. The principal features of the geologic structure and evolution of the BM during the late Paleozoic-Mesozoic correlate well with those of the Sverdup basin, Canadian Arctic. Significant quantity of Late Jurassic-Early Cretaceous basaltic dikes and sills were intruded within Triassic sequence during the third rifting phase. This was probably the main reason for trap disruption and hydrocarbon loss from Triassic structures. Lower Jurassic and Lower Cretaceous reservoir sandstones are most probably the main future objects for oil and gas discoveries within the BM. Upper Jurassic black shales are probably the main source rocks of the BM basin, as well as excellent structural traps for hydrocarbon fluids from the underlying sediments.« less
Age and tectonic setting of the Mesozoic McCoy Mountains Formation in western Arizona, USA
Spencer, J.E.; Richard, S.M.; Gehrels, G.E.; Gleason, J.D.; Dickinson, W.R.
2011-01-01
The McCoy Mountains Formation consists of Upper Jurassic to Upper Cretaceous siltstone, sandstone, and conglomerate exposed in an east-west-trending belt in southwestern Arizona and southeastern California. At least three different tectonic settings have been proposed for McCoy deposition, and multiple tectonic settings are likely over the ~80 m.y. age range of deposition. U-Pb isotopic analysis of 396 zircon sand grains from at or near the top of McCoy sections in the southern Little Harquahala, Granite Wash, New Water, and southern Plomosa Mountains, all in western Arizona, identifi ed only Jurassic or older zircons. A basaltic lava fl ow near the top of the section in the New Water Mountains yielded a U-Pb zircon date of 154.4 ?? 2.1 Ma. Geochemically similar lava fl ows and sills in the Granite Wash and southern Plomosa Mountains are inferred to be approximately the same age. We interpret these new analyses to indicate that Mesozoic clastic strata in these areas are Upper Jurassic and are broadly correlative with the lowermost McCoy Mountains Formation in the Dome Rock, McCoy, and Palen Mountains farther west. Six samples of numerous Upper Jurassic basaltic sills and lava fl ows in the McCoy Mountains Formation in the Granite Wash, New Water, and southern Plomosa Mountains yielded initial ??Nd values (at t = 150 Ma) of between +4 and +6. The geochemistry and geochronology of this igneous suite, and detrital-zircon geochronology of the sandstones, support the interpretation that the lower McCoy Mountains Formation was deposited during rifting within the western extension of the Sabinas-Chihuahua-Bisbee rift belt. Abundant 190-240 Ma zircon sand grains were derived from nearby, unidentifi ed Triassic magmatic-arc rocks in areas that were unaffected by younger Jurassic magmatism. A sandstone from the upper McCoy Mountains Formation in the Dome Rock Mountains (Arizona) yielded numerous 80-108 Ma zircon grains and almost no 190-240 Ma grains, revealing a major reorganization in sediment-dispersal pathways and/or modifi cation of source rocks that had occurred by ca. 80 Ma. ?? 2011 Geological Society of America.
NASA Astrophysics Data System (ADS)
Hofmann, Mandy; Voigt, Thomas; Bittner, Lucas; Gärtner, Andreas; Zieger, Johannes; Linnemann, Ulf
2018-04-01
The Saxonian-Bohemian Cretaceous Basin (Elbsandsteingebirge, E Germany and Czech Republic, Elbtal Group) comprises Upper Cretaceous sedimentary rocks from Upper Cenomanian to Santonian age. These sandstones were deposited in a narrow strait of the sea linking the northern Boreal shelf to the southern Tethyan areas. They were situated between the West Sudetic Island in the north and the Mid-European Island in the south. As known by former studies (e.g. Tröger, Geologie 6/7:717-730, 1964; Tröger, Geologie von Sachsen, Schweizerbart, 311-358, 2008; Voigt and Tröger, Proceedings of the 4th International Cretaceous Symposium, 275-290, 1996; Voigt, Dissertation, TU Bergakademie Freiberg, 1-130, 1995; Voigt, Zeitschrift der geologischen Wissenschaften 37(1-2): 15-39, 2009; Wilmsen et al., Freiberger Forschungshefte C540: 27-45, 2011) the main sedimentary input came from the north (Lausitz Block, southern West-Sudetic Island). A section of Turonian to Coniacian sandstones was sampled in the Elbsandsteingebirge near Schmilka (Elbtal Group, Saxony, Germany). The samples were analysed for their U-Pb age record of detrital zircon using LA-ICP-MS techniques. The results show main age clusters typical for the Bohemian Massif (local material) and are interpreted to reflect the erosion of uniform quartz-dominated sediments and basement rocks. Surprisingly, these rocks lack an expected Upper Proterozoic to Lower Palaeozoic age peak, which would be typical for the basement of the adjacent Lausitz Block (c. 540-c. 560 Ma). Therefore, the Lausitz Block basement must have been covered by younger sediments that acted as source rocks during deposition of the Elbtal Group. The sandstones of the Elbe valley (Elbtal Group, Schmilka section) represent the re-deposited sedimentary cover of the Lausitz Block in inverse order. This cover comprised Permian, Triassic, Jurassic and Lower Cretaceous deposits, which are eroded already today and cannot be investigated. Within the samples of the Elbtal Group (Schmilka section), the zircon age patterns change significantly towards the Lower Coniacian (topmost sample of the analysed section), where a major input of Meso- and Paleoproterozoic grains was obtained. Comparable ages are generally scarce in the working area. To have a reference for the detrital zircon age spectra of Triassic and Jurassic sediments of the area, two Upper Triassic und two Middle Jurassic clastic sediments of Germany were analysed. Surprisingly, the two Middle Jurassic (Dogger) sandstones from Bavaria and Lower Saxony showed similar detrital zircon age compositions as the Coniacian sediments on top of the Schmilka section (Elbe valley, Elbtal Group). In contrast, the two Upper Triassic sediments could be excluded as possible source rocks for the Upper Cretaceous sandstones of the Elbe valley (Schmilka section, Elbtal Group). The Meso- and Paleoproterozoic zircon age populations in the uppermost sandstone sample of the Schmilka section are assumed to originate from recycled Jurassic (Dogger) sandstones, resting on the Lausitz Block. These Middle Jurassic deposits were strongly influenced by a sedimentary input from the Scandinavian region (southern Baltica and North Sea Dome). The Turonian sandstones of the Schmilka section (samples below the topmost Coniacian sample) are interpreted to represent re-deposited Lower Cretaceous sediments resting on the Lausitz Block. A proposed synsedimentary uplift of about 5 km during the Upper Cretaceous along the Lausitz Fold (Lange et al., Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 159(1):123-132, 2008) would have caused erosion of the pre-existing sedimentary cover of the Lausitz Block followed by inverse accumulation of the detritus into the Cretaceous Basin (Elbe valley, Elbtal Group). The Permian and Triassic cover units of the Lausitz Block were not exposed during the Upper Cretaceous, but are assumed to have contributed to younger (post-Coniacian) sediments of the Elbtal Group, which were eroded during uppermost Cretaceous and lower Paleogene. Based on this study, the detrital zircon record of the Jurassic Dogger sandstones of Germany can be seen as "marker ages" for the European Cretaceous Basin inversion. This paper presents the first results of a case study with further investigations in other areas of Europe to follow.
Petroleum geology and resources of the middle Caspian Basin, Former Soviet Union
Ulmishek, Gregory F.
2001-01-01
The Middle Caspian basin occupies a large area between the Great Caucasus foldbelt and the southern edge of the Precambrian Russian craton. The basin also includes the central part of the Caspian Sea and the South Mangyshlak subbasin east of the sea. The basin was formed on the Hercynian accreted terrane during Late Permian?Triassic through Quaternary time. Structurally, the basin consists of the fold-and-thrust zone of the northern Caucasus foothills, the foredeep and foreland slope, the Stavropol-Prikumsk uplift and East Manych trough to the north of the slope, and the South Mangyshlak subbasin and slope of the Karabogaz arch east of the Caspian Sea. All these major structures extend offshore. Four total petroleum systems (TPS) have been identified in the basin. The South Mangyshlak TPS contains more than 40 discovered fields. The principal reserves are in Lower?Middle Jurassic sandstone reservoirs in structural traps. Source rocks are poorly known, but geologic data indicate that they are in the Triassic taphrogenic sequence. Migration of oil and gas significantly postdated maturation of source rocks and was related to faulting and fracturing during middle Miocene to present time. A single assessment unit covers the entire TPS. Largest undiscovered resources of this assessment unit are expected in the largely undrilled offshore portion of the TPS, especially on the western plunge of the Mangyshlak meganticline. The Terek-Caspian TPS occupies the fold-and-thrust belt, foredeep, and adjoining foreland slope. About 50 hydrocarbon fields, primarily oil, have been discovered in the TPS. Almost all hydrocarbon reserves are in faulted structural traps related to thrusting of the foldbelt, and most traps are in frontal edges of the thrust sheets. The traps are further complicated by plastic deformation of Upper Jurassic salt and Maykop series (Oligocene? lower Miocene) shale. Principal reservoirs are fractured Upper Cretaceous carbonates and middle Miocene sandstones. Principal source rocks are organic-rich shales in the lower part of the Maykop series. Source rocks may also be present in the Eocene, Upper Jurassic, and Middle Jurassic sections, but their contribution to discovered reserves is probably small. Three assessment units are delineated in the TPS. One of them encompasses the thrust-and-fold belt of northern Caucasus foothills. This assessment unit contains most of the undiscovered oil resources. The second assessment unit occupies the foredeep and largely undeformed foreland slope. Undiscovered resources of this unit are relatively small and primarily related to stratigraphic traps. The third unit is identified in almost untested subsalt Jurassic rocks occurring at great depths and is speculative. The unit may contain significant amounts of gas under the Upper Jurassic salt seal. The Stavropol-Prikumsk TPS lies north of the Terek-Caspian TPS and extends offshore into the central Caspian Sea where geologic data are scarce. More than one hundred oil and gas fields have been found onshore. Offshore, only one well was recently drilled, and this well discovered a large oil and gas field. Almost the entire sedimentary section of the TPS is productive; however, the principal oil reserves are in Lower Cretaceous clastic reservoirs in structural traps of the Prikumsk uplift. Most original gas reserves are in Paleogene reservoirs of the Stavropol arch and these reservoirs are largely depleted. At least three source rock formations, in the Lower Triassic, Middle Jurassic, and Oligocene?lower Miocene (Maykop series), are present in the TPS. Geochemical data are inadequate to correlate oils and gases in most reservoirs with particular source rocks, and widespread mixing of hydrocarbons apparently took place. Three assessment units encompassing the onshore area of the TPS, the offshore continuation of the Prikumsk uplift, and the central Caspian area, are identified. The
Magoon, L.B.; Hudson, T.L.; Cook, H.E.
2001-01-01
Pimienta-Tamabra(!) is a giant supercharged petroleum system in the southern Gulf of Mexico with cumulative production and total reserves of 66.3 billion barrels of oil and 103.7 tcf of natural gas, or 83.6 billion barrels of oil equivalent (BOE). The effectiveness of this system results largely from the widespread distribution of good to excellent thermally mature, Upper Jurassic source rock underlying numerous stratigraphic and structural traps that contain excellent carbonate reservoirs. Expulsion of oil and gas as a supercritical fluid from Upper Jurassic source rock occurred when the thickness of overburden rock exceeded 5 km. This burial event started in the Eocene, culminated in the Miocene, and continues to a lesser extent today. The expelled hydrocarbons started migrating laterally and then upward as a gas-saturated 35-40??API oil with less than 1 wt.% sulfur and a gas-to-oil ratio (GOR) of 500-1000 ft3/BO. The generation-accumulation efficiency is about 6%.
NASA Astrophysics Data System (ADS)
Finzel, E. S.
2017-07-01
Detrital zircon surface microtextures, geochronologic U-Pb data, and tectonic subsidence analysis from Upper Jurassic to Paleocene strata in the Black Hills of South Dakota reveal provenance variations in the distal portion of the Cordillera foreland basin in response to tectonic events along the outboard margin of western North America. During Late Jurassic to Early Cretaceous time, nonmarine strata record initially low rates of tectonic subsidence that facilitated widespread recycling of older foreland basin strata in eolian and fluvial systems that dispersed sediment to the northeast, with minimal sediment derived from the thrust belt. By middle Cretaceous time, marine inundation reflects increased subsidence rates coincident with a change to eastern sediment sources. Lowstand Albian fluvial systems in the Black Hills may have been linked to fluvial systems upstream in the midcontinent and downstream in the Bighorn Basin in Wyoming. During latest Cretaceous time, tectonic uplift in the study area reflects dynamic processes related to Laramide low-angle subduction that, relative to other basins to the west, was more influential due to the greater distance from the thrust load. Provenance data from Maastrichtian and lower Paleocene strata indicate a change back to western sources that included the Idaho-Montana batholith and exhumed Belt Supergroup. This study provides a significant contribution to the growing database that is refining the tectonics and continental-scale sediment dispersal patterns in North America during Late Jurassic-early Paleocene time. In addition, it demonstrates the merit of using detrital zircon grain shape and surface microtextures to aid in provenance interpretations.
Fe-Ni Micrometorites from Upper Jurassic Cañadon Asfalto Fm., Patagonia, Argentina
NASA Astrophysics Data System (ADS)
Matteini, M.; Hauser, N.; Cabaleri, N.; Silva Nieto, D.; Cuadros, F. A.; Reyes, S.
2014-09-01
Microspherules from an upper Jurassic sediments from Patagonia, show mineralogical, geochemical and textural features very similar to those reported for I-type micrometeorites whereas some spherules are interpreted as typical G-type micrometeorites.
Klett, T.R.
2001-01-01
Undiscovered conventional oil and gas resources were assessed within total petroleum systems of the Pelagian Province (2048) as part of the U.S. Geological Survey World Petroleum Assessment 2000. The Pelagian Province is located mainly in eastern Tunisia and northwestern Libya. Small portions of the province extend into Malta and offshore Italy. Although several petroleum systems may exist, only two ?composite? total petroleum systems were identified. Each total petroleum system comprises a single assessment unit. These total petroleum systems are called the Bou Dabbous?Tertiary and Jurassic-Cretaceous Composite, named after the source-rock intervals and reservoir-rock ages. The main source rocks include mudstone of the Eocene Bou Dabbous Formation; Cretaceous Bahloul, Lower Fahdene, and M?Cherga Formations; and Jurassic Nara Formation. Known reservoirs are in carbonate rocks and sandstone intervals throughout the Upper Jurassic, Cretaceous, and Tertiary sections. Traps for known accumulations include fault blocks, low-amplitude anticlines, high-amplitude anticlines associated with reverse faults, wrench fault structures, and stratigraphic traps. The estimated means of the undiscovered conventional petroleum volumes in total petroleum systems of the Pelagian Province are as follows: [MMBO, million barrels of oil; BCFG, billion cubic feet of gas; MMBNGL, million barrels of natural gas liquids] Total Petroleum System MMBO BCFG MMBNGL Bou Dabbous?Tertiary 667 2,746 64 Jurassic-Cretaceous Composite 403 2,280 27
Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Scotese, C.R.
2008-01-01
Tectonic geochemical paleolatitude (TGP) models were developed to predict the paleolatitude of petroleum source rock from the geochemical composition of crude oil. The results validate studies designed to reconstruct ancient source rock depositional environments using oil chemistry and tectonic reconstruction of paleogeography from coordinates of the present day collection site. TGP models can also be used to corroborate tectonic paleolatitude in cases where the predicted paleogeography conflicts with the depositional setting predicted by the oil chemistry, or to predict paleolatitude when the present day collection locality is far removed from the source rock, as might occur due to long distance subsurface migration or transport of tarballs by ocean currents. Biomarker and stable carbon isotope ratios were measured for 496 crude oil samples inferred to originate from Upper Jurassic source rock in West Siberia, the North Sea and offshore Labrador. First, a unique, multi-tiered chemometric (multivariate statistics) decision tree was used to classify these samples into seven oil families and infer the type of organic matter, lithology and depositional environment of each organofacies of source rock [Peters, K.E., Ramos, L.S., Zumberge, J.E., Valin, Z.C., Scotese, C.R., Gautier, D.L., 2007. Circum-Arctic petroleum systems identified using decision-tree chemometrics. American Association of Petroleum Geologists Bulletin 91, 877-913]. Second, present day geographic locations for each sample were used to restore the tectonic paleolatitude of the source rock during Late Jurassic time (???150 Ma). Third, partial least squares regression (PLSR) was used to construct linear TGP models that relate tectonic and geochemical paleolatitude, where the latter is based on 19 source-related biomarker and isotope ratios for each oil family. The TGP models were calibrated using 70% of the samples in each family and the remaining 30% of samples were used for model validation. Positive relationships exist between tectonic and geochemical paleolatitude for each family. Standard error of prediction for geochemical paleolatitude ranges from 0.9?? to 2.6?? of tectonic paleolatitude, which translates to a relative standard error of prediction in the range 1.5-4.8%. The results suggest that the observed effect of source rock paleolatitude on crude oil composition is caused by (i) stable carbon isotope fractionation during photosynthetic fixation of carbon and (ii) species diversity at different latitudes during Late Jurassic time. ?? 2008 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ejembi, J. I.; Ferre, E. C.; Potter-McIntyre, S. L.
2017-12-01
The Middle-Upper Jurassic sedimentary strata in the southwestern Colorado Plateau recorded pervasive eolian to fluvio-lacustrine deposition in the Paradox Basin. While paleocurrents preserved in the Entrada Sandstone, an eolian deposition in the Middle Jurassic, has been well constrained and show a northwesterly to northeasterly migration of ergs from the south onto the Colorado Plateau, there is yet no clear resolution of the paleocurrents preserved in the Wanakah Formation and Tidwell Member of the Morrison Formation, both of which are important sedimentary sequences in the paleogeographic framework of the Colorado Plateau. New U-Pb detrital zircon geochronology of sandstones from these sequences suggests that an abrupt change in provenance occurred in the early Late Jurassic, with sediments largely sourced from eroding highlands in central Colorado. We measured the anisotropy of magnetic susceptibility (AMS) of sediments in oriented sandstone samples from these three successive sequences; first, to determine the paleocurrents from the orientations of the AMS fabrics in order to delineate the source area and sediments dispersal pattern and second, to determine the depositional mechanisms of the sediments. Preliminary AMS data from two study sites show consistency and clustering of the AMS axes in all the sedimentary sequences. The orientations of the Kmin - Kint planes in the Entrada Sandstone sample point to a NNE-NNW paleocurrent directions, which is in agreement with earlier studies. The orientations of the Kmin - Kint planes in the Wanakah Formation and Tidwell Member samples show W-SW trending paleocurrent directions, corroborating our hypothesis of a shift in provenance to the eroding Ancestral Front Range Mountain, located northeast of the Paradox Basin, during the Late Jurassic. Isothermal remanence magnetization (IRM) of the samples indicate that the primary AMS carriers are detrital, syndepositional ferromagnetic minerals. Thus, we contend that AMS can be successfully deployed in constraining paleocurrents in lacustrine sedimentary strata, which lacks traditional sedimentary structures for paleocurrent analyses.
Scholle, Peter A.; Wenkam, Chiye R.
1982-01-01
The COST Nos. G-1 and G-2 wells (fig. 1) are the second and third deep stratigraphic test wells drilled in the North Atlantic Outer Continental Shelf of the United States. COST No. G-1 was drilled in the Georges Bank basin to a total depth of 16,071 ft (4,898 m). G-1 bottomed in phyllite, slate, and metaquartzite overlain by weakly metamorphosed dolomite, all of Cambrian age. From approximately 15,600 to 12,400 ft (4,755 to 3,780 m) the strata are Upper Triassic(?), Lower Jurassic(?), and Middle Jurassic, predominantly red shales, sandstones, and conglomerates. Thin, gray Middle Jurassic beds of shale, sandstone, limestone, and dolomite occur from 12,400 to 9,900 ft (3,780 to 3,018 m). From 9,900 to 1,030 ft (3,018 to 314 m) are coarse-grained unconsolidated sands and loosely cemented sandstones, with beds of gray shale, lignite, and coal. The microfossils indicate the rocks are Upper Jurassic from 10,100 ft (3,078 m) up to 5,400 ft (1,646 m) and Cretaceous from that depth to 1,030 ft (314 m). No younger or shallower rocks were recovered in the drilling at the COST No. G-1 site, but an Eocene limestone is inferred to be disconformable over Santonian strata. The Jurassic strata of the COST No. G-1 well were deposited in shallow marine, marginal marine, and nonmarine environments, which changed to a dominantly shallow marine but still nearshore environment in the Cretaceous. The COST No. G-2 well was drilled 42 statute miles {68 km) east of the G-1 site, still within the Georges Bank basin, to a depth of 21,874 ft (6,667 m). The bottom 40 ft (12 m) of salt and anhydrite is overlain by approximately 7,000 ft {2,134 m) of Upper Triassic{?), Lower Jurassic{?) and Middle Jurassic dolomite, limestone, and interbedded anhydrite from 21,830 to 13,615 ft (6,654 to 4,153 m). From 13,500 to 9,700 ft (4,115 to 2,957 m) are Middle Jurassic limestones with interbedded sandstone. From 9,700 to 4,000 ft (2,957 to 1,219 m) are Upper Jurassic and Cretaceous interbedded sandstones and limestones overlain by Upper Cretaceous unconsolidated sands, sandstones, and calcareous shales. Pliocene, Miocene, Eocene, and Paleocene strata are disconformable over Santonian rocks; uppermost Cretaceous rocks are missing at this site, as at G-1. The sedimentary rocks in the COST No. G-2 well were deposited in somewhat deeper water, farther away from sources of terrigenous material than those at G-l, but still in marginal marine to shallow marine environments. Data from geophysical logs and examination of conventional cores, wellcuttings, and sidewall cores show that below 10,000 ft {3,048 m), the strata in both wells have moderate porosities {< 20 percent) and low to moderate permeabilities {< 100 mD) and are thus considered adequate to poor reservoir rocks. Above 10,000 ft (3,000 m) the porosities range from 16 to 39 percent, and the permeabilities are highly variable, ranging from 0.01 to 7,100 mD. Measurements of vitrinite reflectance, color alteration of visible organic matter, and various organic geochemical properties suggest that the Tertiary and Cretaceous strata of the COST Nos. G-1 and G-2 are not prospective for oil and gas. These sediments have not been buried deeply enough for hydrocarbon generation, and the kerogen and extractable organic matter in them are thermally immature. However, the Jurassic rocks at the G-1 site do contain small amounts of thermally mature gas-prone kerogens. The Jurassic rocks at COST No. G-2 are also gas-prone and are slightly richer in organic carbon and total extractable hydrocarbons than the G-1 rocks, but both sites have only poor to fair oil and gas source-rock potential.
The first megatheropod tracks from the Lower Jurassic upper Elliot Formation, Karoo Basin, Lesotho
Bordy, E. M.; Abrahams, M.; Knoll, F.; McPhee, B. W.
2017-01-01
A palaeosurface with one megatheropod trackway and several theropod tracks and trackways from the Lower Jurassic upper Elliot Formation (Stormberg Group, Karoo Supergroup) in western Lesotho is described. The majority of the theropod tracks are referable to either Eubrontes or Kayentapus based on their morphological characteristics. The larger megatheropod tracks are 57 cm long and have no Southern Hemisphere equivalent. Morphologically, they are more similar to the Early Jurassic Kayentapus, as well as the much younger Upper Cretaceous ichnogenus Irenesauripus, than to other contemporaneous ichnogenera in southern Africa. Herein they have been placed within the ichnogenus Kayentapus and described as a new ichnospecies (Kayentapus ambrokholohali). The tracks are preserved on ripple marked, very fine-grained sandstone of the Lower Jurassic upper Elliot Formation, and thus were made after the end-Triassic mass extinction event (ETE). This new megatheropod trackway site marks the first occurrence of very large carnivorous dinosaurs (estimated body length >8–9 meters) in the Early Jurassic of southern Gondwana, an evolutionary strategy that was repeatedly pursued and amplified in the following ~135 million years, until the next major biotic crisis at the end-Cretaceous. PMID:29069093
Dyman, T.S.; Condon, S.M.
2006-01-01
The petroleum assessment of the Travis Peak and Hosston Formations was conducted by using a total petroleum system model. A total petroleum system includes all of the important elements of a hydrocarbon fluid system needed to develop oil and gas accumulations, including source and reservoir rocks, hydrocarbon generation, migration, traps and seals, and undiscovered accumulations. A total petroleum system is mappable and may include one or more assessment units. For each assessment unit, reservoir rocks contain similar geology, exploration characteristics, and risk. The Jurassic Smackover Interior Salt Basins Total Petroleum System is defined for this assessment to include (1) Upper Jurassic Smackover carbonates and calcareous shales and organic-rich shales of the Upper Jurassic Bossier Shale of the Cotton Valley Group and (2) Lower Cretaceous Travis Peak and Hosston Formations. The Jurassic Smackover Interior Salt Basins Total Petroleum System includes three conventional Travis Peak-Hosston assessment units: Travis Peak-Hosston Gas and Oil (AU 50490205), Travis Peak-Hosston Updip Oil (AU 50490206), and Travis Peak-Hosston Hypothetical Updip Oil (AU 50490207). A fourth assessment unit, the Hosston Hypothetical Slope-Basin Gas Assessment Unit, was named and numbered (AU 50490208) but not geologically defined or quantitatively assessed owing to a lack of data. Together, assessment units 50490205 to 50490207 are estimated to contain a mean undiscovered conventional resource of 29 million barrels of oil, 1,136 billion cubic feet of gas, and 22 million barrels of natural gas liquids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunningham, P.; Bishopp, D.
Recent political changes have demonstrated that previously taboo countries are now becoming fair game for western explorationists. Numerous areas or basins that have not been the focus of high technology - Technologically Attenuated Basins (TABs) - offer a new challenge for the new venture groups of E and P companies. Most recently the USSR together with other Eastern European countries continue to be a source of technical interest and frustration. The People's Democratic Republic of Korea, North Korea, possibly the most isolated of the Communist block, contains several TABs where there has been minimal exploration. One such TAB is Westmore » Korea Bay, which covers an area of 25,000 km{sup 2} containing at least one major Tertiary basin. The tectonic evolution of the Tertiary basin is similar to the intracratonic Chinese basins with significant differences, notably the Songnim and Daebo orogenies (Middle Triassic to Upper Jurassic and Jurassic to middle Cretaceous) that resulted in extensive igneous activity, folding, and thrust faulting, followed by an extensional stress regime during the Mesozoic and Cainozoic. Very few wells have been drilled in West Korea Bay in the past decade (one per 2,500 km{sup 2}). Though commercially unsuccessful, the wells have proven the existence of oil, mature source rocks, and reservoirs (Jurassic, Cretaceous, and Oligo-Miocene). Structural plays such as rotated Jurassic and Cretaceous fault blocks predominate, but there is also potential for higher risk stratigraphic potential in the Jurassic and Tertiary, with expected field size distributions in the 20-180 MMBOR range.« less
Early Neogene unroofing of the Sierra Nevada de Santa Marta along the Bucaramanga -Santa Marta Fault
NASA Astrophysics Data System (ADS)
Piraquive Bermúdez, Alejandro; Pinzón, Edna; Bernet, Matthias; Kammer, Andreas; Von Quadt, Albrecht; Sarmiento, Gustavo
2016-04-01
Plate interaction between Caribbean and Nazca plates with Southamerica gave rise to an intricate pattern of tectonic blocks in the Northandean realm. Among these microblocks the Sierra Nevada de Santa Marta (SNSM) represents a fault-bounded triangular massif composed of a representative crustal section of the Northandean margin, in which a Precambrian to Late Paleozoic metamorphic belt is overlain by a Triassic to Jurassic magmatic arc and collateral volcanic suites. Its western border fault belongs to the composite Bucaramanga - Santa Marta fault with a combined left lateral-normal displacement. SE of Santa Marta it exposes remnants of an Oligocene marginal basin, which attests to a first Cenoizoic activation of this crustal-scale lineament. The basin fill consists of a sequence of coarse-grained cobble-pebble conglomerates > 1000 m thick that unconformably overlay the Triassic-Jurassic magmatic arc. Its lower sequence is composed of interbedded siltstones; topwards the sequence becomes dominated by coarser fractions. These sedimentary sequences yields valuable information about exhumation and coeval sedimentation processes that affected the massif's western border since the Upper Eocene. In order to analyse uplifting processes associated with tectonics during early Neogene we performed detrital zircon U-Pb geochronology, detrital thermochronology of zircon and apatites coupled with the description of a stratigraphic section and its facies composition. We compared samples from the Aracataca basin with analog sequences found at an equivalent basin at the Oca Fault at the northern margin of the SNSM. Our results show that sediments of both basins were sourced from Precambrian gneisses, along with Mesozoic acid to intermediate plutons; sedimentation started in the Upper Eocene-Oligocene according to palynomorphs, subsequently in the Upper Oligocene a completion of Jurassic to Cretaceous sources was followed by an increase of Precambrian input that became the dominant source for sediments, this shift in provenance is related to an increase in exhumation and erosion rates. The instauration of such a highly erosive regime since the Upper Oligocene attests how the Santa Marta massif was subject to uplifting and erosion, our data shows how in the Upper Oligocene an exhaustion of Cretaceous to Permian sources was followed by an increase in Neo-Proterozoic to Meso-Proterozoic input that is related to the unroofing of the basement rocks, this accelerated exhumation is directly related to the reactivation of the Orihueca Fault as a NW verging thrust at the interior of the massif coeval with Bucaramanga-Santa Marta Fault trans-tensional tectonics in response to the fragmentation of the Farallon plate into the Nazca an Cocos Plates.
Condon, S.M.; Dyman, T.S.
2006-01-01
The Upper Cretaceous Navarro and Taylor Groups in the western part of the Western Gulf Province were assessed for undiscovered oil and gas resources in 2003. The area is part of the Smackover-Austin-Eagle Ford Composite Total Petroleum System. The rocks consist of, from youngest to oldest, the Escondido and Olmos Formations of the Navarro Group and the San Miguel Formation and the Anacacho Limestone of the Taylor Group (as well as the undivided Navarro Group and Taylor Group). Some units of the underlying Austin Group, including the 'Dale Limestone' (a term of local usage that describes a subsurface unit), were also part of the assessment in some areas. Within the total petroleum system, the primary source rocks comprise laminated carbonate mudstones and marine shales of the Upper Jurassic Smackover Formation, mixed carbonate and bioclastic deposits of the Upper Cretaceous Eagle Ford Group, and shelf carbonates of the Upper Cretaceous Austin Group. Possible secondary source rocks comprise the Upper Jurassic Bossier Shale and overlying shales within the Upper Jurassic to Lower Cretaceous Cotton Valley Group, Lower Cretaceous marine rocks, and the Upper Cretaceous Taylor Group. Oil and gas were generated in the total petroleum system at different times because of variations in depth of burial, geothermal gradient, lithology, and organic-matter composition. A burial-history reconstruction, based on data from one well in the eastern part of the study area (Jasper County, Tex.), indicated that (1) the Smackover generated oil from about 117 to 103 million years ago (Ma) and generated gas from about 52 to 41 Ma and (2) the Austin and Eagle Ford Groups generated oil from about 42 to 28 Ma and generated gas from about 14 Ma to the present. From the source rocks, oil and gas migrated upsection and updip along a pervasive system of faults and fractures as well as along bedding planes and within sandstone units. Types of traps include stratigraphic pinchouts, folds, faulted folds, and combinations of these. Seals consist of interbedded shales and mudstones and diagenetic cementation. The area assessed is divided into five assessment units (AUs): (1) Travis Volcanic Mounds Oil (AU 50470201), (2) Uvalde Volcanic Mounds Gas and Oil (AU 50470202), (3) Navarro-Taylor Updip Oil and Gas (AU 50470203), (4) Navarro-Taylor Downdip Gas and Oil (AU 50470204), and (5) Navarro-Taylor Slope-Basin Gas (AU 50470205). Total estimated mean undiscovered conventional resources in the five assessment units combined are 33.22 million barrels of oil, 1,682.80 billion cubic feet of natural gas, and 34.26 million barrels of natural gas liquids.
Lasemi, Y.; Jalilian, A.H.
2010-01-01
The lower part of the Lower to Upper Jurassic Surmeh Formation consists of a succession of shallow marine carbonates (Toarcian-Aalenian) overlain by a deep marine basinal succession (Aalenian-Bajocian) that grades upward to Middle to Upper Jurassic platform carbonates. The termination of shallow marine carbonate deposition of the lower part of the Surmeh Formation and the establishment of deep marine sedimentation indicate a change in the style of sedimentation in the Neotethys passive margin of southwest Iran during the Middle Jurassic. To evaluate the reasons for this change and to assess the basin configuration during the Middle Jurassic, this study focuses on facies analysis and sequence stratigraphy of the basinal deposits (pelagic and calciturbidite facies) of the Surmeh Formation, referred here as 'lower shaley unit' in the Central Zagros region. The upper Aalenian-Bajocian 'lower shaley unit' overlies, with an abrupt contact, the Toarcian-lower Aalenian platform carbonates. It consists of pelagic (calcareous shale and limestone) and calciturbidite facies grading to upper Bajocian-Bathonian platform carbonates. Calciturbidite deposits in the 'lower shaley unit' consist of various graded grainstone to lime mudstone facies containing mixed deep marine fauna and platform-derived material. These facies include quartz-bearing lithoclast/intraclast grainstone to lime mudstone, bioclast/ooid/peloid intraclast grainstone, ooid grainstone to packstone, and lime wackestone to mudstone. The calciturbidite layers are erosive-based and commonly exhibit graded bedding, incomplete Bouma turbidite sequence, flute casts, and load casts. They consist chiefly of platform-derived materials including ooids, intraclasts/lithoclasts, peloids, echinoderms, brachiopods, bivalves, and open-ocean biota, such as planktonic bivalves, crinoids, coccoliths, foraminifers, and sponge spicules. The 'lower shaley unit' constitutes the late transgressive and the main part of the highstand systems tract of a depositional sequence and grades upward to platform margin and platform interior facies as a result of late highstand basinward progradation. The sedimentary record of the 'lower shaley unit' in the Central Zagros region reveals the existence of a northwest-southeast trending platform margin during the Middle Jurassic that faced a deep basin, the 'Pars intrashelf basin' in the northeast. The thinning of calciturbidite layers towards the northeast and the widespread Middle Jurassic platform carbonates in the southern Persian Gulf states and in the Persian Gulf area support the existence of a southwest platform margin and platform interior source area. The platform margin was formed as a result of tectonic activity along the preexisting Mountain Front fault associated with Cimmerian continental rifting in northeast Gondwana. Flooding of the southwest platform margin during early to middle Bajocian resulted in the reestablishment of the carbonate sediment factory and overproduction of shallow marine carbonates associated with sea-level highstand, which led to vertical and lateral expansion of the platform and gradual infilling of the Pars intrashelf basin by late Bajocian time. ?? 2010 Springer-Verlag.
Publications - PIR 2015-5-8 | Alaska Division of Geological & Geophysical
lower sandstone member of the Upper Jurassic Naknek Formation, northern Chinitna Bay, Alaska, in Wartes member of the Upper Jurassic Naknek Formation, northern Chinitna Bay, Alaska Authors: Wartes, M.A Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska
Presentations - Herriott, T.M. and others, 2015 | Alaska Division of
Details Title: Sequence stratigraphic framework of the Upper Jurassic Naknek Formation, Cook Inlet forearc Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of ., Wartes, M.A., and Decker, P.L., 2015, Sequence stratigraphic framework of the Upper Jurassic Naknek
Moore, Thomas; O'Sullivan, Paul B.; Potter, Christopher J.; Donelick, Raymond A.
2015-01-01
The Upper Jurassic and Lower Cretaceous part of the Brookian sequence of northern Alaska consists of syntectonic deposits shed from the north-directed, early Brookian orogenic belt. We employ sandstone petrography, detrital zircon U-Pb age analysis, and zircon fission-track double-dating methods to investigate these deposits in a succession of thin regional thrust sheets in the western Brooks Range and in the adjacent Colville foreland basin to determine sediment provenance, sedimentary dispersal patterns, and to reconstruct the evolution of the Brookian orogen. The oldest and structurally highest deposits are allochthonous Upper Jurassic volcanic arc–derived sandstones that rest on accreted ophiolitic and/or subduction assemblage mafic igneous rocks. These strata contain a nearly unimodal Late Jurassic zircon population and are interpreted to be a fragment of a forearc basin that was emplaced onto the Brooks Range during arc-continent collision. Synorogenic deposits found at structurally lower levels contain decreasing amounts of ophiolite and arc debris, Jurassic zircons, and increasing amounts of continentally derived sedimentary detritus accompanied by broadly distributed late Paleozoic and Triassic (359–200 Ma), early Paleozoic (542–359 Ma), and Paleoproterozoic (2000–1750 Ma) zircon populations. The zircon populations display fission-track evidence of cooling during the Brookian event and evidence of an earlier episode of cooling in the late Paleozoic and Triassic. Surprisingly, there is little evidence for erosion of the continental basement of Arctic Alaska, its Paleozoic sedimentary cover, or its hinterland metamorphic rocks in early foreland basin strata at any structural and/or stratigraphic level in the western Brooks Range. Detritus from exhumation of these sources did not arrive in the foreland basin until the middle or late Albian in the central part of the Colville Basin.These observations indicate that two primary provenance areas provided detritus to the early Brookian foreland basin of the western Brooks Range: (1) local sources in the oceanic Angayucham terrane, which forms the upper plate of the orogen, and (2) a sedimentary source region outside of northern Alaska. Pre-Jurassic zircons and continental grain types suggest the latter detritus was derived from a thick succession of Triassic turbidites in the Russian Far East that were originally shed from source areas in the Uralian-Taimyr orogen and deposited in the South Anyui Ocean, interpreted here as an early Mesozoic remnant basin. Structural thickening and northward emplacement onto the continental margin of Chukotka during the Brookian structural event are proposed to have led to development of a highland source area located in eastern Chukotka, Wrangel Island, and Herald Arch region. The abundance of detritus from this source area in most of the samples argues that the Colville Basin and ancestral foreland basins were supplied by longitudinal sediment dispersal systems that extended eastward along the Brooks Range orogen and were tectonically recycled into the active foredeep as the thrust front propagated toward the foreland. Movement of clastic sedimentary material from eastern Chukotka, Wrangel Island, and Herald Arch into Brookian foreland basins in northern Alaska confirms the interpretations of previous workers that the Brookian deformational belt extends into the Russian Far East and demonstrates that the Arctic Alaska–Chukotka microplate was a unified geologic entity by the Early Cretaceous.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algar, S.; Erikson, J.P.
1995-04-01
The Jurassic through Oligocene stratigraphies of Trinidad and the Serrenia del Interior of eastern Venezuela exhibit many similarities because of their proximity on the passive continental margins of northeastern South America. A slightly later subsidence in eastern Venezuela, and the generally deeper-water sedimentation in Trinidad, is interpreted to be the result of a serration of the original rift margin, producing an eastern Venezuela promontory and Trinidadian re-entrant. We interpret these serrations to be the result of oblique (NW-SE) spreading of North and South America during Middle and late Jurassic time. The stratigraphies of northeastern Venezuela and Trinidad contrast in themore » Hauterivan-Albian interval, with dynamic shallow shelf environments prevailing in the Serrenia del Interior and deeper marine submarine-fan deposition in Trinidad. Both areas develop middle to Upper Cretaceous source rocks during a time of eustatic sea level high and widespread oceanic anoxia. 15 refs., 4 fig.« less
Jacques-Ayala, C.; Barth, A.P.; Wooden, J.L.; Jacobson, C.E.
2009-01-01
The Upper Cretaceous El Chanate Group, northwest Sonora, Mexico, is a 2.8km thick clastic sedimentary sequence deposited in a continental basin closely related to volcanic activity. It consists of three formations: the Pozo Duro (oldest), the Anita, and the Escalante (youngest). Petrographic study, conglomerate pebble counts, and U-Pb geochronology of detrital zircons were performed to determine the source and age of this sequence, and to interpret its tectonic setting. In the sandstones of all three formations, the most abundant grains are those of volcanic composition (Q38F22L 40, Q35F19L46, and Q 31F22L47, respectively). The Pozo Duro Formation includes well-rounded quartz-arenite clast conglomerates, whereas conglomerates of the two upper units have clasts predominantly of andesitic and rhyolitic composition. The most likely source for these sediments was the Jurassic volcanic arc exposed in northern Sonora and southern Arizona. Zircons from five sandstone samples define two main age groups, Proterozoic and Mesozoic. The first ranges mostly from 1000 to 1800Ma, which suggests the influence of a cratonic source. This zircon suite is interpreted to be recycled and derived from the same source area as the quartz-rich sandstone clasts in the basal part of the section. Mesozoic zircons range from Triassic to Late Cretaceous, which confirms the proposed Late Cretaceous age for the sequence, and also corroborates Jurassic felsic source rocks. Another possible source was the Alisitos volcanic arc, exposed along the western margin of the Baja California Peninsula. Of regional significance is the great similarity between the El Chanate Group and the McCoy Mountains Formation of southeastern California and southwestern Arizona. Both are Cretaceous, were deposited in continental environments, and have similar zircon-age patterns. Also, both exhibit intense deformation and locally display penetrative foliation. These features strongly suggest that both units underwent similar tectonic histories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grantham, P.J.; Wakefield, L.L.
1988-01-01
The analysis of the sterane data of a large set of crude oils (414) derived from marine carbonate (27) and siliciclastic source rocks (14) where influences of terrestrial or lacustrine derived organic matter can reasonably be excluded, shows that there are increases in the relative content of C/sub 28/ steranes and decreases in the relative content of C/sub 29/ steranes through geological time. There are no consistent variations in the relative content of C/sub 27/ steranes through time. With one major exception (a Proterozoic oil from Oman), Paleozoic and older crude oils are thus generally characterized by strong predominances ofmore » C/sub 29/ steranes and low relative concentrations of C/sub 28/ steranes. Significantly higher proportions of C/sub 28/ steranes and lower proportions of C/sub 29/ steranes occur in oils derived from Jurassic and Upper Cretaceous source rocks. These changes through time do not appear to reflect the chemical evolution of the sterols of one particular variety of marine organism: the increase in C/sub 28/ steranes may be related to the increased diversification of phytoplantonic assemblages in the Jurassic and Cretaceous. Possible sources of the C/sub 28/ sterols necessary for the observed changes in crude oil steranes includes diatoms, coccolithophores and dinoflagellates. Although the technique does not give an accurate means of determining the age of the source rock of a crude oil it is possible to distinguish younger crudes derived from the Upper Cretaceous and Tertiary from Palaeozoic and older crudes.« less
Petroleum geology and resources of the North Ustyurt Basin, Kazakhstan and Uzbekistan
Ulmishek, Gregory F.
2001-01-01
The triangular-shaped North Ustyurt basin is located between the Caspian Sea and the Aral Lake in Kazakhstan and Uzbekistan and extends offshore both on the west and east. Along all its sides, the basin is bounded by the late Paleozoic and Triassic foldbelts that are partially overlain by Jurassic and younger rocks. The basin formed on a cratonic microcontinental block that was accreted northward to the Russian craton in Visean or Early Permian time. Continental collision and deformation along the southern and eastern basin margins occurred in Early Permian time. In Late Triassic time, the basin was subjected to strong compression that resulted in intrabasinal thrusting and faulting. Jurassic-Tertiary, mostly clastic rocks several hundred meters to 5 km thick overlie an older sequence of Devonian?Middle Carboniferous carbonates, Upper Precambrian massifs and deformed Caledonian foldbelts. The Carboniferous?Lower Permian clastics, carbonates, and volca-basement is at depths from 5.5 km on the highest uplifts to 11 nics, and Upper Permian?Triassic continental clastic rocks, pri-km in the deepest depressions. marily red beds. Paleogeographic conditions of sedimentation, Three total petroleum systems are identified in the basin. the distribution of rock types, and the thicknesses of pre-Triassic Combined volumes of discovered hydrocarbons in these sysstratigraphic units are poorly known because the rocks have been tems are nearly 2.4 billion barrels of oil and 2.4 trillion cubic penetrated by only a few wells in the western and eastern basin feet of gas. Almost all of the oil reserves are in the Buzachi Arch areas. The basement probably is heterogeneous; it includes and Surrounding Areas Composite Total Petroleum System in 2 Petroleum Geology, Resources?North Ustyurt Basin, Kazakhstan and Uzbekistan the western part of the basin. Oil pools are in shallow Jurassic and Neocomian sandstone reservoirs, in structural traps. Source rocks are absent in the total petroleum system area; therefore, the oil could have migrated from the adjacent North Caspian basin. The North Ustyurt Jurassic Total Petroleum System encompasses the rest of the basin area and includes Jurassic and younger rocks. Several oil and gas fields have been discovered in this total petroleum system. Oil accumulations are in Jurassic clastic reservoirs, in structural traps at depths of 2.5?3 km. Source rocks for the oil are lacustrine beds and coals in the continental Jurassic sequence. Gas fields are in shallow Eocene sandstones in the northern part of the total petroleum system. The origin of the gas is unknown. The North Ustyurt Paleozoic Total Petroleum System stratigraphically underlies the North Ustyurt Jurassic system and occupies the same geographic area. The total petroleum system is almost unexplored. Two commercial flows of gas and several oil and gas shows have been tested in Carboniferous shelf carbonates in the eastern part of the total petroleum system. Source rocks probably are adjacent Carboniferous deep-water facies interpreted from seismic data. The western extent of the total petroleum system is conjectural. Almost all exploration drilling in the North Ustyurt basin has been limited to Jurassic and younger targets. The underlying Paleozoic-Triassic sequence is poorly known and completely unexplored. No wells have been drilled in offshore parts of the basin. Each of three total petroleum systems was assessed as a single assessment unit. Undiscovered resources of the basin are small to moderate. Most of the undiscovered oil probably will be discovered in Jurassic and Neocomian stratigraphic and structural traps on the Buzachi arch, especially on its undrilled off-shore extension. Most of the gas discoveries are expected to be in Paleozoic carbonate reservoirs in the eastern part of the basin.
NASA Astrophysics Data System (ADS)
Rodríguez, G.; Arango, M. I.; Zapata, G.; Bermúdez, J. G.
2018-01-01
Field, petrographic, and geochemical characterization along with U-Pb zircon geochronology of the Jurassic plutons exposed in the Upper Magdalena Valley (Colombia) allowed recognizing distinct western and eastern suites formed in at least three magmatic pulses. The western plutons crop out between the eastern flank of the Central Cordillera and the Las Minas range, being limited by the Avirama and the Betania-El Agrado faults. The western suite comprises a quartz monzonite - quartz monzodiorite - quartz diorite series and subordinate monzogranites. Chemically, the rocks are high-K calc-alkaline I-type granitoids (some reaching the shoshonitic series) with metaluminous of magnesium affinity. Trace-element tectonic discrimination is consistent with magmatism in a continental arc environment. Most rocks of this suite crystallized between 195 and 186 Ma (Early Jurassic, Pliensbachian), but locally some plutons yielded younger ages between 182 and 179 Ma (Early Jurassic, Toarcian). The eastern suite crops out in the eastern margin of the Upper Magdalena Valley, east of the Betania - El Agrado fault. Plutons of this unit belong to the monzogranite series with rock types ranging between syenogranites and granodiorites. They are high-K calc-alkaline continental granitoids, some metaluminous and some peraluminous, related to I-type granites generated in a volcanic arc. Crystallization of the suite was between 173 and 169 Ma (Middle Jurassic, Aalenian-Bajocian), but locally these rocks contain zircon with earlier inherited ages related to the magmatic pulse of the western suite between 182 and 179 Ma (Early Jurassic, Toarcian). The evolution of the Jurassic plutons in the Upper Magdalena Valley is best explained by onset or increase in subduction erosion of the accretionary prism. This explains the eastward migration of the arc away from the trench. Subduction of prism sediments increased the water flux from the subducting slab, decreasing solidus temperatures, therefore increasing the volume of magma and the amount of crustal melts involved in the magma. This is explains the crystallization of older and more primitive quartz-monzodiorite stocks in the west and the later crystallization of granitic bodies with batholitic dimensions in the east.
Ahlbrandt, Thomas S.
2002-01-01
Since the first discovery of petroleum in Yemen in 1984, several recent advances have been made in the understanding of that countrys geologic history and petroleum systems. The total petroleum resource endowment for the combined petroleum provinces within Yemen, as estimated in the recent U.S. Geological Survey world assessment, ranks 51st in the world, exclusive of the United States, at 9.8 BBOE, which includes cumulative production and remaining reserves, as well as a mean estimate of undiscovered resources. Such undiscovered petroleum resources are about 2.7 billion barrels of oil, 17 trillion cubic feet (2.8 billion barrels of oil equivalent) of natural gas and 1 billion barrels of natural gas liquids. A single total petroleum system, the Jurassic Madbi Amran/Qishn, dominates petroleum generation and production; it was formed in response to a Late Jurassic rifting event related to the separation of the Arabian Peninsula from the Gondwana supercontinent. This rifting resulted in the development of two petroleum-bearing sedimentary basins: (1) the western MaRibAl Jawf / Shabwah basin, and (2) the eastern Masila-Jeza basin. In both basins, petroleum source rocks of the Jurassic (Kimmeridgian) Madbi Formation generated hydrocarbons during Late Cretaceous time that migrated, mostly vertically, into Jurassic and Cretaceous reservoirs. In the western MaRibAl Jawf / Shabwah basin, the petroleum system is largely confined to syn-rift deposits, with reservoirs ranging from deep-water turbidites to continental clastics buried beneath a thick Upper Jurassic (Tithonian) salt. The salt initially deformed in Early Cretaceous time, and continued halokinesis resulted in salt diapirism and associated salt withdrawal during extension. The eastern Masila-Jeza basin contained similar early syn-rift deposits but received less clastic sediment during the Jurassic; however, no salt formed because the basin remained open to ocean circulation in the Late Jurassic. Thus, Madbi Formation-sourced hydrocarbons migrated vertically into Lower Cretaceous estuarine, fluvial, and tidal sandstones of the Qishn Formation and were trapped by overlying impermeable carbonates of the same formation. Both basins were formed by extensional forces during Jurassic rifting; how-ever, another rifting event that formed the Red Sea and Gulf of Aden during Oligocene and Miocene time had a strong effect on the eastern Masila-Jeza basin. Recurrent movement of basement blocks, particularly during the Tertiary, rather than halokinesis, was critical to the formation of traps.
Bioerosion and encrustation: Evidences from the Middle ‒ Upper Jurassic of central Saudi Arabia
NASA Astrophysics Data System (ADS)
El-Hedeny, Magdy; El-Sabbagh, Ahmed; Al Farraj, Saleh
2017-10-01
The Middle ‒ Upper Jurassic hard substrates of central Saudi Arabia displayed considerable signs of bioerosion and encrustations. They include organic (oysters, other bivalves, gastropods, corals and brachiopods) and an inorganic carbonate hardground that marks the boundary between the Middle Jurassic Tuwaiq Mountain Limestone and the Upper Jurassic Hanifa Formation. Traces of bioerosion in organic substrates include seven ichnotaxa produced by bivalves (Gastrochaenolites Leymerie, 1842), polychaete annelids (Trypanites Mägdefrau, 1932; MaeandropolydoraVoigt, 1965 and CaulostrepsisClarke, 1908), sponges (Entobia Bronn, 1837), acrothoracican cirripedes (Rogerella Saint-Seine, 1951), gastropods (Oichnus Bromley, 1981) and probable ?Centrichnus cf. eccentricus. The encrusting epifauna on these substrates consist of several organisms, including oysters, serpulid worms, corals and foraminifera. In contrast, the carbonate hardground was only bioeroded by Gastrochaenolite, Trypanites and Entobia. Epibionts on this hardground include ;Liostrea Douvillé, 1904-type; oysters, Nanogyra nana Sowerby, 1822 and serpulids. In general, bioerosion and encrustation are less diversified in hardground than in organic substrates, indicating a long time of exposition of organic substrates with slow to moderate rate of deposition in a restricted marine environment. Both organic and inorganic commuinities are correlated with those of other equatorial, subtropical and temperate equivalents.
Assessment of unconvential (tight) gas resources in Upper Cook Inlet Basin, South-central Alaska
Schenk, Christopher J.; Nelson, Philip H.; Klett, Timothy R.; Le, Phuong A.; Anderson, Christopher P.; Schenk, Christopher J.
2015-01-01
A geologic model was developed for the assessment of potential Mesozoic tight-gas resources in the deep, central part of upper Cook Inlet Basin, south-central Alaska. The basic premise of the geologic model is that organic-bearing marine shales of the Middle Jurassic Tuxedni Group achieved adequate thermal maturity for oil and gas generation in the central part of the basin largely due to several kilometers of Paleogene and Neogene burial. In this model, hydrocarbons generated in Tuxedni source rocks resulted in overpressure, causing fracturing and local migration of oil and possibly gas into low-permeability sandstone and siltstone reservoirs in the Jurassic Tuxedni Group and Chinitna and Naknek Formations. Oil that was generated either remained in the source rock and subsequently was cracked to gas which then migrated into low-permeability reservoirs, or oil initially migrated into adjacent low-permeability reservoirs, where it subsequently cracked to gas as adequate thermal maturation was reached in the central part of the basin. Geologic uncertainty exists on the (1) presence of adequate marine source rocks, (2) degree and timing of thermal maturation, generation, and expulsion, (3) migration of hydrocarbons into low-permeability reservoirs, and (4) preservation of this petroleum system. Given these uncertainties and using known U.S. tight gas reservoirs as geologic and production analogs, a mean volume of 0.64 trillion cubic feet of gas was assessed in the basin-center tight-gas system that is postulated to exist in Mesozoic rocks of the upper Cook Inlet Basin. This assessment of Mesozoic basin-center tight gas does not include potential gas accumulations in Cenozoic low-permeability reservoirs.
Ebert, Martin; Kölbl-Ebert, Martina; Lane, Jennifer A.
2015-01-01
The newly recognized Konservat-Lagerstätte of Ettling (Bavaria), field site of the Jura-Museum Eichstätt (JME), is unique among Late Jurassic plattenkalk basins (Solnhofen region) in its abundant, extremely well preserved fossil vertebrates, almost exclusively fishes. We report actinopterygians (ginglymodins, pycnodontiforms, halecomorphs, aspidorynchiforms, “pholidophoriforms,” teleosts); turtles; and non-vertebrates (echinoderms, arthropods, brachiopods, mollusks, jellyfish, sponges, biomats, plants) in a current faunal list. Ettling has yielded several new fish species (Bavarichthys incognitus; Orthogonikleithrus hoelli; Aspidorhynchus sanzenbacheri; Macrosemimimus fegerti). Upper and lower Ettling strata differ in faunal content, with the lower dominated by the small teleost Orthogonikleithrus hoelli (absent from the upper layers, where other prey fishes, Leptolepides sp. and Tharsis sp., occur instead). Pharyngeal and stomach contents of Ettling fishes provide direct evidence that Orthogonikleithrus hoelli was a primary food source during early Ettling times. Scarcity of ammonites and absence of vampyromorph coleoids at Ettling differ markedly from the situation at other nearby localities in the region (e.g., Eichstätt, Painten, Schamhaupten, the Mörnsheim beds), where they are more common. Although the exact biochronological age of Ettling remains uncertain (lack of suitable index fossils), many Ettling fishes occur in other plattenkalk basins of Germany (e.g., Kelheim) and France (Cerin) dated as Late Kimmeridgian to Early Tithonian (eigeltingense horizon), suggesting a comparable geologic age. The Ettling deposits represent an independent basin within the larger Upper Jurassic “Solnhofen Archipelago”, a shallow subtropical sea containing scattered islands, sponge-microbial and coral reefs, sandbars, and deeper basins on a vast carbonate platform along the northern margin of the Tethys Ocean. PMID:25629970
Ebert, Martin; Kölbl-Ebert, Martina; Lane, Jennifer A
2015-01-01
The newly recognized Konservat-Lagerstätte of Ettling (Bavaria), field site of the Jura-Museum Eichstätt (JME), is unique among Late Jurassic plattenkalk basins (Solnhofen region) in its abundant, extremely well preserved fossil vertebrates, almost exclusively fishes. We report actinopterygians (ginglymodins, pycnodontiforms, halecomorphs, aspidorynchiforms, "pholidophoriforms," teleosts); turtles; and non-vertebrates (echinoderms, arthropods, brachiopods, mollusks, jellyfish, sponges, biomats, plants) in a current faunal list. Ettling has yielded several new fish species (Bavarichthys incognitus; Orthogonikleithrus hoelli; Aspidorhynchus sanzenbacheri; Macrosemimimus fegerti). Upper and lower Ettling strata differ in faunal content, with the lower dominated by the small teleost Orthogonikleithrus hoelli (absent from the upper layers, where other prey fishes, Leptolepides sp. and Tharsis sp., occur instead). Pharyngeal and stomach contents of Ettling fishes provide direct evidence that Orthogonikleithrus hoelli was a primary food source during early Ettling times. Scarcity of ammonites and absence of vampyromorph coleoids at Ettling differ markedly from the situation at other nearby localities in the region (e.g., Eichstätt, Painten, Schamhaupten, the Mörnsheim beds), where they are more common. Although the exact biochronological age of Ettling remains uncertain (lack of suitable index fossils), many Ettling fishes occur in other plattenkalk basins of Germany (e.g., Kelheim) and France (Cerin) dated as Late Kimmeridgian to Early Tithonian (eigeltingense horizon), suggesting a comparable geologic age. The Ettling deposits represent an independent basin within the larger Upper Jurassic "Solnhofen Archipelago", a shallow subtropical sea containing scattered islands, sponge-microbial and coral reefs, sandbars, and deeper basins on a vast carbonate platform along the northern margin of the Tethys Ocean.
Manganese carbonates in the Upper Jurassic Georgiev Formation of the Western Siberian marine basin
NASA Astrophysics Data System (ADS)
Eder, Vika G.; Föllmi, Karl B.; Zanin, Yuri N.; Zamirailova, Albina G.
2018-01-01
Manganese (Mn) carbonate rocks are a common lithological constituent of the Upper Oxfordian to Lower Tithonian (Volgian) Georgiev Formation of the Western Siberian marine basin (WSMB). The Mn carbonates in the Georgiev Formation are present in the form of massive sediments, stromatolites, and oncolites, and are associated with glauconite and partly also phosphate-rich clay- and siltstones. Unlike most Mn carbonates, they are not directly associated with organic-rich sediments, but occur below an organic-rich succession (Bazhenov Formation). The Mn carbonate occurrences can be traced from the western central area of the WSMB to its center along a distance of at least 750 km. The thickness of the Mn carbonates and their Mn contents becomes reduced in an eastward direction, related to increased detrital input. The geochemical and mineralogical heterogeneity within the Mn carbonates indicates that they were deposited stepwise in a diagenetic regime characterized by steep gradients in Mn, Ca, and Mg. A first step consisted in the replacement of initial sediments within the microbialites during an early diagenetic stage, followed by a second step where massive sediments were transformed into Mn carbonate. During both steps, the decomposition of organic matter was an important source of the newly formed carbonate. During a further step, voids were cemented by Mn carbonates, which are rich in pyrite. This last generation may only have formed once the organic-rich sediments of the overlying Bazhenov Formation were deposited. Accumulation of the Mn carbonates in the Upper Jurassic WSMB was controlled by the proximity of Mn-enriched parent rocks, likely in the Ural, which were subjected to intense geochemical weathering during the Late Jurassic.
Haxel, G.B.; Wright, J.E.; Riggs, N.R.; Tosdal, R.M.; May, D.J.
2005-01-01
Among supracrustal sequences of the Jurassic magmatic arc of the southwestern Cordillera, the Middle Jurassic Topawa Group, Baboquivari Mountains, south-central Arizona, is remarkable for its lithologic diversity and substantial stratigraphic thickness, ???8 km. The Topawa Group comprises four units (in order of decreasing age): (1) Ali Molina Formation-largely pyroclastic rhyolite with interlayered eolian and fluvial arenite, and overlying conglomerate and sandstone; (2) Pitoikam Formation-conglomerate, sedimentary breccia, and sandstone overlain by interbedded silt- stone and sandstone; (3) Mulberry Wash Formation-rhyolite lava flows, flow breccias, and mass-flow breccias, with intercalated intraformational conglomerate, sedimentary breccia, and sandstone, plus sparse within-plate alkali basalt and comendite in the upper part; and (4) Tinaja Spring Porphyry-intrusive rhyolite. The Mulberry Wash alkali basalt and comendite are genetically unrelated to the dominant calcalkaline rhyolite. U-Pb isotopic analyses of zircon from volcanic and intrusive rocks indicate the Topawa Group, despite its considerable thickness, represents only several million years of Middle Jurassic time, between approximately 170 and 165 Ma. Sedimentary rocks of the Topawa Group record mixing of detritus from a minimum of three sources: a dominant local source of porphyritic silicic volcanic and subvolcanic rocks, identical or similar to those of the Topawa Group itself; Meso- proterozoic or Cambrian conglomerates in central or southeast Arizona, which contributed well-rounded, highly durable, polycyclic quartzite pebbles; and eolian sand fields, related to Middle Jurassic ergs that lay to the north of the magmatic arc and are now preserved on the Colorado Plateau. As the Topawa Group evidently represents only a relatively short interval of time, it does not record long-term evolution of the Jurassic magmatic arc, but rather represents a Middle Jurassic "stratigraphic snapshot" of the arc. This particular view of the arc has been preserved primarily because the Topawa Group accumulated in deep intra-arc basins. These nonmarine basins were fundamentally tectonic and extensional, rather than volcano-tectonic, in origin. Evidence from the Topawa Group supports two previous paleogeographic inferences: the Middle Jurassic magmatic arc in southern Arizona was relatively low standing, and externally derived sediment was introduced into the arc from the continent (northeast) side, without appreciable travel along the arc. We speculate that because the Topawa Group intra-arc basins were deep and rapidly subsiding, they became the locus of a major (though probably intermittent) fluvial system, which flowed into the low-standing magmatic arc from its northeast flank. ?? 2005 Geological Society of America.
NASA Astrophysics Data System (ADS)
Cao, Sebastián J.; Torres Carbonell, Pablo J.; Dimieri, Luis V.
2018-07-01
The structure of the Fuegian Andes central belt is characterized by a first phase of peak metamorphism and ductile deformation, followed by a brittle-ductile thrusting phase including juxtaposition of different (first phase) structural levels; both related to the closure and inversion of the Late Jurassic-Early Cretaceous Rocas Verdes basin. The second phase involved thrust sheets of pre-Jurassic basement, as well as Upper Jurassic and Lower Cretaceous units from the volcanic-sedimentary fill of the basin. Rock exposures in the Parque Nacional Tierra del Fuego reveal a diversity of metamorphic mineral assemblages, dynamic recrystallization grades and associated structures, evidencing a variety of protoliths and positions in the crust during their orogenic evolution. Among the units present in this sector, the Lapataia Formation portrays the higher metamorphic grade reported in the Argentine side of the Fuegian Andes, and since no precise radiometric ages have been established to date, its stratigraphic position remains a matter of debate: the discussion being whether it belongs to the pre-Jurassic basement, or the Upper Jurassic volcanic/volcaniclastic initial fill of the Rocas Verdes basin. The mapping and petrographic/microstructural study of the Lapataia Formation and those of undoubtedly Mesozoic age, allow to characterize the former as a group of rocks with great lithological affinity with the Upper Jurassic metamorphic rocks found elsewhere in the central belt of the Fuegian Andes. The main differences in metamorphic grade are indebted to its deformation at deeper crustal levels, but during the same stages than the Mesozoic rocks. Accordingly, we interpret the regional structure to be associated with the stacking of thrust sheets from different structural levels through the emplacement of a duplex system during the growth of the Fuegian Andes.
Mössbauer spectroscopic study of the test well (DND) located in Jaisalmer Basin of Rajasthan, India
NASA Astrophysics Data System (ADS)
Ganwani, Girish; Meena, Samay Singh; Ram, Sahi; Bhatia, Beena; Tripathi, R. P.
2018-05-01
The Jaisalmer basin represents mainly the westerly dipping flank of Indus shelf. The palynological and geochemical studies have predicted good quality of hydrocarbons in this basin. The cretaceous and Jurassic sediments are believed to contain source rock in this basin. In present preliminary study, Mössbauer spectroscopic investigation has been done on sedimentary samples collected from different depths of upper cretaceous sedimentary sequence of well DND-1 drilled in Jaisalmer basin. The iron is found mainly in carbonate and clay. The relatively small presence of Fe2+ in comparison to Fe3+ in clay is an indication of poor reducing environment in sediments, which can be attributed to poor maturity of source rocks in upper cretaceous sediments of this basin.
Petroleum geology of Cook Inlet basin - an exploration model
Magoon, L.B.; Claypool, G.E.
1981-01-01
Oil exploration commenced onshore adjacent to lower Cook Inlet on the Iniskin Peninsula in 1900, shifted with considerable success to upper Cook Inlet from 1957 through 1965, then returned to lower Cook Inlet in 1977 with the COST well and Federal OCS sale. Lower Cook Inlet COST No. 1 well, drilled to a total depth of 3,775.6 m, penetrated basinwide unconformities at the tops of Upper Cretaceous, Lower Cretaceous, and Upper Jurassic strata at 797.1, 1,540.8, and 2,112.3 m, respectively. Sandstone of potential reservoir quality is present in the Cretaceous and lower Tertiary rocks. All siltstones and shales analyzed are low (0 to 0.5 wt. %) in oil-prone organic matter, and only coals are high in humic organic matter. At total depth, vitrinite readings reached a maximum ave age reflectance of 0.65. Several indications of hydrocarbons were present. Oil analyses suggest that oils from the major fields of the Cook Inlet region, most of which produce from the Tertiary Hemlock Conglomerate, have a common source. More detailed work on stable carbon isotope ratios and the distribution of gasoline-range and heavy (C12+) hydrocarbons confirms this genetic relation among the major fields. In addition, oils from Jurassic rocks under the Iniskin Peninsula and from the Hemlock Conglomerate at the southwestern tip of the Kenai lowland are members of the same or a very similar oil family. The Middle Jurassic strata of the Iniskin Peninsula are moderately rich in organic carbon (0.5 to 1.5 wt. %) and yield shows of oil and of gas in wells and in surface seeps. Extractable hydrocarbons from this strata are similar in chemi al and isotopic composition to the Cook Inlet oils. Organic matter in Cretaceous and Tertiary rocks is thermally immature in all wells analyzed. Oil reservoirs in the major producing fields are of Tertiary age and unconformably overlie Jurassic rocks; the pre-Tertiary unconformity may be significant in exploration for new oil reserves. The unconformable relation between reservoir rocks and likely Middle Jurassic source rocks also implies a delay in the generation and expulsion of oil from Jurassic until late Tertiary when localized basin subsidence and thick sedimentary fill brought older, deeper rocks to the temperature required for petroleum generation. Reservoir porosities, crude oil properties, the type of oil field traps, and the tectonic framework of the oil fields on the west flank of the basin provide evidence used to reconstruct an oil migration route. The route is inferred to commence deep in the truncated Middle Jur ssic rocks and pass through the porous West Foreland Formation in the McArthur River field area to a stratigraphic trap in the Oligocene Hemlock Conglomerate and the Oligocene part of the Tyonek Formation at the end of Miocene time. Pliocene deformation shut off this route and created localized structural traps, into which the oil moved by secondary migration to form the Middle Ground Shoal, McArthur River, and Trading Bay oil fields. Oil generation continued into the Pliocene, but this higher API gravity oil migrated along a different route to the Granite Point field.
Warwick, Peter D.; Johnson, Edward A.; Khan, Intizar H.
1998-01-01
Outcrop data from the Upper Paleocene to Middle Eocene Ghazij Formation of central Pakistan provide information about the depositional environments, source areas, and paleogeographic and tectonic settings along the northwestern margin of the Indian subcontinent during the closing of the Tethys Ocean. In this region, in the lower part of the exposed stratigraphic sequence, are various marine carbonate-shelf deposits (Jurassic to Upper Paleocene). Overlying these strata is the Ghazij, which consists of marine mudstone (lower part), paralic sandstone and mudstone (middle part), and terrestrial mudstone and conglomerate (upper part). Petrographic examination of sandstone samples from the middle and upper parts reveals that rock fragments of the underlying carbonate-shelf deposits are dominant; also present are volcanic rock fragments and chromite grains. Paleocurrent measurements from the middle and upper parts suggest that source areas were located northwest of the study area. We postulate that the source areas were uplifted by the collision of the subcontinent with a landmass during the final stages of the closing of the Tethys Ocean. Middle Eocene carbonate-shelf deposits that overlie the Ghazij record a return to marine conditions prior to the Miocene to Pleistocene sediment influx denoting the main collision with Eurasia.
McLean, Hugh James
1979-01-01
Upper Jurassic strata in the Black Hills area consist mainly of fossiliferous, tightly cemented, gently folded sandstone deposited in a shallow marine environment. Upper Cretaceous strata on Sanak Island are strongly deformed and show structural features of broken formations similar to those observed in the Franciscan assemblage of California. Rocks exposed on Sanak Island do not crop out on the peninsular mainland or on Unimak Island, and probably make up the acoustic and economic basement of nearby Sanak basin. Tertiary sedimentary rocks on the outermost part of the Alaska Peninsula consist of Oligocene, Miocene, and lower Pliocene volcaniclastic sandstone, siltstone, and conglomerate deposited in nonmarine and very shallow marine environments. Interbedded airfall and ash-flow tuff deposits indicate active volcanism during Oligocene time. Locally, Oligocene strata are intruded by quartz diorite plutons of probable Miocene age. Reservoir properties of Mesozoic and Tertiary rocks are generally poor due to alteration of chemically unstable volcanic rock fragments. Igneous intrusions have further reduced porosity and permeability by silicification of sandstone. Organic-rich source rocks for petroleum generation are not abundant in Neogene strata. Upper Jurassic rocks in the Black Hills area have total organic carbon contents of less than 0.5 percent. Deep sediment-filled basins on the Shumagin Shelf probably contain more source rocks than onshore correlatives, but reservoir quality is not likely to be better than in onshore outcrops. The absence of well-developed folds in most Tertiary rocks, both onshore and in nearby offshore basins, reduces the possibility of hydrocarbon entrapment in anticlines.
Pandey, Dhirendra K.; Alberti, Matthias; Fürsich, Franz T.; Thakkar, Mahesh G.; Chauhan, Gaurav D.
2017-01-01
An articulated and partially preserved skeleton of an ichthyosaur was found in the Upper Jurassic (Upper Kimmeridgian) Katrol Formation exposed at a site south of the village Lodai in Kachchh district, Gujarat (western India). Here we present a detailed description and inferred taxonomic relationship of the specimen. The present study revealed that the articulated skeleton belongs to the family Ophthalmosauridae. The new discovery from India further improves the depauperate fossil record of ichthyosaurs from the former Gondwanan continents. Based on the preserved length of the axial skeleton and anterior part of the snout and taking into account the missing parts of the skull and postflexural region, it is suggested that the specimen may represent an adult possibly reaching a length of 5.0–5.5 m. The widespread occurrence of ophthalmosaurids in the Upper Jurassic deposits of western Tethys, Madagascar, South America and India points to possible faunal exchanges between the western Tethys and Gondwanan continents through a southern seaway. PMID:29069082
NASA Astrophysics Data System (ADS)
Sciscio, Lara; Bordy, Emese M.
2016-07-01
The Triassic-Jurassic boundary marks a global faunal turnover event that is generally considered as the third largest of five major biological crises in the Phanerozoic geological record of Earth. Determining the controlling factors of this event and their relative contributions to the biotic turnover associated with it is on-going globally. The Upper Triassic and Lower Jurassic rock record of southern Africa presents a unique opportunity for better constraining how and why the biosphere was affected at this time not only because the succession is richly fossiliferous, but also because it contains important palaeoenvironmental clues. Using mainly sedimentary geochemical proxies (i.e., major, trace and rare earth elements), our study is the first quantitative assessment of the palaeoclimatic conditions during the deposition of the Elliot Formation, a continental red bed succession that straddles the Triassic-Jurassic boundary in southern Africa. Employing clay mineralogy as well as the indices of chemical alteration and compositional variability, our results confirm earlier qualitative sedimentological studies and indicate that the deposition of the Upper Triassic and Lower Jurassic Elliot Formation occurred under increasingly dry environmental conditions that inhibited chemical weathering in this southern part of Pangea. Moreover, the study questions the universal validity of those studies that suggest a sudden increase in humidity for the Lower Jurassic record and supports predictions of long-term global warming after continental flood basalt emplacement.
An enigmatic plant-eating theropod from the Late Jurassic period of Chile.
Novas, Fernando E; Salgado, Leonardo; Suárez, Manuel; Agnolín, Federico L; Ezcurra, Martín D; Chimento, Nicolás R; de la Cruz, Rita; Isasi, Marcelo P; Vargas, Alexander O; Rubilar-Rogers, David
2015-06-18
Theropod dinosaurs were the dominant predators in most Mesozoic era terrestrial ecosystems. Early theropod evolution is currently interpreted as the diversification of various carnivorous and cursorial taxa, whereas the acquisition of herbivorism, together with the secondary loss of cursorial adaptations, occurred much later among advanced coelurosaurian theropods. A new, bizarre herbivorous basal tetanuran from the Upper Jurassic of Chile challenges this conception. The new dinosaur was discovered at Aysén, a fossil locality in the Upper Jurassic Toqui Formation of southern Chile (General Carrera Lake). The site yielded abundant and exquisitely preserved three-dimensional skeletons of small archosaurs. Several articulated individuals of Chilesaurus at different ontogenetic stages have been collected, as well as less abundant basal crocodyliforms, and fragmentary remains of sauropod dinosaurs (diplodocids and titanosaurians).
NASA Astrophysics Data System (ADS)
Bonev, N.; Stampfli, G.
2003-04-01
In the southeastern Rhodope, both in southern Bulgaria and northern Greece, Mesozoic low-grade to non-metamorphic units, together with similar units in the eastern Vardar zone, were designated as the Circum-Rhodope Belt (CRB) that fringes the Rhodope high-grade metamorphic complex. In the Bulgarian southeastern Rhodope, Mesozoic units show a complicated tectono-stratigraphy underlaid by amphibolite-facies basement units. The basement sequence includes a lower orthogneiss unit with eclogite and meta-ophiolite lenses overlain by an upper marble-schist unit, presumably along a SSW-directed detachment fault as indicated by shear sense indicators. The Mesozoic sequence starts with greenschist units at the base, overlaying the basement along the tectonic contact. Mineral assemblages such as actinolite-chlorite-white mica ± garnet in schists and phyllites indicate medium greenschist facies metamorphism. Kinematic indicators in the same unit demonstrate a top-to-the NNW and NNE shear deformation coeval with metamorphism, subparallel to NW-SE to NE-SW trending mineral elongation lineation and axis of NW vergent small-scale folds. The greenschist unit is overlain by tectonic or depositional contact of melange-like unit that consists of diabases with Lower Jurassic radiolarian chert interlayers, Upper Permian siliciclastics and Middle-Upper Triassic limestones found as blocks in olistostromic member, embedded in Jurassic-Lower Cretaceous turbiditic matrix. The uppermost sedimentary-volcanogenic unit is represented by andesito-basalt lavas and gabbro-diorites, interbedded with terrigeneous-marl and tufaceous sediments that yield Upper Cretaceous (Campanian) fossils, related to the Late Cretaceous back-arc magmatic activity to the north in Sredna Gora zone. Petrologic and geochemical data indicates sub-alkaline and tholeiitic character of the greenschists and ophiolitic basaltic lavas, and the latter are classified as low-K and very low-Ti basalts with some boninitic affinity. Immobile trace element discrimination of both rock types constrains the volcanic (oceanic)-arc origin. They generally show low total REE concentrations (LREE>HREE) with enrichment of LIL elements relative to the HFS elements, and also very low Nb and relatively high Ce content consistent with an island-arc tectonic setting. We consider that the Meliata-Maliac ocean northern passive margin could be the source provenance for the Upper Permian clastics and Middle-Upper Triassic limestone blocks within the olistostromic melange-like unit, whereas turbidites and magmatic blocks may originate in an island arc-accretionary complex that relates to the southward subduction of the Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. These new structural and petrologic data allow to precise the tectonic setting of the Mesozoic units and their geodynamic context in the frame of the Early Jurassic to Late Cretaceous evolution of the Vardar ocean.
Tectonic evolution, structural styles, and oil habitat in Campeche Sound, Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angeles-Aquino, F.J.; Reyes-Nunez, J.; Quezada-Muneton, J.M.
1994-12-31
Campeche Sound is located in the southern part of the Gulf of Mexico. This area is Mexico`s most important petroleum province. The Mesozoic section includes Callovian salt deposits; Upper Jurassic sandstones, anhydrites, limestones, and shales; and Cretaceous limestones, dolomites, shales, and carbonate breccias. The Cenozoic section is formed by bentonitic shales and minor sandstones and carbonate breccias. Campeche Sound has been affected by three episodes of deformation: first extensional tectonism, then compressional tectonism, and finally extensional tectonism again. The first period of deformation extended from the middle Jurassic to late Jurassic and is related to the opening of the Gulfmore » of Mexico. During this regime, tilted block faults trending northwest-southwest were dominant. The subsequent compressional regime occurred during the middle Miocene, and it was related to northeast tangential stresses that induced further flow of Callovian salt and gave rise to large faulted, and commonly overturned, anticlines. The last extensional regime lasted throughout the middle and late Miocene, and it is related to salt tectonics and growth faults that have a middle Miocene shaly horizon as the main detachment surface. The main source rocks are Tithonian shales and shaly limestones. Oolite bars, slope and shelf carbonates, and regressive sandstones form the main reservoirs. Evaporites and shales are the regional seals. Recent information indicates that Oxfordian shaly limestones are also important source rocks.« less
Moore, Thomas E.
2014-01-01
Data from two studies are included in this report. The first study, by Dumoulin and others (2013), reported the detrital zircon U-Pb age analysis of a single sample from the Upper Mississippian Ikalukrok unit of the Kuna Formation (table 1). The second study is that of Moore and others (in press), which focuses on the Upper Jurassic and Lower Cretaceous part of the Brookian sequence in the western Brooks Range (17 samples; table 2). For the latter study, samples were analyzed from the following units (1) the Upper Jurassic unit, Jw, of Curtis and others (1984), (2) the Lower Cretaceous Igrarok Hills unit of Moore and others (2002), (3) the Upper Jurassic and Lower Cretaceous Okpikruak Formation, (4) the Lower Cretaceous lower Brookian shale of Mull (1995), (5) the Lower Cretaceous Mount Kelly Graywacke Tongue of the Fortress Mountain Formation, (6) and the upper Lower Cretaceous Nanushuk Formation as redefined by Mull and others (2003). The results for each study are reported in separate Excel files, with individual samples in each study being shown as separate sheets within the files. The analyses of individual zircons are listed separately on the sheet according to the filtering schemes of the study and by the type of mass spectrometer used.
NASA Astrophysics Data System (ADS)
Li, Shun; Ding, Lin; Guilmette, Carl; Fu, Jiajun; Xu, Qiang; Yue, Yahui; Henrique-Pinto, Renato
2017-04-01
The Mesozoic strata, within the Bangong-Nujiang suture zone in central Tibet, recorded critical information about the subduction-accretion processes of the Bangong-Nujiang Ocean prior to the Lhasa-Qiangtang collision. This paper reports detailed field observations, petrographic descriptions, sandstone detrital zircon U-Pb ages and Hf isotopic analyses from an accretionary complex (preserved as Mugagangri Group) and the unconformably overlying Shamuluo Formation near Gaize. The youngest detrital zircon ages, together with other age constraints from literature, suggest that the Mugagangri Group was deposited during late Triassic-early Jurassic, while the Shamuluo Formation was deposited during late Jurassic-early Cretaceous. Based on the differences in lithology, age and provenance, the Mugagangri Group is subdivided into the upper, middle and lower subunits. These units are younging structurally downward/southward, consistent with models of progressive off-scrapping and accretion in a southward-facing subduction complex. The upper subunit, comprising mainly quartz-sandstone and siliceous mud/shale, was deposited in abyssal plain environment close to the Qiangtang passive margin during late Triassic, with sediments derived from the southern Qiangtang block. The middle and lower subunits comprise mainly lithic-quartz-sandstone and mud/shale, containing abundant ultramafic/ophiolitic fragments. The middle subunit, of late Triassic-early Jurassic age, records a transition in tectono-depositional setting from abyssal plain to trench-wedge basin, with sudden influx of sediments sourced from the central Qiangtang metamorphic belt and northern Qiangtang magmatic belt. The appearance of ultramafic/ophiolitic fragments in the middle subunit reflects the subduction initiation. The lower subunit was deposited in a trench-wedge basin during early Jurassic, with influx of Jurassic-aged zircons originating from the newly active southern Qiangtang magmatic arc. The lower subunit records the onset of arc magmatism related to the northward subduction of the Bangong-Nujiang Ocean. The Shamuluo Formation, comprising mainly lithic-feldspar-sandstone with limestone interlayers, was deposited in a post-collisional residual-sea or pre-collisional trench-slope basin, with sediments derived entirely from the Qiangtang block.
Dyman, T.S.; Condon, S.M.
2006-01-01
The Jurassic Smackover Interior Salt Basins Total Petroleum System is defined for this assessment to include (1) Upper Jurassic Smackover Formation carbonates and calcareous shales and (2) Upper Jurassic and Lower Cretaceous Cotton Valley Group organic-rich shales. The Jurassic Smackover Interior Salt Basins Total Petroleum System includes four conventional Cotton Valley assessment units: Cotton Valley Blanket Sandstone Gas (AU 50490201), Cotton Valley Massive Sandstone Gas (AU 50490202), Cotton Valley Updip Oil and Gas (AU 50490203), and Cotton Valley Hypothetical Updip Oil (AU 50490204). Together, these four assessment units are estimated to contain a mean undiscovered conventional resource of 29.81 million barrels of oil, 605.03 billion cubic feet of gas, and 19.00 million barrels of natural gas liquids. The Cotton Valley Group represents the first major influx of clastic sediment into the ancestral Gulf of Mexico. Major depocenters were located in south-central Mississippi, along the Louisiana-Mississippi border, and in northeast Texas. Reservoir properties and production characteristics were used to identify two Cotton Valley Group sandstone trends across northern Louisiana and east Texas: a high-permeability blanket-sandstone trend and a downdip, low-permeability massive-sandstone trend. Pressure gradients throughout most of both trends are normal, which is characteristic of conventional rather than continuous basin-center gas accumulations. Indications that accumulations in this trend are conventional rather than continuous include (1) gas-water contacts in at least seven fields across the blanket-sandstone trend, (2) relatively high reservoir permeabilities, and (3) high gas-production rates without fracture stimulation. Permeability is sufficiently low in the massive-sandstone trend that gas-water transition zones are vertically extensive and gas-water contacts are poorly defined. The interpreted presence of gas-water contacts within the Cotton Valley massive-sandstone trend, however, suggests that accumulations in this trend are also conventional.
Eoff, Jennifer D
2014-01-01
Fundamental to any of the processes that acted during deposition, however, was active tectonism. Basin type can often distinguish self-sourced shale plays from other types of hydrocarbon source rocks. The deposition of North American self-sourced shale was associated with the assembly and subsequent fragmentation of Pangea. Flooded foreland basins along collisional margins were the predominant depositional settings during the Paleozoic, whereas deposition in semirestricted basins was responsible along the rifted passive margin of the U.S. Gulf Coast during the Mesozoic. Tectonism during deposition of self-sourced shale, such as the Upper Jurassic Haynesville Formation, confined (re)cycling of organic materials to relatively closed systems, which promoted uncommonly thick accumulations of organic matter.
Paleozoic and Mesozoic deformations in the central Sierra Nevada, California
Nokleberg, Warren J.; Kistler, Ronald Wayne
1980-01-01
Analysis of structural and stratigraphic data indicates that several periods of regional deformation, consisting of combined folding, faulting, cataclasis, and regional metamorphism, occurred throughout the central Sierra Nevada during Paleozoic and Mesozoic time. The oldest regional deformation occurred alono northward trends during the Devonian and Mississippian periods in most roof pendants containing lower Paleozoic metasedimentary rocks at the center and along the crest of the range. This deformation is expressed in some roof pendants by an angular unconformity separating older thrice-deformed from younger twice-deformed Paleozoic metasedimentary rocks. The first Mesozoic deformation, which consisted of uplift and erosion and was accompanied by the onset of Andean-type volcanism during the Permian and Triassic, is expressed by an angular unconformity in several roof pendants from the Saddlebag Lake to the Mount Morrison areas. This unconformity is defined by Permian and Triassic andesitic to rhyolitic metavolcanic rocks unconformably overlying more intensely deformed Pennsylvanian, Permian(?), and older metasedimentary rocks. A later regional deformation occurred during the Triassic along N. 20?_30? W. trends in Permian and Triassic metavolcanic rocks of the Saddlebag Lake and Mount Dana roof pendants, in upper Paleozoic rocks of the Pine Creek roof pendant, and in the Calaveras Formation of the western metamorphic belt; the roof pendants are crosscut by Upper Triassic granitic rocks of the Lee Vining intrusive epoch. A still later period of Early and Middle Jurassic regional deformation occurred along N. 30?-60? E. trends in upper Paleozoic rocks of the Calaveras Formation of the western metamorphic belt. A further period of deformation was the Late Jurassic Nevadan orogeny, which occurred along N. 20?_40? W. trends in Upper Jurassic rocks of the western metamorphic belt that are crosscut by Upper Jurassic granitic rocks of the Yosemite intrusive epoch. Structures of similar age occur in intensely deformed oceanic-lithospheric and syntectonic plutonic rocks of the lower Kings River area, in Jurassic metavolcanic rocks of the Ritter Range roof pendant, and in Triassic metasedimentary rocks of the Mineral King roof pendant. The final Mesozoic deformation occurred along N. 50?-80? W. trends in both high-country roof pendants and the lower Kings River area; structures of this generation are crosscut by relatively undeformed Upper Cretaceous granitic rocks of the Cathedral Range intrusive epoch.
NASA Astrophysics Data System (ADS)
Painter, Clayton S.
Three studies on Cordilleran foreland basin deposits in the western U.S.A. constitute this dissertation. These studies differ in scale, time and discipline. The first two studies include basin analysis, flexural modeling and detailed stratigraphic analysis of Upper Cretaceous depocenters and strata in the western U.S.A. The third study consists of detrital zircon U-Pb analysis (DZ U-Pb) and thermochronology, both zircon (U-Th)/He and apatite fission track (AFT), of Upper Jurassic to Upper Cretaceous foreland-basin conglomerates and sandstones. Five electronic supplementary files are a part of this dissertation and are available online; these include 3 raw data files (Appendix_A_raw_isopach_data.txt, Appendix_C_DZ_Data.xls, Appendix_C_U-Pb_apatite.xls), 1 oversized stratigraphic cross section (Appendix_B_figure_5.pdf), and 1 figure containing apatite U-Pb concordia plots (Appendix_C_Concordia.pdf). Appendix A is a combination of detailed isopach maps of the Upper Cretaceous Western Interior, flexural modeling and a comparison to dynamic subsidence models as applied to the region. Using these new isopach maps and modeling, I place the previously recognized but poorly constrained shift from flexural to non-flexural subsidence at 81 Ma. Appendix B is a detailed stratigraphic study of the Upper Cretaceous, (Campanian, ~76 Ma) Sego Sandstone Member of the Mesaverde Group in northwestern Colorado, an area where little research has been done on this formation. Appendix C is a geo-thermochronologic study to measure the lag time of Upper Jurassic to Upper Cretaceous conglomerates and sandstones in the Cordilleran foreland basin. The maximum depositional ages using DZ U-Pb match existing biostratigraphic age controls. AFT is an effective thermochronometer for Lower to Upper Cretaceous foreland stratigraphy and indicates that source material was exhumed from >4--5 km depth in the Cordilleran orogenic belt between 118 and 66 Ma, and zircon (U-Th)/He suggests that it was exhumed from <8--9 km depth. Apatite U-Pb analyses indicate that volcanic contamination is a significant issue, without which, one cannot exclude the possibility that the youngest detrital AFT population is contaminated with significant amounts of volcanogenic apatite and does not represent source exhumation. AFT lag times are <5 Myr with relatively steady-state to slightly increasing exhumation rates. Lag time measurements indicate exhumation rates of ~0.9->>1 km/Myr.
Mesozoic evolution of the Amu Darya basin
NASA Astrophysics Data System (ADS)
Brunet, Marie-Françoise; Ershov, Andrey; Korotaev, Maxim; Mordvintsev, Dmitriy; Barrier, Eric; Sidorova, Irina
2014-05-01
This study, granted by the Darius Programme, aims at proposing a model of tectono-stratigraphic evolution of the Amu Darya basin since the Late Palaeozoic and to understand the relationship with the nearby basins. The Amu Darya basin, as its close eastern neighbour, the Afghan-Tajik basin, lies on the Turan platform, after the closure of the Turkestan Ocean during the Late Paleozoic. These two basins, spread on mainly lowlands of Turkmenistan, southwest Uzbekistan, Tajikistan, and northern Afghanistan, are separated from one another by the South-Western Gissar meganticline, where series of the northern Amu Darya margin are outcropping. The evolution is closely controlled by several periods of crustal thinning (post-collision rifting and back-arc extension), with some marine incursions, coming in between accretions of continental blocks and collisions that succeeded from the Late Triassic-Early Jurassic (Eo-Cimmerian orogeny) to the Cenozoic times. These orogenies controlled the deposition of thick clastics sequences, and the collision of the Indian Plate with Eurasia strongly deformed the sedimentary cover of the Afghan-Tajik basin. The more than 7 km thick Meso-Cenozoic sedimentary succession of the Amu Darya basin, lies on a complex system of rifts and blocks. Their orientation and age (late Permian, Triassic?) are not well known because of deep burial. The north-eastern margin, with the Bukhara (upper margin) and Chardzhou steps, is NW oriented, parallel to the Paleozoic Turkestan suture. The orientation bends to W-E, in the part of the Gissar situated to the North of the Afghan-Tajik basin. This EW trending orientation prevails also in the south(-eastern) margin of the basin (series of North Afghanistan highs) and in the Murgab depression, the south-eastern deepest portion of the Amu Darya basin. It is in this area and in the eastern part of the Amu Darya basin that the Jurassic as well as the lower Cretaceous sediments are the thickest. The south-western part of the basin is occupied by the Pre-Kopet Dagh Cenozoic foreland basin NW oriented, possibly underlain by an earlier extensional trough. The main elements of the sedimentary pile, which can be partly observed in the South-Western Gissar are: Lower to Middle Jurassic continental to paralic clastic rocks; upper Middle to Upper Jurassic marine carbonate then thick Tithonian evaporite rocks, sealing the reservoirs in the Jurassic carbonates; continental Neocomian clastic rocks and red beds, Aptian to Paleogene marine carbonate and clastic rocks. To reconstruct the geodynamic evolution of the Amu Darya Basin, we analysed the subsidence by backstripping of some wells/pseudo-wells and of three cross-sections with some examples of thermal modelling on the periods of maturation of the potential source rocks. The crustal thinning events take place in the Permo-Triassic? (depending on the age of the rifts underlying the basin), in Early-Middle Jurassic and during the Early Cretaceous, resulting in increases of the tectonic subsidence rates.
LePain, D.L.; Stanley, Richard G.; Helmold, K.P.
2016-01-01
Geochemical data suggest the source of oil in upper Cook Inlet fields is Middle Jurassic organic-rich shales in the Tuxedni Group (Magoon and Anders, 1992; Lillis and Stanley, 2011; LePain and others, 2012, 2013). Of the six formations in the group (Detterman, 1963), the basal Red Glacier Formation is the only unit that includes fine-grained rocks in outcrop that appear to be organic-rich (fig. 3-1). In an effort to better understand the stratigraphy and source-rock potential of the Red Glacier Formation, the Alaska Division of Geological & Geophysical Surveys, in collaboration with the Alaska Division of Oil and Gas and the U.S. Geological Survey, has been investigating the unit in outcrop between Tuxedni Bay and the type section at Lateral and Red glaciers (Stanley and others, 2013; LePain and Stanley, 2015; Helmold and others, 2016 [this volume]). Fieldwork in 2015 focused on a southeast-trending ridge south of Hungryman Creek, where the lower 60–70 percent of the formation (400–500 m) is exposed and accessible, except for the near-vertical faces of three segments near the southeast end of the ridge (figs. 3-2 and 3-3). Three stratigraphic sections were measured along the ridge to document facies and depositional environments (figs. 3-3 and 3-4). Steep terrain precluded study of the upper part of the formation exposed east of the ridge. This report includes a preliminary summary of findings from the 2015 field season.
NASA Astrophysics Data System (ADS)
Benzaggagh, Mohamed
2011-04-01
Following the recent stratigraphic works carried out on the Jurassic-Cretaceous boundary in the external Rif chain (Mesorif area and Bou Haddoud nappe), numerous submarine volcanism traces have been discovered in Upper Oxfordian to Upper Berriasian deposits. These traces display various aspects: volcaniclastic complexes incorporated within Upper Berriasian marls; volcanic lavas and basalt clasts included in the breccias with clay matrix of Upper Oxfordian to Lower Berriasian age, or in brecciated Lower Tothonian calcareous beds of the Early Tithonian. These submarine volcanic activities took place in a carbonate platform environment during the Kimmeridgian to Early Tithonian interval or in a pelagic basin from Late Tithonian onwards. They caused an intense brecciation of Upper Jurassic carbonate formations and a general dismantling of marly calcareous alternations of Upper Tithonian-Lower Berriasian. Therefore, the Upper Tithonian-Lower Berriasian deposits are marked by frequent stratigraphic gaps in many outcrops of Mesorif, Prerif areas and in the Bou Haddoud nappe.
NASA Astrophysics Data System (ADS)
Xu, Huan; Liu, Yong-Qing; Kuang, Hong-Wei; Peng, Nan; Rodríguez-López, Juan Pedro; Xu, Shi-Chao; Wang, Suo-Zhu; Yi, Jian; Xue, Pei-Lin; Jia, Lei
2018-02-01
This paper presents the first report of sauropod tracks from the Upper Jurassic of Shanxi Province, China. Dinosaur tracks appear concentrated in five trackways, in different stratigraphic levels of the Late Jurassic Tianchihe Formation. Tracks are dominantly small and medium-size sauropod tracks and are tentatively assigned to Brontopodus based on preserved track morphology, trackway pattern and statistical analysis. The Tianchihe Formation in which the tracks appear shows a gradual change from meandering fluvial to sandy braided fluvial depositional systems developed in a seasonally arid environment. Comparisons of the evaluated speed of bipedal to quadruped trackways indicate that the slower walk more easily produces pes-dominated overprints. Trackways in the Guxian tracksite appear following different orientations, suggesting that these trackways were produced by different sauropods at different times. An unusual trackway following a curved pattern has been identified in the site and could represent a special locomotion character or a social behavior. The presence of eolian deposits in central Shanxi Province could have acted as a paleogeographic and paleoenvironmental barrier for the dispersion of the Yanliao Biota that survived in northern Hebei-western Liaoning and northestern Shanxi Province to the Ordos Basin during the Late Jurassic.
NASA Astrophysics Data System (ADS)
Tanfous Amri, Dorra; Bédir, Mourad; Soussi, Mohamed; Azaiez, Hajer; Zitouni, Lahoussine; Hédi Inoubli, M.; Ben Boubaker, Kamel
2005-05-01
Seismic and sequence stratigraphy analyses, petroleum-well control and surface data studies of the Majoura-El Hfay region in the Central Atlas of Tunisia had led to identify and calibrate Jurassic seismic horizons. Seismic stratigraphic sections, seismic tectonics analyses, isochron and isopach mapping of Jurassic sequences show a differentiated structuring of platform and depocentre blocks limited by deep-seated NE-SW, north-south east-west and NW-SE faults intruded by Upper Triassic salt. The early salt migration seems to have started by the platform fracturing during the Lower Liassic rifting event. These movements are fossilized by thickness variations of Jurassic horizons, aggrading and retrograding onlap and toplap structures between subsiding rim-syncline gutters and high platform flanks intruded by salt pillows and domes. The salt migration is also attested by Middle and Upper Jurassic space depocentre migrations. Around the Majoura-El Hfay study blocks bounded by master faults, Triassic salt have pierced the Cretaceous and Tertiary sedimentary cover in a salt diapir extrusion and salt wall structures. To cite this article: D. Tanfous Amri et al., C. R. Geoscience 337 (2005).
Tracing biosignatures from the Recent to the Jurassic in sabkha-associated microbial mats
NASA Astrophysics Data System (ADS)
van der Land, Cees; Dutton, Kirsten; Andrade, Luiza; Paul, Andreas; Sherry, Angela; Fender, Tom; Hewett, Guy; Jones, Martin; Lokier, Stephen W.; Head, Ian M.
2017-04-01
Microbial mat ecosystems have been operating at the sediment-fluid interface for over 3400 million years, influencing the flux, transformation and preservation of carbon from the biosphere to the physical environment. These ecosystems are excellent recorders of rapid and profound changes in earth surface environments and biota as they often survive crisis-induced extreme paleoenvironmental conditions. Their biosignatures, captured in the preserved organic matter and the biominerals that form the microbialite rock, constitute a significant tool in understanding geobiological processes and the interactions of the microbial communities with sediments and with the prevailing physical chemical parameters, as well as the environmental conditions at a local and global scale. Nevertheless, the exact pathways of diagenetic organic matter transformation and early-lithification, essential for the accretion and preservation in the geological record as microbialites, are not well understood. The Abu Dhabi coastal sabkha system contains a vast microbial mat belt that is dominated by continuous polygonal and internally-laminated microbial mats across the upper and middle intertidal zones. This modern system is believed to be the best analogue for the Upper Jurassic Arab Formation, which is both a prolific hydrocarbon reservoir and source rock facies in the United Arab Emirates and in neighbouring countries. In order to characterise the processes that lead to the formation of microbialites we investigated the modern and Jurassic system using a multidisciplinary approach, including growth of field-sampled microbial mats under controlled conditions in the laboratory and field-based analysis of microbial communities, mat mineralogy and organic biomarker analysis. In this study, we focus on hydrocarbon biomarker data obtained from the surface of microbial mats actively growing in the intertidal zone of the modern system. By comparing these findings to data obtained from recently-buried, unlithified mats and fully lithified Jurassic mats we are able to identify those biochemical signatures of organic matter preserved in microbialites which survived diagenetic disintegration and represent the primary microbial production. Biomarkers, in the form of alkanes, mono-, di- and trimethylalkanes (MMA, DMA, TMA) were identified in surface and buried mats. Previous studies reported a bimodal distribution of n-Alkanes in the buried mats due to the relatively rapid decline in the abundance of MMAs and DMAs in the C16-C22 range with C24-C45 exclusively found in buried mats, however, this bimodal distribution was not found in our samples. Furthermore, we were able to improve the subsurface facies model for the Jurassic microbialites with our biomarker data as it shows that microbial mats growing in tidal pools or lagoons within the sabkha system form the most prolific hydrocarbon source rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medlyn, D.A.; Bilbey, S.A.
1993-04-01
The Upper Jurassic Morrison Formation has yielded one of the richest floras of the so-called transitional conifers'' of the Middle Mesozoic. Recently, a silicified axis of one of these conifers was collected from the Salt Wash member in essentially the same horizon as a previously reported partial Stegosaurus skeleton. In addition, two other axes of conifers were collected in the same immediate vicinity. Paleoecological considerations are extrapolated from the coniferous flora, vertebrate fauna and associated lithologies. Techniques of paleodendrology and relationships of extant/extinct environments are compared. The paleoclimatic conditions of the transitional conifers and associated dinosaurian fossils are postulated.
NASA Astrophysics Data System (ADS)
Mette, Wolfgang
2004-03-01
As part of an intradisciplinary project which was concerned with the early rifting processes between Madagascar and East Africa, the Middle to Upper Jurassic sedimentary sequences of the Morondava Basin in Southwest Madagascar has been investigated with respect to biostratigraphy, sedimentary facies and palaeoecology. The transgressive sedimentary sections in the Bajocian and Callovian-Oxfordian yield rich macro- and microfossil assemblages which improved the biostratigraphic framework and gave some important information about the palaeoenvironments. Palaeogeographic distribution patterns of the Bajocian ostracod Paradoxorhyncha are suggestive of a migration along the southern shores of Gondwana between Madagascar, Australia and South America. The Callovian ostracods show strong affinities to the Indian faunas, indicating existence of a free migration route for shallow marine benthic organisms between Madagascar and India. Significant faunal differences between Madagascar and Tanzania suggest a physical or environmental migration barrier between Madagascar and East Africa during the Callovian to Kimmeridgian interval. The Upper Jurassic ostracods from the northern and eastern margin of Gondwana show a very high degree of endemism and they can be assigned to two faunal provinces in North Gondwana (Arabia, Near East, North Africa) and South Gondwana (India, Madagascar, East Africa).
Geology and hydrocarbon potential in the state of Qatar, Arabian Gulf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsharhan, A.S.; Nairn, A.E.M.
The state of Qatar is situated in the southern Arabian Gulf and covers an area of 12,000 km{sup 2}. It is formed by a large, broad anticline, which is part of the regional south-southwest-north-northeast-trending Qatar-South Fars arch. The arch separates the two Infracambrian salt basins. The Dukhan field was the first discovery, made in 1939, in the Upper Jurassic limestones. Since then, a series of discoveries have been made so that Qatar has become one of the leading OPEC oil states. Hydrocarbon accumulations are widely dispersed throughout the stratigraphic column from upper Paleozoic to Cretaceous producing strata. The most prolificmore » reservoirs are the Permian and Mesozoic shelf carbonate sequences. Minor clastic reservoirs occur in the Albian and Paleozoic sequences. Seals, mainly anhydrite and shale. occur both intraformationally and regionally. Several stratigraphic intervals contain source rocks or potential source rocks. The Silurian shales arc the most likely source of the hydrocarbon stored in the upper Paleozoic clastics and carbonates. The upper Oxfordian-middle Kimmeridgian rocks formed in the extensive starved basin during the Mesozoic period of sea level rise. Total organic carbon ranges between 1 and 6%, with the sulfur content approximately 9%. The source material consists of sapropelic liptodetrinite and algae. The geological background of the sedimentary facies through geologic time, stratigraphy, and structural evolution which control source, and the subsequent timing and migration of large-scale hydrocarbon generation are presented in detail.« less
NASA Astrophysics Data System (ADS)
Wei, Dandan; Ren, Dong
2013-08-01
Although cockroaches were the dominant insects in various Paleozoic and Mesozoic insect assemblages, their general morphology was extremely conservative. One of the most common of them, the Jurassic-Cretaceous family Mesoblattinidae, is described here for the first time on the basis of completely preserved specimens. Ninety-two specimens of Perlucipecta aurea gen. et sp. n. reveal details of head, mandible, male tergal glands and terminal hook; cercal, leg and antennal sensilla. Its congener, P. vrsanskyi is described from the same sediments of the Yixian Formation (Upper Jurassic-Lower Cretaceous). The forewing venation variability of P. aurea, analysed for the first time in this family is nearly identical (CV = 6.23 %) with variability of two species of family Blattulidae that occur at the same locality (CV = 6.22 %; 5.72 %). The transitional nature of morphological characters represented by asymmetry between left and right wings (simple/branched forewing SC and hind wing M) in P. aurea documents the phylogenetic relation between the families Mesoblattinidae and Ectobiidae
O'Sullivan, R. B.
2000-01-01
The Middle Jurassic San Rafael Group and the Upper Jurassic Morrison Formation consist mainly of sandstone, siltstone, and shale. The San Rafael Group is widely displayed around Bluff (fig. 1) in the southern part of the study area and along Harts Draw and Dry Valley in the northern part. Along Montezuma Canyon, which is almost 1,500 ft deep, the upper part of the group crops out for about 10 mi; at one locality (sec. 13, fig. 1) all of it is exposed. Elsewhere in the study area, younger rocks conceal the San Rafael Group. The Morrison Formation is also generally well exposed throughout the area. From near Monticello to Harts Draw, Cretaceous rocks conceal the Morrison Formation. In the study area, two unconformities are associated with the rocks described herein. One at the base of the San Rafael Group (termed J-2) at the contact with the Lower Jurassic Navajo Sandstone and the other at the top (J-5) at the contact with the overlying Morrison Formation. The J-5 unconformity is the datum used to construct the line of graphic sections and the restored stratigraphic diagram of this report. The locations of drill holes and measured sections are given in table 1.
Weems, Robert E.; Tanner, Lawrence H.; Lucas, Spencer G.
2016-01-01
The Upper Permian? - Lower Jurassic Newark Supergroup of eastern North America has a strikingly uniform succession of lithologic units. This uniformity is seen regardless of whether these units are characterized on the basis of their lithostratigraphy, allostratigraphy, biostratigraphy, or chemostratigraphy. After deposition, these units were broken up tectonically and attacked erosionally; parts of them survive today only within localized, down-faulted areas. Many lines of evidence compellingly demonstrate that most or all of these remnant units once were physically continuous between remaining outcrops. It is needlessly confusing to give every remnant of each unit a different name in each area where it persists simply because it is now physically isolated by erosion from other portions of the same unit. Instead, these units should be defined within a regional lithostratigraphic framework that emphasizes their common origins and original stratigraphic continuity. To this end, the formation-level stratigraphy of the Newark Supergroup is reduced from 58 locally applied and locally defined formations to a succession of only 16 uniformly defined and regionally recognizable formations. In all cases the oldest name validly applied to each formation is given priority over more recently erected synonymous names, which are either abandoned or, in a few cases, changed in rank to a member of one of the formations recognized here. The Newark Supergroup is here organized into four regionally recognizable groups, each subdivided into regionally recognizable formations. In ascending order, the Upper Permian?-Middle Triassic Acadia Group (new name) includes the Honeycomb Point Formation, Chedabucto Formation, Economy Formation, and Evangeline Formation. This group is preserved only in the Canadian Fundy and Chedabucto basins. The Upper Triassic (Carnian-Norian) Chatham Group includes the Doswell Formation, Stockton Formation, Lockatong Formation, and Passaic Formation. The Upper Triassic-Lower Jurassic (upper Rhaetian-lower Hettangian) Meriden Group includes the Talcott Formation, Shuttle Meadow Formation, Holyoke Formation, East Berlin Formation, and Hampden Formation. The term "Agawam Group," previously proposed to encompass all Newark Supergroup strata above the highest basalt of the Meriden Group, is here abandoned and replaced with the name "Portland Group" for the same suite of strata. The Lower Jurassic (upper Hettangian-lower Sinemurian) Portland Group includes a lower Boonton Formation, an overlying Longmeadow Sandstone (here reinstated), and the Mount Toby Conglomerate, which laterally intertongues with both the Boonton Formation and the Longmeadow Sandstone.
Cap-shaped gastropods from Upper Jurassic and Lower Cretaceous deposits of northern East Siberia
NASA Astrophysics Data System (ADS)
Guzhov, A. V.; Zakharov, V. A.
2015-09-01
Cap-shaped gastropods are first identified in Upper Jurassic and Lower Cretaceous sections of northern East Siberia. They belong to three new genera of the subclass Pectinibranchia ( Boreioconus gen. nov., Nixepileolus gen. nov., and Taimyroconus gen. nov.), which are identified at the species level ( B. bojarkensis sp. nov., N. depressus sp. nov., T. zakharovi sp. nov.), and several species with the open nomenclature. The genus Taimyroconus attributed to the family Calyptraeidae is considered as an ancestral form of the genus Crepidula. The stratigraphic position of each taxon is determined for several sections. The facies confinement, habitat conditions, and ethology of defined genera are considered with the analysis of their geographic distribution.
Stratigraphy and macrofauna of the Lower Jurassic (Toarcian) Marrat Formation, central Saudi Arabia
NASA Astrophysics Data System (ADS)
El-Sorogy, Abdelbaset S.; Gameil, Mohamed; Youssef, Mohamed; Al-Kahtany, Khaled M.
2017-10-01
The stratigraphy and macrofaunal content of the Lower Jurassic (Toarcian) Marrat Formation was studied at Khashm adh Dhibi, central Saudi Arabia. The studied succession is dominated by limestones and dolomites, with subordinate occurrences of sandstones, siltstones and claystones. The formation is highly fossiliferous with brachiopods, gastropods, bivalves, ammonites and echinoids, particularly the lower and upper members. Twenty nine species are identified, they include 7 species of brachiopods, 8 gastropods, 8 bivalves, 4 ammonites and 2 echinoids. Many of the identified fauna are correlated with Jurassic equivalents in Jordan, Italy, Morocco, Egypt and India. Three gastropod species: Globularia subumbilicata, Ampullospira sp., Purpuroidea peristriata and seven bivalve species: Palaeonucula lateralis, Chlamys (Radulopecten) fibrosa, Eligmus weiri, E.integer, E. asiaticus, Musculus somaliensis and Pholadomya orientalis were recognized for the first time in the Lower Jurassic deposits of Saudi Arabia.
NASA Astrophysics Data System (ADS)
Essaifi, Abderrahim; Zayane, Rachid
2018-01-01
During an uplift phase, which lasted ca. 40 Ma, from the Late Jurassic (165 Ma) to the Early Cretaceous (125 Ma), transitional to moderately alkaline magmatic series were emplaced in the Central High Atlas. The corresponding magmatic products include basaltic lava flows erupted within wide synclines and intrusive complexes composed of layered mafic intrusions and monzonitic to syenitic dykes emplaced along narrow anticlinal ridges. The igneous rock sequence within the intrusive complexes is composed of troctolites, olivine-gabbros, oxide-gabbros, monzonites and syenites. The chemical compositions of the various intrusive rocks can be accounted for by crystal accumulation, fractional crystallization and post-magmatic remobilization. The evolution from the troctolites to the syenites was mainly controlled by a fractional crystallization process marked by early fractionation of olivine, plagioclase and clinopyroxene, followed by separation of biotite, amphibole, apatite, and Ti-magnetite. Hydrothermal activity associated with emplacement of the intrusions within the Jurassic limestones modified the elemental and the Sr isotopic composition of the hydrothermally altered rocks In particular the monzonitic to syenitic dykes underwent an alkali metasomatism marked by depletion in K and Rb and enrichment in Na and Sr. As a result, their Sr isotopic composition was shifted towards higher initial Sr isotopic ratios (0.7067-0.7075) with respect to the associated gabbros (0.7036-0.7046). On the contrary, the Nd isotopic compositions were preserved from isotope exchange with the limestones and vary in a similar range to those of the gabbros (+1.6 < εNdi < +4.1). The isotopic and the trace element ratios of the uncontaminated samples were used to constrain the source characteristics of this magmatism. The Sr-Nd isotopic data and the incompatible element ratios (e.g. La/Nb, Zr/Nb, Th/U, Ce/Pb) are consistent with generation from an enriched upper mantle similar to an ocean island basalt source. Melting of the subcontinental metasomatized lithosphere is tentatively related to small-scale shallow mantle upwelling and asthenospheric uprise at the triple junction between the western High Atlas, the Middle Atlas and the eastern High Atlas domains during a period of relative tectonic quiescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini; Paul Aharon; Donald A. Goddard
2006-05-26
The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface mapsmore » and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sablock, J.
A trace element signature, a characteristic pattern of enrichment and depletion of trace elements, was determined for a group of siliciclastic-carbonate Oxfordian and Kimmeridgian sedimentary strata, collected from outcrops in western Montana, southeastern British Columbia and southern Alberta. The average values, by petrofacies, of 10 major and 18 trace elements were measured for 40 samples. These data were normalized to Upper Continental Crust (UCC), and plotted against averaged published values of graywackes from the same facies. The rare earth elements (REEs), as well as Ti, Zr, Nb and Y are considered immobile even through diagenesis, and at least low levelmore » metamorphism. So these elements should form a reliable part of the geochemical signature. Compared to UCC and average graywacke, Jurassic samples are very depleted in Zr, Nb and Y. Oxfordian samples have slightly higher rare earth element values, i.e. La, Ce and Nd, than either other Jurassic samples or average graywacke. The most likely source of REE values are garnets and tourmaline which occur as inclusions in monocrystalline quartz grains. This pattern, and petrological study, point to a sedimentary source area, deficient in feldspar, heavy minerals and rock fragments. The consistency of the signature throughout this time may indicate slow uplift of a widespread sedimentary source area, or could be an effect of greater mixing and shorter residence time of dissolved materials in an epeiric sea.« less
NASA Astrophysics Data System (ADS)
Hassine, Mouna; Abbes, Chedly; Azaiez, Hajer; Gabtni, Hakim; Bouzid, Wajih
2016-04-01
The graben system of El Hamma, west of Gabes in Tunisia, corresponds to a pull apart basin developed in an extensive relay zone between two principal shear corridors (PSC) with a dextral sliding of N110-120 average direction. These PSC corresponds to two segments of the south-Atlasic shear corridor of NW-SE direction, which extends from Chott El Hodna in Algeria, to the NW, to the Libyan Djeferra to the SE (M.Hassine and al., 2015; M.Hassine and al., work in progress). This work aims to define the basin structuring during the Jurassic, especially from the Upper Lias during the Liassic rifting. For this, we performed seismic, gravity and well data analysis. Several wells situated in this basin and on its edges, which totally or partly crossed the Jurassic series which were described by several authors (J. Bonnefous, 1972 ; M. Soussi, 2002, 2004). These series corresponds to the Nara formation (PF Burollet, 1956) elevated to a group rank by M. Soussi (2003). It consists of two carbonate units separated by a marl-carbonate and sandstone member, dated successively of lower Lias (Hettangian- lower Pliensbachian.), Toarcian to Callovian and Upper Callovian-Tithonian. The correlation of this Jurassic formations along a North-South transect shows, from the South to the North, a significant variation in facies and thickness of the Jurassic series especially from the Upper Lias. Two resistant moles appears to the Northern and Southern edges of the pull-apart basin of El Hamma. The trend reversal of the lateral evolution of this series take place on the border NW-SE faults of the basin (PSC). The analysis of several seismic lines calibrated to well data, reveals a differentiated structuring inside the pull-apart basin itself, associated on the one hand, to the play of the N160 and N130-140 direction fault network which structure the basin in horsts and grabens of second order ( M. Hassine and al., 2015); and on the other hand, to the rise of the upper Triassic evaporates either by intrusions along major faults or as domes. They are especially observed on the northern margin of the basin where they delimit subsiding mini-basins bordered by high zones. The Middle Jurassic seismic horizons are then billeted in these mini-basins where they show an aggradational and retrogradational onlaps between the gutters zones and the salt rise zones. The Upper carbonate term of the series, attributed to the Upper Callovian- Tithonian sealed in unconformity the entire system. This early salt migration, that seems to be associated to the Liassic extension, was already mentioned in the Central Atlas (Bedir M. and al., 2000; D. Tanfous and al., 2005) and along the north-south chain (C . Gourmelen, 1984; C. Abbes, 2004). The residual gravity anomaly map shows a complex gravity field. Negative anomalies of -7.2 to -3.2 mlGal coincide with the graben structures; while positive anomalies reaching 2.2 mlGal overlap with horst structures. Moreover, Euler solutions reveal only the deep faults sealed by the upper member Callovo- Tithonian of the series, preferentially oriented in a direction close to East-West.
NASA Astrophysics Data System (ADS)
Böcker, Johannes; Littke, Ralf
2016-03-01
In the central Upper Rhine Graben (URG), several major oil fields have been sourced by Liassic Black Shales. In particular, the Posidonia Shale (Lias ɛ, Lower Toarcian) acts as excellent and most prominent source rock in the central URG. This study is the first comprehensive synthesis of Liassic maturity data in the URG area and SW Germany. The thermal maturity of the Liassic Black Shales has been analysed by vitrinite reflectance (VRr) measurements, which have been verified with T max and spore coloration index (SCI) data. In outcrops and shallow wells (<600 m), the Liassic Black Shales reached maturities equivalent to the very early or early oil window (ca. 0.50-0.60 % VRr). This maturity is found in Liassic outcrops and shallow wells in the entire URG area and surrounding Swabian Jura Mountains. Maximum temperatures of the Posidonia Shale before graben formation are in the order of 80-90 °C. These values were likely reached during Late Cretaceous times due to significant Upper Jurassic and minor Cretaceous deposition and influenced by higher heat flows of the beginning rift event at about 70 Ma. In this regard, the consistent regional maturity data (VRr, T max, SCI) of 0.5-0.6 % VRr for the Posidonia Shale close to surface suggest a major burial-controlled maturation before graben formation. These consistent maturity data for Liassic outcrops and shallow wells imply no significant oil generation and expulsion from the Posidonia Shale before formation of the URG. A detailed VRr map has been created using VRr values of 31 wells and outcrops with a structure map of the Posidonia Shale as reference map for a depth-dependent gridding operation. Highest maturity levels occur in the area of the Rastatt Trough (ca. 1.5 % VRr) and along the graben axis with partly very high VRr gradients (e.g. well Scheibenhardt 2). In these deep graben areas, the maximum temperatures which were reached during upper Oligocene to Miocene times greatly exceed those during the Cretaceous.
NASA Astrophysics Data System (ADS)
Willan, Robert C. R.; Hunter, Morag A.
2005-12-01
The Jurassic Latady Basin (southern Antarctic Peninsula) developed in a broad rift zone associated with the early stages of Gondwana extension. Early Jurassic sedimentation (˜185 Ma) occurred in small, isolated terrestrial to lacustrine rift basins in the present-day northwest and west and became shallow marine by the early Middle Jurassic. Quantitative modal analysis reveals a high proportion of mature, quartzose sandstone derived from cratonic and quartzose recycled-orogen provenances, most likely in the direction of the Ellsworth-Whitmore Mountains in the Gondwana interior. Sandstones with a more volcanolithic provenance probably represent an influx of sands from a Permian volcanic source in West Antarctica. The Early Jurassic Latady sequence contains abundant volcanic quartz and rhyodacite grains, locally derived from the nearby ignimbrites of the rift-related Mount Poster Formation (˜185 Ma). Between the Middle and Late Jurassic (?160-150 Ma), there was a dramatic change throughout the Latady Basin to higher-energy conditions with marked lateral facies variations. Sandstones contain abundant fresh volcanic detritus and plot in the transitional arc field. Their source was a nearby, active continental margin arc, but there is no outcrop of arc material on the Antarctic Peninsula from this time. A possible source area is preserved on the Thurston Island block to the southwest. However, some fluvial systems still had access to areas of uplifted metamorphic/plutonic basement and quartzose, cratonic sources. Evidence of mixing of fluvial systems from different provenances and the lack of mixing of other fluvial systems suggest a complex topography of variably uplifted fault blocks with fluvial systems constrained in narrow valleys. The change from continental rift- to arc-related sources illustrates the shift from plume- (continental provenances) to continental margin arc-dominated tectonics. Thermal relaxation in the Late Jurassic led to the final phase of deposition in anoxic, deep-water conditions in a sediment-starved marine basin stretching from Ellsworth northward into southern South America.
NASA Astrophysics Data System (ADS)
Bahrouni, Néjib; Houla, Yassine; Soussi, Mohamed; Boughdiri, Mabrouk; Ali, Walid Ben; Nasri, Ahmed; Bouaziz, Samir
2016-01-01
Recent geological mapping undertaken in the Southern-Central Atlas of Tunisia led to the discovery of Jurassic ammonite-bearing series in the Jebel Bou Hedma E-W anticline structure. These series represent the Southernmost Jurassic rocks ever documented in the outcrops of the Tunisian Atlas. These series which outcrop in a transitional zone between the Southern Tunisian Atlas and the Chott basin offer a valuable benchmark for new stratigraphic correlation with the well-known Jurassic series of the North-South Axis of Central Tunisia and also with the Jurassic subsurface successions transected by petroleum wells in the study area. The preliminary investigations allowed the identification, within the most complete section outcropping in the center of the structure, of numerous useful biochronological and sedimentological markers helping in the establishment of an updated Jurassic stratigraphic framework chart of South-Western Tunisia. Additionally, the Late Jurassic succession documents syn-sedimentary features such as slumping, erosion and reworking of sediments and ammonite faunas that can be considered as strong witnesses of an important geodynamic event around the Jurassic-Cretaceous boundary. These stratigraphic and geodynamic new data make of the Jurassic of Jebel Bou Hedma a key succession for stratigraphic correlation attempt between Atlas Tunisian series and those currently buried in the Chott basin or outcropping in the Saharan platform. Furthermore, the several rich-ammonite identified horizons within the Middle and Upper Jurassic series constitute reliable time lines that can be useful for both paleogeographic and geodynamic reconstructions of this part of the North African Tethyan margin but also in the refinement of the potential migration routes for ammonite populations from the Maghrebian Southern Tethys to Arabia.
Petroleum geology and resources of northeastern Mexico
Peterson, James A.
1985-01-01
Petroleum deposits (primarily gas) in northeastern Mexico occur in two main basins, the Tertiary Burgos basin and the Mesozoic Sabinas basin. About 90 gas fields are present in the Burgos basin, which has undergone active exploration for the past 30-40 years. Production in this basin is from Oligocene and Eocene nearshore marine and deltaic sandstone reservoirs. Most of the fields are small to medium in size on faulted anticlinal or domal structures, some of which may be related to deep-seated salt intrusion. Cumulative production from these fields is about 4 trillion cubic feet gas and 100 million barrels condensate and oil. Since 1975, about 10 gas fields, some with large production rates, have been discovered in Cretaceous carbonate and Jurassic sandstone reservoirs in the Sabinas basin and adjacent Burro-Picachos platform areas. The Sabinas basin, which is in the early stages of exploration and development, may have potential for very large gas reserves. The Sabinas basin is oriented northwesterly with a large number of elongate northwest- or west-trending asymmetric and overturned Laramide anticlines, most of which-are faulted. Some of the structures may be related to movement of Jurassic salt or gypsum. Lower Cretaceous and in some cases Jurassic rocks are exposed in the centers of the larger anticlines, and Upper Cretaceous rocks are exposed in much of the remainder of the basin. A thick section of Upper Cretaceous clastic rocks is partly exposed in tightly folded and thrust-faulted structures of the west-east oriented, deeply subsided Parras basin, which lies south of the Sabinas basin and north of the Sierra Madre Oriental fold and thrust belt south and west of Monterrey. The sedimentary cover of Cretaceous and Jurassic rocks in the Sabinas and Parras basins ranges from about 1,550 m (5,000 ft) to 9,000 m (30,000 ft) in thickness. Upper Jurassic rocks are composed of carbonate and dark organic shaly or sandy beds underlain by an unknown thickness of Late Jurassic and older redbed clastics and evaporites, including halite. Lower Cretaceous rocks are mainly platform carbonate and fine clastic beds with some evaporites (gypsum or anhydrite) deposited in two main rudist reef-bearing carbonate cycles. Upper Cretaceous rocks are mainly continental and marine clastic beds related to early development of the Laramide orogeny. This Upper Cretaceous sequence contains a marine shale and deltaic clastic complex as much as 6,000 m (20,000 ft) or more thick in the Parras basin, which grades northward and eastward to open marine, fine clastic beds. The Burgos basin, which is an extension of the Rio Grande embayment of the western Gulf of Mexico basin province, contains an eastward-thickening wedge of Tertiary continental and marine clastics. These beds are about 1,550 to 3,000 m (5,000-10,000 ft) thick in the outcrop belt on the west side of the basin and thicken to more than 16,000 m (50,000 ft) near the Gulf Coast.
Post-rift magmatic evolution of the eastern North American “passive-aggressive” margin
Mazza, Sarah E.; Gazel, Esteban; Johnson, Elizabeth A.; Bizmis, Michael; McAleer, Ryan J.; Biryol, C. Berk
2017-01-01
Understanding the evolution of passive margins requires knowledge of temporal and chemical constraints on magmatism following the transition from supercontinent to rifting, to post-rifting evolution. The Eastern North American Margin (ENAM) is an ideal study location as several magmatic pulses occurred in the 200 My following rifting. In particular, the Virginia-West Virginia region of the ENAM has experienced two postrift magmatic pulses at ∼152 Ma and 47 Ma, and thus provides a unique opportunity to study the long-term magmatic evolution of passive margins. Here we present a comprehensive set of geochemical data that includes new 40Ar/39Ar ages, major and trace-element compositions, and analysis of radiogenic isotopes to further constrain their magmatic history. The Late Jurassic volcanics are bimodal, from basanites to phonolites, while the Eocene volcanics range from picrobasalt to rhyolite. Modeling suggests that the felsic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Sr-Nd-Pb systematics for the Late Jurassic event suggests HIMU and EMII components in the magma source that we interpret as upper mantle components rather than crustal interaction. Lithospheric delamination is the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant from the long-term evolution of this margin, resulting in a “passive-aggressive” margin that records multiple magmatic events long after rifting ended.
Challenge for Mesozoic hydrocarbon exploration in the Eastern Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, S.; Rukmiati, M.G.; Sitompul, N.
1996-12-31
The eastern part of Indonesia covers approximately 3 million square kilometers, 35 percent being landmass and 65 percent covered by ocean. Only three of 38 sedimentary basins are producing hydrocarbon (Salawati, Bintuni, and Seram Basins). Oil and gas have discovered in the Lariang, Bone, Timor, Banggai, Sula and Biak Basins, however the discoveries have not developed yet. Hydrocarbon systems in Northern Australia and Papua New Guinea give the major contributions to the geological idea of Pre-Tertiary section in the less explored area in the Eastern Indonesia. The Triassic-Middle Jurassic marine carbonaceous shale sequences are the main hydrocarbon source rock inmore » the Irian Jaya and surrounding area (Buton, gula and Seram basins). The main Mesozoic reservoir are the Kembelangan Formation in the Bintuni Basin of Irian Jaya and Bobong Formation in the North Sula Region. Exploration play types in the Eastern Indonesia can be divided into five types: 1 - Peri Cratonic, 2 - Marginal Rift Graben, 3 - Thrust Fold Belt Island Arc, 4 - Early Collision and 5 -Microcontinental Block - Advanced Collision. Recent discoveries through Mesozoic section in Eastern Indonesia are: Roabiba-1 (1990) in Bintuni Basin-Irian Jaya (Kambelangan Formation); Loku- 1 (1990) in North Sula region (Pre-Tertiary sediments); Oseil-1 (1993/94) in Bula-Seram Basin (Jurassic Manusela Formation); Elang-1 (1 994); Kakaktua-1 (1994) and Laminaria-1 in North Bonaparte Basin (Upper Jurassic Sands).« less
Hagstrum, Jonathan T.; Martínez, Margarita López; York, Derek
1993-01-01
Previously published paleomagnetic data for Upper Jurassic pillow lavas of the Vizcaino Peninsula indicate that they were deposited near a paleolatitude of 14°N or S. Whether or not this result implies northward transport with respect to the continental interior has been controversial due to the lack of reliable Jurassic reference poles for the North American plate. Available paleomagnetic data for nearby Upper Triassic pillow basalts and overlying pelagic sediments at Punta San Hipólito, however, fail a fold test indicating that these rocks were remagnetized post-folding. Indistinguishable in-situ paleomagnetic directions and perturbed 40Ar/39Ar age spectra for the Triassic and Jurassic pillow lavas are consistent with resetting of their magnetic and isotopic systems in the middle Cretaceous, probably during burial by the overlap Valle Formation (>10 km thick). Resetting apparently occurred post-deformation so the paleolatitude of remagnetization is unknown. High-coercivity directions from a few samples of the Triassic rocks might represent an older magnetization acquired during deposition at paleolatitudes near 6°N or S.
Cyrtocrinids from the Štramberk-type limestones of southern Poland
NASA Astrophysics Data System (ADS)
Trzęsiok, Dawid
2017-04-01
In the Upper Jurassic Štramberk-type limestones of southern Poland are reported 11 cyrtocrinid taxa (Eugeniacrinites zitelli, E. alexandrowiczi, Phyllocrinus malbosianus, P. stellaris, P. sinuatus, Sclerocrinus polonicus, Strambergocrinus cf. jurassicus, Ascidicrinus pentagonus, Tetracrinus baumilleri, Salamonicrinus prodigiosum and Cotylederma sp.), along with isocrinids (Isocrinus sp.) and comatulids (Notocrinidae indet.). It is worth mentioning that Salamonicrinus is a transitional link between Hemicrinus and Ancepsicrinus, and that all these taxa should be included into the family Sclerocrinidae. Conducted biometric analysis evidenced that the most frequent phyllocrinids within our test material belong to rather four, instead of the usual three, morphotypes. Consequently they may belong to four different species. Additionally Early Jurassic genus Eudesicrinus appears as the oldest cyrtocrinid representative, thus providing an ancestor-rooting baseline to stemless hemibrachiocrinids and brachiomonocrinids (Hemibrachiocrinidae; Brachiomonocrinidae), and as having reduced stem and/or reduced number of arms (e.g., Ancepsicrinus, Cyrtocrinus, Hemicrinus, Salamonicrinus and Strambergocrinus). References: Salamon Mariusz A. and Gorzelak Przemysław, 2010: Cyrtocrinids (Echinodermata, Crinoidea) from Upper Jurassic Štramberk-type limestones in southern Poland. Palaeontology, 53(4): 869-885.
NASA Astrophysics Data System (ADS)
Gong, Mingyue; Tian, Wei; Fu, Bin; Wang, Shuangyue; Dong, Jinlong
2018-05-01
The voluminous Late Mesozoic magmatism was related to extensive re-melting of juvenile materials that were added to the Central East Asia continent in Phanerozoic time. The most favoured magma generation mechanism of Late Mesozoic magmas is partial melting of underplated lower crust that had radiogenic Hf-Nd isotopic characteristics, but this mechanism faces difficulties when interpreting other isotopic data. The tectonic environment controlling the generation of the Late Mesozoic felsic magmas is also in dispute. In this study, we obtained new U-Pb ages, and geochemical and isotopic data of representative Jurassic (154.4 ± 1.5 Ma) and Cretaceous (140.2 ± 1.5 Ma) felsic volcanic samples. The Jurassic sample has inherited zircon cores of Permian age, with depleted mantle-like εHf(t) of +7.4 - +8.5, which is in contrast with those of the magmatic zircons (εHf(t) = +2.4 ± 0.7). Whereas the inherited cores and the magmatic zircons have identical mantle-like δ18O composition ranges (4.25-5.29‰ and 4.69-5.54‰, respectively). These Hf-O isotopic characteristics suggest a mixed source of enriched mantle materials rather than ancient crustal components and a depleted mantle source represented by the inherited Permian zircon core. This mechanism is manifested by the eruption of Jurassic alkaline basalts originated from an enriched mantle source. The Cretaceous sample has high εHf(t) of +7.0 - +10.5, suggesting re-melting of a mafic magma derived from a depleted mantle-source. However, the sub-mantle zircon δ18O values (3.70-4.58‰) suggest the depleted mantle-derived mafic source rocks had experienced high temperature hydrothermal alteration at upper crustal level. Therefore, the Cretaceous felsic magma, if not all, could be generated by re-melting of down-dropped supracrustal volcanic rocks that experienced high temperature oxygen isotope alteration. The two processes, enriched mantle-contribution and supracrustal juvenile material re-melting, are new generation mechanisms of the Late Mesozoic magmas from Central East Asia. Rift settings may have controlled these processes throughout crustal and mantle levels.
Houseknecht, David W.; Craddock, William H.; Lease, Richard O.
2016-02-12
Shallow cores collected in the 1980s on the Chukchi Shelf of western Arctic Alaska sampled pre-Cenozoic strata whose presence, age, and character are poorly known across the region. Five cores from the Herald Arch foreland contain Cenomanian to Coniacian strata, as documented by biostratigraphy, geochronology, and thermochronology. Shallow seismic reflection data collected during the 1970s and 1980s show that these Upper Cretaceous strata are truncated near the seafloor by subtle angular unconformities, including the Paleogene mid-Brookian unconformity in one core and the Pliocene-Pleistocene unconformity in four cores. Sedimentary structures and lithofacies suggest that Upper Cretaceous strata were deposited in a low accommodation setting that ranged from low-lying coastal plain (nonmarine) to muddy, shallow-marine environments near shore. These observations, together with sparse evidence from the adjacent western North Slope, suggest that Upper Cretaceous strata likely were deposited across all of Arctic Alaska.A sixth core from the Herald Arch contains lower Toarcian marine strata, indicated by biostratigraphy, truncated by a Neogene or younger unconformity. These Lower Jurassic strata evidently were deposited south of the arch, buried structurally to high levels of thermal maturity during the Early Cretaceous, and uplifted on the Herald thrust-fault system during the mid to Late Cretaceous. These interpretations are based on regional stratigraphy and apatite fission-track data reported in a complementary report and are corroborated by the presence of recycled palynomorphs of Early Jurassic age and high thermal maturity found in Upper Cretaceous strata in two of the foreland cores. This dataset provides evidence that uplift and exhumation of the Herald thrust belt provided sediment to the foreland during the Late Cretaceous.
NASA Astrophysics Data System (ADS)
Carpentier, Cédric; Hadouth, Suhail; Bouaziz, Samir; Lathuilière, Bernard; Rubino, Jean-Loup
2016-05-01
Aims of this paper are to propose a geodynamic and sequential framework for the late Triassic and early Jurassic of and south Tunisia and to evidence the impact of local tectonics on the stratigraphic architecture. Facies of the Upper Triassic to Lower Jurassic of Southern Tunisia have been interpreted in terms of depositional environments. A sequential framework and correlation schemes are proposed for outcrops and subsurface transects. Nineteen middle frequency sequences inserted in three and a half low frequency transgression/regression cycles were evidenced. Despite some datation uncertainties and the unknown durations of Lower Jurassic cycles, middle frequency sequences appear to be controlled by eustasy. In contrast the tectonics acted as an important control on low frequency cycles. The Carnian flooding was certainly favored by the last stages of a rifting episode which started during the Permian. The regression accompanied by the formation of stacked angular unconformities and the deposition of lowstand deposits during the late Carnian and Norian occured during the uplift and tilting of the northern basin margins. The transpressional activity of the Jeffara fault system generated the uplift of the Tebaga of Medenine high from the late Carnian and led to the Rhaetian regional angular Sidi Stout Unconformity. Facies analysis and well-log correlations permitted to evidence that Rhaetian to Lower Jurassic Messaoudi dolomites correspond to brecciated dolomites present on the Sidi Stout unconformity in the North Dahar area. The Early-cimmerian compressional event is a possible origin for the global uplift of the northern African margin and Western Europe during the late Carnian and the Norian. During the Rhaetian and the early Jurassic a new episode of normal faulting occured during the third low frequency flooding. This tectonosedimentary evolution ranges within the general geodynamic framework of the north Gondwana margin controlled by the opening of both Neotethys and Atlantic oceans.
NASA Astrophysics Data System (ADS)
Niedźwiedzki, Grzegorz; Soussi, Mohamed; Boukhalfa, Kamel; Gierliński, Gerard D.
2017-05-01
Three tetrapod track assemblages from the early-middle Mesozoic of southern Tunisia are reported. The strata exposed at the Tejra 2 clay-pit near the Medenine and Rehach site, located in the vicinity of Kirchaou, contain the first tetrapod tracks found in the Triassic of Tunisia. The Middle Jurassic (early Aalenian) dinosaur tracks are reported from the Mestaoua plain near Tataouine. In the Middle Triassic outcrop of the Tejra 2 clay-pit, tridactyl tracks of small and medium-sized dinosauromorphs, were discovered. These tracks represent the oldest evidence of dinosaur-lineage elements in the Triassic deposits of Tunisia. Similar tracks have been described from the Middle Triassic of Argentina, France and Morocco. An isolated set of the manus and pes of a quadrupedal tetrapod discovered in Late Triassic Rehach tracksite is referred to a therapsid tracemaker. The Middle Jurassic deposits of the Mestaoua plain reveal small and large tridactyl theropod dinosaur tracks (Theropoda track indet. A-C). Based on comparison with the abundant record of Triassic tetrapod ichnofossils from Europe and North America, the ichnofauna described here indicates the presence of a therapsid-dinosauromorph ichnoassociation (without typical Chirotheriidae tracks) in the Middle and Late Triassic, which sheds light on the dispersal of the Middle-Upper Triassic tetrapod ichnofaunas in this part of Gondwana. The reported Middle Jurassic ichnofauna show close similarities to dinosaur track assemblages from the Lower and Middle Jurassic of northwestern Africa, North America, Europe and also southeastern Asia. Sedimentological and lithostratigraphic data of each new tracksite have been defined on published data and new observations. Taken together, these discoveries present a tantalizing window into the evolutionary history of tetrapods from the Triassic and Jurassic of southern Tunisia. Given the limited early Mesozoic tetrapod record from the region, these discoveries are of both temporal and geographic significance.
NASA Astrophysics Data System (ADS)
El-Sorogy, Abdelbaset; Al-Kahtany, Khaled; Almadani, Sattam; Tawfik, Mohamed
2018-03-01
To document the depositional architecture and sequence stratigraphy of the Upper Jurassic Hanifa Formation in central Saudi Arabia, three composite sections were examined, measured and thin section analysed at Al-Abakkayn, Sadous and Maashabah mountains. Fourteen microfacies types were identified, from wackestones to boundstones and which permits the recognition of five lithofacies associations in a carbonate platform. Lithofacies associations range from low energy, sponges, foraminifers and bioclastic burrowed offshoal deposits to moderate lithoclstic, peloidal and bioclastic foreshoal deposits in the lower part of the Hanifa while the upper part is dominated by corals, ooidal and peloidal high energy shoal deposits to moderate to low energy peloidal, stromatoporoids and other bioclastics back shoal deposits. The studied Hanifa Formation exhibits an obvious cyclicity, distinguishing from vertical variations in lithofacies types. These microfacies types are arranged in two third order sequences, the first sequence is equivalent to the lower part of the Hanifa Formation (Hawtah member) while the second one is equivalent to the upper part (Ulayyah member). Within these two sequences, there are three to six fourth-order high frequency sequences respectively in the studied sections.
NASA Astrophysics Data System (ADS)
Lin, Chengfa; Liu, Shaofeng; Zhuang, Qitian; Steel, Ronald J.
2018-06-01
Mesozoic thrusting within the Yanshan fold-and-thrust belt of North China resulted in a series of fault-bounded intramontane basins whose infill and evolution remain poorly understood. In particular, the bounding faults and adjacent sediment accumulations along the western segments of the belt are almost unstudied. A sedimentological and provenance analysis of the Lower Jurassic Xiahuayuan Formation and the Upper Jurassic Jiulongshan Formation have been mapped to show two distinctive clastic wedges: an early Jurassic wedge representing a mass-flow-dominated, Gilbert-type fan delta with a classic tripartite architecture, and an late Jurassic shoal-water fan delta without steeply inclined strata. The basinward migration of the fan-delta wedges, together with the analysis of their conglomerate clast compositions, paleocurrent data and detrital zircon U-Pb age spectra, strongly suggest that the northern-bounding Xuanhuan thrust fault controlled their growth during accumulation of the Jiulongshan Formation. Previous studies have suggested that the fan-delta wedge of the Xiahuayuan Formation was also syntectonic, related to movement on the Xuanhua thrust fault. Two stages of thrusting therefore exerted an influence on the formation and evolution of the Xiahuayuan basin during the early-late Jurassic.
A Giant Pliosaurid Skull from the Late Jurassic of England
Benson, Roger B. J.; Evans, Mark; Smith, Adam S.; Sassoon, Judyth; Moore-Faye, Scott; Ketchum, Hilary F.; Forrest, Richard
2013-01-01
Pliosaurids were a long-lived and cosmopolitan group of marine predators that spanned 110 million years and occupied the upper tiers of marine ecosystems from the Middle Jurassic until the early Late Cretaceous. A well-preserved giant pliosaurid skull from the Late Jurassic Kimmeridge Clay Formation of Dorset, United Kingdom, represents a new species, Pliosaurus kevani. This specimen is described in detail, and the taxonomy and systematics of Late Jurassic pliosaurids is revised. We name two additional new species, Pliosaurus carpenteri and Pliosaurus westburyensis, based on previously described relatively complete, well-preserved remains. Most or all Late Jurassic pliosaurids represent a globally distributed monophyletic group (the genus Pliosaurus, excluding ‘Pliosaurus’ andrewsi). Despite its high species diversity, and geographically widespread, temporally extensive occurrence, Pliosaurus shows relatively less morphological and ecological variation than is seen in earlier, multi-genus pliosaurid assemblages such as that of the Middle Jurassic Oxford Clay Formation. It also shows less ecological variation than the pliosaurid-like Cretaceous clade Polycotylidae. Species of Pliosaurus had robust skulls, large body sizes (with skull lengths of 1.7–2.1 metres), and trihedral or subtrihedral teeth suggesting macropredaceous habits. Our data support a trend of decreasing length of the mandibular symphysis through Late Jurassic time, as previously suggested. This may be correlated with increasing adaptation to feeding on large prey. Maximum body size of pliosaurids increased from their first appearance in the Early Jurassic until the Early Cretaceous (skull lengths up to 2360 mm). However, some reduction occurred before their final extinction in the early Late Cretaceous (skull lengths up to 1750 mm). PMID:23741520
NASA Astrophysics Data System (ADS)
Bouhier, Verónica E.; Franchini, Marta B.; Caffe, Pablo J.; Maydagán, Laura; Rapela, Carlos W.; Paolini, Marcelo
2017-05-01
We present the first study of the volcanic rocks of the Cañadón Asfalto Formation that host the Navidad world-class Ag + Pb epithermal district located in the North Patagonian Massif, Patagonia, Argentina. These volcanic and sedimentary rocks were deposited in a lacustrine environment during an extensional tectonic regime associated with the breakup of Gondwana and represent the mafic to intermediate counterparts of the mainly silicic Jurassic Chon Aike Volcanic Province. Lava flows surrounded by autobrecciated carapace were extruded in subaerial conditions, whereas hyaloclastite and peperite facies suggest contemporaneous subaqueous volcanism and sedimentation. LA-ICPMS Usbnd Pb ages of zircon crystals from the volcanic units yielded Middle Jurassic ages of 173.9 ± 1.9 Ma and 170.8 ± 3 Ma. In the Navidad district, volcanic rocks of the Cañadón Asfalto Formation show arc-like signatures including high-K basaltic-andesite to high-K dacite compositions, Rb, Ba and Th enrichment relative to the less mobile HFS elements (Nb, Ta), enrichment in light rare earth elements (LREE), Ysbnd Ti depletion, and high Zr contents. These characteristics could be explained by assimilation of crustal rocks in the Jurassic magmas, which is also supported by the presence of zircon xenocrysts with Permian and Middle-Upper Triassic ages (281.3 Ma, 246.5, 218.1, and 201.3 Ma) and quartz xenocrysts recognized in these volcanic units. Furthermore, Sr and Nd isotope compositions suggest a contribution of crustal components in these Middle Jurassic magmas. High-K basaltic andesite has initial 87Sr/86Sr ratios of 0.70416-0.70658 and ξNd(t) values of -5.3 and -4. High-K dacite and andesite have initial 87Sr/86Sr compositions of 0.70584-0.70601 and ξNd(t) values of -4,1 and -3,2. The range of Pb isotope values (206Pb/204Pb = 18.28-18.37, 207Pb/204Pb = 15.61-15.62, and 208Pb/204Pb = 38.26-38.43) of Navidad volcanic rocks and ore minerals suggest mixing Pb sources with contributions of mantle and crust. 206Pb/204Pb isotopic ratios of Jurassic volcanic rocks of the Chon Aike Volcanic Province and sulfides of associated epithermal deposits increase with time from the volcanic event V1 (188-178 Ma) to volcanic events V2 (172-162 Ma) and V3 (157-153 Ma), reflecting variations in the radiogenic Pb source as volcanism was migrating towards the Proto Pacific margin of Gondwana.
Stratigraphic and structural distribution of reservoirs in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefanescu, M.O.
1991-08-01
In Romania, there are reservoirs at different levels of the whole Cambrian-Pliocene interval, but only some of these levels have the favorable structural conditions to accumulate hydrocarbons in commercial quantities. These levels are the Devonian, Triassic, Middle Jurassic, Lower Cretaceous (locally including the uppermost Jurassic), Eocene, Oligocene-lower Miocene, middle and upper Miocene, and Pliocene. The productive reservoirs are represented either by carbonate rocks (in Devonian, Middle Triassic and uppermost Jurassic-Lower Cretaceous) or by detrital rocks (in Lower and Upper Triassic, Middle Jurassic, Eocene, Oligocene, Miocene, and Pliocene). From the structural point of view, the Romanian territory is characterized by themore » coexistence both of platforms (East European, Scythian, and Moesian platforms) and of the strongly tectonized orogenes (North Dobrogea and Carpathian orogenes). Each importance crust shortening was followed by the accumulation of post-tectonic covers, some of them being folded during subsequently tectonic movements. The youngest post-tectonic cover is common both for the platforms (foreland) and Carpathian orogene, representing the Carpathian foredeep. Producing reservoirs are present in the East European and Moesian platforms, in the outer Carpathian units (Tarcau and Marginal folds nappes) and in certain post-tectonic covers which fill the Carpathian foredeep and the Transylvanian and Pannonian basins. In the platforms, hydrocarbons accumulated both in calcareous and detrital reservoirs, whereas in the Carpathian units and in their reservoirs, whereas in the Carpathian units and in their post-tectonic covers, hydrocarbons accumulated only in detrital reservoirs.« less
Mid-ocean ridges produced thicker crust in the Jurassic than in Recent times
NASA Astrophysics Data System (ADS)
Van Avendonk, H. J.; Harding, J.; Davis, J. K.; Lawver, L. A.
2016-12-01
We present a compilation of published marine seismic refraction data to show that oceanic crust was 1.7 km thicker on average in the mid-Jurassic (170 Ma) than along the present-day mid-ocean ridge system. Plate reconstructions in a fixed hotspot framework show that the thickness of oceanic crust does not correlate with proximity to mantle hotspots, so it is likely that mid-plate volcanism is not the cause of this global trend. We propose that more melt was extracted from the upper mantle beneath mid-ocean ridges in the Jurassic than in recent times. Numerical studies show that temperature increase of 1 degree C in the mantle can lead to approximately 50-70 m thicker crust, so the upper mantle may have cooled 15-20 degrees C/100 Myr since 170 Ma. This average temperature decrease is larger than the secular cooling rate of the Earth's mantle, which is roughly 10 degrees C/100 Myr since the Archean. Apparently, the present-day configuration and dynamics of continental and oceanic plates removes heat more efficiently from the Earth's mantle than in its earlier history. The increase of ocean crustal thickness with plate age is also stronger in the Indian and Atlantic oceans than in the Pacific Ocean basin. This confirms that thermal insulation by the supercontinent Pangaea raised the temperature of the underlying asthenospheric mantle, which in turn led to more magmatic output at the Jurassic mid-ocean ridges of the Indian and Atlantic oceans.
Stratigraphy and structure along the Pensacola Arch/Conecuh Embayment margin in northwest Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, J.G.
1993-03-01
Stratigraphic and structural analysis of deep borehole data along the Pensacola Arch/Conecuh Embayment margin in eastern Santa Rosa County, Florida reveals a northeast-trending basement normal fault that is downthrown to the northwest. The fault functioned as a border fault of a half-graben (or graben ) that developed during continental rifting of Pangea in the Late Triassic and Early Jurassic. The upthrown or horst block was a paleotopographic high that formed the southeastern boundary of the Middle to Late Jurassic Conecuh Embayment. A second, younger basement fault trends approximately perpendicular to the half-graben border fault. Late Triassic synrift continental sediments, depositedmore » on the downthrown block of the half-graben, pinch-out abruptly to the southeast pre-Mesozoic Suwannee Basin basement. The border fault is located approximately where the Triassic sedimentary wedge pinches out. Middle to Upper Jurassic drift-stage strata of the Conecuh embayment progressively onlap the post-rift unconformity toward the southeast. Upper Jurassic Smackover Formation carbonates and evaporites apparently overstep Triassic deposits and rest directly on Suwannee Basin quartzitic sandstone near their depositional limit at the Pensacola Arch. The Smackover Formation thins significantly toward the southeast in association with the Triassic pinch-out and half-graben border fault. The pinch-out trend of the Smackover Formation suggests a northeast-southwest orientation for the Triassic border fault and supports a horst-block origin for the Pensacola Arch.« less
The bivalve Anopaea (Inoceramidae) from the Upper Jurassic-lowermost Cretaceous of Mexico
NASA Astrophysics Data System (ADS)
Zell, Patrick; Crame, J. Alistair; Stinnesbeck, Wolfgang; Beckmann, Seija
2015-07-01
In Mexico, the Upper Jurassic to lowermost Cretaceous La Casita and coeval La Caja and La Pimienta formations are well-known for their abundant and well-preserved marine vertebrates and invertebrates. The latter include conspicuous inoceramid bivalves of the genus Anopaea not formally described previously from Mexico. Anopaea bassei (Lecolle de Cantú, 1967), Anopaea cf. stoliczkai (Holdhaus, 1913), Anopaea cf. callistoensis Crame and Kelly, 1995 and Anopaea sp. are rare constituents in distinctive Tithonian-lower Berriasian levels of the La Caja Formation and one Tithonian horizon of the La Pimienta Formation. Anopaea bassei was previously documented from the Tithonian of central Mexico and Cuba, while most other members of Anopaea described here are only known from southern high latitudes. The Mexican assemblage also includes taxa which closely resemble Anopaea stoliczkai from the Tithonian of India, Indonesia and the Antarctic Peninsula, and Anopaea callistoensis from the late Tithonian to ?early Berriasian of the Antarctic Peninsula. Our new data expand the palaeogeographical distribution of the high latitude Anopaea to the Gulf of Mexico region and substantiate faunal exchange, in the Late Jurassic-earliest Cretaceous, between Mexico and the Antarctic Realm.
NASA Astrophysics Data System (ADS)
Gallego, Oscar F.; Cabaleri, Nora G.; Armella, Claudia; Volkheimer, Wolfgang; Ballent, Sara C.; Martínez, Sergio; Monferran, Mateo D.; Silva Nieto, Diego G.; Páez, Manuel A.
2011-02-01
A new Late Jurassic assemblage of “conchostracans”, ostracods, bivalves and caddisfly cases from the locality “Estancia La Sin Rumbo”, Chubut Province (Patagonia, Argentina) is recorded. The fossils occur in the upper part of an outcropping 45 m thick volcaniclastic lacustrine sequence of yellowish tuffs and tuffites of the Puesto Almada Member, which is the upper member of the Cañadón Asfalto Formation with U/Pb age of 161 ± 3 Ma. The sequence represents one sedimentary cycle composed of a (lower) hemicycle of expansion and a (higher) hemicycle of contraction of the water body. The invertebrates lived in small freshwater bodies during the periods of expansion of the lake. The occurrence of a great number of small spinicaudatans, associated with mud-cracks, is evidence of dry climatic conditions and suggests several local mortality events. The spinicaudatan record of the fushunograptid-orthestheriid (component of the Eosestheriopsis dianzhongensis fauna) and the presence of Congestheriella rauhuti Gallego and Shen, suggest a Late Jurassic (Oxfordian to Tithonian) age. Caddisfly cases are recorded for the first time in the Cañadón Asfalto Basin.
Houseknecht, David W.; Connors, Christopher D.
2015-01-01
Oil-prone source rocks, reservoir-quality sandstone, migration pathways, and structural closure are linked intimately across the Jurassic unconformity, which reflects inversion. Thus, all these key petroleum systems elements were in place when Triassic source rocks entered the oil generation window during Cretaceous–Cenozoic stratigraphic burial.
NASA Astrophysics Data System (ADS)
Echarfaoui, Hassan; Hafid, Mohamed; Salem, Abdallah Aı̈t; Abderrahmane, Aı̈t Fora
The review of the seismic reflection and well data from the coastal Abda Basin (western Morocco) shows that its Triassic and Jurassic sequences were deposited in a submeridean sag basin, whose eastern margin is characterised by progressive truncations and pinching out of these sequences against a prominent Palaeozoic high. The uplift of this latter is interpreted as a response to an Upper Triassic-Middle Jurassic local compressional event that controlled Triassic-Jurassic sedimentation within the Abda Basin. The present day 'West Meseta Flexure' is a surface expression of this uplift. To cite this article: H. Echarfaoui et al., C. R. Geoscience 334 (2002) 371-377.
Kugler, R.L.; Mink, R.M.
1999-01-01
The discovery of deep (>20,000 ft) gas reservoirs in eolian sandstone of the Upper Jurassic Norphlet Formation in Mobile Bay and offshore Alabama in the late 1970s represents one of the most significant hydrocarbon discoveries in the nation during the past several decades. Estimated original proved gas from Norphlet reservoirs in the Alabama coastal waters and adjacent federal waters is 7.462 trillion ft3 (Tcf) (75% recovery factor). Fifteen fields have been established in the offshore Alabama area. Norphlet sediment was deposited in an arid environment in alluvial fans, alluvial plains, and wadis in updip areas. In downdip areas, the Norphlet was deposited in a broad desert plain, with erg development in some areas. Marine transgression, near the end of Norphlet deposition, resulted in reworking of the upper part of the Norphlet Formation. Norphlet reservoir sandstone is arkose and subarkose, consisting of a simple assemblage of three minerals, quartz, albite, and K-feldspar. The present framework grain assemblage of the Norphlet is dominantly diagenetic, owing to albitization and dissolution of feldspar. Despite the simple framework composition, the diagenetic character of the Norphlet is complex. Important authigenic minerals include carbonate phases (calcite, dolomite, Fe-dolomite, and breunnerite), feldspar (albite and K-feldspar), evaporite minerals (anhydrite and halite), clay minerals (illite and chlorite), quartz, and pyrobitumen. The abundance and distribution of these minerals varies significantly between onshore and offshore regions of Norphlet production. The lack of sufficient internal sources of components for authigenic minerals, combined with unusual chemical compositions of chloride (Mg-rich), breunnerite, and some minor authigenic minerals, suggests that Louann-derived fluids influenced Norphlet diagenesis. In offshore Alabama reservoirs, porosity is dominantly modified primary porosity. Preservation of porosity in deep Norphlet reservoirs is due to a combination of factors, including a lack of sources of cement components and lack of pervasive early cement, so that fluid-flow pathways remained open during burial. Below the dominantly quartz-cemented tight zone near the top of the Norphlet, pyrobitumen is a major contributor to reduction in reservoir quality in offshore Alabama. The highest reservoir quality occurs in those wells where the present gas-water contact is below the paleohydrocarbon-water contact. Thiz zone of highest reservoir quality is between the lowermost occurrence of pyrobitumen and the present gas-water contact.The Upper Jurassic Norphlet Formation sediment was deposited in an arid environment in alluvial fans, alluvial plains, and wadis in undip areas. In downdip areas, the Norphlet was deposited in a broad desert plain, with erg development in some areas. Marine transgression, near the end of Norphlet deposition resulted in reworking of the upper part of the formation. he present framework grain assemblage of the Norphlet is dominantly diagenetic, owing to albitization and dissolution of feldspar. Despite the simple framework composition, the diagenetic character of the Norphlet is complex.
NASA Astrophysics Data System (ADS)
Liu, Zhi-Chao; Ding, Lin; Zhang, Li-Yun; Wang, Chao; Qiu, Zhi-Li; Wang, Jian-Gang; Shen, Xiao-Li; Deng, Xiao-Qin
2018-07-01
The Yeba Formation volcanic rocks in the Gangdese arc recorded important information regarding the early history of the Neo-Tethyan subduction. To explore their magmatic evolution and tectonic significance, we performed a systematic petrological, geochronological and geochemical study on these volcanic rocks. Our data indicated that the Yeba Formation documents a transition from andesite-dominated volcanism (which started before 182 Ma and continued until 176 Ma) to bimodal volcanism ( 174-168 Ma) in the earliest Middle Jurassic. The early-stage andesite-dominated volcanics are characterized by various features of major and trace elements and are interpreted as the products of interactions between mantle-derived arc magmas and lower crustal melts. Their positive εNd(t) and εHf(t) values suggest a significant contribution of asthenosphere-like mantle. The late-stage bimodal volcanism is dominated by felsic rocks with subordinate basalts. Geochemical signatures of the basalts indicate a composite magma source that included a "subduction component", an asthenosphere-like upper mantle domain and an ancient subcontinental lithospheric mantle component. The felsic rocks of the late stage were produced mainly by the melting of juvenile crust, with some ancient crustal materials also involved. We suggest that the occurrence and preservation of the Yeba Formation volcanic rocks were tied to a tectonic switch from contraction to extension in the Gangdese arc, which probably resulted from slab rollback of the subducting Neo-Tethyan oceanic slab during the Jurassic.
NASA Astrophysics Data System (ADS)
Cabaleri, Nora G.; Benavente, Cecilia A.; Monferran, Mateo D.; Narváez, Paula L.; Volkheimer, Wolfgang; Gallego, Oscar F.; Do Campo, Margarita D.
2013-10-01
Six facies associations are described for the Puesto Almada Member at the Cerro Bandera locality (Fossati sub-basin). They correspond to lacustrine, palustrine, and pedogenic deposits (limestones); and subordinated alluvial fan, fluvial, aeolian, and pyroclastic deposits. The lacustrine-palustrine depositional setting consisted of carbonate alkaline shallow lakes surrounded by flooded areas in a low-lying topography. The facies associations constitute four shallowing upward successions defined by local exposure surfaces: 1) a Lacustrine-Palustrine-pedogenic facies association with a 'conchostracan'-ostracod association; 2) a Palustrine facies association representing a wetland subenvironment, and yielding 'conchostracans', body remains of insects, fish scales, ichnofossils, and palynomorphs (cheirolepidiacean species and ferns growing around water bodies, and other gymnosperms in more elevated areas); 3) an Alluvial fan facies association indicating the source of sediment supply; and 4) a Lacustrine facies association representing a second wetland episode, and yielding 'conchostracans', insect ichnofossils, and a palynoflora mainly consisting of planktonic green algae associated with hygrophile elements. The invertebrate fossil assemblage found contains the first record of fossil insect bodies (Insecta-Hemiptera and Coleoptera) for the Cañadón Asfalto Formation. The succession reflects a mainly climatic control over sedimentation. The sedimentary features of the Puesto Almada Member are in accordance with an arid climatic scenario across the Upper Jurassic, and they reflect a strong seasonality with periods of higher humidity represented by wetlands and lacustrine sediments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawas, M.F.; Takezaki, H.
1995-08-01
The distribution of hydrocarbons in the Lower Cretaceous Thamama Group and Upper Jurassic Arab Formation in Abu Dhabi is influenced by the development of the intervening Hith anhydrites. The geochemical analysis of Thamama and Arab hydrocarbons indicate that they were generated from a common source rock: the Upper Jurassic Diyab Formation. Studies carried out on the Miocene sabkha anhydrites in the coastal flat west of Abu Dhabi supported a model for vertical migration through the Hith anhydrites under certain conditions. The established model implies that the Diyab oil and gas had migrated essentially vertically and individually which means that themore » oil migrated prior to the gas and their distribution is controlled by the differential sealing potential of the anhydrites at each migration phase: a Hith anhydrite bed of more than 30 feet (ft.) thick was a perfect seal for hydrocarbon migration into the Arab reservoirs. In this case, oils could not break through to the overlying Thamama group. But where the anhydride bed thicknesses dropped below 30 ft. thick, this permitted oil migration through to the overlying Thamama reservoirs during the oil generation phase in the Turonian time. At a later stage, with additional depth of burial and progressive diagenesis anhydrite beds as thin as 8 ft. thick became effective seals. These controlled the distribution of the gas during the gas generation phase in the Eocene time.« less
Stratigraphy and structure of the Miners Mountain area, Wayne County, Utah
Luedke, Robert G.
1953-01-01
The Miners Mountain area includes about 85 square miles in Wayne County, south-central Utah. The area is semiarid and characterized by cliffs and deep canyons. Formations range in age from Permian to Upper Jurassic and have an aggregate thickness of about 3,500 feet. Permian formations are the buff Coconino sandstone and the overlying white, limy, shert-containing Kaibab limestone. Unconformably overlying the Kaihab is the lower Triassic Moenkopi formation of reddish-brown and yellow mudstone, siltstone, and sandstone; it contains the Sinbad limestone member (?) in the lower part. Thin, lenticular Shinarump conglomerate unconformably overlies the Moenkopi, but grades upward into the Upper Triassic Chinle formation of variegated mudstone with some interbedded sandstone and limestone lenses. Uncomformably overlying the Chinle are the Wingate sandstone, Kayenta formation, and Navajo sandstone of the Jurassic (?) Glen Canyon group, which consist of red to white sandstone. Only the lower part of the Carmel formation of the Upper Jurassic San Rafael group is exposed in the area; it consists of variegated siltstone, sandstone, limestone, and gypsum. The conspicuous structural feature in the area is the Teasdale anticline which trends northwest, is about 14 miles long, and is asymmetric with a steeper west flank. Bounding the anticline on the northeast and east is the Capitol Reef monocline, the northern part of the Waterpocket Fold. Strata in the area are broken by steeply-dipping normal faults with small displacements, except for the Teasdale fault which has a maximum displacement of over 1,000 feet. Jointing is prominent in some formations. The major orogenic movement in the area is believed to be late Upper Cretaceous to early Tertiary. Epeirogenic uplift occurred intermittently throughout Tertiary and perhaps Quaternary time.
Horizontal well application in QGPC - Qatar, Arabian Gulf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubralla, A.F.; Al-Omran, J.; Al-Omran, S.
As with many other areas in the world, the application of horizontal well technology in Qatar has changed the {open_quotes}old time{close_quotes} reservoir development philosophy and approach. QGPC`s first experience with this technology was for increased injectivity in an upper Jurassic reservoir which is comprised by alternating high and low permeable layers. The first well drilled in 1990 offshore was an extreme success and the application was justified for fieldwide implementation. Huge costs were saved as a result. This was followed by 2 horizontal wells for increased productivity in a typically tight (< 5 mD) chalky limestone of Cretaceous age. Amore » fourth offshore well drilled in a thin (30 ft) and tight (10-100 mD) Jurassic dolomite overlaying a stack of relatively thick (25-70 ft) and {open_quotes}Watered Out{close_quotes} grain and grain-packstones, (500-4500 mD) indicated another viable and successful application. A similar approach in the Onshore Dukhan field has been adopted for another Upper Jurassic reservoir. The reservoir is 80 ft thick and is being developed by vertical wells. However, permeability contrast between the upper and lower cycles had caused preferential production and hence injection across the lower cycles, leaving the upper cycles effectively undrained. Horizontal wells have resulted in productivity and injectivity improvements by a factor 3 to 5 that of vertical wells. Therefore a field wide development scheme is being implemented. 3D seismic and the imaging tools, such as the FMS, reconciled with horizontal cores have assisted in understanding the lateral variation and the macro and micro architectural and structural details of these reservoirs. Such tools are essential for the optimum design of horizontal wells.« less
Barth, A.P.; Wooden, J.L.; Miller, David; Howard, Keith A.; Fox, Lydia; Schermer, Elizabeth R.; Jacobson, C.E.
2017-01-01
Intrusive rock sequences in the central and eastern Mojave Desert segment of the Jurassic Cordilleran arc of the western United States record regional and temporal variations in magmas generated during the second prominent pulse of Mesozoic continental arc magmatism. U/Pb zircon ages provide temporal control for describing variations in rock and zircon geochemistry that reflect differences in magma source components. These source signatures are discernible through mixing and fractionation processes associated with magma ascent and emplacement. The oldest well-dated Jurassic rocks defining initiation of the Jurassic pulse are a 183 Ma monzodiorite and a 181 Ma ignimbrite. Early to Middle Jurassic intrusive rocks comprising the main stage of magmatism include two high-K calc-alkalic groups: to the north, the deformed 183–172 Ma Fort Irwin sequence and contemporaneous rocks in the Granite and Clipper Mountains, and to the south, the 167–164 Ma Bullion sequence. A Late Jurassic suite of shoshonitic, alkali-calcic intrusive rocks, the Bristol Mountains sequence, ranges in age from 164 to 161 Ma and was emplaced as the pulse began to wane. Whole-rock and zircon trace-element geochemistry defines a compositionally coherent Jurassic arc with regional and secular variations in melt compositions. The arc evolved through the magma pulse by progressively greater input of old cratonic crust and lithospheric mantle into the arc magma system, synchronous with progressive regional crustal thickening.
Berbesi, Luiyin Alejandro; di Primio, Rolando; Anka, Zahie; Horsfield, Brian; Higley, Debra K.
2012-01-01
The origin of the immense oil sand deposits in Lower Cretaceous reservoirs of the Western Canada sedimentary basin is still a matter of debate, specifically with respect to the original in-place volumes and contributing source rocks. In this study, the contributions from the main source rocks were addressed using a three-dimensional petroleum system model calibrated to well data. A sensitivity analysis of source rock definition was performed in the case of the two main contributors, which are the Lower Jurassic Gordondale Member of the Fernie Group and the Upper Devonian–Lower Mississippian Exshaw Formation. This sensitivity analysis included variations of assigned total organic carbon and hydrogen index for both source intervals, and in the case of the Exshaw Formation, variations of thickness in areas beneath the Rocky Mountains were also considered. All of the modeled source rocks reached the early or main oil generation stages by 60 Ma, before the onset of the Laramide orogeny. Reconstructed oil accumulations were initially modest because of limited trapping efficiency. This was improved by defining lateral stratigraphic seals within the carrier system. An additional sealing effect by biodegraded oil may have hindered the migration of petroleum in the northern areas, but not to the east of Athabasca. In the latter case, the main trapping controls are dominantly stratigraphic and structural. Our model, based on available data, identifies the Gordondale source rock as the contributor of more than 54% of the oil in the Athabasca and Peace River accumulations, followed by minor amounts from Exshaw (15%) and other Devonian to Lower Jurassic source rocks. The proposed strong contribution of petroleum from the Exshaw Formation source rock to the Athabasca oil sands is only reproduced by assuming 25 m (82 ft) of mature Exshaw in the kitchen areas, with original total organic carbon of 9% or more.
Undiscovered hydrocarbon resources in the U.S. Gulf Coast Jurassic Norphlet and Smackover Formations
Pearson, Ofori N.
2011-01-01
The U.S. Geological Survey has completed assessments of undiscovered technically recoverable oil and gas resources in the Jurassic Norphlet and Smackover formations of the onshore coastal plain and State waters of the U.S. Gulf Coast. The Norphlet Formation consists of sandstones and interbedded shales and siltstones deposited during a marine transgression. Along its northeast margin, deposition of the Norphlet was in alluvial fans, fluvial systems, and dune and clastic sabkha environments. Mudstones of the underlying Smackover Formation act as source rocks for Norphlet reservoirs. The Norphlet was divided into the following three assessment units (AUs): the Norphlet Salt Basins and Updip AU, the Norphlet Mobile Bay Deep Gas AU, and the Norphlet South Texas Gas AU. The lower part of the Smackover consists primarily of dark carbonate mudstone and argillaceous limestone deposited in low-energy environments, and is one of the Gulf of Mexico Basin’s major source rocks. The upper part of the Smackover is comprised primarily of grain-supported carbonates deposited in high-energy environments. The Smackover was divided into the following four AUs: the Smackover Updip and Peripheral Fault Zone AU, the Smackover Salt Basin AU, the Smackover South Texas AU, and the Smackover Downdip Continuous Gas AU. Although the Norphlet and Smackover formations have been the focus of extensive exploration and production, they probably still contain significant undiscovered oil and gas resources.
NASA Astrophysics Data System (ADS)
Schmidtke, Eric A.; Fuller, Michael D.; Haston, Roger B.
1990-02-01
Paleomagnetic data from 231 samples from 31 sites in rocks of Upper Jurassic to Miocene age in Sarawak (Malaysian Borneo) reveal a trend of increasing counterclockwise (CCW) declination deflection with age. Six sites in Tertiary hypabyssal intrusions show 8° to 52° of CCW deflection. The intrusion deflected 52° CCW was K-Ar dated at 26 m.y. (Upper Oligocene), while one deflected 22° CCW gives a 17 m. y. age (Lower Miocene). Three sites in the Upper Eocene to Miocene(?) Silantek Formation show an average 40° of CCW deflection. Prefolding directions, showing 90° of CCW deflection, are isolated in 4 sites (including two positive fold tests) in Upper Jurassic and Cretaceous rocks of the Bau Limestone and Pedawan Formations. A postfolding, Cenozoic remagnetization with an average of 60° of CCW deflection is found in five Bau Limestone sites. Three sites in the Upper Jurassic Kedadom Formation show an average of 50° of CCW deflection. CCW declination deflections found in Mesozoic and Cenozoic rocks as far as 400 km east and 150 km south of Sarawak, in Kalimantan (Indonesian Borneo), also fit the trend of deflection versus age. On the basis of the regional consistency of declination deflection versus age, along with geologic evidence the data are considered to be evidence of a regional (rather than a local block or distributed shear) rotation. The domain of CCW rotation extends into West Malaysia, suggesting that West Borneo and the Malay Peninsula may have been a stable block during the latest Cretaceous and Cenozoic. West Malaysia and Borneo may have had different histories in the rest of the Mesozoic. The data imply up to 108° CCW rotation of Borneo with respect to stable Eurasia, sometime during the Cretaceous and Cenozoic. Cenozoic rotation may also have occurred between Indochina and Borneo. The sense of rotation shown by the data does not support the "propagating extrusion tectonics" model for Cenozoic Southeast Asia.
NASA Astrophysics Data System (ADS)
Rožič, Boštjan; Jurkovšek, Tea Kolar; Rožič, Petra Žvab; Gale, Luka
2017-08-01
In the Alpine Realm the Early Jurassic is characterized by the disintegration and partial drowning of vast platform areas. In the eastern part of the Southern Alps (present-day NW Slovenia), the Julian Carbonate Platform and the adjacent, E-W extending Slovenian Basin underwent partial disintegration, drowning and deepening from the Pliensbachian on, whereas only nominal environmental changes developed on the large Dinaric (Friuli, Adriatic) Carbonate Platform to the south (structurally part of the Dinarides). These events, however, were preceded by an earlier - and as yet undocumented extensional event - that took place near the Triassic/Jurassic boundary. This paper provides evidence of an accelerated subsidence from four selected areas within the Slovenian Basin, which show a trend of eastwardly-decreasing deformation. In the westernmost (Mrzli vrh) section - the Upper Triassic platform-margin - massive dolomite is overlain by the earliest Jurassic toe-of-slope carbonate resediments and further, by basin-plain micritic limestone. Further east (Perbla and Liščak sections) the Triassic-Jurassic transition interval is marked by an increase in resedimented carbonates. We relate this to the increasing inclination and segmentation of the slope and adjacent basin floor. The easternmost (Mt. Porezen) area shows a rather monotonous, latest Triassic-Early Jurassic basinal sedimentation. However, changes in the thickness of the Hettangian-Pliensbachian Krikov Formation point to a tilting of tectonic blocks within the basin area. Lateral facies changes at the base of the formation indicate that the tilting occurred at and/or shortly after the Triassic/Jurassic boundary
NASA Astrophysics Data System (ADS)
Tosdal, Richard M.
1990-11-01
The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in the Blythe-Quartzsite region of southeast California and southwest Arizona. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust north-northeastward (015° to 035°) over a lower plate metamorphic terrane that formed part of the Proterozoic North American craton, its Paleozoic sedimentary rock cover, overlying Mesozoic volcanic and sedimentary rocks, and the intruding Jurassic and Cretaceous granitic rocks. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic(?) and Cretaceous sedimentary rocks across the various parts of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. The thick-skinned thrust system is structurally symmetrical along its length with a central domain of synmetamorphic thrust faults that are flanked by western and eastern domains where lower plate synclines underlie the thrusts. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79±2 Ma and 70±4 Ma. The superposition of related rocks and the geometry of the thrust system preclude it from being a major tectonic boundary of post-Middle Jurassic age, as has been previously proposed. Rather, the thrust system forms the southern boundary of the narrow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling.
NASA Astrophysics Data System (ADS)
Reinhold, C.
1998-10-01
The Upper Jurassic of the eastern Swabian Alb is composed of oolitic platform sands with associated microbe-siliceous sponge mounds at the platform margins. They are surrounded by argillaceous or calcareous mudstones and marl-limestone alternations, deposited in adjacent marl basins. Partial to complete dolomitization is predominantly confined to the mound facies. Six types of dolomite, as well as one type of ankerite, document a complex diagenetic history during shallow burial with multiple episodes of dolomite formation and recrystallization. The earliest massive matrix dolomitization is Ca-rich, has slightly depleted oxygen isotope values relative to Late Jurassic seawater, and carbon isotopic values in equilibrium with Late Jurassic seawater. This initial massive matrix dolomitization occurred during latest Jurassic to earliest Cretaceous and is related to pressure dissolution during very shallow burial at temperatures of at least 50°C. Hydrologic conditions and mass-balance calculations indicate that burial compaction provided sufficient fluids for dolomitization. Mg is derived from negligibly modified seawater, that was expelled from the adjacent off-reef strata into the mound facies. Position of the mounds along the platform margins controlled the distribution of the shallow-burial dolomite. Covariant trends between textural modification, increasing stoichiometry, partial changes in trace element content (Mn, Fe, Sr) and depletion in stable isotopes as well as distinctive CL pattern illustrate two recrystallization phases of the precursor matrix dolomite during further burial at elevated temperatures. Strong Sr enrichment of the second phase of recrystallized dolomite is ascribed to Sr-rich meteoric waters descending from overlying aragonite-bearing reef limestones or evaporite-bearing peritidal carbonates. Late-stage coarsely crystalline dolomite cements occur as vug and fracture fillings and formed during burial. Ankerite, associated with sulphide and sulphate minerals, and saddle dolomite are assumed to have formed from hydrothermal waters that moved to higher stratigraphic levels along fracture conduit systems that developed during Late Cretaceous to Tertiary Alpine orogenesis.
Petroleum geology and resources of the West Siberian Basin, Russia
Ulmishek, Gregory F.
2003-01-01
The West Siberian basin is the largest petroleum basin in the world covering an area of about 2.2 million km2. The basin occupies a swampy plain between the Ural Mountains and the Yenisey River. On the north, the basin extends offshore into the southern Kara Sea. On the west, north, and east, the basin is surrounded by the Ural, Yenisey Ridge, and Turukhan-Igarka foldbelts that experienced major deformations during the Hercynian tectonic event and the Novaya Zemlya foldbelt that was deformed in early Cimmerian (Triassic) time. On the south, the folded Caledonian structures of the Central Kazakhstan and Altay-Sayan regions dip northward beneath the basin?s sedimentary cover. The basin is a relatively undeformed Mesozoic sag that overlies the Hercynian accreted terrane and the Early Triassic rift system. The basement is composed of foldbelts that were deformed in Late Carboniferous?Permian time during collision of the Siberian and Kazakhstan continents with the Russian craton. The basement also includes several microcontinental blocks with a relatively undeformed Paleozoic sedimentary sequence. The sedimentary succession of the basin is composed of Middle Triassic through Tertiary clastic rocks. The lower part of this succession is present only in the northern part of the basin; southward, progressively younger strata onlap the basement, so that in the southern areas the basement is overlain by Toarcian and younger rocks. The important stage in tectono-stratigraphic development of the basin was formation of a deep-water sea in Volgian?early Berriasian time. The sea covered more than one million km2 in the central basin area. Highly organic-rich siliceous shales of the Bazhenov Formation were deposited during this time in anoxic conditions on the sea bottom. Rocks of this formation have generated more than 80 percent of West Siberian oil reserves and probably a substantial part of its gas reserves. The deep-water basin was filled by prograding clastic clinoforms during Neocomian time. The clastic material was transported by a system of rivers dominantly from the eastern provenance. Sandstones within the Neocomian clinoforms contain the principal oil reservoirs. The thick continental Aptian?Cenomanian Pokur Formation above the Neocomian sequence contains giant gas reserves in the northern part of the basin. Three total petroleum systems are identified in the West Siberian basin. Volumes of discovered hydrocarbons in these systems are 144 billion barrels of oil and more than 1,300 trillion cubic feet of gas. The assessed mean undiscovered resources are 55.2 billion barrels of oil, 642.9 trillion cubic feet of gas, and 20.5 billion barrels of natural gas liquids. The largest known oil reserves are in the Bazhenov-Neocomian total petroleum system that includes Upper Jurassic and younger rocks of the central and southern parts of the basin. Oil reservoirs are mainly in Neocomian and Upper Jurassic clastic strata. Source rocks are organic-rich siliceous shales of the Bazhenov Formation. Most discovered reserves are in structural traps, but stratigraphic traps in the Neocomian clinoform sequence are pro-ductive and are expected to contain much of the undiscovered resources. Two assessment units are identified in this total petroleum system. The first assessment unit includes all conventional reservoirs in the stratigraphic interval from the Upper Jurassic to the Cenomanian. The second unit includes unconventional (or continuous), self-sourced, fractured reservoirs in the Bazhenov Formation. This unit was not assessed quantitatively. The Togur-Tyumen total petroleum system covers the same geographic area as the Bazhenov-Neocomian system, but it includes older, Lower?Middle Jurassic strata and weathered rocks at the top of the pre-Jurassic sequence. A Callovian regional shale seal of the Abalak and lower Vasyugan Formations separates the two systems. The Togur-Tyumen system is oil-prone; gas reserves are insignificant. The principal o
NASA Astrophysics Data System (ADS)
Li, Renwei; Wan, Yusheng; Cheng, Zhenyu; Zhou, Jianxiong; Li, Shuangying; Jin, Fuquan; Meng, Qingren; Li, Zhong; Jiang, Maosheng
2005-03-01
The provenance of the Jurassic sediments in the Hefei Basin is constrained by compositions of the detrital K-white micas and garnets, and SHRIMP dating of the detrital zircons, which can help to understand the evolution and to reconstruct the paleogeographic distribution of HP-UHP rocks in the Jurassic Dabie Shan. (1) For the oldest Mesozoic sediments at the bottom of the Fanghushan Formation ( J1), the predominance of the early Paleozoic and Luliang (1700-1900 Ma) zircons indicates a major source from the North China Block. However, Neoproterozoic zircons as the major component in other Jurassic sediments indicate that the source rocks were mainly derived from the exhumed Yangtze Block in the Dabie Shan. (2) The co-occurrence of high-Si phengites and Triassic zircons provides stratigraphic evidence that the first exposure of the UHP rocks at the Earth's surface in the Dabie Shan occurred in the Early Jurassic during deposition of the Fanghushan Formation. (3) From the east to the west of the Hefei Basin, there is a spatial variation in the compositions for detrital micas and garnets, and in the U-Pb ages of detrital zircons. Evidently, HP-UHP rocks were widely distributed at outcrop in the eastern Dabie Shan. In contrast, they were less important in the western Dabie Shan during the Jurassic.
Geologic Map of the Clark Peak Quadrangle, Jackson and Larimer Counties, Colorado
Kellogg, Karl S.; Ruleman, Chester A.; Shroba, Ralph R.; Braddock, William A.
2008-01-01
The Clark Peak quadrangle encompasses the southern end of the Medicine Bow Mountains and the northernmost end of the Mummy Range. The Continental Divide traverses the map area and Highway 14 cross the Divide at Cameron Pass, in the southeastern corner of the map. Approximately the eastern half of the map, and a few areas to the west, are underlain by Early Proterozoic plutonic and metamorphic rocks. Most of these basement rocks are part of the ~1,715 Ma Rawah batholith, composed mostly of pinkish, massive to moderately foliated monzogranite and granodiorite intruded by numerous, large pegmatite- aplite bodies. The metamorphic rocks, many of which form large inclusions in the granitic rocks of the Rawah batholith, include biotite-hornblende gneiss, hornblende gneiss, amphibolite, and biotite schist. The crystalline basement rocks are thrust westward along the Medicine Bow thrust over a sequence of sedimentary rocks as old as the Upper Permian Satanka Shale. The Satanka Shale, Middle and Lower Triassic Chugwater group, and a thin sandstone tentatively correlated with the Lower Jurassic and Upper Triassic Jelm Formation are combined as one map unit. This undivided unit is overlain sequentially upward by the Upper Jurassic Sundance Formation, Upper Jurassic Morrison Formation, Lower Cretaceous Dakota Group, Upper and Lower Cretaceous Benton Group, Upper Cretaceous Niobrara Formation, and the Eocene and Paleocene Coalmont Formation. The Late Cretaceous to early Eocene Medicine Bow thrust is folded in places, and several back thrusts produced a complicated thrust pattern in the south part of the map. Early Oligocene magmatism produced rhyolite tuff, dacite and basalt flows, and intermediate dikes and small stocks. A 40Ar/39Ar date on sanidine from one rhyolite tuff is ~28.5 Ma; a similar whole-rock date on a trachybasalt is ~29.6 Ma. A very coarse, unsorted probably pre-Quaternary ridge-top diamicton crops out in the southern part of the quadrangle. Numerous glacial deposits (mostly of Pinedale age), rock glaciers, block-slope deposits, landslide deposits, talus deposits, fan deposits, colluvium, and alluvium comprise the surficial deposits of the map area.
NASA Astrophysics Data System (ADS)
Yui, T. F.; Maki, K.; Lan, C. Y.; Hirata, T.; Chu, H. T.; Kon, Y.; Yokoyama, T. D.; Jahn, B. M.; Ernst, W. G.
2012-05-01
Taiwan formed during the Plio-Pleistocene collision of Eurasia with the outboard Luzon arc. Its pre-Tertiary basement, the Tananao metamorphic complex, consists of the western Tailuko belt and the eastern Yuli belt. These circum-Pacific belts have been correlated with the high-temperature/low-pressure (HT/LP) Ryoke belt and the high-pressure/low-temperature (HP/LT) Sanbagawa belt of Japan, respectively. To test this correlation and to reveal the architecture and plate-tectonic history of the Tananao metamorphic basement, detrital zircons were separated from 7 metasedimentary rock samples for U-Pb dating by LA-ICPMS techniques. Results of the present study, coupled with previous data, show that (1) the Tailuko belt consists of a Late Jurassic to earliest Cretaceous accretionary complex sutured against a Permian-Early Jurassic marble ± metabasaltic terrane, invaded in the north by scattered Late Cretaceous granitic plutons; the latter as well as minor Upper Cretaceous cover strata probably formed in a circum-Pacific forearc; (2) the Yuli belt is a mid- to Late Cretaceous accretionary complex containing HP thrust sheets that were emplaced attending the Late Cenozoic Eurasian plate-Luzon arc collision; (3) these two Late Mesozoic belts are not coeval, and in part were overprinted by low-grade metamorphism during the Plio-Pleistocene collision; (4) accreted clastic sediments of the Tailuko belt contain mainly Phanerozoic detrital zircons, indicating that terrigenous sediments were mainly sourced from western Cathaysia, whereas in contrast, clastic rocks of the Yuli accretionary complex contain a significant amount of Paleoproterozoic and distinctive Neoproterozoic zircons, probably derived from the North China craton and the Yangtze block ± eastern Cathaysia, as a result of continent uplift/exhumation after the Permo-Triassic South China-North China collision; and (5) the Late Jurassic-Late Cretaceous formation of the Tananao basement complex precludes the possibility that the early Yanshanian (Early Jurassic) granitoids in southern China represent a landward arc contemporaneous with the later, outboard Tananao accretionary event.
Early Mesozoic history and petroleum potential of formations in Wyoming and northern Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picard, M.D.
1993-08-01
During the Triassic and Jurassic, over what is now Wyoming and northern Utah, roughly equal amounts of sediment were being deposited in continental settings-lake, stream, and eolian-and in shallow-marine or deltaic-plain settings-delta, beach, marsh, tidal flat, and shallow shelf. Clastic rocks dominate. In order of decreasing abundance, the rocks are fine-grained clastics (siltstone, claystone, mudstone), sandstone, carbonates, evaporites, and claystone- and carbonate-pebble conglomerate. Approximately four-fifths of the succession contains red beds or variegated layers-purple, maroon, lavender, olive, green. Unconformities bound Jurassic formations in Wyoming-Nugget, Gypsum Spring, Sundance, and Morrison. Unconformities also bound the continental Upper Triassic section-unnamed red bed unit,more » Jelm, Popo Agie-separating it from the underlying shallow-marine formations-Dinwoody, Red Peak, Alcova, Crow Mountain. Within the marine sequence, an unconformity occurs at the top of the Alcova and, quite likely, shorter periods of erosion took place at the top and below the base of the sandy faces that underlies the Alcova. The postulate duration of the principal unconformities totals about 18 m.y., at least one-sixth of early Mesozoic time. The bulk of the remaining 80-100 m.y. may be represented by a large number of smaller unconformities. For the lower Mesozoic, as for most stratigraphic intervals, a few beds contain the story of what has taken place during the abyss of geologic time. Like other places in the world where evaporites occur in the Triassic, the Wyoming section produces little crude oil. No significant sequence in the early Mesozoic shows source-bed characteristics. The Crow Mountain Sandstone contains the best reservoirs. The Lower( ) Jurassic Nugget Sandstone produces the most oil and gas in the thrust belt of southwestern Wyoming and northern Utah. Cretaceous claystones below the thrusts contain the source beds.« less
NASA Astrophysics Data System (ADS)
Ivantsov, S. V.; Bystritskaya, L. I.; Krasnolutskii, S. A.; Lyalyuk, K. P.; Frolov, A. O.; Alekseev, A. S.
2016-09-01
On the basis of the lithological-facies analysis, it was established that deposits of the Upper Itat Subformation, comprising the Dubinino locality of the Middle Jurassic flora and insects (Sharypovo district, Krasnoyarsk krai), accumulated in alluvial and lacustrine and, to a lesser extent, floodplain environments (floodplain and alluvial fan facies). The occurrence of remains of insects, macroremains of flora, spores, and pollen allowed us to make a paleoreconstruction of an area with a strongly dissected relief: continental fresh-water reservoir (lake) with varying degree of overflow, surrounded by hills covered with gymnospermous and ginkgo forests.
NASA Astrophysics Data System (ADS)
Dubiel, Stanisław; Zubrzycki, Adam; Rybicki, Czesław; Maruta, Michał
2012-11-01
In the south part of the Carpathian Foredeep basement, between Bochnia and Ropczyce, the Upper Jurassic (Oxfordian, Kimmeridian and Tithonian) carbonate complex plays important role as a hydrocarbon bearing formation. It consists of shallow marine carbonates deposited in environments of the outer carbonate ramp as reef limestones (dolomites), microbial - sponge or coral biostromes and marly or micrite limestones as well. The inner pore space system of these rocks was affected by different diagenetic processes as calcite cementation, dissolution, dolomitization and most probably by tectonic fracturing as well. These phenomena have modified pore space systems within limestone / dolomite series forming more or less developed reservoir zones (horizons). According to the interpretation of DST results (analysis of pressure build up curves by log - log method) for 11 intervals (marked out previously by well logging due to porosity increase readings) within the Upper Jurassic formation 3 types of pore/fracture space systems were distinguished: - type I - fracture - vuggy porosity system in which fractures connecting voids and vugs within organogenic carbonates are of great importance for medium flow; - type II - vuggy - fracture porosity system where a pore space consists of weak connected voids and intergranular/intercrystalline pores with minor influence of fractures; - type III - cavern porosity system in which a secondary porosity is developed due to dolomitization and cement/grain dissolution processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, A.B.
1986-08-01
The Sheep Mountain anticlinal complex between Lovell and Greybull, Wyoming, in the Bighorn basin provides exposure suitable for three-dimensional stratigraphic studies of Mesozoic rocks. The lower unit of the Gypsum Spring Formation is interbedded shale and gypsum. The middle unit is a cyclic sequence of variegated shales, mudstones, and wackestones. The upper unit is red shale. The contact between the underlying Upper Triassic Chugwater Group and the Gypsum Spring Formation is unconformable, as evidenced by an erosional surface. The Sundance Formation is divided into Sundance A and Sundance B, based on fossil data. Sundance A is predominantly green shale withmore » some limestone-shale interbeds. Sundance B lithology is similar to Sundance A with belemnoid guards. Toward the top of Sundance B are beds of glauconitic sandstones that grade upward into fossiliferous limestone. The contact between the Gypsum Spring, Sundance, and Morrison Formations appears to be gradational. The Western Interior sedimentary basin experienced four major transgressions during the Jurassic, resulting in the deposition of the Gypsum Spring and Sundance. Gypsum Spring deposition was influenced by paleohighs, specifically the Belt Island and Sheridan arch, and a warm, arid climate with rare storms. The lower Gypsum Spring unit was deposited in a restricted basin, with the middle and upper units reflecting subsequent deepening and freshening of the Jurassic sea. Most of the Sundance Formation was deposited in a relatively quiet, open-marine environment. Individual units represent shoaling conditions during minor regressions. Storms cut channels into sand bars, which were filled with coquinoid deposits.« less
Thermo-mechanical Properties of Upper Jurassic (Malm) Carbonate Rock Under Drained Conditions
NASA Astrophysics Data System (ADS)
Pei, Liang; Blöcher, Guido; Milsch, Harald; Zimmermann, Günter; Sass, Ingo; Huenges, Ernst
2018-01-01
The present study aims to quantify the thermo-mechanical properties of Neuburger Bankkalk limestone, an outcrop analog of the Upper Jurassic carbonate formation (Germany), and to provide a reference for reservoir rock deformation within future enhanced geothermal systems located in the Southern German Molasse Basin. Experiments deriving the drained bulk compressibility C were performed by cycling confining pressure p c between 2 and 50 MPa at a constant pore pressure p p of 0.5 MPa after heating the samples to defined temperatures between 30 and 90 °C. Creep strain was then measured after each loading and unloading stage, and permeability k was obtained after each creep strain measurement. The drained bulk compressibility increased with increasing temperature and decreased with increasing differential pressure p d = p c - p p showing hysteresis between the loading and unloading stages above 30 °C. The apparent values of the indirectly calculated Biot coefficient α ind containing contributions from inelastic deformation displayed the same temperature and pressure dependencies. The permeability k increased immediately after heating and the creep rates were also temperature dependent. It is inferred that the alteration of the void space caused by temperature changes leads to the variation of rock properties measured under isothermal conditions while the load cycles applied under isothermal conditions yield additional changes in pore space microstructure. The experimental results were applied to a geothermal fluid production scenario to constrain drawdown and time-dependent effects on the reservoir, overall, to provide a reference for the hydromechanical behavior of geothermal systems in carbonate, and more specifically, in Upper Jurassic lithologies.
Palaeozoic and Mesozoic tectonic implications of Central Afghanistan
NASA Astrophysics Data System (ADS)
Sliaupa, Saulius; Motuza, Gediminas
2017-04-01
The field and laboratory studies were carried out in Ghor Province situated in the central part of Afghanistan. It straddles juxtaposition of the Tajik (alternatively, North Afghanistan) and Farah Rod blocks separated by Band-e-Bayan zone. The recent studies indicate that Band-e-Bayan zone represents highly tectonised margin of the Tajik block (Motuza, Sliaupa, 2016). The Band-e-Bayan zone is the most representative in terms of sedimentary record. The subsidence trends and sediment lithologies suggest the passive margin setting during (Cambrian?) Ordovician to earliest Carboniferous times. A change to the foredeep setting is implied in middle Carboniferous through Early Permian; the large-thickness flysh-type sediments were derived from continental island arc provenance, as suggested by chemical composition of mudtstones. This stage can be correlated to the amalgamation of the Gondwana supercontinent. The new passive-margin stage can be inferred in the Band-e-Bayan zone and Tajik blocks in the Late Permian throughout the early Late Triassic that is likely related to breaking apart of Gondwana continent. A collisional event is suggested in latest Triassic, as seen in high-rate subsidence associating with dramatic change in litholgies, occurrence of volcanic rocks and granidoid intrusions. The continental volcanic island arc derived (based on geochemical indices) terrigens prevail at the base of Jurassic that were gradually replaced by carbonate platform in the Middle Jurassic pointing to cessation of the tectonic activity. A new tectonic episode (no deposition; and folding?) took place in the Tajik and Band-e-Bayan zone in Late Jurassic. The geological section of the Farah Rod block, situated to the south, is represented by Jurassic and Cretaceous sediments overlain by sporadic Cenozoic volcanic-sedimentary succession. The lower part of the Mesozoic succession is composed of terrigenic sediments giving way to upper Lower Cretaceous shallow water carbonates implying low tectonic regime. There was a break in sedimentation during the upper Cretaceous that is likely related to the Alpine orogenic event. It associated with some Upper Cretaceous magmatic activity (Debon et al., 1987). This event is reflected in the sedimentation pattern in the adjacent Band-e-Bayan zone and Tadjick block. The lower part of the Upper Cretaceous succession is composed of reddish terrigenic sediments. They are overlain by uppermost Cretaceous (and Danian) shallow marine sediments implying establishment of quiet tectonic conditions.
Geologic framework of lower Cook Inlet, Alaska
Fisher, M.A.; Magoon, L.B.
1978-01-01
Three seismic reflectors are present throughout the lower Cook Inlet basin and can be correlated with onshore geologic features. The reflections come from unconformities at the base of the Tertiary sequence, at the base of Upper Cretaceous rocks, and near the base of Upper Jurassic strata. A contour map of the deepest horizon shows that Mesozoic rocks are formed into a northeast-trending syncline. Along the southeast flank of the basin, the northwest-dipping Mesozoic rocks are truncated at the base of Tertiary rocks. The Augustine-Seldovia arch trends across the basin axis between Augustine Island and Seldovia. Tertiary rocks thin onto the arch from the north and south. Numerous anticlines, smaller in structural relief and breadth than the Augustine-Seldovia arch, trend northeast parallel with the basin, and intersect the arch at oblique angles. The stratigraphic record shows four cycles of sedimentation and tectonism that are bounded by three regional unconformities in lower Cook Inlet and by four thrust faults and the modern Benioff zone in flysch rocks of the Kenai Peninsula and the Gulf of Alaska. The four cycles of sedimentation are, from oldest to youngest, the early Mesozoic, late Mesozoic, early Cenozoic, and late Cenozoic. Data on organic geochemistry of the rocks from one well suggest that Middle Jurassic strata may be a source of hydrocarbons. Seismic data show that structural traps are formed by northeast-trending anticlines and by structures formed at the intersections of these anticlines with the transbasin arch. Stratigraphic traps may be formed beneath the unconformity at the base of Tertiary strata and beneath unconformities within Mesozoic strata.
Detrital zircon geochronology overlying the Naga Hills ophiolite
NASA Astrophysics Data System (ADS)
Roeder, T.; Aitchison, J.; Stojanovic, D.; Agarwal, A.; Ao, A.; Bhowmik, S.
2013-12-01
The Nagaland ophiolite in NE India represents the easternmost section of the ophiolitic belt running along the India-Asia suture. Outcrops near the border between Nagaland and Myanmar include not only a full suite of ophiolitic rocks but also high P/T blueschist rocks within a serpentinite-matrix mélange. Although Upper Jurassic radiolarians have been reported from the ophiolite itself (Baxter et al., 2011), few constraints have been placed on the timing of its emplacement onto India. Terrestrial sediments of the Phokphur Formation unconformably overlie the ophiolite. Similar to other sediments from along the ophiolite belt such as the Luiqu conglomerates in Tibet (Davis et al., 2002), they contain detritus derived from both the ophiolite and the continental margin onto which the ophiolite was emplaced. The clastic sediments of the Phokphur Formation potentially record not only the timing of ophiolite generation but also the ages of source terranes and can be used to place a minimum age constraint on the timing of ophiolite emplacement. As a contribution towards extending knowledge of the ophiolite belt and the India/Asia collision, we report preliminary results of an investigation into the sedimentology and detrital zircon geochronology of the Phokphur Formation in areas near Salumi and Zephu. Baxter, A.T., Aitchison, J.C., Zyabrev, S.V., Ali, J.R., 2011. Upper Jurassic radiolarians from the Naga Ophiolite, Nagaland, northeast India. Gondwana Research 20, 638-644. Davis, A.M., Aitchison, J.C., Badengzhu, Luo, H., Zyabrev, S., 2002. Paleogene island arc collision-related conglomerates, Yarlung-Tsangpo suture zone, Tibet. Sedimentary Geology 150, 247-273.
New sea spiders from the Jurassic La Voulte-sur-Rhône Lagerstätte.
Charbonnier, S; Vannier, J; Riou, B
2007-10-22
The diverse and exceptionally well-preserved pycnogonids described herein from the Middle Jurassic La Voulte Lagerstätte fill a 400 Myr gap of knowledge in the evolutionary history of this enigmatic group of marine arthropods. They reveal very close morphological and functional (locomotion, feeding) similarities with present-day pycnogonids and, by contrast, marked differences with all Palaeozoic representatives of the group. This suggests a relatively recent, possibly Mesozoic origin for at least three major extant lineages of pycnogonids (Ammotheidae, Colossendeidae, Endeidae). Combined evidence from depositional environment, faunal associates and recent analogues indicate that the La Voulte pycnogonids probably lived in the upper bathyal zone (ca 200 m). Our results point to a remarkable morphological and ecological stability of this arthropod group over at least 160 Myr and suggest that the colonization of the deep sea by pycnogonids occurred before the Jurassic.
A late Jurassic pterosaur (Reptilia, Pterodactyloidea) from northwestern Patagonia, Argentina
NASA Astrophysics Data System (ADS)
Codorniú, Laura; Gasparini, Zulma; Paulina-Carabajal, Ariana
2006-03-01
A small to medium-sized pterodactyloid pterosaur (wingspan approximately 1.10 m) from the Upper Jurassic (middle-late Tithonian) marine deposits of the Vaca Muerta Formation of Patagonia (Los Catutos area, central Neuquén Province, Argentina) is reported. The specimen lacks the skull but constitutes a nearly complete postcranial skeleton, which includes cervical and dorsal vertebrae; a few thoracic ribs; both pectoral girdles; the left pelvic girdle; a proximal right wing (humerus, ulna, and radius) and metacarpal IV; a left wing that lacks only wing phalanx four; and both hindlimbs, the right one without the foot. Ontogenetic features suggest that the new fossil corresponds to a relatively mature individual, probably a subadult. Observed characters support its assignment to the Archaeopteroactyloidea, a basal clade within the Pterodactyloidea. This specimen is the second pterosaur from Los Catutos and the most complete Jurassic pterosaur so far known from South America.
LePain, David L.; Stanley, Richard G.
2015-01-01
The Alaska Division of Geological & Geophysical Surveys (DGGS) and U.S. Geological Survey (USGS) are implementing ongoing programs to characterize the petroleum potential of Cook Inlet basin. Since 2009 this program has included work on the Mesozoic stratigraphy of lower Cook Inlet, including the Middle Jurassic Tuxedni Group between Tuxedni and Iniskin bays (LePain and others, 2013; Stanley and others, 2013; fig. 5-1). The basal unit in the group, the Red Glacier Formation (fig. 5-2), is thought to be the principal source rock for oil produced in upper Cook Inlet, and available geochemical data support this contention (Magoon and Anders, 1992; Magoon, 1994). Despite its economic significance very little has been published on the formation since Detterman and Hartsock’s (1966) seminal contribution on the geology of the Iniskin–Tuxedni area nearly 50 years ago. Consequently its stratigraphy, contact relations with bounding formations, and source rock characteristics are poorly known. During the 2014 field season, a nearly continuous stratigraphic section through the Red Glacier Formation in its type area at Red Glacier was located and measured to characterize sedimentary facies and to collect a suite of samples for analyses of biostratigraphy, Rock-Eval pyrolysis, vitrinite reflectance, and sandstone composition (fig. 5-3).The poorly known nature of the Red Glacier Formation is likely due to its remote location, steep terrain, and the fact that the type section is split into two segments that are more than 3 km apart. The lower 375 m segment of the formation is on the ridge between Red Glacier and Lateral Glacier and the upper 1,009 m segment is on the ridge between Red Glacier and Boulder Creek (fig. 5-3). Structural complications in the area add to the difficulty in understanding how these two segments fit together.
Using Zircon Geochronology to Unravel the History of the Naga Hills Ophiolite
NASA Astrophysics Data System (ADS)
Roeder, T.; Aitchison, J. C.; Clarke, G. L.; Ireland, T. R.; Ao, A.; Bhowmik, S. K.
2014-12-01
Outcrops of the Naga Hills Ophiolite (NHO), a possible eastern extension of the ophiolitic belt running along the India-Asia suture, in Northeast India include a full suite of ophiolitic rocks. The ophiolite has been dated Upper Jurassic based on radiolarian studies of the unit (Baxter et al., 2011) but details of its emplacement onto the Indian margin have not been the subject of detailed investigation. Conglomerates of the Phokphur Formation unconformably overlie an eroded surface on top of dismembered ophiolite fragments and include sediments sourced from both the ophiolite and the margin of the Indian subcontinent. Notably no Asian margin-derived detritus is recognised (similar to the Liuqu conglomerates of Tibet (Davis et al., 2002)). Thus, a detailed study of the Phokphur sediments can produce valuable details of the NHO history, including constraining the timing of ophiolite emplacement. Studies of detrital sandstone petrography confirm a recycled orogen provenance for the Phokphur Formation and thus serve as validation of the methods of Dickinson and Suczek (1979) and Garzanti et al. (2007). Detrital zircon data provides further insight as to the age of source rocks of Phokphur sediments and help to further constrain the timing of ophiolite emplacement. We present results of sedimentary and detrital zircon geochronology analyses of Phokphur sediments from outcrops near the villages of Salumi and Wazeho as a contribution to furthering research on aspects of the India-Asia collision. Baxter, A.T., et al. 2011. Upper Jurassic radiolarians from the Naga Ophiolite, Nagaland, northeast India. Gondwana Research, 20: 638-644. Davis, A.M., et al. 2002. Paleogene island arc collision-related conglomerates, Yarlung-Tsangpo suture zone, Tibet. Sedimentary Geology, 150: 247-273. Dickinson, W.R. and Suczek, C.A., 1979. Plate tectonics and sandstone compositions. Am. Assoc. Pet. Geol. Bull., 63, 2164-2182, (1979). Garzanti, E., et al., 2007. Orogenic belts and orogenic sediment provenance. The Journal of Geology, 115: 315-334.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, K.E.; Conrad, K.T.; Carpenter, D.G.
Recent exploration drilling indicates the existence of world-class source rock in the Madre de Dios basin, Bolivia. In the Pando-1 X and -2X wells, over 200 m of poorly bioturbated, organic-rich (TOC = 3-16 wt.%) prodelta to shelf mudstones in the Frasnian-Famennian Tomachi Formation contain oil-prone organic matter (hydrogen index = 400-600 mg HC/g TOC). Our calculated source prolificity indices for this interval in these wells (SPI = 15-18 tons of hydrocarbons per square meter of source rock) exceed that for the Upper Jurassic in Central Saudi Arabia. The Tomachi interval is lithologically equivalent to the Colpacucho Formation in themore » northern Altiplano, the Iquiri Formation in the Cordillera Oriental, and is coeval with other excellent source rocks in North America, Africa, and Eurasia. All of these rocks were deposited under conditions favorable for accumulation of organic matter, including a global highstand and high productivity. However, the Madre de Dios basin was situated at high latitude during the Late Devonian and some of the deposits are interpreted to be of glacial origin, indicating conditions not generally associated with organic-rich deposition. A biomarker and palynological study of Upper Devonian rocks in the Pando-1X well suggests deposition under conditions similar to certain modern fjords. High productivity resulted in preservation of abundant organic matter in the bottom sediments despite a cold, toxic water column. Low-sulfur crude oil produced from the Pando-1X well is geochemically similar to, but more mature than, extracts from associated organic-rich Tomachi samples, and was generated from deeper equivalents of these rocks.« less
NASA Astrophysics Data System (ADS)
Kosakowski, Paweł; Wróbel, Magdalena
2012-08-01
Burial history, thermal maturity, and timing of hydrocarbon generation were modelled for the Jurassic source rocks in the basement of the Carpathian Foredeep and marginal part of the Outer Carpathians. The area of investigation was bounded to the west by Kraków, to the east by Rzeszów. The modelling was carried out in profiles of wells: Będzienica 2, Dębica 10K, Góra Ropczycka 1K, Goleszów 5, Nawsie 1, Pławowice E1 and Pilzno 40. The organic matter, containing gas-prone Type III kerogen with an admixture of Type II kerogen, is immature or at most, early mature to 0.7 % in the vitrinite reflectance scale. The highest thermal maturity is recorded in the south-eastern part of the study area, where the Jurassic strata are buried deeper. The thermal modelling showed that the obtained organic matter maturity in the initial phase of the "oil window" is connected with the stage of the Carpathian overthrusting. The numerical modelling indicated that the onset of hydrocarbon generation from the Middle Jurassic source rocks was also connected with the Carpathian thrust belt. The peak of hydrocarbon generation took place in the orogenic stage of the overthrusting. The amount of generated hydrocarbons is generally small, which is a consequence of the low maturity and low transformation degree of kerogen. The generated hydrocarbons were not expelled from their source rock. An analysis of maturity distribution and transformation degree of the Jurassic organic matter shows that the best conditions for hydrocarbon generation occurred most probably in areas deeply buried under the Outer Carpathians. It is most probable that the "generation kitchen" should be searched for there.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tosdal, R.M.
1990-11-10
The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in the Blythe-Quartzsite region of southeast California and southwest Arizona. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust north-northeastward (015{degree} to 035{degree}) over a lower plate metamorphic terrane that formed part of the Proterozoic North American craton, its Paleozoic sedimentary rock cover, overlying Mesozoic volcanic and sedimentary rocks, and the intruding Jurassic and Cretaceous granitic rocks. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic( ) and Cretaceous sedimentary rocks across the various partsmore » of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. The thick-skinned thrust system is structurally symmetrical along its length with a central domain of synmetamorphic thrust faults that are flanked by western and eastern domains where lower plate domains where lower plate synclines underlie the thrusts. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79{plus minus}2 Ma and 70{plus minus}4 Ma. The superposition of related rocks and the geometry of the thrust system preclude it from being a major tectonic boundary of post-Middle Jurassic age, as has been previously proposed. Rather, the thrust system forms the southern boundary of the narrow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling.« less
NASA Astrophysics Data System (ADS)
Gouiza, Mohamed; Hall, Jeremy; Welford, J. Kim
2017-04-01
The Orphan Basin is located in the deep offshore of the Newfoundland margin, and it is bounded by the continental shelf to the west, the Grand Banks to the south, and the continental blocks of Orphan Knoll and Flemish Cap to the east. The Orphan Basin formed in Mesozoic time during the opening of the North Atlantic Ocean between eastern Canada and western Iberia-Europe. This work, based on well data and regional seismic reflection profiles across the basin, indicates that the continental crust was affected by several extensional episodes between the Jurassic and the Early Cretaceous, separated by events of uplift and erosion. The preserved tectono-stratigraphic sequences in the basin reveal that deformation initiated in the eastern part of the Orphan Basin in the Jurassic and spread towards the west in the Early Cretaceous, resulting in numerous rift structures filled with a Jurassic-Lower Cretaceous syn-rift succession and overlain by thick Upper Cretaceous to Cenozoic post-rift sediments. The seismic data show an extremely thinned crust (4-16 km thick) underneath the eastern and western parts of the Orphan Basin, forming two sub-basins separated by a wide structural high with a relatively thick crust (17 km thick). Quantifying the crustal architecture in the basin highlights the large discrepancy between brittle extension localized in the upper crust and the overall crustal thinning. This suggests that continental deformation in the Orphan Basin involved, in addition to the documented Jurassic and Early Cretaceous rifting, an earlier brittle rift phase which is unidentifiable in seismic data and a depth-dependent thinning of the crust driven by localized lower crust ductile flow.
Recent advances in the cretaceous stratigraphy of Korea
NASA Astrophysics Data System (ADS)
Chang, Ki-Hong; Suzuki, Kazuhiro; Park, Sun-Ok; Ishida, Keisuke; Uno, Koji
2003-06-01
A subrounded, accidental, zircon grain from a rhyolite sample of the Oknyobong Formation has shown an U-Pb CHIME isochron age, 187 Ma, implying its derivation from a Jurassic felsic igneous rock. Such a lower limit of the geologic age of the Oknyobong Formation, combined with its pre-Kyongsang upper limit, constrains that the Oknyobong Formation belongs to the Jasong Synthem (Late Jurassic-early Early Cretaceous) typified in North Korea. The Jaeryonggang Movement terminated the deposition of the Jasong Synthem and caused a shift of the depocenter from North Korea to the Kyongsang Basin, Southeast Korea. The Cretaceous-Paleocene Kyongsang Supergroup of the Kyongsang Basin is the stratotype of the Kyongsang Synthem, an unconformity-bounded unit in the Korean Peninsula. The unconformity at the base of the Yuchon Volcanic Group is a local expression of the interregionally recognizable mid-Albian tectonism; it subdivides the Kyongsang Synthem into the Lower Kyongsang Subsynthem (Barremian-Early Albian) and the Upper Kyongsang Subsynthem (Late Albian-Paleocene). The latter is unconformably overlain by Eocene and younger strata. The Late Permian to Early Jurassic radiolarian fossils from the chert pebbles of the Kumidong and the Kisadong conglomerates of the Aptian-Early Albian Hayang Group of the Kyongsang Basin are equivalent with those of the cherts that constitute the Jurassic accretionary prisms in Japan, the provenance of the chert pebbles in the Kyongsang Basin. Bimodal volcanisms throughout the history of the Kyongsang Basin is exemplified by the felsic Kusandong Tuff erupted abruptly and briefly in the Late Aptian when semi-coeval volcanisms were of intermediate and mafic compositions. The mean paleomagnetic direction shown by the Kusandong Tuff is in good agreement with the Early Cretaceous directions known from North China, South China and Siberia Blocks.
Mongolian Oil Shale, hosted in Mesozoic Sedimentary Basins
NASA Astrophysics Data System (ADS)
Bat-Orshikh, E.; Lee, I.; Norov, B.; Batsaikhan, M.
2016-12-01
Mongolia contains several Mesozoic sedimentary basins, which filled >2000 m thick non-marine successions. Late Triassic-Middle Jurassic foreland basins were formed under compression tectonic conditions, whereas Late Jurassic-Early Cretaceous rift valleys were formed through extension tectonics. Also, large areas of China were affected by these tectonic events. The sedimentary basins in China host prolific petroleum and oil shale resources. Similarly, Mongolian basins contain hundreds meter thick oil shale as well as oil fields. However, petroleum system and oil shale geology of Mongolia remain not well known due to lack of survey. Mongolian oil shale deposits and occurrences, hosted in Middle Jurassic and Lower Cretaceous units, are classified into thirteen oil shale-bearing basins, of which oil shale resources were estimated to be 787 Bt. Jurassic oil shale has been identified in central Mongolia, while Lower Cretaceous oil shale is distributed in eastern Mongolia. Lithologically, Jurassic and Cretaceous oil shale-bearing units (up to 700 m thick) are similar, composed mainly of alternating beds of oil shale, dolomotic marl, siltstone and sandstone, representing lacustrine facies. Both Jurassic and Cretaceous oil shales are characterized by Type I kerogen with high TOC contents, up to 35.6% and low sulfur contents ranging from 0.1% to 1.5%. Moreover, S2 values of oil shales are up to 146 kg/t. The numbers indicate that the oil shales are high quality, oil prone source rocks. The Tmax values of samples range from 410 to 447, suggesting immature to early oil window maturity levels. PI values are consistent with this interpretation, ranging from 0.01 to 0.03. According to bulk geochemistry data, Jurassic and Cretaceous oil shales are identical, high quality petroleum source rocks. However, previous studies indicate that known oil fields in Eastern Mongolia were originated from Lower Cretaceous oil shales. Thus, further detailed studies on Jurassic oil shale and its petroleum potential are required.
Late Jurassic low latitude of Central Iran: paleogeographic and tectonic implications
NASA Astrophysics Data System (ADS)
Mattei, Massimo; Muttoni, Giovanni; Cifelli, Francesca
2014-05-01
The individual blocks forming present-day Central Iran are now comprised between the Zagros Neo-Tethys suture to the south and the Alborz Palaeo-Tethys suture to the north. At the end of the Palaeozoic, the Iranian blocks rifted away from the northern margin of Gondwana as consequence of the opening of the Neo-Tethys, and collided with Eurasia during the Late Triassic, giving place to the Eo-Cimmerian orogeny. From then on, the Iranian block(s) should have maintained European affinity. Modern generations of apparent polar wander paths (APWPs) show the occurrence in North American and African coordinates of a major and rapid shift in pole position (=plate shift) during the Middle-Late Jurassic. This so-called monster polar shift is predicted also for Eurasia from the North Atlantic plate circuit, but Jurassic data from this continent are scanty and problematic. Here, we present paleomagnetic data from the Kimmeridgian-Tithonian (Upper Jurassic) Garedu Formation of Iran. Paleomagnetic component directions of primary (pre-folding) age indicate a paleolatitude of deposition of 10°N ± 5° that is in excellent agreement with the latitude drop predicted for Iran from APWPs incorporating the Jurassic monster polar shift. We show that paleolatitudes calculated from these APWPs, used in conjunction with simple zonal climate belts, better explain the overall stratigraphic evolution of Iran during the Mesozoic.
Lindquist, Sandra J.
1999-01-01
The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman
2005-05-10
The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structuremore » and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring mainly during the Late Cretaceous.« less
NASA Astrophysics Data System (ADS)
Pietrek, Alexa; Kenkmann, Thomas
2016-07-01
We reassessed two drill cores of the Bunte Breccia deposits of the Ries crater, Germany. The objectives of our study were the documentation of evidence for water in the Bunte Breccia, the evaluation of how that water influenced the emplacement processes, and from which preimpact water reservoir it was derived. The Bunte Breccia in both cores can be structured into a basal layer composed mainly of local substrate material, overlain by texturally and compositionally diverse, crater-derived breccia units. The basal layer is composed of the youngest sediments (Tertiary clays and Upper Jurassic limestone) and has a razor-sharp boundary to the upper breccia units, which are composed of older rocks of Upper Jurassic to Upper Triassic age. Sparse material exchange occurred between the basal layer and the rest of the Bunte Breccia. Fluids predominantly came from the Tertiary and the Upper Triassic sandstone formation. In the basal layer, Tertiary clays were subjected to intense, ductile deformation, indicating saturation with water. This suggests that water was mixed into the matrix, creating a fluidized basal layer with a strong shear localization. In the upper units, Upper Triassic sandstones are intensely deformed by granular flow. The texture requires that the rocks were disaggregated into granular sand. Vaporization of pore water probably aided fragmentation of these rocks. In the Otting core, hot suevite (T > 600 °C) covered the Bunte Breccia shortly after its emplacement. Vertically oriented gas escape pipes in suevite partly emanate directly at the contact to the Bunte Breccia. They indicate that the Bunte Breccia contained a substantial amount of water in the upper part that was vaporized and escaped through these vents.
NASA Astrophysics Data System (ADS)
Tominaga, M.; Tivey, M.; Sager, W.
2017-12-01
Two major difficulties have hindered improving the accuracy of the Late-Mid Jurassic geomagnetic polarity time scale: a dearth of reliable high-resolution radiometric dates and the lack of a continuous Jurassic geomagnetic polarity time scale (GPTS) record. We present the latest effort towards establishing a definitive Mid Jurassic to Early Cretaceous (M-series) GPTS model using three high-resolution, multi-level (sea surface [0 km], mid-water [3 km], and near-source [5.2 km]) marine magnetic profiles from a seamount-free corridor adjacent to the Waghenaer Fracture Zone in the western Pacific Jurassic Quiet Zone (JQZ). The profiles show a global coherency in magnetic anomaly correlations between two mid ocean ridge systems (i.e., Japanese and Hawaiian lineations). Their unprecedented high data resolution documents a detailed anomaly character (i.e., amplitudes and wavelengths). We confirm that this magnetic anomaly record shows a coherent anomaly sequence from M29 back in time to M42 with previously suggested from the Japanese lineation in the Pigafetta Basin. Especially noticeable is the M39-M41 Low Amplitude Zone defined in the Pigafetta Bsin, which potentially defines the bounds of JQZ seafloor. We assessed the anomaly source with regard to the crustal architecture, including the effects of Cretaceous volcanism on crustal magnetization and conclude that the anomaly character faithfully represents changes in geomagnetic field intensity and polarity over time and is mostly free of any overprint of the original Jurassic magnetic remanence by later Cretaceous volcanism. We have constructed polarity block models (RMS <5 nT [normalized] between observed and calculated profiles) for each of the survey lines, yielding three potential GPTS candidate models with different source-to-sensor resolutions, from M19-M38, which can be compared to currently available magnetostratigraphic records. The overall polarity reversal rates calculated from each of the models are anomalously high, which is consistent with previous observations from the Japanese M-series sequence. The anomalously high reversal rates during a period of apparent low field intensity suggests a unique period of geomagnetic field behavior in Earth's history.
Decrease in oceanic crustal thickness since the breakup of Pangaea
NASA Astrophysics Data System (ADS)
van Avendonk, Harm J. A.; Davis, Joshua K.; Harding, Jennifer L.; Lawver, Lawrence A.
2017-01-01
Earth's mantle has cooled by 6-11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of thicker Jurassic ocean crust, the upper mantle may have cooled by 15-20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent Pangaea due to the effect of continental insulation.
NASA Astrophysics Data System (ADS)
Gómez, J. J.; Comas-Rengifo, M. J.; Goy, A.
2015-08-01
One of the main controversial items in palaeoclimatology is to elucidate if climate during the Jurassic was warmer than present day, with no ice caps, or if ice caps were present in some specific intervals. The Pliensbachian Cooling event (Lower Jurassic) has been pointed out as one of the main candidates to have developed ice caps on the poles. To constrain the timing of this cooling event, including the palaeoclimatic evolution before and after cooling, as well as the calculation of the seawater palaeotemperatures are of primary importance to find arguments on this subject. For this purpose, the Rodiles section of the Asturian Basin (Northern Spain), a well exposed succession of the uppermost Sinemurian, Pliensbachian and Lower Toarcian deposits, has been studied. A total of 562 beds were measured and sampled for ammonites, for biostratigraphical purposes and for belemnites, to determine the palaeoclimatic evolution through stable isotope studies. Comparison of the recorded uppermost Sinemurian, Pliensbachian and Lower Toarcian changes in seawater palaeotemperature with other European sections allows characterization of several climatic changes of probable global extent. A warming interval which partly coincides with a negative δ13Cbel excursion was recorded at the Upper Sinemurian. After a "normal" temperature interval, a new warming interval that contains a short lived positive δ13Cbel peak, was developed at the Lower-Upper Pliensbachian transition. The Upper Pliensbachian represents an outstanding cooling interval containing a positive δ13Cbel excursion interrupted by a small negative δ13Cbel peak. Finally, the Lower Toarcian represented an exceptional warming period pointed as the main responsible for the prominent Lower Toarcian mass extinction.
NASA Astrophysics Data System (ADS)
Iqbal, Shahid; Wagreich, Michael; Jan, Irfanullah; Kürschner, Wolfram Michael; Gier, Susanne
2017-04-01
The Triassic-Jurassic boundary interval reveals a change from warm-arid to a warm and humid climate in the Tethyan domain. Sea-level reconstruction records across the European basins during this interval reveal an end-Triassic global regression event and is linked to the Central Atlantic Magmatic Province (CAMP) activity and Pangaea breakup. In the Tethyan Salt Range of Pakistan a succession of Upper Triassic dolomites/green-black mudstones (Kingriali Formation), overlying quartzose sandstone, mudstones, laterites and Lower Jurassic conglomerates/pebbly sandstones (Datta Formation) provides information on the palaeoclimatic evolution of the area. Preliminary palynological results from the mudstones indicate a Rhaetian age for the Kingriali Formation and a Hettangian age for the Datta Formation. X-ray diffraction (XRD) analysis of the mudstones (upper part of the Kingriali Formation) indicates the presence of mainly illite while kaolinite is a minor component. The kaolinite content, a reflection of the advanced stage of chemical weathering and hence warm-humid conditions, increases up-section in the overlying sandstone-mudstone succession. The overlying laterite-bauxite horizons lack illite/smectite and are entirely composed of kaolinite, boehmite and haematite. At places these kaolinite rich horizons are mined in the area (Western Salt Range). The bulk rock geochemistry of the succession confirms a similar trend. The Chemical Index of Alteration (CIA) displays an increasing trend from the Upper Triassic shales (CIA 75-80) through the overlying sandstones/mudstones-laterites to the overlying quartz rich sandstones and mudstones (CIA 90-97). The overall results for the succession reveal an increasing chemical maturity trend (increase in the intensity of chemical weathering) from Rhaetian to Hettangian thereby supporting a change from warm-arid to a warm-humid palaeoclimate, probably extreme greenhouse conditions.
NASA Astrophysics Data System (ADS)
López-Martínez, Rafael; Aguirre-Urreta, Beatriz; Lescano, Marina; Concheyro, Andrea; Vennari, Verónica; Ramos, Victor A.
2017-10-01
The study of calpionellid distribution in the well-documented Las Loicas section of the Vaca Muerta Formation in the Neuquén Basin, Argentine Andes, allows the recognition of the upper part of the Crassicollaria Zone and the lower part of Calpionella Zone across the Jurassic/Cretaceous boundary. The Crassicollaria Zone, Colomi Subzone (Upper Tithonian) is composed of Calpionella alpina Lorenz, Crassicollaria colomi Doben, Crassicollaria parvula Remane, Crassicollaria massutiniana (Colom), Crassicollaria brevis Remane, Tintinnopsella remanei (Borza) and Tintinnopsella carpathica (Murgeanu and Filipescu). The Calpionella Zone, Alpina Subzone (Lower Berriasian) is indicated by the explosion of the small and globular form of Calpionella alpina dominating over very scarce Crassicollaria massutiniana. The FAD of Nannoconus wintereri can be clearly correlated with the upper part of Crassicollaria Zone and the FAD of Nannoconus kamptneri minor with the Calpionella Zone. Additional studies are necessary to establish a more detailed calpionellid biozonation and its correlation with other fossil groups. The present work confirms similar calpionellid bioevents in westernmost Tethys (Cuba and Mexico) and the Andean region, strengthening the Paleo-Pacific-Tethyan connections through the Hispanic Corridor already known from other fossil groups.
Tosdal, R.M.
1990-01-01
The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in this Blythe-Quartzsite region. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust N-NE (015??-035??) over a lower plate metamorphic terrane. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic(?) and Cretaceous sedimentary rocks across the various parts of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79??2 Ma and 70??4 Ma. Results suggest that the thrust system forms the southern boundary of the narow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling. -from Author
Blakey, R.C.; Peterson, F.; Kocurek, G.
1988-01-01
Late Paleozoic and Mesozoic eolian deposits include rock units that were deposited in ergs (eolian sand seas), erg margins and dune fields. They form an important part of Middle Pennsylvanian through Upper Jurassic sedimentary rocks across the Western Interior of the United States. These sedimentary rock units comprise approximately three dozen major eolian-bearing sequences and several smaller ones. Isopach and facies maps and accompanying cross sections indicate that most eolian units display varied geometry and complex facies relations to adjacent non-eolian rocks. Paleozoic erg deposits are widespread from Montana to Arizona and include Pennsylvanian formations (Weber, Tensleep, Casper and Quadrant Sandstones) chiefly in the Northern and Central Rocky Mountains with some deposits (Hermosa and Supai Groups) on the Colorado Plateau. Lower Permian (Wolfcampian) erg deposits (Weber, Tensleep, Casper, Minnelusa, Ingleside, Cedar Mesa, Elephant Canyon, Queantoweap and Esplanade Formations) are more widespread and thicken into the central Colorado Plateau. Middle Permian (Leonardian I) erg deposits (De Chelly and Schnebly Hill Formations) are distributed across the southern Colorado Plateau on the north edge of the Holbrook basin. Leonardian II erg deposits (Coconino and Glorieta Sandstones) are slightly more widespread on the southern Colorado Plateau. Leonardian III erg deposits formed adjacent to the Toroweap-Kaibab sea in Utah and Arizona (Coconino and White Rim Sandstones) and in north-central Colorado (Lyons Sandstone). Recognized Triassic eolian deposits include major erg deposits in the Jelm Formation of central Colorado-Wyoming and smaller eolian deposits in the Rock Point Member of the Wingate Sandstone and upper Dolores Formation, both of the Four Corners region. None of these have as yet received a modern or thorough study. Jurassic deposits of eolian origin extend from the Black Hills to the southern Cordilleran arc terrain. Lower Jurassic intervals include the Jurassic part of the Wingate Sandstone and the Navajo-Aztec-Nugget complex and coeval deposits in the arc terrain to the south and west of the Colorado Plateau. Major Middle Jurassic deposits include the Page Sandstone on the Colorado Plateau and the widespread Entrada Sandstone, Sundance Formation, and coeval deposits. Less extensive eolian deposits occur in the Carmel Formation, Temple Cap Sandstone, Romana Sandstone and Moab Tongue of the Entrada Sandstone, mostly on the central and western Colorado Plateau. Upper Jurassic eolian deposits include the Bluff Sandstone Member and Recapture Member of the Morrison Formation and Junction Creek Sandstone, all of the Four Corners region, and smaller eolian deposits in the Morrison Formation of central Wyoming and apparently coeval Unkpapa Sandstone of the Black Hills. Late Paleozoic and Mesozoic eolian deposits responded to changing climatic, tectonic and eustatic controls that are documented elsewhere in this volume. All of the eolian deposits are intricately interbedded with non-eolian deposits, including units of fluvial, lacustrine and shallow-marine origin, clearly dispelling the myth that eolian sandstones are simple sheet-like bodies. Rather, these units form some of the most complex bodies in the stratigraphic record. ?? 1988.
Total Petroleum Systems of the Carpathian - Balkanian Basin Province of Romania and Bulgaria
Pawlewicz, Mark
2007-01-01
The U.S. Geological Survey defined the Moesian Platform Composite Total Petroleum System and the Dysodile Schist-Tertiary Total Petroleum System, which contain three assessment units, in the Carpathian-Balkanian Basin Province of Romania and Bulgaria. The Moesian Platform Assessment Unit, contained within the Moesian Platform Composite Total Petroleum System, is composed of Mesozoic and Cenozoic rocks within the Moesian platform region of southern Romania and northern Bulgaria and also within the Birlad depression in the northeastern platform area. In Romania, hydrocarbon sources are identified as carbonate rocks and bituminous claystones within the Middle Devonian, Middle Jurassic, Lower Cretaceous, and Neogene stratigraphic sequences. In the Birlad depression, Neogene pelitic strata have the best potential for generating hydrocarbons. In Bulgaria, Middle and Upper Jurassic shales are the most probable hydrocarbon sources. The Romania Flysch Zone Assessment Unit in the Dysodile Schist-Tertiary Total Petroleum System encompasses three structural and paleogeographic subunits within the Pre-Carpathian Mountains region: (1) the Getic depression, a segment of the Carpathian foredeep; (2) the flysch zone of the eastern Carpathian Mountains (also called the Marginal Fold nappe); and (3) the Miocene zone (also called the Sub-Carpathian nappe). Source rocks are interpreted to be Oligocene dysodile schist and black claystone, along with Miocene black claystone and marls. Also part of the Dysodile Schist-Tertiary Total Petroleum System is the Romania Ploiesti Zone Assessment Unit, which includes a zone of diapir folds. This zone lies between the Rimnicu Sarat and Dinibovita valleys and between the folds of the inner Carpathian Mountains and the external flanks of the Carpathian foredeep. The Oligocene Dysodile Schist is considered the main hydrocarbon source rock and Neogene black marls and claystones are likely secondary sources; all are thought to be at their maximum thermal maturation. Undiscovered resources in the Carpathian-Balkanian Basin Province are estimated, at the mean, to be 2,076 billion cubic feet of gas, 1,013 million barrels of oil, and 116 million barrels of natural gas liquids.
Pitman, Janet K.; Steinshouer, D.; Lewan, M.D.
2004-01-01
A regional 3-D total petroleum-system model was developed to evaluate petroleum generation and migration histories in the Mesopotamian Basin and Zagros fold belt in Iraq. The modeling was undertaken in conjunction with Middle East petroleum assessment studies conducted by the USGS. Regional structure maps, isopach and facies maps, and thermal maturity data were used as input to the model. The oil-generation potential of Jurassic source-rocks, the principal known source of the petroleum in Jurassic, Cretaceous, and Tertiary reservoirs in these regions, was modeled using hydrous pyrolysis (Type II-S) kerogen kinetics. Results showed that oil generation in source rocks commenced in the Late Cretaceous in intrashelf basins, peak expulsion took place in the late Miocene and Pliocene when these depocenters had expanded along the Zagros foredeep trend, and generation ended in the Holocene when deposition in the foredeep ceased. The model indicates that, at present, the majority of Jurassic source rocks in Iraq have reached or exceeded peak oil generation and most rocks have completed oil generation and expulsion. Flow-path simulations demonstrate that virtually all oil and gas fields in the Mesopotamian Basin and Zagros fold belt overlie mature Jurassic source rocks (vertical migration dominated) and are situated on, or close to, modeled migration pathways. Fields closest to modeled pathways associated with source rocks in local intrashelf basins were charged earliest from Late Cretaceous through the middle Miocene, and other fields filled later when compression-related traps were being formed. Model results confirm petroleum migration along major, northwest-trending folds and faults, and oil migration loss at the surface.
Geologic map of the Grand Junction Quadrangle, Mesa County, Colorado
Scott, Robert B.; Carrara, Paul E.; Hood, William C.; Murray, Kyle E.
2002-01-01
This 1:24,000-scale geologic map of the Grand Junction 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the junction of the Colorado River and the Gunnison River. Bedrock strata include the Upper Cretaceous Mancos Shale through the Lower Jurassic Wingate Sandstone units. Below the Mancos Shale, which floors the Grand Valley, the Upper and Lower(?)Cretaceous Dakota Formation and the Lower Cretaceous Burro Canyon Formation hold up much of the resistant northeast- dipping monocline along the northeast side of the Uncompahgre uplift. The impressive sequence of Jurassic strata below include the Brushy Basin, Salt Wash, and Tidwell Members of the Upper Jurassic Morrison Formation, the Middle Jurassic Wanakah Formation and informal 'board beds' unit and Slick Rock Member of the Entrada Formation, and the Lower Jurassic Kayenta Formation and Wingate Sandstone. The Upper Triassic Chinle Formation and Early Proterozoic meta-igneous gneiss and migmatitic meta- sedimentary rocks, which are exposed in the Colorado National Monument quadrangle to the west, do not crop out here. The monoclinal dip slope of the northeastern margin of the Uncompahgre uplift is apparently a Laramide structural feature. Unlike the southwest-dipping, high-angle reverse faults in the Proterozoic basement and s-shaped fault- propagation folds in the overlying strata found in the Colorado National Monument 7.5' quadrangle along the front of the uplift to the west, the monocline in the map area is unbroken except at two localities. One locality displays a small asymmetrical graben that drops strata to the southwest. This faulted character of the structure dies out to the northwest into an asymmetric fault-propagation fold that also drops strata to the southwest. Probably both parts of this structure are underlain by a northeast-dipping high-angle reverse fault. The other locality displays a second similar asymmetric fold. No evidence of post-Laramide tilting or uplift exists here, but the antecedent Unaweep Canyon, only 30 km to the south-southwest of the map area, provides clear evidence of Late Cenozoic, if not Pleistocene, uplift. The major geologic hazards in the area include large landslides associated with the dip-slope-underlain, smectite-rich Brushy Basin Member of the Morrison Formation and overlying Dakota and Burro Canyon Formations. Active landslides affect the southern bank of the Colorado River where undercutting by the river and smectitic clays in the Mancos trigger landslides. The Wanakah, Morrison, and Dakota Formations and the Mancos Shale create a significant hazard to houses and other structures by containing expansive smectitic clay. In addition to seasonal spring floods associated with the Colorado and Gunnison Rivers, a serious flash flood hazard associated with sudden summer thunderstorms threatens the intermittent washes that drain the dip slope of the monocline.
Jurassic through Oligocene paleogeography of the Santa Maria basin area, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritsche, A.E.; Yamashiro, D.A.
1991-02-01
Compilation from published reports indicates that the paleogeographic history of the Santa Maria basin area of California (west of the Sur-Nacimiento fault and north of the Santa Ynez Fault) began in the Early Jurassic in an area for to the south with the creation of a spreading-center ophiolite sequence. As the ophiolite rocks moved relatively away from the spreading center, they were covered by Lower Jurassic through Lower Cretaceous basin plain and prograding outer continental margin deposits. During this time, right-lateral movement along faults that were located to the east was transporting the area relatively northward toward its present location.more » A mild tectonic event in the middle of the Cretaceous caused formation of a parallel unconformity. Renewed subsidence in the Late Cretaceous brought deposition in trench, slope, sandy submarine fan, shelf, and ultimately in the eastern part of the area, delta and fluvial environments. During the ensuing Laramide orogeny, significant deformation raised the entire area above sea level and erosion created a major angular unconformity. During the early Tertiary, most of the Santa Maria basin area remained elevated as a forearc highland. The present-day east-west-trending area south of the Santa Ynez River fault was at the time oriented north-south. During the Eocene, this portion of the area was submerged and became a forearc basin that was located to the east of the forearc ridge that served as a source of sediment. The basin filled through the Eocene and Oligocene with submarine fan, sloe, shelf, coastal, and finally fluvial deposits. In the medial Miocene, these forearc basin rocks were rotated clockwise into their present position along the southern margin of the basin and the upper Tertiary Santa maria basin was formed.« less
Pearson, Krystal
2012-01-01
The Upper Cretaceous Austin Chalk forms a low-permeability, onshore Gulf of Mexico reservoir that produces oil and gas from major fractures oriented parallel to the underlying Lower Cretaceous shelf edge. Horizontal drilling links these fracture systems to create an interconnected network that drains the reservoir. Field and well locations along the production trend are controlled by fracture networks. Highly fractured chalk is present along both regional and local fault zones. Fractures are also genetically linked to movement of the underlying Jurassic Louann Salt with tensile fractures forming downdip of salt-related structures creating the most effective reservoirs. Undiscovered accumulations should also be associated with structure-controlled fracture systems because much of the Austin that overlies the Lower Cretaceous shelf edge remains unexplored. The Upper Cretaceous Eagle Ford Shale is the primary source rock for Austin Chalk hydrocarbons. This transgressive marine shale varies in thickness and lithology across the study area and contains both oil- and gas-prone kerogen. The Eagle Ford began generating oil and gas in the early Miocene, and vertical migration through fractures was sufficient to charge the Austin reservoirs.
Geothermal regime and Jurassic source rock maturity of the Junggar basin, northwest China
NASA Astrophysics Data System (ADS)
Nansheng, Qiu; Zhihuan, Zhang; Ershe, Xu
2008-01-01
We analyze the thermal gradient distribution of the Junggar basin based on oil-test and well-logging temperature data. The basin-wide average thermal gradient in the depth interval of 0-4000 m is 22.6 °C/km, which is lower than other sedimentary basins in China. We report 21 measured terrestrial heat flow values based on detailed thermal conductivity data and systematical steady-state temperature data. These values vary from 27.0 to 54.1 mW/m 2 with a mean of 41.8 ± 7.8 mW/m 2. The Junggar basin appears to be a cool basin in terms of its thermal regime. The heat flow distribution within the basin shows the following characteristics. (1) The heat flow decreases from the Luliang Uplift to the Southern Depression; (2) relatively high heat flow values over 50 mW/m 2 are confined to the northern part of the Eastern Uplift and the adjacent parts of the Eastern Luliang Uplift and Central Depression; (3) The lowest heat flow of smaller than 35 mW/m 2 occurs in the southern parts of the basin. This low thermal regime of the Junggar basin is consistent with the geodynamic setting, the extrusion of plates around the basin, the considerably thick crust, the dense lithospheric mantle, the relatively stable continental basement of the basin, low heat generation and underground water flow of the basin. The heat flow of this basin is of great significance to oil exploration and hydrocarbon resource assessment, because it bears directly on issues of petroleum source-rock maturation. Almost all oil fields are limited to the areas of higher heat flows. The relatively low heat flow values in the Junggar basin will deepen the maturity threshold, making the deep-seated widespread Permian and Jurassic source rocks in the Junggar basin favorable for oil and gas generation. In addition, the maturity evolution of the Lower Jurassic Badaowan Group (J 1b) and Middle Jurassic Xishanyao Group (J 2x) were calculated based on the thermal data and burial depth. The maturity of the Jurassic source rocks of the Central Depression and Southern Depression increases with depth. The source rocks only reached an early maturity with a R0 of 0.5-0.7% in the Wulungu Depression, the Luliang Uplift and the Western Uplift, whereas they did not enter the maturity window ( R0 < 0.5%) in the Eastern Uplift of the basin. This maturity evolution will provide information of source kitchen for the Jurassic exploration.
NASA Astrophysics Data System (ADS)
Zhao, G.
2017-12-01
Hangjinqi region is one of the key exploration areas of natural gas in Ordos Basin. The main gas accumulation periods and gas charge dating can be determined through the comprehensive research on the fluid inclusions occurrence characteristics, composition and homogenization temperatures. The results show that: the fluid inclusions in upper palaeozoic sand reservoirs were mainly hosted in quartz overgrowth or cements of fissures of conglomeratic sandstone and medium-fine sandstone. According to the diagenetic stages, composion and homogenization temperatures of fluid inclusions in host minerals, two different phases of hydrocarbon inclusions have been identified. Gas-liquid biphase hydrocarbon inclusions and gas-liquid biphase aqueous inclusion are the main types inclusions with morphology of oval, sub-angular, rectangular, semi-circular and irregular and with gas components of CO2 and CH4. The homogenization temperature of brines inclusions associated with the hydrocarbon inclusions is characterized of continuous distribution and multiple peaks. Three regions such as Shilijiahan, Xinzhao, Shiguhao areas have significant differences in temperature distributions. The integrated analysis of burial and thermo-evolution by combining the employment of homogenization temperature of aqueous inclusions projected on a burial history diagram and hydrocarbon source rock thermal evolution history show that the hydrocarbon charging in Shilijiahan area occurred mainly from Eocene to present. The main accumulation stage in Xinzhao area is from Eocene to present and there may be charging period from late stage of early Jurassic to middle stage of middle Jurassic. The hydrocarbon charging in Shiguhao area occurred mainly from Eocene to present according to the homogenization temperature of fluid inclusions and the features of gas migration.
Functional Morphology at the Mall
ERIC Educational Resources Information Center
Hippensteel, Scott P.
2012-01-01
The primary decorative flooring tile in the Southpark Mall in Charlotte, North Carolina, is fossiliferous limestone that contains Jurassic ammonoids and belemnoids. Visible in these tiles are more than 500 ammonoids, many of which have been cross sectioned equatorially perpendicular to the plane of coiling. Upper-level undergraduate students from…
Stumpf, Sebastian; Ansorge, Jörg; Pfaff, Cathrin; Kriwet, Jürgen
2017-01-01
ABSTRACT A new genus and species of pycnodontiform fishes, Grimmenodon aureum, from marginal marine, marine-brackish lower Toarcian (Harpoceras exaratum ammonite subzone) clay deposits of Grimmen in northeastern Germany is described. The single specimen represents a diagnostic left prearticular dentition characterized by unique tooth arrangement and ornamentation patterns. Grimmenodon aureum, gen. et sp. nov., is the second unambiguously identified pycnodontiform species from the Early Jurassic, in addition to Eomesodon liassicus from the early Lower Jurassic of western Europe. We also report an indeterminate pycnodontiform tooth crown from the upper Pliensbachian (Pleuroceras apyrenum ammonite subzone) of the same site. The material expands the Early Jurassic range of pycnodontiforms significantly northwards and confirms their presence before and immediately following the onset of the Toarcian Oceanic Anoxic Event (T-OAE) in the marginal marine ecosystems south of the Fennoscandian Shield. Moreover, the new records indicate that the Early Jurassic diversity of pycnodontiform fishes was greater than previously assumed and probably equaled that of the Late Triassic. Therefore, it is hypothesized that the Triassic-Jurassic mass extinction event did not affect pycnodontiform fishes significantly. Micro-computed tomography was used to study the internal anatomy of the prearticular of Grimmenodon aureum, gen. et sp. nov. Our results show that no replacement teeth were formed within the tooth-bearing bone but rather were added posteriorly to functional teeth. http://zoobank.org/urn:lsid:zoobank.org:pub:A56BDE9C-40C4-4CFA-9C2E-F5FA35A66F2 Citation for this article: Stumpf, S., J. Ansorge, C. Pfaff, and J. Kriwet. 2017. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: Evidence from a new genus and species, Grimmenodon aureum. Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2017.1344679. PMID:29170576
Stumpf, Sebastian; Ansorge, Jörg; Pfaff, Cathrin; Kriwet, Jürgen
2017-07-04
A new genus and species of pycnodontiform fishes, Grimmenodon aureum , from marginal marine, marine-brackish lower Toarcian ( Harpoceras exaratum ammonite subzone) clay deposits of Grimmen in northeastern Germany is described. The single specimen represents a diagnostic left prearticular dentition characterized by unique tooth arrangement and ornamentation patterns. Grimmenodon aureum , gen. et sp. nov., is the second unambiguously identified pycnodontiform species from the Early Jurassic, in addition to Eomesodon liassicus from the early Lower Jurassic of western Europe. We also report an indeterminate pycnodontiform tooth crown from the upper Pliensbachian ( Pleuroceras apyrenum ammonite subzone) of the same site. The material expands the Early Jurassic range of pycnodontiforms significantly northwards and confirms their presence before and immediately following the onset of the Toarcian Oceanic Anoxic Event (T-OAE) in the marginal marine ecosystems south of the Fennoscandian Shield. Moreover, the new records indicate that the Early Jurassic diversity of pycnodontiform fishes was greater than previously assumed and probably equaled that of the Late Triassic. Therefore, it is hypothesized that the Triassic-Jurassic mass extinction event did not affect pycnodontiform fishes significantly. Micro-computed tomography was used to study the internal anatomy of the prearticular of Grimmenodon aureum , gen. et sp. nov. Our results show that no replacement teeth were formed within the tooth-bearing bone but rather were added posteriorly to functional teeth. http://zoobank.org/urn:lsid:zoobank.org:pub:A56BDE9C-40C4-4CFA-9C2E-F5FA35A66F2 Citation for this article: Stumpf, S., J. Ansorge, C. Pfaff, and J. Kriwet. 2017. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: Evidence from a new genus and species, Grimmenodon aureum . Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2017.1344679.
Caldwell, Michael W; Nydam, Randall L; Palci, Alessandro; Apesteguía, Sebastián
2015-01-27
The previous oldest known fossil snakes date from ~100 million year old sediments (Upper Cretaceous) and are both morphologically and phylogenetically diverse, indicating that snakes underwent a much earlier origin and adaptive radiation. We report here on snake fossils that extend the record backwards in time by an additional ~70 million years (Middle Jurassic-Lower Cretaceous). These ancient snakes share features with fossil and modern snakes (for example, recurved teeth with labial and lingual carinae, long toothed suborbital ramus of maxillae) and with lizards (for example, pronounced subdental shelf/gutter). The paleobiogeography of these early snakes is diverse and complex, suggesting that snakes had undergone habitat differentiation and geographic radiation by the mid-Jurassic. Phylogenetic analysis of squamates recovers these early snakes in a basal polytomy with other fossil and modern snakes, where Najash rionegrina is sister to this clade. Ingroup analysis finds them in a basal position to all other snakes including Najash.
NASA Astrophysics Data System (ADS)
Lawton, T. F.; Molina-Garza, R. S.; Barboza-Gudiño, R.; Rogers, R. D.
2013-05-01
Major sediment dispersal systems on western Pangea evolved in concert with thermal uplift, rift and drift phases of the Gulf of Mexico Basin, and were influenced by development of a continental arc on Pangea's western margin. Existing literature and preliminary data from fieldwork, sandstone petrology and detrital zircon analysis reveal how major drainages in Mexico changed from Late Triassic through Late Jurassic time and offer predictions for the ultimate destinations of sand-rich detritus along the Gulf and paleo-Pacific margins. Late Triassic rivers drained away from and across the present site of the Gulf of Mexico, which was then the location of a major thermal dome, the Texas uplift of recent literature. These high-discharge rivers with relatively mature sediment composition fed a large-volume submarine fan system on the paleo-Pacific continental margin of Mexico. Predictably, detrital zircon age populations are diverse and record sources as far away as the Amazonian craton. This enormous fluvial system was cut off abruptly near the Triassic-Jurassic boundary by extensive reorganization of continental drainages. Early and Middle Jurassic drainage systems had local headwaters and deposited sediment in extensional basins associated with arc magmatism. Redbeds accumulated across northern and eastern Mexico and Chiapas in long, narrow basins whose locations and dimensions are recorded primarily by inverted antiformal massifs. The Jurassic continental successions overlie Upper Triassic strata and local subvolcanic plutons; they contain interbedded volcanic rocks and thus have been interpreted as part of the Nazas continental-margin arc. The detritus of these fluvial systems is volcanic-lithic; syndepositional grain ages are common in the detrital zircon populations, which are mixed with Oaxaquia-derived Permo-Triassic and Grenville age populations. By this time, interior Pangea no longer supplied sediment to the paleo-Pacific margin, possibly because the continental-margin arc blocked westward drainage and detritus was captured in rift basins. Latest Middle Jurassic fluvial systems formed as the Yucatan block rotated counterclockwise and the Gulf of Mexico began to open. Sediment dispersal, partly equivalent to salt deposition in the Gulf, was largely southward in southern Oaxaquia, but large-volume braided river systems on the Maya (Yucatan) block, represented by the Todos Santos Formation in Chiapas, evidently flowed northward along graben axes toward the western part of the Gulf of Mexico Basin. River systems of nuclear Mexico, or Oaxaquia, occupied a broad sedimentary basin west and south of a divide formed adjacent to the translating Maya block. Despite their big-river characteristics, these deposits contain mainly Grenville and Permo-Triassic grains derived from Oaxaquia basement and subordinate Early and Middle Jurassic grains derived from volcanic rocks and plutons of the arc. Early Late Jurassic (Oxfordian) marine flooding of the entire Gulf rim and nuclear Mexico, evidently resulting in part from marginal subsidence adjoining newly-formed oceanic crust, terminated fluvial deposition adjacent to the young Gulf of Mexico.
Paleomagnetism and the assembly of the Mexican subcontinent.
NASA Astrophysics Data System (ADS)
Molina-Garza, R. S.
2008-05-01
The paleomagnetic database for Mexico is still small, but using available data and new results paleomagnetic data can be used to support the following hypothesis: (1) Jurassic anticlockwise rotation of the Chiapas massif and the Yucatan peninsula from a position in the northwest interior of the Golf of Mexico; (2) apparent stability of the Tampico and Coahuila blocks respect to North America for Late Triassic and Jurassic time, allowing for local vertical axis rotations attributed to Cenozoic deformation; (3) clockwise rotation of the Caborca block and the adjacent Jurassic continental arc, without significant north to south latitudinal displacement, between Middle Jurassic and Early Cretaceous time (which argues against the Mojave-Sonora megashear model); and, (4) the apparent accretion of the Guerrero terrane to mainland Mexico after clockwise rotation and transport from a more southern latitude. Paleomagnetic data for the southern Mexico block (SMB) are still difficult to incorporate in reconstructions of western equatorial Pangea. Paleomagnetic data for remagnetized Lower Permian strata and primary directions in igneous rocks of the SMB (crystalline terranes of Oaxaca and Acatlan) suggest stability with respect to North America, which is not consistent with reconstruction of South America closing the Golf region. Alternative explanations require a position for the SMB similar to its present location but at more westerly longitudes. We propose that terranes of the SMB reach their Mesozoic position through mechanisms of extrusion tectonics. Interpretation of Jurassic data for southern Mexico is hindered by incomplete knowledge of the North American APWP and rapid northward drift of the continent. Nonetheless, any model for the evolution of southern Mexico must consider that paleomagnetic data indicate internal deformation of Oaxaquia in pre-Cretaceous time. Paleomagnetic directions reported for Jurassic strata of the Tlaxiaco basin in Oaxaca are interpreted as secondary magnetizations, as they record the same inclination as remagnetized mid-Cretaceous carbonate rocks in the region. Thus previously inferred more northern latitudes for the SMB in Jurassic time are equivocal. The assembly of Mexico is thus the result of Lower Permian tectonics (during and following the Ouachita collision), Late Triassic-Middle Jurassic tectonics (during break-up of Pangea and opening of the Golf of Mexico); and Middle-Upper Cretaceous Cordilleran style terrane accretion.
NASA Astrophysics Data System (ADS)
Boekhout, Flora; Sempere, Thierry; Spikings, Richard; Schaltegger, Urs
2010-05-01
The Ilo batholith (17°00 - 18°30 S) crops out in an area of about 20 by 100 km, along the coast of southern Peru. This batholith is emplaced into the ‘Chocolate‘ Formation of late Permian to middle Jurassic age, which consists of more than 1000 m of basaltic and andesitic lavas, with interbedded volcanic agglomerates and breccias. The Ilo Batholith is considered to be a rarely exposed fragment of the Jurassic arc in Peru. Our aim is to reconstruct the magmatic evolution of this batholith, and place it within the context of long-lasting magma genesis along the active Andean margin since the Paleozoic. Sampling for dating and geochemical analyses was carried out along several cross sections through the batholith that were exposed by post-intrusion eastward tilting of 20-30°. Sparse previous work postulates early to middle Jurassic and partially early Cretaceous emplacement, on the basis of conventional K/Ar and 40Ar/39Ar dating methods in the Ilo area. Twenty new U-Pb zircon ages (LA-ICP-MS and CA-ID-TIMS) accompanied by geochemical data suggests the Ilo batholith formed via the amalgamation of middle Jurassic and early Cretaceous, subduction-related plutons. Preliminary Hf isotope studies reveal a primitive mantle source for middle Jurassic intrusions. Additional Sr, Nd and Hf isotope analyses are planned to further resolve the source regions of different pulses of plutonic activity. We strongly suggest that batholith emplacement was at least partly coeval with the emplacement of the late Permian to middle Jurassic Chocolate Formation, which was deposited in an extensional tectonic regime. Our age results and geochemical signature fit into the scheme of episodic emplacement of huge amounts of subduction related magmatism that is observed throughout the whole Andean event, particularly during the middle Jurassic onset of the first Andean cycle (southern Peru, northern Chile and southern Argentina). Although the exact geodynamic setting remains to be precisely defined, these events can be linked to extensional episodes during the breakup of Pangea, which commenced at 230-220 Ma along the western South American margin, with a period of rifting, and culminated in the Jurassic with arc and back-arc extension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyagah, K.; Cloeter, J.J.; Maende, A.
The Lamu basin occupies the coastal onshore and offshore areas of south-east Kenya. This fault bounded basin formed as a result of the Paleozoic-early Mesozoic phase of rifting that developed at the onset of Gondwana dismemberment. The resultant graben was filled by Karroo (Permian-Early Jurassic) continental siliciclastic sediments. Carbonate deposits associated with the Tethyan sea invasion, dominate the Middle to Late Jurassic basin fill. Cessation of the relative motion between Madagascar and Africa in the Early Cretaceous, heralded passive margin development and deltaic sediment progradation until the Paleogene. Shallow seas transgressed the basin in the Miocene when another carbonate regimemore » prevailed. The basin depositional history is characterized by pulses of transgressive and regressive cycles, bounded by tectonically enhanced unconformities dividing the total sedimentary succession into discrete megasequences. Source rock strata occur within Megasequence III (Paleogene) depositional cycle and were lowered into the oil window in Miocene time, when the coastal parts of the basin experienced the greatest amount of subsidence. The tectono-eustatic pulses of the Tertiary brought about source and reservoir strata into a spatial relationship in which hydrocarbons could be entrapped. A basement high on the continental shelf has potential for Karroo sandstone and Jurassic limestone reservoirs. Halokinesis of Middle Jurassic salt in Miocene time provides additional prospects in the offshore area. Paleogene deltaic sands occur in rotated listric fault blacks. A Miocene reef Play coincides with an Eocene source rock kitchen.« less
The Middle Jurassic microflora from El Maghara N° 4 borehole, Northern Sinai, Egypt
NASA Astrophysics Data System (ADS)
Mohsen, Sayed Abdel
The coal bearing formation in El Maghara area, northern Sinai, yielded abundant, diverse and generally well preserved spores, pollen and marine microflora. The palynological analysis of the fine clastic sediments in this formation yielded (71) species related to (44) genera. Three different palynological assemblage zones can be distinguished. The sediments which contain lower and the upper assemblage zones bearing the coal seems, were deposited in non-marine (swamp) environment. In the middle assemblage zone few marine microflora can be identified, indicating a coastal near shore marine environment. Compared with other palynologic data obtained from Egypt and other countries, the three described assemblage zones belong to Middle Jurassic (Bathonian) age.
Grantz, Arthur; Eittreim, Stephen L.; Whitney, O.T.
1979-01-01
The continental margin north of Alaska is of Atlantic type. It began to form probably in Early Jurassic time but possibly in middle Early Cretaceous time, when the oceanic Canada Basin of the Arctic Ocean is thought to have opened by rifting about a pole of rotation near the Mackenzie Delta. Offsets of the rift along two fracture zones are thought to have divided the Alaskan margin into three sectors of contrasting structure and stratigraphy. In the Barter Island sector on the east and the Chukchi sector on the west the rift was closer to the present northern Alaska mainland than in the Barrow sector, which lies between them. In the Barter Island and Chukchi sectors the continental shelf is underlain by prisms of clastic sedimentary rocks that are inferred to include thick sections of Jurassic and Neocomian (lower Lower Cretaceous) strata of southern provenance. In the intervening Barrow sector the shelf is underlain by relatively thin sections of Jurassic and Neocomian strata derived from northern sources that now lie beneath the outer continental shelf. The rifted continental margin is overlain by a prograded prism of Albian (upper Lower Cretaceous) to Tertiary clastic sedimentary rocks that comprises the continental terrace of the western Beaufort and northern Chukchi Seas. On the south the prism is bounded by Barrow arch, which is a hingeline between the northward-tilted basement surface beneath the continental shelf of the western Beaufort Sea and the southward-tilted Arctic Platform of northern Alaska. The Arctic platform is overlain by shelf clastic and carbonate strata of Mississippian to Cretaceous age, and by Jurassic and Cretaceous clastic strata of the Colville foredeep. Both the Arctic platform and Colville foredeep sequences extend from northern Alaska beneath the northern Chukchi Sea. At Herald fault zone in the central Chukchi Sea they are overthrust by more strongly deformed Cretaceous to Paleozoic sedimentary rocks of Herald arch, which trends northwest from Cape Lisburne. Hope basin, an extensional intracontinental sedimentary basin of Tertiary age, underlies the Chukchi Sea south of Herald arch.
Geologic map of Colorado National Monument and adjacent areas, Mesa County, Colorado
Scott, Robert B.; Harding, Anne E.; Hood, William C.; Cole, Rex D.; Livaccari, Richard F.; Johnson, James B.; Shroba, Ralph R.; Dickerson, Robert P.
2001-01-01
New 1:24,000-scale geologic mapping in the Colorado National Monument Quadrangle and adjacent areas, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of and data for the stratigraphy, structure, geologic hazards in the area from the Colorado River in Grand Valley onto the Uncompahgre Plateau. The plateau drops abruptly along northwest-trending structures toward the northeast 800 m to the Redlands area and the Colorado River in Grand Valley. In addition to common alluvial and colluvial deposits, surficial deposits include Holocene and late Pleistocene charcoal-bearing valley-fill deposits, late to middle Pleistocene river-gravel terrace deposits, Holocene to middle Pleistocene younger, intermediate, and old fan-alluvium deposits, late to middle Pleistocene local gravel deposits, Holocene to late Pleistocene rock-fall deposits, Holocene to middle Pleistocene young and old landslide deposits, Holocene to late Pleistocene sheetwash deposits and eolian deposits, and Holocene Cienga-type deposits. Only the lowest part of the Upper Cretaceous Mancos Shale is exposed in the map area near the Colorado River. The Upper and Lower? Cretaceous Dakota Formation and the Lower Cretaceous Burro Canyon Formation form resistant dipslopes in the Grand Valley and a prominent ridge on the plateau. Less resistant strata of the Upper Jurassic Morrison Formation consisting of the Brushy Basin, Salt Wash, and Tidwell Members form slopes on the plateau and low areas below the mountain front of the plateau. The Middle Jurassic Wanakah Formation nomenclature replaces the previously used Summerville Formation. Because an upper part of the Middle Jurassic Entrada Formation is not obviously correlated with strata found elsewhere, it is therefore not formally named; however, the lower rounded cliff former Slickrock Member is clearly present. The Lower Jurassic silica-cemented Kayenta Formation forms the cap rock for the Lower Jurassic carbonate-cemented Wingate Sandstone, which forms the impressive cliffs of the monument. The Upper Triassic Chinle Formation was deposited on the eroded and weathered Middle Proterozoic meta-igneous gneiss, pegmatite dikes, and migmatitic gneiss. Structurally the area is deceptively challenging. Nearly flat-lying strata on the plateau are folded by northwest-trending fault-propagation folds into at least two S-shaped folds along the mountain front of the plateau. Strata under Grand Valley dip at about 6 degrees to the northeast. In the absence of local evidence, the uplifted plateau is attributed to Laramide deformation by dated analogous structures elsewhere in the Colorado Plateau. The major exposed fault records high-angle reverse relationships in the basement rocks but dissipates strain as a triangular zone of distributed microfractures and cataclastic flow into overlying Mesozoic strata that absorb the fault strain, leaving only folds. Evidence for younger, probably late Pliocene or early Pleistocene, uplift does exist at the antecedent Unaweep Canyon south and east of the map area. To what degree this younger deformation affected the map area is unknown. Several geologic hazards affect the area. Middle and late Pleistocene landslides involving the smectite-bearing Brushy Basin Member of the Morrison Formation are extensive on the plateau and common in the Redlands below the plateau. Expansive clay in the Brushy Basin and other strata create foundation stability problems for roads and homes. Flash floods create a serious hazard to people on foot in narrow canyons in the monument and to homes close to water courses downstream from narrow restrictions close to the monument boundary.
Record of massive upwellings from the Pacific large low shear velocity province
NASA Astrophysics Data System (ADS)
Madrigal, Pilar; Gazel, Esteban; Flores, Kennet E.; Bizimis, Michael; Jicha, Brian
2016-11-01
Large igneous provinces, as the surface expression of deep mantle processes, play a key role in the evolution of the planet. Here we analyse the geochemical record and timing of the Pacific Ocean Large Igneous Provinces and preserved accreted terranes to reconstruct the history of pulses of mantle plume upwellings and their relation with a deep-rooted source like the Pacific large low-shear velocity Province during the Mid-Jurassic to Upper Cretaceous. Petrological modelling and geochemical data suggest the need of interaction between these deep-rooted upwellings and mid-ocean ridges in pulses separated by ~10-20 Ma, to generate the massive volumes of melt preserved today as oceanic plateaus. These pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption.
Paléogéographie du Jurassique supérieur au sud du choot El Hodna, Algérie
NASA Astrophysics Data System (ADS)
Aissaoui, D. M.
The Upper Jurassic outcrops as isolated mounts along the southern end of chott el Hodna, Algeria. They consist mainly on shallow platform deposited limestones immediately north (Bout Taleb) and east (Aures) of chott el Hodna, the carbonates of the same age are pelagic and deposited within basin or external platform respectively. Detailed study of Meharga-Fnoud series demonstrates that the shallow carbonate sedimentation in this sector is interrupted by periodic emersions as indicated by vadose diagenesis (birds-eyes, opened burrows, evaporite and dolomite, vadose silts etc). The proposed paleogeography locates the internal jurassic shoreline near the present southern limit of chott el Hodna. Each maximal extension of the emersion leads to the formation of a tidal flat whose origin is not associated with a reefal nor a sedimentary barrier. The emersions are mainly favored by the large dimension and the absence of significant submarine relief within the Jurassic platform. Each emersion starts in the north then progrades southwards by lateral accretions. Its progression is interrupted by deep tectonic reactivation which provokes marine transgression over the tidal flat. One of the main interest of the Jurassic paleogeography in this region concerns the association between the tidal flat and an extensive dolomitization which may transform limestones precursors into good reservoirs.
New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem
NASA Astrophysics Data System (ADS)
Luo, Zhe-Xi; Meng, Qing-Jin; Grossnickle, David M.; Liu, Di; Neander, April I.; Zhang, Yu-Guang; Ji, Qiang
2017-08-01
Stem mammaliaforms are forerunners to modern mammals, and they achieved considerable ecomorphological diversity in their own right. Recent discoveries suggest that eleutherodontids, a subclade of Haramiyida, were more species-rich during the Jurassic period in Asia than previously recognized. Here we report a new Jurassic eleutherodontid mammaliaform with an unusual mosaic of highly specialized characteristics, and the results of phylogenetic analyses that support the hypothesis that haramiyidans are stem mammaliaforms. The new fossil shows fossilized skin membranes that are interpreted to be for gliding and a mandibular middle ear with a unique character combination previously unknown in mammaliaforms. Incisor replacement is prolonged until well after molars are fully erupted, a timing pattern unique to most other mammaliaforms. In situ molar occlusion and a functional analysis reveal a new mode of dental occlusion: dual mortar-pestle occlusion of opposing upper and lower molars, probably for dual crushing and grinding. This suggests that eleutherodontids are herbivorous, and probably specialized for granivory or feeding on soft plant tissues. The inferred dietary adaptation of eleutherodontid gliders represents a remarkable evolutionary convergence with herbivorous gliders in Theria. These Jurassic fossils represent volant, herbivorous stem mammaliaforms associated with pre-angiosperm plants that appear long before the later, iterative associations between angiosperm plants and volant herbivores in various therian clades.
New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem.
Luo, Zhe-Xi; Meng, Qing-Jin; Grossnickle, David M; Liu, Di; Neander, April I; Zhang, Yu-Guang; Ji, Qiang
2017-08-17
Stem mammaliaforms are forerunners to modern mammals, and they achieved considerable ecomorphological diversity in their own right. Recent discoveries suggest that eleutherodontids, a subclade of Haramiyida, were more species-rich during the Jurassic period in Asia than previously recognized. Here we report a new Jurassic eleutherodontid mammaliaform with an unusual mosaic of highly specialized characteristics, and the results of phylogenetic analyses that support the hypothesis that haramiyidans are stem mammaliaforms. The new fossil shows fossilized skin membranes that are interpreted to be for gliding and a mandibular middle ear with a unique character combination previously unknown in mammaliaforms. Incisor replacement is prolonged until well after molars are fully erupted, a timing pattern unique to most other mammaliaforms. In situ molar occlusion and a functional analysis reveal a new mode of dental occlusion: dual mortar-pestle occlusion of opposing upper and lower molars, probably for dual crushing and grinding. This suggests that eleutherodontids are herbivorous, and probably specialized for granivory or feeding on soft plant tissues. The inferred dietary adaptation of eleutherodontid gliders represents a remarkable evolutionary convergence with herbivorous gliders in Theria. These Jurassic fossils represent volant, herbivorous stem mammaliaforms associated with pre-angiosperm plants that appear long before the later, iterative associations between angiosperm plants and volant herbivores in various therian clades.
Butler, Richard J.; Galton, Peter M.; Porro, Laura B.; Chiappe, Luis M.; Henderson, Donald M.; Erickson, Gregory M.
2010-01-01
The extremes of dinosaur body size have long fascinated scientists. The smallest (<1 m length) known dinosaurs are carnivorous saurischian theropods, and similarly diminutive herbivorous or omnivorous ornithischians (the other major group of dinosaurs) are unknown. We report a new ornithischian dinosaur, Fruitadens haagarorum, from the Late Jurassic of western North America that rivals the smallest theropods in size. The largest specimens of Fruitadens represent young adults in their fifth year of development and are estimated at just 65–75 cm in total body length and 0.5–0.75 kg body mass. They are thus the smallest known ornithischians. Fruitadens is a late-surviving member of the basal dinosaur clade Heterodontosauridae, and is the first member of this clade to be described from North America. The craniodental anatomy and diminutive body size of Fruitadens suggest that this taxon was an ecological generalist with an omnivorous diet, thus providing new insights into morphological and palaeoecological diversity within Dinosauria. Late-surviving (Late Jurassic and Early Cretaceous) heterodontosaurids are smaller and less ecologically specialized than Early (Late Triassic and Early Jurassic) heterodontosaurids, and this ecological generalization may account in part for the remarkable 100-million-year-long longevity of the clade. PMID:19846460
Dumoulin, Julie A.; Bown, Paul R.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.
1992-01-01
Sediments from the Argo Abyssal Plain (AAP), northwest of Australia, are the oldest known from the Indian Ocean and were recovered from ODP Site 765 and DSDP Site 261. New biostratigraphic and sedimentologic data from these sites, as well as reinterpretations of earlier findings, indicate that basal sediments at both localities are of Late Jurassic age and delineate a history of starved sedimentation punctuated by periodic influx of calcareous pelagic turbidites.Biostratigraphy and correlation of Upper Jurassic-Lower Cretaceous sediments is based largely on calcareous nannofossils. Both sites yielded variably preserved nannofossil successions ranging from Tithonian to Hauterivian at Site 765 and Kimmeridgian to Hauterivian at Site 261. The nannofloras are comparable to those present in the European and Atlantic Boreal and Tethyan areas, but display important differences that reflect biogeographic differentiation. The Argo region is thought to have occupied a position at the southern limit of the Tethyan nannofloral realm, thus yielding both Tethyan and Austral biogeographic features.Sedimentary successions at the two sites are grossly similar, and differences largely reflect Site 765 's greater proximity to the continental margin. Jurassic sediments were deposited at rates of about 2 m/m.y. near the carbonate compensation depth (CCD) and contain winnowed concentrations of inoceramid prisms and nannofossils, redeposited layers rich in calcispheres and calcisphere debris, manganese nodules, and volcanic detritus. Lower Cretaceous and all younger sediments accumulated below the CCD at rates that were highest (about 20 m/m.y.) during mid-Cretaceous and Neogene time. Background sediment in this interval is noncalcareous claystone; turbidites dominate the sequence and are thicker and coarser grained at Site 765.AAP turbidites consist mostly of calcareous and siliceous biogenic components and volcanogenic smectite clay; they were derived from relatively deep parts of the continental margin that lay below the photic zone, but above the CCD. The Jurassic-Lower Cretaceous section is about the same thickness across the AAP; turbidites in this interval appear to have had multiple sources along the Australian margin. The Upper Cretaceous-Cenozoic section, however, is three times thicker at Site 765 than at Site 261; turbidites in this interval were derived predominantly from the south.Patterns of sedimentation across the AAP have been influenced by shifts in sea level, the CCD, and configuration of the continental margin. Major pulses of calcareous turbidite deposition occurred during Valanginian, Aptian, and Neogene time—all periods of eustatic lowstands and depressed CCD levels. Sediment redeposited on the AAP has come largely from the Australian outer shelf, continental slope, or rise, rather than the continent itself. Most terrigenous detritus was trapped in epicontinental basins that have flanked northwestern Australia since the early Mesozoic.
Carbonate-evaporite sequences of the late Jurassic, southern and southwestern Arabian Gulf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsharhan, A.S.; Whittle, G.L.
1995-11-01
The carbonate-evaporite sequences of the Upper Jurassic Arab and overlying Hith formations in the southern and southwestern Arabian Gulf form many supergiant and giant fields that produce from the Arab Formation and are excellent examples of a classic reservoir/seal relationship. The present-day sabkha depositional setting that extends along most of the southern and southwestern coasts of the Arabian Gulf provides an analog to these Upper Jurassic sedimentary rocks. In fact, sabkha-related diagenesis of original grain-supported sediments in the Arab and Hith formations has resulted in five distinct lithofacies that characterize the reservoir/seal relationship: (1) oolitic/peloidal grainstone, (2) dolomitic grainstone, (3)more » dolomitic mudstone, (4) dolomitized grainstone, and (5) massive anhydrite. Interparticle porosity in grainstones and dolomitic grainstones and intercrystalline porosity in dolomitized rocks provide the highest porosity in the study area. These sediments accumulated in four types of depositional settings: (1) supratidal sabkhas, (2) intertidal mud flats and stromatolitic flats, (3) shallow subtidal lagoons, and (4) shallow open-marine shelves. The diagenetic history of the Arab and Hith formations in the southern and southwestern Arabian Gulf suggests that the anhydrite and much of the dolomitization are a result of penecontemporaneous sabkha diagenesis. The character and timing of the paragenetic events are responsible for the excellent porosity of the Arab Formation and the lack of porosity in the massive anhydrites of the Hith, which together result in the prolific hydrocarbon sequences of these formations.« less
NASA Astrophysics Data System (ADS)
Bordy, Emese M.; Catuneanu, Octavian
2002-08-01
The Karoo Supergroup in the Tuli Basin (South Africa) consists of a sedimentary sequence composed of four stratigraphic units, namely the Basal, Middle and Upper units, and Clarens Formation. The units were deposited in continental settings from approximately Late Carboniferous to Middle Jurassic. This paper focuses on the Clarens Formation, which was examined in terms of sedimentary facies and palaeo-environments based on evidence provided by primary sedimentary structures, palaeo-flow measurements and palaeontological findings. Two main facies associations have been identified: (i) massive and large-scale planar cross-bedded sandstones of aeolian origin; and (ii) horizontally and cross-stratified sandstones of fluvial origin. Most of the sandstone lithofacies of the Clarens Formation were generated as transverse aeolian dunes produced by northwesterly winds in a relatively wet erg milieu. Direct evidence of aquatic subenvironments comes from local small ephemeral stream deposits, whereas palaeontological data provide indirect evidence. Fossils of the Clarens Formation include petrified logs of Agathoxylon sp. wood type and several trace fossils which were produced by insects and vertebrates. The upper part of the Clarens Formation lacks both direct and indirect evidence of aquatic conditions, and this suggests aridification that led to the dominance of dry sand sea conditions.
NASA Astrophysics Data System (ADS)
Michalík, Jozef; Reháková, Daniela; Grabowski, Jacek; Lintnerová, Otília; Svobodová, Andrea; Schlögl, Ján; Sobień, Katarzyna; Schnabl, Petr
2016-08-01
A well preserved Upper Tithonian-Lower Berriasian Strapkova sequence of hemipelagic limestones improves our understanding of environmental changes occurring at the Jurassic/Cretaceous boundary in the Western Carpathians. Three dinoflagellate and four calpionellid zones have been recognized in the section. The onset of the Alpina Subzone of the standard Calpionella Zone, used as a marker of the Jurassic/Cretaceous boundary is defined by morphological change of Calpionella alpina tests. Calpionellids and calcified radiolarians numerically dominate in microplankton assemblages. The first occurrence of Nannoconus wintereri indicates the beginning of the nannofossil zone NJT 17b Subzone. The FO of Nannoconus steinmannii minor was documented in the lowermost part of the Alpina Subzone. This co-occurrence of calpionellid and nannoplankton events along the J/K boundary transition is typical of other Tethyan sections. Correlation of calcareous microplankton, of stable isotopes (C, O), and TOC/CaCO3 data distribution was used in the characterization of the J/K boundary interval. δ13C values (from +1.09 to 1.44 ‰ VPDB) do not show any temporal trends and thus show a relatively balanced carbon-cycle regime in sea water across the Jurassic/Cretaceous boundary. The presence of radiolarian laminites, interpreted as contourites, and relatively high levels of bioturbation in the Berriasian prove oxygenation events of bottom waters. The lower part of the Crassicolaria Zone (up to the middle part of the Intermedia Subzone) correlates with the M19r magnetozone. The M19n magnetozone includes not only the upper part of the Crassicollaria Zone and lower part of the Alpina Subzone but also the FO of Nannoconus wintereri and Nannoconus steinmannii minor. The reverse Brodno magnetosubzone (M19n1r) was identified in the uppermost part of M19n. The top of M18r and M18n magnetozones are located in the upper part of the Alpina Subzone and in the middle part of the Ferasini Subzone, respectively. The Ferasini/Elliptica subzonal boundary is located in the lowermost part of the M17r magnetozone. A little bit higher in the M17r magnetozone the FO of Nannoconus steinmannii steinmannii was identified.
NASA Astrophysics Data System (ADS)
Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; McInnes, Brent I. A.; Li, JinXiang; Zhao, JunXing
2018-03-01
Arc magmas are more oxidized than mid-ocean ridge basalts; however, there is continuing debate as to whether this higher oxidation state is inherited from the source magma or developed during late-stage magmatic differentiation processes. Well-constrained Late Jurassic to Early Cretaceous arc-related intermediate to felsic rocks derived from distinct magma sources provide us with a good opportunity to resolve this enigma. A series of granitoids from the western Central Lhasa subterrane were analyzed for whole-rock magnetic susceptibility, Fe2O3/FeO ratios, and trace elements in zircon. Compared to Late Jurassic samples (1.8 ± 2.0 × 10-4 emu g-1 oe-1, Fe3+/Fetotal = 0.32 ± 0.07, zircon Ce4+/Ce3+* = 15.0 ± 13.4), Early Cretaceous rocks show higher whole-rock magnetic susceptibility (5.8 ± 2.5 × 10-4 emu g-1 oe-1), Fe3+/Fetotal ratios (0.43 ± 0.04), and zircon Ce4+/Ce3+* values (23.9 ± 22.3). In addition, positive correlations among whole-rock magnetic susceptibility, Fe3+/Fetotal ratios, and zircon Ce4+/Ce3+* reveal a slight increase in oxidation state from fO2 = QFM to NNO in the Late Jurassic to fO2 = ˜NNO in the Early Cretaceous. Obvious linear correlation between oxidation indices (whole-rock magnetic susceptibility, zircon Ce4+/Ce3+*) and source signatures (zircon ɛHf(t), TDM C ages) indicates that the oxidation state was predominantly inherited from the source with only a minor contribution from magmatic differentiation. Thus, the sources for both the Late Jurassic and Early Cretaceous rocks were probably influenced by mantle wedge-derived magma, contributing to the increased fO2. Compared to ore-forming rocks at giant porphyry Cu deposits, the relatively low oxidation state (QFM to NNO) and negative ɛHf(t) (-16 to 0) of the studied granitoids implies relative infertility. However, this study demonstrates two potential fast and effective indices ( fO2 and ɛHf(t)) to evaluate the fertility of granitoids for porphyry-style mineralization. In an exploration context for the west Central Lhasa subterrane, features indicative of potential fertility might include more oxidized, positive ɛHf(t), young rocks (<130 Ma).
Tetradactyl Footprints of an Unknown Affinity Theropod Dinosaur from the Upper Jurassic of Morocco
Nouri, Jaouad; Díaz-Martínez, Ignacio; Pérez-Lorente, Félix
2011-01-01
Background New tetradactyl theropod footprints from Upper Jurassic (Oxfordian-Kimmeridgian) have been found in the Iouaridène syncline (Morocco). The tracksites are at several layers in the intermediate lacustrine unit of Iouaridène Formation. The footprints were named informally in previous works “Eutynichnium atlasipodus”. We consider as nomen nudum. Methodology/Principal Findings Boutakioutichnium atlasicus ichnogen. et ichnosp. nov. is mainly characterized by the hallux impression. It is long, strong, directed medially or forward, with two digital pads and with the proximal part of the first pad in lateral position. More than 100 footprints in 15 trackways have been studied with these features. The footprints are large, 38–48 cm in length, and 26–31 cm in width. Conclusions/Significance Boutakioutichnium mainly differs from other ichnotaxa with hallux impression in lacking metatarsal marks and in not being a very deep footprint. The distinct morphology of the hallux of the Boutakioutichnium trackmaker –i.e. size and hallux position- are unique in the dinosaur autopodial record to date. PMID:22180775
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saner, S.; Abdulghani, W.M.
1995-03-01
Lithostratigraphy and depositional environment of the Arab-C carbonate in eastern Saudi Arabia were studied using cores and well logs from the Abqaiq oil field. A 275-m Upper Jurassic evaporite sequence occurs between the Sulaiy-Yamama (Thamama Group) and the Tuwaiq-Hanifa-Arab-D (Tuwaiq Group) carbonate sequences. Dolomite and limestone interbeds of 1-30 m in thickness within the evaporite sequence are continuous over long distances and have uniform thicknesses and log characteristics indicating an aggradational type of deposition. The lithologically heterogeneous Arab-C carbonate is the thickest interbed, reaching 26-30 m in thickness. Lithology types recognized in the Arab-C carbonate are (1) ooid bioclast grainstone,more » (2) oolite grainstone, (3) pellet grainstone, (4) pellet packstone, (5) skeletal wackestone, (6) mudstone, (7) anhydritic limestone, and (8) dolomite. The Arab-C carbonate has been divided into seven layers based on lithology and porosity variations. Four layers (1,3,5,7) are porous calcarenitic carbonates and the other three layers are nonporous.« less
NASA Astrophysics Data System (ADS)
Donohoo-Hurley, L. L.; Geissman, J. W.; Lucas, S. G.; Roy, M.
2006-12-01
Paleomagnetic data from rocks exposed on and off the Colorado Plateau provide poles that young westward during the Late Triassic (to about 52^{O} E longitude) and young eastward during the Early Jurassic. This pattern has been used to posit the existence of a J-1 cusp in the North American APW path at the Triassic- Jurassic boundary (TJB), at about 199.6 Ma. Considerable debate has focused on the morphology and placement of the J-1 cusp due to poorly exposed and/or incompletely sampled sections, debates about the magnitude of Colorado Plateau rotation, and disagreements regarding stratigraphic relationships. Red beds of the Whitmore Point (~25 m of mostly lacustrine deposits) and Dinosaur Canyon (~55 m of hematitic fluvial sandstones and siltstones) members of the Moenave Formation (MF) are inferred to have been deposited across the TJB based on palynostratigraphy and vertebrate biostratigraphy. Two previously unsampled sections (Leeds and Warner Valley) of the MF are well exposed near St. George, Utah, and located in the transition zone that defines the western boundary of the Colorado Plateau. Preliminary data from samples collected from the Whitmore Point and Dinosaur Canyon members yield exclusively normal polarity magnetizations, which is consistent with previous studies and the normal polarity TJB magnetozone. Thermal demagnetization response suggests that the remanence is carried mainly in hematite. The degree of hematite pigmentation varies in both sections, and several Leeds sites show a weak overprint component that unblocks by 400^{O}-450^{O} C, with a higher unblocking temperature components, consistent with an Early Triassic Late Jurassic age that fully unblock around 670^{O}-680^{O} C. Individual beds (treated as specific sites) in part of the Dinosaur Canyon Member yield site mean directions with declinations between about 020 and 030, and may define the easternmost position (i.e. 60-50^{O} E latitude) of the NAMAPW path and thus the approximate the TJB. This interpretation is consistent with recent biostratigraphic arguments that the TJB lies in the upper part of the Dinosaur Canyon Member. The Whitmore Point Member yields more north-directed declinations, suggesting an earliest Jurassic (post-cusp) age. It is likely that more complete data from these and related sections will provide a further refinement of the stratigraphic placement of the TJB and the geometry of the J-1 cusp.
Jiang, D.-X.; Wang, Y.-D.; Robbins, E.I.; Wei, J.; Tian, N.
2008-01-01
The Tarim Basin in Northwest China hosts petroleum reservoirs of Cambrian, Ordovician, Carboniferous, Triassic, Jurassic, Cretaceous and Tertiary ages. The sedimentary thickness in the basin reaches about 15 km and with an area of 560000 km2, the basin is expected to contain giant oil and gas fields. It is therefore important to determine the ages and depositional environments of the petroleum source rocks. For prospective evaluation and exploration of petroleum, palynological investigations were carried out on 38 crude oil samples collected from 22 petroleum reservoirs in the Tarim Basin and on additionally 56 potential source rock samples from the same basin. In total, 173 species of spores and pollen referred to 80 genera, and 27 species of algae and fungi referred to 16 genera were identified from the non-marine Mesozoic sources. By correlating the palynormorph assemblages in the crude oil samples with those in the potential source rocks, the Triassic and Jurassic petroleum source rocks were identified. Furthermore, the palynofloras in the petroleum provide evidence for interpretation of the depositional environments of the petroleum source rocks. The affinity of the miospores indicates that the petroleum source rocks were formed in swamps in brackish to lacustrine depositional environments under warm and humid climatic conditions. The palynomorphs in the crude oils provide further information about passage and route of petroleum migration, which is significant for interpreting petroleum migration mechanisms. Additionally, the thermal alternation index (TAI) based on miospores indicates that the Triassic and Jurassic deposits in the Tarim Basin are mature petroleum source rocks. ?? Cambridge University Press 2008.
Ulmishek, Gregory F.
2004-01-01
The Amu-Darya basin is a highly productive petroleum province in Turkmenistan and Uzbekistan (former Soviet Union), extending southwestward into Iran and southeastward into Afghanistan. The basin underlies deserts and semideserts north of the high ridges of the Kopet-Dag and Bande-Turkestan Mountains. On the northwest, the basin boundary crosses the crest of the Karakum regional structural high, and on the north the basin is bounded by the shallow basement of the Kyzylkum high. On the east, the Amu-Darya basin is separated by the buried southeast spur of the Gissar Range from the Afghan-Tajik basin, which is deformed into a series of north-south-trending synclinoria and anticlinoria. The separation of the two basins occurred during the Neogene Alpine orogeny; earlier, they were parts of a single sedimentary province. The basement of the Amu-Darya basin is a Hercynian accreted terrane composed of deformed and commonly metamorphosed Paleozoic rocks. These rocks are overlain by rift grabens filled with Upper Permian-Triassic rocks that are strongly compacted and diagenetically altered. This taphrogenic sequence, also considered to be a part of the economic basement, is overlain by thick Lower to Middle Jurassic, largely continental, coal-bearing rocks. The overlying Callovian-Oxfordian rocks are primarily carbonates. A deep-water basin surrounded by shallow shelves with reefs along their margins was formed during this time and reached its maximum topographic expression in the late Oxfordian. In Kimmeridgian-Tithonian time, the basin was filled with thick evaporites of the Gaurdak Formation. The Cretaceous-Paleogene sequence is composed chiefly of marine clastic rocks with carbonate intervals prominent in the Valanginian, Barremian, Maastrichtian, and Paleocene stratigraphic units. In Neogene time, the Alpine orogeny on the basin periphery resulted in deposition of continental clastics, initiation of new and rejuvenation of old faults, and formation of most structural traps. A single total petroleum system is identified in the Amu-Darya basin. The system is primarily gas prone. Discovered gas reserves are listed by Petroconsultants (1996) at about 230 trillion cubic feet, but recent discoveries and recent reserve estimates in older fields should increase this number by 40 to 50 trillion cubic feet. Reserves of liquid hydrocarbons (oil and condensate) are comparatively small, less than 2 billion barrels. Most of the gas reserves are concentrated in two stratigraphic intervals, Upper Jurassic carbonates and Neocomian clastics, each of which contains about one-half of the reserves. Reserves of other stratigraphic units?from Middle Jurassic to Paleogene in age?are relatively small. Source rocks for the gas are the Lower to Middle Jurassic clastics and coal and Oxfordian basinal black shales in the east-central part of the basin. The latter is probably responsible for the oil legs and much of the condensate in gas pools. Throughout most of the basin both source-rock units are presently in the gas-window zone. Traps are structural, paleogeomorphic, and stratigraphic, as well as a combination of these types. The giant Dauletabad field is in a combination trap with an essential hydrodynamic component. Four assessment units were identified in the total petroleum system. One unit in the northeastern, northern, and northwestern marginal areas of the basin and another in the southern marginal area are characterized by wide vertical distribution of hydrocarbon pools in Middle Jurassic to Paleocene rocks and the absence of the salt of the Gaurdak Formation. The other two assessment units are stratigraphically stacked; they occupy the central area of the basin and are separated by the regional undeformed salt seal of the Gaurdak Formation. The largest part of undiscovered hydrocarbon resources of the Amu-Darya basin is expected in older of these assessment units. The mean value of total assessed resources of the Amu-Darya basin is estimated
NASA Astrophysics Data System (ADS)
McPhee, Blair W.; Choiniere, Jonah N.
2016-11-01
It has generally been held that the locomotory habits of sauropodomorph dinosaurs moved in a relatively linear evolutionary progression from bipedal through "semi-bipedal" to the fully quadrupedal gait of Sauropoda. However, there is now a growing appreciation of the range of locomotory strategies practiced amongst contemporaneous taxa of the latest Triassic and earliest Jurassic. Here we present on the anatomy of a hyper-robust basal sauropodomorph ilium from the Late Triassic-Early Jurassic Elliot Formation of South Africa. This element, in addition to highlighting the unexpected range of bauplan diversity throughout basal Sauropodomorpha, also has implications for our understanding of the relevance of "robusticity" to sauropodomorph evolution beyond generalized limb scaling relationships. Possibly representing a unique form of hindlimb stabilization during phases of bipedal locomotion, the autapomorphic morphology of this newly rediscovered ilium provides additional insight into the myriad ways in which basal Sauropodomorpha managed the inherited behavioural and biomechanical challenges of increasing body-size, hyper-herbivory, and a forelimb primarily adapted for use in a bipedal context.
Hackley, Paul C.
2012-01-01
The Middle Eocene Claiborne Group was assessed using established U.S. Geological Survey (USGS) assessment methodology for undiscovered conventional hydrocarbon resources as part of the 2007 USGS assessment of Paleogene-Neogene strata of the United States part of the Gulf of Mexico Basin including onshore and State waters. The assessed area is within the Upper Jurassic-Cretaceous-Tertiary Composite total petroleum system, which was defined as part of the assessment. Source rocks for Claiborne oil accumulations are interpreted to be organic-rich downdip shaley facies of the Wilcox Group and the Sparta Sand of the Claiborne Group; gas accumulations may have originated from multiple sources including the Jurassic Smackover and Haynesville Formations and Bossier Shale, the Cretaceous Eagle Ford and Pearsall(?) Formations, and the Paleogene Wilcox Group and Sparta Sand. Hydrocarbon generation in the basin started prior to deposition of Claiborne sediments and is ongoing at present. Emplacement of hydrocarbons into Claiborne reservoirs has occurred primarily via vertical migration along fault systems; long-range lateral migration also may have occurred in some locations. Primary reservoir sands in the Claiborne Group include, from oldest to youngest, the Queen City Sand, Cook Mountain Formation, Sparta Sand, Yegua Formation, and the laterally equivalent Cockfield Formation. Hydrocarbon traps dominantly are rollover anticlines associated with growth faults; salt structures and stratigraphic traps also are important. Sealing lithologies probably are shaley facies within the Claiborne and in the overlying Jackson Group. A geologic model, supported by spatial analysis of petroleum geology data including discovered reservoir depths, thicknesses, temperatures, porosities, permeabilities, and pressures, was used to divide the Claiborne Group into seven assessment units (AU) with distinctive structural and depositional settings. The AUs include (1) Lower Claiborne Stable Shelf Gas and Oil (50470120), (2) Lower Claiborne Expanded Fault Zone Gas (50470121), (3) Lower Claiborne Slope and Basin Floor Gas (50470122), (4) Lower Claiborne Cane River (50470123), (5) Upper Claiborne Stable Shelf Gas and Oil (50470124), (6) Upper Claiborne Expanded Fault Zone Gas (50470125), and (7) Upper Claiborne Slope and Basin Floor Gas (50470126). Total estimated mean undiscovered conventional hydrocarbon resources in the seven assessment units combined are 52 million barrels of oil, 19.145 trillion cubic feet of natural gas, and 1.205 billion barrels of natural gas liquids. A recurring theme that emerged from the evaluation of the seven Claiborne AUs is that the great bulk of undiscovered hydrocarbon resources comprise non-associated gas and condensate contained in deep (mostly >12,000 feet), overpressured, structurally complex outer shelf or slope and basin floor reservoirs. The continuing development of these downdip objectives is expected to be the primary focus of exploration activity for the onshore Middle Eocene Gulf Coast in the coming decades.
Hackley, P.C.; Ewing, T.E.
2010-01-01
The middle Eocene Claiborne Group was assessed for undiscovered conventional hydrocarbon resources using established U.S. Geological Survey assessment methodology. This work was conducted as part of a 2007 assessment of Paleogene-Neogene strata of the northern Gulf of Mexico Basin, including the United States onshore and state waters (Dubiel et al., 2007). The assessed area is within the Upper Jurassic-CretaceousTertiary composite total petroleum system, which was defined for the assessment. Source rocks for Claiborne oil accumulations are interpreted to be organic-rich, downdip, shaley facies of the Wilcox Group and the Sparta Sand of the Claiborne Group; gas accumulations may have originated from multiple sources, including the Jurassic Smackover Formation and the Haynesville and Bossier shales, the Cretaceous Eagle Ford and Pearsall (?) formations, and the Paleogene Wilcox Group and Sparta Sand. Hydrocarbon generation in the basin started prior to deposition of Claiborne sediments and is currently ongoing. Primary reservoir sandstones in the Claiborne Group include, from oldest to youngest, the Queen City Sand, Cook Mountain Formation, Sparta Sand, Yegua Formation, and the laterally equivalent Cockfield Formation. A geologic model, supported by spatial analysis of petroleum geology data, including discovered reservoir depths, thicknesses, temperatures, porosities, permeabilities, and pressures, was used to divide the Claiborne Group into seven assessment units (AUs) with three distinctive structural and depositional settings. The three structural and depositional settings are (1) stable shelf, (2) expanded fault zone, and (3) slope and basin floor; the seven AUs are (1) lower Claiborne stable-shelf gas and oil, (2) lower Claiborne expanded fault-zone gas, (3) lower Claiborne slope and basin-floor gas, (4) lower Claiborne Cane River, (5) upper Claiborne stable-shelf gas and oil, (6) upper Claiborne expanded fault-zone gas, and (7) upper Claiborne slope and basin-floor gas. Based on Monte Carlo simulation of justified input parameters, the total estimated mean undiscovered conventional hydrocarbon resources in the seven AUs combined are 52 million bbl of oil, 19.145 tcf of natural gas, and 1.205 billion bbl of natural gas liquids. This article describes the conceptual geologic model used to define the seven Claiborne AUs, the characteristics of each AU, and the justification behind the input parameters used to estimate undiscovered resources for each AU. The great bulk of undiscovered hydrocarbon resources are predicted to be nonassociated gas and natural gas liquids contained in deep (mostiy >12,000-ft [3658 m], present-day drilling depths), overpressured, structurally complex outer shelf or slope and basin-floor Claiborne reservoirs. The continuing development of these downdip objectives is expected to be the primary focus of exploration activity for the onshore middle Eocene Gulf Coast in the coming decades. ?? 2010 U.S. Geological Survey. All rights reserved.
NASA Astrophysics Data System (ADS)
Shellnutt, J. G.; Lee, T.-Y.; Chiu, H.-Y.; Lee, Y.-H.; Wong, J.
2015-12-01
The breakup of East and West Gondwana occurred during the Jurassic, but the exact timing is uncertain due to the limited exposure of rocks suitable for radioisotopic dating. Trachytic rocks from Silhouette Island, Seychelles, yielded a range of zircon ages from Paleoproterozoic to Cenozoic. The 206Pb/238U age of the trachyte is 64.9 ± 1.6 Ma (Danian) but the majority of zircons yielded an age of 163.8 ± 1.8 Ma (Callovian) with a small subset yielding an age of 147.7 ± 4.5 Ma (Tithonian). The Hf isotopes of the Callovian (ɛHf(t) = +4.1 to +13.4) and Danian (ɛHf(t) = +1.9 to +7.1) zircons indicate that they were derived from moderately depleted mantle sources whereas the Tithonian zircons (ɛHf(t) = -7.0 to -7.3) were derived from an enriched source. The identification of middle Jurassic zircons indicates that rifting and magmatism were likely contemporaneous during the initial separation of East and West Gondwana.
Basin evolution and structural reconstruction of northeastern Morocco and northwestern Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, S.
1995-08-01
The high plateau region of Morocco and northwestern Algeria contains a Permo-Triassic rift basin with over 8,000 meters of Paleozoic, Mesozoic and Tertiary sediments. The area exhibits many similarities to the prolific Triassic basins of neighboring Algeria. Previous impediments to exploration in the high plateau area focused on the inability to seismically image sub-salt, pre-Jurassic block faulted structures and the perceived lack of adequate source rocks. This study combined seismic and basin modelling techniques to decipher the pre-salt structures, interpret basin evolution, and access source rock potential. Large structural and stratigraphic features can now be discerned where Permo-Triassic block faultedmore » structures are overlain by thick Triassic-Jurassic mobile evaporate seals and sourced by underlying Paleozoic shales. Contrary to the last published reports, over 20 years ago, oil and gas generation appears to have been continuous in the Carboniferous since 350 ma. Migration directly from the Carboniferous shales to Triassic conglomerates is envisaged with adequate seals provided by the overlying Triassic-Jurassic evaporate sequence. An earlier rapid pulse of oil and gas generation between 300-340 ma from the Silurian source rocks was probably too early to have resulted in hydrocarbon accumulation in the primary Triassic targets but if reservoir is present in the Carboniferous section, then those strata may have been sourced by the Silurian shales.« less
A new basal galeomorph shark (Synechodontiformes, Neoselachii) from the Early Jurassic of Europe
NASA Astrophysics Data System (ADS)
Klug, Stefanie; Kriwet, Jürgen
2008-05-01
Palaeospinacids are a group of basal galeomorph sharks and are placed in the order Synechodontiformes (Chondrichthyes, Neoselachii) ranging from the Permian to the Eocene. Currently, there is a controversy concerning the identity of diagnostic characters for distinguishing palaeospinacid genera because of very similar dental morphologies and the scarcity of articulated skeletal material. The most notable character for distinguishing species within the Palaeospinacidae is, however, the dental morphology. The main dental character uniting all palaeospinacids is the very specialised pseudopolyaulacorhize root vascularisation. A re-examination of articulated neoselachian skeletons from the Lower Jurassic of Lyme Regis (England) and Holzmaden (S Germany), and recently discovered specimens from the Upper Jurassic of the Solnhofen area and Nusplingen (S Germany) has yielded several hitherto unrecognised complete skeletons of the palaeospinacids Synechodus and Paraorthacodus enabling a re-evaluation of characters. These specimens indicate that the number of dorsal fins and the presence or absence of dorsal fin spines represent important features for identifying palaeospinacids. Synechodus bears two dorsal fins without fin spines, whereas Paraorthacodus only has a single dorsal fin lacking a fin spine directly in front of the caudal fin. All palaeospinacids from the Early Jurassic have two spines supporting the dorsal fins and are consequently assigned to a new genus, Palidiplospinax nov. gen. Three species are placed into the new taxon: Synechodus enniskilleni, S. occultidens and S. smithwoodwardi.
Hagstrum, J.T.; Murchey, B.L.; Bogar, R.S.
1996-01-01
Lower Jurassic radiolarian chert sampled at two localities in the San Rafael Mountains of southern California (???20 km north of Santa Barbara) contains four components of remanent magnetization. Components A, B???, and B are inferred to represent uplift, Miocene volcanism, and subduction/accretion overprint magnetizations, respectively. The fourth component (C), isolated between 580?? and 680??C, shows a magnetic polarity stratigraphy and is interpreted as a primary magnetization acquired by the chert during, or soon after, deposition. Both sequences are late Pliensbachian to middle Toarcian in age, and an average paleolatitude calculated from all tilt-corrected C components is 1?? ?? 3?? north or south. This result is consistent with deposition of the cherts beneath the equatorial zone of high biologic productivity and is similar to initial paleolatitudes determined for chert blocks in northern California and Mexico. This result supports our model in which deep-water Franciscan-type cherts were deposited on the Farallon plate as it moved eastward beneath the equatorial productivity high, were accreted to the continental margin at low paleolatitudes, and were subsequently distributed northward by strike-slip faulting associated with movements of the Kula, Farallon, and Pacific plates. Upper Cretaceous turbidites of the Cachuma Formation were sampled at Agua Caliente Canyon to determine a constraining paleolatitude for accretion of the Jurassic chert sequences. These apparently unaltered rocks, however, were found to be completely overprinted by the A component of magnetization. Similar in situ directions and demagnetization behaviors observed in samples of other Upper Cretaceous turbidite sequences in southern and Baja California imply that these rocks might also give unreliable results.
Petroleum geology of Amu-Dar'ya province of Soviet Central Asia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke J.W.
1986-05-01
The Amu-Dar'ya oil and gas province extends over an area of 360,000 km/sup 2/ in central and eastern Turkmenia and western Uzbekistan in southern Soviet Central Asia. The province coincides with the eastern half of the Turan platform. A Mesozoic-Cenozoic sedimentary cover, 2-7 km thick, rests on a folded paleozoic basement. An Upper Jurassic salt unit divides the sedimentary section into subsalt and suprasalt parts. The structure of the sedimentary cover developed by vertical movements during the Mesozoic and Cenozoic, most of it during the late Tertiary in response to Alpine tectonism. Consequently, much of the trap formation and fillingmore » is late in geologic time and is apparently in progress at present. The province is gas prone; only in the Bukhara area on the east is there significant oil. Five plays are recognized. The Lower to Middle Jurassic play consists of alternating clays, sandstone, and siltstone. Thickness is 100-400 m. The Upper Jurassic play consists of Callovian-Oxfordian carbonate deposits, which are up to 500 m thick. The seal is Kimmeridgian-Tithonian salt. The carbonate deposits of this play are commonly a reef facies. The Lower Cretaceous play consists largely of alternating sandstone, clays, and siltstones. The seal is a clay unit of late Aptian and Albian age, which also separates this play from the overlying Albian-Cenomanian play. The Albian-Cenomanian play has sandstone and siltstone reservoirs, and the seal is a Turonian clay unit. The Paleogene play is prospective in the northeast part of the study area in the so-called Bukhara clastic beds.« less
NASA Astrophysics Data System (ADS)
Peti, Leonie; Thibault, Nicolas
2017-04-01
The nannolith Schizosphaerella spp. was predominant in Early Jurassic calcareous nannofossil assemblages. Previous studies have shown a significant drop in abundance and mean size of Schizosphaerella during the early Toarcian Oceanic Anoxic Event which has been interpreted by some authors either as a calcification crisis due to increased pCO2, or as a response to increased nutrient availability, and/or greenhouse warming. Abundance and size changes in Schizosphaerella have here been thoroughly investigated throughout the upper Sinemurian to lowermost Toarcian (Early Jurassic) of the Sancerre-Couy core (Paris Basin) based on 116 samples. Our results show a stepwise rise in abundance of Schizosphaerella in the lower part of the investigated section and a rise in abundance of coccoliths during the major transgression of the Sinemurian, confirming that Schizosphaerella was better adapted to proximal areas than coccoliths. Mixture analysis of the biometric measurements show the existence of three populations of Schizosphaerella, interpreted as different morphotypes with different ecological affinities. Proximal, cool environmental conditions of the upper Sinemurian are associated with a dominance of the large population of Schizosphaerella. A dominance of the medium population, corresponds to cool surface waters and more distal conditions. Warm episodes are systematically linked to a dominance of the small population. Therefore we propose that the size response of Schizosphaerella throughout the Early Jurassic was rather a change in abundance of different ecophenotypes or (sub-) species of Schizosphaerella, with distinct affinities to temperature and proximal/distal environmental conditions.
Record of massive upwellings from the Pacific large low shear velocity province
Madrigal, Pilar; Gazel, Esteban; Flores, Kennet E.; Bizimis, Michael; Jicha, Brian
2016-01-01
Large igneous provinces, as the surface expression of deep mantle processes, play a key role in the evolution of the planet. Here we analyse the geochemical record and timing of the Pacific Ocean Large Igneous Provinces and preserved accreted terranes to reconstruct the history of pulses of mantle plume upwellings and their relation with a deep-rooted source like the Pacific large low-shear velocity Province during the Mid-Jurassic to Upper Cretaceous. Petrological modelling and geochemical data suggest the need of interaction between these deep-rooted upwellings and mid-ocean ridges in pulses separated by ∼10–20 Ma, to generate the massive volumes of melt preserved today as oceanic plateaus. These pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption. PMID:27824054
Staude, S.; Gob, S.; Pfaff, K.; Strobele, F.; Premo, W.R.; Markl, G.
2011-01-01
Primary and secondary barites from hydrothermal mineralizations in SW Germany were investigated, for the first time, by a combination of strontium (Sr) isotope systematics (87Sr/86Sr), Sr contents and δ34S values to distinguish fluid sources and precipitation mechanisms responsible for their formation. Barite of Permian age derived its Sr solely from crystalline basement rocks, whereas all younger barite also incorporate Sr from formation waters of the overlying sediments. In fact, most of the Sr in younger barite is leached from Lower and Middle Triassic sediments. In contrast, most of the sulfur (S) of Permian, Jurassic and northern Schwarzwald Miocene barite originated from basement rocks. The S source of Upper Rhinegraben (URG)-related Paleogene barite differs depending on geographic position: for veins of the southern URG, it is the Oligocene evaporitic sequence, while central URG mineralizations derived its S from Middle Triassic evaporites. Using Sr isotopes of barite of known age combined with estimates on the Sr contents and Sr isotopic ratios of the fluids' source rocks, we were able to quantify mixing ratios of basement-derived fluids and sedimentary formation waters for the first time. These calculations show that Jurassic barite formed by mixing of 75–95% ascending basement-derived fluids with 5–25% sedimentary formation water, but that only 20–55% of the Sr was brought by the basement-derived fluid to the depositional site. Miocene barite formed by mixing of an ascending basement-derived brine (60–70%) with 30–40% sedimentary formation waters. In this case, only 8–15% of the Sr was derived from the deep brine. This fluid-mixing calculation is an example for deposits in which the fluid source is known. This method applied to a greater number of deposits formed at different times and in various geological settings may shed light on more general causes of fluid movement in the Earth's crust and on the formation of hydrothermal ore deposits.
NASA Astrophysics Data System (ADS)
Basilone, Luca; Sulli, Attilio; Gasparo Morticelli, Maurizio
2016-06-01
We illustrate the tectono-sedimentary evolution of a Jurassic-Cretaceous intraplatform basin in a fold and thrust belt present setting (Cala Rossa basin). Detailed stratigraphy and facies analysis of Upper Triassic-Eocene successions outcropping in the Palermo Mts (NW Sicily), integrated with structural analysis, restoration and basin analysis, led to recognize and describe into the intraplatform basin the proximal and distal depositional areas respect to the bordered carbonate platform sectors. Carbonate platform was characterized by a rimmed reef growing with progradational trends towards the basin, as suggested by the several reworked shallow-water materials interlayered into the deep-water succession. More, the occurrence of thick resedimented breccia levels into the deep-water succession suggests the time and the characters of synsedimentary tectonics occurred during the Late Jurassic. The study sections, involved in the building processes of the Sicilian fold and thrust belt, were restored in order to obtain the original width of the Cala Rossa basin, useful to reconstruct the original geometries and opening mechanisms of the basin. Basin analysis allowed reconstructing the subsidence history of three sectors with different paleobathymetry, evidencing the role exerted by tectonics in the evolution of the narrow Cala Rossa basin. In our interpretation, a transtensional dextral Lower Jurassic fault system, WNW-ESE (present-day) oriented, has activated a wedge shaped pull-apart basin. In the frame of the geodynamic evolution of the Southern Tethyan rifted continental margin, the Cala Rossa basin could have been affected by Jurassic transtensional faults related to the lateral westward motion of Africa relative to Europe.
Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean
NASA Astrophysics Data System (ADS)
Jenkyns, H. C.; Schouten-Huibers, L.; Schouten, S.; Sinninghe Damsté, J. S.
2012-02-01
Although a division of the Phanerozoic climatic modes of the Earth into "greenhouse" and "icehouse" phases is widely accepted, whether or not polar ice developed during the relatively warm Jurassic and Cretaceous Periods is still under debate. In particular, there is a range of isotopic and biotic evidence that favours the concept of discrete "cold snaps", marked particularly by migration of certain biota towards lower latitudes. Extension of the use of the palaeotemperature proxy TEX86 back to the Middle Jurassic indicates that relatively warm sea-surface conditions (26-30 °C) existed from this interval (∼160 Ma) to the Early Cretaceous (∼115 Ma) in the Southern Ocean, with a general warming trend through the Late Jurassic followed by a general cooling trend through the Early Cretaceous. The lowest sea-surface temperatures are recorded from around the Callovian-Oxfordian boundary, an interval identified in Europe as relatively cool, but do not fall below 25 °C. The early Aptian Oceanic Anoxic Event, identified on the basis of published biostratigraphy, total organic carbon and carbon-isotope stratigraphy, records an interval with the lowest, albeit fluctuating Early Cretaceous palaeotemperatures (∼26 °C), recalling similar phenomena recorded from Europe and the tropical Pacific Ocean. Extant belemnite δ18O data, assuming an isotopic composition of waters inhabited by these fossils of -1‰ SMOW, give palaeotemperatures throughout the Upper Jurassic-Lower Cretaceous interval that are consistently lower by ∼14 °C than does TEX86 and the molluscs likely record conditions below the thermocline. The long-term, warm climatic conditions indicated by the TEX86 data would only be compatible with the existence of continental ice if appreciable areas of high altitude existed on Antarctica, and/or in other polar regions, during the Mesozoic Era.
NASA Astrophysics Data System (ADS)
Breitfeld, H. T.; Galin, T.; Hall, R.
2014-12-01
Sarawak is located on the northern edge of Sundaland in NW Borneo. Five sedimentary basins are distinguished with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic of the Sadong-Kuching Basin and were sourced by a Carnian to Norian volcanic arc and erosion of Cathaysian rocks containing zircons of Paleoproterozoic age. Sandstones of the Upper Jurassic to Cretaceous Bau-Pedawan Basin have distinctive zircon populations indicating a major change of tectonic setting, including initiation of subduction below present-day West Sarawak in the Late Jurassic. A wide range of inherited zircon ages indicates various Cathaysian fragments as major source areas and the arrival of the SW Borneo Block following subduction beneath the Schwaner Mountains in the early Late Cretaceous. After collision of the SW Borneo Block and the microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension were responsible for basin development on land from the latest Cretaceous onwards, probably in a strike-slip setting. The first episode formed the Kayan Basin in the Latest Cretaceous (Maastrichtian) to Early Paleocene, and the second formed the Ketungau Basin and the Penrissen Sandstone in the Middle to Late Eocene. Zircons indicate nearby volcanic activity throughout the Early Cenozoic in NW Borneo. Inherited zircon ages indicate an alternation between Borneo and Tin Belt source rocks. A large deep marine basin, the Rajang Basin, formed north of the Lupar Line fault. Zircons from sediments of the Rajang Basin indicate they are of similar age and provenance as the contemporaneous terrestrial sediments to the south suggesting a narrow steep continental Sundaland margin at the position of the Lupar Line.
A total petroleum system of the Browse Basin, Australia; Late Jurassic, Early Cretaceous-Mesozoic
Bishop, M.G.
1999-01-01
The Browse Basin Province 3913, offshore northern Australia, contains one important petroleum system, Late Jurassic, Early Cretaceous-Mesozoic. It is comprised of Late Jurassic through Early Cretaceous source rocks deposited in restricted marine environments and various Mesozoic reservoir rocks deposited in deep-water fan to fluvial settings. Jurassic age intraformational shales and claystones and Cretaceous regional claystones seal the reservoirs. Since 1967, when exploration began in this 105,000 km2 area, fewer than 40 wells have been drilled and only one recent oil discovery is considered potentially commercial. Prior to the most recent oil discovery, on the eastern side of the basin, a giant gas field was discovered in 1971, under a modern reef on the west side of the basin. Several additional oil and gas discoveries and shows were made elsewhere. A portion of the Vulcan sub-basin lies within Province 3913 where a small field, confirmed in 1987, produced 18.8 million barrels of oil (MMBO) up to 1995 and has since been shut in.
Some contrasting biostratigraphic links between the Baker and Olds Ferry Terranes, eastern Oregon
Nestell, Merlynd K.; Blome, Charles D.
2016-01-01
New stratigraphic and paleontologic data indicate that ophiolitic melange windows in the Olds Ferry terrane of eastern Oregon contain limestone blocks and chert that are somewhat different in age than those present in the adjacent Baker terrane melange. The melange windows in the Olds Ferry terrane occur as inliers in the flyschoid Early and Middle Jurassic age Weatherby Formation, which depositionally overlies the contact between the melange-rich Devonian to Upper Triassic rocks of the Baker terrane on the north, and Upper Triassic and Early Jurassic volcanic arc rocks of the Huntington Formation on the south. The Baker terrane and Huntington Formation represent fragments of a subduction complex and related volcanic island arc, whereas the Weatherby Formation consists of forearc basin sedimentary deposits. The tectonic blocks in the melange windows of the Weatherby Formation (in the Olds Ferry terrane) are dated by scarce biostratigraphic evidence as Upper Pennsylvanian to Lower Permian and Upper Triassic. In contrast, tectonic blocks of limestone in theBaker terrane yield mostly fusulinids and small foraminifers of Middle Pennsylvanian Moscovian age at one locality.Middle Permian (Guadalupian) Tethyan fusulinids and smaller foraminifers (neoschwagerinids and other Middle Permian genera) are present at a few other localities. Late Triassic conodonts and bryozoans are also present in a few of the Baker terrane tectonic blocks. These limestone blocks are generally embedded in Permian and Triassic radiolarian bearing chert or argillite. Based on conodont, radiolarian and fusulinid data, the age limits of the meange blocks in the Weatherby Formation range from Pennsylvanian to Late Triassic.
NASA Astrophysics Data System (ADS)
Li, Y.; He, D.; Li, D.; Lu, R.
2017-12-01
Sedimentary provenance of the Middle Jurassic to Late Cretaceous sediments in the Sichuan Basin is constrained by sandstone petrology and detrital zircon U-Pb geochronology, which provides critical insights into mid-late Mesozoic paleogeographic evolution of the Sichuan Basin. Petrographic analyses of 22 sandstone samples indicate moderate to high mature sediments and are primarily derived from cratonic or recycled sources. U-Pb age data for the Middle Jurassic to Late Cretaceous detrital zircons generally show populations at 130-200, 200-330, 400-490, 680-890, 1730-1960, and 2360-2600 Ma, with up-section variations. The Middle Jurassic sediments contain a relatively high density of 1.85 and 2.5 Ga zircons and a low density of the 800 Ma zircons, which are consistent with derivation mainly from the Songpan-Ganzi terrane and the South Qinling belt, and secondarily from the Western Jiangnan Orogen. The Late Jurassic and Early Cretaceous sedimentation with a scattered age distribution shared common multiple-source to sink systems that were predominantly draining towards the south and southeast, but increasingly drained southward, and were later disrupted by a synchronous northeastward drainage capture. Late Cretaceous sediments have a distinct reduction in <213 Ma zircons, suggesting that sedimentation involved southeastward and southwestward transport of sediments likely derived from the Songpan-Ganzi terrane, the south segment of the Longmenshan fault belt and western Yangtze Craton, and the uplifting areas of the N- and NE-Sichuan Basin. Changes in provenances during the mid-late Mesozoic period are coincident with temporal-spatial variations in depocenter migration and paleogeographic evolution of the Sichuan Basin, which are closely related to the multi-stage intracontinental subduction associated with clockwise rotation of the South China Block.
Assessment of undiscovered oil and gas resources in the Bossier Formation, U.S. Gulf Coast, 2016
Paxton, Stanley T.; Pitman, Janet K.; Kinney, Scott A.; Gianoutsos, Nicholas J.; Pearson, Ofori N.; Whidden, Katherine J.; Dubiel, Russell F.; Schenk, Christopher J.; Burke, Lauri A.; Klett, Timothy R.; Leathers-Miller, Heidi M.; Mercier, Tracey J.; Haines, Seth S.; Varela, Brian A.; Le, Phuong A.; Finn, Thomas M.; Gaswirth, Stephanie B.; Hawkins, Sarah J.; Marra, Kristen R.; Tennyson, Marilyn E.
2017-04-13
Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 2.9 billion barrels of conventional oil and 108.6 trillion cubic feet of natural gas in the Upper Jurassic Bossier Formation in onshore lands and State waters of the U.S. Gulf Coast region.
Assessment of undiscovered oil and gas resources in the Haynesville Formation, U.S. Gulf Coast, 2016
Paxton, Stanley T.; Pitman, Janet K.; Kinney, Scott A.; Gianoutsos, Nicholas J.; Pearson, Ofori N.; Whidden, Katherine J.; Dubiel, Russell F.; Schenk, Christopher J.; Burke, Lauri A.; Klett, Timothy R.; Leathers-Miller, Heidi M.; Mercier, Tracey J.; Haines, Seth S.; Varela, Brian A.; Le, Phuong A.; Finn, Thomas M.; Gaswirth, Stephanie B.; Hawkins, Sarah J.; Marra, Kristen R.; Tennyson, Marilyn E.
2017-04-13
Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 1.1 billion barrels of conventional oil and 195.8 trillion cubic feet of gas in the Upper Jurassic Haynesville Formation in onshore lands and State waters of the U.S. Gulf Coast region.
Distributional patterns of Mawsoniidae (Sarcopterygii: Actinistia).
Miguel, Raphael; Gallo, Valéria; Morrone, Juan J
2014-03-01
Mawsoniidae are a fossil family of actinistian fish popularly known as coelacanths, which are found in continental and marine paleoenvironments. The taxon is considered monophyletic, including five valid genera (Axelrodichthys, Chinlea, Diplurus, Mawsonia and Parnaibaia) and 11 genera with some taxonomical controversy (Alcoveria, Changxingia, Garnbergia, Heptanema, Indocoelacanthus, Libys, Lualabaea, Megalocoelacanthus, Moenkopia, Rhipis and Trachymetopon). The genera restricted to the Northern Hemisphere (Diplurus and Chinlea) possess the oldest records (Late Triassic), whereas those found in the Southern Hemisphere (Mawsonia, Axelrodichthys, and Parnaibaia) extend from Late Jurassic to Late Cretaceous, especially in Brazil and Africa. We identified distributional patterns of Mawsoniidae, applying the panbiogeographical method of track analysis, and obtained three generalized tracks (GTs): GT1 (Northeastern Newark) in strata of the Newark Group (Upper Triassic); GT2 (Midwestern Gondwana) in the Lualaba Formation (Upper Jurassic); and GT3 (Itapecuru-Alcântara-Santana) in the Itapecuru-Alcântara-Santana formations (Lower Cretaceous). The origin of Mawsoniidae can be dated to at least Late Triassic of Pangaea. The tectonic events related to the breakup of Pangaea and Gondwana and the evolution of the oceans are suggested as the vicariant events modeling the distribution of this taxon throughout the Mesozoic.
NASA Astrophysics Data System (ADS)
Caillaud, Alexis; Blanpied, Christian; Delvaux, Damien
2017-08-01
The intracratonic Congo Basin, located in the Democratic Republic of Congo (DRC), is the largest sedimentary basin of Africa. The Jurassic strata outcrop along its eastern margin, south of Kisangani (formerly Stanleyville). In the last century, the Upper Jurassic Stanleyville Group was described as a lacustrine series containing a thin basal marine limestone designed as the ;Lime Fine; beds. Since the proposal of this early model, the depositional environment of the Stanleyville Group, and especially the possible marine incursion, has been debated, but without re-examining the existing cores, outcrop samples and historical fossils from the type location near Kisangani that are available at the Royal Museum for Central Africa (MRAC/KMMA, Tervuren, Belgium). In order to refine the former sedimentology, a series of nine exploration cores drilled in the Kisangani sub-basin have been described. This study aims at integrating sedimentary facies in existing sedimentary models and to discuss the hypothesis of the presence of Kimmeridgian marine deposits along the Congo River near Kisangani, a region which lies in the middle of the African continent. Eight facies have been identified, which permit a reinterpretation of the depositional environment and paleogeography of the Stanleyville Group. The base of the Stanleyville Group is interpreted to represent a conglomeratic fluvial succession, which filled an inherited Triassic paleotopography. Above these conglomerates, a transition to a typically lacustrine system is interpreted, which includes: (1) a basal profundal, sublittoral (brown to dark fine-grained siltstones with microbial carbonates, i.e., the ;Lime Fine; beds) and littoral lacustrine series; covered by (2) a sublittoral to profundal interval (brown to dark organic-rich, fine-grained siltstones), which corresponds to the maximum extent of the paleo-lake; and, finally (3) a shallow lacustrine series (greenish calcareous siltstones and sandstones with red siltstones). Unlike what has been proposed, the ;Lime Fine; beds are interpreted herein to be of lacustrine origin, rather than representing a Kimmeridgian marine transgression. We conclude that a Jurassic marine transgression did not, in fact, occur in the eastern region of the Congo Basin.
NASA Astrophysics Data System (ADS)
Eltom, Hassan A.; Gonzalez, Luis A.; Hasiotis, Stephen T.; Rankey, Eugene C.; Cantrell, Dave L.
2018-02-01
Carbon isotope data (δ13C) can provide an essential means for refining paleogeographic and paleo-oceanographic reconstructions, and interpreting stratigraphic architecture within complex carbonate strata. Although the primary controls on global δ13C signatures of marine carbonates are well understood, understanding their latitudinal and regional variability is poor. To better constrain the nature and applications of δ13C stratigraphy, this study: 1) presents a new high-resolution δ13C stratigraphic curve from Middle to Upper Jurassic carbonates in the upper Tuwaiq Mountain, Hanifa, and lower Jubaila formations in central Saudi Arabia; 2) explores their latitudinal and regional variability; and 3) discusses their implications for stratigraphic correlations. Analysis of δ13C data identified six mappable units with distinct δ13C signatures (units 1-6) between up-dip and down-dip sections, and one unit (unit 7) that occurs only in the down-dip section of the study succession. δ13C data from the upper Tuwaiq Mountain Formation and the lower Hanifa Formation (units 1, 2), which represent Upper Callovian to Middle Oxfordian strata, and record two broad positive δ13C excursions. In the upper part of the Hanifa Formation (units 3-6, Early Oxfordian-Late Kimmeridgian), δ13C values decreased upward to unit 7, which showed a broad positive δ13C excursion. Isotopic data suggest similar δ13C trends between the southern margin of the Tethys Ocean (Arabian Plate; low latitude, represented by the study succession) and northern Tethys oceans (high latitude), despite variations in paleoclimatic, paleogeographic, and paleoceanographic conditions. Variations in the δ13C signal in this succession can be attributed to the burial of organic matter and marine circulation at the time of deposition. Our study uses δ13C signatures to provide independent data for chronostratigraphic constraints which help in stratigraphic correlations within heterogeneous carbonate successions.
Reservoirs and petroleum systems of the Gulf Coast
Pitman, Janet K.
2010-01-01
This GIS product was designed to provide a quick look at the ages and products (oil or gas) of major reservoir intervals with respect to the different petroleum systems that have been identified in the Gulf Coast Region. The three major petroleum source-rock systems are the Tertiary (Paleocene-Eocene) Wilcox Formation, Cretaceous (Turonian) Eagle Ford Formation, and Jurassic (Oxfordian) Smackover Formation. The ages of the reservoir units extend from Jurassic to Pleistocene. By combining various GIS layers, the user can gain insights into the maximum extent of each petroleum system and the pathways for petroleum migration from the source rocks to traps. Interpretations based on these data should improve development of exploration models for this petroleum-rich province.
NASA Astrophysics Data System (ADS)
El-Azabi, M. H.; El-Araby, A.
2005-01-01
The Middle Triassic-Lower Cretaceous (pre-Late Albian) succession of Arif El-Naga anticline comprises various distinctive facies and environments that are connected with eustatic relative sea-level changes, local/regional tectonism, variable sediment influx and base-level changes. It displays six unconformity-bounded depositional sequences. The Triassic deposits are divided into a lower clastic facies (early Middle Triassic sequence) and an upper carbonate unit (late Middle- and latest Middle/early Late Triassic sequences). The early Middle Triassic sequence consists of sandstone with shale/mudstone interbeds that formed under variable regimes, ranging from braided fluvial, lower shoreface to beach foreshore. The marine part of this sequence marks retrogradational and progradational parasequences of transgressive- and highstand systems tract deposits respectively. Deposition has taken place under warm semi-arid climate and a steady supply of clastics. The late Middle- and latest Middle/early Late Triassic sequences are carbonate facies developed on an extensive shallow marine shelf under dry-warm climate. The late Middle Triassic sequence includes retrogradational shallow subtidal oyster rudstone and progradational lower intertidal lime-mudstone parasequences that define the transgressive- and highstand systems tracts respectively. It terminates with upper intertidal oncolitic packstone with bored upper surface. The next latest Middle/early Late Triassic sequence is marked by lime-mudstone, packstone/grainstone and algal stromatolitic bindstone with minor shale/mudstone. These lower intertidal/shallow subtidal deposits of a transgressive-systems tract are followed upward by progradational highstand lower intertidal lime-mudstone deposits. The overlying Jurassic deposits encompass two different sequences. The Lower Jurassic sequence is made up of intercalating lower intertidal lime-mudstone and wave-dominated beach foreshore sandstone which formed during a short period of rising sea-level with a relative increase in clastic supply. The Middle-Upper Jurassic sequence is represented by cycles of cross-bedded sandstone topped with thin mudstone that accumulated by northerly flowing braided-streams accompanying regional uplift of the Arabo-Nubian shield. It is succeeded by another regressive fluvial sequence of Early Cretaceous age due to a major eustatic sea-level fall. The Lower Cretaceous sequence is dominated by sandy braided-river deposits with minor overbank fines and basal debris flow conglomerate.
Jurassic-Cretaceous paleogeography, paleoclimate and upwelling of the northern margin of Tethys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golonka, J.; Krobicki, M.
The Jurassic and Cretaceous global paleogeographic reconstructions illustrate the changing configuration of mountains, land, shallow seas and deep ocean basins. Active plate boundaries, such as spreading centers and subduction zones, are also shown. The Pliensbachian, Toarcian, Bathonian, Oxfordian-Kimmeridgian, Tithonian-Berriasian, Valanginian, Albian, Turonian and Maastrichtian maps were generated The outlines of paleogeography are used as input for paleoclimatic modeling. The PALEOCLIMATE program models global atmospheric pressure, derive paleo-wind directions and estimate the likelihood of coastal upwelling. The program is based on the paleoclimatic methods first developed by Judith Parrish, adopted by C. R. Scotese and modified by M. I. Ross. Themore » maps depict air pressure, wind directions, humid zones and areas favorable for upwelling conditions plotted on the paleogeographic background. Paleoclimate modeling suggests that prevailing Jurassic-Cretaceous wind directions in the northern Tethys area were from north-northeast. These winds were parallel to the axis of Czorsztyn ridge. The ridge was uplifted between Magura and Pieniny basins as the result of extension during Jurassic supercontinent breakup. The upwelling may have been induced at the southeastern margin of the ridge. The model is consistent with rock records, especially from the upper part of ammonitico rosso type Czorsztyn formation. Mass occurrence of Tithonian and Berriasian brachiopods was probably controlled by upwelling-induced trophic relationships which is resulted in the intense growth of benthic organisms on the ridge. This is additionally supported by the presence of phosphorites at localities which corresponded to the continental shelf/slope transition.« less
Lithological and Petrographic Analyses of Carbonates and Sandstones From the Southern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Garcia-Avendaño, A.; Urrutia-Fucugauchi, J.
2012-04-01
We present results of sedimentological and petrological studies of drill cores from the Bay of Campeche in the southern Gulf of Mexico. Based on reports on drill cores obtained from oil exploratory wells in the Cantarell Complex located 80 kilometres offshore in the Bay of Campeche and studies related to regional geology composite simplified stratigraphic columns for offshore Campeche region have been constructed up to depths of approximately 5000 m. The stratigraphic column is formed by a thick sediment sequence of Middle Jurassic age (evaporites, Callovian), Late Jurassic (terrigenous, calcareous clays and calcareous layers), Lower Cretaceous (carbonates), Upper Cretaceous-Paleogene (calcareous breccias), Paleogene-Neogene (terrigenous-carbonates intercalations) and Quaternary (terrigenous). The core samples studied come from wells in the Sihil and Akal fields in Cantarell. Analysis of reports on lithological descriptions indicates that these wells sample dolomitized sedimentary breccias from the Upper Cretaceous-Paleocene and fine-grained sandstones from the Late Jurassic Tithonian, respectively. Based on results of petrographic studies, the texture, cementing material and porosity of the units have been documented. The thin sections for carbonates were classified based on their texture according to Dunham (1962) for carbonate rocks, classified according to their components using the ternary diagrams of Folk (1974). Percentages refer to the data presented in tables, which were obtained by point-counting technique (with a total 250). Photomicrographs of scanning electron microscope (SEM) provide magnification for easy documentation of crystalline arrangements and description of micro-porous for different types of carbonates such as dolomite, in addition to the morphology of authigenic clays. Results of these studies and previous works in the area permit characterization of diagenetic processes of the carbonate sediments in the Campeche Bay, and provide information related to oil maturation, storage and potential flow in the Cantarell reservoirs.
First early Mesozoic amber in the Western Hemisphere
Litwin, R.J.; Ash, S.R.
1991-01-01
Detrital amber pebbles and granules have been discovered in Upper Triassic strata on the Colorado Plateau. Although amber previously has been reported from Pennsylvanian, Jurassic, Cretaceous, and Tertiary strata, we know of no other reported Triassic occurrence in North America or the Western Hemisphere. The new discovered occurrences of amber are at two localities in the lower part of the Petrified Forest Member of the Upper Triassic Chinle Formation in Petrified Forest National Park, Arizona. The paper coals and carbonaceous paper shales containing the amber also contain fossil palynomorph assemblages that indicate a late Carnian age for these occurrences. -Authors
Oil exploration and development in Marib/Al Jawf basin, Yemen Arab Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maycock, I.D.
1986-07-01
In 1981, Yemen Hunt Oil Company (YHOC) negotiated a production-sharing agreement covering 12,600 km/sup 2/ in the northeast part of the Yemen Arab Republic. A reconnaissance seismic program of 1864 km acquired in 1982 revealed the presence of a major half graben, designated the Marib/Al Jawf basin by YHOC. A sedimentary section up to 18,000 ft thick has been recognized. Geologic field mapping identified Jurassic carbonates covered by Cretaceous sands overlying Permian glaciolacustrine sediments, Paleozoic sandstones, or Precambrian basement. The first well drilled in 1984, aimed at a possible Jurassic carbonate objective, encountered hydrocarbon-bearing sands in the Jurassic-Cretaceous transition betweenmore » 5000 and 6000 ft. A successful appraisal drilling program has demonstrated satisfactory lateral reservoir continuity. Further wildcat drilling demonstrates macro-unit correlation within the eastern part of the basin. Rapid basin development apparently commenced in the late Kimmeridgian, culminating with the deposition of Tithonian evaporites. Available geochemical analysis indicates sourcing from restricted-basin sediments. Excellent traps, reservoirs, and source beds underlying the Tithonian evaporites indicate that a significant new petroliferous province is present.« less
NASA Astrophysics Data System (ADS)
Jordan, T. A.; Ferraccioli, F.; Ross, N.; Siegert, M. J.; Corr, H.; Leat, P. T.; Bingham, R. G.; Rippin, D. M.; le Brocq, A.
2012-04-01
The >500 km wide Weddell Sea Rift was a major focus for Jurassic extension and magmatism during the early stages of Gondwana break-up, and underlies the Weddell Sea Embayment, which separates East Antarctica from a collage of crustal blocks in West Antarctica. Here we present new aeromagnetic data combined with airborne radar and gravity data collected during the 2010-11 field season over the Institute and Moeller ice stream in West Antarctica. Our interpretations identify the major tectonic boundaries between the Weddell Sea Rift, the Ellsworth-Whitmore Mountains block and East Antarctica. Digitally enhanced aeromagnetic data and gravity anomalies indicate the extent of Proterozoic basement, Middle Cambrian rift-related volcanic rocks, Jurassic granites, and post Jurassic sedimentary infill. Two new joint magnetic and gravity models were constructed, constrained by 2D and 3D magnetic depth-to-source estimates to assess the extent of Proterozoic basement and the thickness of major Jurassic intrusions and post-Jurassic sedimentary infill. The Jurassic granites are modelled as 5-8 km thick and emplaced at the transition between the thicker crust of the Ellsworth-Whitmore Mountains block and the thinner crust of the Weddell Sea Rift, and within the Pagano Fault Zone, a newly identified ~75 km wide left-lateral strike-slip fault system that we interpret as a major tectonic boundary between East and West Antarctica. We also suggest a possible analogy between the Pagano Fault Zone and the Dead Sea transform. In this scenario the Jurassic Pagano Fault Zone is the kinematic link between extension in the Weddell Sea Rift and convergence across the Pacific margin of West Antarctica, as the Dead Sea transform links Red Sea extension to compression within the Zagros Mountains.
Sedimentation, zoning of reservoir rocks in W. Siberian basin oil fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kliger, J.A.
1994-02-07
A line pattern of well cluster spacing was chosen in western Siberia because of taiga, marshes, etc., on the surface. The zoning of the oil pools within productive Upper Jurassic J[sub 3] intervals is complicated. This is why until the early 1990s almost each third well drilled in the Shaimsky region on the western edge of the West Siberian basin came up dry. The results of development drilling would be much better if one used some sedimentological relationships of zoning of the reservoir rocks within the oil fields. These natural phenomena are: Paleobasin bathymetry; Distances from the sources of themore » clastic material; and Proximity of the area of deposition. Using the diagram in this article, one can avoid drilling toward areas where the sandstone pinch out, area of argillization of sand-stones, or where the probability of their absence is high.« less
NASA Astrophysics Data System (ADS)
Geuna, Silvana E.; Somoza, Rubén; Vizán, Haroldo; Figari, Eduardo G.; Rinaldi, Carlos A.
2000-08-01
A paleomagnetic study in Jurassic and Cretaceous rocks from the Cañadón Asfalto basin, central Patagonia, indicates the occurrence of about 25-30° clockwise rotation in Upper Jurassic-lowermost Cretaceous rocks, whereas the overlying mid-Cretaceous rocks do not show evidence of rotation. This constrains the tectonic rotation to be related to a major regional unconformity in Patagonia, which in turn seems to be close in time with the early opening of the South Atlantic Ocean. The sense and probably the timing of this rotation are similar to those of other paleomagnetically detected rotations in different areas of southwestern Gondwana, suggesting a possible relationship between these and major tectonic processes related with fragmentation of the supercontinent. On the other hand, the mid-Cretaceous rocks in the region yield a paleopole located at Lat. 87° South, Long. 159° East, A95=3.8°. This pole position is consistent with coeval high-quality paleopoles of other plates when transferred to South American coordinates, implying it is an accurate determination of the Aptian (circa 116 Ma) geomagnetic field in South America.
Geology and hydrocarbon potential of the Hartford-Deerfield Basin, Connecticut and Massachusetts
Coleman, James
2016-01-01
The Hartford-Deerfield basin, a Late Triassic to Early Jurassic rift basin located in central Connecticut and Massachusetts, is the northernmost basin of the onshore Mesozoic rift basins in the eastern United States. The presence of asphaltic petroleum in outcrops indicates that at least one active petroleum system has existed within the basin. However, to-date oil and gas wells have not been drilled in the basin to test any type of petroleum trap. There are good to excellent quality source rocks (up to 3.8% present day total organic carbon) within the Jurassic East Berlin and Portland formations. While these source rock intervals are fairly extensive and at peak oil to peak gas stages of maturity, individual source rock beds are relatively thin (typically less than 1 m) based solely on outcrop observations. Potential reservoir rocks within the Hartford-Deerfield basin are arkosic conglomerates, pebbly sandstones, and finer grained sandstones, shales, siltstones, and fractured igneous rocks of the Triassic New Haven and Jurassic East Berlin and Portland formations (and possibly other units). Sandstone porosity data from 75 samples range from less than 1% to 21%, with a mean of 5%. Permeability is equally low, except around joints, fractures, and faults. Seals are likely to be unfractured intra-formational shales and tight igneous bodies. Maturation, generation, and expulsion likely occurred during the late synrift period (Early Jurassic) accentuated by an increase in local geothermal gradient, igneous intrusions, and hydrothermal fluid circulation. Migration pathways were likely along syn- and postrift faults and fracture zones. Petroleum resources, if present, are probably unconventional (continuous) accumulations as conventionally accumulated petroleum is likely not present in significant volumes.
Pollastro, Richard M.
2003-01-01
Oil of the Arabian Sub-Basin Tuwaiq/Hanifa-Arab TPS is sourced by organic-rich, marine carbonates of the Jurassic Tuwaiq Mountain and Hanifa Formations. These source rocks were deposited in two of three intraplatform basins during the Jurassic and, where thermally mature, have generated a superfamily of oils with distinctive geochemical characteristics. Oils were generated and expelled from these source rocks beginning in the Cretaceous at about 75 Ma. Hydrocarbon production is from 3 cyclic carbonate-rock reservoirs of the Arab Formation that are sealed by overlying anhydrite. Several giant and supergiant fields, including the world's largest oil field at Ghawar, Saudi Arabia, produce mostly from the Arab carbonate-rock reservoirs. Two assessment units are also recognized in the Arabian Sub-Basin Tuwaiq/Hanifa-Arab TPS that are similarly related to structural trap style and presence of underlying Infracambrian salt: (1) an onshore Horst-Block Anticlinal Oil AU, and (2) a mostly offshore Salt-Involved Structural Oil AU. The mean total volume of undiscovered resource for the Arabian Sub-Basin Tuwaiq/Hanifa-Arab TPS is estimated at about 49 billion barrels of oil equivalent (42 billion barrels of oil, 34 trillion feet of gas, and 1.4 billion barrels of natural gas liquids).
Tuttle, Michele L.W.; Charpentier, Ronald R.; Brownfield, Michael E.
1999-01-01
In the Niger Delta province, we have identified one petroleum system--the Tertiary Niger Delta (Akata-Agbada) petroleum system. The delta formed at the site of a rift triple junction related to the opening of the southern Atlantic starting in the Late Jurassic and continuing into the Cretaceous. The delta proper began developing in the Eocene, accumulating sediments that now are over 10 kilometers thick. The primary source rock is the upper Akata Formation, the marine-shale facies of the delta, with possibly contribution from interbedded marine shale of the lowermost Agbada Formation. Oil is produced from sandstone facies within the Agbada Formation, however, turbidite sand in the upper Akata Formation is a potential target in deep water offshore and possibly beneath currently producing intervals onshore. Known oil and gas resources of the Niger Delta rank the province as the twelfth largest in the world. To date, 34.5 billion barrels of recoverable oil and 93.8 trillion cubic feet of recoverable gas have been discovered. In 1997, Nigeria was the fifth largest crude oil supplier to the United States, supplying 689,000 barrels/day of crude.
NASA Astrophysics Data System (ADS)
Naipauer, Maximiliano; Tapia, Felipe; Mescua, José; Farías, Marcelo; Pimentel, Marcio M.; Ramos, Victor A.
2015-12-01
The infill of the Neuquén Basin recorded the Meso-Cenozoic geological and tectonic evolution of the southern Central Andes being an excellent site to investigate how the pattern of detrital zircon ages varies trough time. In this work we analyze the U-Pb (LA-MC-ICP-MS) zircon ages from sedimentary and volcanic rocks related to synrift and retroarc stages of the northern part of the Neuquén Basin. These data define the crystallization age of the synrift volcanism at 223 ± 2 Ma (Cerro Negro Andesite) and the maximum depositional age of the original synrift sediments at ca. 204 Ma (El Freno Formation). Two different pulses of rifting could be recognized according to the absolute ages, the oldest developed during the Norian and the younger during the Rhaetian-Sinemurian. The source regions of the El Freno Formation show that the Choiyoi magmatic province was the main source rock of sediment supply. An important amount of detrital zircons with Triassic ages was identified and interpreted as a source area related to the synrift magmatism. The maximum depositional age calculated for the Tordillo Formation in the Atuel-La Valenciana depocenter is at ca. 149 Ma; as well as in other places of the Neuquén Basin, the U-Pb ages calculated in the Late Jurassic Tordillo Formation do not agree with the absolute age of the Kimmeridgian-Tithonian boundary (ca. 152 Ma). The main source region of sediment in the Tordillo Formation was the Andean magmatic arc. Basement regions were also present with age peaks at the Carboniferous, Neoproterozoic, and Mesoproterozoic; these regions were probably located to the east in the San Rafael Block. The pattern of zircon ages summarized for the Late Jurassic Tordillo and Lagunillas formations were interpreted as a record of the magmatic activity during the Triassic and Jurassic in the southern Central Andes. A waning of the magmatism is inferred to have happened during the Triassic. The evident lack of ages observed around ca. 200 Ma suggests cessation of the synrift magmatism. The later increase in magmatic activity during the Early Jurassic is attributed to the onset of Andean subduction, with maximum peaks at ca. 191 and 179 Ma. The trough at ca. 165 Ma and the later increase in the Late Jurassic could be explained by changes in the relative convergence rate in the Andean subduction regime, or by the shift to a more mafic composition of the magmatism with minor zircon fertility.
Geologic map of the Rifle Falls quadrangle, Garfield County, Colorado
Scott, Robert B.; Shroba, Ralph R.; Egger, Anne
2001-01-01
New 1:24,000-scale geologic map of the Rifle Falls 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Upper Cretaceous Iles Formation through Ordovician and Cambrian units. The Iles Formation includes the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale is divided into three members, an upper member, the Niobrara Member, and a lower member. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and the Entrada Sandstone are present. Below the Upper Jurassic Entrada Sandstone, the easternmost limit of the Lower Jurassic and Upper Triassic Glen Canyon Sandstone is recognized. Both the Upper Triassic Chinle Formation and the Lower Triassic(?) and Permian State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is divided into two members, the Schoolhouse Member and a lower member. All the exposures of the Middle Pennsylvanian Eagle Evaporite intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Middle and Lower Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group is divided into the Dyer Dolomite, which is broken into the Coffee Pot Member and the Broken Rib Member, and the Parting Formation. Ordovician through Cambrian units are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two is a large-offset, mid-Tertiary(?) Rifle Falls normal fault, that dips southward placing Leadville Limestone adjacent to Eagle Valley and Maroon Formations. Diapiric Eagle Valley Evaporite intruded close to the fault on the down-thrown side and presumably was injected into older strata on the upthrown block creating a blister-like, steeply north-dipping sequence of Mississippian and older strata. Also, removal of evaporite by either flow or dissolution from under younger parts of the strata create structural benches, folds, and sink holes on either side of the normal fault. A prominent dipslope of the Morrison-Dakota-Mancos part of the section forms large slide blocks that form distinctly different styles of compressive deformation called the Elk Park fold and fault complex at different parts of the toe of the slide. The major geologic hazard in the area consist of large landslides both associated with dip-slope slide blocks and the steep slopes of the Eagle Valley Formation and Belden Formation in the northern part of the map. Significant uranium and vanadium deposits were mined prior to 1980.
Exploration for uranium deposits in the Atkinson Mesa area, Montrose County, Colorado
Brew, Daniel Allen
1954-01-01
The U.S. Geological Survey explored the Atkinson Mesa area for uranium- and vanadium-bearing deposits from July 2, 1951, to June 18, 1953, with 397 diamond-drill holes that totaled 261,251 feet. Sedimentary rocks of Mesozoic age are exposed in the Atkinson Mesa area. They are: the Brushy Basin member of the Upper Jurassic Morrison formation, the Lower Cretaceous Burro Canyon formation, and the Upper and Lower Cretaceous Dakota sandstone. All of the large uranium-vanadium deposits discovered by Geological Survey drilling are in a series of sandstone lenses in the upper part of the Salt Wash member of the Jurassic Morrison formation. The deposits are mainly tabular and blanket-like, but some elongate pod-shaped masses, locally called "rolls" may be present. The mineralized material consists of sandstone impregnated with a uranium mineral which is probably coffinite, spme carnotite, and vanadium minerals, thought to be mainly corvusite and montroseite. In addition,, some mudstone and carbonaceous material is similarly impregnated. Near masses of mineralized material the sandstone is light gray or light brown, is generally over 40 feet thick, and usually contains some carbonaceous material and abundant disseminated pyrite or limonite stain. Similarly, the mudstone in contact with the ore-bearing sandstone near bodies of mineralized rock is commonly blue gray, as compared to its dominant red color away from ore deposits. Presence and degree of these features are useful guides in exploring for new deposits.
Church, S.E.; Vaughn, R.B.; Gent, C.A.; Hopkins, R.T.
1996-01-01
Lead-isotopic data on galena samples collected from a paragenetically constrained suite of samples from the Silesian-Cracow ore district show no regional or paragenetically controlled lead-isotopic trends within the analytical reproducibility of the measurements. Furthermore, the new lead-isotopic data agree with previously reported lead-isotopic results (R. E. Zartman et al., 1979). Sulfur-isotopic analyses of ores from the Silesian-Cracow district as well as from vein ore from the Gory Swietokrzyskie Mts. and the Myszkow porphyry copper deposit, when coupled with trace-element data from the galena samples, clearly discriminate different hydrothermal ore-forming events. Lead-isotopic data from the Permian and Miocene evaporite deposits in Poland indicate that neither of these evaporite deposits were a source of metals for the Silesian-Cracow district ores. Furthermore, lead-isotopic data from these evaporite deposits and the shale residues from the Miocene halite samples indicate that the crustal evolution of lead in the central and western European platform in southern Poland followed normal crustal lead-isotopic growth, and that the isotopic composition of crustal lead had progressed beyond the lead-isotopic composition of lead in the Silesian-Cracow ores by Permian time. Thus, Mesozoic and Tertiary sedimentary flysch rocks can be eliminated as viable source rocks for the metals in the Silesian-Cracow Mississippi Valley-type (MVT) deposits. The uniformity of the isotopic composition of lead in the Silesian-Cracow ores, when coupled with the geologic evidence that mineralization must post-date Late Jurassic faulting (E. Gorecka, 1991), constrains the geochemical nature of the source region. The source of the metals is probably a well-mixed, multi-cycle molasse sequence of sedimentary rocks that contains little if any Precambrian metamorphic or granitic clasts (S. E. Church, R. B. Vaughn, 1992). If ore deposition was post Late Jurassic (about 150 m. y.) or later as indicated by the geologic evidence, the source rocks probably contained elevated concentrations of Zn and Pb (75-100 ppm), and relatively low concentrations of U and Th (2 and 8 ppm or less, respectively). The Carboniferous coal-bearing molasse rocks of the Upper Silesian Coal Basin are a prime candidate for such a source region. The presence of ammonia and acetate in the fluid inclusions (Viets et al., 1996a) also indicate that the Carboniferous coal-bearing molasse sequence in the Upper Silesian Coal Basin may have been a suitable pathway for the MVT ore fluids. The lead-isotopic homogeneity, when coupled with the sulfur-isotopic heterogeneity of the ores suggests that mixing of a single metal-bearing fluid with waters from separate aquifers containing variable sulfur-isotopic compositions in karsts in the Muschelkalk Formation of Middle Triassic age may have been responsible for the precipitation of the ores of the Silesian-Cracow district.
NASA Astrophysics Data System (ADS)
Azizi, Hossein; Lucci, Federico; Stern, Robert J.; Hasannejad, Shima; Asahara, Yoshihiro
2018-05-01
The tectonic setting in which Jurassic igneous rocks of the Sanandaj-Sirjan Zone (SaSZ) of Iran formed is controversial. SaSZ igneous rocks are mainly intrusive granodiorite to gabbroic bodies, which intrude Early to Middle Jurassic metamorphic basement; Jurassic volcanic rocks are rare. Here, we report the age and petrology of volcanic rocks from the Panjeh basaltic-andesitic rocks complex in the northern SaSZ, southwest of Ghorveh city. The Panjeh magmatic complex consists of pillowed and massive basalts, andesites and microdioritic dykes and is associated with intrusive gabbros; the overall sequence and relations with surrounding sediments indicate that this is an unusually well preserved submarine volcanic complex. Igneous rocks belong to a metaluminous sub-alkaline, medium-K to high-K calc-alkaline mafic suite characterized by moderate Al2O3 (13.7-17.6 wt%) and variable Fe2O3 (6.0-12.6 wt%) and MgO (0.9-11.1 wt%) contents. Zircon U-Pb ages (145-149 Ma) define a Late Jurassic (Tithonian) age for magma crystallization and emplacement. Whole rock compositions are enriched in Th, U and light rare earth elements (LREEs) and are slightly depleted in Nb, Ta and Ti. The initial ratios of 87Sr/86Sr (0.7039-0.7076) and εNd(t) values (-1.8 to +4.3) lie along the mantle array in the field of ocean island basalts and subcontinental metasomatized mantle. Immobile trace element (Ti, V, Zr, Y, Nb, Yb, Th and Co) behavior suggests that the mantle source was enriched by fluids released from a subducting slab (i.e. deep-crustal recycling) with some contribution from continental crust for andesitic rocks. Based the chemical composition of Panjeh mafic and intermediate rocks in combination with data for other gabbroic to dioritic bodies in the Ghorveh area we offer two interpretations for these (and other Jurassic igneous rocks of the SaSZ) as reflecting melts from a) subduction-modified OIB-type source above a Neo-Tethys subduction zone or b) plume or rift tectonics involving upwelling metasomatized mantle (mostly reflecting the 550 Ma Cadomian crust-forming event).
NASA Astrophysics Data System (ADS)
Tanner, L. H.; Kyte, F. T.
2015-12-01
To date, elevated Ir levels in continental sediments proximal to the Triassic-Jurassic boundary (TJB) have been reported only from Upper Triassic strata of the Newark and Fundy basins, below the basal extrusive units of the Central Atlantic Magmatic Province. We report here the first occurrence of elevated Ir above the oldest volcanic units, as well as additional horizons of Ir enrichment from other basins of the Newark Supergroup. In the Fundy Basin (Nova Scotia, Canada), lacustrine sediments of the Scots Bay Member of the McCoy Brook Formation that directly overlie the North Mountain Basalt contain Ir up to 413 pg/g in fish-bearing strata very close to the palynological TJB. Higher in the formation the strata lack significant Ir enrichment. Similarly, sedimentary strata from between flows of North Mount Basalt show no Ir appreciable enrichment. The Deerfield Basin (Massachusetts) extension of the Hartford Basin contains only one CAMP extrusive unit, the Lower Jurassic Deerfield Basalt. Very modest Ir enrichment, up to 90 pg/g, occurs in the Fall River Beds of the Sugarloaf Formation, several meters below the basalt, and up to 70 pg/g in the Turners Falls Formation less than 2 meters above the basalt. The uppermost New Haven Formation (Upper Triassic) at the Silver Ridge locality (Guilford, CT) in the Hartford Basin contains abundant plant debris, but no evidence of elevated Ir. At the Clathopteris locality to the north (Holyoke, MA), potentially correlative strata that are fine grained and rich in plant remains have Ir enriched to 542 pg/g, an order of magnitude higher than in the coarser-grained strata in direct stratigraphic contact. The high-Ir beds also have elevated REEs relative to other Hartford Basin samples, although there is no evidence of HREE enrichment. We consider the basalts of the Central Atlantic Magmatic Province, widely accepted as the driver of Late Triassic extinctions, as the origin of the elevated Ir levels in the Newark Supergroup.
Extension style in the Orphan Basin during the Mesozoic North Atlantic rifting
NASA Astrophysics Data System (ADS)
Gouiza, Mohamed; Hall, Jeremy
2013-04-01
The Orphan Basin, lying along the Newfoundland passive continental margin, has formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. Regional deep seismic reflection profiles across the basin indicate that the Neoproterozoic basement has been affected by repeated extensional episodes between the Late Triassic/Jurassic and the Early Cretaceous. Deformation initiated in the eastern part of the Orphan basin in the Jurassic and migrated toward the west in the Early Cretaceous, resulting in numerous rift structures filled with Jurassic-Lower Cretaceous syn-rift successions and sealed by thick Upper Cretaceous-Cenozoic post-rift sediments. The seismic data show an extremely attenuated crust underneath the eastern and western part of the deep basin, forming two sub-basins associated with the development of rifting. The two sub-basins are separated by a wide structural high with a relatively thick crust and are bounded to the west by the continental shelf domain. Restoration of the Orphan Basin along a 2D crustal section (520 km long), yields a total amount of stretching of about 144 km, while the total crustal thinning indicates an extension of around 250 km, assuming mass conservation along the section and an initial crustal thickness of 28 km. Brittle deformation accommodated by normal faults is documented in the seismic profiles and affected essentially the present-day upper portion of the crust, and represents only 60% of the total extension which thinned the Orphan crust. The remaining crustal thinning must involve other deformation processes which are not (easily) recognizable in the seismic data. We propose two models that could explain discrepancies between brittle deformation and total crustal thinning during lithospheric extension. The first model assumes the reactivation of pre-rift inherited structures, which act as crustal-scale detachments during the early stages of rifting. The second model uses depth-dependent extension of a 20 km thick crust characterized by a strong upper crust and a weak lower crust. Both models raise secondary issues that are discussed around the order of rifting events and the original crustal thickness.
Oil exploration and development in Marib/Al Jawf basin, Yemen Arab Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maycock, I.D.
1988-02-01
In 1981, Yemen Hunt Oil Company (YHOC) negotiated a production-sharing agreement covering 12,600 km/sup 2/ in the northeast part of the Yemen Arab Republic. A reconnaissance seismic program of 1864 km acquired in 1982 revealed the presence of a major half graben, designated the Marib/Al Jawf basin by YHOC. A sedimentary section up to 18,000 ft thick has been recognized. Geologic field mapping identified Jurassic carbonates covered by Cretaceous sands overlying Permian glaciolacustrine sediments, Paleozoic sandstones, or Precambrian basement. The first well, Alif-1, drilled in 1984, aimed at a possible Jurassic carbonate objective, encountered hydrocarbon-bearing sands in the Jurassic-Cretaceous transitionmore » between 5000 and 6000 ft. Appraisal and development drilling followed. The Alif field is believed to contain in excess of 400 million bbl of recoverable oil. Subsequent wildcat drilling has located additional accumulations while further amplifying basin stratigraphy. Rapid basin development took place in the Late Jurassic culminating with the deposition of Tithonian salt. The evaporites provide an excellent seal for hydrocarbons apparently sourced from restricted basin shales and trapped in rapidly deposited clastics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David A. Lopez
2007-06-30
Eolian sands are the main Pennsylvanian Tensleep Sandstone reservoir rocks, and were deposited in a near-shore environment interbedded with near-shore marine and sabkha calcareous and dolomitic rocks. Within the Tensleep, numerous cycles are characterized by basal marine or sabkha calcareous sandstone or dolomitic sandstone overlain by porous and permeable eolian sandstone, which in turn is capped by marine sandstone. The cycles represent the interplay of near-shore marine, sabkha, and eolian environments. On the west side of the project area, both the lower and upper Tensleep are present and the total thickness reaches a maximum of about 240 ft. The lowermore » Tensleep is 100 to 120 ft thick and consists of a sequence of repeating cycles of limey shallow marine sandstone, sandy limestone, and sandy dolomite. The upper Tensleep is generally characterized by cycles of sandy limestone or dolomite, overlain by light-colored, eolian dune sandstone capped by marine limey sandstone. In the central and eastern parts of the project area, only the lower Tensleep is present, but here eolian sandstones are in cycles much like those in the west in the upper Tensleep. The lower Tensleep is quite variable in thickness, ranging from about 25 ft to over 200 ft. Oil accumulations in the Tensleep are best described as structurally modified paleostratigraphic accumulations. At Frannie Field, the irregular oil column can be explained by a post-Tensleep channel scour on the west flank of the anticline. On the Powder River Basin side of the project area, the Soap Creek and Lodge Grass Fields produce from the Permo-Pennsylvanian system. In these two fields, erosional remnants of eolian sandstone control the production, similar to the situation at Frannie Field. At Soap Creek the trap is enhanced by structural closure. In the Lodge Grass area, Tensleep oil is trapped in preserved dunes in the footwall of a Laramide reverse fault. Oil generation and migration was early. Two hypotheses have been presented: migration occurred (1) before mid-Jurassic erosion produced a major regional unconformity or (2) about 82 million years ago. Migration pre-Laramide occurred because oil in both the Bighorn Basin and the Powder River Basin are part of the same petroleum system. Geochemical analyses of oils from producing fields across the region show the oils are all similar and have the same source and generation history. No Phosphoria source rocks exist in the project area of south-central Montana, requiring that oil migrated from distant source areas, probably in central and southwestern Wyoming. Oil shows and production in the Tensleep are absent in the northern part of the project area. This appears to be controlled by the merging of the top of the Tensleep Sandstone and the Jurassic unconformity (top of the Triassic Chugwater Formation). There should be potential for the discovery of oil in Tensleep stratigraphic traps or combination traps everywhere south of the Jurassic-Pennsylvanian Isopach zero contour except where the Tensleep has been exposed by uplift and erosion. Known Tensleep fields in south-central Montana are generally small in area, which agrees with outcrop studies that show eolian dune sequences are generally quite small in lateral extent, on the order of 10 to 40 acres. Although existing fields are small in area, they are very productive; individual wells will probably make 300,000 to 500,000 barrels of oil. In the project area, hydrodynamic considerations are important. All the existing Tensleep fields have active water drives. In many cases, the reservoir pressure today is as it was when initially discovered. In areas of high structural complexity, such as the Lodge Grass-Crow Agency fault and the Lake Basin fault zone, significant structural closure may be necessary to trap oil because of the strong hydrodynamic influence exerted by the underlying Madison Formation aquifer.« less
The provenance of low-calcic black shales
NASA Astrophysics Data System (ADS)
Quinby-Hunt, M. S.; Wilde, P.
1991-04-01
The elemental concentration of sedimentary rocks depends on the varying reactivity of each element as it goes from the source through weathering, deposition, diagenesis, lithification, and even low rank metamorphism. However, non-reactive components of detrital particles ideally are characteristic of the original igneous source and thus are useful in provenance studies. To determine the source of detrital granitic and volcanic components of low-calcic (<1% CaCO3) marine black shales, the concentrations of apparently non-reactive (i.e. unaffected by diagenetic, redox and/or low-rank metamorphic processes) trace elements were examined using standard trace element discrimination diagrams developed for igneous rocks. The chemical data was obtained by neutron activation analyses of about 200 stratigraphically well-documented black shale samples from the Cambrian through the Jurassic. A La-Th-Sc ternary diagram distinguishes among contributions from the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). All the low-calcic black shales cluster within the region of the upper crust. Th-Hf-Co ternary diagrams also are commonly used to distinguish among the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). As Co is redox sensitive in black shale environments, it was necessary to substitute an immobile element (i.e. example Rb) in the diagram. With this substitution of black shales all cluster in the region of the upper continental crust. To determine the provenance of the granitic component (Pearce et al. 1984), plots of Ta vs Yb and Rb vs Yb + Ta shows a cluster at the junction of the boundaries separating the volcanic arc granite (VAG), syn-collision granite (syn-COLG), and within-plate granite (WPG) fields. The majority fall within the VAG field. There are no occurrences of ocean ridge granite (ORG). The minimal contribution of basalts to marine black shales is confirmed by the ternary Wood diagram Th-Hf/3-Ta (Wood et al. 1979). The black shales plot in a cluster in a high Th region outside the various basalt fields, which suggests contribution from the continental crust.
NASA Astrophysics Data System (ADS)
Sarih, S.; Quiquerez, A.; Allemand, P.; Garcia, J. P.; El Hariri, K.
2018-03-01
The purpose of this study is to document the along-strike early syn-rift history of the Lower Jurassic Carbonate basin of the Central High Atlas (Morocco) by combining sedimentological observations and high-resolution biostratigraphy. Six sections, each from the Sinemurian to the Upper Pliensbachian, were investigated along a 75 km-long transect at the hanging wall of a major fault of the Lower Jurassic Basin (i.e. the Tizi n' Firest fault). Depositional geometries of the early syn-rift deposits were reconstructed from the correlation between eight main timelines dated by biochronological markers for a time span covering about 6 Ma. Depocentre migration was examined and accommodation rates were calculated at the sub-zone timescale to discuss the along-strike-fault behavior of the Lower Jurassic basin formation. The early stages of extension are marked by contrasted along-strike variations in depositional geometry thickness, depocentre migration and accommodation rates, leading to the growth of three independent sub-basins (i.e. western, central, and eastern), ranging in size from 30 to 50 km, and displaying three contrasted tectono-sedimentary histories. Our results suggest that, during the early rifting phase, tectonic activity was not a continuous and progressive process evolving towards a rift climax stage, but rather a series of acceleration periods that alternated with periods of much reduced activity. The length of active fault segments is estimated at about 15-20 km, with a lifespan of a few ammonite sub-zones (> 2-3 Ma).
NASA Astrophysics Data System (ADS)
Leanza, H. A.; Mazzini, A.; Corfu, F.; Llambías, E. J.; Svensen, H.; Planke, S.; Galland, O.
2013-03-01
New radiometric U-Pb ages obtained on zircon crystals from Early Jurassic ash layers found within beds of the Chachil Limestone at its type locality in the Chachil depocentre (southern Neuquén Basin) confirm a Pliensbachian age (186.0 ± 0.4 Ma). Additionally, two ash layers found in limestone beds in Chacay Melehue at the Cordillera del Viento depocentre (central Neuquén Basin) gave Early Pliensbachian (185.7 ± 0.4 Ma) and earliest Toarcian (182.3 ± 0.4 Ma) U-Pb zircon ages. Based on these new datings and regional geological observations, we propose that the limestones cropping out at Chacay Melehue are correlatable with the Chachil Limestone. Recent data by other authors from limestones at Serrucho creek in the upper Puesto Araya Formation (Valenciana depocentre, southern Mendoza) reveal ages of 182.16 ± 0.6 Ma. Based on these new evidences, we consider the Chachil Limestone an important Early Jurassic stratigraphic marker, representing an almost instantaneous widespread flooding episode in western Gondwana. The unit marks the initiation in the Neuquén Basin of the Cuyo Group, followed by widespread black shale deposition. Accordingly, these limestones can be regarded as the natural seal of the Late Triassic -earliest Jurassic Precuyano Cycle, which represents the infill of halfgrabens and/or grabens related to a strong extensional regime. Paleontological evidence supports that during Pliensbachian-earliest Toarcian times these limestones were deposited in western Gondwana in marine warm water environments.
Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains.
Reisz, Robert R; Huang, Timothy D; Roberts, Eric M; Peng, ShinRung; Sullivan, Corwin; Stein, Koen; LeBlanc, Aaron R H; Shieh, DarBin; Chang, RongSeng; Chiang, ChengCheng; Yang, Chuanwei; Zhong, Shiming
2013-04-11
Fossil dinosaur embryos are surprisingly rare, being almost entirely restricted to Upper Cretaceous strata that record the late stages of non-avian dinosaur evolution. Notable exceptions are the oldest known embryos from the Early Jurassic South African sauropodomorph Massospondylus and Late Jurassic embryos of a theropod from Portugal. The fact that dinosaur embryos are rare and typically enclosed in eggshells limits their availability for tissue and cellular level investigations of development. Consequently, little is known about growth patterns in dinosaur embryos, even though post-hatching ontogeny has been studied in several taxa. Here we report the discovery of an embryonic dinosaur bone bed from the Lower Jurassic of China, the oldest such occurrence in the fossil record. The embryos are similar in geological age to those of Massospondylus and are also assignable to a sauropodomorph dinosaur, probably Lufengosaurus. The preservation of numerous disarticulated skeletal elements and eggshells in this monotaxic bone bed, representing different stages of incubation and therefore derived from different nests, provides opportunities for new investigations of dinosaur embryology in a clade noted for gigantism. For example, comparisons among embryonic femora of different sizes and developmental stages reveal a consistently rapid rate of growth throughout development, possibly indicating that short incubation times were characteristic of sauropodomorphs. In addition, asymmetric radial growth of the femoral shaft and rapid expansion of the fourth trochanter suggest that embryonic muscle activation played an important role in the pre-hatching ontogeny of these dinosaurs. This discovery also provides the oldest evidence of in situ preservation of complex organic remains in a terrestrial vertebrate.
Girty, G. H.; Yoshinobu, S.; Wracher, M.D.; Girty, M.S.; Bryan, K.A.; Skinner, J.E.; McNulty, B.A.; Bracchi, K.A.; Harwood, D.S.; Hanson, R.E.
1993-01-01
The undeformed Emigrant Gap composite pluton postdates the Lower to Middle Jurassic Sailor Canyon and Middle Jurassic Tuttle Lake Formations. According to earlier workers, these latterformations contain main and late phase Nevadan-aged (155 +/-3 Ma) spaced, slaty, phyllitic, and crenulation cleavage. Recently discovered fossils indicate that the upper part of the Sailor Canyon Formation can be no older than early Bajocian and no younger than Bathonian. The Tuttle Lake Formation stratigraphically overlies the Sailor Canyon Formation and thus probably includes middle to late Bajocian and/or Bathonian strata.The results of U-Pb work suggest that the Emigrant Gap composite pluton is composed of units that range in age from 168 +/-2 Ma (latest Bathonian to early Callovian) to 163-164 Ma (late Callovian). These new data, when combined with observations summarized above, imply that the Tuttle Lake Formation is older than the undeformed oldest unit of the Emigrant Gap composite pluton (i.e., latest Bathonian or early Callovian), and thus was probably deposited and deformed sometime between middle Bajocian and middle late Bathonian time. Hence, the cleavage contained within the Sailor Canyon and Tuttle Lake Formations could not have formed during the Late Jurassic Nevadan orogeny 155 +/-3 Ma as suggested by earlier workers.Within the foothills belt, just to the west of the Emigrant Gap composite pluton, a pronounced contractional deformation occurred sometime between 200 and 163 Ma (Early to Middle Jurassic). This middle Mesozoic deformation apparently was the result of a collision between an oceanic arc and continental North America. Because of the gross similarity in timing of structures produced during this collision and structures in the wall rocks of the Emigrant Gap composite pluton, we suggest that the latter Middle Jurassic structures are also the result of arc-continent collision, albeit a slightly more continentward expression.
Magoon, L.B.; Claypool, G.E.
1984-01-01
The Kingak Shale, a thick widespread rock unit in northern Alaska that ranges in age from Early Jurassic through Early Cretaceous, has adequate to good oil source rock potential. This lenticular-shaped rock unit is as much as 1200 m thick near the Jurassic shelf edge, where its present-day burial depth is about 5000 m. Kingak sediment, transported in a southerly direction, was deposited on the then marine continental shelf. The rock unit is predominantly dark gray Shale with some interbeds of thick sandstone and siltstone. The thermal maturity of organic matter in the Kingak Shale ranges from immature (2.0%R0) in the Colville basin toward the south. Its organic carbon and hydrogen contents are highest in the eastern part of northern Alaska south of and around the Kuparuk and Prudhoe Bay oil fields. Carbon isotope data of oils and rock extracts indicate that the Kingak Shale is a source of some North Slope oil, but is probably not the major source. ?? 1984.
Ridgley, Jennie L.
1983-01-01
In the Chama Basin a wequence of conglomerate, sandstone, and red, gray-green, and pale-purple mudstone occurs stratigraphically between the Upper Jurassic Morrison Formation and Upper Cretaceous Dakota Sandstone. This stratigraphic interval has been called the Burro Canyon Formation by several workers (Craig and others, 1959; Smith and others, 1961; Saucier, 1974). Although similarities in lithology and stratigraphic position exist between this unit and the Burro Canyon Formation in Colorado, no direct correlation has been made between the two. For this reason the unit in the Chama Basin is called the Burro Canyon(?) Formation.
Age of amphibolites associated with alpine peridotites in the Dinaride ophiolite zone, Yugoslavia
Lanphere, M.A.; Coleman, R.G.; Karamata, S.; Pamic, J.
1975-01-01
Amphibolites associated with alpine peridotites in the Central Ophiolite zone in Yugoslavia have K-Ar ages of 160-170 m.y. These amphibolites and associated peridotites underwent deep-seated metamorphism prior to tectonic emplacement into the sedimentary-volcanic assemblage of the Dinarides. The alpine peridotites and associated local rocks of the ophiolite suite are interpreted as Jurassic oceanic crust and upper mantle. ?? 1975.
Latest Cretaceous and Paleocene extension in SE California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tosdal, R.M.; Conrad, J.E.; Murphy, G.P.
1993-04-01
Two ductile deformations formed the 3.5-km-thick, south dipping American Girl shear zone in the Cargo Muchancho Mountains, SE California. The older event (D1) imprints crystalloblastic fabrics that record contractional strains at midcrustal depths in the Middle( ) and Late Jurassic. The second event (D2) is marked by superposed mylonitic fabrics that are coplanar and colinear with fabrics of D1. Small mylonitic shear zones of D2 cut undeformed rocks in the hanging wall of the American Girl shear zone. Folded sheets of Jurassic granite geneiss and kinematic indicators in mylonites indicative southward directed transport down the present dip of the foliationmore » during D2. [sup 40]Ar/[sup 39]Ar release spectrum on hornblende from undeformed upper-plate monzo-diorite (173 Ma, U-Pb zircon), about 2 km above the top of shear zone has a plateau age of 96.7[+-]0.9 Ma. In contrast, hornblende release spectra from granite gneiss about 200 m below the top of the shear zone and from hornblende gneiss about 3 km below the top of the shear zone are flat and have identical ages. Hornblende from monzodiorite at the base of the upper plate has a more complicated spectrum that is interpreted to indicate a cooling age of 60.4[+-]1.3 Ma.« less
Petroleum geology and resources of southeastern Mexico, northern Guatemala, and Belize
Peterson, James A.
1983-01-01
Petroleum deposits in southeastern Mexico and Guatemala occur in two main basinal provinces, the Gulf Coast Tertiary basin area, which includes the Reforma and offshore Campeche Mesozoic fields, and the Peten basin of eastern Chiapas State (Mexico) and Guatemala. Gas production is mainly from Tertiary sandstone reservoirs of Miocene age. Major oil production, in order of importance, is from Cretaceous, Paleocene, and Jurassic carbonate reservoirs in the Reforma and offshore Campeche areas. Several small oil fields have been discovered in Cretaceous carbonate reservoirs in west-central Guatemala, and one major discovery has been reported in northwestern Guatemala. Small- to medium-sized oil accumulations also occur in Miocene sandstone reservoirs on salt structures in the Isthmus Saline basin of western Tabasco State, Mexico. Almost all important production is in salt structure traps or on domes and anticlines that may be related to deep-seated salt structures. Some minor oil production has occurred in Cretaceous carbonate reservoirs in a buried overthrust belt along the west flank of the Veracruz basin. The sedimentary cover of Paleozoic through Tertiary rocks ranges in thickness from about 6,000 m (20,000 ft) to as much as 12,000 m (40,000 ft) or more in most of the region. Paleozoic marine carbonate and clastic rocks 1,000 to 2,000 m (3,300 to 6,500 ft) thick overlie the metamorphic and igneous basement in part of the region; Triassic through Middle Jurassic red beds and evaporite deposits, including halite, apparently are present throughout the region, deposited in part in a Triassic graben system. Upper Jurassic (Oxfordian) through Cretaceous rocks make up the bulk of the Mesozoic regional carbonate bank complex, which dominates most of the area. Tertiary marine and continental clastic rocks, some of deep water origin, 3,000 to 10,000 m (10,000 to 35,000 ft) thick, are present in the coastal plain Tertiary basins. These beds grade eastward into a carbonate sequence that overlies the Mesozoic carbonate complex on the Yucatan platform. During the past 10 years, about 50 large oil fields were discovered in the Reforma and offshore Campeche areas. Oil is produced from intensely microfractured Cretaceous, Paleocene, and Upper Jurassic dolomite reservoirs on blockfaulted salt swells or domes. Most fields are located in the Mesozoic carbonate-bank margin and forebank talus (Tamabra) facies, which passes through the offshore Campeche and onshore Reforma areas. Oil source rocks are believed to be organic-rich shales and shaly carbonate rocks of latest Jurassic and possibly Early Cretaceous age. At least six of the Mesozoic discoveries are giant or supergiant fields. The largest is the Cantarell complex (about 8 billion to 10 billion barrels (BB)) in the offshore Campeche area and the Bermudez complex (about 8 BB) in the Reforma onshore area. Oil columns are unusually large (from 50 m to as much as 1,000 m, or 160 ft to 3,300 ft). Production rates are extremely high, averaging at least 3,000 to 5,000 barrels of oil per day (bo/d); some wells produce more than 20,000 bo/d, particularly in the offshore Campeche area, where 30,000- to 60,000-bo/d wells are reported. Tertiary basin fields produce primarily from Miocene sandstone reservoirs. About 50 of these are oil fields ranging from 1 million barrels (MMB) to 200 MMB in size, located on faulted salt structures in the Isthmus Saline basin. Another 30 are gas or gas-condensate fields of a few billion cubic feet to 3 trillion to 4 trillion cubic feet (Tcf) located on salt structures or probable salt structures in the Macuspana, Comalcalco, Isthmus Saline, and Veracruz basins. Source rocks for the gas are believed to be carbonaceous shales interbedded with the sandstone reservoir bodies. Identified reserves in the southeastern Mexico-Guatemala area, almost all in the Mesozoic fields, are about 53 BB of oil, 3 BB of natural gas liquids, and 65 Tcf of gas. The estimat
NASA Astrophysics Data System (ADS)
Liu, Jin; Zhang, Jian; Liu, Zhenghong; Yin, Changqing; Zhao, Chen; Peng, Youbo
2018-06-01
At the junction between the North China Craton (NCC) and the Central Asian Orogenic Belt (CAOB), northern Liaoning province, NE China, there are widespread Jurassic igneous rocks. The tectonic setting and petrogenesis of these rocks are unresolved. Zircon U-Pb dating, whole-rock geochemistry, and Hf isotopic compositions of Jurassic granitoids were investigated to constrain their ages and petrogenesis in order to understand the tectonic evolution of the Paleo-Pacific Ocean along the northeastern margin of the NCC. Geochronological data indicate that magmatism occurred between the early and late Jurassic (180-156 Ma). Despite the wide range in ages of the intrusions, Jurassic granitoids were likely derived from a similar or common source, as inferred from their geochemical and Hf isotopic characteristics. Compared to the island arc andesite-dacite-rhyolite series, the Jurassic granitoids are characterized by higher SiO2, Al2O3, and Sr contents, and lower MgO, FeOT, Y, and Yb contents, indicating that the primary magmas show typical characteristics of adakitic magmas derived from partial melting of thickened lower crust. These findings, combined with their εHf(t) values (+1.4 to +5.4) and two-stage model ages (1515-1165 Ma), indicate the primary magmas originated from partial melting of juvenile crustal material accreted during the Mesoproterozoic. They are enriched in large-ion lithophile elements (e.g., Rb, K, Th, Ba, and U) and light rare-earth elements (REE), and depleted in high-field-strength elements (e.g., Nb, Ta, Ti, and P) and heavy REE. Based on these findings and previous studies, we suggest that the Jurassic adakitic granitoids (180-156 Ma) were formed in an active continental margin and compressive tectonic setting, related to subduction of the Paleo-Pacific Plate.
LaMaskin, Todd A.; Vervoort, J.D.; Dorsey, R.J.; Wright, J.E.
2011-01-01
This study assesses early Mesozoic provenance linkages and paleogeographic-tectonic models for the western United States based on new petrographic and detrital zircon data from Triassic and Jurassic sandstones of the "Izee" and Olds Ferry terranes of the Blue Mountains Province, northeastern Oregon. Triassic sediments were likely derived from the Baker terrane offshore accretionary subduction complex and are dominated by Late Archean (ca. 2.7-2.5 Ga), Late Paleoproterozoic (ca. 2.2-1.6 Ga), and Paleozoic (ca. 380-255 Ma) detrital zircon grains. These detrital ages suggest that portions of the Baker terrane have a genetic affinity with other Cordilleran accretionary subduction complexes of the western United States, including those in the Northern Sierra and Eastern Klamath terranes. The abundance of Precambrian grains in detritus derived from an offshore complex highlights the importance of sediment reworking. Jurassic sediments are dominated by Mesozoic detrital ages (ca. 230-160 Ma), contain significant amounts of Paleozoic (ca. 290, 380-350, 480-415 Ma), Neoproterozoic (ca. 675-575 Ma), and Mesoproterozoic grains (ca. 1.4-1.0 Ga), and have lesser quantities of Late Paleoproterozoic grains (ca. 2.1-1.7 Ga). Detrital zircon ages in Jurassic sediments closely resemble well-documented age distributions in transcontinental sands of Ouachita-Appalachian provenance that were transported across the southwestern United States and modified by input from cratonal, miogeoclinal, and Cordilleran-arc sources during Triassic and Jurassic time. Jurassic sediments likely were derived from the Cordilleran arc and an orogenic highland in Nevada that yielded recycled sand from uplifted Triassic backarc basin deposits. Our data suggest that numerous Jurassic Cordilleran basins formed close to the Cordilleran margin and support a model for moderate post-Jurassic translation (~400 km) of the Blue Mountains Province. ?? 2011 Geological Society of America.
NASA Astrophysics Data System (ADS)
Steier, A.; Mann, P.
2017-12-01
Gravity slides on salt or shale detachment surfaces linking updip extension with down dip compression have been described from several margins of the Gulf of Mexico (GOM). In a region 250 km offshore from the southwestern coast of Florida, the late Jurassic section near Destin Dome and Desoto Canyon has undergone late Jurassic to Cretaceous gravity sliding and downdip dispersion of rigid blocks along the top of the underlying Louann salt. Yet there has been no previous study of similar structural styles on the slope and deep basin of its late Jurassic conjugate margin located 200 km offshore of the northern margin of the Yucatan Peninsula. This study describes an extensive area of Mesozoic gravity sliding from the northern Yucatan slope using a grid of 2D seismic data covering a 134,000 km2 area of the northern Yucatan margin tied to nine wells. These data allow the northern Yucatan margin to be divided into three slope and basinal provinces: 1) a 225 km length of the northeastern margin consisting of late Jurassic-Cretaceous section that is not underlain by salt, exhibits no gravity sliding features, and has sub-horizontal dips; 2) a 120 km length of the north-central Yucatan margin with gravity slide features characterized by an 80-km-wide updip zone of normal faults occupying the shelf edge and upper slope and a 50-km-wide downdip zone of folds and thrust faults at the base of the slope; the slide area exhibits multiple detached slide blocks composed of late Jurassic sandstones and marine mudstones separated by intervening salt rollers; growth wedges adjacent to listric, normal faults suggest a gradual and long-lived downdip motion of rigid fault blocks throughout much of the late Jurassic and Cretaceous rather than a catastrophic and instantaneous collapse of the shelf edge; the basal, normal detachment fault averages 3° in dip and is overlain by salt that varies from 0-500 ms in time thickness; by the end of the Cretaceous, most gravity sliding and vertical salt movement off the north-central Yucatan had ceased and was capped by the post-sliding Cretaceous-Paleocene boundary deposit (KPBD); and 3) a 150 km length of the southwestern margin with the largest thicknesses of salt; smaller salt rollers are less common as large diapirs are frequent and extensively deform the late Mesozoic section as well as overlying younger strata.
Chemo- and biostratigraphy of the Late Jurassic from the Lower Saxony Basin, Northern Germany
NASA Astrophysics Data System (ADS)
Erbacher, Jochen; Luppold, Friedrich Wilhelm; Heunisch, Carmen; Heldt, Matthias; Caesar, Sebastian
2013-04-01
The upper Jurassic (Oxfordian to Tithonian) sediments of the Lower Saxony Basin (Northern Germany) comprises a succession of limestones, marlstones and claystones deposited in a shallow marine to lacustrine epicontinental basin situated between the Tethys and the Sub-Boreal seas. Both, the depositional environment and the palaeogeographically isolated position strongly compromise a chronostratigraphic dating of the regional lithostratigraphical and biostratigraphical units. In order to obtain a stratigraphic standard section for the Late Jurassic of the Lower Saxony Basin we drilled a 325 m long core (Core Eulenflucht 1) covering the lower part of the Berriasian (Wealden 2-3 of the Bückeburg Formation) to the lower Oxfordian (Heersum Formation). A compilation with a section outcropping in an active quarry 2 km north of the drill site resulted in a 340 m long section reaching down to the late Callovian (Ornatenton Formation) . Ammonites have only been described in the lowermost, Callovian part of the section. Investigations of benthic foraminifers, ostracods as well as palynology, however, allowed for a rather detailed biozonation of the core. These data indicate the stratigrapical completeness of the section when compared to the regional stratigraphic data of the Lower Saxony Basin. Due to the lack of ammonites in Late Jurassic part of the section, which would have allowed for a correlation with Tethyan successions, high resolution stable carbon isotope data have been produced from bulk rock carbonate. Even though most of the data derive from shallow marine, rather coarse grained carbonates, such as ooliths and floatstones the resulting carbon isotope curve is surprisingly clean with only little "noise" in the upper part (early Tithonian?) of the measured succession. The curve clearly shows some distinctive features reported from biostratigraphically well-dated carbon isotope records of the Northern Tethys (e.g. Bartolini et al., 2003, Padden et al., 2002, Rais et al., 2007) and the Sub-Boreal (Nunn et al., 2009, Nunn & Price, 2010). Therefore it allows for a correlation of isotope excursions such as the pronounced mid-Oxfordian positive and the two brief negative excursions of the mid-Oxfordian, the broad positive excursion in the late Oxfordian and a general trend towards light values starting at the Kimmeridgian-Tithonian boundary. This results in a chronostratigraphic re-interpretation of the Oxfordian to lower Tithonian litho- and biostratigraphic units in the Lower Saxony Basin, details of which are presented on our poster.
NASA Astrophysics Data System (ADS)
Coimbra, R.; Immenhauser, A.; Olóriz, F.
2009-04-01
Three Ammonitico Rosso (AR) sections from the Betic Cordillera in SE Spain were analysed to obtain stable isotope records and access paleoenvironmental information. The study area corresponded to a Late Jurassic distal epioceanic setting and is characterized by the occurrence of more or less calcareous AR horizons ranging from greyish to redish colour. The carbonate materials under scope where retrieved from the Cardador, Salcedo and Cañada del Hornillo sections and consist on matrix micrite, carbonate cements and skeletals and were analysed for their carbon and oxygen isotope signature. At least one bulk sample per ammonite biozone was retrieved under a strict biochronostratigraphic control. The degree of diagenetic imprint was acessed by cathodoluminiscence analysis and carbonate ultrastructure was analysed by scanning electron microscope. Micrite matrix showed dull luminiscence, revealing a low degree of diagenetic overprint, as oposite to carbonate cements and skekeltal materials, that presented bright orange luminiscence. The identification of coccoliths and filaments under SEM attested for the good degree of preservation of the carbonate ultrastructure. The carbon isotope chemostratigraphy resembles the known trends for Jurassic northern Tethyan margins and absolute values (from 1.1 to 3.3 permil) are within the range usually reported for well preserved material. Oxygen isotopes of matrix micrite samples present higher values than those expected for Upper Jurassic materials (ranging from -0.3 to 0.9 permil for the Cardador and Salcedo sections and from -2.1 to 0.4 permil at the Cañada del Hornillo section), whilts commonly well preserved low-Mg calcite skeletal materials, such as belemenite rostra present lower values than matrix micrite, acompanied by a very bright orange luminiscence. In contrast to what is usually reported, matrix micrite presents values closer to what would be the original isotopic composition and skeletal material is more affected by latter diagenesis. In this context, paleoenvironmental considerations are available, and the oxygen curve is interpreted as reasonable approximation of seawater paleo-temperatures and relative depth. Very early marine nodule formation is thought to be determinant for the high isotope values found at these locations. It is proposed that early diagenetic nodule formation preserved near-seawater isotopic signals and inhibited subsequent diagenetic overprint as revealed by several proxies retrieved from intra-nodule samples.
NASA Astrophysics Data System (ADS)
Gawlick, Hans-Jürgen; Djerić, Nevenka; Missoni, Sigrid; Bragin, Nikita Yu.; Lein, Richard; Sudar, Milan; Jovanović, Divna
2017-08-01
Oceanic radiolarite components from the Middle Jurassic ophiolitic mélange between Trnava and Rožanstvo in the Zlatibor Mountains (Dinaridic Ophiolite Belt) west of the Drina-Ivanjica unit yield Late Triassic radiolarian ages. The microfacies characteristics of the radiolarites show pure ribbon radiolarites without crinoids or thin-shelled bivalves. Beside their age and the preservation of the radiolarians this points to a deposition of the radiolarites on top of the oceanic crust of the Neo-Tethys, which started to open in the Late Anisian. South of the study area the ophiolitic mélange (Gostilje-Ljubiš-Visoka-Radoševo mélange) contains a mixture of blocks of 1) oceanic crust, 2) Middle and Upper Triassic ribbon radiolarites, and 3) open marine limestones from the continental slope. On the basis of this composition we can conclude that the Upper Triassic radiolarite clasts derive either from 1) the younger parts of the sedimentary succession above the oceanic crust near the continental slope or, more convincingly 2) the sedimentary cover of ophiolites in a higher nappe position, because Upper Triassic ribbon radiolarites are only expected in more distal oceanic areas. The ophiolitic mélange in the study area overlies different carbonate blocks of an underlying carbonate-clastic mélange (Sirogojno mélange). We date and describe three localities with different Upper Triassic radiolarite clasts in a mélange, which occurs A) on top of Upper Triassic fore-reef to reefal limestones (Dachstein reef), B) between an Upper Triassic reefal limestone block and a Lower Carnian reef limestone (Wetterstein reef), and C) in fissures of an Upper Triassic lagoonal to back-reef limestone (Dachstein lagoon). The sedimentary features point to a sedimentary and not to a tectonic emplacement of the ophiolitic mélange (= sedimentary mélange) filling the rough topography of the topmost carbonate-clastic mélange below. The block spectrum of the underlying and slightly older carbonate-clastic mélange points to a deposition of the sedimentary ophiolitic mélange east of or on top of the Drina-Ivanjica unit.
NASA Astrophysics Data System (ADS)
Hameed El Redini, Naser A.; Ali Bakr, Ali M.; Dahroug, Said M.
2017-12-01
Safwa/Sabbar oil field located in the East Ghazalat Concession in the proven and prolific Abu Gharadig basin, Western Desert, Egypt, and about 250 km to the southwest of Cairo, it's located in the vicinity of several producing oil fields ranging from small to large size hydrocarbon accumulation, adjacent to the NW-SE trending major Abu Gharadig fault which is throwing to the Southwest. All the geological, "structure and stratigraphic" elements, have been identified after interpreting the recent high quality 3D seismic survey for prospect generation, evaluation and their relation to the hydrocarbon exploration. Synthetic seismograms have been carried out for all available wells to tie horizons to seismic data and to define the lateral variation characters of the beds. The analysis has been done using the suitable seismic attributes to understand the characteristics of different types of the reservoir formations, type of trap system, identify channels and faults, and delineating the stratigraphic plays of good reservoirs such as Eocene Apollonia Limestone, AR "F", AR "G" members, Upper Bahariya, Jurassic Khatatba Sandstone, upper Safa and Lower Safa Sandstone. The top Cenomanian Bahariya level is the main oil reservoir in the Study area, which consist of Sandstone, Siltstone and Shale, the thickness is varying from 1 to 50 ft along the study area. In addition to Upper-Bahariya there are a good accessibility of hydrocarbon potential within the Jurassic Khatatba Sandstone and the Eocene Apollonia Limestone. More exploring of these reservoirs are important to increase productivity of Oil and/or Gas in the study area.
Weems, R.E.; ,; Edwards, L.E.
2004-01-01
An inclusive supergroup stratigraphic framework for the Atlantic and Gulf Coastal Plains is proposed herein. This framework consists of five supergroups that 1) are regionally inclusive and regionally applicable, 2) meaningfully reflect the overall stratigraphic and structural history of the Coastal Plains geologic province of the southeastern United States, and 3) create stratigraphic units that are readily mappable and useful at a regional level. Only the Marquesas Supergroup (Lower Cretaceous to lowest Upper Cretaceous) has been previously established. The Trent Supergroup (middle middle Eocene to basal lower Miocene) is an existing name here raised to supergroup rank. The Minden Supergroup (Middle? through Upper Jurassic), the Ancora Supergroup (Upper Cretaceous to lower middle Eocene), and the Nomini Supergroup (lower Miocene to Recent) are new stratigraphic concepts proposed herein. In order to bring existing groups and formations into accord with the supergroups described here, the following stratigraphic revisions are made. 1) The base of the Shark River Formation (Trent Supergroup) is moved upward. 2) The Old Church Formation is removed from the Chesapeake Group (Nomini Supergroup) and moved to the Trent Supergroup without group placement. 3) The Tiger Leap and Penney Farms formations are removed from the Hawthorn Group (Nomini Supergroup) and moved to the Trent Supergroup without group placement. 4) The Piney Point and Chickahominy formations are removed from the Pamunkey Group (Ancora Supergroup) and moved to the Trent Supergroup without group placement. 5) the Tallahatta Formation is removed from the Claiborne Group (Trent Supergroup) and placed within the Ancora Supergroup without group placement.
NASA Astrophysics Data System (ADS)
Fosdick, J. C.; Leonard, J. S.; Bostelmann, J. E.; Ugalde, R.; Schwartz, T.
2015-12-01
The topographic development of the Patagonian Andes is influenced by crustal shortening, magmatism, asthenospheric mantle upwelling, climate, and erosion - yet knowledge of how these processes interact is hindered by an incomplete understanding of the timing and tempo of deformation and erosion. We report new detrital zircon U/Pb geochronology and sedimentology from the Cenozoic Austral (Magallanes) foreland basin in Argentina and Chile (near 51°S) that record changes in orogenic paleogeography during uplift of the Patagonian Andes. Near Cerro Castillo, Chile, zircons from deltaic and estuarine sandstones of the Cerro Dorotea Fm. indicate sedimentation ~60-61 Ma, revising the long-held Danian age assignment based on the foraminiferal content. Lower Eocene (47-46 Ma) zircons constrain the age of the overlying unit, the deltaic lower Río Turbio Fm., which shares sedimentological, paleontological, and provenance affinity with the northern Man Aike Fm. Deposition of the upper Río Turbio Fm. in Argentina occurred during the Eocene-Oligocene transition ~33-34 Ma and continued until ~26 Ma. Deposition of the Río Guillermo Fm. resumed ~23.5 Ma with the first occurrence of fluvial sedimentation that continued until the marine Patagonian transgression ~21-19 Ma at this location. Detrital zircon ages reveal upsection reduction in Late Jurassic and Paleozoic igneous sources, variable contributions of Late Cretaceous zircons, and younging of arc-derived zircons. Combined with published bedrock thermochronology and structural data, we suggest that early Miocene faulting and exhumation of the thrust-belt resulted in drainage reorganization and eastward shift in the drainage divide to the central domain, isolating the retroarc basin from the Jurassic Tobífera thrust sheets. Revised timing of sedimentation and changes in upland source areas during Paleocene-Miocene time reveals a complex relationship between basin evolution, Cenozoic climate, and phases of Andean tectonic activity.
NASA Astrophysics Data System (ADS)
Morales, Chloe; Suan, Guillaume; Wierzbowski, Hubert; Rogov, Mikhail; Teichert, Barbara; Kienhuis, Michiel V. M.; Polerecky, Lubos; Middelburg, Jack B. M.; Reichart, Gert-Jan; van de Schootbrugge, Bas
2015-04-01
Glendonites are calcite pseudomorphs after ikaite, an unstable hydrated calcium carbonate mineral. Because present-day ikaite occurs predominantly in sub-polar environments and is unstable at warm temperatures, glendonites have been used as an indicator of near-freezing conditions throughout Earth history. Ikaite has also been observed in cold deep-sea environments like the Gulf of Mexico, the Japan Trench, and the Zaire Fan where their formation is possibly governed by other parameters. The description of glendonites in Paleocene-Eocene sediments of Svalbard, and Early Jurassic (Pliensbachian) deposits of northern Germany, however questions the role of temperature on ikaite precipitation (Spielhagen and Tripati, 2009; Teichert and Luppold, 2013). Anomalously low carbon isotope values of Jurassic glendonites point to the involvement of methane as a possible carbon source for ikaite/glendonite formation. Terrestrial organic matter degradation is also frequently evoked as a potential source of carbon. The involved bio- and geochemical processes remains thus not well constrained. Here we present new geochemical data of a large number of glendonites specimens from the Lower and Middle Jurassic of northern Siberia and the Lena river middle flows (Bajocian, Bathonian, Pliensbachian). Carbon and oxygen isotopic values show comparable trends between the different sections. Bulk glendonites δ13C and δ18O values vary from 0.0 to -44.5o and -15.0 to -0.8 respectively and show a negative correlation. Some samples display similar low δ13C values as the Pliensbachian glendonites of Germany (Teichert and Luppold, 2013), suggesting thermogenic and/or biogenic methane sources. The range of carbon isotope values is comparable to those observed at other methane seeps deposits. Further investigations are needed to better constrain the carbon cycle in these particular environmental conditions. The role of microbial communities into ikaite/glendonite formation equally needs to be considered. These results however caution the use of glendonites as a proxy for near-freezing conditions. References: Spielhagen, R.F., Tripati, A., 2009. Evidence from Svalbard for near-freezing temperatures and climate oscillations in the Arctic during the Paleocene and Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology 278, 48-56. Teichert, B.M.A., Luppold, F.W., 2013. Glendonites from an Early Jurassic methane seep'Climate or methane indicators? Palaeogeography, Palaeoclimatology, Palaeoecology 390, 81-93.
Geologic Map of Baranof Island, southeastern Alaska
Karl, Susan M.; Haeussler, Peter J.; Himmelberg, Glen R.; Zumsteg, Cathy L.; Layer, Paul W.; Friedman, Richard M.; Roeske, Sarah M.; Snee, Lawrence W.
2015-01-01
This map updates the geology of Baranof Island based on fieldwork, petrographic analyses, paleontologic ages, and isotopic ages. These new data provide constraints on depositional and metamorphic ages of lithostratigraphic rock units and the timing of structures that separate them. Kinematic analyses and thermobarometric calculations provide insights on the regional tectonic processes that affected the rocks on Baranof Island. The rocks on Baranof Island are components of a Paleozoic to Early Tertiary oceanic volcanic arc complex, including sedimentary and volcanic rocks that were deposited on and adjacent to the arc complex, deformed, and accreted. The arc complex consists of greenschist to amphibolite facies Paleozoic metavolcanic and metasedimentary rocks overlain by lower-grade Triassic metasedimentary and metavolcanic rocks and intruded by Jurassic calc-alkaline plutons. The Paleozoic rocks correlate well in age and lithology with rocks of the Sicker and Buttle Lake Groups of the Wrangellia terrane on Vancouver Island and differ from rocks of the Skolai Group that constitute basement to type-Wrangellia in the Wrangell Mountains. The Jurassic intrusive rocks are correlative with plutons that intrude the Wrangellia terrane on Vancouver Island but are lacking in the Wrangell Mountains. The rocks accreted beneath the arc complex are referred to as the Baranof Accretionary Complex in this report and are correlated with the Chugach Accretionary Complex of southern and southeastern Alaska and with the Pacific Rim Complex on Vancouver Island. Stratigraphic correlations between upper- and lower-plate rocks on Baranof Island and western Chichagof Island with rocks on Haida Gwaii and Vancouver Island, in addition to correlative ages of intrusive rocks and restorations of the Fairweather-Queen Charlotte, Chatham Strait, and Peril Strait Faults that define the Baranof-Chichagof block, suggest Baranof Island was near Vancouver Island at the time of initiation of arc magmatism in the Early Jurassic. Early Eocene plutons that intruded the accretionary complex outboard of the arc on Baranof Island are attributed to anatectic melting of trench sediments resulting from subduction of a spreading center. Oligocene intrusive rocks on Baranof Island correlate in age and composition with intrusive rocks in the Kano Plutonic Suite on Haida Gwaii, and similar magmatic sources are inferred.
NASA Astrophysics Data System (ADS)
Khan, Mehrab; Kerr, Andrew C.; Mahmood, Khalid
2007-10-01
The Muslim Bagh ophiolitic complex Balochistan, Pakistan is comprised of an upper and lower nappe and represents one of a number of ophiolites in this region which mark the boundary between the Indian and Eurasian plates. These ophiolites were obducted onto the Indian continental margin around the Late Cretaceous, prior to the main collision between the Indian and Eurasian plates. The upper nappe contains mantle sequence rocks with numerous isolated gabbro plutons which we show are fed by dolerite dykes. Each pluton has a transitional dunite-rich zone at its base, and new geochemical data suggest a similar mantle source region for both the plutons and dykes. In contrast, the lower nappe consists of pillow basalts, deep-marine sediments and a mélange of ophiolitic rocks. The rocks of the upper nappe have a geochemical signature consistent with formation in an island arc environment whereas the basalts of the lower nappe contain no subduction component and are most likely to have formed at a mid-ocean ridge. The basalts and sediments of the lower nappe have been intruded by oceanic alkaline igneous rocks during the northward drift of the Indian plate. The two nappes of the Muslim Bagh ophiolitic complex are thus distinctively different in terms of their age, lithology and tectonic setting. The recognition of composite ophiolites such as this has an important bearing on the identification and interpretation of ophiolites where the plate tectonic setting is less well resolved.
Noble gas partitioning behavior in the Sleipner Vest hydrocarbon field
NASA Astrophysics Data System (ADS)
Barry, P. H.; Lawson, M.; Warr, O.; Mabry, J.; Byrne, D. J.; Meurer, W. P.; Ballentine, C. J.
2015-12-01
Noble gases are chemically inert and variably soluble in crustal fluids. They are primarily introduced into hydrocarbon reservoirs through exchange with formation waters, and can be used to assess migration pathways, mechanisms and reservoir storage. Of particular interest is the role groundwater plays in hydrocarbon transport, which is reflected in hydrocarbon-water volume ratios. We present compositional, stable isotope and noble gas isotope and abundance data from the Sleipner Vest field, in the Norwegian North Sea. Sleipner gases are generated from primary cracking of kerogen and the thermal cracking of oil, sourced from type II marine source, with relatively homogeneous maturities and a range in vitrinite reflectance (1.2-1.7%). Gases are hosted in the lower shoreface sandstones of the Jurassic Hugin formation, which is sealed by the Jurassic Upper Draupne and Heather formations. Gases are composed of N2 (0.6-0.9%), CO2 (5.4-15.3%) and hydrocarbons (69-80%). Helium isotopes (3He/4He) are radiogenic and range from 0.065 to 0.116 RA, showing a small mantle contribution, consistent with Ne isotopes (20Ne/22Ne from 9.70-9.91; 21Ne/22Ne from 0.0290-0.0344) and Ar isotopes (40Ar/36Ar from 315-489). 20Ne/36Ar, 84Kr/36Ar and 132Xe/36Ar values are systematically higher relative to air saturated water ratios. These data are discussed within the framework of several conceptual models: i) Total gas-stripping model, which defines the minimum volume of water to have interacted with the hydrocarbon phase; ii) Equilibrium model, assuming simple equilibration between groundwater and hydrocarbon phase at reservoir P,T and salinity; and iii) Open and closed system gas-stripping models. Using Ne-Ar, we estimate gas-water ratios for the Sleipner system of 0.02-0.09, which compare with geologic gas-water estimates of ~0.24, and suggest more groundwater interaction than a static system estimate. Kr and Xe show evidence for an additional source or process involving oil or sediments.
Staff - Nina T. Harun | Alaska Division of Geological & Geophysical Surveys
mapping of the Upper Jurassic Naknek Formation in a footwall syncline associated with the Bruin Bay fault Ivishak Formation in the northeastern Brooks Range, Alaska: University of Alaska Fairbanks, M.S. thesis Triassic Ivishak Formation in the Sadlerochit Mountains, northeastern Alaska: Alaska Division of Geological
Staff - Trystan M. Herriott | Alaska Division of Geological & Geophysical
sandstone interval in outcrop of the Tonnie Siltstone Member, Chinitna Formation, lower Cook Inlet, south Paveloff Siltstone Member of the Chinitna Formation: Exploring the potential role of facies variations in member of the Upper Jurassic Naknek Formation, northern Chinitna Bay, Alaska, in Wartes, M.A., ed
NASA Astrophysics Data System (ADS)
Sokolov, Sergey; Luchitskaya, Marina; Tuchkova, Marianna; Moiseev, Artem; Ledneva, Galina
2013-04-01
Continental margin of Northeastern Asia includes many island arc terranes that differ in age and tectonic position. Two convergent margins are reconstructed for Late Jurassic - Early Cretaceous time: Uda-Murgal and Alazeya - Oloy island arc systems. A long tectonic zone composed of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks is recognized along the Asian continent margin from the Mongol-Okhotsk thrust-fold belt on the south to the Chukotka Peninsula on the north. This belt represents the Uda-Murgal arc, which was developed along the convergent margin between Northeastern Asia and Northwestern Meso-Pacific. Several segments are identified in this arc based upon the volcanic and sedimentary rock assemblages, their respective compositions and basement structures. The southern and central parts of the Uda-Murgal island arc system were a continental margin belt with heterogeneous basement represented by metamorphic rocks of the Siberian craton, the Verkhoyansk terrigenous complex of Siberian passive margin and the Koni-Taigonos late Paleozoic to early Mesozoic island arc with accreted oceanic terranes. At the present day latitude of the Pekulney and Chukotka segments there was an ensimatic island arc with relicts of the South Anyui oceanic basin in backarc basin. Alazeya-Oloy island arc systems consists of Paleozoic and Mesozoic complexes that belong to the convergent margin between Northeastern Asia and Proto-Artic Ocean. It separated structures of the North American and Siberian continents. The Siberian margin was active whereas the North American margin was passive. The Late Jurassic was characterized by termination of a spreading in the Proto-Arctic Ocean and transformation of the latter into the closing South Anyui turbidite basin. In the beginning the oceanic lithosphere and then the Chukotka microcontinent had been subducted beneath the Alazeya-Oloy volcanic belt
NASA Astrophysics Data System (ADS)
Hasiotis, Stephen T.
2004-05-01
Seventy-five types of ichnofossils documented during a four-year reconnaissance study in the Upper Jurassic Morrison Formation demonstrate that highly diverse and abundant plants, invertebrates, and vertebrates occur throughout most of the Morrison or equivalent strata. Invertebrate ichnofossils, preserving the most environmentally and climatically sensitive in situ behavior of Morrison organisms, are in nearly all outcrops. Terrestrial ichnofossils record biotic processes in soil formation, indicating soil moisture and water-table levels. Freshwater ichnofossils preserve evidence of water depth, salinity, and seasonality of water bodies. Ichnofossils, categorized as epiterraphilic, terraphilic, hygrophilic, and hydrophilic (new terms), reflect the moisture regime where they were constructed. The ichnofossils are vertically zoned with respect to physical, chemical, and biological factors in the environment that controlled their distribution and abundance, and are expressed as surficial, shallow, intermediate, and deep. The sedimentologic, stratigraphic, and geographic distribution of Morrison ichnofossils reflects the environmental and climatic variations across the basin through time. Marginal-marine, tidal to brackish-water ichnofossils are mainly restricted to the Windy Hill Member. Very large to small termite nests dominate the Salt Wash Member. Similar size ranges of ant nests dominate the Brushy Basin Member. Soil bee nests dominate in the Salt Wash, decreasing in abundance through the Brushy Basin. Deeper and larger insect nests indicate more seasonal distribution of precipitation and rainfall. Shallower and smaller insect nests indicate either dry or wet substrate conditions depending on the nest architecture and paleopedogenic and sedimentologic character of the substrate. Trace-fossil indicators of flowing or standing water conditions are dominant in the Tidwell Member and in fluvial sandstones of the Salt Wash and Brushy Basin Members. Large communities of perennial, freshwater bivalve traces are abundant in the Tidwell and Brushy Basin Members but to a lesser extent in the Salt Wash Member. Shallow crayfish burrows, indicating a water-table level close to the surface (<1 m), are restricted to channel bank and proximal alluvial deposits in the Salt Wash, Recapture, and Brushy Basin Members. Sauropod, theropod, pterosaur, and other vertebrate tracks occur throughout the Morrison Formation associated with alluvial, lacustrine, and transitional-marine shoreline deposits. Ichnofossils and co-occurring paleosols in the Morrison reflect the local and regional paleohydrologic settings, which record the annual soil moisture budget and were largely controlled by the climate in the basin. Contributions to near-surface biologic systems by groundwater from distant sources were minor, except where the water table perennially, seasonally, or ephemerally intersected the ground-surface. The Jurassic Morrison Formation in the southern portion of the basin experienced a mosaic of seasonal climates that varied from a drier (Tidwell/Windy Hill deposition) to a wetter (lower and middle Salt Wash deposition) and slightly drier (upper Salt Wash deposition) tropical wet-dry climate, returning to a wetter tropical wet-dry climate near the end of Morrison deposition (Brushy Basin deposition). The northern part of the basin experienced similar trends across a mosaic of Mediterranean climate types. The range and mosaic pattern of wet-dry Morrison climates is analogous to the range of climates (and their seasonal variability) that dominates the African savanna today.
Ridgley, Jennie L.
1983-01-01
In the Chama Basin a wequence of conglomerate, sandstone, and red, gray-green, and pale-purple mudstone occurs stratigraphically between the Upper Jurassic Morrison Formation and Upper Cretaceous Dakota Sandstone. This stratigraphic interval has been called the Burro Canyon Formation by several workers (Craig and others, 1959; Smith and others, 1961; Saucier, 1974). Although similarities in lithology and stratigraphic position exist between this unit and the Burro Canyon Formation in Colorado, no direct correlation has been made between the two. For this reason the unit in the Chama Basin is called the Burro Canyon(?) Formation.
Poag, C.W.; Sevon, W.D.
1989-01-01
The complex interplay between source-terrain uplift, basin subsidence, paleoclimatic shifts, and sea-level change, left an extensive sedimentary record in the contiguous offshore basins of the U.S. middle Atlantic margin (Salisbury Embayment, Baltimore Canyon Trough, and Hatteras Basin). Isopach maps of 23 postrift (Lower Jurassic to Quaternary) a allostratigraphic units, coupled with a revised stratigraphic framework, reveal that tectonism, by regulating sediment supply (accumulation rate), dominated the interplay of forcing mechanisms. Tectonic pulses are evidenced by abruptly accelerated sediment accumulation, marked latitudinal shifts in the location of depocenters, and regional changes in lithofacies. Relatively rapid tectonic subsidence during the Early and Middle Jurassic history of the basins may have enhanced sediment accumulation rates. Beginning in the Late Jurassic, however, subsidence rates decreased significantly, though occasional short pulses of subsidence may have effected relative sea-level rises. Sea-level change heavily influenced the distribution and redistribution of sediments one they reached the basins, and paleoclimate regulated the relative abundance of carbonates and evaporites in the basins. We conclude that source terrains of the central Appalachian Highlands were tectonically uplifted, intensely weathered, and rapidly eroded three times since the Late Triassic: (1) Early to Middle Jurassic (Aalenian to Callovian); (2) mid-Early Cretaceous (Barremian); and (3) Late Cenozoic (Middle Miocene). Intervals of tectonic quiescence following these three tectonic pulses provided conditions suitable for the formation of regional erosion surfaces, geomorphic features commonly reported to characterize the central Appalachian Highlands. This series of three, irregularly spaced, tectonic/quiescent cycles does not, however, match the traditional four-cycle concept of post-Triassic Appalachian "peneplanation". ?? 1989.
NASA Astrophysics Data System (ADS)
Pointer, Robyn; Hesselbo, Stephen; Littler, Kate; Pieńkowski, Grzegorz; Hodbod, Marta
2016-04-01
Carbon-isotope analysis of fossil plant material from a Polish core provides new evidence of a perturbation to the atmospheric carbon-cycle at the Triassic-Jurassic boundary (~201 Ma). The Triassic-Jurassic boundary was a time of extreme climate change which also coincided with the end-Triassic mass extinction. The new data will allow us to identify climatic changes in the Polish Basin across the Triassic-Jurassic boundary and evaluate these changes on a broader scale by comparison to data from other sites located around the world. The Niekłan borehole core, located in the southern Polish Basin, provides a ~200 metre-long terrestrial record spanning the Rhaetian and Hettangian, including the Triassic-Jurassic boundary (~208-199 Ma). The Niekłan core consists of interbedded fluvial and lacustrine sediments containing preserved plant material and thus provides an excellent opportunity to study both terrestrial palaeoenvironmental changes in the Polish Basin and perturbations in the carbon-cycle more broadly. Carbon-isotope analysis of macrofossil plant material and microscopic woody phytoclasts from the Niekłan core reveals a negative carbon-isotope excursion (CIE) of ~-3‰ at the end of the Rhaetian, before a gradual return to more positive values thereafter. The negative CIE suggests an injection of isotopically-light carbon into the atmosphere occurred just before the Triassic-Jurassic boundary. Likely sources of this carbon include volcanogenic gases, methane released from gas hydrates, or a combination of the two. The negative CIE seen in plant material at Niekłan is also recorded in a variety of geological materials from contemporaneous sites world-wide. These time-equivalent, but geographically separated, records indicate that the negative CIE recorded in the Niekłan plant material is the result of a regional or global carbon-cycle perturbation and is not merely a local signal. Future work will focus on using a range of palaeoenvironmental proxies in order to produce a detailed record of climate change at the Triassic-Jurassic boundary to complement the new fossil plant carbon-isotope record from the Niekłan core. A new, detailed, multi-proxy record from the Polish Basin will allow us to quantify the climate changes occurring in the basin across the Triassic-Jurassic boundary.
Raddatz, Maik
2017-01-01
We report a new, small-sized atoposaurid crocodyliform from the Upper Jurassic of Langenberg, Northeastern Germany. Atoposaurids are small-sized Mesozoic crocodyliforms of mainly European distribution, which are considered to be phylogenetically close to the origin of Eusuchia. Knoetschkesuchus langenbergensis gen. nov. sp. nov. is represented by two well-preserved skulls and additional cranial and postcranial remains representing different ontogenetic stages. 3D reconstructions of a juvenile skull based on micro-computed tomography allow the most detailed description of cranial remains of any atoposaurid hitherto presented. Our new analysis contradicts previous preliminary assignment of the Langenberg atoposaurids to Theriosuchus. Knoetschkesuchus gen. nov. is characterized in particular by the presence of two dental morphotypes in the maxilla and dentary, slit-like secondary choanae within a narrow groove on the surface of the pterygoid, absence of lacrimonasal contact, presence of an antorbital foramen and an external mandibular fenestra, and proportional characters of the interorbital and intertemporal region. A similar combination of characters allows attribution of Theriosuchus guimarotae to Knoetschkesuchus, forming the new combination Knoetschkesuchus guimarotae. Our analysis provides an osteological basis for the separation of Theriosuchus and Knoetschkesuchus and helps further delineate generic differences in other closely related crocodylomorphs. Our phylogenetic analysis corroborates inclusion of Knoetschkesuchus into Atoposauridae and supports a position of Atoposauridae within Eusuchia. PMID:28199316
Geologic constraints to fluid flow in the Jurassic Arab D reservoir, eastern Saudi Arabia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laing, J.E.
1991-08-01
A giant oil field located in eastern Saudi Arabia has produced several billion barrels of 37{degree} API oil from fewer than 100 wells. The Upper Jurassic Arab Formation is the main producing unit, and is made up of a series of upward-shoaling carbonate and anhydrite members. Porous carbonates of the Arab D member make up the principle oil reservoir, and overlying Arab D anhydrite provides the seal. Principal reservoir facies are stromatoporoid-coral and skeletal grainstones. Reservoir drive is currently provided by flank water injection. Despite more than 30 years of flank water injection (1.5 billion bbl) into the northern areamore » of the field, a thick oil column remains in the Arab D reservoir. Geological factors which affect fluid flow in this area are (1) a downdip facies change from permeable skeletal-stromatoporoid limestone to less permeable micritic limestone, (2) vertical permeability barriers resulting from shoaling-upward cycles, (3) a downdip tar mat, (4) dolomite along the flanks in the upper portion of the reservoir, (5) highly permeable intervals within the skeletal-stromatoporoid limestone, and (6) an updip, north to south facies change from predominantly stromatoporoid-coral grainstone to skeletal grainstone. These factors are considered in reservoir modeling, simulation studies, and planning locations for both water injection and producer wells.« less
Kinematics and Ophiolite obduction in the Gerania and Helicon Mountains, central Greece
NASA Astrophysics Data System (ADS)
Kaplanis, A.; Koukouvelas, I.; Xypolias, P.; Kokkalas, S.
2013-06-01
New structural, petrofabric and palaeostress data from the Beotia area (central Greece) were used to investigate the tectonic evolution of the suture zone between the External (Parnassus microplate) and Internal Hellenides (Pelagonian microplate). Petrofabric studies of ultramafic rocks were done using conventional U-stage analysis and the electron backscatter diffraction (EBSD) technique. Detailed structural analysis enabled us to distinguish three main deformation phases that took place from the Triassic to the Eocene. Triassic-Jurassic deformation is related to continental rifting and the progressive formation of an ocean basin. Ophiolites formed above a westward-dipping supra-subduction zone (SSZ) in the Early-Late Jurassic. Trench-margin collision resulted in the southeastward emplacement of the ophiolite nappe over the Pelagonian margin. There is also evidence for a north-westward thrusting of ophiolitic rocks over the Gerania and Helicon units during Berriasian time. This latter tectonic process is closely related to the deposition of "Beotian flysch" into a foreland basin. An extensional phase of deformation accompanied by shallow-water carbonate sedimentation is documented in the Upper Cretaceous. Later, during Paleocene the area was subjected to a compressional deformation phase characterised by SW-directed thrusting and folding, as well as NE-verging backthrusts and backfolds. Our proposed geotectonic model suggests the consumption of the ocean between the Parnassus and Pelagonian microplates. This model includes Late Jurassic eastward ophiolite obduction followed by Early Cretaceous west directed ophiolite thrusting.
NASA Astrophysics Data System (ADS)
Scherer, Hannah H.; Ernst, W. G.; Brooks Hanson, R.
2008-04-01
The NNW-trending White-Inyo Range includes intrusive and volcanic rocks on the eastern flank of the Sierran volcano-plutonic arc. The NE-striking, steeply SE-dipping Barcroft reverse fault separates folded, metamorphosed Mesozoic White Mountain Peak mafic and felsic volcanic flows, volcanogenic sedimentary rocks, and minor hypabyssal plugs on the north from folded, well-bedded Neoproterozoic-Cambrian marble and siliciclastic strata on the south. The 163 ± 2 Ma Barcroft Granodiorite rose along this fault, and thermally recrystallized its wall rocks. However, new SHRIMP-RG ages of magmatic zircons from three White Mountain Peak volcanogenic metasedimentary rocks and a metafelsite document stages of effusion at ˜115-120 Ma as well as at ˜155-170 Ma. The U-Pb data confirm the interpretation by Hanson et al. (1987) that part of the metasedimentary-metavolcanic pile was laid down after Late Jurassic intrusion of the Barcroft pluton. The Lower Cretaceous, largely volcanogenic metasedimentary section lies beneath a low-angle thrust fault, the upper plate of which includes interlayered Late Jurassic mafic and felsic metavolcanic rocks and the roughly coeval Barcroft pluton. Late Jurassic and Early Cretaceous volcanism in this sector of the Californian continental margin, combined with earlier petrologic, structural, and geochronologic studies, indicates that there was no gap in igneous activity at this latitude of the North American continental margin.
Wrucke, Chester T.; Stone, Paul; Stevens, Calvin H.
2007-01-01
Warm Spring Canyon is located in the southeastern part of the Panamint Range in east-central California, 54 km south of Death Valley National Park headquarters at Furnace Creek Ranch. For the relatively small size of the area mapped (57 km2), an unusual variety of Proterozoic and Phanerozoic rocks is present. The outcrop distribution of these rocks largely resulted from movement on the east-west-striking, south-directed Butte Valley Thrust Fault of Jurassic age. The upper plate of the thrust fault comprises a basement of Paleoproterozoic schist and gneiss overlain by a thick sequence of Mesoproterozoic and Neoproterozoic rocks, the latter of which includes diamictite generally considered to be of glacial origin. The lower plate is composed of Devonian to Permian marine formations overlain by Jurassic volcanic and sedimentary rocks. Late Jurassic or Early Cretaceous plutons intrude rocks of the area, and one pluton intrudes the Butte Valley Thrust Fault. Low-angle detachment faults of presumed Tertiary age underlie large masses of Neoproterozoic dolomite in parts of the area. Movement on these faults predated emplacement of middle Miocene volcanic rocks in deep, east-striking paleovalleys. Excellent exposures of all the rocks and structural features in the area result from sparse vegetation in the dry desert climate and from deep erosion along Warm Spring Canyon and its tributaries.
The Middle Jurassic Entrada Sandstone near Gallup, New Mexico
Robertson, J.F.; O'Sullivan, R. B.
2001-01-01
Near Gallup, New Mexico, the Middle Jurassic Entrada Sandstone consists of, in ascending order, the Iyanbito Member, the Rehoboth Member, and an upper sandstone member. The Rehoboth Member is named herein to replace the middle siltstone member, with a type section located 26 km east of Gallup. The Iyanbito Member has been erroneously equated with the Wingate Sandstone of northeast Arizona, and the Rehoboth Member has been miscorrelated with the Dewey Bridge Member of the Entrada in Utah. The Dewey Bridge is an older unit that does not extend into New Mexico. The Iyanbito Member, east of Gallup, overlies the J-2 unconformity and the eroded tops of the Owl Rock and Petrified Forest Members of the Chinle Formation. The Wingate Sandstone of the Lower Jurassic Glen Canyon Group overlies the J-0 unconformity and the underlying Rock Point Member (topmost unit) of the Chinle Formation in northeast Arizona. Both the Wingate Sandstone and the Rock Point Member are missing east of Gallup below the J-2 unconformity. Similarly, the Wingate is missing southwest of Gallup, near Lupton, Arizona, but the Rock Point Member is present and underlies the Iyanbito from Zuni northward to Toadlena, New Mexico. The Wingate and other formations of the Glen Canyon Group thin and wedge out southward and eastward in northeast Arizona. The J-2 unconformity truncates the Wingate Sandstone and the underlying J-0 unconformity, 5 km north of Toadlena.
NASA Astrophysics Data System (ADS)
Seno, S.; Decarlis, A.; Fellin, M. G.; Maino, M.; Beltrando, M.; Ferrando, S.; Manatschal, G.; Gaggero, L.; Stuart, F. M.
2017-12-01
The aim of the present study is to analyse, through thermochronological investigations, the thermal evolution of a fossil distal margin owing to the Alpine Tethys rifting system. The studied distal margin section consists of a polymetamorphic basement (Calizzano basement) and of a well-developed Mesozoic sedimentary cover (Case Tuberto unit) of the Ligurian Alps (NW Italy). The incomplete reset of zircon (U-Th)/He ages and the non-reset of the zircon fission track ages during the Alpine metamorphism indicate that during the subduction and the orogenic stages these rocks were subjected to temperatures lower than 200 ºC. Thus, the Alpine metamorphic overprint occurred during a short-lived, low temperature pulse. The lack of a pervasive orogenic reset, allowed the preservation of an older heating-cooling event that occurred during Alpine Tethys rifting. Zircon fission-track data indicate, in fact, that the Calizzano basement records a cooling under 240 °C, at 156 Ma (early Upper Jurassic). This cooling followed a Middle Jurassic syn-rift heating at temperatures of about 300-350°C, typical of greenschist facies conditions occurred at few kilometres depth, as indicated by stratigraphic and petrologic constraints. Thus, in our interpretation, major crustal thinning likely promoted high geothermal gradients ( 60-90°C/km) triggering the circulation of hot, deep-seated fluids along brittle faults, causing the observed thermal anomaly at shallow crustal level.
NASA Astrophysics Data System (ADS)
Rebay, G.; Tiepolo, M.; Zanoni, D.; Langone, A.; Spalla, M. I.
2015-12-01
The Zermatt-Saas (ZS) Zone, formerly part of Tethyan oceanic crust and variously affected by oceanic metamorphism, is now part of the orogenic suture that developed in the Western European Alps during the Alpine subduction and collision. The ZS rocks preserve a dominant HP to UHP metamorphic imprint overprinted by greenschist facies metamorphism. The age of the oceanic protoliths is considered to be middle to upper Jurassic whereas the HP metamorphism is mostly considered to be Eocene. In upper Valtournanche ZS ophiolites, the dominant regional S2 foliation is mapped with spatial continuity in serpentinite, metarodingite and eclogite and is defined by HP/UHP parageneses in all lithotypes. It developed at 2.5 ± 0.3 GPa and 600 ± 20°C during Alpine subduction. S2 foliation of serpentinites wraps rare clinopyroxene and zircon relics. Trace element composition of clinopyroxene suggests that they crystallised from a melt in equilibrium with plagioclase: they most likely represent relicts of gabbroic assemblages. The clinopyroxene porphyroclasts have rims indented within S2 and compositions similar to fine-grained clinopyroxeneII defining S2, suggesting that they recrystallised during Alpine subduction. Zircon cores show, under CL, sector zoning typical of magmatic growth. U-Pb dates suggest their crystallisation during Middle Jurassic. Magmatic cores have thin fringe overgrowths parallel to the S2 foliation. U-Pb concordant analyses on these domains reveal an Upper Cretaceous-Paleocene crystallization most likely representing the HP to UHP Alpine re-equilibration. This suggests that some sections of the ZS have experienced HP to UHP metamorphism earlier than previously thought, opening new interpretative geodynamic scenarios. Remarkably, these new dates are similar to those recorded for the HP re-equilibration in the continental crust of the adjacent Austroalpine units (upper plate of the Alpine subduction system) and to those recorded for prograde metamorphism in other parts of the ZS ophiolites.
NASA Astrophysics Data System (ADS)
Kollenz, Sebastian; Glasmacher, Ulrich A.; Rossello, Eduardo A.; Stockli, Daniel F.; Schad, Sabrina; Pereyra, Ricardo E.
2017-10-01
Passive continental margins are geo-archives that store information from the interplay of endogenous and exogenous forces related to continental rifting, post-breakup history, and climate changes. The recent South Atlantic passive continental margins (SAPCMs) in Brazil, Namibia, and South Africa are partly high-elevated margins ( 2000 m a.s.l.), and the recent N-S-trending SAPCM in Argentina and Uruguay is of low elevation. In Argentina, an exception in elevation is arising from the higher topography (> 1000 m a.s.l.) of the two NW-SE-trending mountain ranges Sierras Septentrionales and Sierras Australes. Precambrian metamorphic and intrusive rocks, and siliciclastic rocks of Ordovician to Permian age represent the geological evolution of both areas. The Sierras Australes have been deformed and metamorphosed (incipient - greenschist) during the Gondwanides Orogeny. The low-temperature thermochronological (LTT) data (< 240 °C) indicated that the Upper Jurassic to Lower Cretaceous opening of the South Atlantic has not completely thermally reset the surface rocks. The LTT archives apatite and zircon still revealed information on the pre- to post-orogenic history of the Gondwanides and the Mesozoic and Cenozoic South Atlantic geological evolution. Upper Carboniferous zircon (U-Th/He)-ages (ZHe) indicate the earliest cooling below 180 °C/1 Ma. Most of the ZHe-ages are of Upper Triassic to Jurassic age. The apatite fission-track ages (AFT) of Sierras Septentrionales and the eastern part of Sierras Australes indicate the South Atlantic rifting and, thereafter. AFT-ages of Middle to Upper Triassic on the western side of the Sierras Australes are in contrast, indicating a Triassic exhumation caused by the eastward thrusting along the Sauce Grande wrench. The corresponding t-T models report a complex subsidence and exhumation history with variable rates since the Ordovician. Based on the LTT-data and the numerical modelling we assume that the NW-SE-trending mountain ranges received their geographic NW-SE orientation during the syn- to post-orogenic history of the Gondwanides.
NASA Astrophysics Data System (ADS)
Hakimi, Mohammed Hail; Abdullah, Wan Hasiah; Makeen, Yousif M.; Saeed, Shadi A.; Al-Hakame, Hitham; Al-Moliki, Tareq; Al-Sharabi, Kholah Qaid; Hatem, Baleid Ali
2017-05-01
Calcareous shales and black limestones of the Jurassic Amran Group, located in the Sharab area (SW Yemen), were analysed based on organic and inorganic geochemical methods. The results of this study were used to reconstruct the paleoenvironmental and paleoclimatic conditions during Jurassic time and their relevance to organic matter enrichment during deposition of the Amran calcareous shale and black limestone deposits. The analysed Amran samples have present-day TOC and Stotal content values in the range of 0.25-0.91 wt % and 0.59-4.96 wt %, respectively. The relationship between Stotal and TOC contents indicates that the Jurassic Amran deposits were deposited in a marine environment as supported by biomarker environmental indicators. Biomarker distributions also reflect that the analysed Amran deposits received high contributions of marine organic matter (e.g., algal and microbial) with minor amount of land plant source inputs. Low oxygen (reducing) conditions during deposition of the Jurassic Amran deposits are indicated from low Pr/Ph values and relatively high elemental ratios of V/Ni and V/(V + Ni). Enrichment in the pyrite grains and very high DOPT and high Fe/Al ratios further suggest reducing bottom waters. This paleo-redox (i.e., reducing) conditions contributed to preservation of organic matter during deposition of the Jurassic Amran deposits. Semi-arid to warm climatic conditions are also evidenced during deposition of the Amran sediments and consequently increased biological productivity within the photic zone of the water column during deposition. Therefore, the increased bio-productivity in combination with good preservation of organic matter identified as the major mechanisms that gave rise to organic matter enrichment. This contradicts with the low organic matter content of the present-day TOC values of less than 1%. The biomarker maturity data indicate that the analysed Amran samples are of high thermal maturity; therefore, the low present-day TOC is attributed to the thermal effect on the original organic matter. This high thermal maturity level is due to the presence of volcanic rocks, which have invaded the Jurassic rocks during Late Oligocene to Early Miocene.
Miller, C.F.; Wooden, J.L.
1994-01-01
A compositionally expanded array of granitic (s.l.) magmas intruded the > 2 Ga crust of the Old Woman Mountains area between 160 and 70 Ma. These magmas were emplaced near the eastern (inland) edge of the Jurassic/Cretaceous arcs of western North America, in an area where magma flux, especially during the Jurassic, was considerably lower than to the west. The Jurassic intrusives and over half of the Cretaceous intrusives are predominantly metaluminous and variable in composition; a major Cretaceous suite comprises only peraluminous monzogranite. Only the Jurassic intrusions show clear evidence for the presence of mafic liquids. All units, including the most mafic rocks, reveal isotopic evidence for a significant crustal component. However, none of the Mesozoic intrusives matches in isotopic composition either average pre-intrusion crust or any major unit of the exposed crust. Elemental inconsistencies also preclude closed system derivation from exposed crust. Emplacement of these magmas, which doubled the volume of the mid- to upper crust, did not dramatically change its elemental composition. It did, however, affect its Nd and especially Sr isotopic composition and modify some of the distinctive aspects of the elemental chemistry. We propose that Jurassic magmatism was open-system, with a major influx of mantle-derived mafic magma interacting strongly with the ancient crust. Mesozoic crustal thickening may have led to closed-system crustal melting by the Late Cretaceous, but the deep crust had been profoundly modified by earlier Mesozoic hybridization so that crustal melts did not simply reflect the original crustal composition. The clear evidence for a crustal component in magmas of the Old Woman Mountains area may not indicate any fundamental differences from the processes at work elsewhere in this or other magmatic arcs where the role of pre-existing crust is less certain. Rather, a compositionally distinctive, very old crust may simply have yielded a more readily identifiable crustal fingerprint. The same processes that were involved here-mafic magma influx, hybridization, and remelting of hybridized crust-are likely to be typical of arc settings. ?? 1994.
Tosdal, R.M.; Stone, P.
1994-01-01
A previously unrecognized angular unconformity divides the Jurassic and Cretaceous McCoy Mountains Formation into a lower and an upper unit in the Dome Rock Mountains and Livingston Hills of western Arizona. The intraformation unconformity in the McCoy Mountains Formation developed where rocks of the lower unit were deformed adjacent to the southern margin of the Maria fold and thrust belt. The upper unit of the formation is interpreted as a foreland-basin deposit that was shed southward from the actively rising and deforming fold and thrust belt. The apparent absence of an equivalent unconformity in the McCoy Mountains Formation in adjacent California is presumably a consequence of the observed westward divergence of the outcrop belt from the fold and thrust belt. Tectonic burial beneath the north-vergent Mule Mountains thrust system in the latest Late Cretaceous (~70 Ma) marked the end of Mesozoic contractile deformation in the area. -from Authors
NASA Astrophysics Data System (ADS)
Zand-Moghadam, Hamed; Moussavi-Harami, Reza; Mahboubi, Asadollah; Aghaei, Ali
2016-05-01
The Upper Jurassic (Oxfordian-Kimmeridgian) Mozduran Formation is the most important gas reservoirs of the northeast Iran. Siliciclastic facies of this formation in eastern most parts of the basin have not been studied yet. Therefore, four stratigraphic sections of Mozduran Formation have been selected in the Kole-Malekabad, Kale-Karab, Deraz-Ab and Karizak to interpret depositional history and analyze depositional sequences. Based on texture and sedimentary structures, 14 slilciclastic lithofacies were identified and classified into four categories, including conglomerate (Gms, Gp, Gt), sandstone (Sh, Sp, St, Sr, Sl, Sm, Se), mud rock (Fl) and intermediate sandstone-mud rock (Sr (Fl), Sr/Fl, Fl (Sr)). Identified lithofacies formed four architectural elements CH, SB, LA and FF. Lithofacies characteristics and architectural elements with mostly bimodal pattern of paleocurrents show that the majority of Mozduran lithofacies deposited in the coastal environment (tidal influence). Sequence stratigraphic analysis shows that the Kole-Malekabad section consists of two depositional sequences while other sections are characterized by three depositional sequences. The lower and upper sequence boundaries of the Mozduran Formation in all stratigraphic sections are SB1 that are distinguished by paleosol and sometime conglomerate horizons. Most of depositional sequences in studied sections are composed only of TST and HST. The TST deposits consist mostly of quartzarenite and litharenite petrofacies that have been deposited in the tidal zone. HST packages are mostly including mud rocks with interdeds of sandstone lithofacies that are deposited in supratidal setting. The LST facies is recognized only in the DS3 (equivalent to the second depositional sequences of the Kole-Malekabad), which consist of conglomerate facies. Instead, the Kole-Malekabad section is often composed of supratidal gypsiferrous shales, indicating sea level fall in the study area.
Age and provenance of Triassic to Cenozoic sediments of West and Central Sarawak, Malaysia
NASA Astrophysics Data System (ADS)
Breitfeld, H. Tim; Galin, Thomson; Hall, Robert
2015-04-01
Sarawak is located on the northern edge of Sundaland in NW Borneo. West and Central Sarawak include parts of the Kuching and Sibu Zones. These contain remnants of several sedimentary basins with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic (Sadong Formation and its deep marine equivalent Kuching Formation). They were sourced by a Triassic (Carnian to Norian) volcanic arc and reworked Paleoproterozoic detritus derived from Cathaysialand. The Upper Jurassic to Cretaceous Pedawan Formation is interpreted as forearc basin fill with distinctive zircon populations indicating subduction beneath present-day West Sarawak which initiated in the Late Jurassic. Subsequent subduction until the early Late Cretaceous formed the Schwaner Mountains magmatic arc. After collision of SW Borneo and other microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension followed and were responsible for basin development on land in West Sarawak from the latest Cretaceous onwards, probably in a pull-apart setting. The first episode is associated with sediments of the Kayan Group, deposited in the Latest Cretaceous (Maastrichtian) to Eocene, and the second episode with Upper Eocene sediments of the Ketungau Basin. Zircon ages indicate volcanic activity throughout the Early Cenozoic in NW Borneo, and inherited zircon ages indicate reworking of Triassic and Cretaceous rocks. A large deep marine basin, the Rajang Basin, was north of the Lupar Line Fault in Central Sarawak (Sibu Zone) from the Late Cretaceous to the Late Eocene. Zircons from sediments of the Rajang Basin indicate they have similar ages and provenance to contemporaneous terrestrial sediments of the Kayan Group and Ketungau Basin to the south, suggesting a narrow steep continental Sundaland margin at the position of the Lupar Line, and a large-scale sedimentary connection between the terrestrial and deep marine basins in the Late Cretaceous to Late Eocene. A recent reconstruction for the proto-South China Sea proposed an isolated so-called Semitau terrane colliding with SW Borneo and Sundaland in the Late Eocene. Our data show that the area of the Kuching and Sibu Zones were connected with SW Borneo and Sundaland from the Cretaceous onwards. The Cretaceous and Cenozoic sedimentary basins were sourced by alternations of Schwaner Mountains and Malay Tin Belt rocks. Our new age and provenance data cannot be explained by an isolated Semitau terrane and a Late Eocene collision.
NASA Astrophysics Data System (ADS)
Juárez, M. T.; Osete, M. L.; Meléndez, G.; Langereis, C. G.; Zijderveld, J. D. A.
1994-08-01
A composite magnetic polarity sequence has been constructed for the middle and late Oxfordian (late Jurassic) from four overlapping sections situated in both limbs of an anticline. Two stable magnetisation components could be isolated in every sample analyzed. Both components pass the fold test: a low-temperature secondary component, with Dec. = 340.9° and Inc. = 44.9° ( α95 = 1.7°), of pre-Oligocene age, showing always normal polarity, and a high-temperature primary component, with Dec. = 324.1° and Inc. = 40.6° (α 95 = 2.9°). The latter shows both normal and reversed polarities and provides the geomagnetic record for the late Jurassic. The magnetostratigraphy of the four overlapping sections has given consistent results and indicates that a high frequency of reversals characterises the pattern of the geomagnetic field during the middle to upper Oxfordian. The corresponding Oxfordian paleopole is Plat = 251.2°, Plong = 55.9° ( α95 = 3.1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebi, F.H.; Korkmaz, S.; Akcay, M.
The majority of coal deposits in the world are of Carboniferous and Tertiary age but Jurassic coals are seldom present. They are also exposed in northern Turkey and occur both at the lower and upper sections of the Liassic-Dogger volcanic- and volcani-clastic series. The coals at the base of the Jurassic units are characterized by higher Ba, Th, Zr, and Cr-Ni and lower S values than those at the top of the units, indicating, in general, laterally consistent trace element contents. The vertical distribution of trace elements in individual coal seams is also rather consistent. The B contents of coalsmore » from the Godul and Norsun areas vary from 1.5 to 4.3 ppm whereas those from the Alansa area are in the range of 95 to 138 ppm. This suggests that the coals in the Godul and Norsun areas were deposited in a swamp environment inundated by the sea from time to time, whereas coals of the Alansa were deposited in a saline environment.« less
NASA Astrophysics Data System (ADS)
Li, Bin; Jiang, Shao-Yong; Lu, An-Huai; Lai, Jian-Qing; Zhao, Kui-Dong; Yang, Tao
2016-11-01
The Gutian porphyry Cu-Mo deposit is a newly proved porphyry copper deposit in the coastal South China associated with granodioritic porphyries. In this study, zircon U-Pb ages and Hf isotope data, as well as geochemical and Sr-Nd-Pb-Re-Os isotopic compositions, are reported for these intrusions and minerals. Both zircon U-Pb and molybdenite Re-Os dating suggest that the Gutian granodiorite porphyries and related mineralization formed at 160 Ma. The Gutian granodiorites show a low-Mg adakitic geochemical affinity, with relatively high K2O but low Cr and Ni contents. These rocks have initial (87Sr/86Sr)i ratios of 0.7085 to 0.7097, negative εNd(t) values (- 12.5 to - 7.8), (206Pb/204Pb)t ratios of 18.048 to 18.241, (207Pb/204Pb)t ratios of 15.609 to 15.628, and (208Pb/204Pb)t ratios of 38.494 to 38.667. Zircons from the granodiorites have negative εHf(t) values of - 15.7 to - 8.5, which are close to those of Cathaysia crust-derived melts. Geochemical and Sr-Nd-Pb-Hf isotopic compositions suggest that they may be derived from Late Jurassic thickened juvenile lower crust. These lower crustal magma sources may not only contain pre-Proterozoic basement rocks, but also involve Triassic and Middle-Late Jurassic arc magmas within the lower crust, which were likely derived from an enriched mantle source associated with paleo-Pacific Plate subduction from the Middle to Late Jurassic. The Gutian ore-related granodiorites represent a new example for significant contributions of ancient subduction melts and enriched mantle-derived sources for porphyry-type magmatism and Cu-Mo mineralization, which occurred in response to an arc regime during the Middle to Late Jurassic in South China. Supplemental Table S2. Hf isotopic compositions of zircons from the studied rocks from the Gutian porphyry deposit in South China. Supplemental Table S3. Statistics for zircon U-Pb ages and Hf isotope compositions from Gutian granodiorites in South China Supplemental Table S4. Major element (wt.%) and trace element (ppm) concentrations of Gutian intrusions in Fujian Province, South China. Supplemental Table S5. Sr and Nd isotopic compositions of the studied rocks from the Gutian porphyry deposit in Fujian Province, South China. Supplemental Table S6. Pb isotopic compositions of the studied rocks from the Gutian porphyry deposit in South China. Supplemental Table S7. Re-Os isotopic compositions of molybdenite from the Gutian porphyry deposit in South China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrero-Faz, M.; Hernandezperez, G.
The Cuban Archipelago is an Early Tertiary thrust belt derived from the Collision of the Cretaceous volcanic arc from the South with the North American continental margin (Jurassic- Cretaceous). The main characteristics of the hydrocarbon potential of Cuba are: (1) Widespread existence of Jurassic-Cretaceous source rocks and active process of generation of different types of oils; (2) Hydrocarbons are reservoired in a wide range of rock types most commonly in thrusted, fractured carbonates of Jurassic to Cretaceous age. This kind of reservoir is the most important in Cuba; (3) High density in area of different types of traps, being themore » most important hinterland dipping thrust sheet play; and (4) Migration and trapping of hydrocarbons mainly in Eocene. Migration is supposed to be mostly lateral. Vertical migration is not excluded in the South and also in some part of the North Province. There still remains a significant number of untested, apparently valid exploration plays in both on- and offshore areas of Cuba.« less
,
2008-01-01
The purpose of the U.S. Geological Survey's (USGS) World Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the world. The U.S. Geological Survey (USGS) completed an assessment of the undiscovered oil and gas potential of the North Cuba Basin. The assessment is based on the geologic elements of the total petroleum system (TPS) defined in the province, including petroleum source rocks (source-rock maturation, generation, and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and petroleum traps (Trap formation and timing). Using this geologic framework, the USGS defined a Jurassic-Cretaceous Total Petroleum System in the North Cuba Basin Province. Within this TPS, three assessment units were defined and assessed for undiscovered oil and gas resources.
NASA Technical Reports Server (NTRS)
Kyte, Frank T.
2005-01-01
We present new analyses that confirm Ir enrichment (up to 0.31 ng/g) in close proximity to the palynological Triassic-Jurassic boundary in strata near the top of the Blomidon Formation at Partridge Island, Nova Scotia. High Ir concentrations have been found in at least two samples within the uppermost 70 cm of the formation. Ratios of other PGEs and Au to Ir are generally higher by an order of magnitude than in ordinary chondrites. No impact-related materials have been identified at #is horizon in the Blomidon Formation, therefore we cannot confirm an extraterrestrial source for the anomalous Ir levels. We consider, however, the possibility that regional basaltic volcanism is a potential source for the Ir in these sediments. The elevated Ir concentrations are found in reduced, grey colored mudstones, so redox concentration is a possible explanation for the distribution of Ir in these strata.
Dennen, Kristin O.; Hackley, Paul C.
2012-01-01
An assessment unit (AU) for undiscovered continuous “shale” gas in Lower Cretaceous (Aptian and Albian) and basal Upper Cretaceous (lower Cenomanian) rocks in the USA onshore Gulf of Mexico coastal plain recently was defined by the U.S. Geological Survey (USGS). The AU is part of the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico Basin. Definition of the AU was conducted as part of the 2010 USGS assessment of undiscovered hydrocarbon resources in Gulf Coast Mesozoic stratigraphic intervals. The purpose of defining the Greater Gulf Basin Lower Cretaceous Shale Gas AU was to propose a hypothetical AU in the Cretaceous part of the Gulf Coast TPS in which there might be continuous “shale” gas, but the AU was not quantitatively assessed by the USGS in 2010.
Tourtelot, Harry Allison; Tailleur, Irvin L.
1971-01-01
The Shublik Formation (Middle and Late Triassic) is widespread in the surface and subsurface of northern Alaska. Four stratigraphic sections along about 70 miles of the front of the northeastern Brooks Range east of the Canning giver were examined and sampled in detail in 1968. These sections and six-step spectrographic and carbon analyses of the samples combined with other data to provide a preliminary local description of the highly organic unit and of the paleoenvironments. Thicknesses measured between the overlying Kingak Shale of Jurassic age and the underlying Sadlerochit Formation of Permian and Triassic age range from 400 to more than 800 feet but the 400 feet, obtained from the most completely exposed section, may be closer to the real thickness across the region. The sections consist of organic-rich, phosphatic, and fossiliferous muddy, silty, or carbonate rocks. The general sequence consists, from the bottom up, of a lower unit of phosphatic siltstone, a middle unit of phosphatic carbonate rocks, and an upper unit of shale and carbonate rocks near the Canning River and shale, carbonate rocks, and sandstone to the east. Although previously designated a basal member of the Kingak Shale (Jurassic), the upper unit is here included with the Shublik on the basis of its regional lithologic relation. The minor element compositions of the samples of the Shublik Formation are consistent with their carbonaceous and phosphatic natures in that relatively large amounts of copper, molybdenum, nickel, vanadium and rare earths are present. The predominantly sandy rocks of the underlying Sadlerochit Formation (Permian and Triassic) have low contents of most minor elements. The compositions of samples of Kingak Shale have a wide range not readily explicable by the nature of the rock: an efflorescent sulfate salt contains 1,500 ppm nickel and 1,500 ppm zinc and large amounts of other metals derived from weathering of pyrite and leaching of local shale. The only recorded occurrence of silver and 300 ppm lead in gouge along a shear plane may be the result of metals introduced from an extraneous source. The deposits reflect a marine environment that deepened somewhat following deposition of the Sadlerochit Formation and then shoaled during deposition of the upper limestone-siltstone unit. This apparently resulted from a moderate transgression and regression of the sea with respect to a northwest-trending line between Barrow and the Brooks Range at the International Boundary. Nearer shore facies appear eastward. The phosphate in nodules, fossil molds and oolites, appears to have formed diagenetically within the uncompacted sediment.
Whitlock, John A.
2011-01-01
Background As gigantic herbivores, sauropod dinosaurs were among the most important members of Mesozoic communities. Understanding their ecology is fundamental to developing a complete picture of Jurassic and Cretaceous food webs. One group of sauropods in particular, Diplodocoidea, has long been a source of debate with regard to what and how they ate. Because of their long lineage duration (Late Jurassic-Late Cretaceous) and cosmopolitan distribution, diplodocoids formed important parts of multiple ecosystems. Additionally, fortuitous preservation of a large proportion of cranial elements makes them an ideal clade in which to examine feeding behavior. Methodology/Principal Findings Hypotheses of various browsing behaviors (selective and nonselective browsing at ground-height, mid-height, or in the upper canopy) were examined using snout shape (square vs. round) and dental microwear. The square snouts, large proportion of pits, and fine subparallel scratches in Apatosaurus, Diplodocus, Nigersaurus, and Rebbachisaurus suggest ground-height nonselective browsing; the narrow snouts of Dicraeosaurus, Suuwassea, and Tornieria and the coarse scratches and gouges on the teeth of Dicraeosaurus suggest mid-height selective browsing in those taxa. Comparison with outgroups (Camarasaurus and Brachiosaurus) reinforces the inferences of ground- and mid-height browsing and the existence of both non-selective and selective browsing behaviors in diplodocoids. Conclusions/Significance These results reaffirm previous work suggesting the presence of diverse feeding strategies in sauropods and provide solid evidence for two different feeding behaviors in Diplodocoidea. These feeding behaviors can subsequently be tied to paleoecology, such that non-selective, ground-height behaviors are restricted to open, savanna-type environments. Selective browsing behaviors are known from multiple sauropod clades and were practiced in multiple environments. PMID:21494685
NASA Astrophysics Data System (ADS)
Hirano, N.; Dilek, Y.
2015-12-01
Seamounts and seamount chains are common in both the upper and lower plates of active subduction zones. Their OIB-type volcanic products are distinctly different from suprasubduction zone (arc, forearc and backarc) generated volcanic rocks in terms of their compositions and mantle sources. Tectonic accretion of such seamounts into the Japanese archipelago in the NW Pacific and into subduction-accretion complexes and active margins of continents/microcontinents within the Tethyan realm during the Cretaceous played a significant role in continental growth. Seamount assemblages comprise alkaline volcanic rocks intercalated with radiolarian and hemipelagic chert, and limestone, and may also include hypabyssal dolerite and gabbro intrusions. In the Tethyan orogenic belts these seamount rocks commonly occur as km-scale blocks in mélange units beneath the late Jurassic - Cretaceous ophiolites nappes, whereas on the Japanese islands they form discrete, narrow tectonic belts within the late Jurassic - Cretaceous accretionary prism complexes. We interpret some of these OIB occurrences in the Japanese and Tethyan mountain belts as asperities in downgoing oceanic plates that formed in <10 million years before their accretion. Their magmas were generated by decompressional melting of upwelling asthenosphere, without any significant mantle plume component, and were brought to the seafloor along deep-seated brittle fractures that developed in the flexed, downgoing lithosphere as it started bending near a trench. The modern occurrences of these "petit-spot volcanoes" are well established in the northwestern Pacific plate, off the coast of Japan. The proposed mechanism of the formation of these small seamounts better explains the lack of hotspot trails associated with their occurrence in the geological record. Magmatic outputs of such flexural bending-induced plumelets should be ubiquitious in the accretionary (Japanese-style) and collisional (Tethyan-style) orogenic belts.
Stanley, Richard G.; Herriott, Trystan M.; LePain, David L.; Helmold, Kenneth P.; Peterson, C. Shaun
2013-01-01
Previous geological and organic geochemical studies have concluded that organic-rich marine shale in the Middle Jurassic Tuxedni Group is the principal source rock of oil and associated gas in Cook Inlet (Magoon and Anders, 1992; Magoon, 1994; Lillis and Stanley, 2011; LePain and others, 2012; LePain and others, submitted). During May 2009 helicopter-assisted field studies, 19 samples of dark-colored, fine-grained rocks were collected from exposures of the Red Glacier Formation of the Tuxedni Group near Red Glacier, about 70 km west of Ninilchik on the eastern flank of Iliamna Volcano (figs. 1 and 3). The rock samples were submitted to a commercial laboratory for analysis by Rock-Eval pyrolysis and to the U.S. Geological Survey organic geochemical laboratory in Denver, Colorado, for analysis of vitrinite reflectance. The results show that values of vitrinite reflectance (percent Ro) in our samples average about 2 percent, much higher than the oil window range of 0.6–1.3 percent (Johnsson and others, 1993). The high vitrinite reflectance values indicate that the rock samples experienced significant heating and furthermore suggest that these rocks may have generated oil and gas in the past but no longer have any hydrocarbon source potential. The high thermal maturity of the rock samples may have resulted from (1) the thermaleffects of igneous activity (including intrusion by igneous rocks), (2) deep burial beneath Jurassic, Cretaceous, and Tertiary strata that were subsequently removed by uplift and erosion, or (3) the combined effects of igneous activity and burial.
The Bolivian source rocks: Sub Andean Zone-Madre de Dios-Chaco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moretti, I.; Montemurro, G.; Aguilera, E.
A complete study of source rocks has been carried out in the Bolivian foothills and foreland (Sub Andean Zone, Chaco and Madre de Dios) in order to quantify the petroleum potential of the area. Besides the classical mid-Devonian source rocks (Tequeje Formation in the north, Limoncito Formation in the center and Los Monos Formation in the south), others are important: the Tomachi Formation (late Devonian) in the north and the Copacabana Formation (Upper Carboniferous-lower Permian) in the northern Sub Andean Zone. Both show an excellent potential with S{sub 2} over 50 mg HC/g and average values higher than 10 mgmore » HC/g over few hundred meters. The Latest Cretaceous Flora Formation present locally a high potential but is very thin. Almost all the source rocks matured during the Neogene due to the subsidence in the Andean foreland and in the piggyback basins, and are thus involved on the current petroleum system. Silurian and Lower Paleozoic units also contain thick shale beds, but these source rocks were mature before the Jurassic in the south of the country. In the center, the Silurian is not nowadays overmature and may play an important role. The different zones are compared based on their Source Potential Index which indicates that the richest areas are the northern Sub Andean Zone and the Madre de Dios basin with SPI greater than 10 t/m{sup 2}. Since these two areas remain almost unexplored, these results allow us to be optimistic about the possibilities for future exploration.« less
NASA Astrophysics Data System (ADS)
Leat, Phil T.; Jordan, Tom A. R. M.; Ferraccioli, Fausto; Flowerdew, Michael; R, Riley, Teal; Vaughan, Alan P. M.; Whitehouse, Martin
2013-04-01
The distribution of heat flow in Antarctic continental crust is critical to understanding ice sheet nucleation, growth and basal rheology and hydrology. We identify a group of High Heat Production granites intruded into Palaeozoic sedimentary sequences which may contribute to locally high heat flow beneath the central part of the West Antarctic Ice Sheet. Four of the granite plutons are exposed above ice sheet level at Pagano Nunatak, Pirrit Hills, Nash Hills and Whitmore Mountains. A new U-Pb zircon age from Pirrit Hills of 177.9 ± 2.3 Ma confirms earlier Rb-Sr dating that suggested an Early-Middle Jurassic age for the granites, coincident with the Karoo-Ferrar large igneous province and the first stage of Gondwana break-up. Our recently-acquired aerogeophysical data indicate that the plutons are distributed unevenly over 1000 km2 and were intruded into the actively extending, locally transcurrent, Jurassic Weddell Sea Rift [1]. In the NW part of the rift, the Pirrit Hills, Nash Hills and Whitmore Mountains granites form small isolated intrusions within weakly deformed upper crust. In the SE part of the rift, where granite intrusion was strongly structurally controlled within transtensional structures, the Pagano Nunatak granite is the only outcrop of a probably multiphase, ca 180 km long granite intrusion. The granites are weakly peraluminous, S-type and have Th and U abundances up to 61 and 19 ppm respectively. Heat production of analysed granite samples is ca. 2.9-9.1 µWm-3, toward the upper limit of values for High Heat Production granites globally. The granites are thought to have been generated during mafic underplating of the Weddell Rift during eruption of the contemporaneous Karoo-Ferrar magmatism [2]. The high Th and U abundances may be related to fractionation of the high Th-U Ferrar basaltic magmas combined with assimilation of pelitic sedimentary rocks. The granites correspond to an area of West Antarctica that may have heat flow significantly above the Antarctic average, as predicted from satellite magnetic data [3]. [1] Jordan, T.A., et al., Inland extent of the Weddell Sea Rift imaged by new aerogeophysical data, Tectonophysics (2012), 10.1016/j.tecto.2012.09.010 [2] Storey, B.C., et al., Middle Jurassic within-plate granites in West Antarctica and their bearing on the break-up of Gondwanaland. J. Geol. Soc. Lond, (1988), 145, 999-1007. [3] Fox Maule, C., et al., Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science (2005), 10.1126/science.1106888
NASA Astrophysics Data System (ADS)
Wang, Q.; Jiang, L.
2012-12-01
Craton is continental block that has been tectonically stable since at least Proterozoic. Some cratons, however, become unstable for some geodynamic reasons. The North China Craton (NCC) is an example. Structure geological, geochemical, and geophysical works have revealed that the NCC was destructed in Cretaceous and that lithosphere thickness beneath the eastern NCC were thinned by 120 km. The present study will focus on deformation of the western NCC, and to understand the effect of the Mesozoic destruction of the North China Craton (NCC). Structural partitioning of the Ordos Basin, which is located in the western NCC, from the eastern NCC occurred during the Mesozoic. Unlike the eastern NCC where many Cretaceous metamorphic core complexes developed, sedimentary cover of the NCC remains nearly horizontal and deformation is manifested by joint. We visited 216 sites of outcrops and got 1928 joints measurements, among which 270 from Jurassic sandstones, 1378 from the Upper Triassic sandstones, 124 from the Middle and Lower Triassic sandstones, and 156 from Paleozoic sandstones. In the interior of the Ordos Basin, joints developed quite well in the Triassic strata, while joints in the Jurassic stata developed weakly and no joint in the Cretaceous strata. The Mesozoic stratigraphic thickness are: 1000 meters for the Lower Triassic, the Middle Triassic sandstone with thickness of 800 meters, 3000 meters for the Upper Triassic, 4000 meters for the Jurassic, and 1100 meters for the Lower Cretaceous. The vertical difference in joint development might be related to the burying depth of the strata: the higher the strata, the smaller the lithostatic stress, and then the weaker the joint. Joints in all stratigraphic levels showed a similar strain direction with the sigma 1 (the maximum pressure stress) vertical and the sigma 3 (the minimum pressure stress) horizontal and running N-S. The unconformity below the Cretaceous further indicates that joints in Jurassic and Triassic strata were developed in the beginning of Cretaceous. It seems that the western NCC experienced only uplift that recorded a weak N-S extension and E-W compression during the Early Cretaceous when the NCC experienced destruction. Conclusions: 1. The Cretaceous uplift ceased the "natural test of mechanical property" of the strata in the Ordos Basin. The difference in burying depth of the strata caused the vertical difference in joints development. 2. Joints in the interior of the Ordos Basin indicate a N-S extension and E-W compression with the sigma 1 vertical in the Early Cretaceous, as implying a regional uplift in the western NCC during its Mesozoic destruction.
NASA Astrophysics Data System (ADS)
Cao, Kai; Wang, Guo-Can; Bernet, Matthias; van der Beek, Peter; Zhang, Ke-Xin
2015-12-01
How and when the northwestern Tibetan Plateau originated and developed upon pre-existing crustal and topographic features is not well understood. To address this question, we present an integrated analysis of detrital zircon U-Pb and fission-track double dating of Cenozoic synorogenic sediments from the Kekeya and Sanju sections in the southwestern Tarim Basin. These data help establishing a new chronostratigraphic framework for the Sanju section and confirm a recent revision of the chronostratigraphy at Kekeya. Detrital zircon fission-track ages present prominent Triassic-Early Jurassic (∼250-170 Ma) and Early Cretaceous (∼130-100 Ma) static age peaks, and Paleocene-Early Miocene (∼60-21 Ma) to Eocene-Late Miocene (∼39-7 Ma) moving age peaks, representing source exhumation. Triassic-Early Jurassic static peak ages document unroofing of the Kunlun terrane, probably related to the subduction of Paleotethys oceanic lithosphere. In combination with the occurrence of synorogenic sediments on both flanks of the Kunlun terrane, these data suggest that an ancient West Kunlun range had emerged above sea level by Triassic-Early Jurassic times. Early Cretaceous fission-track peak ages are interpreted to document exhumation related to thrusting along the Tam Karaul fault, kinematically correlated to the Main Pamir thrust further west. Widespread Middle-Late Mesozoic crustal shortening and thickening likely enhanced the Early Mesozoic topography. Paleocene-Early Eocene fission-track peak ages are presumably partially reset. Limited regional exhumation indicates that the Early Cenozoic topographic and crustal pattern of the West Kunlun may be largely preserved from the Middle-Late Mesozoic. The Main Pamir-Tam Karaul thrust belt could be a first-order tectonic feature bounding the northwestern margin of the Middle-Late Mesozoic to Early Cenozoic Tibetan Plateau. Toward the Tarim basin, Late Oligocene-Early Miocene steady exhumation at a rate of ∼0.9 km/Myr is likely related to initial thrusting of the Tiklik fault and reactivation of the Tam Karaul thrust. Thrusting together with upper crustal shortening in the mountain front indicates basinward expansion of the West Kunlun orogen at this time. This episode of exhumation and uplift, associated with magmatism across western Tibet, is compatible with a double-sided lithospheric wedge model, primarily driven by breakoff of the Indian crustal slab. Accelerated exhumation of the mountain front at a rate of ∼1.1 km/Myr since ∼15 Ma supports active compressional deformation at the margins of the northwestern Tibetan Plateau. We thus propose that the West Kunlun Mountains are a long-lived topographic unit, dating back to Triassic-Early Jurassic times, and have experienced Middle-Late Mesozoic to Early Cenozoic rejuvenation and Late Oligocene-Miocene expansion.
NASA Astrophysics Data System (ADS)
Periasamy, V.; Venkateshwarlu, M.
2017-06-01
Sandstones of Jhuran Formation from Jara dome, western Kachchh, Gujarat, India were studied for major, trace and rare earth element (REE) geochemistry to deduce their paleo-weathering, tectonic setting, source rock characteristics and provenance. Petrographic analysis shows that sandstones are having quartz grains with minor amount of K-feldspar and lithic fragments in the modal ratio of Q 89:F 7:L 4. On the basis of geochemical results, sandstones are classified into arkose, sub-litharenite, wacke and quartz arenite. The corrected CIA values indicate that the weathering at source region was moderate to intense. The distribution of major and REE elements in the samples normalized to upper continental crust (UCC) and chondrite values indicate similar pattern of UCC. The tectonic discrimination diagram based on the elemental concentrations and elemental ratios of Fe2O3 + MgO vs. TiO2, SiO2 vs. log(K2O/Na2O), Sc/Cr vs. La/Y, Th-Sc-Zr/10, La-Th-Sc plots Jhuran Formation samples in continental rift and collision settings. The plots of Ni against TiO2, La/Sc vs. Th/Co and V-Ni-Th ∗10 reveals that the sediments of Jhuran Formation were derived from felsic rock sources. Additionally, the diagram of (Gd/Yb) N against Eu/Eu ∗ suggest the post-Archean provenance as source possibly Nagar Parkar complex for the studied samples.
NASA Astrophysics Data System (ADS)
Heinonen, Jussi S.; Kurz, Mark D.
2015-09-01
The massive outpourings of Karoo and Ferrar continental flood basalts (CFBs) ∼180 Ma ago mark the initial Jurassic rifting stages of the Gondwana supercontinent. The origin and sources of these eruptions have been debated for decades, largely due to difficulties in defining their parental melt and mantle source characteristics. Recent findings of Fe- and Mg-rich dikes (depleted ferropicrite suite) from Vestfjella, western Dronning Maud Land, Antarctica, have shed light on the composition of the deep sub-Gondwanan mantle: these magmas have been connected to upper mantle sources presently sampled by the Southwest Indian Ocean mid-ocean ridge basalts (SWIR MORBs) or to high 3He/4He plume-entrained non-chondritic primitive mantle sources formed early in Earth's history. In an attempt to determine their He isotopic composition and relative contributions from magmatic, cosmogenic, and radiogenic He sources, we performed in-vacuo stepwise crushing and melting analyses of olivine mineral separates, some of which were abraded to remove the outer layer of the grains. The best estimate for the mantle isotopic composition is given by a sample with the highest amount of He released (>50%) during the first crushing step of an abraded coarse fraction. It has a 3He/4He of 7.03 ± 0.23 (2σ) times the atmospheric ratio (Ra), which is indistinguishable from those measured from SWIR MORBs (6.3-7.3 Ra; source 3He/4He ∼6.4-7.6 Ra at 180 Ma) and notably lower than in the most primitive lavas from the North Atlantic Igneous Province (up to 50 Ra), considered to represent the epitome magmas from non-chondritic primitive mantle sources. Previously published trace element and isotopic (Sr, Nd, and Pb) compositions do not suggest a direct genetic link to any modern hotspot of Indian or southern Atlantic Oceans. Although influence of a mantle plume cannot be ruled out, the high magma temperatures and SWIR MORB-like geochemistry of the suite are best explained by supercontinent insulation of a precursory Indian Ocean upper mantle source. Such a model is also supported by the majority of the recent studies on the structure, geochronology, and petrology of the Karoo CFBs.
NASA Astrophysics Data System (ADS)
Rogers, R. D.; Emmet, P. A.
2009-12-01
Regional mapping integrated with facies analysis, age constraints and airborne geophysical data reveal WNW and NE trends of Middle Jurassic to Early Cretaceous basins which intersect in southeast Honduras that we interpret as the result of rifting associated with the breakup of the Americas and opening of the proto-Caribbean seaway. The WNW-trending rift is 250 km long by 90 km wide and defined by a basal 200 to 800 m thick sequence of Middle to Late Jurassic fluvial channel and overbank deposits overlain by transgressive clastic shelf strata. At least three sub-basins are apparent. Flanking the WNW trending rift basins are fault bounded exposures of the pre-Jurassic continental basement of the Chortis block which is the source of the conglomeratic channel facies that delineate the axes of the rifts. Cretaceous terrigenous strata mantle the exposed basement-cored rift flanks. Lower Cretaceous clastic strata and shallow marine limestone strata are dominant along this trend indicating that post-rift related subsidence continued through the Early Cretaceous. The rifts coincide with a regional high in the total magnetic intensity data. We interpret these trends to reflect NNE-WSW extension active from the Middle Jurassic through Early Cretaceous. These rifts were inverted during Late Cretaceous shortening oriented normal to the rift axes. To the east and at a 120 degree angle to the WNW trending rift is the 300 km long NE trending Guayape fault system that forms the western shoulder of the Late Jurassic Agua Fria rift basin filled by > 2 km thickness of clastic marine shelf and slope strata. This NE trending basin coincides with the eastern extent of the surface exposure of continental basement rocks and a northeast-trending fabric of the Jurassic (?) metasedimentary basement rocks. We have previously interpreted the eastern basin to be the Jurassic rifted margin of the Chortis block with the Guayape originating as a normal fault system. These two rifts basin intersect at near 120 degree angle in southeastern Honduras. We suggest that the intersection of these two trends represents part of a R-R-R triple junction during the breakup of the Americas. The WNW trending rift produced the WNW trending fabric of the central Chortis block and failed in the Early Cretaceous while the NE trending rift continued opening to form the south-facing passive margin of the northern proto-Caribbean basin.
NASA Astrophysics Data System (ADS)
Ji, Zheng; Ge, Wen-Chun; Yang, Hao; Wang, Qing-hai; Zhang, Yan-long; Wang, Zhi-hui; Bi, Jun-Hui
2018-06-01
We report geochronological, whole-rock geochemical, and zircon Hf isotopic data for Late Jurassic rhyolites in the central Great Xing'an Range of northeastern China, to determine their petrogenesis, source, and tectonic setting. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb ages indicate that the rhyolites previously mapped as the lower Permian Dashizhai Formation in the Wuchagou region formed during the Late Jurassic (162-154 Ma). Geochemically, these rhyolites belong to the mid- to high-K calc-alkaline series and show peraluminous characteristics and consistent correlations between major elements and SiO2. They are characterized by enrichments in large ion lithophile elements (LILEs; e.g., Rb and K) and light rare earth elements (LREEs), and depletions in high field strength elements (HFSEs; e.g., Nb, Ta, and Ti) and heavy rare earth elements (HREEs). In situ Hf isotopic analyses of zircons from the rhyolites reveal relatively homogeneous Hf isotopic compositions, with εHf(t) values of +4.84 to +9.44, and two-stage model ages of 606-895 Ma. Based on their eruption ages, geochemical characteristics, and Hf isotopic compositions, we conclude that the magmas that formed the Late Jurassic rhyolites were produced during partial melting of a Neoproterozoic quartz-bearing amphibolite-facies mafic crust. These magmas subsequently underwent extensive fractional crystallization of plagioclase, hornblende, Ti-bearing phases, monazite, and apatite. Combined with previous data, our results demonstrate that the Late Jurassic volcanic rocks in the Great Xing'an Range were formed in a post-collisional extensional setting. The gravitational collapse of the orogenically thickened crust was caused by break-off of the subducted oceanic slab and upwelling of asthenosphere after closure of the Mongol-Okhotsk Ocean.
Inland extent of the Weddell Sea Rift imaged by new aerogeophysical data
NASA Astrophysics Data System (ADS)
Jordan, Tom A.; Ferraccioli, Fausto; Ross, Neil; Corr, Hugh F. J.; Leat, Philip T.; Bingham, Rob G.; Rippin, David M.; le Brocq, Anne; Siegert, Martin J.
2013-02-01
The Weddell Sea Rift was a major focus for Jurassic extension and magmatism during the early stages of Gondwana break-up and underlies the Weddell Sea Embayment, which separates East Antarctica from a collage of crustal blocks in West Antarctica. Newly-collected aerogeophysical data over the catchments of Institute and Möller ice streams reveal the inland extent of the Weddell Sea Rift against the Ellsworth-Whitmore block and a hitherto unknown major left-lateral strike slip boundary between East and West Antarctica. Aeromagnetic and gravity anomalies define the regional subglacial extent of Proterozoic basement, Middle Cambrian rift-related volcanic rocks, Jurassic intrusions and sedimentary rocks of inferred post-Jurassic age. 2D and 3D magnetic depth-to-source estimates were used to help constrain joint magnetic and gravity models for the region. The models reveal that Proterozoic crust similar to that exposed at Haag Nunataks, extends southeast of the Ellsworth Mountains to the margin of the Coastal Basins. Thick granitic Jurassic intrusions are modelled at the transition between the Ellsworth-Whitmore block and the thinner crust of the Weddell Sea Rift and within the Pagano Shear Zone. The crust beneath the inland extension of the Weddell Sea Rift is modelled as being either ~ 4 km thinner compared to the adjacent Ellsworth-Whitmore block or as underlain by an up to 8 km thick mafic underplate.
Jurassic magmatism in Dronning Maud Land: synthesis of results of the MAMOG project
Leat, P.T.; Curtis, M.L.; Riley, T.R.; Ferraccioli, F.
2007-01-01
The Jurassic Karoo large igneous province (LIP) of Antarctica, and its conjugate margin in southern Africa, is critical for investigating important questions about the relationship of basaltic LIPs to mantle plumes. Detailed aerogeophysical, structural, anisotropy of magnetic susceptibility (AMS), geochronological and geochemical investigations completed under the British Antarctic Survey’s MAMOG project have provided some of the answers. Across most of the area, magma volumes were small compared to those in southern Africa. Jurassic dikes intruding the Archean craton are sparse and the Jutulstraumen trough, a Jurassic rift, is interpreted, from aerogeophysical data, as largely amagmatic. The largest volumes of magma were emplaced along the margin of the craton and close to the Africa-Antarctica rift. Although dikes were emplaced by both vertical and horizontal flow, overwhelmingly magmas in Dronning Maud Land were locally derived, and not emplaced laterally from distant sources. Basaltic magmatism was protracted in Dronning Maud Land (several dike emplacement episodes between ~206 and 175 Ma), and the small magma volumes resulted in highly diverse magma compositions, including picrites and ferropicrites interpreted to have been derived from hot mantle in a mantle plume. The protracted magmatism before the locally ~177 Ma flood lava eruptions, and evidence for a radiating dike swarm, favor a model of mantle plume incubation for 20-30 million years before flood lava eruption.
Paleomagnetic dating of the Cu-Zn-Pb Kupferschiefer deposit at Sangerhausen, Germany
NASA Astrophysics Data System (ADS)
Symons, D. T.; Kawasaki, K.; Walther, S.; Borg, G.
2010-12-01
Paleomagnetic and rock magnetic results are reported for the Cu-Zn-Pb Kupferschiefer mineralization at Sangerhausen, Germany. The mineralization is richest in the ~0.5 m thick Upper Permian (258±2 Ma) Kupferschiefer black marly shale (9 sites) and dies out over ~0.2 m in the underlying Weisliegend sandstones (3 sites) and overlying Zechstein carbonates (2 sites). Paleomagnetic and rock magnetic analysis were made on 205 specimens from 15 sites on the margin of the Sangerhausen Syncline. Except for the one site from fault zone gypsum, stable characteristic remanent magnetization (ChRM) directions were isolated in pyrrhotite with minor magnetite for the 14 sites using alternating field and thermal step demagnetization. Rock magnetic measurements show that the Kupferschiefer shale marks a redox front between the oxidized Weissliegend sandstones and non-oxidized Zechstein carbonates. A negative paleomagnetic fold test indicates that the ChRM postdates Jurassic fault block tilting. The ChRM directions from the 14 sites give a Late Jurassic paleopole at 149±3 Ma on the European apparent polar wander path. The observed age is significantly younger than the 254±6 Ma primary age of the associated red beds near Lubin in Poland, based on re-interpretation of the 1987 paleopole of Jowett et al. Overall the paleomagnetic results at Sangerhausen favour a very late diagenetic or epigenetic Late Jurassic origin for the Cu-Pb-Zn mineralization in the Kupferschiefer rather than the commonly proposed Late Permian syngenetic to mid-Triassic diagenetic origin.
NASA Astrophysics Data System (ADS)
Tanner, Lawrence H.; Lucas, Spencer G.
2010-01-01
The stratigraphic section of the Upper Triassic-Lower Jurassic Whitmore Point Member of the Moenave Formation at Potter Canyon, Arizona, comprises c. 26 m of gray to black shales and red mudstones interbedded with mainly sheet-like siltstones and sandstones. These strata represent deposition from suspension and sheetflow processes in shallow, perennial meromictic to ephemeral lakes, and on dry mudflats of the terminal floodout of the northward-flowing Moenave stream system. The lakes were small, as indicated by the lack of shoreline features and limited evidence for deltas. Changes in base level, likely forced by climate change, drove the variations between mudflat and perennial lacustrine conditions. Lenticular sandstones that occur across the outcrop face in the same stratigraphic interval in the lower part of the sequence represent the bedload fill of channels incised into a coarsening-upward lacustrine sequence following a fall in base level. These sandstones are distinctive for the common presence of over-steepened bedding, dewatering structures, and less commonly, folding. Deformation of these sandstones is interpreted as aseismic due to the lack of features typically associated with seismicity, such as fault-graded bedding, diapirs, brecciated fabrics and clastic dikes. Rapid deposition of the sands on a fluid-rich substrate produced a reverse density gradient that destabilized, and potentially fluidized the underlying, finer-grained sediments. This destabilization allowed synsedimentary subsidence of most of the channel sands, accompanied by longitudinal rotation and/or ductile deformation of the sand bodies.
Dillon, William P.; Schlee, J.S.; Klitgord, Kim D.
1988-01-01
The continental margin of eastern North America was initiated when West Africa and North America were rifted apart in Triassic-Early Jurassic time. Cooling of the crust and its thinning by rifting and extension caused subsidence. Variation in amounts of subsidence led to formation of five basins. These are listed from south to north. (1) The Blake Plateau Basin, the southernmost, is the widest basin and the one in which the rift-stage basement took longest to form. Carbonate platform deposition was active and persisted until the end of Early Cretaceous. In Late Cretaceous, deposition slowed while subsidence persisted, so a deep water platform was formed. Since the Paleocene the region has undergone erosion. (2) The Carolina Trough is narrow and has relatively thin basement, on the basis of gravity modeling. The two basins with thin basement, the Carolina Trough and Scotian Basin, also show many salt diapirs indicating considerable deposition of salt during their early evolution. In the Carolina Trough, subsidence of a large block of strata above the flowing salt has resulted in a major, active normal fault on the landward side of the basin. (3) The Baltimore Canyon Trough has an extremely thick sedimentary section; synrift and postrift sediments exceed 18 km in thickness. A Jurassic reef is well developed on the basin's seaward side, but post-Jurassic deposition was mainly non-carbonate. In general the conversion from carbonate to terrigenous deposition, characteristics of North American Basins, occurred progressively earlier toward the north. (4) The Georges Bank Basin has a complicated deep structure of sub-basins filled with thick synrift deposits. This may have resulted from some shearing that occurred at this offset of the continental margin. Postrift sediments apparently are thin compared to other basins-only about 8 km. (5) The Scotian Basin, off Canada, contains Jurassic carbonate rocks, sandstone, shale and coal covered by deltaic deposits and Upper Cretaceous deeper water chalk and shale. ?? 1988.
NASA Astrophysics Data System (ADS)
Price, Gregory D.; Főzy, István; Galácz, András
2018-04-01
A carbonate carbon isotope curve from the Aalenian-Bathonian interval is presented from the Óbánya valley, of the Mecsek Mountains, Hungary. This interval is certainly less well constrained and studied than other Jurassic time slices. The Óbánya valley lies in the eastern part of the Mecsek Mountains, between Óbánya and Kisújbánya and provides exposures of an Aalenian to Lower Cretaceous sequence. It is not strongly affected by tectonics, as compared to other sections of eastern Mecsek of the same age. In parts, a rich fossil assemblage has been collected, with Bathonian ammonites being especially valuable at this locality. The pelagic Middle Jurassic is represented by the Komló Calcareous Marl Formation and thin-bedded limestones of the Óbánya Limestone Formation. These are overlain by Upper Jurassic siliceous limestones and radiolarites of the Fonyászó Limestone Formation. Our new data indicate a series of carbon isotope anomalies within the late Aalenian and early-middle Bajocian. In particular, analysis of the Komló Calcareous Marl Formation reveals a negative carbon isotope excursion followed by positive values that occurs near the base of the section (across the Aalenian-Bajocian boundary). The origin of this carbon-isotope anomaly is interpreted to lie in significant changes to carbon fluxes potentially stemming from reduced run off, lowering the fertility of surface waters which in turn leads to lessened primary production and a negative δ13C shift. These data are comparable with carbonate carbon isotope records from other Tethyan margin sediments. Our integrated biostratigraphy and carbon isotope stratigraphy enable us to improve stratigraphic correlation and age determination of the examined strata. Therefore, this study of the Komló Calcareous Marl Formation confirms that the existing carbon isotope curves serve as a global standard for Aalenian-Bathonian δ13C variation.
NASA Astrophysics Data System (ADS)
Kakizaki, Yoshihiro; Weissert, Helmut; Hasegawa, Takashi; Ishikawa, Tsuyoshi; Matsuoka, Jun; Kano, Akihiro
2013-09-01
Strontium and carbon isotope stratigraphy was applied to a 202 m-thick shallow marine carbonate section within the Late Jurassic Bau Limestone at the SSF quarry in northwest Borneo, Malaysia, which was deposited in the western Palaeo-Pacific. Strontium isotopic ratios of rudist specimens suggest that the SSF section was formed between the latest Oxfordian (155.95 Ma) and the Late Kimmeridgian (152.70 Ma), which is consistent with previous biostratigraphy. The δ13Ccarb values of bulk carbonate range from -0.10 to +2.28‰ and generally show an increasing upward trend in the lower part of the section and a decreasing upward trend in the upper part of the section. A comparable pattern is preserved in the δ13Corg isotope record. Limestone samples of the SSF section mainly preserve the initial δ13Ccarb values, except for the interval 84-92 m, where an apparent negative anomaly likely developed as a result of meteoric diagenesis. Comparing with the Tethyan δ13Ccarb profile, a negative anomaly in the lower SSF section can be correlated with the lowered δ13C values around the Oxfordian/Kimmeridgian boundary. In addition, δ13Ccarb values of the Bau Limestone are generally ∼1‰ lower than the Tethyan values, but comparable with the values reported from Scotland and Russia, located in Boreal realm during the Late Jurassic. This suggests that either the Tethyan record or the other records have been affected by the δ13C values of regionally variable dissolved inorganic carbon (DIC). The Late Jurassic δ13CDIC values are thought to have been regionally variable as a result of their palaeoceanographic settings. This study shows that δ13C chemostratigraphy of the Palaeo-Pacific region contributes to an improved understanding of global carbon cycling and oceanography during this time period.
NASA Astrophysics Data System (ADS)
Diamantopoulos, A.
2009-04-01
An assortment of alpine and pre-Permian metamorphic tectonites, belonging to the Pelagonian Zone of the Internal Hellenides, are analyzed from Askion, Vernon and Vorras mountains. They in fact compose the Upper plate of the Western Macedonia core complex, overlying Late Tertiary high-P rocks through large-scale detachment fautls (Diamantopoulos et al. 2007). This work wants to determine the architecture and the kinematic path of rocks in a 3D assumption. Field analysis concludes: a) Meta-sedimentary lithologies and amphibolites, meta-igneous lithologies, granitoid mylonites composed of augen fieldspar gneisses, Permo-Triassic fossiliferous rocks, meta-carbonates of Triassic-Jurassic age, a Jurassic mélange including meta-sedimentary lithologies, serpentinites and carbonate tectonic blocks, Mesozoic Ophiolites, Cretaceous limestones and conglomerates as well as flysch sediments compose the architecture of the study area, b) Multiple high and low-angle cataclastic zones of intense non-coaxial strain separate distinct pre-Permian lithologies, alpine from pre-alpine rocks, Triassic-Jurassic rocks from Permo-Triassic rocks, Jurassic mélange from flysch sediments, Jurassic mélange from Triassic-Jurassic rocks, Cretaceous rocks from the Jurassic mélange, Cretaceous limestones from flysch lithologies and Cretaceous rocks from serpentinites, c) Geometric analysis and description of asymmetric structures found in fault cores, damage zones and in the footwall-related rocks showed a prominent kinematic direction towards WSW in low-T conditions affected all the rock lithologies, d) Multiple S- and L- shape fabric elements in the pre-Permian and Permo-Triassic rocks appear an intricate orientation, produced by intense non-coaxial syn-metamorphic deformation, e) Sheath and isoclinal folds oriented parallel to the L-shape fabric elements as well as a major S-shape fabric element, producing macroscopic fold-like structures compose the main syn-metamorphic fabric elements in the pre-alpine tectonites, f) Discrete and distributed strain along the former boundaries and within footwall- and hangingwall rocks is connoted to control the bulk kinematic path of the involved sequences, g) Field evaluation of the structural geology and the tectonics connote the conjugate character of the cataclastically-deformed boundaries, causing overprinting of the pre-existed ductile-related geometries, h) For the age of the inferred WSW kinematic direction of the involved rocks we believe that it is closely associated with the tectonic superimposition of the Pelagonian Zone onto the Olympos tectonic window during post-Late Eocene times. Miocene to Quaternary faulting activity in all the scales overprint the above Late Tertiary perturbation, resulting a real complicated structural feature (Diamantopoulos 2006). Diamantopoulos A., 2006. Plio-Quaternary geometry and Kinematics of Ptolemais basin (Northern Greece). Implications for the intra-plate tectonics in Western Macedonia. Geologica Croatica 59/1, pages 85-96. Diamantopoulos A., Krohe A., Mposkos E., 2007. Structural asymmetry and distributed strain of low-T shear planes inducing evidence for orogen-scale kinematic partitioning during denudation of high-P rocks (Pelagonian Zone, Greece). Geophysical Research Abstracts, Vol. 9, 03622.
Breakup of pangaea and isolation of relict mammals in australia, South america, and madagascar.
Fooden, J
1972-02-25
The composition of aboriginal land mammal faunas in Australia and New Guinea (prototherians and metatherians), South America (metatherians and eutherians) and Madagascar (eutherians only) is reconsidered in light of continental drift reconstructions of Mesozoic-Tertiary world paleogeography It is proposed that these three faunas represent successively detached samples of the evolving world mammal fauna as it existed when each of these land masses became faunally isolated from the rest of the world as a result of the progressive fragmentation of Pangaea. Isolation of aboriginal prototherians and metatherians in Australia and New Guinea may date from the Upper JurassicLower Cretaceous; isolation of aboriginal metatherians and eutherians in South America may date from the Middle Cretaceous-Upper Cretaceous; isolation of aboriginal eutherians in Madagascar may date from the Paleocene-Eocene.
Geologic map of the Horse Mountain Quadrangle, Garfield County, Colorado
Perry, W.J.; Shroba, R.R.; Scott, R.B.; Maldonado, Florian
2003-01-01
New 1:24,000-scale geologic map of the Horse Mountain 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, summarizes available geologic information for the quadrangle. It provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Paleocene and early Eocene Wasatch Formation down through Ordovician and Cambrian units into Precambrian hornblende tonalite. The Wasatch Formation includes the Shire, Molina and Atwell Gulch Members which are mapped separately. The underlying Upper Cretaceous Mesaverde Group is subdivided into the Willams Fork and Iles Formations. The Cameo-Fairfield clinker zone within the Williams Fork Formation is mapped separately. The Iles Formation includes the Rollins Sandstone Member at the top, mapped separately, and the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale consists of four members, an upper member, the Niobrara Member, the Juana Lopez Member, and a lower member, undivided. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and Jurassic Entrada Sandstone are mapped separately. The Lower Jurassic and Upper Triassic Glen Canyon Sandstone is mapped with the Entrada in the Horse Mountain Quadrangle. The upper Triassic Chinle Formation and the Lower Permian and Triassic(?) State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is undivided. All the exposures of the Middle Pennsylvanian Eagle Valley Evaporite are diapiric, intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Lower and Middle Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group consists of the Dyer Dolomite and the underlying Parting Quartzite, undivided. Locally, the Lower Ordovician Manitou Formation is mapped separately beneath the Chaffee. Elsewhere, Ordovician through Cambrian units, the Manitou and Dotsero Formations, underlain by the Sawatch Quartzite, are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two are a complex of normal faults, the largest of which dips southward placing Chafee dolostone and Leadville Limestone adjacent to Eagle Valley and Maroon Formations. Diapiric Eagle Valley Evaporite intruded close to the fault on the down-thrown side. Removal of evaporite by either flow or dissolution from under younger parts of the strata create structural benches, folds, and sink holes on either side of the normal fault. A prominent dipslope of the Morrison-Dakota-Mancos part of the section forms large slide blocks and mass movement deposits consisting of a chaos of admixed Morrison and Dakota lithologies. The major geologic hazard in the area consists of large landslides both associated with dip-slope slide blocks and the steep slopes of the Eagle Valley Formation and Belden Formation in the northern part of the map. Abandoned coal mines are present along the north face of the Grand Hogback in the lower part of the Mesaverde Group
Ogaden Basin subsidence history: Another key to the Red Sea-Gulf of Aden tectonic puzzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigott, J.D.; Neese, D.; Carsten, G.
1995-08-01
Previous work has attempted to understand the tectonic evolution of the Red Sea-Gulf of Aden region through a focus upon plate kinematics and reconstruction of plate interactions in a two dimensional sense. A significant complement to the three dimensional puzzle can be derived from a critical examination of the vertical component, tectonic subsidence analysis. By removing the isostatic contributions of sediment loading and unloading, and fluctuations in sea level, the remaining thermal-mechanical contribution to a basin`s subsidence can be determined. Such an analysis of several Ogaden Basin wells reveals multiple pulses of tectonic subsidence and uplift which correspond to far-fieldmore » tectonic activities in the Red Sea and Gulf of Aden. One of the more dramatic is a Jurassic tectonic pulse circa 145-130 m.a., and a later extensional event which correlates to a major subsidence event ubiquitous through-out the Gulf of Aden, related to Gondwana Land breakup activities. Tectonic uplift during the Tertiary coincides with early Red Sea rifting episodes. Such activities suggest the Ogaden Basin has been a relatively stable East African cratonic basin, but with heating-extension events related to nearby plate interactions. In terms of hydrocarbon generation, the use of steady state present day geothermal gradients, coupled with subsidence analysis shows that potential Paleozoic and Mesozoic source rocks initiated generation as early as the Jurassic. The generating potential of Paleozoic source rocks would only be exacerbated by later heating events. Furthermore, cooling and tectonic uplift during the Tertiary would tend to arrest on-going hydrocarbon generation for Jurassic source rocks in the Ogaden area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thackston, J.W.
1987-09-01
This information is presented in tabular form and includes station locations, potentiometric levels, permeabilities, transmissibilities, total dissolved solids, depths, locations, data sources, a fracture log of the Gibson Dome No. 1 (GD-1) borehole, and other useful information. Three different ranking scales were used to evaluate available drill-stem test (DST) data. A preliminary detailed hydrogeologic column was prepared using the DST data and GD-1 borehole information. A series of preliminary potentiometric maps was interpreted from these data for the different hydrogeologic units. Preliminary potentiometric surface maps for the Lower Paleozoic Aquifer, Pennsylvanian Aquitard, Permian Aquifer/Aquitard, and Mesozoic (Jurassic) Aquifer were constructed.more » These maps show a general southwest flow direction in the Lower Paleozoic Aquifer, extremely low permeabilities in the Pennsylvanian, northerly ground-water flow in the Permian, and westward flow direction in the Mesozoic unit. The few data points in the Pennsylvanian tend to indicate that ground water in the upper Paradox Formation may be flowing toward the west and southwest in the area southeast of Six-Shooter Peaks.« less
Wanty, R.B.; Goldhaber, M.B.; Northrop, H.R.
1990-01-01
The epigenetic Tony M vanadium-uranium orebody in south-central Utah is hosted in fluvial sandstones of the Morrison Formation (Upper Jurassic). Measurements of the relative amounts of V+3 and V +4 in ore minerals show that V+3 is more abundant. Thermodynamic calculations show that vanadium was more likely transported to the site of mineralization as V+4. The ore formed as V+4 was reduced by hydrogen sulfide, followed by hydrolysis and precipitation of V+3 in oxide minerals or chlorite. Uranium was transported as uranyl ion (U+6), or some complex thereof, and reduced by hydrogen sulfide, forming coffinite. Detrital organic matter in the rocks served as the carbon source for sulfate-reducing bacteria. Vanadium most likely was derived from the dissolution of iron-titanium oxides. Uranium probably was derived from the overlying Brushy Basin Member of the Morrison Formation. Previous studies have shown that the ore formed at the density-stratified interface between a basinal brine and dilute meteoric water. The mineralization processes described above occurred within the mixing zone between these two fluids. -from Authors
Peri-equatorial paleolatitudes for Jurassic radiolarian cherts of Greece
Aiello, I.W.; Hagstrum, J.T.; Principi, G.
2008-01-01
Radiolarian-rich sediments dominated pelagic deposition over large portions of the Tethys Ocean during middle to late Jurassic time as shown by extensive bedded chert sequences found in both continental margin and ophiolite units of the Mediterranean region. Which paleoceanographic mechanisms and paleotectonic setting favored radiolarian deposition during the Jurassic, and the nature of a Tethys-wide change from biosiliceous to biocalcareous (mainly nannofossil) deposition at the beginning of Cretaceous time, have remained open questions. Previous paleomagnetic analyses of Jurassic red radiolarian cherts in the Italian Apennines indicate that radiolarian deposition occurred at low peri-equatorial latitudes, similar to modern day deposition of radiolarian-rich sediments within equatorial zones of high biologic productivity. To test this result for other sectors of the Mediterranean region, we undertook paleomagnetic study of Mesozoic (mostly middle to upper Jurassic) red radiolarian cherts within the Aegean region on the Peloponnesus and in continental Greece. Sampled units are from the Sub-Pelagonian Zone on the Argolis Peninsula, the Pindos-Olonos Zone on the Koroni Peninsula, near Karpenissi in central Greece, and the Ionian Zone in the Varathi area of northwestern Greece. Thermal demagnetization of samples from all sections removed low-temperature viscous and moderate-temperature overprint magnetizations that fail the available fold tests. At Argolis and Koroni, however, the cherts carry a third high-temperature magnetization that generally exhibits a polarity stratigraphy and passes the available fold tests. We interpret the high-temperature component to be the primary magnetization acquired during chert deposition and early diagenesis. At Kandhia and Koliaky (Argolis), the primary declinations and previous results indicate clockwise vertical-axis rotations of ??? 40?? relative to "stable" Europe. Due to ambiguities in hemispheric origin (N or S) and thus paleomagnetic polarity, the observed declinations could indicate either clockwise (CW) or counterclockwise (CCW) vertical-axis rotations. Thus at Adriani (Koroni), the primary declinations indicate either CW or CCW rotations of ??? 95?? or ??? 84??, depending on paleomagnetic polarity and age. The primary inclinations for all Peloponnesus sites indicate peri-equatorial paleolatitudes similar to those found for coeval radiolarian cherts exposed in other Mediterranean orogenic belts. Our new paleomagnetic data support the interpretation that Mesozoic radiolarites within the Tethys Ocean were originally deposited along peri-equatorial belts of divergence and high biologic productivity. ?? 2007 Elsevier B.V. All rights reserved.
Contrasting cratonal provenances for upper Cretaceous Valle Group quartzite clasts, Baja California
Kimbrough, D.L.; Abbott, G.; Smith, D.P.; Mahoney, J.B.; Moore, Thomas E.; Gehrels, G.E.; Girty, G.H.; Cooper, John D.
2006-01-01
Late Cretaceous Valle Group forearcbasin deposits on the Vizcaino Peninsula of Baja California Sur are dominated by firstcycle arc-derived volcanic-plutonic detritus derived from the adjacent Peninsular Ranges batholith. Craton-derived quartzite clasts are a minor but ubiquitous component in Valle Group conglomerates. The source of these clasts has implications for tectonic reconstructions and sediment-dispersal paths along the paleo-North American margin. Three strongly contrasting types of quartzite are recognized based on petrology and detrital zircon U-Pb geochronology. The first type is ultramature quartz arenite with well-rounded, highly spherical zircon grains. Detrital zircon ages from this type are nearly all >1.8 Ga with age distributions that closely match the distinctive Middle-Late Ordovician Peace River arch detrital signature of the Cordilleran margin. This type has been previously recognized from prebatholithic rocks in northeast Baja California (San Felipe quartzite). A second quartzite type is subarkosic sandstone with strong affinity to southwestern North America; important features of the age spectra are ~1.0-1.2 Ga, 1.42 and 1.66 Ga peaks representing cratonal basement, 500-300 Ma grains interpreted as recycled Appalachian-derived grains, and 284- 232 Ma zircon potentially derived from the Early Permian-Middle Triassic east Mexico arc. This quartzite type could have been carried to the continental margin during Jurassic time as outboard equivalents of Colorado Plateau eolianites. The third quartzite type is quartz pebble conglomerate with significant ~900- 1400 Ma and ~450-650 Ma zircon components, as well as mid- and late Paleozoic grains. The source of this type of quartzite is more problematic but could match either upper Paleozoic strata in the Oaxaca terrane of southern Mexico or a southwestern North America source. The similarity of detrital 98 zircon spectra in all three Valle Group quartzite types to rocks of the adjacent Cordilleran margin support previous interpretations that Valle Group forearc basin sediments were deposited in proximity to rocks on the mainland of northwest Mexico and southwestern United States.
Uranium provinces of North America; their definition, distribution, and models
Finch, Warren Irvin
1996-01-01
Uranium resources in North America are principally in unconformity-related, quartz-pebble conglomerate, sandstone, volcanic, and phosphorite types of uranium deposits. Most are concentrated in separate, well-defined metallogenic provinces. Proterozoic quartz-pebble conglomerate and unconformity-related deposits are, respectively, in the Blind River–Elliot Lake (BRELUP) and the Athabasca Basin (ABUP) Uranium Provinces in Canada. Sandstone uranium deposits are of two principal subtypes, tabular and roll-front. Tabular sandstone uranium deposits are mainly in upper Paleozoic and Mesozoic rocks in the Colorado Plateau Uranium Province (CPUP). Roll-front sandstone uranium deposits are in Tertiary rocks of the Rocky Mountain and Intermontane Basins Uranium Province (RMIBUP), and in a narrow belt of Tertiary rocks that form the Gulf Coastal Uranium Province (GCUP) in south Texas and adjacent Mexico. Volcanic uranium deposits are concentrated in the Basin and Range Uranium Province (BRUP) stretching from the McDermitt caldera at the Oregon-Nevada border through the Marysvale district of Utah and Date Creek Basin in Arizona and south into the Sierra de Peña Blanca District, Chihuahua, Mexico. Uraniferous phosphorite occurs in Tertiary sediments in Florida, Georgia, and North and South Carolina and in the Lower Permian Phosphoria Formation in Idaho and adjacent States, but only in Florida has economic recovery been successful. The Florida Phosphorite Uranium Province (FPUP) has yielded large quantities of uranium as a byproduct of the production of phosphoric acid fertilizer. Economically recoverable quantities of copper, gold, molybdenum, nickel, silver, thorium, and vanadium occur with the uranium deposits in some provinces.Many major epochs of uranium mineralization occurred in North America. In the BRELUP, uranium minerals were concentrated in placers during the Early Proterozoic (2,500–2,250 Ma). In the ABUP, the unconformity-related deposits were most likely formed initially by hot saline formational water related to diagenesis (»1,400 to 1,330 Ma) and later reconcentrated by hydrothermal events at »1,280–»1,000, »575, and »225 Ma. Subsequently in North America, only minor uranium mineralization occurred until after continental collision in Permian time (255 Ma). Three principal epochs of uranium mineralization occurred in the CPUP: (1) » 210–200 Ma, shortly after Late Triassic sedimentation; (2) »155–150 Ma, in Late Jurassic time; and (3) » 135 Ma, after sedimentation of the Upper Jurassic Morrison Formation. The most likely source of the uranium was silicic volcaniclastics for the three epochs derived from a volcanic island arc at the west edge of the North American continent. Uranium mineralization occurred during Eocene, Miocene, and Pliocene times in the RMIBUP, GCUP, and BRUP. Volcanic activity took place near the west edge of the continent during and shortly after sedimentation of the host rocks in these three provinces. Some volcanic centers in the Sierra de Peña Blanca district within the BRUP may have provided uranium-rich ash to host rocks in the GCUP.Most of the uranium provinces in North America appear to have a common theme of close associations to volcanic activity related to the development of the western margin of the North American plate. The south and west margin of the Canadian Shield formed the leading edge of the progress of uranium source development and mineralization from the Proterozoic to the present. The development of favorable hosts and sources of uranium is related to various tectonic elements developed over time. Periods of major uranium mineralization in North America were Early Proterozoic, Middle Proterozoic, Late Triassic–Early Jurassic, Early Cretaceous, Oligocene, and Miocene. Tertiary mineralization was the most pervasive, covering most of Western and Southern North America.
The history of dinosaur footprint discoveries in Wyoming with emphasis on the Bighorn Basin
Kvale, Erik P.; Mickelson, Debra L.; Hasiotis, Stephen T; Johnson, Gary D.
2003-01-01
Dinosaur traces are well known from the western United States in the Colorado Plateau region (Utah, Colorado, New Mexico, and Arizona). Utah contains the greatest abundance of known and documented dinosaur footprints and trackways. Far less well known, however, is the occurrence and distribution of dinosaur footprint-bearing horizons in Wyoming. Scientific studies over the past 10 years have shown that three of the four Middle and Upper Jurassic formations in northern Wyoming contain dinosaur footprints. Two of the footprint-bearing horizons are located in geologic intervals that were once thought to have been deposited in offshore to nearshore marine settings and represent rare North American examples of Middle Jurassic (Bajocian and Bathonian) dinosaur remains. Some of these new Wyoming sites can be correlated to known dinosaur footprint-bearing horizons or intervals in Utah. Wyoming has a great potential for additional discoveries of new dinosaur footprint-bearing horizons, and further prospecting and study is warranted and will ultimately lead to a much better understanding of the geographic distribution and behavior of the potential footprint-makers.
New Data on the Clevosaurus (Sphenodontia: Clevosauridae) from the Upper Triassic of Southern Brazil
Hsiou, Annie Schmaltz; De França, Marco Aurélio Gallo; Ferigolo, Jorge
2015-01-01
The sphenodontian fossil record in South America is well known from Mesozoic and Paleogene deposits of Argentinean Patagonia, mainly represented by opisthodontians, or taxa closely related to the modern Sphenodon. In contrast, the Brazilian fossil record is restricted to the Caturrita Formation, Late Triassic of Rio Grande do Sul, represented by several specimens of Clevosauridae, including Clevosaurus brasiliensis Bonaparte and Sues, 2006. Traditionally, Clevosauridae includes several Late Triassic to Early Jurassic taxa, such as Polysphenodon, Brachyrhinodon, and Clevosaurus, the latter well-represented by several species. The detailed description of the specimen MCN-PV 2852 allowed the first systematic revision of most Clevosaurus species. Within Clevosauridae, Polysphenodon is the most basal taxon, and an IterPCR analysis revealed Brachrhynodon as a possible Clevosaurus; C. petilus, C. wangi, and C. mcgilli as possibly distinct taxonomic entities; and the South African Clevosaurus sp. is not closely related to C. brasiliensis. These data indicate the need of a deep phylogenetic review of Clevosauridae, in order to discover synapomorphic characters among the diversity of these Triassic/Jurassic sphenodontians. PMID:26355294
Ridgley, Jennie L.; Green, M.W.; Pierson, C.T.; Finch, W.I.; Lupe, R.D.
1978-01-01
The San Juan Basin and adjacent region lie predominantly in the southeastern part of the uranium-rich Colorado Plateau of New Mexico, Arizona, Utah, and Colorado. Underlying the province are rocks of the Precambrian basement complex composed mainly of igneous and metamorphic rocks; a thickness of about 3,600 meters of generally horizontal Paleozoic, Mesozoic, and Cenozoic sedimentary rocks; and a variety of Upper Cretaceous and Cenozoic igneous rocks. Sedimentary rocks of the sequence are commonly eroded and well exposed near the present basin margins where Tertiary tectonic activity has uplifted, folded, and faulted the sequence into its present geologic configuration of basins, platforms, monoclines, and other related structural features. Sedimentary rocks of Jurassic age in the southern part of the San Juan Basin contain the largest uranium deposits in the United States, and offer the promise of additional uranium deposits. Elsewhere in the basin and the adjacent Colorado Plateau, reserves and resources of uranium are known primarily in Triassic, Jurassic, and Cretaceous strata. Only scattered occurrences of uranium are known in Paleozoic
NASA Astrophysics Data System (ADS)
Erdmann, Michael; Horsfield, Brian
2006-08-01
Gas generation in the deep reaches of sedimentary basins is usually considered to take place via the primary cracking of short alkyl groups from overmature kerogen or the secondary cracking of petroleum. Here, we show that recombination reactions ultimately play the dominant role in controlling the timing of late gas generation in source rocks which contain mixtures of terrigeneous and marine organic matter. These reactions, taking place at low levels of maturation, result in the formation of a thermally stable bitumen, which is the major source of methane at very high maturities. The inferences come from pyrolysis experiments performed on samples of the Draupne Formation (liptinitic Type II kerogen) and Heather Formation (mixed marine-terrigeneous Type III kerogen), both Upper Jurassic source rocks stemming from the Norwegian northern North Sea Viking Graben system. Non-isothermal closed system micro scale sealed vessel (MSSV) pyrolysis, non-isothermal open system pyrolysis and Rock Eval type pyrolysis were performed on the solvent extracted, concentrated kerogens of the two immature samples. The decrease of C 6+ products in the closed system MSSV pyrolysis provided the basis for the calculation of secondary gas (C 1-5) formation. Subtraction of the calculated secondary gas from the total observed gas yields a "remaining" gas. In the case of the Draupne Formation this is equivalent to primary gas cracked directly from the kerogen, as detected by a comparison with multistep open pyrolysis data. For the Heather Formation the calculated remaining gas formation profile is initially attributable to primary gas but there is a second major gas pulse at very high temperature (>550 °C at 5.0 K min -1) that is not primary. This has been explained by a recondensation process where first formed high molecular weight compounds in the closed system yield a macromolecular material that undergoes secondary cracking at elevated temperatures. The experiments provided the input for determination of kinetic parameters of the different gas generation types, which were used for extrapolations to a linear geological heating rate of 10 -11 K min -1. Peak generation temperatures for the primary gas generation were found to be higher for Heather Formation ( Tmax = 190 °C, equivalent to Ro appr. 1.7%) compared to Draupne Formation ( Tmax = 175 °C, equivalent to appr. Ro 1.3%). Secondary gas peak generation temperatures were calculated to be 220 °C for the Heather Formation and 205 to 215 °C for the Draupne Formation, respectively, with equivalent vitrinite reflectance values ( Ro) between 2.4% and 2.0%. The high temperature secondary gas formation from cracking of the recombination residue as detected for the Heather Formation is quantitatively important and is suggested to occur at very high temperatures ( Tmax approx. 250 °C) for geological heating rates. The prediction of a significant charge of dry gas from the Heather Formation at very high maturity levels has important implications for petroleum exploration in the region, especially to the north of the Viking Graben where Upper Jurassic sediments are sufficiently deep buried to have experienced such a process.
NASA Astrophysics Data System (ADS)
Cen, Tao; Li, Wu-xian; Wang, Xuan-ce; Pang, Chong-jin; Li, Zheng-xiang; Xing, Guang-fu; Zhao, Xi-lin; Tao, Jihua
2016-07-01
Early Jurassic bimodal volcanic and intrusive rocks in southern South China show distinct associations and distribution patterns in comparison with those of the Middle Jurassic and Cretaceous rocks in the area. It is widely accepted that these rocks formed in an extensional setting, although the timing of the onset and the tectonic driver for extension are debated. Here, we present systematic LA-ICP-MS zircon U-Pb ages, whole-rock geochemistry and Sr-Nd isotope data for bimodal volcanic rocks from the Changpu Formation in the Changpu-Baimianshi and Dongkeng-Linjiang basins in southern Jiangxi Province, South China. Zircon U-Pb ages indicate that the bimodal volcanic rocks erupted at ca. 190 Ma, contemporaneous with the Fankeng basalts ( 183 Ma). A compilation of geochronological results demonstrates that basin-scale basaltic eruptions occurred during the Early Jurassic within a relatively short interval (< 5 Ma). These Early Jurassic basalts have tholeiitic compositions and OIB-like trace element distribution patterns. Geochemical analyses show that the basalts were derived from depleted asthenospheric mantle, dominated by a volatile-free peridotite source. The calculated primary melt compositions suggest that the basalts formed at 1.9-2.1 GPa, with melting temperatures of 1378 °C-1405 °C and a mantle potential temperature (TP) ranging from 1383 °C to 1407 °C. The temperature range is somewhat hotter than normal mid-ocean-basalt (MORB) mantle but similar to an intra-plate continental mantle setting, such as the Basin and Range Province in western North America. This study provides an important constraint on the Early Jurassic mantle thermal state beneath South China. Reference: Raczek, I., Stoll, B., Hofmann, A.W., Jochum, K.P. 2001. High-precision trace element data for the USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS. Geostandards Newsletter 25(1), 77-86.
Yeend, Warren; Shawe, Daniel R.; Wier, Kenneth L.
1989-01-01
Man most likely first obtained gold from placer deposits, more than 6,000 years ago. Placers account for more than two-thirds of the total world gold supply, and roughly half of that mined in the States of California, Alaska, Montana, and Idaho.Placer deposits result from weathering and release of gold from lode deposits, transportation of the gold, and concentration of the gold dominantly in stream gravels. Unless preserved by burial, a placer subsequently may be eroded, and either dispersed or reconcentrated.California has produced more than 40 million troy ounces of gold from placers, both modern and fossil (Tertiary). The source of the great bulk of the gold is numerous quartz veins and mineralized zones of the Mother Lode and related systems in the western Sierra Nevada region. The gold-bearing lodes were emplaced in Carboniferous and Jurassic metamorphic rocks intruded by small bodies of Jurassic and Cretaceous igneous rocks. Mineralization occurred probably in Late Cretaceous time. Significant amounts of placer gold also were mined along the Salmon and Trinity Rivers in northern California. Source of the gold is lode deposits in Paleozoic and Mesozoic metamorphic rocks that were intruded by Mesozoic igneous rocks.Alaska has produced roughly 21 million ounces of gold from placer deposits. Most (about 13 million ounces) has come from the interior region, including 7,600,000 ounces from the Fairbanks district and 1,300,000 ounces from the Iditarod district. Lode sources are believed to be mostly quartz veins in Precambrian or Paleozoic metamorphic rocks intruded by small igneous bodies near Fairbanks, and shear zones in Tertiary(?) quartz monzonite stocks at Iditarod. The Seward Peninsula has produced more than 6 million ounces of placer gold, including about 4,000,000 ounces from the Nome district. Most of the gold was derived from raised beach deposits. Source of the gold probably is Tertiary-mineralized faults and joints in metamorphic rocks of late Precambrian age.The Helena-Last Chance district, Montana, produced nearly 1 million ounces of gold from placers that were derived from lode deposits in the contact zones of the Cretaceous Boulder batholith granitic rocks intruded into upper Precambrian, Paleozoic, and Mesozoic sedimentary rocks. The Virginia City-Alder Gulch district, Montana, produced more than 2,600,000 ounces of gold, nearly all from placer deposits derived from quartz veins of uncertain age in Archean gneisses and schists. The Boise basin district, Idaho, produced about 2,300,000 ounces of gold, mostly derived from quartz veins in quartz monzonite of the Cretaceous Idaho batholith.
A New Basal Sauropod Dinosaur from the Middle Jurassic of Niger and the Early Evolution of Sauropoda
Remes, Kristian; Ortega, Francisco; Fierro, Ignacio; Joger, Ulrich; Kosma, Ralf; Marín Ferrer, José Manuel; Ide, Oumarou Amadou; Maga, Abdoulaye
2009-01-01
Background The early evolution of sauropod dinosaurs is poorly understood because of a highly incomplete fossil record. New discoveries of Early and Middle Jurassic sauropods have a great potential to lead to a better understanding of early sauropod evolution and to reevaluate the patterns of sauropod diversification. Principal Findings A new sauropod from the Middle Jurassic of Niger, Spinophorosaurus nigerensis n. gen. et sp., is the most complete basal sauropod currently known. The taxon shares many anatomical characters with Middle Jurassic East Asian sauropods, while it is strongly dissimilar to Lower and Middle Jurassic South American and Indian forms. A possible explanation for this pattern is a separation of Laurasian and South Gondwanan Middle Jurassic sauropod faunas by geographic barriers. Integration of phylogenetic analyses and paleogeographic data reveals congruence between early sauropod evolution and hypotheses about Jurassic paleoclimate and phytogeography. Conclusions Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line. The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time. Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification. PMID:19756139
Fishman, Neil S.; Hackley, Paul C.; Lowers, Heather; Hill, Ronald J.; Egenhoff, Sven O.; Eberl, Dennis D.; Blum, Alex E.
2012-01-01
Analyses of organic-rich mudstones from wells that penetrated the Upper Jurassic Kimmeridge Clay Formation, offshore United Kingdom, were performed to evaluate the nature of both organic and inorganic rock constituents and their relation to porosity in this world-class source rock. The formation is at varying levels of thermal maturity, ranging from immature in the shallowest core samples to mature in the deepest core samples. The intent of this study was to evaluate porosity as a function of both organic macerals and thermal maturity. At least four distinct types of organic macerals were observed in petrographic and SEM analyses and they all were present across the study area. The macerals include, in decreasing abundance: 1) bituminite admixed with clays; 2) elongate lamellar masses (alginite or bituminite) with small quartz, feldspar, and clay entrained within it; 3) terrestrial (vitrinite, fusinite, semifusinite) grains; and 4) Tasmanites microfossils. Although pores in all maceral types were observed on ion-milled surfaces of all samples, the pores (largely nanopores with some micropores) vary as a function of maceral type. Importantly, pores in the macerals do not vary systematically as a function of thermal maturity, insofar as organic pores are of similar size and shape in both the immature and mature Kimmeridge rocks. If any organic pores developed during the generation of hydrocarbons, they were apparently not preserved, possibly because of the highly ductile nature of much of the rock constituents of Kimmeridge mudstones (clays and organic material). Inorganic pores (largely micropores with some nanopores) have been observed in all Kimmeridge mudstones. These pores, particularly interparticle (i.e., between clay platelets), and intraparticle (i.e., in framboidal pyrite, in partially dissolved detrital K-feldspar, and in both detrital and authigenic dolomite) are noteworthy because they compose much of the observable porosity in the shales in both immature and mature samples. The absence of a systematic increase in organic porosity as a function of either maceral type or thermal maturity indicates that such porosity was probably unrelated to hydrocarbon generation. Instead, much of the porosity within mudstones of the Kimmeridge appears to be largely intraparticle and interparticle (adjacent to inorganic constituents), so the petroleum storage potential in these organic-rich mudstones largely resides in inorganic pores.
NASA Astrophysics Data System (ADS)
Sabouhi, Mostafa; Sheykh, Morteza; Darvish, Zohreh; Naghavi Azad, Maral
2010-05-01
The Qom formation was formed in the Oligo-Miocene during the final sea transgression in Central Iran. This Formation in the Central Iran Basin Contains oil and gas. Organic geochemical analysis in previous studies indicated that the hydrocarbons migrated from deeper source rocks, likely of Jurassic age. In the Central Iran Basin, the Qom Formation is 1,200m thick and is abounded by the Oligocene Lower Red Formation and the middle Miocene Upper Red Formation. In previous studies, the Qom Formation was divided into nine members designated from oldest to youngest: a, b, c1 to c4, d, e, and f, of which "e" is 300m thick and constitutes the main reservoir. Our study focused on a Qom Section located in the Arvaneh (Semnan) region of Central Iran that is 498m thick. The lower part of the formation was not deposited, and only the following four members of early Miocene age (Aquitanian-Burdigalian) was identified between the lower and upper Red Formation. The studied section mainly consist of limestone, marl, sandy limestone, sandy marl and argillaceous limestone.According to this study(field and laboratory investigations), 9 carbonate microfacies were recognized which are grouped into four facies associations (microfacies group). These facies associations present platform to basin depositional setting and are nominated as: A (Tidal-flat), B (Lagoon), C (Slope) and D (Open marine). Based on paleoecology and Petrographic analysis, it seems the Qom Formation was deposited in a Carbonate shelf setting. The Qom formation constitutes a regional transgressive-regressive sequence that is bounded by two continental units (Lower and Upper Red Formation).
NASA Astrophysics Data System (ADS)
Tran, T. A.; Tran, T. H.; Lan, C. Y.; Chung, S. L.; Lo, C. H.; Wang, P. L.; Lee, T. Y.; Merztman, S. A.
2003-04-01
Mesozoic alkaline magmatism that occurred in the Tu Le basin, northern Vietnam, resulted in several igneous complexes composed of different lithologies. They are represented by the Suoi Be basalts, the Ban Hat gabbros, the Phu Sa Phin syenites, the Van Chan rhyolites and the Ngoi Thia rhyolites, which overall show a bimodal chemical composition. Ar-Ar dating and stratigraphic data indicate that the magmatism clustered in two periods, i.e., the middle-late Jurassic (176 - 145 Ma) and the late Cretaceous-earliest Tertiary (80 - 60 Ma), respectively. The Suoi Be basalts, the Ban Hat gabbros, the Van Chan rhyolites and some of the Phu Sa Phin syenites formed in the Jurassic stage, whilst the Ngoi Thia rhyolites and most of the Phu Sa Phin syenites formed in the Cretaceous stage. The mafic Jurassic magmas are silica-undersaturated (SiO_2 = 44-49 wt.%) and sodium-rich, with low MgO (˜7-3 wt.%) but high TiO_2 (3.6-2.0 wt.%). They exhibit various degrees of LREE-enrichment, with (La)N = 79-290, 5.5<(La/Yb)N<20 (chondrite-normalized) and without apparent Eu anomalies. On the other hand, the felsic magmas of Jurassic and Cretaceous ages show similar geochemical features, with SiO_2 = 62-78 wt.%, (Na_2O+K_2O) = 5.3-10.2 wt.%, significant Eu anomalies (Eu/Eu*= 0.1-0.54), and enrichments in the HFSE (Nb, Ta, Zr) and LILE (Rb, Th, U, K) along with pronounced depletions in Ba, Sr, P and Ti in the primitive mantle-normalized multi-element variation diagram. They are geochemically comparable to A-type granitoids. The mafic and felsic magmas have distinguishable Nd isotope ratios. In contrast to the Jurassic and Cretaceous felsic magmas that have uniform eNd(T) values (-1.5 to -2.8), the Jurassic mafic rocks are marked by more radiogenic and heterogenous eNd(T) values (-1.9 to -8.9), implying different magma sources and independent petrogenetic processes involved in generation of the Jurassic bimodal magmatism. Combining with relevant geological data from northern Vietnam and SW China, we propose an intraplate lithospheric extension setting to account for the Jurassic-Cretaceous magmatism whose generation postdated the continental collision between the Indochina and South China blocks in the early Triassic. Formed originally in the western margin of the South China block, SW China, the Tu Le basin and associated Mesozoic magmatic rocks were transported southeastward to the present location by the mid-Tertiary sinistral displacement of the Ailao Shan-Red River shear zone, related to the India-Asia collision.
NASA Astrophysics Data System (ADS)
Uysal, I. Tonguç
2016-04-01
Some well-known precious mineral deposits and hydrocarbon resources occur extensively in east-central Australian sedimentary Basins. The metal occurrences are abundant in northwestern and eastern part of Queensland, whereas no significant deposits are known in large areas further south, which may, however, be hidden beneath the Jurassic-Cretaceous sedimentary basins. Important hydrocarbon resources exist within the Jurassic-Cretaceous sedimentary rocks at relatively shallow depths, of which the distribution represent zones of high paleo-geothermal gradients. This study examines the time-space distribution in relation to the regional tectonic history of concealed metal deposits and areas of high paleo-geothermal gradient leading to hydrocarbon maturation. To this end, authigenic illitic clay minerals representing various locations and stratigraphic depths in east-central Australia were investigated, of which the Rb-Sr and Ar-Ar geochronology and stable isotope geochemistry assist in delineating zones of hydrothermal systems responsible for hydro-carbon maturation/migration and potentially ore deposition. The Late Carboniferous - Early Permian crustal extension that affected large areas of eastern Australia and led to the epithermal mineralisations (e.g., the Drummond Basin) is also recorded in northern South Australia and southwest Queensland. A Late Triassic - Early Jurassic tectonic event being responsible for coal maturation and gas generation in the Bowen Basin and the epithermal mineralisation in the North Arm goldfield in SE Queensland likewise affected the areas much further west in Queensland. Some illites from the basement in outback Queensland and fault gouges from the Demon Fault in NE New South Wales yield younger Rb-Sr and Ar-Ar ages indicating the effect of hydrothermal processes as a result of a Middle-Upper Jurassic tectonic event. The majority of illite samples from the crystalline basement rocks, Permian Cooper Basin, and Jurassic-Cretaceous Eromanga Basin from all over east-central Australia give Cretaceous ages (~130 to ~60 Ma) reflecting episodic hydrothermal events restricted to certain tectonic zones. The Cretaceous events were responsible for the hydro-carbon generation/maturation in the Cooper, Eromanga, and Gunnedah Basins and deposition of some Au and basemetal resources in the eastern part of Queensland. The stable isotope composition of the Late Triassic - Early Jurassic illites in eastern Queensland and all mid-late Cretaceous illites from outback and eastern Australia is distinctively different with low 18O and D values indicating meteoric-hydrothermal systems due to extensional tectonics. Results of this study suggest that illite geochronology and geochemistry is a powerful tool in delineation of concealed hydrothermal systems that were responsible for ore generation and hydrocarbon/maturation and migration.
NASA Astrophysics Data System (ADS)
Peyrotty, Giovan; Peybernes, Camille; Ueda, Hayato; Martini, Rossana
2017-04-01
In comparison with the well-known Tethyan domain, Upper Triassic limestones from the Panthalassa Ocean are still poorly known. However, these carbonates represent a unique opportunity to have a more accurate view of the Panthalassa Ocean during the Triassic. Their study will allow comparison and correlation of biotic assemblages, biostratigraphy, diagenesis, and depositional settings of different Triassic localities from Tethyan and Panthalassic domains. Moreover, investigation of these carbonates will provide data for taxonomic revisions and helps to better constrain palaeobiogeographic models. One of the best targets for the study of these carbonates is Hokkaido Island (north of Japan). Indeed, this island is a part of the South-North continuity of Jurassic to Paleogene accretionary complexes, going from the Philippines to Sakhalin Island (Far East Russia). Jurassic and Cretaceous accretionary complexes of Japan and Philippines contain Triassic mid-oceanic seamount carbonates from the western Panthalassa Ocean (Onoue & Sano, 2007; Kiessling & Flügel, 2000). They have been accreted either as isolated limestone slabs or as clasts and boulders, and are associated with mudstones, cherts, breccias and basaltic rocks. Two major tectonic units forming Hokkaido Island and containing Triassic limestones have been accurately explored and extensively sampled: the Oshima Belt (west Hokkaido) a Jurassic accretionary complex, and the Cretaceous Sorachi-Yezo Belt (central Hokkaido). The Sorachi-Yezo Belt is composed of Cretaceous accretionary complexes in the east and of Cretaceous clastic basin sediments deposited on a Jurassic basement in the west (Ueda, 2016), both containing Triassic limestones. The origin of this belt is still matter of debate especially because of its western part which is not in continuity with any other accretionary complex known in the other islands of Japan and also due to the lack of data in this region. One of the main goals of this study is to investigate and characterise Triassic limestones, particularly from western part of Sorachi-Yezo, in order to provide new crucial data allowing us to define the origin of this belt. The comparison (i.e., biotic assemblages, preservation, diagnesis, associated lithologies) of the Triassic limestones in Oshima and Sorachi-Yezo belts might highlight differences in their depositional setting as well as in geodynamic evolution of the western part of Sorachi-Yezo Belt. REFERENCES Kiessling, W., & Flügel, E. 2000: Late Paleozoic and Late Triassic Limestones from North Palawan Block (Philippines): Microfacies and Paleogeographical Implications. Facies, 43, 39-78. Onoue, T., & Sano, H. 2007: Triassic mid-oceanic sedimentation in Panthalassa Ocean: Sambosan accretionary complex, Japan. Island Arc, 16(1), 173-190. Ueda H. 2016: Hokkaido in The Geology of Japan, Taira A. Ohara Y. Wallis S. Ishawatari A.Iryu Y. Geological Society, London, 203-223.
New Early Jurassic Tetrapod Assemblages Constrain Triassic-Jurassic Tetrapod Extinction Event
NASA Astrophysics Data System (ADS)
Olsen, P. E.; Shubin, N. H.; Anders, M. H.
1987-08-01
The discovery of the first definitively correlated earliest Jurassic (200 million years before present) tetrapod assemblage (Fundy basin, Newark Supergroup, Nova Scotia) allows reevaluation of the duration of the Triassic-Jurassic tetrapod extinction event. Present are tritheledont and mammal-like reptiles, prosauropod, theropod, and ornithischian dinosaurs, protosuchian and sphenosuchian crocodylomorphs, sphenodontids, and hybodont, semionotid, and palaeonisciform fishes. All of the families are known from Late Triassic and Jurassic strata from elsewhere; however, pollen and spore, radiometric, and geochemical correlation indicate an early Hettangian age for these assemblages. Because all ``typical Triassic'' forms are absent from these assemblages, most Triassic-Jurassic tetrapod extinctions occurred before this time and without the introduction of new families. As was previously suggested by studies of marine invertebrates, this pattern is consistent with a global extinction event at the Triassic-Jurassic boundary. The Manicouagan impact structure of Quebec provides dates broadly compatible with the Triassic-Jurassic boundary and, following the impact theory of mass extinctions, may be implicated in the cause.
NASA Astrophysics Data System (ADS)
Guo, Liang; Zhang, Hong-Fei; Harris, Nigel; Pan, Fa-Bin; Xu, Wang-Chun
2011-11-01
This integrated study of whole rock geochemistry, zircon U-Pb dating and Hf isotope composition for seven felsic rocks from the Nyingchi Complex in eastern Himalayan syntaxis has revealed a complex magmatic history for the eastern Gangdese belt. This involves multiple melt sources and mechanisms that uniquely identify the tectonic evolution of this part of the Himalayan orogen. Our U-Pb zircon dating reveals five stages of magmatic or anatectic events: 165, 81, 61, 50 and 25 Ma. The Jurassic granitic gneiss (165 Ma) exhibits εHf(t) values of + 1.4 to + 3.5. The late Cretaceous granite (81 Ma) shows variable εHf(t) values from - 0.9 to + 6.2, indicating a binary mixing between juvenile and old crustal materials. The Paleocene granodioritic gneiss (61 Ma) has εHf(t) values of + 5.4 to + 8.0, suggesting that it originated from partial melting of a juvenile crustal material. The Eocene anatexis is recorded in the leucosome, which has Hf isotopic composition similar to that of the Jurassic granite, indicating that the leucosome could be derived from partial melting of the Jurassic granite. The late Oligocene biotite granite (25 Ma) shows adakitic geochemical characteristics, with Sr/Y = 49.3-56.6. The presence of a large number of inherited zircons and negative εHf(t) values suggest that it sourced from anatexis of crustal materials. In contrast to the Gangdese batholiths that are mainly derived from juvenile crustal source in central Tibet, the old crustal materials play an important role for the magma generation of the felsic rocks, suggesting the existence of a crustal basement in the eastern Gangdese belt. These correspond to specific magmatic evolution stages during the convergence between India and Asia. The middle Jurassic granitic gneiss resulted from the northward subduction of the Neo-Tethyan oceanic slab. The late Cretaceous magmatism is probably related to the ocean ridge subduction. The Paleocene-Eocene magmatism, metamorphism and anatexis are interpreted to result from roll-back and break-off of the subducted Neo-Tethyan slab that occurred in the early stage of the India-Asian collision, respectively. The late Oligocene adakitic rocks resulted from the break-off of the subducted Indian continental crust starting at ~ 25 Ma.
Hunting oil between elephants in Block 34/7 on the Norwegian shelf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvsborg, A.; Nybakken, S.; Solli, T.
Block 34/7 is located east of the Statfjord field producing since 1979, and north of Gullfaks field, producing since 1986. Snorre field in the block should begin production in 1992. These three fields have more than 11 billion bbl in place and 5 billion bbl recoverable reserves. A heavy exploration program is done parallel to field development studies. The exploration activity is due to approaching relinquishment and securing tie-in to existing infrastructure. Because of extensive production facilities, small reserves can be used and all traps are now mapped and risk evaluated. So far, four discoveries have been made outside themore » Snorre field: Statfjord Oest Snorre Vest, C, and B. Estimated recoverable reserves are 400 million bbl. However, additional prospects could more than double these reserves. Exploration started with conventional structural traps. The two latest discoveries are pinch-out traps, and the next to be tested by wells are sealing fault traps. The East flank is a separate province downfaulted 2 km with several structures depending on sealing faults. New stratigraphy will be tested by the next well which is deviated to penetrate possible Lower Cretaceous and Upper Jurassic reservoir before reaching the main goal, which is the Brent reservoir. The result of this well could be very important for the opening of possible new play concepts in the northern North Sea. A sealing fault trap with Brent reservoir on the Tampen Spur will be tested by a well in 1990. Exploration is, however, in progress at several other stratigraphic levels within Tertiary, Upper and Lower Cretaceous, and other Upper Jurassic reservoirs where the possibilities for stratigraphic traps exist. These will be tested during next year's exploration program to secure potential reserves for field development at low production cost. Today, the minimum economic recoverable reserves in a prospect are 5-10 million bbl.« less
NASA Astrophysics Data System (ADS)
Amri, Dorra Tanfous; Dhahri, Ferid; Soussi, Mohamed; Gabtni, Hakim; Bédir, Mourad
2017-10-01
The Gafsa and Chotts intracratonic basins in south-central Tunisia are transitional zones between the Atlasic domain to the north and the Saharan platform to the south. The principal aim of this paper is to unravel the geodynamic evolution of these basins following an integrated approach including seismic, well log and gravity data. These data are used to highlight the tectonic control on the deposition of Jurassic and Lower Cretaceous series and to discuss the role of the main faults that controlled the basin architecture and Cretaceous-Tertiary inversion. The horizontal gravity gradient map of the study area highlights the pattern of discontinuities within the two basins and reveals the presence of deep E-W basement faults. Primary attention is given to the role played by the E-W faults system and that of the NW-SE Gafsa fault which was previously considered active since the Jurassic. Facies and thickness analyses based on new seismic interpretation and well data suggest that the E-W-oriented faults controlled the subsidence distribution especially during the Jurassic. The NW-SE faults seem to be key structures that controlled the basins paleogeography during Late Cretaceous-Cenozoic time. The upper Triassic evaporite bodies, which locally outline the main NW-SE Gafsa fault, are regarded as intrusive salt bodies rather than early diapiric extrusions as previously interpreted since they are rare and occurred only along main strike-slip faults. In addition, seismic lines show that Triassic rocks are deep and do not exhibit true diapiric features.
NASA Astrophysics Data System (ADS)
Stoykova, Kristalina; Idakieva, Vyara; Ivanov, Marin; Reháková, Daniela
2018-04-01
Calcareous nannofossil, calpionellid and ammonite occurrences have been directly constrained across the Jurassic-Cretaceous boundary interval in the section of Kopanitsa, SW Bulgaria. This section reveals a continuous and expanded sedimentary record through the Upper Tithonian and Lower Berriasian, besides an excellent calcareous nannofossil and ammonite record. The topmost part of the NJT 16b and the base of NJT 17a nannofossil Subzones correspond to the ammonite Microcanthum / Transitorius Subzone. The major part of the NJT 17a Subzone equates to the Durangites spp. ammonite Zone, whereas the NJT 17b Subzone correlates to the lower part of the B. jacobi ammonite Zone. The NKT nannofossil Zone approximately corresponds to the upper part of the B. jacobi Zone and the NK-1 nannofossil Zone correlates at least to the lowest part of the T. occitanica Zone. The FOs of Nannoconus globulus minor, N. wintereri, N. kamptneri minor, N. steinmannii minor, N. kamptneri kamptneri and N. steinmannii steinmannii are confirmed as reliable bio-horizons for correlations in the Mediterranean Tethys area. The first occurrence of Nannoconus wintereri is regarded as an almost concomitant event with the first occurrence of Berriasella jacobi. We suggest it could be the most useful nannofossil proxy for approximating the base of the B. jacobi Zone. Rare, but relatively well preserved calpionellids and calcareous dinoflagellates together with microfacies analysis were used additionally for stratigraphical and palaeoenvironmental interpretations. The investigated sediments are typical for the steep slope of a steepened ramp, with accumulation of hemipelagic and gravitational deposits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowrie, A.; Hamiter, R.; Fogarty, M.A.
1996-09-01
Regional thermal and Time-Temperature Index (TTI) contours were prepared for 12 dip paleo-tectonic reconstructions extending from central Arkansas to the central Gulf Basin. The first 9 reconstructions are based on back-stripping of Series-long sequences above the Louann Salt with the salt not restored. Additional reconstructions through Lower Jurassic set a geologic scenario prior to continental rifting. The reconstructions with salt not restored reveal a paleo-Sigsbee salt wedge, undergirding the Upper Jurassic to Pleistocene continental slope, has been a {open_quotes}permanent{close_quotes} ocean-side feature of the prograding margin, a salt-sediment geometry not in existent salt tectonic theories. Such a permanent and laterally migratingmore » {open_quotes}salt nose{close_quotes} provides an obstacle against which descending gravity-driven sediments can interact, creating reservoir-grade deposits against protruding salts features. The nose migration has left a lubricating layer of salt welds and other features. This salt-surrounded unit, beneath and downdip, may be termed a {open_quotes}salt-floored sub-basin{close_quotes} containing mostly {open_quotes}shallow{close_quotes} sediments of coastal plain, shelf, and slope genesis and growing through time. By Lower Cretaceous (131-96 mybp) times, the salt-floored basin updip from the then Sigsbee salt wedge was deep enough, approximately 5-7 km, that hydrocarbon maturation had begun. In the Upper Cretaceous (96-66 mybp), hydrocarbon maturation extended to sediments along flanks of the recently extinct mid-ocean ridge. From then to the present, ever more of the sedimentary volume has been subject to maturation.« less
NASA Astrophysics Data System (ADS)
Budach, Ingmar; Moeck, Inga; Lüschen, Ewald; Wolfgramm, Markus
2018-03-01
The structural evolution of faults in foreland basins is linked to a complex basin history ranging from extension to contraction and inversion tectonics. Faults in the Upper Jurassic of the German Molasse Basin, a Cenozoic Alpine foreland basin, play a significant role for geothermal exploration and are therefore imaged, interpreted and studied by 3D seismic reflection data. Beyond this applied aspect, the analysis of these seismic data help to better understand the temporal evolution of faults and respective stress fields. In 2009, a 27 km2 3D seismic reflection survey was conducted around the Unterhaching Gt 2 well, south of Munich. The main focus of this study is an in-depth analysis of a prominent v-shaped fault block structure located at the center of the 3D seismic survey. Two methods were used to study the periodic fault activity and its relative age of the detected faults: (1) horizon flattening and (2) analysis of incremental fault throws. Slip and dilation tendency analyses were conducted afterwards to determine the stresses resolved on the faults in the current stress field. Two possible kinematic models explain the structural evolution: One model assumes a left-lateral strike slip fault in a transpressional regime resulting in a positive flower structure. The other model incorporates crossing conjugate normal faults within a transtensional regime. The interpreted successive fault formation prefers the latter model. The episodic fault activity may enhance fault zone permeability hence reservoir productivity implying that the analysis of periodically active faults represents an important part in successfully targeting geothermal wells.
Klompmaker, Adiël A.; Artal, Pedro; van Bakel, Barry W. M.; Fraaije, René H. B.; Jagt, John W. M.
2014-01-01
Parasites are common in modern ecosystems and are also known from the fossil record. One of the best preserved and easily recognisable examples of parasitism in the fossil record concerns isopod-induced swellings in the branchial chamber of marine decapod crustaceans. However, very limited quantitative data on the variability of infestation percentages at the species, genus, and family levels are available. Here we provide this type of data for a mid-Cretaceous (upper Lower Cretaceous, upper Albian) reef setting at Koskobilo, northern Spain, on the basis of 874 specimens of anomurans and brachyurans. Thirty-seven specimens (4.2%), arranged in ten species, are infested. Anomurans are more heavily infested than brachyurans, variability can be high within genera, and a relationship may exist between the number of specimens and infestation percentage per taxon, possibly suggesting host-specificity. We have also investigated quantitative patterns of infestation through geological time based on 88 infested species (25 anomurans, 55 brachyurans, seven lobsters, and one shrimp), to show that the highest number of infested species can be found in the Late Jurassic, also when corrected for the unequal duration of epochs. The same Late Jurassic peak is observed for the percentage of infested decapod species per epoch. This acme is caused entirely by infested anomurans and brachyurans. Biases (taphonomic and otherwise) and causes of variability with regard to the Koskobilo assemblage and infestation patterns through time are discussed. Finally, a new ichnogenus and -species, Kanthyloma crusta, are erected to accommodate such swellings or embedment structures (bioclaustrations). PMID:24667587
Mattick, Robert E.; Hennessy, Jacqueline L.
1980-01-01
On September 23, 1977, the U.S. Department of the Interior announced the tentative selection of 136 tracts for Sale No. 49 of oil and gas leases in the Baltimore Canyon Trough on the U.S. Atlantic Continental Shelf and Slope. This report summarizes the geology and petroleum potential of the area. The Baltimore Canyon Trough is an elongate, seaward-opening sedimentary basin filled by as much as 14 km of Mesozoic and Cenozoic sedimentary rocks. The basin first formed under the New Jersey shelf and gradually spread west and south as the area subsided after the rifting that formed the Atlantic basin. Rocks of the Triassic and Jurassic Systems together are more than 8 km thick in a depocenter areally restricted to the northern part of the trough. Basal Jurassic rocks are apparently nonmarine sedimentary rocks bedded with evaporite deposits. Direct evidence that some salt is in the basal Jurassic section comes from the Houston Oil and Minerals 676-1 well, which penetrated salt at a depth of about 3.8 km. During the Middle and Late Jurassic, more open marine conditions prevailed than in the Early Jurassic, and carbonate banks and reefs formed discontinuously along the seaward side of the shelf. Sand flats likely occupied the central part of the shelf, and these probably graded shoreward into nonmarine red beds that accumulated in a bordering coastal plain. Thick nonmarine sands and silty shales of Late Jurassic age were deposited in what is now the nearshore and midshelf area. These sedimentary rocks probably grade into thick marine carbonate rocks near the present shelf edge. During the Cretaceous, less sediment accumulated (about 4 km) than during the Jurassic, and most was deposited during Early Cretaceous time. The Cretaceous units show two main trends through time-a diminishing rate of sediment accumulation and an increase in marine character of sediments. During the Middle and Late Cretaceous, calcareous sand and mud filled the basin, buried the shelf-edge reefs and later spilled across the reefs into the oceanic basin as worldwide sea level reached a maximum. Cenozoic deposits are spread over the present shelf and adjacent Coastal Plain in overlapping sheets of marine and nonmarine sediment. The maximum thickness (1.5 km) is along the outer part of the present shelf. Major tectonic deformation in the Baltimore Canyon Trough area appears to have terminated near the end of the Early Cretaceous, when at least one large mafic intrusion (Great Stone dome) was emplaced. Upper Cretaceous sedimentary rocks are arched above older uplifted fault blocks near the shelf edge; this arching may be the result of draping due to differential compaction or, perhaps, minor movement of the fault blocks during Late Cretaceous time. The dominance of terrestrial over marine-derived organic matter in sediment samples from the COST No. B-2 well indicates that economic amounts of liquid petroleum hydrocarbons were probably not generated in the area but suggests a high potential for generation of wet or dry gas. Supporting evidence for the presence of natural-gas deposits on the slope comes from AMCOR 6021, the upper 305 m of which penetrated sediments that contained methane, ethane, and propane. Texaco, Inc., has announced that its 598-1 well yielded nearly 479,000 m s of natural gas per day from two zones during early testing. Further indication of possible gas deposits comes from analyzing the amplitude (bright spots) of seismic data. Geochemical studies of the COST No. B-2 well have shown that the shelf area of the Baltimore Canyon Trough has a relatively low geothermal gradient today and that it apparently has had a gradient as low or even lower throughout the Cretaceous to Holocene. A controversy exists concerning the maturity of the basal sediments penetrated by the COST No. B-2 well. Although significant amounts of gaseous hydrocarbons may have been generated, large amounts of liquid petroleum hydrocarbons probably hav
A Jurassic mammal from South America.
Rauhut, Oliver W M; Martin, Thomas; Ortiz-Jaureguizar, Edgardo; Puerta, Pablo
2002-03-14
The Jurassic period is an important stage in early mammalian evolution, as it saw the first diversification of this group, leading to the stem lineages of monotremes and modern therian mammals. However, the fossil record of Jurassic mammals is extremely poor, particularly in the southern continents. Jurassic mammals from Gondwanaland are so far only known from Tanzania and Madagascar, and from trackway evidence from Argentina. Here we report a Jurassic mammal represented by a dentary, which is the first, to our knowledge, from South America. The tiny fossil from the Middle to Late Jurassic of Patagonia is a representative of the recently termed Australosphenida, a group of mammals from Gondwanaland that evolved tribosphenic molars convergently to the Northern Hemisphere Tribosphenida, and probably gave rise to the monotremes. Together with other mammalian evidence from the Southern Hemisphere, the discovery of this new mammal indicates that the Australosphenida had diversified and were widespread in Gondwanaland well before the end of the Jurassic, and that mammalian faunas from the Southern Hemisphere already showed a marked distinction from their northern counterparts by the Middle to Late Jurassic.
NASA Astrophysics Data System (ADS)
Kędzior, Artur; Popa, Mihai E.
2013-06-01
Kędzior, A. and Popa, E.M. 2013. Sedimentology of the Early Jurassic terrestrial Steierdorf Formation in Anina, Colonia Cehă Quarry, South Carpathians, Romania. Acta Geologica Polonica, 63 (2), 175-199. Warszawa. The continental, coal bearing Steierdorf Formation, Hettangian - Sinemurian in age, is included in the Mesozoic cover of the Reşiţa Basin, Getic Nappe, South Carpathians, Romania. The Steierdorf Formation can be studied in Anina, a coal mining center and an exceptional locality for Early Jurassic flora and fauna, occurring in the middle of the Reşiţa Basin. This paper presents the results of sedimentological, stratigraphical and paleobotanical researches undertaken in Colonia Cehă open cast mine in Anina, where the Steierdorf Formation outcrops widely. Several sedimentary facies associations have been described, these associations permitting the reconstruction of various depositional systems such as alluvial fans, braided and meandering river systems, as well as lacustrine and coal generating marsh systems of the Steierdorf Formation. The sedimentary associations recorded within the Steierdorf Formation show a gradual fining upward trend, pointing to a rising marine water table and a decreasing relief within the source area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, B.R.; Smewing, J.D.
1993-02-01
The Hajar Supergroup (Middle Permian-Lower Cretaceous) of northeastern Oman records rifting and development of a passive margin along the edge of the Arabian platform facing Neo-Tethys. The Jurassic and Lower Cretaceous part, comprising the Sahtan, Kahmah, and Wasia groups, was deposited during the maximum extent of the broad epicontinental sea landward of this margin. These limestone units reach a total of 1500 m in thickness and correlate with the hydrocarbon reservoirs of the Arabian Peninsula. The trace of the Jurassic and Cretaceous margin in northeastern Oman followed a zigzag series of rift segments, resulting in promontories and reentrants that changedmore » in position through time in response to the configuration and differential motion of underlying rift blocks. Synsedimentary normal faulting occurred locally in the Middle Jurassic, whereas in the Late Jurassic, the margin was eroded from variable uplift of up to 300 m before subsiding to below storm wave base. This uplift may have been caused by compression from oceanic crust that obducted along the southeastern side of the platform. The Lower Cretaceous succession in the central Oman Mountains and adjacent subsurface began with regional drowning around the Jurassic-Cretaceous boundary. The succession in the east (Saih Hatat) records a single regressive sequence, ending in the progradation of the shallow-water carbonate platform by the Cenomanian. However, the succession in the west (Jebel Akhdar and interior) is dominated by shallow-water carbonate facies, but punctuated by a second regional drowning in the late Aptian. A third, Late Cretaceous drowning terminated deposition of the Wasia Group in the Turonian and was caused by convergence of oceanic crust and foreland basic formation. The record of tectonic behavior of carbonate platforms has important implications for the development of hydrocarbon source rocks and porosity. 68 refs., 11 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Ritterbush, K. A.; West, A. J.; Berelson, W.; Rosas, S.; Bottjer, D. J.; Yager, J. A.; Corsetti, F. A.
2014-12-01
Two aspects of the Triassic/Jurassic transition that seem incongruous are increasing warming and increasing ecological dominance by siliceous sponges on shallow shelves. Warming is interpreted from proxy data showing increased atmospheric carbon dioxide concentrations associated with eruption pulses of the Central Atlantic Province (CAMP) basalts across rifting Pangea. Post-extinction ecological dominance by siliceous sponges is found in recent field investigations of Nevada and Peru, and literature on the Austrian Alps. Whereas evidence from the Panthalassan siliceous sponge ramps of the early Jurassic clearly records deposition on sub- and tropical shallow shelves (a warm environment), modern sponge occupations of comparable intensity exist only in deep and cold environments. Resolving this apparent contrast requires consideration of silica cycling. Silica is a limiting nutrient for siliceous sponges, and the post-extinction sponges of the earliest Jurassic show desmid spicule morphologies matching modern phenotypic indicators of high silica concentration. During the Triassic the major documented biosiliceous sink was radiolarian deep sea chert deposits despite a major species-level turnover at the extinction. Diatoms did not exist in the Triassic. A major alteration to silica cycling in the early Jurassic could have resulted from increased terrigenous supply for two reasons: increased atmospheric carbon dioxide would likely intensify continental weathering, and the extensive flood basalts produced an easily-weathered silica source. Simple box model calculations allow consideration of supply vs demand, and of the pace of possible changes. Potential weathering rates of silica are contrasted with recent published data on sponge silica sequestration, showing that the presence of the CAMP basalts alone could support increased sponge abundance across tropical carbonate shelves. Estimates of doubling and residence times in a simple one-box model show that the change in silica concentration likely occurred over hundred-thousand year timescales relevant to the post-extinction ecology. The influence of climate and weathering on marine chemistry and ecological opportunity presents an excellent example of interrelated Earth and life systems at a critical transition point.
NASA Astrophysics Data System (ADS)
Jordan, Tom; Ferraccioli, Fausto; Leat, Phil; Ross, Neil; Bingham, Rob; Rippin, David; LeBrocq, Anne; Corr, Hugh; Siegert, Martin
2013-04-01
The Weddell Sea Embayment (WSE) lies in a key position to study the nature of the tectonic boundary between East and West Antarctica and the development of continental rifting processes and magmatism during the early stages of Gondwana break-up. Evidence for continental rifting within the WSE derives from previous reconnaissance geophysical investigations offshore and geological studies of the associated Jurassic magmatism onshore. Seismic data reveal high stretching factors beneath the Weddell Sea Rift (WSR) between 1.5 and 3.0, and gravity data suggest a crustal thickness of ca 27 km and an effective elastic thickness of ~35 km for the rifted region. Geochemical interpretations indicate that a Middle Jurassic LIP, including extensive mafic tholeiites and some Jurassic granitic intrusions may be related to a superplume that impinged beneath the WSE. Here we present results from a recent aerogeophysical investigation that sheds new light into the previously largely unknown inland extent of the WSR beneath the West Antarctic Ice Sheet. This includes new insights into its magmatic patterns, as well as the nature of its tectonic boundaries with the adjacent Ellsworth-Whitmore block (EWM) and the margin of East Antarctica. Aeromagnetic images were interpreted to reveal pre-rift rocks, including Proterozoic basement, Middle Cambrian rift-related volcanics and metasediments and rift-related Jurassic granitoids. Magnetic depth-to-source estimates were calculated and help constrain two joint magnetic and gravity forward models for the study region. These models were used to assess crustal thickness variations, the extent of Proterozoic basement, and the thickness of Jurassic intrusions and inferred post-Jurassic sedimentary infill. The Jurassic granitoids were modelled as 5-8 km thick. These intrusions include roughly circular plutons, emplaced at the transition between the thicker crust of the EWM block and the thinner crust of the WSR, and more elongated bodies emplaced within the newly identified Pagano Shear Zone, a major tectonic boundary between East and West Antarctica. We put forward two alternative kinematic tectonic models by analysing a compilation of our new data with previous magnetic and gravity datasets. In the simple shear model, ~E-W oriented Jurassic extension within the WSR was accommodated by left-lateral strike-slip motion on the Pagano Shear Zone. This would have facilitated eastward motion of the EWM block relative to East Antarctica, effectively transferring the block to West Antarctica. In a pure shear model, the left-lateral Pagano Shear Zone we identified and the dextral and normal fault systems, previously interpreted from aeromagnetic data further east at the the margins of the Dufek Intrusion, would represent conjugate fault systems. In the latter scenario, a more complex and potentially more distributed strike-slip boundary between the WSE and a mosaic of distinct East and West Antarctic crustal blocks may be possible. This tectonic model would resemble some geodynamic models for the opposite side of Antarctica, in the Ross Sea Embayment and Transantarctic Mountains, where more recent (Cenozoic) intraplate strike-slip fault systems have been proposed.
NASA Astrophysics Data System (ADS)
Gawlick, Hans-Jürgen; Aubrecht, Roman; Schlagintweit, Felix; Missoni, Sigrid; Plašienka, Dušan
2015-12-01
The causes for the Middle to Late Jurassic tectonic processes in the Northern Calcareous Alps are still controversially discussed. There are several contrasting models for these processes, formerly designated "Jurassic gravitational tectonics". Whereas in the Dinarides or the Western Carpathians Jurassic ophiolite obduction and a Jurassic mountain building process with nappe thrusting is widely accepted, equivalent processes are still questioned for the Eastern Alps. For the Northern Calcareous Alps, an Early Cretaceous nappe thrusting process is widely favoured instead of a Jurassic one, obviously all other Jurassic features are nearly identical in the Northern Calcareous Alps, the Western Carpathians and the Dinarides. In contrast, the Jurassic basin evolutionary processes, as best documented in the Northern Calcareous Alps, were in recent times adopted to explain the Jurassic tectonic processes in the Carpathians and Dinarides. Whereas in the Western Carpathians Neotethys oceanic material is incorporated in the mélanges and in the Dinarides huge ophiolite nappes are preserved above the Jurassic basin fills and mélanges, Jurassic ophiolites or ophiolitic remains are not clearly documented in the Northern Calcareous Alps. Here we present chrome spinel analyses of ophiolitic detritic material from Kimmeridgian allodapic limestones in the central Northern Calcareous Alps. The Kimmeridgian age is proven by the occurrence of the benthic foraminifera Protopeneroplis striata and Labyrinthina mirabilis, the dasycladalean algae Salpingoporella pygmea, and the alga incertae sedis Pseudolithocodium carpathicum. From the geochemical composition the analysed spinels are pleonastes and show a dominance of Al-chromites (Fe3+-Cr3+-Al3+ diagram). In the Mg/(Mg+ Fe2+) vs. Cr/(Cr+ Al) diagram they can be classified as type II ophiolites and in the TiO2 vs. Al2O3 diagram they plot into the SSZ peridotite field. All together this points to a harzburgite provenance of the analysed spinels as known from the Jurassic suprasubduction ophiolites well preserved in the Dinarides/Albanides. These data clearly indicate Late Jurassic erosion of obducted ophiolites before their final sealing by the Late Jurassic-earliest Cretaceous carbonate platform pattern.
Tectonic evolution and hydrocarbon accumulation in the Yabulai Basin, western China
NASA Astrophysics Data System (ADS)
Zheng, Min; Wu, Xiaozhi
2014-05-01
The Yabulai petroliferous basin is located at the north of Hexi Corridor, western China, striking NEE and covering an area of 1.5×104 km2. It is bounded on the south by Beidashan Mountain to the Chaoshui Basin, on the east by Bayanwulashan Mountain to the Bayanhaote Basin, and on the northwest by Yabulai Mountain to the Yingen-Ejinaqi Basin. It is a Meso-cenozoic compressive depression residual basin. In view of regional geotectonics, the Yabulai basin sits in the middle-southern transition belt of Arershan massif in North China Craton. Driven by Indosinian movement at the late Triassic, two near EW normal faults were developed under the regional extensional stress along the northern fringe of Beidashan Mountain and the southern fringe of Yabulai Mountain front in the Arershan massif, forming the embryonic form of the Yabulai rift lake basin. Since Yanshan period, the Yabulai basin evolved in two major stages: Jurassic rift lake basin and Cretaceous rift lake basin. During early Yanshan period, EW striking Yabulai tensional rift was formed. Its major controlling fault was Beidashan normal fault, and the depocenter was at the south of this basin. During middle Yanshan period, collision orogenesis led to sharp uplift at the north of this basin where the middle-lower Jurassic formations were intensely eroded. During late Yanshan period, the Alashan massif and its northern area covered in an extensional tectonic environment, and EW striking normal faults were generated at the Yabulai Mountain front. Such faults moved violently and subsided quickly to form a new EW striking extensional rift basin with the depocenter at the south of Yabulai Mountain. During Himalayan period, the Alashan massif remained at a SN horizontal compressional tectonic environment; under the compressional and strike slip actions, a NW striking and south dipping thrusting nappe structure was formed in the south of the Yabulai basin, which broke the Beidashan normal fault to provide the echelon fault system and finally present the current structural framework of "east uplift and west depression, south faulted and north overlapping". The Yabulai basin presented as a strike-slip pull-apart basin in Mesozoic and a compressional thrusting depression basin in Cenozoic. Particularly, the Mesozoic tectonic units were distributed at a big included angle with the long axis of the basin, while the Cenozoic tectonic units were developed in a basically consistent direction with the long axis. The sags are segmented. Major subsiding sags are located in the south, where Mesozoic Jurassic-Cretaceous systems are developed, with the thickest sedimentary rocks up to 5300m. Jurassic is the best developed system in this basin. Middle Jurassic provides the principal hydrocarbon-bearing assemblage in this basin, with Xinhe Fm. and Qingtujing Fm. dark mudstone and coal as the source rocks, Xinhe Fm. and Qingtujing Fm. sandstones as the reservoir formation, and Xinhe Fm. mudstones as the cap rocks. However, the early burial and late uplifting damaged the structural framework of the basin, thus leading to the early violent compaction and tightness of Jurassic sandstone reservoir and late hydrocarbon maturity. So, tectonic development period was unmatched to hydrocarbon expulsion period of source rocks. The hydrocarbons generated were mainly accumulated near the source rocks and entrapped in reservoir. Tight oil should be the major exploration target, which has been proved by recent practices.
NASA Astrophysics Data System (ADS)
Ilhan, I.; Coakley, B.
2016-12-01
A stratigraphic framework for offshore northwest of Alaska has been developed from multi-channel seismic reflection data and direct seismic-well ties to the late 80's Crackerjack and Popcorn exploration wells along the late Cretaceous middle Brookian unconformity. This unconformity is characterized by downlap, onlap, and bi-directional onlap of the overlying upper Brookian strata in high accommodation, and erosional incision of the underlying lower Brookian strata in low accommodation. This surface links multiple basins across the southwestern Chukchi Borderland, Arctic Ocean. The lower Brookian strata are characterized by pinch out basin geometry in which parallel-continuous reflectors show north-northeasterly progressive onlap of the younger strata onto a lower Cretaceous unconformity. These strata are subdivided into Aptian-Albian and Upper Cretaceous sections along a middle Cretaceous unconformity. The north-northeasterly thinning-by-onlap is consistent across hundreds of kilometers along the southwestern Chukchi Borderland. While this suggests a south-southwesterly regional source of sediment and transport from the Early Cretaceous Arctic Alaska-Chukotka orogens, pre-Brookian clinoform strata, underlying the lower Cretaceous unconformity angularly, have been observed for the first time in southeastern margin of the Chukchi Abyssal Plain. This suggests a change in sediment source and transport direction between the pre-Brookian and the lower Brookian strata. Although the mechanism for the accommodation is not well understood, we interpret the pre-Brookian strata as passive-margin slope deposits due to the fact that we have not observed any evidence for upper crustal tectonic deformation or syn-tectonic "growth" strata in the area. Thus, this implies that depositional history of the southwestern Chukchi Borderland post-dates the accommodation. This interpretation puts a new substantial constrain on the pre-Valanginian clockwise rotation of the Chukchi Borderland away from the East Siberian continental shelf, associated with the antecedent counter-clockwise rotation of the Arctic Alaska-Chukotka microplate away from the Canadian Arctic Islands and extensional deformation of the Amerasia Basin.
NASA Astrophysics Data System (ADS)
Smith, R. M. H.; Eriksson, P. G.; Botha, W. J.
1993-02-01
The Karoo Basin of South Africa was one of several contemporaneous intracratonic basins in southwestern Gondwana that became active in the Permo-Carboniferous (280 Ma) and continued to accumulate sediments until the earliest Jurassic, 100 million years later. At their maximum areal extent, during the early Permian, these basins covered some 4.5 million km 2. The present outcrop area of Karoo rocks in southern Africa is about 300 000 km 2 with a maximum thickness of some 8000 m. The economic importance of these sediments lies in the vast reserves of coal within the Ecca Group rocks of northern and eastern Transvaal and Natal, South Africa. Large reserves of sandstone-hosted uranium and molybdenum have been proven within the Beaufort Group rocks of the southern Karoo trough, although they are not mineable in the present market conditions. Palaeoenvironmental analysis of the major stratigraphic units of the Karoo succession in South Africa demonstrates the changes in depositional style caused by regional and localized tectonism within the basin. These depocentres were influenced by a progressive aridification of climate which was primarily caused by the northward drift of southwestern Gondwana out of a polar climate and accentuated by the meteoric drying effect of the surrounding land masses. Changing palaeoenvironments clearly influenced the rate and direction of vertebrate evolution in southern Gondwana as evidenced by the numerous reptile fossils, including dinosaurs, which are found in the Karoo strata of South Africa, Lesotho, Namibia and Zimbabwe. During the Late Carboniferous the southern part of Gondwana migrated over the South Pole resulting in a major ice sheet over the early Karoo basin and surrounding highlands. Glacial sedimentation in upland valleys and on the lowland shelf resulted in the Dwyka Formation at the base of the Karoo Sequence. After glaciation, an extensive shallow sea covered the gently subsiding shelf, fed by large volumes of meltwater. Marine clays and muds accumulated under cool climatic conditions (Lower Ecca Group) including the distinctive Mesosaurus-bearing carbonaceous shales of the Whitehill Formation. Subduction of the palaeo-Pacific plate reslted in an extensive chain of mountains which deformed and later truncated the southern rim of the main Karoo Basin. Material derived from these "Gondwanide" mountains as well as from the granitic uplands to the north-east, accumulated in large deltas that prograded into the Ecca sea (Upper Ecca Group). The relatively cool and humid climate promoted thick accumulations of peat on the fluvial and delta plains which now constitute the major coal reserves of southern Africa. As the prograding deltas coalesced, fluvio-lacustrine sediments of the Beaufort Group were laid down on broad gently subsiding alluvial plains. The climate by this time (Late Permian) had warmed to become semi-arid with highly seasonal rainfall. Vegetation alongside the meander belts and semi-permanent lakes supported a diverse reptilian fauna dominated by therapsids or "mammal-like reptiles". Pulses of uplift in the southern source areas combined with possible orographic effects resulted in the progadation of two coarse-grained alluvial fans into the central parts of the basin (Katberg Sandstone Member and Molteno Formation). In the upper Karoo Sequence, progressive aridification and tectonic deformation of the basin through the late Triassic and early Jurassic led to the accumulation, in four separate depositories, of "redbeds" which are interpreted as fluvial and flood-fan, playa and dune complexes (Elliot Formation). This eventually gave way to westerly wind-dominated sedimentation that choked the remaining depositories with fine-grained dune sand. The interdune areas were damp and occasionally flooded and provided a habitat for small dinosaurs and the earliest mammals. During this time (Early Jurassic), basinwide volcanic activity began as a precursor to the break-up of Gondwana in the late Jurassic and continued until the early Cretaceous. This extrusion of extensive flood basalts (Drakensberg Group) onto the Clarens landscape eventually brought Karoo sedimentation to a close.
Alpine Palaeogeography: new constraints from detrital zircon geochronology
NASA Astrophysics Data System (ADS)
Galster, Federico; Stockli, Daniel
2017-04-01
Schardt's (1898) discovery of the "allochtony" of the Préalpes Médianes and its exotic character, provided Alpine geologist with a first picture of Alpine palaeogeography: a Middle Jurassic sea divided in two branches by the rise of an emerged island. Later on, Schardt's island had been recognized at the scale of the Alpine belt and took the name of Briançonnais "geoanticline". In many Alpine palaeogeographic reconstructions, the Briançonnais and its exotic character have played a crucial role (e.g. Stampfli 1993; Manatschal et al., 2006;). In particular some of them explained the exotic character of the Briançonnais facies by proposing a pre-Cretaceous position located far from the Helvetic domain. In this view, the Briançonnais terrain was related to the Iberian plate and entered the Central Alpine system only after a Lower Cretaceous eastward drift associated with anticlockwise rotation of Iberia, opening of the northern Atlantic and closure of the Vardar ocean. In the Central Alps, the remnants of the northern Jurassic margin of the Alpine Tethys (sensu Stampfli) are contained in the Helvetic (s.l.) and Lower Penninic units. The basements and original substrate of these nappes are exposed in the crystalline external massifs and in the gneissic Lepontine dome. The highest, more internal, gneissic units within this dome are the Monte Leone, the Maggia and the Adula nappe. Theses units, as well as the autochthonous basement of the European margin, are characterized by large "Variscan" granitoids with ages between 290 and 330 Ma. The "ophiolite-bearing" units thrust on top of the Adula nappe are composed of Cretaceous and younger sedimentary rocks, with thin soles of Triassic and Jurassic strata. In addition to Variscan, Cambro-Ordovician and Proterozoic ages, detrital zircons in these soles show a peak at 260-280 Ma accompanied by a cluster of ca. 230 Ma zircons, similarly to what is observed in the Schams and Préalpes Médianes nappes (Briançonnais s.l.). This is particularly evident in the Tomul nappe, located at the top of the Lower Penninic pile below Briançonnais-derived units and in the Piz Terri-Lunschania zone (PTLZ), tectonically located between the Adula nappe and the "ophiolite-bearing" Grava nappe. In the PTLZ a Permo-Triassic of Briançonnais type is in stratigraphic contact with a Lower Jurassic of Helvetic type. Detrital zircon signatures in the Lower Jurassic sandstones of the PTLZ are very similar to those of the Helvetic. In contrast, locally sourced Permian and Middle Jurassic strata of the PTLZ show two remarkable features: a peak at 260-280Ma and the scarcity or absence of Variscan zircons (gap between 290 and 350Ma). Considering the basement of the different alpine domains, this characteristic is best explained by a Briançonnais-type basemet source that lacks widespread Variscan intrusions and is characterized by large "mid Permian" intrusions. The occurrence of different types of Briançonnais DZ U-Pb signatures in the pre-Cretaceous stratigraphic record of the distal Helvetic-North Penninic margin favors a Jurassic palaeogeography with the Briançonnais domain located south of the Helvetic domain and not directly related to the Iberian plate and its Cretaceous tectonic juxtaposition.
NASA Astrophysics Data System (ADS)
Ben Lasmar, Rafika; Guellala, Rihab; Garrach, Mohamed; Mahroug, Ali; Sarsar Naouali, Benen; Inoubli, Mohamed Hédi
2017-12-01
Southern Tunisia is an arid area where socio-economic activities are dependent on groundwater resources. The presented study aims to better characterize the Jurassic aquifer based on geological and geophysical data, with a view to develop a rational exploitation program. Well logs are used to precisely determine the position and composition of the known Jurassic aquifer layers and to identify others able to produce good quality water. The logs show that limestones, sandstones and dolomites of the Krachoua, Techout and Foum Tataouine formations are the main Jurassic aquifers. Sixty-eight seismic-reflection sections are integrated within this study. The interpolation between the interpreted sections leads to the construction of isochronous isopach maps and geoseismic sections, and their analysis finds that compressive and extensive tectonic deformations have influenced the Jurassic aquifer geometry. The Hercynian orogeny phase manifestation is remarkable in that there are several stratigraphic gaps in the Jurassic sequence. The E-W, NW-SE, and NNW-SSE accidents, reactivated in normal faults since the Permian to Lower Cretaceous epochs, have generated the structures found in the Jurassic series, such as subsided and raised blocks. Their syn-sedimentary activity has controlled the thickness and facies of these series. The Cretaceous, Tortonian and Post-Villafranchian compressions are responsible for the Jurassic-deposits folding in some localities. The highlighted tectonic and sedimentary events have an important impact on the Jurassic aquifer function by favoring the Jurassic aquifer interconnections and their connections with the Triassic and Cretaceous permeable series.
Middle to Late Jurassic Tectonic Evolution of the Klamath Mountains, California-Oregon
NASA Astrophysics Data System (ADS)
Harper, Gregory D.; Wright, James E.
1984-12-01
The geochronology, stratigraphy, and spatial relationships of Middle and Late Jurassic terranes of the Klamath Mountains strongly suggest that they were formed in a single west-facing magmatic arc built upon older accreted terranes. A Middle Jurassic arc complex is represented by the volcanic rocks of the western Hayfork terrane and consanguineous dioritic to peridotitic plutons. New U/Pb zircon dates indicate that the Middle Jurassic plutonic belt was active from 159 to 174 Ma and is much more extensive than previously thought. This plutonic belt became inactive just as the 157 Ma Josephine ophiolite, which lies west and structurally below the Middle Jurassic arc, was generated. Late Jurassic volcanic and plutonic arc rocks (Rogue Formation and Chetco intrusive complex) lie outboard and structurally beneath the Josephine ophiolite; U/Pb and K/Ar age data indicate that this arc complex is coeval with the Josephine ophiolite. Both the Late Jurassic arc complex and the Josephine ophiolite are overlain by the "Galice Formation," a Late Jurassic flysch sequence, and are intruded by 150 Ma dikes and sills. The following tectonic model is presented that accounts for the age and distribution of these terranes: a Middle Jurassic arc built on older accreted terranes undergoes rifting at 160 Ma, resulting in formation of a remnant arc/back-arc basin/island arc triad. This system collapsed during the Late Jurassic Nevadan Orogeny (150 Ma) and was strongly deformed and stacked into a series of east-dipping thrust sheets. Arc magmatism was active both before and after the Nevadan Orogeny, but virtually ceased at 140 Ma.
NASA Astrophysics Data System (ADS)
He, D.
2017-12-01
The Helan-Chuandian North-South Tectonic Belt crossed the central Chinese mainland. It is a boundary of geological, geophysical, and geographic system of Chinese continent tectonics from shallow to deep, and a key zone for tectonic and geomorphologic inversion during Mesozoic to Cenozoic. It is superimposed by the southeastward and northeastward propagation of Qinghai-Tibet Plateau in late Cenozoic. It is thus the critical division for West and East China since Mesozoic. The Majiatan fold-and-thrust belt (MFTB), locating at the central part of HCNSTB and the western margin of Ordos Basin, is formed by the tectonic evolution of the Helan-Liupanshan Mountains. Based on the newly-acquired high-resolution seismic profiles, deep boreholes, and surface geology, the paper discusses the geometry, kinematics, and geodynamic evolution of MFTB. With the Upper Carboniferous coal measures and the pre-Sinian ductile zone as the detachments, MFTB is a multi-level detached thrust system. The thrusting was mainly during latest Jurassic to Late Cretaceous, breaking-forward in the foreland, and resulting in a shortening rate of 25-29%. By structural restoration, this area underwent extension in Middle Proterozoic to Paleozoic, which can be divided into three phases of rifting such as Middle to Late Proterozoic, Cambiran to Ordovician, and Caboniferous to early Permian. It underwent compression since Late Triassic, including such periods as Latest Triassic, Late Jurassic to early Cretaceous, Late Cretaceous to early Paleogene, and Pliocene to Quaternary, with the largest shortening around Late Jurassic to early Cretaceous period (i.e. the mid-Yanshanian movement by the local name). However, trans-extension since Eocene around the Ordos Basin got rise to the formation the Yingchuan, Hetao, and Weihe grabens. It is concluded that MFTB is the leading edge of the intra-continental Helan orogenic belt, and formed by multi-phase breaking-forward thrusting during Late Jurassic to Cretaceous. During Cenozoic, MFTB is moderately modified by the northeastward compression due to the NE propagation of Qinghai-Tibet Plateau, and distinctly superimposed by the Yingchuan half-graben. North-South Tectonic Belt underwent a full cycle from extension during Middle Proterozoic to Paleozoic to compression since late Triassic.
NASA Astrophysics Data System (ADS)
Hässig, M.; Rolland, Y.; Sahakyan, L.; Sosson, M.; Galoyan, G.; Avagyan, A.; Bosch, D.; Müller, C.
2015-04-01
The geologic evolution of the South Armenian Block (SAB) in the Mesozoic is reconstructed from a structural, metamorphic, and geochronologic study including U-Pb and 40Ar/39Ar dating. The South Armenian Block Crystalline Basement (SABCB) outcrops solely in a narrow tectonic window, NW of Yerevan. The study of this zone provides key and unprecedented information concerning closing of the Northern Neotethys oceanic domain north of the Taurides-Anatolides platform from the Middle Jurassic to the Early Cretaceous. The basement comprises of presumed Proterozoic orthogneiss overlain by metamorphosed pelites as well as intrusions of granodiorite and leucogranite during the Late Jurassic and Early Cretaceous. Structural, geochronological and petrological observations show a multiphased evolution of the northern margin of the SAB during the Late Jurassic and Early Cretaceous. A south-dipping subduction under the East Anatolian Platform-South Armenian Block (EAP-SAB) is proposed in order to suit recent findings pertaining emplacement of relatively hot subduction related granodiorite as well as the metamorphic evolution of the crystalline basement in the Lesser Caucasus area. The metamorphism is interpreted as evidencing: (1) M1 Barrovian MP-MT conditions (staurolite-kyanite) at c. 157-160 Ma and intrusion of dioritic magmas at c. 150-156 Ma, (2) near-adiabatic decompression is featured by partial melting and production of leucogranites at c. 153 Ma, followed by M2 HT-LP conditions (andalusite-K-feldspar). A phase of shearing and recrystallization is ascribed to doming at c. 130-150 Ma and cooling at 400 °C by c. 123 Ma (M3). Structural observations show (1) top to the north shearing during M1 and (2) radial extension during M2. The extensional event ends by emplacement of a thick detrital series along radial S, E and W-dipping normal faults. Further, the crystalline basement is unconformably covered by Upper Cretaceous-Paleocene series dated by nannofossils, evolving from Maastrichtian marly sandstones to Paleocene limestones.
NASA Astrophysics Data System (ADS)
Fan, Wenbo; Jiang, Neng; Xu, Xiyang; Hu, Jun; Zong, Keqing
2017-05-01
An integrated study of zircon U-Pb ages and Hf-O isotopic compositions, whole rock elemental and Sr-Nd isotope geochemistry was conducted on three lithologically diverse middle Jurassic plutons from the Eastern Hebei area of the North China Craton (NCC), in order to reveal both their petrogenesis and possible tectonic affinity. The three plutons have consistent magmatic zircon U-Pb ages from 167 ± 1 Ma to 173 ± 1 Ma. The Nianziyu pluton has typical characteristics of appinite with low SiO2 (43.7-52.6%), high Ca, Mg, Fe and H2O contents. It possesses subduction-related trace element patterns, enriched Nd-Hf isotopic signatures as well as elevated zircon δ18O values (6.2-7.2‰), arguing for an enriched mantle source metasomatized by fluids related to subduction. The Shuihutong monzogranites have high silica (SiO2 = 75.4-75.9%) and alkali contents, low Ca contents and striking negative Ba, Sr and Eu anomalies. Samples from the pluton have more evolved Nd-Hf isotopic values and are considered to be most likely derived from anatexis of ancient lower continental crust. Hybridization between mantle- and ancient lower crust-derived magmas is proposed for the mafic microgranular enclave-bearing Baijiadian granitoids, which are characterized by variable εNd (t) and εHf(t) values. Integrated with the regional geologic history, we suggest that the formation of the three middle Jurassic plutons were related to the subduction of the Paleo-Pacific ocean plate beneath the NCC. Their petrogenetic differences reflect complex magmatic processes in subduction settings involving melting of multiple sources, possible partly facilitated by fluid metasomatism and water-rich magma injection, accompanied with various degrees of magma mixing. The appearance of middle Jurassic appinitic rocks leads us to propose that the NCC destruction and lithosphere thinning were facilitated and controlled by the weakening of the lithospheric mantle after hydration because of the subduction of the paleo-Pacific ocean plate. The lower crust of the craton was also reactivated at the same time due to the subduction.
NASA Astrophysics Data System (ADS)
Zhou, T. Q.; Wu, C.; Zhu, W.
2017-12-01
Being a vital component of foreland basin of Central-western China, Southern Junggar Basin has observed solid evidences of oil and gas in recent years without a considerable advancement. The key reason behind this is the lack of systematic study on sedimentary provenance analysis of the Southern Junggar basin. Three parts of the Southern Junggar basin, including the western segment (Sikeshu Sag), the central segment (Qigu Fault-Fold Belt) and the eastern segment (Fukang Fault Zone), possess varied provenance systems, giving rise to difficulties for oil-gas exploration. In this study, 3468 heavy minerals data as well as the sedimentary environment analysis of 10 profiles and 7 boreholes were used to investigate the provenances of the deposits in the southern Junggar basin . Based on this research, it reveals that: Sikeshu sag initially shaped the foreland basin prototype in the Triassic and its provenance area of the sediments from the Sikeshu sag has primarily been situated in zhongguai uplift-chepaizi uplift depositional systems located in the northwestern margin of the Junggar Basin. From the early Jurassic, the key sources were likely to be late Carboniferous to early Permain post-collisional volcanic rocks from the North Tian Shan block to Centrao Tian Shan. In the Xishanyao formation, Abundant lithic metamorphic, epidote and garnet that suggests the source rocks were possibly late Carboniferous subduction-related arc volcanic rocks of the Central Tian Shan. In the Toutunhe formation, Bogda Mountains began uplifting and gradually becoming the major provenance. Moreover, the sedimentary boundaries of Junggar basin have also shifted towards the North Tian Shan again. In the late Jurassic, the conglomerates of the Kalazha formation directly overlie the fine-grained red beds of Qigu formation, which throw light on the rapid tectonic uplift of the North Tian Shan. In the eastern segment, meandering river delta and shore-lacustrine environments were fully developed in Badaowan formation indicating that the provenance of sediments mainly derived from the Kelameili Mountains. During the late Jurassic, the rapid uplift of Bogda Mountains could result into the distinct difference in heavy mineral assemblages between the eastern segment and the central segments.
NASA Astrophysics Data System (ADS)
Lynch, E. A.; van der Pluijm, B.; Vennemann, T. W.
2017-12-01
The eastern margin of North America has a protracted and intricate tectonic history. The terminal collision of Gondwana and Laurentia in the late Paleozoic formed the Appalachian mountain belt, a trans-continental orogen that persisted for almost 100 million years until Mesozoic break-up of the supercontinent Pangea. A host of studies have targeted the evolution and migration of fluids through Appalachian crust in an effort to understand how fluid promotes mass and heat redistribution, and mediates crustal deformation, particularly during the assembly of Pangea. Folded clay units from the Central Appalachian Valley and Ridge province were sampled for stable and radiogenic isotope analysis. Separation of samples into different grain-size fractions characterizes detrital (host) and authigenic (neomineralized) clays. Stable H-isotope compositions reveal a systematic pattern with varying proportions of illite polytypes—the finer, younger fraction is D-depleted compared to the coarser, primarily detrital fraction. For each individual location, the H-isotopic composition of the fluid from which the authigenic population was grown is calculated. δDVSMOW of these fluids has a range from -77 to -52 ± 2 ‰, consistent with a surface-derived fluid source. The notably negative values for several samples indicates a meteoric composition of moderate to high elevation origin, suggesting that they are not connate waters, but instead preserve infiltration of fluids due to fracture-induced permeability. Key to this interpretation is 40Ar/39Ar-dating of a subset of these samples that reveals a post-orogenic age for authigenic clay mineralization in the Early Jurassic ( 180 Ma). These ages are evidence that surface fluid infiltration was unrelated to the Appalachian orogeny, but coeval with (upper) crustal extension from the initial break-up of Pangea and the emplacement of the Central Atlantic Magmatic Province.
NASA Astrophysics Data System (ADS)
Lee, S.; Allen, J.; Han, W.; Lu, C.; McPherson, B. J.
2011-12-01
Jurassic aeolian sandstones (e.g. Navajo and White Rim Sandstones) on the Colorado Plateau of Utah have been considered potential sinks for geologic CO2 sequestration due to their regional lateral continuity, thickness, high porosity and permeability, presence of seal strata and proximity to large point sources of anthropogenic CO2. However, aeolian deposits usually exhibit inherent internal complexities induced by migrating bedforms of different sizes and their resulting bounding surfaces. Therefore, CO2 plume migration in such complex media should be well defined and successively linked in models for better characterization of the plume behavior. Based on an outcrop analog of the upper Navajo Sandstone in the western flank of the San Rafael Swell, Utah, we identified five different bedform types with dune and interdune facies to represent the spatial continuity of lithofacies units. Using generated 3D geometrical facies patterns of cross-bedded structures in the Navajo Sandstone, we performed numerical simulations to understand the detailed behavior of CO2 plume migration under the different cross-bedded bedforms. Our numerical simulation results indicate that cross-bedded structures (bedform types) play an important role on governing the rate and directionality of CO2 migration, resulting in changes of imbibition processes of CO2. CO2 migration tends to follow wind ripple laminations and reactivation surfaces updip. Our results suggest that geologically-based upscaling of CO2 migration is crucial in cross-bedded formations as part of reservoir or basin scale models. Furthermore, comparative modeling studies between 3D models and 2D cross-sections extracted from 3D models showed the significant three-dimensional interplay in a cross-bedded structure and the need to correctly capture the geologic heterogeneity to predict realistic CO2 plume behavior. Our outcrop analog approach presented in this study also demonstrates an alternative method for assessing geologic CO2 storage in deep formations when scarce data is available.
Stone, Paul
2006-01-01
The Blythe 30' by 60' quadrangle is located along the Colorado River between southeastern California and western Arizona. This map depicts the geology of the west half of the Blythe quadrangle, which is mostly in California. The map area is a desert terrain consisting of mountain ranges surrounded by extensive alluvial fans and plains, including the flood plain of the Colorado River which covers the easternmost part of the area. Mountainous parts of the area, including the Big Maria, Little Maria, Riverside, McCoy, and Mule Mountains, consist of structurally complex rocks that range in age from Proterozoic to Miocene. Proterozoic gneiss and granite are overlain by Paleozoic to Early Jurassic metasedimentary rocks (mostly marble, quartzite, and schist) that are lithostratigraphically similar to coeval formations of the Colorado Plateau region to the east. The Paleozoic to Jurassic strata were deposited on the tectonically stable North American craton. These rocks are overlain by metamorphosed Jurassic volcanic rocks and are intruded by Jurassic plutonic rocks that represent part of a regionally extensive, northwest-trending magmatic arc. The overlying McCoy Mountains Formation, a very thick sequence of weakly metamorphosed sandstone and conglomerate of Jurassic(?) and Cretaceous age, accumulated in a rapidly subsiding depositional basin south of an east-trending belt of deformation and east of the north-trending Cretaceous Cordilleran magmatic arc. The McCoy Mountains Formation and older rocks were deformed, metamorphosed, and locally intruded by plutonic rocks in the Late Cretaceous. In Oligocene(?) to Miocene time, sedimentary and minor volcanic deposits accumulated locally, and the area was deformed by faulting. Tertiary rocks and their Proterozoic basement in the Riverside and northeastern Big Maria Mountains are in the upper plate of a low-angle normal (detachment) fault that lies within a region of major Early to Middle Miocene crustal extension. Surficial deposits of the flanking alluvial fans and plains range in age from late Miocene to Holocene. Among the oldest of these deposits are limestone and fine-grained clastic sediments of the late Miocene and (or) Pliocene Bouse Formation, which is commonly interpreted to represent an estuary or marine embayment connected to the proto-Gulf of California. Most of the surficial deposits younger than the Bouse Formation are composed of alluvium either derived from local mountain ranges or transported into the area by the Colorado River. Large parts of the area, particularly near the northern margin, are covered by eolian sand, and small parts are covered by playa sediments.
NASA Astrophysics Data System (ADS)
Hart, Malcolm; Page, Kevin; Price, Gregory; Smart, Christopher; Wilby, Philip
2016-04-01
Modern coleoid (squid-like) cephalopods have arms that carry arrays of both suckers and hardened, organic hooks. Fossil arm hooks have been known since the description of Sternberg in 1823, although he identified them as plant remains. During the twentieth century there were a number of brief descriptions of hooks but it was Kulicki & Szaniawski (1972) who described 22 morphotypes from the Jurassic of Poland. These authors gave these 'forms' names using a binomial classification though, with many lacking defined (and figured) holotypes and, in some cases, only one recorded specimen, some of their designations should be regarded as invalid. Some of the morphotypes have, however, been reported from DSDP sites on the Falkland Plateau as well as New Zealand, Germany, Poland and the United Kingdom. It is clear that the hooks must belong to widely distributed members of the Belemnitida and Phragmoteuthida. Exceptional soft-bodied preservation of species such as Belemnotheutis antiquus from the Callovian-Oxfordian of the United Kingdom has allowed the identification of the host animal of some morphotypes, though the majority remain non-attributable. In the Christian Malford lagerstätte (Upper Callovian) of Wiltshire large numbers of hooks (including forms described as Acanthuncus, Arites, Deinuncus, Falcuncus, Longuncus and Paraglycerites) are found associated with an abundance of statoliths (cephalopod 'ear bones') and macrofossil evidence of both belemnites and teuthids, some of which includes exceptional soft-bodied preservation (see Wilby et al., 2004, 2008; Hart et al., in press). Using the abundance of material available to us from the Wessex Basin, we are attempting to identify, where possible, the host animals. If this can be established then it should be possible, using micropalaeontological samples, to determine the stratigraphical and palaeoecological ranges of some of the host macro-fossils, many of which are otherwise rarely preserved. HART, M.B., DE JONGHE, A., PAGE, K.N., PRICE, G.D. & SMART, C.W. (in press). Exceptional accumulations of statoliths in association with the Christian Malford lagerstätte (Callovian, Jurassic) in Wiltshire, United Kingdom. Palaios. KULICKI, C. & SZANIAWSKI, H. 1972. Cephalopod arm hooks from the Jurassic of Poland. Acta Palaeontologica Polonica, 17, 379-419. WILBY, P.R., HUDSON, J.D., CLEMENTS, R.G. & HOLLINGWORTH, N.T.J. 2004. Taphonomy and origin of an accumulate of soft-bodied cephalopods in the Oxford Clay Formation (Jurassic, England). Palaeontology, 47, 1159-1180. WILBY, P.R., DUFF, K., PAGE, K. & MARTIN, S. 2008. Preserving the unpreservable: a lost world discovered at Christian Malford, UK. Geology Today, 24(3), 95-98.
Xing, Lida; Zhang, Jianping; Lockley, Martin G.; McCrea, Richard T.; Klein, Hendrik; Alcalá, Luis; Buckley, Lisa G.; Burns, Michael E.; Kümmell, Susanna B.; He, Qing
2015-01-01
New reports of dinosaur tracksites in the Tuchengzi Formation in the newly established Yanqing Global Geopark, Beijing, China, support previous inferences that the track assemblages from this formation are saurischian-dominated. More specifically, the assemblages appear theropod-dominated, with the majority of well-preserved tracks conforming to the Grallator type (sensus lato), thus representing relatively small trackmakers. Such ichnofaunas supplement the skeletal record from this unit that lacks theropods thus far, proving a larger diversity of dinosaur faunas in that region. Sauropods are represented by medium to large sized and narrow and wide-gauge groups, respectively. The latter correspond with earlier discoveries of titanosauriform skeletons in the same unit. Previous records of ornithischian tracks cannot be positively confirmed. Purported occurrences are re-evaluated here, the trackways and imprints, except of a single possible specimen, re-assigned to theropods. Palecologically the Tuchengzi ichnofauna is characteristic of semi-arid fluvio-lacustrine inland basins with Upper Jurassic-Lower Cretaceous deposits in northern China that all show assemblages with abundant theropod and sauropod tracks and minor components of ornithopod, pterosaur and bird tracks. PMID:25901363
Jones, D.L.; Blake, M.C.; Bailey, E.H.; McLaughlin, R.J.
1978-01-01
Structurally complex sequences of sedimentary, volcanic, and intrusive igneous rocks characterize a nearly continuous narrow band along the Pacific coast of North America from Baja California, Mexico to southern Alaska. They occur in two modes: (1) as complexly folded but coherent sequences of graywacke and argillite that locally exhibit blueschist-grade metamorphism, and (2) as melanges containing large blocks of graywacke, chert, volcanic and plutonic rocks, high-grade schist, and limestone in a highly sheared pelitic, cherty, or sandstone matrix. Fossils from the coherent graywacke sequences range in age from late Jurassic to Eocene; fossils from limestone blocks in the melanges range in age from mid-Paleozoic to middle Cretaceous. Fossils from the matrix surrounding the blocks, however, are of Jurassic, Cretaceous, and rarely, Tertiary age, indicating that fossils from the blocks cannot be used to date the time of formation of the melanges. Both the deformation of the graywacke, with accompanying blueschist metamorphism, as well as the formation of the melanges, are believed to be the result of late Mesozoic and early Tertiary subduction. The origin of the melanges, particularly the emplacement of exotic tectonic blocks, is not understood. ?? 1978.
NASA Astrophysics Data System (ADS)
Sokolov, S. Yu.; Moroz, E. A.; Abramova, A. S.; Zarayskaya, Yu. A.; Dobrolubova, K. O.
2017-07-01
On cruises 25 (2007) and 28 (2011) of the R/V Akademik Nikolai Strakhov in the northern part of the Barents Sea, the Geological Institute, Russian Academy of Sciences, conducted comprehensive research on the bottom relief and upper part of the sedimentary cover profile under the auspices of the International Polar Year program. One of the instrument components was the SeaBat 8111 shallow-water multibeam echo sounder, which can map the acoustic field similarly to a side scan sonar, which records the response both from the bottom and from the water column. In the operations area, intense sound scattering objects produced by the discharge of deep fluid flows are detected in the water column. The sound scattering objects and pockmarks in the bottom relief are related to anomalies in hydrocarbon gas concentrations in bottom sediments. The sound scattering objects are localized over Triassic sequences outcropping from the bottom. The most intense degassing processes manifest themselves near the contact of the Triassic sequences and Jurassic clay deposits, as well as over deep depressions in a field of Bouguer anomalies related to the basement of the Jurassic-Cretaceous rift system
Revision of the Late Jurassic teleosaurid genus Machimosaurus (Crocodylomorpha, Thalattosuchia)
Young, Mark T.; Hua, Stéphane; Steel, Lorna; Foffa, Davide; Brusatte, Stephen L.; Thüring, Silvan; Mateus, Octávio; Ruiz-Omeñaca, José Ignacio; Havlik, Philipe; Lepage, Yves; De Andrade, Marco Brandalise
2014-01-01
Machimosaurus was a large-bodied genus of teleosaurid crocodylomorph, considered to have been durophagous/chelonivorous, and which frequented coastal marine/estuarine ecosystems during the Late Jurassic. Here, we revise the genus based on previously described specimens and revise the species within this genus. We conclude that there were three European Machimosaurus species and another taxon in Ethiopia. This conclusion is based on numerous lines of evidence: craniomandibular, dental and postcranial morphologies; differences in estimated total body length; geological age; geographical distribution; and hypothetical lifestyle. We re-diagnose the type species Machimosaurus hugii and limit referred specimens to only those from Upper Kimmeridgian–Lower Tithonian of Switzerland, Portugal and Spain. We also re-diagnose Machimosaurus mosae, demonstrate that it is an available name and restrict the species to the uppermost Kimmeridgian–lowermost Tithonian of northeastern France. We re-diagnose and validate the species Machimosaurus nowackianus from Harrar, Ethiopia. Finally, we establish a new species, Machimosaurus buffetauti, for the Lower Kimmeridgian specimens of France and Germany (and possibly England and Poland). We hypothesize that Machimosaurus may have been analogous to the Pliocene–Holocene genus Crocodylus in having one large-bodied taxon suited to traversing marine barriers and additional, geographically limited taxa across its range. PMID:26064545
NASA Astrophysics Data System (ADS)
Barboza-Gudiño, R.
2013-05-01
The lower Mesozoic succession of central and northeastern Mexico was deposited in a late Paleozoic-early Mesozoic remnant basin, formed at the westernmost culmination of the Ouachita-Marathon geosuture, after closure of the Rheic Ocean. Triassic fluvial deposits of El Alamar Formation (El Alamar River) are distributed in Tamaulipas and Nuevo Leon as remnants of a continental succession deposited close to the western margin of equatorial Pangea, such fluvial systems flowed to the ocean, located to the west and contributed to construction of the so-called Potosí submarine fan (Zacatecas Formation). Petrographic, geochemical, and detrital zircon geochronology studies indicate that both, marine and continental Triassic successions, come from a continental block and partially from a recycled orogen, showing grenvillian (900-1300 Ma) and Pan-African (500-700 Ma) zircon age populations, typical for peri-gondwanan blocks, in addition to zircons from the Permo-Triassic East Mexico arc (240-280 Ma). The absence of detrital zircons from the southwestern North American craton, represent a strong argument against left lateral displacement of Mexico to the southwest during the Jurassic up to their actual position, as proposed by the Mojave-Sonora megashear hypothesis. Towards the end of the Triassic or in earliest Jurassic time, began the subduction along the western margin of Pangea, which causes deformation of the Late Triassic Zacatecas Formation and subsequent magmatism in the continental Jurassic arc known as "Nazas Arc ", whose remnants are now exposed in central- to northeastern Mexico. Wide distributed in northern Mexico occurred also deposition of a red bed succession, overlying or partially interstratified with the Early to Middle Jurassic volcanic rocks of the Nazas Formation. To the west and southwest, such redbeds change transitionally to marine and marginal sedimentary facies which record sedimentation at the ancient paleo-pacific margin of Mexico (La Boca and Huayacocotla formations). The Middle to Upper Jurassic La Joya Formation overlies unconformable all continental and marine-marginal successions and older rocks, and records the transgressive basal deposits of the Gulf series, changing upsection to the evaporites and limestone of the Oxfordian Zuloaga Group. Successive intraoceanic subduction zones to the West sparked magmatic arcs whose accretion in the continental margin produced the consolidation of much of the Mexican territory up to the current Pacific margin. Scattered isolated outcrops from the Early Mesozoic succession in central- and northeastern Mexico allow interpretation of tectonic setting and paleogeography associated to each stratigraphic unit, revealing a strongly different geologic evolution than the previously established models, opening a range of new possibilities and areas of opportunity for mining and fossil fuels exploration. However, most of the Triassic-Jurassic rocks or stratigraphic units in northern Mexico lie under many hundreds of meters of a Cretaceous-Cenozoic cover. Their recognition and preliminary evaluation implies the use of indirect techniques like geophysical methods, before drilling or subsurface mining.
NASA Astrophysics Data System (ADS)
Japsen, Peter; Green, Paul F.; Bonow, Johan M.; Chalmers, James A.; Rasmussen, Erik S.
2016-04-01
We present new apatite fission-track analysis (AFTA) data from 27 basement samples from Norway south of ~60°N. The data define three events of cooling and exhumation that overlap in time with events defined from AFTA in southern Sweden (Japsen et al. 2015). The samples cooled below palaeotemperatures of >100°C in a major episode of Triassic cooling as also reported by previous studies (Rohrman et al. 1995). Our study area is just south of the Hardangervidda where Cambrian sediments and Caledonian nappes are present. We thus infer that these palaeotemperatures reflect heating below a cover that accumulated during the Palaeozoic and Triassic. By Late Triassic, this cover had been removed from the Utsira High, off SW Norway, resulting in deep weathering of a granitic landscape (Fredin et al. 2014). Our samples were therefore at or close to the surface at this time. Palaeotemperatures reached ~80°C prior to a second phase of cooling and exhumation in the Jurassic, following a phase of Late Triassic - Jurassic burial. Upper Jurassic sandstones rest on basement near Bergen, NW of our study area (Fossen et al. 1997), and we infer that the Jurassic event led to complete removal of any remaining Phanerozoic cover in the region adjacent to the evolving rift system prior to Late Jurassic subsidence and burial. The data reveal a third phase of cooling in the early Miocene when samples that are now near sea level cooled below palaeotemperatures of ~60°C. For likely values of the palaeogeothermal gradient, such palaeotemperatures correspond to burial below rock columns that reach well above the present-day landscape where elevations rarely exceed 1 km above sea level. This implies that the present-day landscape was shaped by Neogene erosion. This is in agreement with the suggestion of Lidmar-Bergström et al. (2013) that the near-horizontal Palaeic surfaces of southern Norway are the result of Cenozoic erosion to sea level followed by uplift to their present elevations in a fourth event that is not detected by the AFTA data. Fossen, Mangerud, Hesthammer, Bugge, Gabrielsen 1997: The Bjorøy Formation: a newly discovered occurrence of Jurassic sediments in the Bergen Arc System. Norsk Geologisk Tidsskrift 77. Fredin, Zwingmann, Knies, Sørlie, Gandal, Lie, Müller, Vogt, 2014: Saprolites on- and offshore Norway: New constraints on formation processes and age. Nordic Geological Winter Meeting, Lund, Sweden. Japsen, Green, Bonow, Erlström 2015: Episodic burial and exhumation of the southern Baltic Shield: Epeirogenic uplifts during and after break-up of Pangea. Gondwana Research, in press. Lidmar-Bergström, Bonow, Japsen 2013: Stratigraphic landscape analysis and geomorphological paradigms: Scandinavia as an example of Phanerozoic uplift and subsidence. Global and Planetary Change 100. Rohrman, van der Beek, Andriessen, Cloetingh 1995: Meso-Cenozoic morphotectonic evolution of southern Norway: Neogene domal uplift inferred from apatite fission track thermochronology. Tectonics 14.
NASA Astrophysics Data System (ADS)
Ruhl, M.; Hesselbo, S. P.; Hinnov, L.; Jenkyns, H. C.; Storm, M.; Xu, W.; Riding, J. B.; Ullmann, C. V.
2015-12-01
The Early Jurassic (201.3 to 174.1 Ma) is bracketed by the end-Triassic mass extinction and global warming event, and the Toarcian-Aalenian shift to (global) icehouse conditions (McElwain et al., 1999; Hesselbo et al., 2002; Ruhl et al., 2011; Korte et al., in review). It is further marked by the early Toarcian Oceanic Anoxic Event (T-OAE), with possibly the largest exogenic carbon cycle perturbation of the Mesozoic and related perturbations in global geochemical cycles, climate and the environment, which are linked to large igneous province emplacement in the Karoo-Ferrar region (Jenkyns, 2010; Burgess et al., 2015). Furthermore, Early Jurassic continental rifting and the break-up of Pangaea and subsequent Early Jurassic opening of the Hispanic Corridor and Viking Strait respectively linked the equatorial Tethys Ocean to Eastern Panthalassa and the high-latitude Arctic Boreal realm. This initiated changes in (global) ocean currents and Earth's heat distribution and ultimately was followed by the opening of the proto-North Atlantic (Porter et al., 2013; Korte et al., in review). Here, we present high-resolution (sub-precession scale) elemental concentration data from the Mochras borehole (UK), which represents ~1300m of possibly the most complete and expanded lower Jurassic hemi-pelagic marine sedimentary archive known. We construct a floating ~9 Myr astronomical time-scale for the complete Early Jurassic Pliensbachian stage and biozones. Combined with radiometric and astrochronological constraints on early Jurassic stage boundaries, we construct a new Early Jurassic Time-Scale. With this we assess the duration and rate of change of early Jurassic global carbon cycle and climatic perturbations and we asses fundamental changes in the nature and expression of Early Jurassic long (100 - 1000 kyr) eccentricity cycles.
NASA Astrophysics Data System (ADS)
Luo, Genming; Richoz, Sylvain; van de Schootbrugge, Bas; Algeo, Thomas J.; Xie, Shucheng; Ono, Shuhei; Summons, Roger E.
2018-06-01
The cause of the Triassic-Jurassic (Tr-J) boundary biotic crisis, one of the 'Big Five' mass extinctions of the Phanerozoic, remains controversial. In this study, we analyzed multiple sulfur-isotope compositions (δ33S, δ34S and δ36S) of pyrite and Spy/TOC ratios in two Tr-J successions (Mariental, Mingolsheim) from the European Epicontinental Seaway (EES) in order to better document ocean-redox variations during the Tr-J transition. Our results show that upper Rhaetian strata are characterized by 34S-enriched pyrite, low Spy/TOC ratios, and values of Δ33Spy (i.e., the deviation from the mass-dependent array) lower than that estimated for contemporaneous seawater sulfate, suggesting an oxic-suboxic depositional environment punctuated by brief anoxic events. The overlying Hettangian strata exhibit relatively 34S-depleted pyrite, high Δ33Spy, and Spy/TOC values, and the presence of green sulfur bacterial biomarkers indicate a shift toward to euxinic conditions. The local development of intense marine anoxia thus postdated the Tr-J mass extinction, which does not provide support for the hypothesis that euxinia was the main killing agent at the Tr-J transition. Sulfur and organic carbon isotopic records that reveal a water-depth gradient (i.e., more 34S-, 13C-depleted with depth) in combination with Spy/TOC data suggest that the earliest Jurassic EES was strongly stratified, with a chemocline located at shallow depths just below storm wave base. Shallow oceanic stratification may have been a factor for widespread deposition of black shales, a large positive shift in carbonate δ13C values, and a delay in the recovery of marine ecosystems following the Tr-J boundary crisis.
NASA Astrophysics Data System (ADS)
Moratti, G.; Benvenuti, M.; Santo, A. P.; Laurenzi, M. A.; Braschi, E.; Tommasini, S.
2018-04-01
This study is based upon a stratigraphic and structural revision of a Middle Jurassic-Upper Cretaceous mostly continental succession exposed between Boumalne Dades and Tinghir (Southern Morocco), and aims at reconstructing the relation among sedimentary, tectonic and magmatic processes that affected a portion of the Central High Atlas domains. Basalts interbedded in the continental deposits have been sampled in the two studied sites for petrographic, geochemical and radiogenic isotope analyses. The results of this study provide: (1) a robust support to the local stratigraphic revision and to a regional lithostratigraphic correlation based on new 40Ar-39Ar ages (ca. 120 Ma) of the intervening basalts; (2) clues for reconstructing the relation between magma emplacement in a structural setting characterized by syn-depositional crustal shortening pre-dating the convergent tectonic inversion of the Atlasic rifted basins; (3) a new and intriguing scenario indicating that the Middle Jurassic-Lower Cretaceous basalts of the Central High Atlas could represent the first signal of the present-day Canary Islands mantle plume impinging, flattening, and delaminating the base of the Moroccan continental lithosphere since the Jurassic, and successively dragged passively by the Africa plate motion to NE. The tectono-sedimentary and magmatic events discussed in this paper are preliminarily extended from their local scale into a peculiar geodynamic setting of a continental plate margin flanked by the opening and spreading Central Atlantic and NW Tethys oceans. It is suggested that during the late Mesozoic this setting created an unprecedented condition of intraplate stress for concurrent crustal shortening, related mountain uplift, and thinning of continental lithosphere.
Hagstrum, J.T.; Murchey, B.L.
1996-01-01
Upper Jurassic red tuffaceous chert above the Coast Range ophiolite at Stanley Mountain, California (lat 35??N, long 240??E), contains three components of remanent magnetization. The first component (A; removed by ???100-???200 ??C) has a direction near the present-day field for southern California and is probably a recently acquired thermoviscous magnetization. A second component (B; removed between ???100 and ???600 ??C) is identical to that observed by previous workers in samples of underlying pillow basalt and overlying terrigenous sedimentary rocks. This component has constant normal polarity and direction throughout the entire section, although these rocks were deposited during a mixed polarity interval of the geomagnetic field. The B magnetization, therefore, is inferred to be a secondary magnetization acquired during accretion, uplift, or Miocene volcanism prior to regional clockwise rotation. The highest temperature component (C; removed between ???480 and 680 ??C) is of dual polarity and is tentatively interpreted as a primary magnetization, although it fails a reversal test possibly due to contamination by B. Separation of the B and C components is best shown by samples with negative-inclination C directions, and a corrected mean direction using only these samples indicates an initial paleolatitude of 32??N ?? 8??. Paleobiogeographic models relating radiolarian faunal distribution patterns to paleolatitude have apparently been incorrectly calibrated using the overprint B component. Few other paleomagnetic data have been incorporated in these models, and faunal distribution patterns are poorly known and mostly unqualified. The available data, therefore, do not support formation of the Coast Range ophiolite at Stanley Mountain near the paleoequator or accretion at ???10??N paleolatitude, as has been previously suggested based on paleomagnetic data, but indicate deposition near expected paleolatitudes for North America (35??N ?? 4??) during Late Jurassic time.
NASA Astrophysics Data System (ADS)
Plafker, George; Nokleberg, W. J.; Lull, J. S.
1989-04-01
The Trans-Alaskan Crustal Transect in the southern Copper River Basin and Chugach Mountains traverses the margins of the Peninsular and Wrangellia terranes, and the adjacent accretionary oceanic units of the Chugach terrane to the south. The southern Wrangellia terrane margin consists of a polymetamorphosed magmatic arc complex at least in part of Pennsylvanian age (Strelna Metamorphics and metagranodiorite) and tonalitic metaplutonic rocks of the Late Jurassic Chitina magmatic arc. The southern Peninsular terrane margin is underlain by rocks of the Late Triassic (?) and Early Jurassic Talkeetna magmatic arc (Talkeetna Formation and Border Ranges ultra-mafic-mafic assemblage) on Permian or older basement rocks. The Peninsular and Wrangellia terranes are parts of a dominantly oceanic superterrane (composite Terrane II) that was amalgamated by Late Triassic time and was accreted to terranes of continental affinity north of the Denali fault system in the mid- to Late Cretaceous. The Chugach terrane in the transect area consists of three successively accreted units: (1) minor greenschist and intercalated blueschist, the schist of Liberty Creek, of unknown protolith age that was metamorphosed and probably accreted during the Early Jurassic, (2) the McHugh Complex (Late Triassic to mid-Cretaceous protolith age), a melange of mixed oceanic, volcaniclastic, and olistostromal rocks that is metamorphosed to prehnite-pumpellyite and lower greenschist facies that was accreted by middle Cretaceous time, and (3) the Upper Cretaceous Valdez Group, mainly magmatic arc-derived flysch and lesser oceanic volcanic rocks of greenschist facies that was accreted by early Paleocene time. A regional thermal event that culminated in early middle Eocene time (48-52 Ma) resulted in widespread greenschist facies metamorphism and plutonism.
Yang, Qingchun; Wang, Luchen; Ma, Hongyun; Yu, Kun; Martín, Jordi Delgado
2016-09-01
Ordos Basin is located in an arid and semi-arid region of northwestern China, which is the most important energy source bases in China. Salawusu Formation (Q3 s) is one of the most important aquifer systems of Ordos Basin, which is adjacent to Jurassic coalfield areas. A large-scale exploitation of Jurassic coal resources over ten years results in series of influences to the coal minerals, such as exposed to the oxidation process and dissolution into the groundwater due to the precipitation infiltration. Therefore, how these processes impact groundwater quality is of great concerns. In this paper, the descriptive statistical method, Piper trilinear diagram, ratios of major ions and canonical correspondence analysis are employed to investigate the hydrochemical evolution, determine the possible sources of pollution processes, and assess the controls on groundwater compositions using the monitored data in 2004 and 2014 (before and after large-scale coal mining). Results showed that long-term exploration of coal resources do not result in serious groundwater pollution. The hydrochemical types changed from HCO3(-)-CO3(2-) facies to SO4(2-)-Cl facies during 10 years. Groundwater hardness, nitrate and sulfate pollution were identified in 2014, which was most likely caused by agricultural activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nelson, D. A.; Cottle, J. M.
2017-12-01
Combined zircon geochemistry and geochronology of Mesozoic volcaniclastic sediments of the central Transantarctic Mountains, Antarctica, yield a comprehensive record of both the timing and geochemical evolution of the magmatic arc along the Antarctic sector of the paleo-Pacific margin of Gondwana. Zircon age populations at 266-183 Ma, 367-328 Ma, and 550-490 Ma correspond to episodic arc activity from the Ediacaran to the Jurassic. Zircon trace element geochemistry indicates a temporal shift from granitoid-dominated source(s) during Ediacaran to Early Ordovician times to mafic sources in the Devonian through Early Jurassic. Zircon initial
NASA Astrophysics Data System (ADS)
Zhou, Zuo-Min; Ma, Chang-Qian; Wang, Lian-Xun; Chen, Shu-Guang; Xie, Cai-Fu; Li, Yong; Liu, Wei
2018-02-01
Source-depleted granites were rarely reported in South China. Hereby we identified such a granitic pluton, the Tiandong pluton, at Northeastern Guangdong province in Southeastern (SE) China. Whole-rock Sr-Nd and zircon Hf isotopes of the Tiandong granites both revealed obviously depleted source signatures, with initial isotopic values of initial 87Sr/86Sr = 0.7032-0.7040, εNd(t) = 1.1-1.5, and εHf(t) = 6-13, respectively. Zircon U-Pb dating implied the granite was intruded in Early Jurassic (188 Ma). The dominant minerals of the Tiandong granite consist of K-feldspar, plagioclase, quartz and biotite, with accessory mineral assemblage of apatite + zircon + magnetite. Based on the mineralogy and the depleted isotopic signature, the granites chemically show I-type affinity such as low Zr + Nb + Ce + Y (131.6 to 212.2), 104 × Ga/Al (2.12-2.27), A/CNK values < 1.1 (0.97-1.03), corundum molecule < 1 (0-0.55) and extremely low P2O5 contents (0.05 wt%). The one-stage and two-stage depleted mantle Nd model ages (TDM = 0.89 to 0.84 Ga, T2DM = 0.88 to 0.85 Ga) are consistent. TDM(Hf) values of 0.31-0.63 Ga are also indistinguishable from T2DM(Hf) values of 0.35-0.75 Ga. The Nd and Hf isotopic compositions confirm that the Tiandong granites are juvenile crustal accretion but decoupled Nd-Hf isotopic systems. The juvenile crust is likely to originate from a mixed source of the primary asthenospheric mantle and the subordinate EMII. Combined with early studies of adjacent rocks, we propose that the early Jurassic ( 200-175 Ma) magmatism as evidenced by the Tiandong granites might be driven by upwelling of asthenosphere and subsequent underplating of mafic melts in an intra-plate extensional setting as a response to far-field stress during early stage subduction of the paleo-pacific plate.
Dunagan, S.P.; Turner, C.E.
2004-01-01
During deposition of the Upper Jurassic Morrison Formation, water that originated as precipitation in uplands to the west of the Western Interior depositional basin infiltrated regional aquifers that underlay the basin. This regional groundwater system delivered water into the otherwise dry continental interior basin where it discharged to form two major wetland/lacustrine successions. A freshwater carbonate wetland/lacustrine succession formed in the distal reaches of the basin, where regional groundwater discharged into the Denver-Julesburg Basin, which was a smaller structural basin within the more extensive Western Interior depositional basin. An alkaline-saline wetland/lacustrine complex (Lake T'oo'dichi') formed farther upstream, where shallower aquifers discharged into the San Juan/Paradox Basin, which was another small structural basin in the Western Interior depositional basin. These were both wetlands in the sense that groundwater was the major source of water. Input from surface and meteoric water was limited. In both basins, lacustrine conditions developed during episodes of increased input of surface water. Inclusion of wetlands in our interpretation of what had previously been considered largely lacustrine systems has important implications for paleohydrology and paleoclimatology. The distal carbonate wetland/lacustrine deposits are well developed in the Morrison Formation of east-central Colorado, occupying a stratigraphic interval that is equivalent to the "lower" Morrison but extends into the "upper" Morrison Formation. Sedimentologic, paleontologic, and isotopic evidence indicate that regional groundwater discharge maintained shallow, hydrologically open, well oxygenated, perennial carbonate wetlands and lakes despite the semi-arid climate. Wetland deposits include charophyte-rich wackestone and green mudstone. Lacustrine episodes, in which surface water input was significant, were times of carbonate and siliciclastic deposition in scarce deltaic and shoreline deposits. Marginal lacustrine deposits include ooid and skeletal packstone-grainstone, siltstone, and sandstone. Distal lacustrine units are skeletal mudstone-wackestone, microbialites, and laminated (siliciclastic) mudstone. Differentiation between wetlands and distal lacustrine units is not always possible. Palustrine features, Magadi-type chert (MTC), and evaporites record episodes of increased aridity and exposure. Farther upstream, during deposition of the upper part of the Brushy Basin Member, the ancestral Uncompahgre Uplift imposed a barrier to shallow, eastward-flowing groundwater that discharged into the San Juan/Paradox Basin on the upstream side of the uplift. This created the closed hydrologic setting necessary for development of an alkaline-saline wetland/lacustrine complex ("Lake" T'oo'dichi'). Silicic volcanic ash, delivered by prevailing winds from calderas west and southwest of the basin, contributed to the pore-water evolution in the sediments. A distinctive lateral hydrogeochemical gradient, reflecting increasing salinity and alkalinity in the pore waters, altered the ash to a variety of authigenic minerals that define concentric zones within the basin. The basinward progression of diagenetic mineral zones is smectite???clinoptilolite???analcime ??potassium feldspar???albite. The groundwater-fed wetlands were shallow and frequently evaporated to dryness. Scarce laminated gray mudstone beds record distinct episodes of freshwater lacustrine deposition that resulted from intermittent streams that carried detritus well out into the basin. ?? 2004 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schöllhorn, Iris; Foellmi, Karl; adatte, Thierry
2016-04-01
The Early Jurassic interval witnessed different phases of paleoenvironmental change, starting with the end-Triassic mass extinction event, c. 201.4 Ma ago, which was marked by terrestrial ecosystem turnover, up to 50% loss in marine biodiversity and large turnovers in global geochemical cycles linked to the onset of Central Atlantic Magmatic Province volcanism (Raup et Sepkosky, 1982 ; Hesselbo et al., 2002 ; Deenen et al., 2010). This time interval saw equally a phase of major climate change near the Pliensbachian-Toarcian boundary, which was followed by the Early Toarcian oceanic anoxic episode (e.g., Suan et al., 2010). Previous studies mainly focused on these major and short-lived events, while the remaining intervals of the Early Jurassic received significantly less attention. Therefore, in this study, we examine the sedimentological, geochemical and environmental changes between these events on the northern Tethyan margin (Swiss Jura). With this purpose, a wide array of geochemical analyses (carbon isotope, Rock-Eval, phosphorus content, mineralogy, trace and major element content and clay analyses) and sedimentary observations has been performed on four sections and cores (Frick, Riniken, Pfaffnau and Kreuzlingen). We observed two depositional systems: (1) the Schambelen Member (lower Hettangian) and the Frick Mb. (middle Upper Sinemurian), which are characterised by organic-rich shales intercalated by tempestites; and (2) the Beggingen Member (Upper Hettangian to Lower Sinemurian) and the Grünscholz, Breitenmatt and Rietheim Members (upper Upper Sinemurian to Pliensbachian), which are composed of carbonates marked by the presence of hiati, condensed beds, phosphate- and fossil-rich strata, and erosional features, which testify to a dynamic environment characterised by overall low sediment-accumulation rates. The clay fraction, composed mainly of kaolinite, chlorite and illite, was controlled by various parameters. The rise of kaolinite in the Late Sinemurian was probably caused by a shallowing-up also shown by a decrease in phyllosilicates and an increase in the quartz content in the whole rock. The related sea-level change is probably linked to tectonically induced regional tilting. The lowest kaolinite contents are observed in the condensed sections where important remobilisation took place. The isotope and rock-eval analyses reveal also important environmental changes: (a) Two negative carbon isotope excursions measured on organic matter (CIEorg -2‰) are observed during the Early Hettangian accompanied by a change in organic matter composition, higher productivity (high hydrogen indices), anoxia (high trace element, pyrite and organic matter contents and presence of pyrite framboids; cf. also Schwab and Spangenberg, 2006) and higher weathering rates (CIA and clay mineralogy). (b) The Early Sinemurian is characterised by a +4‰ CIEorg in this sections. Nevertheless, the globality and causes of this CIE remain to be determined. (c) The Sinemurian-Pliensbachian boundary record a negative CIEorg (-3‰), followed by a positive CIE (+2‰) during the Early-Late Pliensbachian and a negative CIEorg (-1.5‰) during the Late Pliensbachian. These CIEs are also recorded in several other localities in carbonates, belemnites, wood and organic matter, and result likely from global events. These CIEs are linked to OM preservation and/or productivity changes and/or 13C-depleted carbon input(s).
NASA Astrophysics Data System (ADS)
Marchionda, Elisabetta; Deschamps, Rémy; Nader, Fadi H.; Ceriani, Andrea; Di Giulio, Andrea; Lawrence, David; Morad, Daniel J.
2017-04-01
The stratigraphic record of a carbonate system is the result of the interplay of several local and global factors that control the physical and the biological responses within a basin. Conceptual models cannot be detailed enough to take into account all the processes that control the deposition of sediments. The evaluation of the key controlling parameters on the sedimentation can be investigated with the use of stratigraphic forward models, that permit dynamic and quantitative simulations of the sedimentary basin infill. This work focuses on an onshore Abu Dhabi field (UAE) and it aims to provide a complete picture of the stratigraphic evolution of Upper Jurassic Arab Formation (Fm.). In this study, we started with the definition of the field-scale conceptual depositional model of the Formation, resulting from facies and well log analysis based on five wells. The Arab Fm. could be defined as a shallow marine carbonate ramp, that ranges from outer ramp deposits to supratidal/evaporitic facies association (from bottom to top). With the reconstruction of the sequence stratigraphic pattern and several paleofacies maps, it was possible to suggest multiple directions of progradations at local scale. Then, a 3D forward modelling tool has been used to i) identify and quantify the controlling parameters on geometries and facies distribution of the Arab Fm.; ii) predict the stratigraphic architecture of the Arab Fm.; and iii) integrate and validate the conceptual model. Numerous constraints were set during the different simulations and sensitivity analyses were performed testing the carbonate production, eustatic oscillations and transport parameters. To verify the geological consistency the 3D forward modelling has been calibrated with the available control points (five wells) in terms of thickness and facies distribution.
NASA Astrophysics Data System (ADS)
Seyfang, Björn; Aigner, Thomas; Munsterman, Dirk K.; Irmen, Anton
2017-04-01
Mature hydrocarbon provinces require a high level of geological understanding in order to extend the lives of producing fields, to replace reserves through smaller targets and to reduce the risks of exploring for more and more subtle hydrocarbon traps. Despite a large number of existing wells in the area studied in this paper, the depositional environments and the stratigraphic architecture were still poorly known. In order to improve the geological understanding, we propose a workflow to assess the remaining reservoir potential of mature hydrocarbon areas, integrating cores, cuttings, well-logs, biostratigraphy and seismic data. This workflow was developed for and is exemplified with the northwest of the Lower Saxony Basin (LSB), a mature hydrocarbon province in northwest Germany, but can be applied in a similar fashion to other areas. Systematic integration of lithofacies analysis, chrono- and sequence stratigraphy, combined with electrofacies analysis and modern digital methods like neural network-based lithology determination and 3D facies modelling provides a high-resolution understanding of the spatial facies and reservoir architecture in the study area. Despite widely correlatable litho-units in the Upper Jurassic and Lower Cretaceous in the LSB, complex heterogeneous sedimentary systems can be found in the basin's marginal parts. Two new play types were determined in the study area, showing a remaining potential for stratigraphic hydrocarbon traps. The results of this exploration scale study also provide the basis for re-evaluations on a field development scale. On a basin scale, this study may encourage further data acquisition and re-evaluations to discover previously unknown reservoirs.
The cosmic native iron in Upper Jurassic to Miocene deep-sea deposits of the western North Atlantic
NASA Astrophysics Data System (ADS)
Murdmaa, Ivar; Pechersky, Diamar; Nurgaliev, Danis; Gilmanova, Di; Sloistov, Sergey
2014-05-01
Thermomagnetic analysis of 335 rock samples from DSDP sites 386, 387 (Leg 43) and 391 A, C (Leg 44) drilled in the western North Atlantic revealed distribution patterns of native Fe particles in Upper Jurassic to Miocene deep-sea deposits. Native iron occurs in deep-sea rocks as individual particles from tens of nm to 100 µm in size. The native Fe is identified throughout the sections recovered. Its concentration ranges from nx10-6% to 5x10-3%, but zero values persist to occur in each lithostratigraphic unit studied. The bimodal distribution of the native iron concentration with a zero mode is typical for the cosmic dust in sedimentary rocks, because of its slow flux to the Earth surface, as compared to sedimentation fluxes. Ni admixture in native Fe also demonstrates bimodal distribution with the zero mode (pure Fe) and a mode 5 - 6% that corresponds to average Ni content in the cosmic dust and meteorites. Concentration of native Fe does not depend on rock types and geological age. Relatively high mean native Fe concentrations (less zero values) occur in Lower Cretaceous laminated limestones (sites 387, 391) interpreted as contourites and in Oligocene volcaniclastic turbidites of the Bermuda Rise foot (Site 386), whereas minimum values are measured in Miocene mass flow deposits (Site 391). We suggest that concentration of native Fe increases in deposits of pulsating sedimentation (turbidites, laminated contourites) due to numerous short hiatuses and slow sedimentation events in between instantaneous turbidite or contourite deposition pulses. Extreme values possibly indicate cosmic dust flux anomalies. The study was partially supported by RFBR, research project No. 14-05-00744a.
Iriondo, Alexander; Martínez-Torres, Luis M.; Kunk, Michael J.; Atkinson, William W.; Premo, Wayne R.; McIntosh, William C.
2005-01-01
Restoration of 12%–30% Basin and Range extension allows direct interpretation of ductile fabrics associated with a stack of Laramide thrust faults in the Quitovac region in northwestern Sonora. The inferred direction of displacement of these thrusts varies gradually from N63°W to N23°E and is interpreted to represent a clockwise rotation of the direction of Laramide thrusting through time. The thrust faults represent a piggy-back sequence of thrusting propagating north, toward the foreland. The average direction and sense of displacement of the thrusts is N18°W, and the cumulative 45 km of estimated northward-directed displacement corresponds to ∼86% of shortening.Based on geochronological constraints, onset of thrusting in Quitovac occurred sometime between 75 and 61 Ma, whereas cessation occurred at ca. 39 Ma. The presence of Paleocene-Eocene orogenic gold mineralization, spatially associated with thrusting, strengthens our idea that compressional tectonism associated with the Laramide orogeny is a very important and widespread dynamometamorphic event in the region.Similarities in age, kinematics, and structural stratigraphy indicate that the thrusting in the Quitovac region may be equivalent to the Laramide Quitobaquito Thrust in southwestern Arizona. In both areas, thrust faults juxtapose the Paleoproterozoic Caborca and “North America” basement blocks. This juxtaposition was previously proposed as exclusively related to movements along the hypothetical Upper Jurassic Mojave-Sonora megashear. The Laramide northward displacements and clockwise rotations recorded in the Caborca block rocks in Quitovac contradict the southward displacements (∼800 km) and counterclockwise rotations inherent in the left-lateral Upper Jurassic Mojave-Sonora megashear hypothesis. We conclude that if this megashear exists in northwestern Sonora, its trace should be to the southwest of the Quitovac region.
NASA Astrophysics Data System (ADS)
Beigi, Maryam; Jafarian, Arman; Javanbakht, Mohammad; Wanas, H. A.; Mattern, Frank; Tabatabaei, Amin
2017-05-01
This study aims to determine the depositional facies, diagenetic processes and sequence stratigraphic elements of the subsurface carbonate-evaporite succession of the Upper Jurassic (Kimmeridgian-Tithonian) Surmeh Formation of the Salman Oil Field (the Persian Gulf, Iran), in an attempt to explore their impacts on reservoir quality. The Surmeh Formation consists mainly of carbonate rocks, intercalated with evaporite layers. Petrographically, the Surmeh Formation consists of nine microfacies (MF1-MF9). These microfacies are grouped into three facies associations related to three depositional environments (peritidal flat, lagoon and high-energy shoal) sited on the inner part of a homoclinal carbonate ramp. The recorded diagenetic processes include dolomitization, anhydritization, compaction, micritization, neomorphism, dissolution and cementation. Vertical stacking patterns of the studied facies reveal the presence of three third-order depositional sequences, each of which consists of transgressive systems tract (TST) and highstand systems tract (HST). The TSTs comprise intertidal and lagoon facies whereas the HSTs include supratidal and shoal facies. In terms of their impacts on reservoir quality, the shoal facies represent the best reservoir quality, whereas the peritidal and lagoonal facies exhibit moderate to lowest reservoir quality. Also, poikilotopic anhydrite cement played the most significant role in declining the reservoir quality, whereas the widespread dissolution of labile grains and formation of moldic and vuggy pores contributed in enhancing the reservoir quality. In addition, the HSTs have a better reservoir quality than the TSTs. This study represents an approach to use the depositional facies, diagenetic alterations and sequence stratigraphic framework of carbonate -evaporite succession for a more successful reservoir characterization.
NASA Astrophysics Data System (ADS)
Homuth, S.; Götz, A. E.; Sass, I.
2015-06-01
The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir properties based on outcrop and drilling data demonstrates that this approach is a powerful tool for exploration and operation of geothermal reservoirs.
Clift, P.D.; Draut, A.E.; Kelemen, P.B.; Blusztajn, J.; Greene, A.
2005-01-01
The Early Jurassic Talkeetna Volcanic Formation forms the upper stratigraphic level of an oceanic volcanic arc complex within the Peninsular Terrane of south-central Alaska. The section comprises a series of lavas, tuffs, and volcaniclastic debris-How and flow turbidite deposits, showing significant lateral facies variability. There is a general trend toward more volcaniclastic sediment at the top of the section and more lavas and tuff breccias toward the base. Evidence for dominant submarine, mostly mid-bathyal or deeper (>500 m) emplacement is seen throughout the section, which totals ???7 km in thickness, similar to modern western Pacific arcs, and far more than any other known exposed section. Subaerial sedimentation was rare but occurred over short intervals in the middle of the section. The Talkeetna Volcanic Formation is dominantly calc-alkatine and shows no clear trend to increasing SiO2 up-section. An oceanic subduction petrogenesis is shown by trace element and Nd isotope data. Rocks at the base of the section show no relative enrichment of light rare earth elements (LREEs) versus heavy rare earth elements (REES) or in melt-incompatible versus compatible high field strength elements (HFSEs). Relative enrichment of LREEs and HFSEs increases slightly up-section. The Talkeetna Volcanic Formation is typically more REE depleted than average continental crust, although small volumes of light REE-enriched and heavy REE-depleted mafic lavas are recognized low in the stratigraphy. The Talkeetna Volcanic Formation was formed in an intraoceanic arc above a north-dipping subduction zone and contains no preserved record of its subsequent collisions with Wrangellia or North America. ?? 2005 Geological Society of America.
NASA Astrophysics Data System (ADS)
Decarlis, Alessandro; Fellin, Maria Giuditta; Maino, Matteo; Ferrando, Simona; Manatschal, Gianreto; Gaggero, Laura; Seno, Silvio; Stuart, Finlay M.; Beltrando, Marco
2017-12-01
The thermal evolution of distal domains along rifted margins is at present poorly constrained. In this study, we show that a thermal pulse, most likely triggered by lithospheric thinning and asthenospheric rise, is recorded at upper crustal levels and may also influence the diagenetic processes in the overlying sediments, thus representing a critical aspect for the evaluation of hydrocarbon systems. The thermal history of a distal sector of the Alpine Tethys rifted margin preserved in the Ligurian Alps (Case Tuberto-Calizzano unit) is investigated with thermochronological methods and petrologic observations. The studied unit is composed of a polymetamorphic basement and a sedimentary cover, providing a complete section through the prerift, synrift, and postrift system. Zircon fission track analyses on basement rocks samples suggest that temperatures exceeding 240 ± 25°C were reached before 150-160 Ma (Upper Jurassic) at few kilometer depth. Neoformation of green biotite, stable at temperatures of 350 to 450°C, was synkinematic with this event. The tectonic setting of the studied unit suggests that the heating-cooling cycle took place during the formation of the distal rifted margin and terminated during Late Jurassic (150-160 Ma). Major crustal and lithospheric thinning likely promoted high geothermal gradients ( 60-90°C/km) and triggered the circulation of hot, deep-seated fluids along brittle faults, causing the observed thermal anomaly. Our results suggest that rifting can generate thermal perturbations at relatively high temperatures (between 240 and 450°C) at less than 3 km depth in the distal domains during major crustal thinning preceding breakup and onset of seafloor spreading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocozza, T.; Gandin, A.
Lower Cambrian Ceroide Limestone (Sardinia) and Lower Jurassic Massiccio Limestone (Tuscany) belong to sequences deposited in analogous tectono-sedimentary context: the former linked to the Caledonian Sardic Phase, the latter to the Alpine Orogeny. Both units consist of massive pure limestone characterized by marginal and lagoonal sequences repeatedly interfingering in the same geological structure. This distribution indicates a morphology of the platforms composed of banks (marginal facies) and shallow basins (lagoonal facies) comparable with a Bahamian complex. Dolomitization affects patchily the massive limestone bodies, and karstic features, breccias, and sedimentary dikes occur at their upper boundary. Both units overlie early dolomitemore » and evaporites (sabkha facies) containing siliciclastic intercalations in their lower and/or upper part and are unconformably covered by open-shelf red (hematitic), nodular limestone Ammonitico Rosso facies). The sedimentary evolution of the two sequences appears to have been controlled by synsedimentary tectonics whose major effects are the end of the terrigenous input, the bank-and-basin morphology of the platform, the irregular distribution of the dolomitization, and the nodular fabric of the overlying facies. The end of the Bahamian-type system is marked by the karstification of the emerged blocks and is followed by their differential sinking and burial under red-nodular facies. From a geodynamic viewpoint, sequences composed of Bahamian-like platform carbonates followed by Ammonitico Rosso facies imply deposition along continental margins subjected to block-faulting during an extensional regime connected with the beginning of continental rifting. Moreover, the variation from sabkha to Bahamian conditions suggests the drifting of the continent from arid to humid, tropical areas.« less
Buried Mesozoic rift basins of Moroccan Atlantic continental margin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, N.; Jabour, H.; El Mostaine, M.
1995-08-01
The Atlantic continental margin is the largest frontier area for oil and gas exploration in Morocco. Most of the activity has been concentrated where Upper Jurassic carbonate rocks have been the drilling objectives, with only one significant but non commercial oil discovery. Recent exploration activities have focused on early Mesozoic Rift basins buried beneath the post-rift sediments of the Middle Atlantic coastal plain. Many of these basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness to be classified as efficient oil prone source rock. Location of inferred rift basins beneath the Atlantic coastal plainmore » were determined by analysis of drilled-hole data in combination with gravity anomaly and aeromagnetic maps. These rift basins are characterized by several half graben filled by synrift sediments of Triassic age probably deposited in lacustrine environment. Coeval rift basins are known to be present in the U.S. Atlantic continental margin. Basin modeling suggested that many of the less deeply bored rift basins beneath the coastal plain are still within the oil window and present the most attractive exploration targets in the area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, J.D.L.; Vallier, T.; Stanley, G.D. Jr.
1992-08-01
Middle Jurassic strata atop the Wallowa terrane in northeastern Oregon link the Wallowa, Izee, and Olds Ferry terranes as related elements of a single long-lived and complex oceanic feature, the Blue Mountains island arc. Middle Jurassic strata in the Wallowa terrane include a dacitic ash-flow deposit and contain fossil corals and bivalves of North American affinity. Plant fossils in fluvial sandstones support a Jurassic age and indicate a seasonal temperate climate. Corals in a transgressive sequence traditionally overlying the fluvial units are of Bajocian age and are closely related to endemic varieties of the Western Interior embayment. They are unlikemore » Middle Jurassic corals in other Cordilleran terranes; their presence suggests that the Blue Mountains island arc first approached the North American craton at high paleolatitudes in Middle Jurassic time. The authors consider the Bajocian marine strata and underlying fluvial volcaniclastic units to be a basin-margin equivalent of the Izee terrane, a largely Middle Jurassic (Bajocian) succession of basinal volcaniclastic and volcanic rocks known to overlie the Olds Ferry and Baker terranes.« less
Wartes, Marwan A.; Decker, Paul L.; Stanley, Richard G.; Herriott, Trystan M.; Helmold, Kenneth P.; Gillis, Robert J.
2013-01-01
The Alaska Division of Geological and Geophysical Surveys has an ongoing program aimed at evaluating the Mesozoic forearc stratigraphy, structure, and petroleum systems of lower Cook Inlet. Most of our field studies have focused on the Jurassic component of the petroleum system (this report). However, in late July and early August of 2012, we initiated a study of the stratigraphy and reservoir potential of the Upper Cretaceous Kaguyak Formation. The Kaguyak Formation is locally well exposed on the upper Alaska Peninsula (fig. 25) and was named by Keller and Reiser (1959) for a sequence of interbedded siltstone and sandstone of upper Campanian to Maastrichtian age that they estimated to be 1,450 m thick.Subsequent work by Detterman and Miller (1985) examined 900 m of section and interpreted the unit as the record of a prograding submarine fan.This interpretation of deep-water deposition contrasts with other Upper Cretaceous rocks exposed along the Alaska Peninsula and lower Cook Inlet that are generally described as nonmarine to shallow marine (Detterman and others, 1996; LePain and others, 2012).Based on foraminifera and palynomorphs from the COST No. 1 well, Magoon (1986) concluded that the Upper Cretaceous rocks were deposited in a variety of water depths and environments ranging from upper bathyal to nonmarine. During our recent fieldwork west and south of Fourpeaked Mountain, we similarly encountered markedly varying lithofacies in the Kaguyak Formation (fig. 25), and we also found oil-stained rocks that are consistent with the existence of an active petroleum system in Upper Cretaceous rocks on the upper Alaska Peninsula and in lower Cook Inlet. These field observations are summarized below.
NASA Astrophysics Data System (ADS)
Erdenetsogt, B. O.; Hong, S. K.; Choi, J.; Odgerel, N.; Lee, I.; Ichinnorov, N.; Tsolmon, G.; Munkhnasan, B.
2017-12-01
Tsagaan-Ovoo syncline hosting Lower-Middle Jurassic oil shale is a part of Saikhan-Ovoo the largest Jurassic sedimentary basin in Central Mongolia. It is generally accepted that early Mesozoic basins are foreland basins. In total, 18 oil shale samples were collected from an open-pit mine. The contents of organic carbon, and total nitrogen and their isotopic compositions as well as major element concentrations were analyzed. The average TOC content is 12.4±1.2 %, indicating excellent source rock potential. C/N ratios show an average of 30.0±1.2, suggesting terrestrial OM. The average value of δ15N is +3.9±0.2‰, while that of δ13Corg is -25.7±0.1‰. The isotopic compositions argue for OM derived dominantly from land plant. Moreover, changes in δ15N values of analyzed samples reflect variations in algal OM concentration of oil shale. The lowest δ15N value (+2.5‰) was obtained from base section, representing the highest amount of terrestrial OM, whereas higher δ15N values (up to +5.2‰) are recorded at top section, reflecting increased amount of algal OM. On the other hand, changes in δ15N value may also represent changes in redox state of water column in paleolake. The oil shale at bottom of section with low δ15N value was accumulated under oxic condition, when the delivery of land plant OM was high. With increase in subsidence rate through time, lake was deepened and water column was depleted in oxygen probably due to extensive phytoplankton growth, which results increase in algae derived OM contents as well as bulk δ15N of oil shale. The average value of CAI for Tsagan-Ovoo oil shale is 81.6±1.3, reflecting intensive weathering in the source area. The plotted data on A-CN-K diagram displays that oil shale was sourced mainly from Early Permian granodiorite and diorite, which are widely distributed around Tsagaan-Ovoo syncline. To infer tectonic setting, two multi-dimensional discrimination diagrams were used. The results suggest that the tectonic setting of Tsagaan-Ovoo syncline, in which the studied oil shale was deposited, was continental rift. This finding contradicts with generally accepted contractile deformation during early Mesozoic in Mongolia and China. Further detailed study is required to decipher the tectonic settings of central Mongolian Jurassic basins.
Anquetin, Jérémy; Barrett, Paul M; Jones, Marc E H; Moore-Fay, Scott; Evans, Susan E
2009-03-07
The discovery of a new stem turtle from the Middle Jurassic (Bathonian) deposits of the Isle of Skye, Scotland, sheds new light on the early evolutionary history of Testudinata. Eileanchelys waldmani gen. et sp. nov. is known from cranial and postcranial material of several individuals and represents the most complete Middle Jurassic turtle described to date, bridging the morphological gap between basal turtles from the Late Triassic-Early Jurassic and crown-group turtles that diversify during the Late Jurassic. A phylogenetic analysis places the new taxon within the stem group of Testudines (crown-group turtles) and suggests a sister-group relationship between E. waldmani and Heckerochelys romani from the Middle Jurassic of Russia. Moreover, E. waldmani also demonstrates that stem turtles were ecologically diverse, as it may represent the earliest known aquatic turtle.
Anquetin, Jérémy; Barrett, Paul M.; Jones, Marc E.H.; Moore-Fay, Scott; Evans, Susan E.
2008-01-01
The discovery of a new stem turtle from the Middle Jurassic (Bathonian) deposits of the Isle of Skye, Scotland, sheds new light on the early evolutionary history of Testudinata. Eileanchelys waldmani gen. et sp. nov. is known from cranial and postcranial material of several individuals and represents the most complete Middle Jurassic turtle described to date, bridging the morphological gap between basal turtles from the Late Triassic–Early Jurassic and crown-group turtles that diversify during the Late Jurassic. A phylogenetic analysis places the new taxon within the stem group of Testudines (crown-group turtles) and suggests a sister-group relationship between E. waldmani and Heckerochelys romani from the Middle Jurassic of Russia. Moreover, E. waldmani also demonstrates that stem turtles were ecologically diverse, as it may represent the earliest known aquatic turtle. PMID:19019789
Tectonic framework of Turkish sedimentary basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yilmaz, P.O.
1988-08-01
Turkey's exploration potential primarily exists in seven onshore (Southeast Turkey platform, Tauride platform, Pontide platform, East Anatolian platform, Interior, Trace, and Adana) basins and four offshore (Black Sea, Marmara Sea, Aegean Sea, and Mediterranean Sea) regional basins formed during the Mesozoic and Tertiary. The Mesozoic basins are the onshore basins: Southeast Turkey, Tauride, Pontide, East Anatolian, and Interior basins. Due to their common tectonic heritage, the southeast Turkey and Tauride basins have similar source rocks, structural growth, trap size, and structural styles. In the north, another Mesozoic basin, the Pontide platform, has a much more complex history and very littlemore » in common with the southerly basins. The Pontide has two distinct parts; the west has Paleozoic continental basement and the east is underlain by island-arc basement of Jurassic age. The plays are in the upper Mesozoic rocks in the west Pontide. The remaining Mesozoic basins of the onshore Interior and East Anatolian basins are poorly known and very complex. Their source, reservoir, and seal are not clearly defined. The basins formed during several orogenic phases in mesozoic and Tertiary. The Cenozoic basins are the onshore Thrace and Adana basins, and all offshore regional basins formed during Miocene extension. Further complicating the onshore basins evolution is the superposition of Cenozoic basins and Mesozoic basins. The Thrace basin in the northwest and Adana basin in the south both originate from Tertiary extension over Tethyan basement and result in a similar source, reservoir, and seal. Local strike-slip movement along the North Anatolian fault modifies the Thrace basin structures, influencing its hydrocarbon potential.« less
Helmold, K.P.; LePain, D.L.; Stanley, Richard G.
2016-01-01
The Division of Geological & Geophysical Surveys and Division of Oil & Gas are currently conducting a study of the hydrocarbon potential of Cook Inlet forearc basin (Gillis, 2013, 2014; LePain and others, 2013; Wartes, 2015; Herriott, 2016 [this volume]). The Middle Jurassic Tuxedni Group is recognized as a major source of oil in Tertiary reservoirs (Magoon, 1994), although the potential for Tuxedni reservoirs remains largely unknown. As part of this program, five days of the 2015 field season were spent examining outcrops, largely sandstones, of the Middle Jurassic Red Glacier Formation (Tuxedni Group) approximately 6.4 km northeast of Johnson Glacier on the western side of Cook Inlet (fig. 4-1). Three stratigraphic sections (fig. 4-2) totaling approximately 307 m in thickness were measured and described in detail (LePain and others, 2016 [this volume]). Samples were collected for a variety of analyses including palynology, Rock-Eval pyrolysis, vitrinite reflectance, detrital zircon geochronology, and petrology. This report summarizes our initial impressions of the petrology and reservoir quality of sandstones encountered in these measured sections. Interpretations are based largely on hand-lens observations of hand specimens and are augmented by stereomicroscope observations. Detailed petrographic (point-count) analyses and measurement of petrophysical properties (porosity, permeability, and grain density) are currently in progress.
Escapa, Ignacio; Leslie, Andrew
2017-02-01
Plants preserved in different fossil modes provide complementary data concerning the paleobiology and evolutionary relationships among plant groups. New material from the Early Jurassic of Patagonia shows the importance of combining these sources of information, as we describe the first compression/impression fossils of Pararaucaria , a genus of the extinct conifer family Cheirolepidiaceae previously known from permineralized fossils. These fossils extend the temporal range of this genus and may allow its wider recognition in the fossil record. We studied fossil plants from the Early Jurassic (Pleinsbachian-Toarcian) locality of Taquetrén in Patagonia, Argentina using standard paleobotanical preparation and description techniques. Pararaucaria taquetrensis consists of isolated ovuliferous scales and small seed cones with helically arranged bract-scale complexes attached to scale-leaf foliage. Bract-scale complexes consist of separated bracts and ovuliferous scales with two seeds and three broad distal lobes. Pararaucaria taquetrensis represents the oldest known Cheirolepidiaceae seed cones from the Southern Hemisphere, and this material highlights the importance of compression and impression fossils in understanding the distribution of fossil taxa. This material also suggests that Cheirolepidiaceae cone scales can be easily confused with those of another common conifer family, the Araucariaceae, which has important implications for accurately understanding Mesozoic conifer diversity and paleoecology. © 2017 Botanical Society of America.
Geology and tectonic development of the continental margin north of Alaska
Grantz, A.; Eittreim, S.; Dinter, D.A.
1979-01-01
The continental margin north of Alaska, as interpreted from seismic reflection profiles, is of the Atlantic type and consists of three sectors of contrasting structure and stratigraphy. The Chukchi sector, on the west, is characterized by the deep late Mesozoic and Tertiary North Chukchi basin and the Chukchi Continental Borderland. The Barrow sector of central northern Alaska is characterized by the Barrow arch and a moderately thick continental terrace build of Albian to Tertiary clastic sediment. The terrace sedimentary prism is underlain by lower Paleozoic metasedimentary rocks. The Barter Island sector of northeastern Alaska and Yukon Territory is inferred to contain a very thick prism of Jurassic, Cretaceous and Tertiary marine and nonmarine clastic sediment. Its structure is dominated by a local deep Tertiary depocenter and two regional structural arches. We postulate that the distinguishing characteristics of the three sectors are inherited from the configuration of the rift that separated arctic Alaska from the Canadian Arctic Archipelago relative to old pre-rift highlands, which were clastic sediment sources. Where the rift lay relatively close to northern Alaska, in the Chukchi and Barter Island sectors, and locally separated Alaska from the old source terranes, thick late Mesozoic and Tertiary sedimentary prisms extend farther south beneath the continental shelf than in the intervening Barrow sector. The boundary between the Chukchi and Barrow sectors is relatively well defined by geophysical data, but the boundary between the Barrow and Barter Island sectors can only be inferred from the distribution and thickness of Jurassic and Cretaceous sedimentary rocks. These boundaries may be extensions of oceanic fracture zones related to the rifting that is postulated to have opened the Canada Basin, probably beginning during the Early Jurassic. ?? 1979.
NASA Astrophysics Data System (ADS)
Iqbal, Shahid; Wagreich, Michael
2016-04-01
The environmental changes during the Triassic-Jurassic boundary interval and the associated mass extinction event are still strongly debated. Sea-level reconstruction records during this interval reveal an end-Triassic global regression event. Erosion and karstification at the top of Triassic sediments, and Lower Jurassic fluvial channels with reworked Triassic clasts indicate widespread regression in the European basins. Laterite at the top of the Triassic, and quartzose conglomerates/sandstones at the base of the Jurassic indicate a fluvial/terrestrial onset in Iran and Afghanistan. Abrupt emergence, erosion and facies dislocation, from the Triassic dolomites (Kingriali Formation) to Lower Jurassic fluvial/continental quartzose conglomerates/pebbly sandstones (Datta Formation) occur in the Tethyan Salt Range of Pakistan. Sedimentological analyses indicate marine regression and emergence under tropical-subtropical conditions (Greenhouse conditions) and negates the possibility of glacial influence in this region. Field evidences indicate the presence of an undulatory surface at the base of the Jurassic and a high (Sargodha High) is present south of the Salt Range Thrust, the southern boundary of the basin. Furthermore, geophysical data (mostly seismic sections) in different parts of the basin display normal faults in the basement. These features are interpreted as horst and graben structures at the Triassic-Jurassic boundary in the Kohat-Potwar Plateau. The Lower Jurassic Datta Formation appears to have been deposited in an overall graben fill settings. Similar normal faults and graben fill geometries are observed on seismic sections in Tanzania, Mozambique, Madagascar and other regions of the southeastern margin of the African Plate and are related to the Karoo rift system. To summarize, the basement normal faults and the graben fill features at the Triassic-Jurassic boundary in the Kohat-Potwar Plateau can be correlated to similar features common in the Karoo rift area. Regional sea-level fall associated with this rift produced erosional and reworking features similar to those occur at the Triassic-Jurassic boundary in the European basins, Iran and Afghanistan. The tectonic correlation with the European basins and sedimentological evidences for the globally present Jurassic-Triassic boundary in the Salt Range of Pakistan encourage a detail work in this regard.
Reconstruction of the Upper Jurassic Morrison Formation extinct ecosystem - A synthesis
Turner, C.E.; Peterson, F.
2004-01-01
A synthesis of recent and previous studies of the Morrison Formation and related beds, in the context of a conceptual climatic/hydrologic framework, permits reconstruction of the Late Jurassic dinosaurian ecosystem throughout the Western Interior of the United States and Canada. Climate models and geologic evidence indicate that a dry climate persisted in the Western Interior during the Late Jurassic. Early and Middle Kimmeridgian eolian deposits and Late Kimmeridgian alkaline, saline wetland/lacustrine deposits demonstrate that dryness persisted throughout the Kimmeridgian. Tithonian-age coal reflects lower evaporation rates associated with a slight cooling trend, but not a significant climate change. With a subtropical high over the Paleo-Pacific Ocean and atmospheric circulation generally toward the east, moisture carried by prevailing winds "rained out" progressively eastward, leaving the continental interior-and the Morrison depositional basin-dry. Within the basin, high evaporation rates associated with the southerly paleolatitude and greenhouse effects added to the dryness. Consequently, the two main sources of water-groundwater and surface water-originated outside the basin, through recharge of regional aquifers and streams that originated in the western uplands. Precipitation that fell west of the basin recharged aquifers that underlay the basin and discharged in wetlands and lakes in the distal, low-lying part of the basin. Precipitation west of the basin also fed intermittent and scarce perennial streams that flowed eastward. The streams were probably "losing" streams in their upstream reaches, and contributed to a locally raised water table. Elsewhere in the basin, where the floodplain intersected the water table, small lakes dotted the landscape. Seasonal storms, perhaps in part from the Paleo-Gulf of Mexico, brought some precipitation directly to the basin, although it was also subjected to "rain out" en route. Thus, meteoric input to the basin was appreciably less than groundwater and surface water contributions. The terrestrial Morrison ecosystem, which can be likened to a savannah, expanded with the northward retreat of the Late Jurassic Western Interior Seaway. The ecosystem was a complex mosaic, the components of which shifted through time. Riparian environments probably were the most diverse parts of the ecosystem, where a multi-storeyed canopy supported a diverse fauna, from insects to dinosaurs. Equable conditions also existed in wetlands, lakes, and elsewhere on the floodplain when seasonal rainfall brought an herbaceous groundcover to life. Eolian environments and alkaline, saline wetlands were inhospitable to life.Large herbivorous dinosaurs were adapted to this semi-arid landscape. Their size was an adaptive asset based on considerations of food requirements associated with a low metabolism and was also an advantage for migration during drought. Some of the large sauropods were adapted to browsing the higher vegetation associated with riparian environments; others to grazing the herbaceous groundcover on the floodplain and charophytes in the wetlands. The extensive distal wetlands may, in fact, have been refugia for some of these herbivores during the dry season and droughts. Extended periods of drought account for some of the dinosaur death assemblages; yet, the ecosystem could also sustain the most unusual life forms that ever roamed the Earth. ?? 2004 Elsevier B.V. All rights reserved.
Reconstruction of the Upper Jurassic Morrison Formation extinct ecosystem—a synthesis
NASA Astrophysics Data System (ADS)
Turner, Christine E.; Peterson, Fred
2004-05-01
A synthesis of recent and previous studies of the Morrison Formation and related beds, in the context of a conceptual climatic/hydrologic framework, permits reconstruction of the Late Jurassic dinosaurian ecosystem throughout the Western Interior of the United States and Canada. Climate models and geologic evidence indicate that a dry climate persisted in the Western Interior during the Late Jurassic. Early and Middle Kimmeridgian eolian deposits and Late Kimmeridgian alkaline, saline wetland/lacustrine deposits demonstrate that dryness persisted throughout the Kimmeridgian. Tithonian-age coal reflects lower evaporation rates associated with a slight cooling trend, but not a significant climate change. With a subtropical high over the Paleo-Pacific Ocean and atmospheric circulation generally toward the east, moisture carried by prevailing winds "rained out" progressively eastward, leaving the continental interior—and the Morrison depositional basin—dry. Within the basin, high evaporation rates associated with the southerly paleolatitude and greenhouse effects added to the dryness. Consequently, the two main sources of water—groundwater and surface water—originated outside the basin, through recharge of regional aquifers and streams that originated in the western uplands. Precipitation that fell west of the basin recharged aquifers that underlay the basin and discharged in wetlands and lakes in the distal, low-lying part of the basin. Precipitation west of the basin also fed intermittent and scarce perennial streams that flowed eastward. The streams were probably "losing" streams in their upstream reaches, and contributed to a locally raised water table. Elsewhere in the basin, where the floodplain intersected the water table, small lakes dotted the landscape. Seasonal storms, perhaps in part from the Paleo-Gulf of Mexico, brought some precipitation directly to the basin, although it was also subjected to "rain out" en route. Thus, meteoric input to the basin was appreciably less than groundwater and surface water contributions. The terrestrial Morrison ecosystem, which can be likened to a savannah, expanded with the northward retreat of the Late Jurassic Western Interior Seaway. The ecosystem was a complex mosaic, the components of which shifted through time. Riparian environments probably were the most diverse parts of the ecosystem, where a multi-storeyed canopy supported a diverse fauna, from insects to dinosaurs. Equable conditions also existed in wetlands, lakes, and elsewhere on the floodplain when seasonal rainfall brought an herbaceous groundcover to life. Eolian environments and alkaline, saline wetlands were inhospitable to life. Large herbivorous dinosaurs were adapted to this semi-arid landscape. Their size was an adaptive asset based on considerations of food requirements associated with a low metabolism and was also an advantage for migration during drought. Some of the large sauropods were adapted to browsing the higher vegetation associated with riparian environments; others to grazing the herbaceous groundcover on the floodplain and charophytes in the wetlands. The extensive distal wetlands may, in fact, have been refugia for some of these herbivores during the dry season and droughts. Extended periods of drought account for some of the dinosaur death assemblages; yet, the ecosystem could also sustain the most unusual life forms that ever roamed the Earth.
NASA Astrophysics Data System (ADS)
Préat, A.; Mamet, B.; Di Stefano, P.; Martire, L.; Kolo, K.
2011-06-01
This article presents a petrographic comparison of the Rosso Ammonitico facies of Western Sicily and the original Rosso Ammonitico Veronese of Northern Italy based on a total of 27 sections. The Rosso Ammonitico has been the subject of numerous controversies that range from bathyal to shallow-water platform sedimentation. Therefore it seemed interesting to verify if the term Rosso Ammonitico has the same geologic connotation from region to region. The Middle-Upper Jurassic Rosso Ammonitico of Western Sicily is a condensed succession formed during a period of extensional synsedimentary tectonics related to the spreading of the Ionian Ocean. Slope-to-basin or pelagic carbonate deposits characterize the sedimentation which consists of reddish mudstones and wackestones. The abundant fauna is composed of radiolarians, protoglobigerinids, Saccocoma, Bositra associated with ammonites. A few ferruginous hardgrounds, Fe-Mn oxide crusts and Mn-coated condensation horizons are also present. The red matrices contain abundant Fe-Mn encrusted, microbored and bioeroded bioclasts. Sporadic Fe-Mn oncolites composed of amorphous Mn-minerals and goethite are also conspicuous. The matrix, as well as the shells and the fillings of the complex associated veinlets, are frequently altered into calcite microsparite. Submicronic iron bacterial and fungal filaments associated with mineralized extracellular polymeric substances (EPS) are observed in the matrix. They record dysaerobic microenvironments at or near the sediment-water interfaces. Early mineralized discontinuities enhanced by subsequent pressure dissolution are reported in the succession. Mn-(Ni) bacterial filaments are exceptionally observed in the cortex of the Fe-Mn oncolites. As a consequence of an early lithification, the Mn filaments are poorly preserved. The pigmentation of the rock is due to the dispersion of submicronic oxyhydroxides (now goethite and amorphous iron) formed by bacterial mediation during early diagenesis in microaerophilitic environments. As in the case of the original 'Rosso Ammonitico Veronese', Fe and Mn bacteria/fungi were able to produce bioconstructions which have no bathymetric significance. The limiting factor must have been the oxygen content which was low in these very quiet and relatively deep environments. Thus the Rosso Ammonitico of northern and southern Italy have a number of points in common, but some obvious dissimilarities are observed that explain some of the various sedimentological interpretations. Among them, the chemical composition is of particular importance, more Fe is present in Veneto (Northern Italy) while Mn is associated with the Sicilian Rosso Ammonitico. The Sicilian localities were more proximal to oceanic magmatic sources which were related to the activity of the oceanic crust.
Dumoulin, Julie A.; Bird, Kenneth J.
2002-01-01
The Lisburne 1 well in the thrust belt of the central Brooks Range penetrated 17,000 ft of imbricated, chiefly Ellesmerian sequence strata in the Endicott Mountains allochthon. Five thrust repeats of the Lisburne Group (Carboniferous) and overlying Etivluk Group (Permian-Jurassic) were drilled. Lithofacies analyses of >350 thin sections of cores and cuttings, and biostratigraphy based on foraminifers and conodonts, allow detailed correlation with coeval units in adjacent outcrops and provide data on the depositional setting and reservoir and source rock potential of these strata. The late Early- Late Mississippian (Osagean-Chesterian) Lisburne Group consists mainly of skeletal wackestone to grainstone, locally completely dolomitized. An interval of abundant glauconite and detrital quartz in the lower Lisburne may mark a sequence-bounding unconformity. Dolostone in the upper part of the unit has maximum porosities of 10-13% and common residual hydrocarbons. The uppermost Lisburne is thinly interbedded mudstone, chert, and shale that are locally dolomitic, phosphatic, spiculitic, and organic-rich; conodonts from this interval in outcrop represent an outer shelf to slope biofacies. The Etivluk Group here encompasses the Siksikpuk and Otuk Formations. The Siksikpuk is mainly varicolored shale and radiolarian chert, with a basal interval of glauconitic, pyritic sandstone. Phosphatic and organic-rich shale, radiolarian chert, and pelecypod coquinas make up the Otuk. Outcrop and subsurface data indicate that the Lisburne Group in this area accumulated near the seaward margin of a shallow-water carbonate platform that drowned during the Late Mississippian; outer shelf or deeper conditions predominated throughout deposition of the upper Lisburne and the Etivluk Group.
NASA Astrophysics Data System (ADS)
Wang, Wei; Ye, Jiaren; Bidgoli, Tandis; Yang, Xianghua; Shi, Hesheng; Shu, Yu
2017-11-01
Paleogene syn-rift successions in the South China Sea are poorly understood and systematic provenance analysis, which could provide clues to their history, is lacking. Here we report 409 new concordant U-Pb ages from detrital zircons separated from the Paleogene Wenchang, Enping, and Zhuhai formations in the Zhu 1 depression, Pearl River Mouth Basin. The new data, combined with the published age data from the region, document changes in the provenance of syn-rift successions. Detrital zircons from the Eocene Wenchang Formation are unimodal, with Jurassic-Cretaceous (180-80 Ma) ages making up >80% of grains. The ages are consistent with the geochronology of intrabasinal highs, dominated by igneous rocks emplaced during the Yanshanian orogeny, and suggest local provenance. By contrast, detrital zircons from the upper Eocene to lower Oligocene Enping Formation form three well-recognized age-clusters, with peaks at 150, 254, and 438 Ma that match documented tectonomagmatism in South China Block (SCB). Combined with increasing numbers of Precambrian zircons, the data suggest increasing influence of regional provenance of the SCB. Similar age peaks are also recognized from the limited number of zircons analyzed from the upper Oligocene Zhuhai Formation and comparability with modern shelf and river sediment indicates the unit was mainly sourced from the SCB and likely transported by a paleo-Pearl River. We infer that the change in provenance, from local uplifts within the Zhu 1 to the SCB, is related to distinct phases of PRMB rift development; however, later changes are best explained by SCB drainage evolution.
NASA Astrophysics Data System (ADS)
Hills, D. J.; Osborne, T. E.; McIntyre, M. R.; Pashin, J. C.
2011-12-01
The Geological Survey of Alabama (GSA) is expanding its efforts to collect, develop, maintain, and analyze statewide geothermal data and to make this information widely and easily accessible to the public through the National Geothermal Data System. The online availability of this data will aid in the effective development of geothermal energy applications and reduce the risks associated with the initial stages of geothermal project development. To this end, the GSA is participating in a collaborative project that the Arizona Geological Survey is coordinating in cooperation with the Association of American State Geologists and with the support of the U.S. Department of Energy as part of the American Reinvestment and Recovery Act. Wells drilled for the exploration and production of hydrocarbons are the primary sources of geothermal data in Alabama. To date, more than 1,200 wells in coalbed methane (CBM) fields in the Black Warrior Basin (BWB) have been examined, in addition to over 500 conventional wells in the basin. Pottsville Formation (Pennsylvanian) bottom-hole temperatures (BHTs) range from less than 80°F to more than 140°F in wells reaching total depth between 1,000 and 6,000 feet (ft). Temperature and depth correlate with a coefficient of determination (r2) of 0.72, reflecting significant variation of the modern geothermal gradient. Mapping and statistical analysis confirm that geothermal gradient in the CBM fairway is typically between 6 and 12°F/1,000 ft. BHTs in the conventional wells penetrating the BWB show even greater variation, with temperature and depth correlating with an r2 of only 0.27. This variability owes to numerous factors, including stratigraphy, lithology, thermal conductivity, and geothermal gradient. Indeed, these wells reach total depth between 500 and 12,000 ft in carbonate and siliciclastic formations ranging in age from Cambrian to Mississippian. The Cambrian section is dominated by low conductivity shale, whereas the Ordovician-Mississippian section contains mainly high-conductivity carbonate. The Upper Mississippian, by contrast, includes complexly interstratified carbonate and siliciclastic rock types with variable thermal conductivity. The Gulf Coast basin of southwest Alabama contains numerous wells penetrating a Mesozoic stratigraphic section that is between 12,000 and 22,000 ft thick. Most wells reach total depth in Jurassic carbonate and sandstone or in Upper Cretaceous sandstone, and the deepest wells have BHTs greater than 400°F. Temperature readings are available at multiple depths for numerous wells, due to multiple log runs. These wells are particularly valuable owing to the availability of data from formations that are not reservoirs. Geothermal gradient is affected by geopressure, which is typically present below 10,000 ft. Gradient is further affected by a thick evaporite section, which can include more than 3,000 ft of salt in the Jurassic section. Thermal data from these wells are invaluable for characterizing petroleum systems and for identifying zones of warm water that can be used as geothermal energy sources.
Comments on the paper of Bodin et al. (2010). Journal of African Earth Sciences, 58, pp. 489-506
NASA Astrophysics Data System (ADS)
Tlig, Saïd
2016-06-01
Bodin et al. (2010) produced an important paper in the Journal of African Earth Sciences. The main goals of this paper were: (1) the petrological and sedimentological treatment of the upper Jurassic and Cretaceous series in southern Tunisia and northern Ghadames Basin including the Hamada El Hamra area and Nafussah Mountain of Libya; (2) the reconstruction of tectonic controls on deposition and basin-fill; (3) the correlation of poorly dated lithostratigraphic columns, poor in diagnostic fauna, from northwestern Libya to southern Tunisia; and (4) the comparison between the authors' findings and assignments of global eustatic and plate tectonic events.
Merewether, E. Allen; McKinney, Kevin C.
2015-01-01
In this transect for time-stratigraphic units of the Cretaceous, lateral changes in lithologies, regional differences in thicknesses, and the abundance of associated disconformities possibly reflect local and regional tectonic events. Examples of evidence of those events follow: (1) Disconformities and the absence of strata of lowest Cretaceous age in western Montana, western Wyoming, and northern Utah indicate significant tectonism and erosion probably during the Late Jurassic and earliest Cretaceous; ( 2) stages of Upper Cretaceous deposition in the transect display major lateral changes in thickness, which probably reflect regional and local tectonism.
Dumoulin, Julie A.; Burruss, Robert A.; Blome, Charles D.
2013-01-01
Complete penetration of the Otuk Formation in a continuous drill core (diamond-drill hole, DDH 927) from the Red Dog District illuminates the facies, age, depositional environment, source rock potential, and isotope stratigraphy of this unit in northwestern Alaska. The section, in the Wolverine Creek plate of the Endicott Mountains Allochthon (EMA), is ~82 meters (m) thick and appears structurally uncomplicated. Bedding dips are generally low and thicknesses recorded are close to true thicknesses. Preliminary synthesis of sedimentologic, paleontologic, and isotopic data suggests that the Otuk succession in DDH 927 is a largely complete, albeit condensed, marine Triassic section in conformable contact with marine Permian and Jurassic strata. The Otuk Formation in DDH 927 gradationally overlies gray siliceous mudstone of the Siksikpuk Formation (Permian, based on regional correlations) and underlies black organic-rich mudstone of the Kingak(?) Shale (Jurassic?, based on regional correlations). The informal shale, chert, and limestone members of the Otuk are recognized in DDH 927, but the Jurassic Blankenship Member is absent. The lower (shale) member consists of 28 m of black to light gray, silty shale with as much as 6.9 weight percent total organic carbon (TOC). Thin limy layers near the base of this member contain bivalve fragments (Claraia sp.?) consistent with an Early Triassic (Griesbachian-early Smithian) age. Gray radiolarian chert dominates the middle member (25 m thick) and yields radiolarians of Middle Triassic (Anisian and Ladinian) and Late Triassic (Carnian-late middle Norian) ages. Black to light gray silty shale, like that in the lower member, forms interbeds that range from a few millimeters to 7 centimeters in thickness through much of the middle member. A distinctive, 2.4-m-thick interval of black shale and calcareous radiolarite ~17 m above the base of the member has as much as 9.8 weight percent TOC, and a 1.9-m-thick interval of limy to cherty mudstone immediately above this contains radiolarians, foraminifers, conodonts, and halobiid bivalve fragments. The upper (limestone) member (29 m thick) is lime mudstone with monotid bivalves and late Norian radiolarians, overlain by gray chert that contains Rhaetian (latest Triassic) radiolarians; Rhaetian strata have not previously been documented in the Otuk. Rare gray to black shale interbeds in the upper member have as much as 3.4 weight percent TOC. At least 35 m of black mudstone overlies the limestone member; these strata lack interbeds of oil shale and chert that are characteristic of the Blankenship, and instead they resemble the Kingak Shale. Vitrinite reflectance values (2.45 and 2.47 percent Ro) from two samples of black shale in the chert member indicate that these rocks reached a high level of thermal maturity within the dry gas window. Regional correlations indicate that lithofacies in the Otuk Formation vary with both structural and geographic position. For example, the shale member of the Otuk in the Wolverine Creek plate includes more limy layers and less barite (as blades, nodules, and lenses) than equivalent strata in the structurally higher Red Dog plate of the EMA, but it has fewer limy layers than the shale member in the EMA ~450 kilometers (km) to the east at Tiglukpuk Creek. The limestone member of the Otuk is thicker in the Wolverine Creek plate than in the Red Dog plate and differs from this member in EMA sections to the east in containing an upper cherty interval that lacks monotids; a similar interval is seen at the top of the Otuk Formation ~125 km to the west (Lisburne Peninsula). Our observations are consistent with the interpretations of previous researchers that Otuk facies become more distal in higher structural positions and that within a given structural level more distal facies occur to the west. Recent paleogeographic reconstructions indicate that the Otuk accumulated at a relatively high paleolatitude with a bivalve fauna typical of the Boreal realm. A suite of δ13Corg (carbon isotopic composition of carbon) data (n=38) from the upper Siksikpuk Formation through the Otuk Formation and into the Kingak(?) Shale in DDH 927 shows a pattern of positive and negative excursions similar to those reported elsewhere in Triassic strata. In particular, a distinct negative excursion at the base of the Otuk (from ‒23.8 to ‒31.3‰ (permil, or parts per thousand)) likely correlates with a pronounced excursion that marks the Permian-Triassic boundary at many localities worldwide. Another feature of the Otuk δ13Corg record that may correlate globally is a series of negative and positive excursions in the lower member. At the top of the Otuk in DDH 927, the δ13Corg values are extremely low and may correlate with a negative excursion that is widely observed at the Triassic-Jurassic boundary.
The Oldest Jurassic Dinosaur: A Basal Neotheropod from the Hettangian of Great Britain.
Martill, David M; Vidovic, Steven U; Howells, Cindy; Nudds, John R
2016-01-01
Approximately 40% of a skeleton including cranial and postcranial remains representing a new genus and species of basal neotheropod dinosaur is described. It was collected from fallen blocks from a sea cliff that exposes Late Triassic and Early Jurassic marine and quasi marine strata on the south Wales coast near the city of Cardiff. Matrix comparisons indicate that the specimen is from the lithological Jurassic part of the sequence, below the first occurrence of the index ammonite Psiloceras planorbis and above the last occurrence of the Rhaetian conodont Chirodella verecunda. Associated fauna of echinoderms and bivalves indicate that the specimen had drifted out to sea, presumably from the nearby Welsh Massif and associated islands (St David's Archipelago). Its occurrence close to the base of the Blue Lias Formation (Lower Jurassic, Hettangian) makes it the oldest known Jurassic dinosaur and it represents the first dinosaur skeleton from the Jurassic of Wales. A cladistic analysis indicates basal neotheropodan affinities, but the specimen retains plesiomorphic characters which it shares with Tawa and Daemonosaurus.
Triassic–Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs
Toljagić, Olja; Butler, Richard J.
2013-01-01
Pseudosuchia, one of the two main clades of Archosauria (Reptilia: Diapsida), suffered a major decline in lineage diversity during the Triassic–Jurassic (TJ) mass extinction (approx. 201 Ma). Crocodylomorpha, including living crocodilians and their extinct relatives, is the only group of pseudosuchians that survived into the Jurassic. We reassess changes in pseudosuchian morphological diversity (disparity) across this time interval, using considerably larger sample sizes than in previous analyses. Our results show that metrics of pseudosuchian disparity did not change significantly across the TJ boundary, contrasting with previous work suggesting low pseudosuchian disparity in the Early Jurassic following the TJ mass extinction. However, a significant shift in morphospace occupation between Late Triassic and Early Jurassic taxa is recognized, suggesting that the TJ extinction of many pseudosuchian lineages was followed by a major and geologically rapid adaptive radiation of crocodylomorphs. This marks the onset of the spectacularly successful evolutionary history of crocodylomorphs in Jurassic and Cretaceous ecosystems. PMID:23536443
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
... comments sent to addresses other than the one provided here. Comments sent via e-mail, including all... University, plans to conduct a magnetic and seismic study of the Hawaiian Jurassic crust onboard an... Republic of the Marshall Islands. SIO plans to use one source vessel, the R/V Thomas G. Thompson (Thompson...
Mesozoic Alpine facies deposition as a result of past latitudinal plate motion.
Muttoni, Giovanni; Erba, Elisabetta; Kent, Dennis V; Bachtadse, Valerian
2005-03-03
The fragmentation of Pangaea as a consequence of the opening of the Atlantic Ocean is documented in the Alpine-Mediterranean region by the onset of widespread pelagic sedimentation. Shallow-water sediments were replaced by mainly pelagic limestones in the Early Jurassic period, radiolarian cherts in the Middle-Late Jurassic period, and again pelagic limestones in the Late Jurassic-Cretaceous period. During initial extension, basin subsidence below the carbonate compensation depth (CCD) is thought to have triggered the transition from Early Jurassic limestones to Middle-Late Jurassic radiolarites. It has been proposed that the transition from radiolarites to limestones in the Late Jurassic period was due to an increase in calcareous nannoplankton abundance when the CCD was depressed below the ocean floor. But in modern oceans, sediments below the CCD are not necessarily radiolaritic. Here we present palaeomagnetic samples from the Jurassic-Cretaceous pelagic succession exposed in the Lombardian basin, Italy. On the basis of an analysis of our palaeolatitudinal data in a broader palaeogeographic context, we propose an alternative explanation for the above facies tripartition. We suggest that the Lombardian basin drifted initially towards, and subsequently away from, a near-equatorial upwelling zone of high biosiliceous productivity. Our tectonic model for the genesis of radiolarites adds an essential horizontal plate motion component to explanations involving only vertical variations of CCD relative to the ocean floor. It may explain the deposition of radiolarites throughout the Mediterranean and Middle Eastern region during the Jurassic period.
NASA Astrophysics Data System (ADS)
Gleason, James D.; Marikos, Mark A.; Barton, Mark D.; Johnson, David A.
2000-03-01
Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium isotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, ɛ Nd for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of the same age (ɛ Nd = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, ɛ Nd for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks (-1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks (ɛ Nd = -2.0 to -4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar ɛ Nd (-1.7 to -2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with ɛ Nd = -2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleason, J.D.; Marikos, M.A.; Barton, M.D.
2000-03-01
Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium iosotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, {epsilon}{sub Nd} for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of themore » same age ({epsilon}{sub Nd} = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, {epsilon}{sub Nd} for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks ({minus}1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks ({epsilon}{sub Nd} = {minus}2.0 to {minus}4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar {epsilon}{sub Nd}({minus}1.7 to {minus}2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with {epsilon}{sub Nd} = {minus}2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.« less
NASA Astrophysics Data System (ADS)
Pomar, Luis; Molina, Jose M.; Ruiz-Ortiz, Pedro A.; Vera, Juan A.
2017-04-01
Fine-peloidal- to coarse oolitic-bioclastic grainstones with hummocky cross stratification (HCS) occur interbedded in Middle-Upper Jurassic pelagic lime-mudstone successions (Betic ranges, Southern Spain). These strata were deposited in pelagic troughs and swells, away from continental areas, in the Southern Iberian Continental Margin of the Western Tethys. Previously interpreted as tempestites, mainly due to the attribution of the HCS to surface storm waves, they are now reinterpreted as the product of turbulence in deeper conditions. Among many, some selected examples are here presented. All of them share: 1) Grainstone beds are interbedded with pelagic mudstones and marls 2) Grainstone components were reworked by oscillatory flows superimposed to unidirectional tractive flows (unidirectional ripple lamination and HCS). 3) Components were either derived from shallow-water environments (e.g., ooids), or produced in pelagic conditions (e.g., radiolarians, Saccocoma, peloids, etc). 4) Although surface-storm tempestite flows can be required to bring downslope components from shallow-water settings, the grainstone beds reflect sediment reworking at a depth dominated by fine pelagic sedimentation. 5) Internal waves propagating along a pycnocline and breaking against a sloping surface are the best candidate to induce the sedimentary structures and sediment organization that characterize these grainstone beds. The examples here presented (Middle-Upper Jurassic of the Subbetic) include: a) Peloid grainstones interbedded with radiolarite marls deposited on the flanks of volcanic guyots. The interbedded lime muds and marls contain 'filaments', sponge spicules and radiolarians. b) Peloid-bioclastic (radiolarians, Saccocoma, etc.) grainstone beds with HCS, interbedded with pelagic lime muds. c) Coarse oolitic grainstone unit, encased in pelagic marls, with wedge-shaped crossbed-sets with gently seaward-dipping parallel lamination, and sets of low-angle up-slope dipping parallel lamination. These oolitic grainstones hold characteristics similar to the ridge-berm-swash zone of modern beaches and are here interpreted to represent an "internal beach". d) Crossbedded peloidal-skeletal (Saccocoma) grainstones with HCS and wave ripples on top, interbedded with pelagic mudstones and wackestones with abundant bioturbation and ammonites (Ammonitico Rosso facies). All these grainstones are reinterpreted as the product of breaking internal waves. This breaking produces episodic high-turbulence events and remobilizes sediments at the depth where the pycnocline intersects the sea floor. The swash run-up produces erosion and the backwash return flow can bypass the breaker and travel downdip where the oscillatory-flow component of the IWs become dominant and form the characteristic HCS bedforms. Coarser sediments "trapped" at the breaker zone form sediment accumulations similar to the sediments caught by the "littoral fence" in the surface beach. This scenario evidences the HCS not to be necessarily linked to the surface storms but to the bathymetry of the pycnocline, solving the problem of having HCS in pelagic zones where the storm and hurricanes wave action can be considered "out-of-context". Acknowledgments: fundings from projet CGL2014-52096-P and Research Group RNM-200 (PAIDI-JA)
NASA Astrophysics Data System (ADS)
Schmieder, Martin; Seyfried, Hartmut; Gerel, Ochir
2013-03-01
The Uneged Uul structure is a ˜10 km circular, complex, multi-ridged domal feature in the Unegt subbasin of the East Gobi Basin, southeastern Mongolia. As revealed by remote sensing and recent field reconnaissance, the central part of the Uneged Uul structure comprises a complex central peak of outward-radiating curved ridges, composed of stratigraphically uplifted greenschist-facies basement schists, surrounded by an annular moat. The most prominent feature of the structure is a central annular ridge ˜3 km in diameter composed of pebble-boulder conglomerates and gravels of the Upper Jurassic Sharilyn Formation, surrounded by three outer domal ridges composed of Lower Cretaceous conglomeratic sandstones and gypsum clays. Jurassic conglomerates forming the main part of the central annular ridge show effects of severe internal deformation. The original population of pebbles, cobbles and boulders appears moderately displaced and mostly broken but nowhere aligned along shear planes or foliated. Primary sedimentary features, such as cross-lamination or imbrication, have been obliterated. We explain this penetrative brecciation as a result of dissipative shearing caused by a strong and rapid singular event that in magnitude was beyond the range of the common crustal tectonics recorded elsewhere in this region. Disrupted and chaotically distributed conglomeratic sandstone beds in the central annular ridge dip in highly variable directions on a local scale but show an apparent SE-NW trend of bedding plane alignment. Further outside, the tilted and uplifted Upper Jurassic to Lower Cretaceous strata of the domal area are overlain by the flat-lying Upper Cretaceous, which stratigraphically constrains the timing of deformation at the Uneged Uul structure to most likely the Early Cretaceous. Endogenic formation models, such as magmatism and salt, gypsum, or mud diapirism, fail to explain the nature of the Uneged Uul structure. The Uneged Uul structure bears a set of geomorphic and structural features resembling those at some eroded complex impact structures on Earth. Morphologically similar central peaks are observed at the Spider and Matt Wilson impact structures in Australia; the central annular ridge reminds of that at Gosses Bluff in Australia; the outer domal ridges might correspond to ring-like features as known from Tin Bider in Algeria. We, therefore, cautiously propose that an impact may have produced the Uneged Uul feature causing structural uplift (˜1000 m) of basement rocks at its center. So far, no convincing evidence for shock metamorphism could be proven by field work and petrographic analyses. However, it is likely that at the time of the deformation event the unconsolidated conglomerates were highly porous and possibly immersed in groundwater buffering the propagation of sudden stress-reducing deformation. Further studies will be in order to unravel the nature of the Uneged Uul structure, which should be considered a promising possible impact structure.
Eoff, Jennifer D.; Dubiel, Russell F.; Pearson, Ofori N.; Whidden, Katherine J.
2015-01-01
The Cotton Valley Group extends in the subsurface from southern Texas to the Florida Panhandle in an arcuate belt that crosses northern Louisiana, the southern part of Arkansas, and southern Mississippi and Alabama. Three of the AUs are quantitatively assessed for undiscovered volumes of hydrocarbons in conventional accumulations. The Cotton Valley Updip Oil AU includes areas between the maximum updip limit of the Cotton Valley Group and a curved belt of regional faults (included in the Peripheral Fault System AU). Hydrocarbon charge to this AU remains uncertain. The Peripheral Fault System Oil and Gas AU includes the Mexia, Talco, State Line, South Arkansas, Pickens, Gilbertown, and other fault segments, which trapped early oil that migrated from source rocks within the Smackover Formation. Hydrocarbons in the Downdip Oil and Gas AU are primarily associated with low-amplitude salt-related features in the East Texas, North Louisiana, and Mississippi salt basins. The Tight Sandstone Gas AU contains gas-charged sandstones previously referred to collectively as “massive.” Their reservoir properties are consistent with the USGS’s definition of continuous reservoirs, and their resources, therefore, are assessed using a separate methodology. Optimal coincidence of low-permeability sandstone, gas-mature source rocks, and complex structures of the regional Sabine feature encouraged development of a general “sweet spot” area in eastern Texas.
,
1975-01-01
The area designated for possible oil and gas lease sale as modified from BLM memorandum 3310 #42 (722) and referred to therein as the North Atlantic Outer Continental Shelf (OCS) contains about 58,300 sq km of shelf beneath water depths of less than 200 m and lies chiefly within the Georges Bank basin. The oldest sediments drilled or dredged on the bordering Continental Slope are sandstone, clay, and silt of Upper Cretaceous age. In Upper Cretaceous exposures, on Marthas Vineyard and nearby New England islands, the predominant lithology appears to be clay. About 125 km northeast of the eastern tip of Georges Bank, the Shell B-93 well penetrated clays and silts of Upper and Lower Cretaceous age above dense Jurassic carbonate rocks which overlie a basement of lower Paleozoic slate, schist, quartzite, and granite. Structurally, the Georges Bank basin is a westerly trending trough which opens to the west-southwest. Post-Paleozoic sediments are more than 8 km thick in parts of the basin. Major structural features appear to be directly related to basement structures. Local anticlines, probably caused by differential compaction over basement flexures and horst blocks or by later uplift along basement faults are reflected principally in Lower Cretaceous and older sediments, though some of these features continue upward to within 0.7 of a second (about 650 m) of the seafloor. Tertiary deposits in the Georges Bank basin are probably up to a kilometre thick and are made up of poorly consolidated sand, silt, and clay. The Cretaceous section is inferred to be up to 3.5 km thick and to be mainly clastics -- shale, siltstone, calcareous shale, changing to limestone in the lowest part of the system. Jurassic rocks in the deepest part of the basin appear to be about 3.6 to 4.0 km thick and probably consist mainly of dense carbonates. Potential source rocks in the Georges Bank basin may include organic-rich Cretaceous shale and carbonaceous Jurassic limestone. By analogy with the Scotian Shelf, Cretaceous sandstones are considered to be potential reservoir rocks. Local zones of porous dolomite are believed to be present in carbonate rocks of Jurassic age and should not be overlooked as potential reservoirs. Structural highs related to draping and differential compaction over basement blocks could be important potential petroleum traps. Additional traps may include reef structures near the shelf edge, updip pinchouts, and stratigraphic traps in both clastic and carbonate sediment. A statistical mean for the undiscovered recoverable petroleum resources is calculated to be 0.9 billion barrels of oil and 4.2 trillion cubic feet of gas. At the 5 percent probability level (1 in 20 chance) the undiscovered recoverable petroleum resources are calculated to be 2.4 billion barrels of oil and 12.5 trillion cubic feet of gas. These undiscovered recoverable petroleum resources are those quantities of oil and gas that may be reasonably expected to exist in favorable settings, but which have not yet been identified by drilling. Such estimates, therefore, carry a high degree of uncertainty. Environmental studies of Georges Bank indicated a low-moderate risk from petroleum development. However, the risk estimate is based on very limited data. Drift bottle returns used to infer oil spill trajectories show about a 2% overall recovery rate. Meteorologic data comes mainly from nearby land areas and from ships attempting to avoid storms. Seismicity on Georges Bank is low. This may reflect, in large part, the difficulty of land-based stations in recording earthquakes far from the coast. Direct data on the engineering properties of shallow buried sediment comes mainly from two Texas Tower surveys of limited areas on Georges Shoal and Nantucket Shoals made in the early 1950's. The 17 holes (most less than 30 m deep) reveal some silty layers below loose sand and much lateral variability in sediment type over short distances. The technology for exploration at the required water depths (20 m - 200 m) is available. Mobil drilling units are in great demand around the world and will have to be brought in from other areas along with skilled manpower. Our highest estimates indicate 50 platforms, 800 producing wells, 1,100 km of pipeline, and 5 onshore terminals may be needed. The time frame for production, using our high estimates (5% probability) for the undiscovered recoverable resources, could include 4-5 years for significant development, 6-7 years until production commences, and 18 years until peak production.
NASA Astrophysics Data System (ADS)
Anfinson, Owen Anthony
More than 2300 detrital zircon uranium-lead (U-Pb) ages, 32 176Hf/177Hf (eHf) isotopic values, 37 apatite helium (AHe) ages, and 72 zircon helium (ZHe) ages represent the first in-depth geochronologic and thermochronologic study of Franklinian Basin strata in the Canadian Arctic and provide new insight on >500 M.y. of geologic history along the northern Laurentian margin (modern orientation). Detrital zircon U-Pb age data demonstrate that the Franklinian Basin succession is composed of strata with three distinctly different provenance signatures. Neoproterozoic and Lower Cambrian formations contain detrital zircon populations consistent with derivation from Archean to Paleoproterozoic gneisses and granites of the west Greenland--northeast Canadian Shield. Lower Silurian to Middle Devonian strata are primarily derived from foreland basin strata of the East Greenland Caledonides (Caledonian orogen). Middle Devonian to Upper Devonian strata also contain detrital zircon populations interpreted as being primarily northerly derived from the continental landmass responsible for the Ellesmerian Orogen (often referred to as Crockerland). U-Pb age data from basal turbidites of the Middle to Upper Devonian clastic succession suggest Crockerland contributed sediment to the northern Laurentian margin by early-Middle Devonian time and that prior to the Ellesmerian Orogeny Crockerland had a comparable geologic history to the northern Baltica Craton. Detrital zircon U-Pb ages in Upper Devonian strata suggest Crockerland became the dominant source by the end of Franklinian Basin sedimentation. Mean eHf values from Paleozoic detrital zircon derived from Crockerland suggest the zircons were primarily formed in either an island arc or continental arc built on accreted oceanic crust setting. ZHe cooling ages from Middle and Upper Devonian strata were not buried deeper than 7 km since deposition and suggest Crockerland was partially exhumed during the Caledonian Orogen. AHe cooling ages are partially reset since deposition and experienced varying burial histories depending on stratigraphic and geographic location within the basin. AHe ages from Middle Devonian strata from the western margin of the basin indicate episodes of exhumation associated with clastic influxes of sediment into the Sverdrup Basin during the Late Jurassic-Early Cretaceous and Late Cretaceous.
NASA Astrophysics Data System (ADS)
Advokaat, Eldert; Bongers, Mayke; van Hinsbergen, Douwe; Rudyawan, Alfend; Marshal, Edo
2017-04-01
SE Asia consists of multiple continental blocks, volcanic arcs and suture zones representing remnants of closing ocean basins. The core of this mainland is called Sundaland, and was formed by accretion of continental and arc fragments during the Paleozoic and Mesozoic. The former positions of these blocks are still uncertain but reconstructions based on tectonostratigraphic, palaeobiogeographic, geological and palaeomagnetic studies indicate the continental terranes separated from the eastern margin of Gondwana. During the mid-Cretaceous, more continental and arc fragments accreted to Sundaland, including the intra-oceanic Woyla Arc now exposed on Sumatra. These continental fragments were derived from Australia, but the former position of the Woyla Arc is unconstrained. Interpretations on the former position of the Woyla Arc fall in two end-member groups. The first group interprets the Woyla Arc to be separated from West Sumatra by a small back-arc basin. This back arc basin opened in the Late Jurassic, and closed mid-Cretaceous, when the Woyla Arc collided with West Sumatra. The other group interprets the Woyla Arc to be derived from Gondwana, at a position close to the northern margin of Greater India in the Late Jurassic. Subsequently the Woyla Arc moved northwards and collided with West Sumatra in the mid-Cretaceous. Since these scenarios predict very different plate kinematic evolutions for the Neotethyan realm, we here aim to place paleomagnetic constraints on paleolatitudinal evolution of the Woyla Arc. The Woyla Arc consists mainly of basaltic to andesitic volcanics and dykes, and volcaniclastic shales and sandstones. Associated limestones with volcanic debris are interpreted as fringing reefs. This assemblage is interpreted as remnants of an Early Cretaceous intra-oceanic arc. West Sumatra exposes granites, surrounded by quartz sandstones, shales and volcanic tuffs. These sediments are in part metamorphosed. This assemblage is interpreted as a Jurassic-Early Cretaceous Andean margin above a NE dipping subduction zone. We sampled limestones of the Woyla Group, and sediments of the West Sumatra margin for paleomagnetic analyses. Here we present new paleomagnetic data from Upper Jurassic-Lower Cretaceous limestones of the Woyla Arc. Preliminary results suggest that the Woyla Arc was formed near equatorial latitudes. This precludes interpretations that the Woyla arc was derived from Gondwana, near the northern Indian margin. To account for (1) synchronous magmatism at the Woyla Arc and the West Sumatra continental margin, and (2) the juxtaposition of unmetamorphosed units of the Woyla Arc to highly metamorphosed units of the West Sumatra margin, we interpret the Woyla Group to be intra-oceanic arc formed above a SW dipping subduction zone in the Early Cretaceous, which was subsequently thrusted over the West Sumatra margin during the mid-Cretaceous.
Late Jurassic plutonism in the southwest U.S. Cordillera
Barth, A.P.; Wooden, J.L.; Howard, K.A.; Richards, J.L.
2008-01-01
Although plate reconstructions suggest that subduction was an approximately steady-state process from the mid-Mesozoic through the early Tertiary, recent precise geochronologic studies suggest highly episodic emplacement of voluminous continental-margin batholiths in the U.S. Cordillera. In central and southern California and western Arizona, major episodes of batholithic magmatism are known to have occurred in Permian-Triassic, Middle Jurassic, and late Early to Late Cretaceous time. However, recent studies of forearc-basin and continental-interior sediments suggest that Late Jurassic time was probably also a period of significant magmatism, although few dated plutons of this age have been recognized. We describe a belt of Late Jurassic plutonic and hypabyssal rocks at least 200 km in length that extends from the northwestern Mojave Desert through the Transverse Ranges. The belt lies outboard of both the voluminous Middle Jurassic arc and the ca. 148 Ma Independence dike swarm at these latitudes. The plutons include two intrusive suites emplaced between 157 and 149 Ma: a calc-alkaline suite compositionally unlike Permian-Triassic and Middle Jurassic mon-zonitic suites but similar to Late Cretaceous arc plutons emplaced across this region, and a contemporaneous but not comagmatic alkaline suite. The Late Jurassic was thus a time of both tectonic and magmatic transitions in the southern Cordillera. ?? 2008 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Neuweiler, Fritz; Bernoulli, Daniel
2005-02-01
The Broccatello lithological unit (Lower Jurassic, Hettangian to lower parts of Upper Sinemurian) near the village of Arzo (southern Alps, southern Switzerland) is a mound-shaped carbonate deposit that contains patches of red stromatactis limestone. Within the largely bioclastic Broccatello unit, the stromatactis limestone is distinguished by its early-diagenetic cavity system, a relatively fine-grained texture, and an in-situ assemblage of calcified siliceous sponges (various demosponges and hexactinellids). A complex shallow subsurface diagenetic pathway can be reconstructed from sediment petrography in combination with comparative geochemical analysis (carbon and oxygen isotopes; trace and rare earth elements, REE + Y). This pathway includes organic matter transformation, aragonite and skeletal opal dissolution, patchy calcification and lithification, sediment shrinkage, sagging and collapse, partial REE remobilization, and multiple sediment infiltration. These processes occurred under normal-marine, essentially oxic conditions and were independent from local, recurring syn-sedimentary faulting. It is concluded that the stromatactis results from a combination of calcite mineral authigenesis and syneresis-type deformation. The natural stromatactis phenomenon may thus be best explained by maturation processes of particulate polymer gels expected to form in fine-grained carbonate sediments in the shallow subsurface. Conditions favorable for the evolution of stromatactis appear to be particularly frequent during drowning of tropical or subtropical carbonate platforms.
NASA Astrophysics Data System (ADS)
Yokelson, Intan; Gehrels, George E.; Pecha, Mark; Giesler, Dominique; White, Chelsi; McClelland, William C.
2015-10-01
The Gravina belt consists of Upper Jurassic through Lower Cretaceous marine clastic strata and mafic-intermediate volcanic rocks that occur along the western flank of the Coast Mountains in southeast Alaska and coastal British Columbia. This report presents U-Pb ages and Hf isotope determinations of detrital zircons that have been recovered from samples collected from various stratigraphic levels and from along the length of the belt. The results support previous interpretations that strata in the western portion of the Gravina belt accumulated along the inboard margin of the Alexander-Wrangellia terrane and in a back-arc position with respect to the western Coast Mountains batholith. Our results are also consistent with previous suggestions that eastern strata accumulated along the western margin of the inboard Stikine, Yukon-Tanana, and Taku terranes and in a fore-arc position with respect to the eastern Coast Mountains batholith. The history of juxtaposition of western and eastern assemblages is obscured by subsequent plutonism, deformation, and metamorphism within the Coast Mountains orogen, but may have occurred along an Early Cretaceous sinistral transform system. Our results are inconsistent with models in which an east-facing subduction zone existed along the inboard margin of the Alexander-Wrangellia terrane during Late Jurassic-Early Cretaceous time.
Foffa, Davide; Cuff, Andrew R; Sassoon, Judyth; Rayfield, Emily J; Mavrogordato, Mark N; Benton, Michael J
2014-08-01
Pliosaurs were among the largest predators in Mesozoic seas, and yet their functional anatomy and feeding biomechanics are poorly understood. A new, well-preserved pliosaur from the Kimmeridgian of Weymouth Bay (UK) revealed cranial adaptations related to feeding. Digital modelling of computed tomography scans allowed reconstruction of missing, distorted regions of the skull and of the adductor musculature, which indicated high bite forces. Size-corrected beam theory modelling showed that the snout was poorly optimised against bending and torsional stresses compared with other aquatic and terrestrial predators, suggesting that pliosaurs did not twist or shake their prey during feeding and that seizing was better performed with post-symphyseal bites. Finite element analysis identified biting-induced stress patterns in both the rostrum and lower jaws, highlighting weak areas in the rostral maxillary-premaxillary contact and the caudal mandibular symphysis. A comparatively weak skull coupled with musculature that was able to produce high forces, is explained as a trade-off between agility, hydrodynamics and strength. In the Kimmeridgian ecosystem, we conclude that Late Jurassic pliosaurs were generalist predators at the top of the food chain, able to prey on reptiles and fishes up to half their own length. © 2014 Anatomical Society.
Foffa, Davide; Cuff, Andrew R; Sassoon, Judyth; Rayfield, Emily J; Mavrogordato, Mark N; Benton, Michael J
2014-01-01
Pliosaurs were among the largest predators in Mesozoic seas, and yet their functional anatomy and feeding biomechanics are poorly understood. A new, well-preserved pliosaur from the Kimmeridgian of Weymouth Bay (UK) revealed cranial adaptations related to feeding. Digital modelling of computed tomography scans allowed reconstruction of missing, distorted regions of the skull and of the adductor musculature, which indicated high bite forces. Size-corrected beam theory modelling showed that the snout was poorly optimised against bending and torsional stresses compared with other aquatic and terrestrial predators, suggesting that pliosaurs did not twist or shake their prey during feeding and that seizing was better performed with post-symphyseal bites. Finite element analysis identified biting-induced stress patterns in both the rostrum and lower jaws, highlighting weak areas in the rostral maxillary-premaxillary contact and the caudal mandibular symphysis. A comparatively weak skull coupled with musculature that was able to produce high forces, is explained as a trade-off between agility, hydrodynamics and strength. In the Kimmeridgian ecosystem, we conclude that Late Jurassic pliosaurs were generalist predators at the top of the food chain, able to prey on reptiles and fishes up to half their own length. PMID:24925465
NASA Astrophysics Data System (ADS)
Pointer, R.; Belcher, C.; Hesselbo, S. P.; Hodbod, M.; Pieńkowski, G.
2017-12-01
New fossil charcoal abundance and carbon-isotope data from two sedimentary cores provide new evidence of extreme environmental conditions in the Polish Basin during the Latest Triassic to Earliest Jurassic. Sedimentary cores from the Polish Basin provide an excellent record of terrestrial environmental conditions across the Triassic-Jurassic Boundary, a time of climatic extremes. Previous work has shown that the marine realm was affected by a large perturbation to the carbon cycle across the Triassic-Jurassic Boundary (manifested by large negative and positive carbon-isotope excursions) and limited records of charcoal abundance and organic geochemistry have indicated important changes in fire regime in the coeval ecosystems. Here we present two new carbon-isotope records generated from fossil plant matter across the Triassic-Jurassic boundary, and present new charcoal records. The charcoal abundance data confirm that there was variation in wildfire activity during the Late Triassic-Early Jurassic in the Polish Basin. Peaks in the number of fossil charcoal fragments present occur in both sedimentary cores, and increases in fossil charcoal abundance are linked to wildfires, signalling a short-lived rise in wildfire activity. Fossil charcoal abundance does not appear to be fully controlled by total organic matter content, depositional environment or bioturbation. We argue that increased wildfire activity is likely caused by an increase in ignition of plant material as a result of an elevated number of lightning strikes. Global warming (caused by a massive input of carbon into the atmosphere, as indicated by carbon-isotope data) can increase storm activity, leading to increased numbers of lightning strikes. Previous Triassic-Jurassic Boundary wildfire studies have found fossil charcoal abundance peaks at other northern hemisphere sites (Denmark & Greenland), and concluded that they represent increases in wildfire activity in the earliest Jurassic. Our new charcoal and carbon-isotope data confirm that there was a peak in wildfire activity in the Polish Basin in the earliest Jurassic, and support previous suggestions of widespread increased wildfire activity at the Triassic-Jurassic Boundary.
Grantz, A.; Clark, D.L.; Phillips, R.L.; Srivastava, S.P.; Blome, C.D.; Gray, L.-B.; Haga, H.; Mamet, B.L.; McIntyre, D.J.; McNeil, D.H.; Mickey, M.B.; Mullen, M.W.; Murchey, B.I.; Ross, C.A.; Stevens, C.H.; Silberling, Norman J.; Wall, J.H.; Willard, D.A.
1998-01-01
Cores from Northwind Ridge, a high-standing continental fragment in the Chukchi borderland of the oceanic Amerasia basin, Arctic Ocean, contain representatives of every Phanerozoic system except the Silurian and Devonian systems. Cambrian and Ordovician shallow-water marine carbonates in Northwind Ridge are similar to basement rocks beneath the Sverdrup basin of the Canadian Arctic Archipelago. Upper Mississippian(?) to Permian shelf carbonate and spicularite and Triassic turbidite and shelf lutite resemble coeval strata in the Sverdrup basin and the western Arctic Alaska basin (Hanna trough). These resemblances indicate that Triassic and older strata in southern Northwind Ridge were attached to both Arctic Canada and Arctic Alaska prior to the rifting that created the Amerasia basin. Late Jurassic marine lutite in Northwind Ridge was structurally isolated from coeval strata in the Sverdrup and Arctic Alaska basins by rift shoulder and grabens, and is interpreted to be a riftogenic deposit. This lutite may be the oldest deposit in the Canada basin. A cape of late Cenomanian or Turonian rhyodacite air-fall ash that lacks terrigenous material shows that Northwind Ridge was structurally isolated from the adjacent continental margins by earliest Late Cretaceous time. Closing Amerasia basin by conjoining seafloor magnetic anomalies beneath the Canada basin or by uniting the pre-Jurassic strata of Northwind Ridge with kindred sections in the Sverdrup basin and Hanna trough yield simular tectonic reconstructions. Together with the orientation and age of rift-marine structures, these data suggest that: 1) prior to opening of the Amerasia basin, both northern Alaska and continental ridges of the Chukchi borderland were part of North America, 2) the extension that created the Amerasia basin formed rift-margin graben beginning in Early Jurassic time and new oceanic crust probably beginning in Late Jurassic or early Neocomian time. Reconstruction of the Amerasia basin on the basis of the stratigraphy of Northwind Ridge and sea-floor magnetic anomalies in the Canada basin accounts in a general way for the major crustal elements of the Americasia basin, including the highstanding ridges of the Chukchi borderland, and supports S.W. Carye's hypothesis that the Amerasia basin is the product of anticlockwise rotational rifting of Arctic Alaska from North America.
NASA Astrophysics Data System (ADS)
Atasoy, Serdar G.; Altıner, Demir; Okay, Aral I.
2017-04-01
Two stratigraphical sections were measured along the Upper Jurassic - Lower Cretaceous carbonate successions exposed in a tectonic klippe of the Sakarya Zone (Pontides), north of Sivrihisar. According to the biozonation and microfacies types, two coeval but dissimiliar rock successions, separated by a thrust fault, have been detected. These successions belong to different depositional belts of the Edremit-Bursa-Bilecik Carbonate Platform (EBBCP), western Sakarya Zone. The lower succession displays a slope to basin facies and consists of the Kimmeridgian - Berriasian Yosunlukbayırı Formation and the overlying Valanginian Soǧukçam Limestone. Within these deposits the following biozones were defined: Globuligerina oxfordiana - Mohlerina basiliensis Zone (Kimmeridgian), Saccocoma Zone (Lower Tithonian), Protopeneroplis ultragranulata Zone (Upper Tithonian), Crassicollaria (massutiana subzone) Zone (uppermost Tithonian), Calpionella (alpina, Remaniella, elliptica subzones) Zone (Lower Berriasian), Calpionellopsis (simplex, oblonga subzones) Zone (Upper Berriasian) and Calpionellites (darderi subzone) Zone (Lower Valanginian). This succession is overthrusted from north to south by another distinct succession characterized by the shallow marine carbonate facies of the Kimmeridgian Günören Formation. Within this unit Labyrinthina mirabilis - Protopeneroplis striata (Kimmeridgian) Zone is recognized. A facies model is proposed for the Sivrihisar transect of the EBBCP for Kimmeridgian - Valanginian interval, based on the distribution of microfacies types. The toe-of-slope facies are characterized by peloidal-bioclastic packstone, mudstone-wackestone and calpionellid/ radiolarian wackestone-packstone comprising pelagic taxa (calpionellids, radiolaria, Globochaete sp., Pithonella sp., Saccocoma sp., calcareous dinocysts, aptychi, very rare planktonic foraminifera and nannoconids) and rare fossil groups transported from the carbonate platform (benthic foraminifera, microencrusters, worm tubes, bivalve, crinoid and echinoid fragments). These deposits represent the background pelagic deposition on the slope. The slope facies are mainly composed of bioclastic-peloidal/ bioclastic-intraclastic packstone, rudstone-grainstone, bioclastic-lithoclastic floatstone-rudstone and reflect generally the increase in the amount of platform derived material (benthic foraminifera, microencrusters, worm tubes, corals, sponges, bryozoa). The matrix of these coarse grained deposits also contains pelagic taxa (calpionellids, radiolaria, Saccocoma sp., Globochaete sp., Pithonella sp., aptyhci). The slope facies are sometimes intercalataed with the toe-of-slope type facies indicating quiescence periods. The shallow marine carbonate platform deposits are characterized by peloidal-intraclastic poorly washed grainstone with bioclasts, bioclastic mudstone-wackestone, intraclastic packstone-rudstone and contain several shallow marine fossils (benthic foraminifera, encrustres and rare echnoid, bivalve and coral fragments) without any pelagic taxa. These carbonates are interpreted as back-reef platform deposits that should not be far away from the platform margin due to the co-occurence of Protopeneroplis striata and Mohlerina basiliensis, abundant in the shelf edge and reefal areas with the complex benthic foraminifera, Labyrinthina mirabilis common in lagoonal areas. If the position of the studied sections with respect to the EBBCP is considered, the studied basin and slope facies should represent the southern platform margin and slope environments of this carbonate platform that faced an ocean to the south during the Jurassic-Cretaceous. The slope and basinal facies overthrusted by the shallow marine deposits in a region situated to the south of the main İzmir-Ankara-Erzincan (İAE) suture suggests an important disruption and shortening of the EBBCP margin and slope deposits related to the closure of the İAE ocean.
North Slope, Alaska: Source rock distribution, richness, thermal maturity, and petroleum charge
Peters, K.E.; Magoon, L.B.; Bird, K.J.; Valin, Z.C.; Keller, M.A.
2006-01-01
Four key marine petroleum source rock units were identified, characterized, and mapped in the subsurface to better understand the origin and distribution of petroleum on the North Slope of Alaska. These marine source rocks, from oldest to youngest, include four intervals: (1) Middle-Upper Triassic Shublik Formation, (2) basal condensed section in the Jurassic-Lower Cretaceous Kingak Shale, (3) Cretaceous pebble shale unit, and (4) Cretaceous Hue Shale. Well logs for more than 60 wells and total organic carbon (TOC) and Rock-Eval pyrolysis analyses for 1183 samples in 125 well penetrations of the source rocks were used to map the present-day thickness of each source rock and the quantity (TOC), quality (hydrogen index), and thermal maturity (Tmax) of the organic matter. Based on assumptions related to carbon mass balance and regional distributions of TOC, the present-day source rock quantity and quality maps were used to determine the extent of fractional conversion of the kerogen to petroleum and to map the original TOC (TOCo) and the original hydrogen index (HIo) prior to thermal maturation. The quantity and quality of oil-prone organic matter in Shublik Formation source rock generally exceeded that of the other units prior to thermal maturation (commonly TOCo > 4 wt.% and HIo > 600 mg hydrocarbon/g TOC), although all are likely sources for at least some petroleum on the North Slope. We used Rock-Eval and hydrous pyrolysis methods to calculate expulsion factors and petroleum charge for each of the four source rocks in the study area. Without attempting to identify the correct methods, we conclude that calculations based on Rock-Eval pyrolysis overestimate expulsion factors and petroleum charge because low pressure and rapid removal of thermally cracked products by the carrier gas retards cross-linking and pyrobitumen formation that is otherwise favored by natural burial maturation. Expulsion factors and petroleum charge based on hydrous pyrolysis may also be high compared to nature for a similar reason. Copyright ?? 2006. The American Association of Petroleum Geologists. All rights reserved.
Condon, Steven M.
1992-01-01
This report is a discussion and summary of Jurassic and older rocks in the Southern Ute Indian Reservation and adjacent areas, southwestern Colorado and northwestern New Mexico, and is based on analysis of geophysical logs and observations of outcrops. The Reservation, which is located in the northern San Juan Basin, has been the site of deposition of sediments for much of the Phanerozoic. Geologic times represented on the Reservation are the Precambrian, Cambrian, Devonian, Mississippian, Pennsylvanian, Permian, Triassic, Jurassic, Cretaceous, Tertiary, and Quaternary. Rocks of Ordovician and Silurian age have not been reported in this region. Thicknesses of pre-Cretaceous sedimentary rocks range from about 750 feet (229 meters) on the Archuleta arch, east of the Reservation, to more than 8,300 feet (2,530 meters) just northwest of the Reservation. About 5,500 feet (1,676 meters) of pre-Cretaceous sedimentary rocks occur in the central part of the Reservation, near Ignacio. At Ignacio the top of the Jurassic lies at a depth of 7,600 feet (2,316 meters) below the surface, which is composed of Tertiary rocks. As much as 2,500 feet (762 meters) of Tertiary rocks occur in the area. More than 10,000 feet (3,048 meters) of Cretaceous and younger rocks, and 15,600 feet (4,755 meters) of all Phanerozoic sedimentary rocks occur in the vicinity of the Reservation. In the early Paleozoic the area that includes the Southern Ute Reservation was on the stable western shelf of the craton. During this time sediments that compose the following shallow-marine clastic and carbonate rocks were deposited: the Upper Cambrian Ignacio Quartzite (0-150 feet; 0-46 meters), Upper Devonian Elbert Formation (50-200 feet; 15-61 meters), Upper Devonian Ouray Limestone (10-75 feet; 3-23 meters), and Mississippian Leadville Limestone (0-250 feet; 0-76 meters). Mixed carbonate and clastic deposition, which was punctuated by a unique episode of deposition of evaporite sediments, continued through the Pennsylvanian after a significant episode of erosion at the end of the Mississippian. Pennsylvanian rocks on the Reservation are the Molas Formation (20-100 feet; 6-30 meters) and Hermosa Group (400-2,800 feet; 122-853 meters), which consists of the Pinkerton Trail Formation (40-120 feet; 12-36 meters), Paradox Formation and equivalent rocks (200-1,800 feet; 61-549 meters), and Honaker Trail Formation (200-1,300 feet; 61-396 meters). A unit that is transitional between the Pennsylvanian and Permian is the Rico Formation, which is about 200 feet (61 meters) thick across most of the Reservation area. The close of the Paleozoic Era was marked by a great influx of arkosic clastic sediments from uplifted highlands to the north of the Reservation area during the Permian. Near the paleomountain front the Cutler Formation (presently as thick as 8,000 feet; 2,438 meters) formed as a result of deposition of arkosic sediments; however, the original thickness of the Cutler is unknown due to an unconformity at its top. In the area of the Reservation the Cutler has group status and has been divided into several formations: the Halgaito Formation (350-800 feet; 107-244 meters), Cedar Mesa Sandstone and equivalent rocks (150-350 feet; 46-107 meters), Organ Rock Formation (500-900 feet; 152-274 meters), and De Chelly Sandstone (0-100 feet; 0-30 meters). The sediments of these formations were deposited in a variety of environments, including eolian, mud-flat, and fluvial systems. Following an episode of erosion in the Early and Middle(?) Triassic, deposition in the area of the Southern Ute Reservation continued during the Mesozoic. Sediments of the Upper Triassic Dolores and correlative Chinle Formations were deposited in fluvial, lacustrine, and minor eolian environments. On the Reservation the Dolores is 500-1,200 feet (152-366 meters) thick. Lower Jurassic eolian and fluvial deposits may have been present in much of the Reservation area but have been removed
NASA Astrophysics Data System (ADS)
Ma, Liang; Jiang, Shao-Yong; Dai, Bao-Zhang; Jiang, Yao-Hui; Hou, Ming-Lan; Pu, Wei; Xu, Bin
2013-03-01
The Linglong granite is one of the most important Mesozoic plutons in the Shandong Peninsula, eastern China, and its petrogenesis has long been controversial, particularly with regard to the nature of source region and geodynamic setting. Our new precise zircon U-Pb dating results reveal that the Linglong granite was emplaced in the Late Jurassic (157-160 Ma). In addition, abundant inherited zircons are identified in the granite with four groups of age peaked at ~ 208, ~ 750, ~ 1800 and ~ 2450 Ma. Geochemical studies indicate that the Linglong granite is weakly peraluminous I-type granite, and is characterized by high SiO2, Sr and La, but low MgO, Y and Yb contents, strongly fractionated REE pattern and high Sr/Y and La/Yb ratios. It also exhibits high initial 87Sr/86Sr ratios (0.7097 to 0.7125), low ɛNd(t) (- 17.7 to - 20.3) and variable zircon ɛHf(t) (- 22.2 to - 8.7) values. Calculation of the zircon saturation temperature (TZr) reveals that the magma temperatures are 760 ± 20 °C, and the lowest TZr value of 740 °C may be close to initial magma temperature of this inheritance-rich rock. Interpretation of the elemental and isotopic data suggests that the Linglong granite has some affinities with the adakite, and was most likely derived from partial melting of thickened lower crust without any significant contribution of mantle components. The presence of a large number of inherited zircons and variable Sr-Nd-Hf isotopic compositions reveal that the Linglong granite probably has multiple sources consisting of the lower crust of both South China Block and North China Block, as well as the collision-related alkaline rocks and UHP metamorphic rocks. The continental arc-rifting related to the Izanagi plate subduction was the most likely geodynamic force for formation of the Jurassic Linglong adakatic granite in the Shandong Peninsula.
NASA Astrophysics Data System (ADS)
Liang, Chenyue; Neubauer, Franz; Liu, Yongjiang; Genser, Johann; Dunkl, István; Heberer, Bianca; Jin, Wei; Zeng, Zuoxun; Li, Weimin; Wen, Quanbo; Li, Jing
2015-04-01
The Xingcheng-Taili ductile shear zone (western Liaoning Province in China) formed during latest Jurassic to Early Cretaceous crustal extension of the eastern North China craton, and exhumed low to medium metamorphic grade Archean, Upper Triassic and Upper Jurassic granitic rocks. The Mesozoic Yiwulüshan metamorphic core complex (Yiwulüshan MCC) is dominated by a NNE-SSW elongated dome with a left-lateral shear zone, which is located in the northeastern part of Xingcheng-Taili ductile shear zone, and combine as Taili-Yiwulüshan metamorphic core complex corridor. To the east, it is bounded by the NNE-trending Cretaceous to Eocene Liaohe basin (the northern extension of the Bohai Bay basin), and to the west by the Cretaceous-aged Fuxin-Yixian basin, which could potentially interpreted as supra-detachment basins. Here, we present results from a multi-method thermochronological study and coupled with structural investigations and sections of adjacent supra-detachment basins, which constrain the timing of regional deformation as well as the cooling history and exhumation processes of the low- to middle-grade metamorphic complex in the Taili-Yiwulüshan MCC corridor, in order to understand the mode of lithospheric scale reactivation, extension and thinning of the North China craton. The new40Ar/39Ar muscovite, biotite, K-feldspar and (U-Th)/He apatite ages from granitic rocks help constrain the thermal evolution during its exhumation. The thermochronologic studies have shown at least three stages of exhumation and cooling from late Jurassic to Eocene in Xingcheng-Taili shear zone should be distinguished, e.g., ~ 150-130 Ma, 130-115 Ma and 115-52 Ma, respectively. Diachronous onset and subsequent parallel cooling and exhumation characterize the early thermal history. The Yiwulüshan MCC has a similar exhumation history from 135 to 97 Ma with a similar cooling history. The development of Taili-Yiwulüshan MCC corridor is associated with synkinematic emplacement, exhumation, and volcanic-clastic deposition in the supra-detachment basins. Initiation of the unroofing history resulted from ductile left-lateral shearing since latest Jurassic times. Diachronous onset and subsequent cooling and exhumation characterize the early thermal history. The second and third stages of cooling started lasted until the recently active faulting. Start form the Early Cretaceous the detachment shear zone truncating by the later brittle normal fault. The (U-Th)/He age of 52.3 ± 4.7 Ma indicating final Eocene exhumation of the Taili area is consistent with normal faulting in the Bohai basin area in the east. Based on the present results and published information, that Cretaceous WNW-ESE extensional deformation and lithosphere thinning in the Taili-Yiwulüshan corridor and throughout the eastern North China craton, the synchroneity of cooling and exhumation of metamorphic core complexes, the formation of supra-detachment basins, and regional alkaline igneous activity reflects Early Cretaceous regional extensional tectonics , possibly resulting from roll-back of the subducted Pacific plate beneath North China Craton.
Poppe, L.J.; Popenoe, P.; Poag, C.W.; Swift, B.A.
1995-01-01
A Continental Offshore Stratigraphic Test (COST) well and six exploratory wells have been drilled in the south-east Georgia embayment. The oldest rocks penetrated are weakly metamorphosed Lower Ordovician quartz arenites and Silurian shales and argillites in the Transco 1005-1 well and Upper Devonian argillites in the COST GE-1 well. The Palaeozoic strata are unconformably overlain by interbedded non-marine Jurassic sandstones and shales and marginal marine Lower Cretaceous rocks. Together, these rocks are stratigraphically equivalent to the onshore Fort Pierce and Cotton Valley(?) Formations and rocks of the Lower Cretaceous Comanchean Provincial Series. The Upper Cretaceous part of the section is composed mainly of neritic calcareous shales and shaley limestones stratigraphically equivalent to the primarily marginal marine facies of the onshore Atkinson, Cape Fear and Middendorf Formations and Black Creek Group, and to limestones and shales of the Lawson Limestone and Peedee Formations. Cenozoic strata are also described. -from Authors
Dysaerobic trace fossils and ichnofabrics in the upper Jurassic Kimmeridge Clay of southern England
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wignall, P.B.
The trace fossil suite from the Kimmeridge Clay is calibrated against an oxygen gradient derived from previous geochemical, lithological and shelly macrofaunal studies. Several soft-bodied trace markers appear to have tolerated lower oxygen tensions than even the hardiest shelly benthic macrofauna-a common occurrence in both recent and ancient dysaerobic settings. Lowest diversity trace fossil assemblages consist of Astacimorphichnus etchesi (new ichnotaxon), a small endostratal pascichnial trace attributed to pioneering polychaete populations. Ekdale and Masons' (1988) contention that fodinichnia dominate the lowest diversity and lowest oxygen settings is not substantiated as the only example of this feeding strategy, Rhizocorallium irregulare, ismore » encountered in moderately diverse trace fossil assemblages associated with a low diversity shelly macrofauna. Upper dysaerobic conditions are characterized by the development of a surface mixed layer and the consequent destruction of fine lamination. Tiering is only developed under normal oxygen conditions with Chondrites as the deepest trace. In contrast to many previous studies, Chondrites is never found in dysaerobic facies.« less
Tectonics of Chukchi Sea Shelf sedimentary basins and its influence on petroleum systems
NASA Astrophysics Data System (ADS)
Agasheva, Mariia; Antonina, Stoupakova; Anna, Suslova; Yury, Karpov
2016-04-01
The Chukchi Sea Shelf placed in the East Arctic offshore of Russia between East Siberian Sea Shelf and North Slope Alaska. The Chukchi margin is considered as high petroleum potential play. The major problem is absence of core material from drilling wells in Russian part of Chukchi Shelf, hence strong complex geological and geophysical analyses such as seismic stratigraphy interpretation should be provided. In addition, similarity to North Slope and Beaufort Basins (North Chukchi) and Hope Basin (South Chukchi) allow to infer the resembling sedimentary succession and petroleum systems. The Chukchi Sea Shelf include North and South Chukchi Basins, which are separated by Wrangel-Herald Arch and characterized by different opening time. The North Chukchi basin is formed as a general part of Canada Basin opened in Early Cretaceous. The South Chukchi Basin is characterized by a transtensional origin of the basin, this deformation related to motion on the Kobuk Fault [1]. Because seismic reflections follow chronostratigraphic correlations, it is possible to achieve stratigraphic interpretation. The main seismic horizons were indicated as: PU, JU, LCU, BU, mBU marking each regional unconformities. Reconstruction of main tectonic events of basin is important for building correct geological model. Since there are no drilling wells in the North and South Chukchi basins, source rocks could not be proven. Referring to the North Chukchi basin, source rocks equivalents of Lower Cretaceous Pebble Shale Formation, Lower Jurassic Kingdak shales and Upper Triassic Shublik Formation (North Slope) is possible exhibited [2]. In the South Chukchi, it is possible that Cretaceous source rocks could be mature for hydrocarbon generation. Erosions and uplifts that could effect on hydrocarbon preservation was substantially in Lower Jurassic and Early Cretaceous periods. Most of the structures may be connected with fault and stratigraphy traps. The structure formed at Wrangel-Herald Arch to North-Chukchi through similar to well-known structure in Norwegian part of Barents Sea - Loppa High. In South Chukchi basin, the seismic wave shows interesting structures akin to diaper fold. Inversion-related anticlines and stratigraphic pinch-outs traps could presence in Cretaceous-Cenozoic cross section. As a result, we gathered and analyzed source rocks and reservoir analogs and gained improved sedimentary models in Eastern Russian Shelfs (Laptev, East Siberian and Chukchi Seas). Appropriate tectonic conditions, proven by well testing source rocks in North Slope and high thickness of basins suggest a success of hydrocarbon exploration in Russian part of Chukchi Sea Shelf. [1] Verzhbitsky V. E., S. D. Sokolov, E. M. Frantzen, A. Little, M. I. Tuchkova, and L.I. Lobkovsky, 2012, The South Chukchi Sedimentary Basin (Chukchi Sea, Russian Arctic): Age, structural pattern,and hydrocarbon potential, in D. Gao, ed., Tectonics and sedimentation: Implications for petroleum systems: AAPG Memoir 100, p.267-290. [2] Peters K. E., Magoon L. B., Bird K. J., Valin Z. C., Keller M. A. North Slope, Alaska: Source rock distribution, richness, thermal maturity, and petroleum charge AAPG Bulletin, V. 90, No. 2 (February 2006), 2006, P. 261-292.
1-D/3-D geologic model of the Western Canada Sedimentary Basin
Higley, D.K.; Henry, M.; Roberts, L.N.R.; Steinshouer, D.W.
2005-01-01
The 3-D geologic model of the Western Canada Sedimentary Basin comprises 18 stacked intervals from the base of the Devonian Woodbend Group and age equivalent formations to ground surface; it includes an estimated thickness of eroded sediments based on 1-D burial history reconstructions for 33 wells across the study area. Each interval for the construction of the 3-D model was chosen on the basis of whether it is primarily composed of petroleum system elements of reservoir, hydrocarbon source, seal, overburden, or underburden strata, as well as the quality and areal distribution of well and other data. Preliminary results of the modeling support the following interpretations. Long-distance migration of hydrocarbons east of the Rocky Mountains is indicated by oil and gas accumulations in areas within which source rocks are thermally immature for oil and (or) gas. Petroleum systems in the basin are segmented by the northeast-trending Sweetgrass Arch; hydrocarbons west of the arch were from source rocks lying near or beneath the Rocky Mountains, whereas oil and gas east of the arch were sourced from the Williston Basin. Hydrocarbon generation and migration are primarily due to increased burial associated with the Laramide Orogeny. Hydrocarbon sources and migration were also influenced by the Lower Cretaceous sub-Mannville unconformity. In the Peace River Arch area of northern Alberta, Jurassic and older formations exhibit high-angle truncations against the unconformity. Potential Paleozoic though Mesozoic hydrocarbon source rocks are in contact with overlying Mannville Group reservoir facies. In contrast, in Saskatchewan and southern Alberta the contacts are parallel to sub-parallel, with the result that hydrocarbon source rocks are separated from the Mannville Group by seal-forming strata within the Jurassic. Vertical and lateral movement of hydrocarbons along the faults in the Rocky Mountains deformed belt probably also resulted in mixing of oil and gas from numerous source rocks in Alberta.
Poppe, L.J.; Poag, C.W.; Stanton, R.W.
1992-01-01
The Mobil 312-1 hydrocarbon exploratory well, southeastern Georges Bank Basin penetrated a section entirely composed of sedimentary rocks that range from Middle to Pliocene age. Carbonates are the dominant lithologies in the intervals at 6096-3444 m, 2560-2096 m and 1067-887 m; siliciclastics make up most of the remaining section. Although inferred paleoenvironments range primarily from supratidal to outer neritic, thin lignitic coal beds at 2204-2195 m and 1929-1920 m record brief periods of nonmarine sedimentation. Middle and Upper Jurassic calcarenites, the drilling targets of the well, have little or no visible porosity and underwent at least three episodes of cementation.
An 8.5 m long ammonite drag mark from the Upper Jurassic Solnhofen Lithographic Limestones, Germany
Falkingham, Peter L.; Schweigert, Günter; Jiménez, Alejandro P.
2017-01-01
Trackways and tracemakers preserved together in the fossil record are rare. However, the co-occurrence of a drag mark, together with the dead animal that produced it, is exceptional. Here, we describe an 8.5 m long ammonite drag mark complete with the preserved ammonite shell (Subplanites rueppellianus) at its end. Previously recorded examples preserve ammonites with drag marks of < 1 m. The specimen was recovered from a quarry near Solnhofen, southern Germany. The drag mark consists of continuous parallel ridges and furrows produced by the ribs of the ammonite shell as it drifted just above the sediment surface, and does not reflect behaviour of the living animal. PMID:28489915
Reservoir characterization of the Smackover Formation in southwest Alabama. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.
1993-02-01
The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- andmore » improved-recovery methods from the Smackover of Alabama.« less
Reservoir characterization of the Smackover Formation in southwest Alabama
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.
1993-02-01
The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- andmore » improved-recovery methods from the Smackover of Alabama.« less
A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea.
Martinez, Ricardo N; Sereno, Paul C; Alcober, Oscar A; Colombi, Carina E; Renne, Paul R; Montañez, Isabel P; Currie, Brian S
2011-01-14
Upper Triassic rocks in northwestern Argentina preserve the most complete record of dinosaurs before their rise to dominance in the Early Jurassic. Here, we describe a previously unidentified basal theropod, reassess its contemporary Eoraptor as a basal sauropodomorph, divide the faunal record of the Ischigualasto Formation with biozones, and bracket the formation with (40)Ar/(39)Ar ages. Some 230 million years ago in the Late Triassic (mid Carnian), the earliest dinosaurs were the dominant terrestrial carnivores and small herbivores in southwestern Pangaea. The extinction of nondinosaurian herbivores is sequential and is not linked to an increase in dinosaurian diversity, which weakens the predominant scenario for dinosaurian ascendancy as opportunistic replacement.
Bishop, Michele G.
1999-01-01
The Northwest Shelf Province (U.S.G.S. #3948) of Australia contains two important hydrocarbon source-rock intervals and numerous high quality reservoir intervals. These are grouped into two petroleum systems, Dingo-Mungaroo/Barrow and Locker-Mungaroo/Barrow, where the Triassic Mungaroo Formation and the Early Cretaceous Barrow Group serve as the major reservoir rocks for the Jurassic Dingo Claystone and Triassic Locker Shale source rocks. The primary source rock, Dingo Claystone, was deposited in restricted marine conditions during the Jurassic subsidence of a regional sub-basin trend. The secondary source rock, Locker Shale, was deposited in terrestrially-influenced, continental seaway conditions during the Early Triassic at the beginning of the breakup of Pangea. These systems share potential reservoir rocks of deep-water, proximal and distal deltaic, marginal marine, and alluvial origins, ranging in age from Late Triassic through Cretaceous. Interformational seals and the regional seal, Muderong Shale, along with structural and stratigraphic traps account for the many types of hydrocarbon accumulations in this province. In 1995, the Northwest Shelf produced 42% of the hydrocarbon liquids in Australia, and in 1996 surpassed the Australian Bass Straits production, with 275,000 barrels per day (bpd) average. This region is the major producing province of Australia. Known reserves as of 1995 are estimated at 11.6 billion of barrels of oil equivalent (BBOE)(Klett and others, 1997) . Although exploration has been conducted since 1955, many types of prospects have not been targeted and major reserves continue to be discovered.
Mantle source heterogeneity of the Early Jurassic basalt of eastern North America
NASA Astrophysics Data System (ADS)
Gregory Shellnutt, J.; Dostal, Jaroslav; Yeh, Meng-Wan
2018-04-01
One of the defining characteristics of the basaltic rocks from the Early Jurassic Eastern North America (ENA) sub-province of the Central Atlantic Magmatic Province (CAMP) is the systematic compositional variation from South to North. Moreover, the tectono-thermal regime of the CAMP is debated as it demonstrates geological and structural characteristics (size, radial dyke pattern) that are commonly associated with mantle plume-derived mafic continental large igneous provinces but is considered to be unrelated to a plume. Mantle potential temperature ( T P) estimates of the northern-most CAMP flood basalts (North Mountain basalt, Fundy Basin) indicate that they were likely produced under a thermal regime ( T P ≈ 1450 °C) that is closer to ambient mantle ( T P ≈ 1400 °C) conditions and are indistinguishable from other regions of the ENA sub-province ( T Psouth = 1320-1490 °C, T Pnorth = 1390-1480 °C). The regional mantle potential temperatures are consistent along the 3000-km-long ENA sub-province suggesting that the CAMP was unlikely to be generated by a mantle plume. Furthermore, the mantle potential temperature calculation using the rocks from the Northern Appalachians favors an Fe-rich mantle (FeOt = 8.6 wt %) source, whereas the rocks from the South Appalachians favor a less Fe-rich (FeOt = 8.3 wt %) source. The results indicate that the spatial-compositional variation of the ENA basaltic rocks is likely related to differing amounts of melting of mantle sources that reflect the uniqueness of their regional accreted terranes (Carolinia and West Avalonia) and their post-accretion, pre-rift structural histories.
Paleomagnetism of the Mesozoic in Alaska. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Packer, D. R.
1972-01-01
Over 400 oriented cores of Permian, Triassic, Jurassic, and Cretaceous sedimentary and igneous rocks were collected from 34 sites at 10 areas throughout southern Alaska. After magnetic cleaning in successively higher alternating fields 179 samples were considered to be stable and to give statistically consistent results within each site and age group. Due to the lack of a sufficient number of stable samples, the results from Permian, Triassic, and Cretaceous rocks were inconclusive. The nine remaining Jurassic sites represent 100 samples from three general areas in southern Alaska. The southern Alaskan Jurassic paleomagnetic pole is significantly different from the North American Jurassic pole. This suggests that since the Jurassic, southern Alaska must have moved approximately 18 degrees north and rotated 52 degrees clockwise to reach its present position. Tectonic interpretation of these results give a possible explanation for many of the geologic features observed in southern Alaska.
NASA Astrophysics Data System (ADS)
Loveless, Sian E.; Bloomfield, John P.; Ward, Robert S.; Hart, Alwyn J.; Davey, Ian R.; Lewis, Melinda A.
2018-03-01
Shale gas is considered by many to have the potential to provide the UK with greater energy security, economic growth and jobs. However, development of a shale gas industry is highly contentious due to environmental concerns including the risk of groundwater pollution. Evidence suggests that the vertical separation between exploited shale units and aquifers is an important factor in the risk to groundwater from shale gas exploitation. A methodology is presented to assess the vertical separation between different pairs of aquifers and shales that are present across England and Wales. The application of the method is then demonstrated for two of these pairs—the Cretaceous Chalk Group aquifer and the Upper Jurassic Kimmeridge Clay Formation, and the Triassic sandstone aquifer and the Carboniferous Bowland Shale Formation. Challenges in defining what might be considered criteria for `safe separation' between a shale gas formation and an overlying aquifer are discussed, in particular with respect to uncertainties in geological properties, aquifer extents and determination of socially acceptable risk levels. Modelled vertical separations suggest that the risk of aquifer contamination from shale exploration will vary greatly between shale-aquifer pairs and between regions and this will need to be considered carefully as part of the risk assessment and management for any shale gas development.
NASA Astrophysics Data System (ADS)
Gremaud, Vivian; Goldscheider, Nico; Savoy, Ludovic; Favre, Gérald; Masson, Henri
2009-12-01
The relationships between stratigraphic and tectonic setting, recharge processes and underground drainage of the glacierised karst aquifer system ‘Tsanfleuron-Sanetsch’ in the Swiss Alps have been studied by means of various methods, particularly tracer tests (19 injections). The area belongs to the Helvetic nappes and consists of Jurassic to Palaeogene sedimentary rocks. Strata are folded and form a regional anticlinorium. Cretaceous Urgonian limestone constitutes the main karst aquifer, overlain by a retreating glacier in its upper part. Polished limestone surfaces are exposed between the glacier front and the end moraine of 1855/1860 (Little Ice Age); typical alpine karrenfields can be observed further below. Results show that (1) large parts of the area are drained by the Glarey spring, which is used as a drinking water source, while marginal parts belong to the catchments of other springs; (2) groundwater flow towards the Glarey spring occurs in the main aquifer, parallel to stratification, while flow towards another spring crosses the entire stratigraphic sequence, consisting of about 800 m of marl and limestone, along deep faults that were probably enlarged by mass movements; (3) the variability of glacial meltwater production influences the shape of the tracer breakthrough curves and, consequently, flow and transport in the aquifer.
Significance of the Nestos Shearzone in the southern Rhodopes (Northern Greece/Southern Bulgaria)
NASA Astrophysics Data System (ADS)
Nagel, T. J.; Schmidt, S.; Froitzheim, N.; Jahn-Awe, S.; Georgiev, N.
2009-04-01
The Nestos Shearzone can be traced over 100 kilometers and separates the two main units of the Rhodopes, the Upper Complex in the hangingwall from the Pangaion-Pirin Unit in the footwall. The Upper Complex consists of mingled continental and oceanic basement rocks, intruded by granitic bodies of Cretaceous and Tertiary age. It underwent at least amphibolite facies conditions during the Alpine orogenic cycle and several localities with preserved high-pressure and/or ultrahigh-pressure rocks have been found. The age of orogenesis and metamorphism is ambiguous and several Mesozoic and Tertiary cycles may be recorded in that unit. The lowermost level immediately on top of the Nestos Shearzone (Sidironero subunit) mainly consists of rocks derived from a Jurassic arc and appears to show the youngest reported (i.e. Eocene) high-grade metamorphism (including ultra-high-pressure conditions and a subsequent migmatic stage). The underlying Pangaion-Pirin Unit beneath the Nestos Shearzone is build of marbles and Variscan gneisses of disputed Mesozoic paleogeographic position. It is intruded by Oligocene granitoids, which also crosscut the Nestos shearzone. The Pangaion-Pirin Unit experienced only blueschist facies and subsequent upper greenschist facies conditions during the Alpine cycle. The Nestos Shearzone is defined by top-to-the-southwest-directed mylonites formed under upper greenschist facies conditions. So far, it has been viewed as a thrust. We present structural and petrological data suggesting that the Nestos Shearzone is instead a major mid-crustal detachment related to late Eo-Oligocene backarc extension. Mylonitisation along the shear zone occurred under greenschist facies conditions and postdates the blueschist facies stage. The shear zone formed between about 40 Ma and 34 Ma as indicated by the age of high temperature conditions in the hangingwall and the age of Oligocene granitoids crosscutting the mylonites. During this time, pronounced extension and basin formation took place in the hangingwall of the Nestos Shearzone. We propose that the brittle Mesta detachment, which bounds the Mesta Graben to the East, roots into the Nestos Shearzone. The metamorphic history of the Pangaion-Pirin Unit as well as the proposed young age of the Nestos Shearzone is in conflict with studies proposing that this unit represents an independent microcontinent (Drama) accreted to the future Rhodopes in late Jurassic or early Cretaceous times. Instead, we hypothesize that the Pangaion-Pirin Unit could be derived from the Apulian plate, which would have far reaching consequences for the structural architecture of the Aegean Sea area.
NASA Astrophysics Data System (ADS)
Naydenov, Kalin; Peytcheva, Irena; von Quadt, Albrecht; Sarov, Stoyan; Kolcheva, Krastina; Dimov, Dimo
2013-06-01
The present study describes the characteristics of the Maritsa Shear Zone (MSZ), a major tectonic element in the Balkanides in South Central Bulgaria. Metamorphic rocks of four lithotectonic units — Madan, Chepinska, Asenitsa and Thrace units crop out in the study area. Strike-slip ductile deformation in MSZ affects the Thrace Lithotectonic Unit (TLU) for up to 15 km. The stratigraphy of this unit is divided in two: Parvenets succession and variegated succession. U-Pb zircon dating reveals Late Jurassic protolith age for metagranitoids and metagabbros of the variegated succession. For its metasedimentary part Triassic to Upper Jurassic age is suggested based on the strontium isotope signature of the marbles. The Parvenets succession affiliates to the Variscan metamorphic basement of Europe. The metamorphic evolution of the zone is subdivided into synmetamorphic strike-slip deformations and annealing stages. The ductile shearing occurred in greenschist to lower amphibolite facies between 130 Ma (discordant U-Pb ages) and 82-78 Ma (late-syntectonic granites). This stage is connected with the oblique collision of the Rhodope Late Jurassic arc with the European platform. With the docking of the arc and the triggering of the strike-slip movements, MSZ represents an orogen-scale border between the Rhodope south-vergent thrust complex and the north-vergent deformations in the Srednogorie and Sakar-Strandzha zones. During the Late Cretaceous MSZ is the contact between the Srednogorie magmatic arc (part of the Apuseni-Banat-Timok-Srednogorie Belt) and the Rhodopean metamorphic core complexes. NW-SE dextral faulting characterized the brittle tectonics along the zone. Strike-slip faults of the southern border of the TLU are transferred into reverse faults, along which the TLU overthrusted Oligocene sediments. MSZ is an orogen-scale transpressional shear zone and an important border in the structure of the Balkanides. This multidisciplinary research emphasizes its role as a major tectonic element by presenting new structural, petrographic and isotope geochronology data.
The Triassic-Jurassic boundary in eastern North America
NASA Technical Reports Server (NTRS)
Olsen, P. E.; Comet, B.
1988-01-01
Rift basins of the Atlantic passive margin in eastern North America are filled with thousands of meters of continental rocks termed the Newark Supergroup which provide an unprecedented opportunity to examine the fine scale structure of the Triassic-Jurassic mass extinction in continental environments. Time control, vital to the understanding of the mechanisms behind mass extinctions, is provided by lake-level cycles apparently controlled by orbitally induced climate change allowing resolution at the less than 21,000 year level. Correlation with other provinces is provided by a developing high resolution magnetostratigraphy and palynologically-based biostratigraphy. A large number of at least local vertebrate and palynomorph extinctions are concentrated around the boundary with survivors constituting the earliest Jurassic assemblages, apparently without the introduction of new taxa. The palynofloral transition is marked by the dramatic elimination of a relatively high diversity Triassic pollen assemblage with the survivors making up a Jurassic assemblage of very low diversity overwhelmingly dominated by Corollina. Based principally on palynological correlations, the hypothesis that these continental taxonomic transitions were synchronous with the massive Triassic-Jurassic marine extinctions is strongly corroborated. An extremely rapid, perhaps catastrophic, taxonomic turnover at the Triassic-Jurassic boundary, synchronous in continental and marine realms is hypothesized and discussed.
Florida: A Jurassic transform plate boundary
Klitgord, Kim D.; Popenoe, Peter; Schouten, Hans
1984-01-01
Magnetic, gravity, seismic, and deep drill hole data integrated with plate tectonic reconstructions substantiate the existence of a transform plate boundary across southern Florida during the Jurassic. On the basis of this integrated suite of data the pre-Cretaceous Florida-Bahamas region can be divided into the pre-Jurassic North American plate, Jurassic marginal rift basins, and a broad Jurassic transform zone including stranded blocks of pre-Mesozoic continental crust. Major tectonic units include the Suwannee basin in northern Florida containing Paleozoic sedimentary rocks, a central Florida basement complex of Paleozoic age crystalline rock, the west Florida platform composed of stranded blocks of continental crust, the south Georgia rift containing Triassic sedimentary rocks which overlie block-faulted Suwannee basin sedimentary rocks, the Late Triassic-Jurassic age Apalachicola rift basin, and the Jurassic age south Florida, Bahamas, and Blake Plateau marginal rift basins. The major tectonic units are bounded by basement hinge zones and fracture zones (FZ). The basement hinge zone represents the block-faulted edge of the North American plate, separating Paleozoic and older crustal rocks from Jurassic rifted crust beneath the marginal basins. Fracture zones separate Mesozoic marginal sedimentary basins and include the Blake Spur FZ, Jacksonville FZ, Bahamas FZ, and Cuba FZ, bounding the Blake Plateau, Bahamas, south Florida, and southeastern Gulf of Mexico basins. The Bahamas FZ is the most important of all these features because its northwest extension coincides with the Gulf basin marginal fault zone, forming the southern edge of the North American plate during the Jurassic. The limited space between the North American and the South American/African plates requires that the Jurassic transform zone, connecting the Central Atlantic and the Gulf of Mexico spreading systems, was located between the Bahamas and Cuba FZ's in the region of southern Florida. Our plate reconstructions combined with chronostratigraphic and lithostratigraphic information for the Gulf of Mexico, southern Florida, and the Bahamas indicate that the gulf was sealed off from the Atlantic waters until Callovian time by an elevated Florida-Bahamas region. Restricted influx of waters started in Callovian as a plate reorganization, and increased plate separation between North America and South America/Africa produced waterways into the Gulf of Mexico from the Pacific and possibly from the Atlantic.
NASA Astrophysics Data System (ADS)
Link, Paul Karl; Fanning, C. Mark; Beranek, Luke P.
2005-12-01
Detrital-zircon age-spectra effectively define provenance in Holocene and Neogene fluvial sands from the Snake River system of the northern Rockies, U.S.A. SHRIMP U-Pb dates have been measured for forty-six samples (about 2700 zircon grains) of fluvial and aeolian sediment. The detrital-zircon age distributions are repeatable and demonstrate predictable longitudinal variation. By lumping multiple samples to attain populations of several hundred grains, we recognize distinctive, provenance-defining zircon-age distributions or "barcodes," for fluvial sedimentary systems of several scales, within the upper and middle Snake River system. Our detrital-zircon studies effectively define the geochronology of the northern Rocky Mountains. The composite detrital-zircon grain distribution of the middle Snake River consists of major populations of Neogene, Eocene, and Cretaceous magmatic grains plus intermediate and small grain populations of multiply recycled Grenville (˜950 to 1300 Ma) grains and Yavapai-Mazatzal province grains (˜1600 to 1800 Ma) recycled through the upper Belt Supergroup and Cretaceous sandstones. A wide range of older Paleoproterozoic and Archean grains are also present. The best-case scenario for using detrital-zircon populations to isolate provenance is when there is a point-source pluton with known age, that is only found in one location or drainage. We find three such zircon age-populations in fluvial sediments downstream from the point-source plutons: Ordovician in the southern Beaverhead Mountains, Jurassic in northern Nevada, and Oligocene in the Albion Mountains core complex of southern Idaho. Large detrital-zircon age-populations derived from regionally well-defined, magmatic or recycled sedimentary, sources also serve to delimit the provenance of Neogene fluvial systems. In the Snake River system, defining populations include those derived from Cretaceous Atlanta lobe of the Idaho batholith (80 to 100 Ma), Eocene Challis Volcanic Group and associated plutons (˜45 to 52 Ma), and Neogene rhyolitic Yellowstone-Snake River Plain volcanics (˜0 to 17 Ma). For first-order drainage basins containing these zircon-rich source terranes, or containing a point-source pluton, a 60-grain random sample is sufficient to define the dominant provenance. The most difficult age-distributions to analyze are those that contain multiple small zircon age-populations and no defining large populations. Examples of these include streams draining the Proterozoic and Paleozoic Cordilleran miogeocline in eastern Idaho and Pleistocene loess on the Snake River Plain. For such systems, large sample bases of hundreds of grains, plus the use of statistical methods, may be necessary to distinguish detrital-zircon age-spectra.
NASA Astrophysics Data System (ADS)
Kaminski, Michael; Kaka, SanLinn; Kaminski, Matthew
2017-04-01
The hypervelocity impact of an asteroid in southern Germany around 15 million years ago not only caused an environmental catastrophe, but it also created a scenario that provides us with a world-class natural laboratory for teaching the basic Principles of Geology. The combination of museum visits and observation of rock outcrops enables the student to reinforce or rediscover the basic principles of physical and historical Geology that are presented in first- or second-year Geoscience courses. At KFUPM, our visit to the Ries Geopark begins at the Ries Crater Museum in Nördlingen, where students review knowledge learned in their Physical Geology course: the Nebular Theory, origin of the solar system, and the classification of meteorites based on real examples. Students then learn the stages of impact crater formation, shock metamorphism, and the products of impact crater formation such as tectites, impact breccia and suevite. Students also become familiar with the Mesozoic stratigraphy of Southern Germany, reviewing basic principals of stratigraphy. Visits to local outcrops reinforce the knowledge gained at the Museum. A visit to the nearby Solnhofen Museum and quarries provides insight into the nature of the late Jurassic animals that lived at the edge of the Tethys Sea, reinforcing many topics learned during their second-year Paleontology course, such as taphonomy, and the idea of a death assemblage. At the Museum of the Geosciences Department of the University of Tübingen, the students become familiar with Mesozoic ammonoids as part of their second-year Paleontology course. A visit to the Urwelt Museum and quarry in Holzmaden explores animal life during the Early Jurassic, stratigraphic principles as presented on the museum's "geological staircase", and the origin of petroleum source rocks. The museum houses spectacular examples of Early Jurassic marine reptiles. All knowledge gained in the Jurassic of southern Germany enriches the students' understanding of the Jurassic subsurface petroleum system in Saudi Arabia, which is one of the world's largest petroleum reservoirs. The combination of museum visits followed by field studies centered around the Ries Geopark in southern Germany not only creates a world-class attraction for Geotourists, but also an ideal teaching laboratory for students interested in Physical and Planetary Geology, Historical Geology, and Paleontology at various levels within the respective subjects.
Reserve Growth in Oil Fields of West Siberian Basin, Russia
Verma, Mahendra K.; Ulmishek, Gregory F.
2006-01-01
Although reserve (or field) growth has proven to be an important factor contributing to new reserves in mature petroleum basins, it is still a poorly understood phenomenon. Limited studies show that the magnitude of reserve growth is controlled by several major factors, including (1) the reserve booking and reporting requirements in each country, (2) improvements in reservoir characterization and simulation, (3) application of enhanced oil recovery techniques, and (4) the discovery of new and extensions of known pools in discovered fields. Various combinations of these factors can affect the estimates of proven reserves in particular fields and may dictate repeated estimations of reserves during a field's life. This study explores the reserve growth in the 42 largest oil fields in the West Siberian Basin, which contain about 55 percent of the basin's total oil reserves. The West Siberian Basin occupies a vast swampy plain between the Ural Mountains and the Yenisey River, and extends offshore into the Kara Sea; it is the richest petroleum province in Russia. About 600 oil and gas fields with original reserves of 144 billion barrels of oil (BBO) and more than 1,200 trillion cubic feet of gas (TCFG) have been discovered. The principal oil reserves and most of the oil fields are in the southern half of the basin, whereas the northern half contains mainly gas reserves. Sedimentary strata in the basin consist of Upper Triassic through Tertiary clastic rocks. Most oil is produced from Neocomian (Lower Cretaceous) marine to deltaic sandstone reservoirs, although substantial oil reserves are also in the marine Upper Jurassic and continental to paralic Lower to Middle Jurassic sequences. The majority of oil fields are in structural traps, which are gentle, platform-type anticlines with closures ranging from several tens of meters to as much as 150 meters (490 feet). Fields producing from stratigraphic traps are generally smaller except for the giant Talin field which contains oil in Jurassic river-valley sandstones. Principal source rocks are organic-rich marine shales of the Volgian (uppermost Jurassic) Bazhenov Formation, which is 30-50 m (98- 164 feet) thick. Bazhenov-derived oils are mostly of medium gravity, and contain 0.8-1.3 percent sulfur and 2-5 percent paraffin. Oils in the Lower to Middle Jurassic clastics were sourced from lacustrine and estuarine shales of the Toarcian Togur Bed. These oils are medium to low gravity, with low sulfur (less than 0.25 percent) and high paraffin (commonly to 10 percent) contents. Among the 42 fields analyzed for reserve growth, 30 fields are located in the Middle Ob region, which includes the Samotlor field with reserves of more than 25 BBO and the Fedorov field with reserves of about 5 BBO. Data used in the study include year of discovery, year of first production, annual and cumulative production, and remaining reserves reported by Russian reserve categories (A+B+C1 and C2) in January of each year. Correlation of these Russian resource categories to U.S. categories of the Society of Petroleum Engineers classification is complex and somewhat uncertain. Reserve growth in oil fields of West Siberia was calculated using a newly developed Group Growth method, which requires that the total reserve (proven reserve plus cumulative production) of individual fields with an equal length of reserve record be added together starting with discovery year or the first production year. Then the annual growth factor (AGF), which is the ratio of total reserves of two consecutive years, is calculated for all years. Once AGFs have been calculated, the cumulative growth factor (CGF) is calculated by multiplying the AGFs of all the previous years. The CGF data are used to develop reserve growth models. The West Siberian oil fields show a 13-fold reserve growth 20 years after the discovery year and only about a 2-fold growth after the first production year. This difference is attributed to extensive exploration and field delineation activities between the discovery and the first production years. Because of uncertainty in the length of evaluation time and in reported reserves during this initial period, reserve growth based on the first production year is more reliable for model development. However, reserve growth models based both on discovery year and first production year show rapid growth in the first few years and slower growth in the following years. In contrast, the reserve growth patterns for the conterminous United States and offshore Gulf of Mexico show a steady reserve increase throughout the productive lives of the fields. The different reserve booking requirements and the lack of capital investment for improved reservoir management and production technologies in West Siberian fields relative to U.S. fields are the probable causes for the difference in growth patterns. Reserve growth models based on the first production year predict that the reserve growth potential in the 42 largest oil fields of West Siberia over a five-year period (1998-2003) ranges from 270-330 million barrels or 0.34-0.42 percent per year. For a similar five-year period (1996-2001), models for the conterminous United States predict a growth of 0.54-0.75 percent per year. This abstract presents the contents of a poster prepared for the AAPG Hedberg Research Conference on Understanding World Oil Resources, November 12-17, 2006 - Colorado Springs, Colorado. A paper 'Reserve Growth in Oil Fields of West Siberian Basin, Russia' was published in Natural Resources Research, v. 12, no. 2, June, 2003.
Si-Metasomatism During Serpentinization of Jurassic Ultramafic Sea-floor: a Comparative Study
NASA Astrophysics Data System (ADS)
Vogel, M.; Frueh-Green, G. L.; Boschi, C.; Schwarzenbach, E. M.
2014-12-01
The Bracco-Levanto ophiolitic complex (northwestern Italy) represents one of the largest and better-exposed ophiolitic successions in the Northern Apennines. It is considered to be a fragment of heterogeneous Jurassic lithosphere that records tectono-magmatic and alteration histories similar to those documented along the Mid-Atlantic Ridge (MAR), such as at the 15°20'N area and the Atlantis Massif at 30°N. Structural and petrological studies on these rocks provide constraints on metamorphic/deformation processes during formation and hydrothermal alteration of the Jurassic oceanic lithosphere. We present a petrological and geochemical study of serpentinization processes and fluid-rock interaction in the Bracco-Levanto ophiolitic complex and compare these to published data from modern oceanic hydrothermal systems, such as the Lost City hydrothermal field hosted in serpentinites on the Atlantis Massif. Major element and mineral compositional data allow us to distinguish a multiphase history of alteration characterized by: (1) widespread Si-metasomatism during progressive serpentinization, and (2) multiple phases of veining and carbonate precipitation associated with circulation of seawater in the shallow ultramafic-dominated portions of the Jurassic seafloor, resulting in the formation of ophicalcites. In detail, regional variations in Si, Mg and Al content are observed in zones of ophicalcite formation, indicating metasomatic reactions and Si-Al transport during long-lived fluid-rock interaction and channelling of hydrothermal fluids. Rare earth element and isotopic analysis indicate that the Si-rich fluids are derived from alteration of pyroxenes to talc and tremolite in ultramafic rocks at depth. Comparison with serpentinites from the Atlantis Massif and 15°20'N indicates a similar degree of Si-enrichment in the modern seafloor and suggests that Si-metasomatism may be a fundamental process associated with serpentinization at slow-spreading ridge environments. However, in contrast to metasomatic processes at the MAR, we find no geochemical evidence for a gabbroic source of the fluids, and thus, processes leading to Si-rich fluids can be variable in these environments.
NASA Astrophysics Data System (ADS)
Lagarrigue, S. C.; Elgueta, S.; Arancibia, G.; Morata, D.; Sanchez, J.; Rojas, L.
2017-12-01
Low enthalpy geothermal energy technologies are being developed around the world as part of policies to replace the use of conventional sources of energy by renewable ones. The reuse of abandoned oil and gas wells in sedimentary basins, whose reservoirs are saturated with water at temperatures above 120°C, is of increasing interest due to the low initial cost.In Chile, interest in applying this technology is focused on the Magallanes Basin (Austral Basin in Argentina) in the extreme south of the country, where important hydrocarbon deposits have been exploited for more than six decades with more than 3,500 wells drilled to depths of over 4,000m. Hydrocarbons have been extracted mainly from the Upper Jurassic to lowermost Cretaceous Springhill Formation, which includes sandstone lithofacies with porosities of 12% to 19% and permeability of 10mD and 1100mD. This formation has been drilled mainly at depths of 1500m to 3000m, the estimated geothermal gradient in the zone is 4.9 °C/100m with well bottom temperature measurements oscillating between 60° and 170°C, sufficient for district heating, and even, electricity generation by means of ORC technologies.To understand in detail the behavior and distribution of the different lithofacies of the Springhill Formation in the Sombrero Oil and Gas Field, sedimentological and geological 3D models have been generated from existing well logs and seismic data. To comprehend the quality of the reservoirs on the other hand, many petrophysical studies of drill core samples representative of the different lithofacies, complemented by electric well log interpretations, were carried out. Results confirm the existence of at least two quartz-rich sandstone lithofacies as potential geothermal reservoirs. In the principal settlement in this area, Cerro Sombrero township (1,800 population), the annual average temperature is 6.4°C, requiring constant domestic heating which, at present comes exclusively from natural gas. The study shows the feasibility of obtaining low enthalpy geothermal energy from currently abandoned oil wells that reach 2000 m depth.This work is a contribution to the FONDAP-CONICYT 15090013 Project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cregg, A.K.
Kenya basins have evolved primarily through extension related to episodic continental rifting. In eastern Kenya, thick accumulations of sediments formed within grabens during the prerift phase (Precambrian to Carboniferous) of the Gondwana breakup. Synrift sedimentation (Late Carboniferous to Middle Jurassic) occurred within a north-south rift system, which included the Mandera basin, South Anza basin, and Lamu embayment. During the Early Jurassic, a marine transgression invaded the margins of the eastern Kenya rift basins, resulting in the deposition of platform carbonates and shales. A Callovian-aged salt basin formed in the offshore regions of the Lamu embayment. Intermittent tectonic activity and eustaticmore » sea-level changes controlled sedimentation, which produced marine shales, carbonates or evaporites, and fluvio-deltaic to lacustrine sandstones. From the Early Cretaceous to recent, continental sediments were deposited within the North Anza and Turkana basins. These fluvial-lacustrine sediments are similar to the Lower Cretaceous sequences that have produced oil in the Mesozoic Sudanese Abu Gabra rift. Although exploration activities began in the early 1950s, significant occurrences of potential reservoir, source, and seal lithologies as well as trapping configurations remain in many areas. Favorable structures and sequences of reservoir sandstones and carbonates overlain by potentially sealing lacustrine or marine shales, evaporites, or volcanics have been noted. Potential source beds are believed to be present within shales of the lacustrine or marine depositional environments.« less
Hydrocarbon potential of Morocco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achnin, H.; Nairn, A.E.M.
1988-08-01
Morocco lies at the junction of the African and Eurasian plates and carries a record of their movements since the end of the Precambrian. Four structural regions with basins and troughs can be identified: Saharan (Tarfaya-Ayoun and Tindouf basins); Anti-Atlas (Souss and Ouarzazate troughs and Boudnib basin); the Essaouria, Doukkala, Tadla, Missour, High Plateau, and Guercif basins; and Meseta and Rif (Rharb and Pre-Rif basins). The targets in the Tindouf basin are Paleozoic, Cambrian, Ordovician (clastics), Devonian (limestones), and Carboniferous reservoirs sourced primarily by Silurian shales. In the remaining basins, excluding the Rharb, the reservoirs are Triassic detritals, limestones atmore » the base of the Lias and Dogger, Malm detritals, and sandy horizons in the Cretaceous. In addition to the Silurian, potential source rocks include the Carboniferous and Permo-Carboniferous shales and clays; Jurassic shales, marls, and carbonates; and Cretaceous clays. In the Rharb basin, the objectives are sand lenses within the Miocene marls. The maturation level of the organic matter generally corresponds to oil and gas. The traps are stratigraphic (lenses and reefs) and structural (horsts and folds). The seals in the pre-Jurassic rocks are shales and evaporites; in the younger rocks, shales and marl. Hydrocarbon accumulations have been found in Paleozoic, Triassic, Liassic, Malm, and Miocene rocks.« less
Hummel, Jürgen; Gee, Carole T; Südekum, Karl-Heinz; Sander, P Martin; Nogge, Gunther; Clauss, Marcus
2008-05-07
Sauropod dinosaurs, the dominant herbivores throughout the Jurassic, challenge general rules of large vertebrate herbivory. With body weights surpassing those of any other megaherbivore, they relied almost exclusively on pre-angiosperm plants such as gymnosperms, ferns and fern allies as food sources, plant groups that are generally believed to be of very low nutritional quality. However, the nutritive value of these taxa is virtually unknown, despite their importance in the reconstruction of the ecology of Mesozoic herbivores. Using a feed evaluation test for extant herbivores, we show that the energy content of horsetails and of certain conifers and ferns is at a level comparable to extant browse. Based on our experimental results, plants such as Equisetum, Araucaria, Ginkgo and Angiopteris would have formed a major part of sauropod diets, while cycads, tree ferns and podocarp conifers would have been poor sources of energy. Energy-rich but slow-fermenting Araucaria, which was globally distributed in the Jurassic, was probably targeted by giant, high-browsing sauropods with their presumably very long ingesta retention times. Our data make possible a more realistic calculation of the daily food intake of an individual sauropod and improve our understanding of how large herbivorous dinosaurs could have flourished in pre-angiosperm ecosystems.
Hummel, Jürgen; Gee, Carole T; Südekum, Karl-Heinz; Sander, P. Martin; Nogge, Gunther; Clauss, Marcus
2008-01-01
Sauropod dinosaurs, the dominant herbivores throughout the Jurassic, challenge general rules of large vertebrate herbivory. With body weights surpassing those of any other megaherbivore, they relied almost exclusively on pre-angiosperm plants such as gymnosperms, ferns and fern allies as food sources, plant groups that are generally believed to be of very low nutritional quality. However, the nutritive value of these taxa is virtually unknown, despite their importance in the reconstruction of the ecology of Mesozoic herbivores. Using a feed evaluation test for extant herbivores, we show that the energy content of horsetails and of certain conifers and ferns is at a level comparable to extant browse. Based on our experimental results, plants such as Equisetum, Araucaria, Ginkgo and Angiopteris would have formed a major part of sauropod diets, while cycads, tree ferns and podocarp conifers would have been poor sources of energy. Energy-rich but slow-fermenting Araucaria, which was globally distributed in the Jurassic, was probably targeted by giant, high-browsing sauropods with their presumably very long ingesta retention times. Our data make possible a more realistic calculation of the daily food intake of an individual sauropod and improve our understanding of how large herbivorous dinosaurs could have flourished in pre-angiosperm ecosystems. PMID:18252667
NASA Astrophysics Data System (ADS)
Ruhl, M.; Veld, H.; Kürschner, W. M.
2010-03-01
The Triassic-Jurassic (T-J) boundary interval coincides with enhanced extinction rates in the marine realm and pronounced changes in terrestrial ecosystems on the continents. It is further marked by distinct negative excursions in the δ13C org and δ13C carb signature that may represent strong perturbations of the global carbon cycle. We present integrated geochemical, stable-isotope and palynological data from the Kuhjoch section, the Global boundary Stratotype Section and Point (GSSP) for the base of the Jurassic (Northern Calcareous Alps, Austria). We show that the initial carbon isotope excursion (CIE), coinciding with the marine extinction interval and the formation of black shales in the western Tethys Eiberg Basin, is marked by only minor changes in kerogen type, which is mainly of terrestrial origin. Increased Total Organic Carbon (TOC) concentrations of 9% at the first half of the initial CIE coincide with Hydrogen Index (HI) values of over 600 mg HC/g TOC. The high correlation (with R2 = 0.93) between HI values and terrestrial Cheirolepidiaceaen conifer pollen suggests a terrestrial source for the hydrogen enriched organic compounds. The lack of major changes in source of the sedimentary organic matter suggests that changes in the δ13C org composition are genuine and represent true disturbances of the global C-cycle. The sudden decrease in total inorganic carbon (TIC) concentrations likely represents the onset of a biocalcification crisis. It coincides with a 4.5‰ negative shift in δ13C org values and possibly corresponds to the onset of CAMP related volcanic activity. The second half of the initial CIE is marked by the dramatic increase of green algae remains in the sediment. The simultaneous increase of the C org/N tot ratio suggests increased marine primary production at the final stage of black shale formation.
NASA Astrophysics Data System (ADS)
Wei, Youqing; Zhao, Zhidan; Niu, Yaoling; Zhu, Di-Cheng; Liu, Dong; Wang, Qing; Hou, Zengqian; Mo, Xuanxue; Wei, Jiuchuan
2017-05-01
Understanding the geological history of the Lhasa Terrane prior to the India-Asia collision ( 55 ± 10 Ma) is essential for improved models of syn-collisional and post-collisional processes in the southern Lhasa Terrane. The Miocene ( 18-10 Ma) adakitic magmatism with economically significant porphyry-type mineralization has been interpreted as resulting from partial melting of the Jurassic juvenile crust, but how this juvenile crust was accreted remains poorly known. For this reason, we carried out a detailed study on the volcanic rocks of the Yeba Formation (YF) with the results offering insights into the ways in which the juvenile crust may be accreted in the southern Lhasa Terrane in the Jurassic. The YF volcanic rocks are compositionally bimodal, comprising basalt/basaltic andesite and dacite/rhyolite dated at 183-174 Ma. All these rocks have an arc-like signature with enriched large ion lithophile elements (LILEs; e.g., Rb, Ba and U) and light rare earth elements (LREEs) and depleted high field strength elements (HFSEs; e.g., Nb, Ta, Ti). They also have depleted whole-rock Sr-Nd and zircon Hf isotopic compositions, pointing to significant mantle isotopic contributions. Modeling results of trace elements and isotopes are most consistent with the basalts being derived from a mantle source metasomatized by varying enrichment of subduction components. The silicic volcanic rocks show the characteristics of transitional I-S type granites, and are best interpreted as resulting from re-melting of a mixed source of juvenile amphibole-rich lower crust with reworked crustal materials resembling metagraywackes. Importantly, our results indicate northward Neo-Tethyan seafloor subduction beneath the Lhasa Terrane with the YF volcanism being caused by the initiation of back-arc rifting. The back-arc setting is a likely site for juvenile crustal accretion in the southern Lhasa Terrane.
NASA Astrophysics Data System (ADS)
Hunziker, Daniela; Burg, Jean-Pierre; Bouilhol, Pierre; von Quadt, Albrecht
2015-03-01
This study focuses on an east-west trending belt of granitic to intermediate intrusions and their volcanic cover in the northern Dur Kan Complex, a continental slice outcropping to the north of the exposed Makran accretionary wedge in southeastern Iran. Field observations, petrographic descriptions, trace element, and isotope analyses combined with U-Pb zircon geochronology are presented to determine the time frame of magmatism and tectonic setting during the formation of these rocks. Results document three magmatic episodes with different melt sources for (1) granites, (2) a diorite-trondhjemite-plagiogranite sequence, and (3) diabases and lavas. Granites, dated at 170-175 Ma, represent crystallized melt with a strong continental isotopic contribution. The diorite-trondhjemite-plagiogranite sequence is 165-153 Ma old and derives from a mantle magma source with minor continental contribution. East-west trending diabase dikes and bodies intruded the granitoids, which were eroded and then covered by Valanginian (140-133 Ma) alkaline lavas and sediments. Alkaline dikes and lavas have a mantle isotopic composition. Temporal correlation with plutonites of the Sanandaj-Sirjan Zone to the northwest defines a narrow, NW-SE striking and nearly 2000 km long belt of Jurassic intrusions. The increasing mantle influence in the magma sources is explained by thinning of continental lithosphere and related mantle upwelling/decompression melting. Accordingly, the formation of the studied igneous rocks is related to the extension of the Iranian continental margin, which ultimately led to the formation of the Tethys-related North Makran Ophiolites.
NASA Astrophysics Data System (ADS)
Bouabdellah, Mohammed; Boudchiche, Lahbib; Ouahhabi, Benali; Naciri, Tayeb
2008-12-01
Sulfur isotope data measured on samples of galena from the main Mississippi Valley-type prospects of the eastern Beni Snassen belt preclude an igneous source for sulfur, pointing instead to a sedimentary source. Negative δ 34S values are interpreted to being derived from bacteriogenic reduction of Jurassic seawater sulphate. Positive δ 34S values are considered to be hydrothermal sulfide transported with metal-bearing fluid. Mixing of these two fluids resulted in the deposition of the Pb ore.
On the age of the Jurassic-Cretaceous boundary
NASA Astrophysics Data System (ADS)
Lena, Luis; Ramos, Victor; Pimentel, Marcio; Aguirre-Urreta, Beatriz; Naipauer, Maximiliano; Schaltegger, Urs
2017-04-01
Calibrating the geologic time is of utmost importance to understanding geological and biological processes throughout Earth history. The Jurassic-Cretaceous boundary has proven to be one of the most problematic boundaries to calibrate in the geologic time. The present definition of the Jurassic-Cretaceous boundary still remains contentious mainly because of the dominant endemic nature of the flora and fauna in stratigraphic sections, which hinders an agreement on a GSSP. Consequently, an absolute and precise age for the boundary is yet to meet an agreement among the community. Additionally, integrating chemical, paleomagnetic or astronomical proxies to aid the definition of the boundary has also proven to be difficult because the boundary lacks any abrupt geochemical changes or recognizable geological events. However, the traditional Berriasella jacobi Subzone is disregarded as a primary marker and the use of calpionellids has been gaining momentum for defining the boundary. The Jurassic Cretaceous boundary in the Vaca Muerta Fm. in the Nuequen Basin of the Andes is a potential candidate for the boundary stratotype because of its high density of ammonites, nannofossils and interbedded datable horizons. Consequently, the Jurassic-Cretaceous boundary is very well defined in the Vaca Muerta Fm. On the basis of both ammonites and nannofossils. Here we present new high-precision U-Pb age determinations from two volcanic ash beds that bracket the age of the Jurassic-Cretaceous boundary: 1) ash bed LLT_14_9, with a 206Pb/238U age of 139.7 Ma, which is 2 meters above Jurassic-Cretaceous boundary based on the Argetiniceras noduliferum (Early Berriasian ) and Substeueroceras Koeneni (Late Tithonian) ammonites zone; and 2) bed LLT_14_10, with an age of 140.1 Ma, located 3m below the J-K boundary based on last occurrence of the nannofossils N. kamptneri minor and N. steinmanni minor. Therefore, we propose that the age of the Jurassic-Cretaceous boundary should be close to 140 Ma, which is in conflict with the currently set age of 145 Ma. Therefore, this suggests a revision of the age of the Jurassic-Cretaceous boundary.
NASA Astrophysics Data System (ADS)
Xu, W.
2015-12-01
Mesozoic magmatisms in NE China can be subdivided into seven stages, i.e., Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, and Late Cretaceous. Late Triassic magmatisms consist of calc-alkaline igneous rocks in the Erguna Massif, and bimodal igneous rocks in eastern margin of Eurasian continent. The former reveals southward subduction of the Mongol-Okhotsk oceanic plate, the latter reveals an extensional environment (Xu et al., 2013). Early Jurassic magmatisms are composed of calc-alkaline igneous rocks in the eastern margin of the Eurasian continent and the Erguna Massif, revealing westward subduction of the Paleo-pacific plate and southward subduction of the Mongol-Okhotsk oceanic plate (Tang et al., 2015), respectively. Middle Jurassic magmatism only occur in the Great Xing'an Range and the northern margin of the NCC, and consists of adakitic rocks that formed in crustal thickening, reflecting the closure of the Mongol-Okhotsk ocean (Li et al., 2015). Late Jurassic and early Early Cretaceous magmatisms only occur to the west of the Songliao Basin, and consist of trackyandesite and A-type of rhyolites, revealing an extensional environment related to delamination of thickened crust. The late Early Cretaceous magmatisms are widespread in NE China, and consist of calc-alkaline volcanics in eastern margin and bimodal volcanics in intracontinent, revealing westward subduction of the Paleo-pacific plate. Late Cretaceous magmatisms mainly occur to the east of the Songliao Basin, and consist of calc-alkaline volcanics in eastern margin and alkaline basalts in intracontinent (Xu et al., 2013), revealing westward subduction of the Paleo-pacific plate. The Heilongjiang complex with Early Jurassic deformation, together with Jurassic Khabarovsk complex in Russia Far East and Mino-Tamba complex in Japan, reveal Early Jurassic accretionary history. Additionally, the Raohe complex with the age of ca. 169 Ma was intruded by the 110-130 Ma massive granitoids, suggesting late Early Cretaceous accretionary event. From late Early Cretaceous to Late Cretaceous, the spatial extent of magmatisms was reduced from west to east, revealing roll-back of subducted slab. This research was financially supported by the NSFC (41330206).
NASA Astrophysics Data System (ADS)
Morad, Daniel; Nader, Fadi H.; Gasparrini, Marta; Morad, Sadoon; Rossi, Carlos; Marchionda, Elisabetta; Al Darmaki, Fatima; Martines, Marco; Hellevang, Helge
2018-05-01
This petrographic, stable isotopic and fluid inclusion microthermometric study of the Upper Jurassic limestones of an onshore field, Abu Dhabi, United Arab Emirates (UAE) compares diagenesis in flanks and crest of the anticline. The results revealed that the diagenetic and related reservoir quality evolution occurred during three phases, including: (i) eogenesis to mesogenesis 1, during which reservoir quality across the field was either deteriorated or preserved by calcite cementation presumably derived from marine or evolved marine pore waters. Improvement of reservoir quality was due to the formation of micropores by micritization of allochems and creation of moldic/intragranular pores by dissolution of peloids and skeletal fragments. (ii) Obduction of Oman ophiolites and formation of the anticline of the studied field was accompanied by cementation by saddle dolomite and blocky calcite. High homogenization temperatures (125-175 °C) and high salinity (19-26 wt% NaCl eq) of the fluid inclusions, negative δ18OVPDB values (-7.7 to -2.9‰), saddle shape of dolomite, and the presence of exotic cements (i.e. fluorite and sphalerite) suggest that these carbonates were formed by flux of hot basinal brines, probably related to this tectonic compression event. (iii) Mesogenesis 2 during subsidence subsequent to the obduction event, which resulted in extensive stylolitization and cementation by calcite. This calcite cement occluded most of the remaining moldic and inter-/intragranular pores of the flank limestones (water zone) whereas porosity was preserved in the crest. This study contributes to: (1) our understanding of differences in the impact of diagenesis on reservoir quality evolution in flanks and crests of anticlines, i.e. impact of hydrocarbon emplacement on diagenesis, and (2) relating various diagenetic processes to burial history and tectonic events of foreland basins in the Arabian Gulf area and elsewhere.
Saitta, Evan Thomas
2015-01-01
Conclusive evidence for sexual dimorphism in non-avian dinosaurs has been elusive. Here it is shown that dimorphism in the shape of the dermal plates of Stegosaurus mjosi (Upper Jurassic, western USA) does not result from non-sex-related individual, interspecific, or ontogenetic variation and is most likely a sexually dimorphic feature. One morph possessed wide, oval plates 45% larger in surface area than the tall, narrow plates of the other morph. Intermediate morphologies are lacking as principal component analysis supports marked size- and shape-based dimorphism. In contrast, many non-sex-related individual variations are expected to show intermediate morphologies. Taphonomy of a new quarry in Montana (JRDI 5ES Quarry) shows that at least five individuals were buried in a single horizon and were not brought together by water or scavenger transportation. This new site demonstrates co-existence, and possibly suggests sociality, between two morphs that only show dimorphism in their plates. Without evidence for niche partitioning, it is unlikely that the two morphs represent different species. Histology of the new specimens in combination with studies on previous specimens indicates that both morphs occur in fully-grown individuals. Therefore, the dimorphism is not a result of ontogenetic change. Furthermore, the two morphs of plates do not simply come from different positions on the back of a single individual. Plates from all positions on the body can be classified as one of the two morphs, and previously discovered, isolated specimens possess only one morph of plates. Based on the seemingly display-oriented morphology of plates, female mate choice was likely the driving evolutionary mechanism rather than male-male competition. Dinosaur ornamentation possibly served similar functions to the ornamentation of modern species. Comparisons to ornamentation involved in sexual selection of extant species, such as the horns of bovids, may be appropriate in predicting the function of some dinosaur ornamentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsharhan, A.S.; Kendall, C.G.St.C.
1994-07-01
The Upper Jurassic Hith Anhydrite is a major hydrocarbon seal in the Arabian Gulf region. Outcrops, core samples from the subsurface, and the literature indicate that the Hith Formation is composed mainly of anhydrite. In most locations where a section of the Hith Formation has been measured, this unit contains less than 20% carbonate much of which is in the form of thin laminations. This lack of carbonate, locally thick layers of salt, and the predominance of anhydrite favor a playa for the setting in which this sediment was accumulated. In fact, much of the Hith has the sedimentary characteristicsmore » of the Holocene Lake MacLeod playa of Western Australia, which is dominated by layers of gypsum and halite (what little carbonate that occurs is found in layers at the base of the section). Locally the Hith appears to have accumulated in a sabkha setting, particularly toward central Abu Dhabi where it pinches out into shallow-water, and peritidal carbonate. This sabkha setting is indicated by the interbedded relationship of the Hith anhydrites with these carbonates and the local predominance of horizontally flattened nodules and enterolithic layers of anhydrite. These latter features match some of the characteristic fabrics found in the Holocene coastal sabkhas of the United Arab Emirates. As with the local occurrences in the Hith, the Holocene sabkhas are dominated by carbonates and are divisible into a series of lateral facies belts. These are also expressed as equivalent vertical layers. Traced from seaward to landward, or from the base of the vertical sequence upward, these facies are characterized by (1) algal mat, (2) a layer of a gypsum crystal mush (3) active anhydrite replacement of gypsum (4) anhydrite with no gypsum mush, and (5) recycled eolianite and storm-washover sediments.« less
Bradley, Dwight; Haeussler, Peter J.; O'Sullivan, Paul; Friedman, Rich; Till, Alison; Bradley, Dan; Trop, Jeff
2009-01-01
Ages of detrital zircons are reported from ten samples of Lower Cretaceous to Paleogene metasandstones and sandstones from the Chugach Mountains, Talkeetna Mountains, and western Alaska Range of south-central Alaska. Zircon ages are also reported from three igneous clasts from two conglomerates. The results bear on the regional geology, stratigraphy, tectonics, and mineral resource potential of the southern Alaska convergent margin. Chugach Mountains - The first detrital zircon data are reported here from the two main components of the Chugach accretionary complex - the inboard McHugh Complex and the outboard Valdez Group. Detrital zircons from sandstone and two conglomerate clasts of diorite were dated from the McHugh Complex near Anchorage. This now stands as the youngest known part of the McHugh Complex, with an inferred Turonian (Late Cretaceous) depositional age no older than 91-93 Ma. The zircon population has probability density peaks at 93 and 104 Ma and a smattering of Early Cretaceous and Jurassic grains, with nothing older than 191 Ma. The two diorite clasts yielded Jurassic U-Pb zircon ages of 179 and 181 Ma. Together, these findings suggest a Mesozoic arc as primary zircon source, the closest and most likely candidate being the Wrangellia composite terrane. The detrital zircon sample from the Valdez Group contains zircons as young as 69 and 77 Ma, consistent with the previously assigned Maastrichtian to Campanian (Late Cretaceous) depositional age. The zircon population has peaks at 78, 91, 148, and 163 Ma, minor peaks at 129, 177, 330, and 352 Ma, and no concordant zircons older than Devonian. A granite clast from a Valdez Group conglomerate yielded a Triassic U-Pb zircon age of 221 Ma. Like the McHugh Complex, the Valdez Group appears to have been derived almost entirely from Mesozoic arc sources, but a few Precambrian zircons are also present. Talkeetna Mountains - Detrital zircons ages were obtained from southernmost metasedimentary rocks of the Talkeetna Mountains (schist of Hatcher Pass) and, immediately to the south, the northernmost sedimentary sequence of the Matanuska forearc basin (Arkose Ridge Formation). Detrital zircons from the Paleogene Arkose Ridge Formation are as young as 61 and 70 Ma; the population is dominated by a single Late Cretaceous peak at 76 Ma; the oldest zircon is 181 Ma. Sedimentological evidence clearly shows that the conglomeratic Arkose Ridge Formation was derived from the Talkeetna Mountains; our detrital zircon data support this inference. Zircons dated at ca. 90 Ma in the Arkose Ridge sample suggest that buried or unmapped plutons of this age may exist in the Talkeetnas. This is a particularly interesting age as it corresponds to the age of the supergiant Pebble gold-molybdenum-copper porphyry prospect near Iliamna and suggests a new area of prospectivity for Pebble-type deposits. The schist of Hatcher Pass, which was previously assigned a Jurassic depositional age, yielded surprisingly young Late Cretaceous detrital zircons, the youngest at 75 Ma. The probability density curve has four Cretaceous peaks from 76 to 102 Ma, a pair of Late Jurassic peaks at 155 and 166 Ma, three Early Jurassic to Late Triassic peaks at 186, 197, and 213 Ma, minor Carboniferous peaks at 303 and 346 Ma, and a minor Paleoproterozoic peak at 1828 Ma. The schist of Hatcher Pass was largely derived from Mesozoic arc sources, most likely the Wrangellia composite terrane, with some contribution from one or more older, inboard sources, probably including the Yukon-Tanana terrane. We postulate that the schist of Hatcher Pass represents metamorphosed rocks of the Valdez Group that were subducted and then exhumed along the Chugach terrane's 'backstop' during Paleogene transtension. Western Alaska Range - Six detrital zircon samples were collected from a little studied belt of turbidites in Tyonek quadrangle on strike with the Kahiltna assemblage of the central Alaska Range. Many of the sandstones ar
Pipiringos, G.N.; O'Sullivan, Robert Brett
1978-01-01
The Triassic and Jurassic rocks in Western Interior United States contain nine unconformities each of which was destroyed to some extent by a younger unconformity. Regardless of extent, all are useful for correlation of rock sequences in areas where fossils or age dates are lacking. The purpose of this report is to call attention to the presence, significance, and value for correlation of these unconformities. The Triassic unconformities are designated from oldest to youngest, Tr-1, Tr-2, and Tr-3; the Jurassic ones similarly are designated J-0, J-l, J-2, J-3, J-4, and J-5. Of these, the J-2 surface is the best preserved and most widespread. It extends throughout the Western Interior and truncates the older unconformities in different parts of this area. Consequently, the J-2 surface is discussed and illustrated in much more detail than the others. Identification of these unconformities throughout large areas where their presence hitherto had been unknown results in some new unexpected correlations and conclusions. Principal among these are: (1) The Red Draw Member of the Jelm Formation of southeastern Wyoming equals the lower part of the Crow Mountain Sandstone of central Wyoming. The Sips Creek Member of the Jelm Formation of southeastern Wyoming equals the upper part of the Crow Mountain Sandstone of central Wyoming and the Gartra Member of the Chinle Formation in the Uinta Mountains of northeastern Utah and northwestern Colorado. The Chinle Formation of the Colorado Plateau and the Uinta Mountains equals the upper part of the Crow Mountain plus the Popo Agie Formation of central Wyoming. (2) The Nugget Sandstone of northern Utah and southwestern Wyoming approximately equals the Glen Canyon Group of the Colorado Plateau. The Temple Cap Sandstone of southwestern Utah equals the Gypsum Spring Formation and the Gypsum Spring Member of the Twin Creek Limestone of Wyoming and the Nesson Formation of Nordquist in the subsurface of the Williston basin. The Sawtooth and Piper Formations at their type sections in Montana and the lower parts of the Twin Creek Limestone (including only the Sliderock, Rich, and Boundary Ridge Members) in western Wyoming and of the Carmel Formation in the Colorado Plateau, at their respective type localities, are equivalent, but none of these correlate with any part of the Gypsum Spring Formation of Wyoming. The Curtis Formation at its type locality in the San Rafael Swell, Utah, equals only the lower part of the Curtis Formation of the Uinta Mountains. The upper part of the Curtis in the Uinta Mountains and the Redwater Shale Member of the Sundance Formation of Wyoming and South Dakota are equivalent. Estimates of the length of time in millions of years (m.y.) required for uplift and erosion of an unconformity range from less than 1 to as much as 10 m.y.; the average is about 1.8 m.y. if the extremes in time are excluded. The length of time for burial of the surfaces by transgression ranges from less than 1 to about 10 m.y.; the average is less than 1 m.y. if the extremes in time are disregarded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagstrum, J.T.
Paleomagnetic data are presented for a 50-m-thick sequence of Oxfordian to Tithonian sedimentary rocks conformably overlying Upper Jurassic pillow basalt within the Coast Range ophiolite at Stanley Mountain, California. These new data are similar in direction and polarity to previously published paleomagnetic data for the pillow basalt. The Jurassic sedimentary rocks were deposited during a mixed-polarity interval of the geomagnetic field, and uniformity of the remanent magnetization within the entire section of pillow basalt and sedimentary rocks indicates later remagnetization. Remagnetization of the Coast Range ophiolite is interpreted to have occurred during accretion to the continental margin, possibly by burialmore » and low-temperature alteration related to this event. Similar paleolatitudes calculated for the ophiolite (11{degree} {plus minus} 3{degree}) and for mid-Cretaceous sedimentary rocks of the Stanley Mountain terrane at Figueroa Mountain (6{degree} {plus minus} 5{degree}) are consistent with remagnetization of the ophiolite in southern California and elsewhere along the Pacific coast imply that these rocks were also overprinted, and their magnetic inclinations suggest remagnetization at low paleolatitudes as well. The Coast Range ophiolite at Stanley Mountain is thus inferred to have been remagnetized along the North American margin near 10{degree}N paleolatitude between earliest and mid-Cretaceous time and subsequently transported northward by strike-slip faulting related to relative motions between the Farallon, Kula, Pacific, and North American plates.« less
Three-dimenstional crustal velocity structure beneath the strait of georgia, British Columbia
Zelt, B.C.; Ellis, R.M.; Zelt, C.A.; Hyndman, R.D.; Lowe, C.; Spence, G.D.; Fisher, M.A.
2001-01-01
The Strait of Georgia is a topographic depression straddling the boundary between the Insular and Coast belts in southwestern British Columbia. Two shallow earthquakes located within the strait (M = 4.6 in 1997 and M = 5.0 in 1975) and felt throughout the Vancouver area illustrate the seismic potential of this region. As part of the 1998 Seismic Hazards Investigation of Puget Sound (SHIPS) experiment, seismic instruments were placed in and around the Strait of Georgia to record shots from a marine source within the strait. We apply a tomographic inversion procedure to first-arrival travel-time data to derive a minimum-structure 3-D P-wave velocity model for the upper crust to about 13 km depth. We also present a 2-D velocity model for a profile orientated across the Strait of Georgia derived using a minimum-parameter traveltime inversion approach. This paper represents the first detailed look at crustal velocity variations within the major Cretaceous to Cenozoic Georgia Basin, which underlies the Strait of Georgia. The 3-D velocity model clearly delineates the structure of the Georgia Basin. Taking the 6 km s-1 isovelocity contour to represent the top of the underlying basement, the basin thickens from between 2 and 4 km in the northwestern half of the strait to between 8 and 9 km at the southeastern end of the study region. Basin velocities in the northeastern half are 4.5-6 km s-1 and primarily represent the Upper Cretaceous Nanaimo Group. Velocities to the south are lower (3-6 km s-1) because of the additional presence of the overlying Tertiary Huntingdon Formation and more recent sediments, including glacial and modern Fraser River deposits. In contrast to the relatively smoothly varying velocity structure of the basin, velocities of the basement rocks, which comprise primarily Palaeozoic to Jurassic rocks of the Wrangellia Terrane and possibly Jurassic to mid-Cretaceous granitic rocks of the Coast Belt, show significantly more structure, probably an indication of the varying basement rock lithologies. The 2-D velocity model more clearly reveals the velocity layering associated with the recent sediments, Huntingdon Formation and Nanaimo Group of the southern Georgia Basin, as well as the underlying basement. We interpret lateral variation in sub-basin velocities of the 2-D model as a transition from Wrangellian to Coast Belt basement rocks. The effect of the narrow, onshore-offshore recording geometry of the seismic experiment on model resolution was tested to allow a critical assessment of the validity of the 3-D velocity model. Lateral resolution throughout the model to a depth of 3-5 km below the top of the basement is generally 10-20 km.
Fault analysis as part of urban geothermal exploration in the German Molasse Basin around Munich
NASA Astrophysics Data System (ADS)
Ziesch, Jennifer; Tanner, David C.; Hanstein, Sabine; Buness, Hermann; Krawczyk, Charlotte M.; Thomas, Rüdiger
2017-04-01
Faults play an essential role in geothermal exploration. The prediction of potential fluid pathways in urban Munich has been started with the interpretation of a 3-D seismic survey (170 km2) that was acquired during the winter of 2015/2016 in Munich (Germany) within the Bavarian Molasse Basin. As a part of the research project GeoParaMoL*, we focus on the structural interpretation and retro-deformation analysis to detect sub-seismic structures within the reservoir and overburden. We explore the hydrothermal Malm carbonate reservoir (at a depth of 3 km) as a source of deep geothermal energy and the overburden of Tertiary Molasse sediments. The stratigraphic horizons, Top Aquitan, Top Chatt, Top Bausteinschichten, Top Lithothamnien limestone (Top Eocene), Top and Base Malm (Upper Jurassic), together with the detailed interpretation of the faults in the study area are used to construct a 3-D geological model. The study area is characterised by synthetic normal faults that strike parallel to the alpine front. Most major faults were active from Upper Jurassic up to the Miocene. The Munich Fault, which belongs to the Markt-Schwabener Lineament, has a maximum vertical offset of 350 metres in the central part, and contrary to previous interpretation based on 2-D seismic, this fault dies out in the eastern part of the area. The south-eastern part of the study area is dominated by a very complex fault system. Three faults that were previously detected in a smaller 3-D seismic survey at Unterhaching, to the south of the study area, with strike directions of 25°, 45° and 70° (Lüschen et al. 2014), were followed in to the new 3-D seismic survey interpretation. Particularly noticeable are relay ramps and horst/graben structures. The fault with a strike of 25° ends in three big sinkholes with a maximum vertical offset of 60 metres. We interpret this special structure as fault tip horsetail-structure, which caused a large amount of sub-seismic deformation. Consequently, this area could be characterised by increased fluid flow. This detailed understanding of the structural development and regional tectonics of the study area will guide the subsequent determination of potential fluid pathways in the new 3-D subsurface model of urban Munich. This project is funded by the Federal Ministry for Economic Affairs and Energy (BMWi). Lüschen, E., Wolfgramm, M., Fritzer, T., Dussel, M., Thomas, R. & Schulz, R. (2014): 3D seismic survey explores geothermal targets for reservoir characterization at Unterhaching, Munich, Germany, Geothermics, 50, 167-179. * https://www.liag-hannover.de/en/fsp/ge/geoparamol.html
NASA Technical Reports Server (NTRS)
Pessagno, E. A., Jr.
1971-01-01
Description of a total of 24 new species and four genuses of Jurassic and Cretaceous Hagiastridae found in the Great Valley Sequence of the California Coast Ranges. Also described are four new species from the late Jurassic strata of the Blake-Bahama Basin. Spumellariina with a spongy meshwork is included in the superfamily Spongodiscacea Haeckel.
NASA Astrophysics Data System (ADS)
Navarrete, César; Gianni, Guido; Echaurren, Andrés; Kingler, Federico Lince; Folguera, Andrés
2016-12-01
From Lower Jurassic to Lower Cretaceous, several intraplate compression events affected discrete sectors of Central Patagonia, under a general context of crustal extension associated with Gondwana breakup. This was demonstrated by means of 2D and 3D seismic and borehole data, which show partial inversion of Lower and Middle Jurassic extensional structures of the Chubut and Cañadón Asfalto basins, during the earliest stages of breakup. A comparison with surrounding areas in Patagonia, where similar Jurassic intraplate compression was described, allowed the discrimination of three discrete pulses of subtle compression (C1: ∼188-185 Ma; C2: ∼170-163; C3: ∼157-136? Ma). Interestingly, episodic intraplate compressional events are closely followed by high flux magmatic events linked to the westward expansion of the Karoo-Ferrar thermal anomaly, which impacted on the lithosphere of southwest Gondwana in Lower Jurassic. In addition, we determined the approximate direction of the main compressive strain (σ1) compatible with other Jurassic intraplate belts of South America. These observations led us to propose a linkage between a thermo mechanically weakened continental crust due to LIPs activity, changes in plate motions and ridge-push forces generated by the opening of the Weddell Sea, in order to explain intraplate shortening, interrupted while Karoo LIPs magmatic invigoration took place.
Tectonic Evolution of the Jurassic Pacific Plate
NASA Astrophysics Data System (ADS)
Nakanishi, M.; Ishihara, T.
2015-12-01
We present the tectonic evolution of the Jurassic Pacific plate based on magnetic anomly lineations and abyssal hills. The Pacific plate is the largest oceanic plate on Earth. It was born as a microplate aroud the Izanagi-Farallon-Phoenix triple junction about 192 Ma, Early Jurassic [Nakanishi et al., 1992]. The size of the Pacific plate at 190 Ma was nearly half that of the present Easter or Juan Fernandez microplates in the East Pacific Rise [Martinez et at, 1991; Larson et al., 1992]. The plate boundary surrounding the Pacific plate from Early Jurassic to Early Cretaceous involved the four triple junctions among Pacific, Izanagi, Farallon, and Phoenix plates. The major tectonic events as the formation of oceanic plateaus and microplates during the period occurred in the vicinity of the triple junctions [e.g., Nakanishi and Winterer, 1998; Nakanishi et al., 1999], implying that the study of the triple junctions is indispensable for understanding the tectonic evolution of the Pacific plate. Previous studies indicate instability of the configuration of the triple junctions from Late Jurassic to Early Cretaceous (155-125 Ma). On the other hand, the age of the birth of the Pacific plate was determined assuming that all triple junctions had kept their configurations for about 30 m.y. [Nakanishi et al., 1992] because of insufficient information of the tectonic history of the Pacific plate before Late Jurassic.Increase in the bathymetric and geomagnetic data over the past two decades enables us to reveal the tectonic evolution of the Pacific-Izanagi-Farallon triple junction before Late Jurassic. Our detailed identication of magnetic anomaly lineations exposes magnetic bights before anomaly M25. We found the curved abyssal hills originated near the triple junction, which trend is parallel to magnetic anomaly lineations. These results imply that the configuration of the Pacific-Izanagi-Farallon triple junction had been RRR before Late Jurassic.
NASA Astrophysics Data System (ADS)
Owen, Alexander Emory
This field case study focuses on Upper Jurassic (Oxfordian) Smackover hydrocarbon reservoir characterization, modeling and evaluation at Fishpond Field, Escambia County, Alabama, eastern Gulf Coastal Plain of North America. The field is located in the Conecuh Embayment area, south of the Little Cedar Creek Field in Conecuh County and east of Appleton Field in Escambia County. In the Conecuh Embayment, Smackover microbial buildups commonly developed on Paleozoic basement paleohighs in an inner to middle carbonate ramp setting. The microbial and associated facies identified in Fishpond Field are: (F-1) peloidal wackestone, (F-2) peloidal packstone, (F-3) peloidal grainstone, (F-4) peloidal grainstone/packstone, (F-5) microbially-influenced wackestone, (F-6) microbially-influenced packstone, (F-7) microbial boundstone, (F-8) oolitic grainstone, (F-9) shale, and (F-10) dolomitized wackestone/packstone. The Smackover section consists of an alternation of carbonate facies, including F-1 through F-8. The repetitive vertical trend in facies indicates variations in depositional conditions in the area as a result of changes in water depth, energy conditions, salinity, and/or water chemistry due to temporal variations or changes in relative sea level. Accommodation for sediment accumulation also was produced by a change in base level due to differential movement of basement rocks as a result of faulting and/or subsidence due to burial compaction and extension. These changes in base level contributed to the development of a microbial buildup that ranges between 130-165 ft in thickness. The Fishpond Field carbonate reservoir includes a lower microbial buildup interval, a middle grainstone/packstone interval and an upper microbial buildup interval. The Fishpond Field has sedimentary and petroleum system characteristics similar to the neighboring Appleton and Little Cedar Creek Fields, but also has distinct differences from these Smackover fields. The characteristics of the petroleum trap and reservoir at Fishpond Field requires modification of the exploration strategy presently in use to identify Smackover reservoirs productive of hydrocarbons in the Conecuh Embayment area. The complexity of the geologic history of the petroleum trap and reservoir development at Fishpond Field distinguishes this field from the Appleton basement paleohigh and related microbial buildup and the Little Cedar Creek stratigraphic trap and associated inner ramp microbial buildups.
Ocean plateau-seamount origin of basaltic rocks, Angayucham terrane, central Alaska
Barker, F.; Jones, D.L.; Budahn, J.R.; Coney, P.J.
1988-01-01
The Angayucham terrane of north-central Alaska (immediately S of the Brooks Range) is a large (ca. 500 km E-W), allochthonous complex of Devonian to Lower Jurassic pillow basalt, diabase sills, gabbro plutons, and chert. The mafic rocks are transitional normal-to-enriched, mid-ocean-ridge (MORB) type tholeiites (TiO2 1.2-3.4%, Nb 7-23 ppm, Ta 0.24-1.08 ppm, Zr 69-214 ppm, and light REE's slightly depleted to moderately enriched). Geologic and geochemical constraints indicate that Angayucham terrane is the upper "skin' (ca. 3-4 km thick) of a long-lived (ca. 170-200 ma) oceanic plateau whose basaltic-gabbroic rocks are like those of seamounts of the East Pacific Rise. -Authors
Sequence stratigraphy of the Hith/Upper Arab formations offshore Abu Dhabi, U.A.E.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azer, S.R.; Peebles, R.G.
1995-11-01
The Kimmeridgian Upper Arab zones A, B, and C, are prolific hydrocarbon bearing reservoirs in central and western Offshore Abu Dhabi (OAD). They were deposited in an arid climate which dominated the Arabian peninsula during Late Jurassic times. The Berriasian to Tithonian Hith Formation which overlies the Arab reservoirs constitute the cap rock, which just to the east of central OAD gradually pinches out and forms a N-S feather edge. The Hith and Upper Arab zones A, B, and C form 450 to over 600 feet of massive to interbedded anhydrites with varying proportions of limestones and dolomites in centralmore » and western OAD. The Arab Formation in OAD is a major regressive unit which was deposited on a broad carbonate platform and prograded eastwards into an open marine shelf environment. The objectives of this paper are to develop a sequence stratigraphic framework, emphasizing cyclicity, facies architecture and diagenesis. Core and well log data geared with various inorganic geochemical analyses from four wells are used to constrain the current uncertainties in age dating and integrate the diagenetic signatures in the patterns of relative sea level change which considerably control the formation of those parasequences. This effort will help in better understanding and possible prediction of porosity in such prospective reservoirs.« less
Hansen, V.L.; Dusel-Bacon, C.
1998-01-01
The Yukon-Tanana terrane, the largest tectonostratigraphic terrane in the northern North American Cordillera, is polygenetic and not a single terrane. Lineated and foliated (L-S) tectonites, which characterize the Yukon-Tanana terrane, record multiple deformations and formed at different times. We document the polyphase history recorded by L-S tectonites within the Yukon-Tanana upland, east-central Alaska. These upland tectonites compose a heterogeneous assemblage of deformed igneous and metamorphic rocks that form the Alaskan part of what has been called the Yukon-Tanana composite terrane. We build on previous kinematic data and establish the three-dimensional architecture of the upland tectonites through kinematic and structural analysis of more than 250 oriented samples, including quartz c-axis fabric analysis of 39 samples. Through this study we distinguish allochthonous tectonites from parautochthonous tectonites within the Yukon-Tanana upland. The upland tectonites define a regionally coherent stacking order: from bottom to top, they are lower plate North American parautochthonous attenuated continental margin; continentally derived marginal-basin strata; and upper plate ocean-basin and island-arc rocks, including some continental basement rocks. We delineate three major deformation events in time, space, and structural level across the upland from the United States-Canada border to Fairbanks, Alaska: (1) pre-Early Jurassic (>212 Ma) northeast-directed, apparent margin-normal contraction that affected oceanic rocks; (2) late Early to early Middle Jurassic (>188-185 Ma) northwest-directed, apparent margin-parallel contraction and imbrication that resulted in juxtaposition of the allochthonous tectonites with parautochthonous continental rocks; and (3) Early Cretaceous (135-110 Ma) southeast-directed crustal extension that resulted in exposure of the structurally deepest, parautochthonous continental rocks. The oldest event represents deformation within a west-dipping (present coordinates) Permian-Triassic subduction zone. The second event records Early to Middle Jurassic collision of the arc and subduction complex with North American crust, and the third event reflects mid-Cretaceous southeast-directed crustal extension. Events one and two can be recognized and correlated through southern Yukon, even though this region was affected by mid-Cretaceous dextral shear along steep northwest-striking faults. Our data support a model of crustal assembly originally proposed by D. Tempelman-Kluit in which previously deformed allochthonous rocks were thrust over parautochthonous rocks of the attenuated North American margin in Middle Jurassic time. Approximately 50 m.y. after tectonic accretion, east-central Alaska was dissected by crustal extension, exposing overthrust parautochthonous strata.
Till, Alison B.
2016-01-01
A synthesis of Late Jurassic and Early Cretaceous collision-related metamorphic events in the Arctic Alaska–Chukotka microplate clarifies its likely movement history during opening of the Amerasian and Canada basins. Comprehensive tectonic reconstructions of basin opening have been problematic, in part, because of the large size of the microplate, uncertainties in the location and kinematics of structures bounding the microplate, and lack of information on its internal deformation history. Many reconstructions have treated Arctic Alaska and Chukotka as a single crustal entity largely on the basis of similarities in their Mesozoic structural trends and similar late Proterozoic and early Paleozoic histories. Others have located Chukotka near Siberia during the Triassic and Jurassic, on the basis of detrital zircon age populations, and suggested that it was Arctic Alaska alone that rotated. The Mesozoic metamorphic histories of Arctic Alaska and Chukotka can be used to test the validity of these two approaches.A synthesis of the distribution, character, and timing of metamorphic events reveals substantial differences in the histories of the southern margin of the microplate in Chukotka in comparison to Arctic Alaska and places specific limitations on tectonic reconstructions. During the Late Jurassic and earliest Cretaceous, the Arctic Alaska margin was subducted to the south, while the Chukotka margin was the upper plate of a north-dipping subduction zone or a zone of transpression. An early Aptian blueschist- and greenschist-facies belt records the most profound crustal thickening event in the evolution of the orogen. It may have resulted in thicknesses of 50–60 km and was likely the cause of flexural subsidence in the foredeep of the Brooks Range. This event involved northern Alaska and northeasternmost Chukotka; it did not involve central and western Chukotka. Arctic Alaska and Chukotka evolved separately until the Aptian thickening event, which was likely a result of the rotation of Arctic Alaska into central and western Chukotka. In northeastern Chukotka, the thickened rocks are separated from the relatively little thickened continental crust of the remainder of Chukotka by the oceanic rocks of the Kolyuchin-Mechigmen zone. The zone is a candidate for an Early Cretaceous suture that separated most of Chukotka from northeast Chukotka and Alaska. Albian patterns of magmatism, metamorphism, and deformation in Chukotka and the Seward Peninsula may represent an example of escape tectonics that developed in response to final amalgamation of Chukotka with Eurasia.
Distal facies variability within the Upper Triassic part of the Otuk Formation in northern Alaska
Whidden, Katherine J.; Dumoulin, Julie A.; Whalen, M.T.; Hutton, E.; Moore, Thomas; Gaswirth, Stephanie
2014-01-01
The Triassic-Jurassic Otuk Formation is a potentially important source rock in allochthonous structural positions in the northern foothills of the Brooks Range in the North Slope of Alaska. This study focuses on three localities of the Upper Triassic (Norian) limestone member, which form a present-day, 110-km-long, east-west transect in the central Brooks Range. All three sections are within the structurally lowest Endicott Mountain allochthon and are interpreted to have been deposited along a marine outer shelf with a ramp geometry.The uppermost limestone member of the Otuk was chosen for this study in order to better understand lateral and vertical variability within carbonate source rocks, to aid prediction of organic richness, and ultimately, to evaluate the potential for these units to act as continuous (or unconventional) reservoirs. At each locality, 1 to 4 m sections of the limestone member were measured and sampled in detail to capture fine-scale features. Hand sample and thin section descriptions reveal four major microfacies in the study area, and one diagenetically recrystallized microfacies. Microfacies 1 and 2 are interpreted to represent redeposition of material by downslope transport, whereas microfacies 3 and 4 have high total organic carbon (TOC) values and are classified as primary depositional organofacies. Microfacies 3 is interpreted to have been deposited under primarily high productivity conditions, with high concentrations of radiolarian tests. Microfacies 4 was deposited under the lowest relative-oxygen conditions, but abundant thin bivalve shells indicate that the sediment-water interface was probably not anoxic.The Otuk Formation is interpreted to have been deposited outboard of a southwest-facing ramp margin, with the location of the three limestone outcrops likely in relatively close proximity during deposition. All three sections have evidence of transported material, implying that the Triassic Alaskan Basin was not a low-energy, deep-water setting, but rather a dynamic system with intermittent, yet significant, downslope flow. Upwelling played an important role in the small-scale vertical variability in microfacies. The zone of upwelling and resultant oxygen-minimum zone may have migrated across the ramp during fourth- or fifth-order sea-level changes.
NASA Astrophysics Data System (ADS)
Honig, M. R.; John, C. M.
2013-12-01
The Triassic-Jurassic boundary was marked by global changes including carbon-cycle perturbations and the opening of the Atlantic Ocean. These changes were accompanied by one of the major extinction events of the Phanerozoic. The carbon-cycle perturbations have been recorded in carbon isotope curves from bulk carbonates, organic carbon and fossil wood in several Tethyan locations and have been used for chemostratigraphic purposes. Here we present data from shallow-marine carbonates deposited on a homoclinal Middle Eastern carbonate ramp (United Arab Emirates). Our site was located at the equator throughout the Late Triassic and the Early Jurassic, and this study provides the first constraints of environmental changes at the low-latitudes for the Triassic-Jurassic boundary. Shallow-marine carbonate depositional systems are extremely sensitive to palaeoenvironmental changes and their usefulness for chemostratigraphy is being debated. However, the palaeogeographic location of the studied carbonate ramp gives us a unique insight into a tropical carbonate factory at a time of severe global change. Stable isotope measurements (carbon and oxygen) are being carried out on micrite, ooids and shell material along the Triassic-Jurassic boundary. The stable isotope results on micrite show a prominent negative shift in carbon isotope values of approximately 2 ‰ just below the inferred position of the Triassic-Jurassic boundary. A similar isotopic trend is also observed across the Tethys but with a range of amplitudes (from ~2 ‰ to ~4 ‰). These results seem to indicate that the neritic carbonates from our studied section can be used for chemostratigraphic purposes, and the amplitudes of the carbon isotope shifts provide critical constraints on the magnitude of carbon-cycle perturbations at low latitudes across the Triassic-Jurassic boundary. Seawater temperatures across the Triassic-Jurassic boundary will be constrained using the clumped isotope palaeo-thermometer applied to blocky calcite, bulk carbonate, oyster shells and echinoids. Assuming a pristine depositional signal can be extracted from one of the components, clumped isotopes will either shed light on the palaeoenvironmental conditions and the isotopic composition of a tropical ocean during the Late Triassic / Early Jurassic, or on the diagenetic history of the platform. We gratefully acknowledge funding from Qatar Petroleum, Shell, and Qatar Science & Technology Park.
Johnson, Edward A.; Warwick, Peter D.; Roberts, Stephen B.; Khan, Intizar H.
1999-01-01
The coal-bearing, lower Eocene Ghazij Formation is exposed intermittently over a distance of 750 kilometers along the western margin of the Axial Belt in north-central Pakistan. Underlying the formation are Jurassic to Paleocene carbonates that were deposited on a marine shelf along the pre- and post-rift northern margin of the Indian subcontinent. Overlying the formation are middle Eocene to Miocene marine and nonmarine deposits capped by Pliocene to Pleistocene collision molasse.The lower part of the Ghazij comprises mostly dark gray calcareous mudrock containing foraminifers and rare tabular to lenticular bodies of very fine grained to finegrained calcareous sandstone. We interpret the lower portion of this part of the Ghazij as outer-shelf deposits, and the upper portion as prodelta deposits. The middle part of the formation conformably overlies the lower part. It comprises medium-gray calcareous mudrock containing nonmarine bivalves, fine- to medium-grained calcareous sandstone, and rare intervals of carbonaceous shale and coal. Sandstone bodies in the middle part, in ascending stratigraphic order, are classified as Type I (coarsening-upward grain size, contain the trace fossil Ophiomorpha, and are commonly overlain by carbonaceous shale or coal), Type II (mixed grain size, display wedge-planar cross stratification, and contain fossil oyster shells and Ophiomorpha), and Type III (finingupward grain size, lenticular shape, erosional bases, and display trough cross stratification). These three types of bodies represent shoreface deposits, tidal channels, and fluvial channels, respectively. Mudrock intervals in the lower portion of this part of the formation contain fossil plant debris and represent estuarine deposits, and mudrock intervals in the upper portion contain fossil root traces and represent overbank deposits. We interpret the middle part of the Ghazij as a lower delta plain sequence. Overlying the middle part of the Ghazij, possibly unconformably, is the upper part of the formation, which comprises calcareous, nonfossiliferous, light-gray, brown, and red-banded mudrock, and rare Type III sandstone bodies. Much of the mudrock in this part of the formation represents multiple paleosol horizons. Locally, a limestone-pebble conglomerate is present in the upper part of the formation, either at the base or occupying most of the sequence. We interpret all but the uppermost portion of the upper part of the Ghazij as an upper delta plain deposit.Thin sections of Ghazij sandstones show mostly fragments of limestone, and heavy-liquid separations reveal the presence of chromite. Paleocurrent data and other evidence indicate a northwestern source area.During earliest Eocene time, the outer edge of the marine shelf off the Indian subcontinent collided with a terrestrial fragment positioned adjacent to, but detached from, the Asian mainland. This collision caused distal carbonateplatform deposits to be uplifted, and an intervening intracratonic sea, the Indus Foreland Basin, was created. Thus for the first time, the depositional slope switched from northwest facing to southeast facing, and a northwestern source for detritus was provided. We conclude that the Ghazij was deposited as a prograding clastic wedge along the northwestern shore of this sea, and that the formation contains sedimentologic evidence of a collisional event that predates the main impact between India and Asia.
Jurassic faults of southwest Alabama and offshore areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mink, R.M.; Tew, B.H.; Bearden, B.L.
1991-03-01
Four fault groups affecting Jurassic strata occur in the southwest and offshore Alabama areas. They include the regional basement rift trend, the regional peripheral fault trend, the Mobile graben fault system, and the Lower Mobile Bay fault system. The regional basement system rift and regional peripheral fault trends are distinct and rim the inner margin of the eastern Gulf Coastal Plain. The regional basement rift trend is genetically related to the breakup of Pangea and the opening of the Gulf of Mexico in the Late Triassic-Early Jurassic. This fault trend is thought to have formed contemporaneously with deposition of Latemore » Triassic-Early Jurassic Eagle Mills Formation and to displace pre-Mesozoic rocks. The regional peripheral fault trend consists of a group of en echelon extensional faults that are parallel or subparallel to regional strike of Gulf Coastal Plain strata and correspond to the approximate updip limit of thick Louann Salt. Nondiapiric salt features are associated with the trend and maximum structural development is exhibited in the Haynesville-Smackover section. No hydrocarbon accumulations have been documented in the pre-Jurassic strata of southwest and offshore Alabama. Productive hydrocarbon reservoirs occur in Jurassic strata along the trends of the fault groups, suggesting a significant relationship between structural development in the Jurassic and hydrocarbon accumulation. Hydrocarbon traps are generally structural or contain a major structural component and include salt anticlines, faulted salt anticlines, and extensional fault traps. All of the major hydrocarbon accumulations are associated with movement of the Louann Salt along the regional peripheral fault trend, the Mobile graben fault system, or the Lower Mobile Bay fault system.« less
Pawlewicz, Mark
2006-01-01
Three total petroleum systems were identified in the North Carpathian Province (4047) that includes parts of Poland, Ukraine, Austria, and the Czech Republic. They are the Isotopically Light Gas Total Petroleum System, the Mesozoic-Paleogene Composite Total Petroleum System, and the Paleozoic Composite Total Petroleum System. The Foreland Basin Assessment Unit of the Isotopically Light Gas Total Petroleum System is wholly contained within the shallow sedimentary rocks of Neogene molasse in the Carpathian foredeep. The biogenic gas is generated locally as the result of bacterial activity on dispersed organic matter. Migration is also believed to be local, and gas is believed to be trapped in shallow stratigraphic traps. The Mesozoic-Paleogene Composite Total Petroleum System, which includes the Deformed Belt Assessment Unit, is structurally complex, and source rocks, reservoirs, and seals are juxtaposed in such a way that a single stratigraphic section is insufficient to describe the geology. The Menilite Shale, an organic-rich rock widespread throughout the Carpathian region, is the main hydrocarbon source rock. Other Jurassic to Cretaceous formations also contribute to oil and gas in the overthrust zone in Poland and Ukraine but in smaller amounts, because those formations are more localized than the Menilite Shale. The Paleozoic Composite Total Petroleum System is defined on the basis of the suspected source rock for two oil or gas fields in western Poland. The Paleozoic Reservoirs Assessment Unit encompasses Devonian organic-rich shale believed to be a source of deep gas within the total petroleum system. East of this field is a Paleozoic oil accumulation whose source is uncertain; however, it possesses geochemical similarities to oil generated by Upper Carboniferous coals. The undiscovered resources in the North Carpathian Province are, at the mean, 4.61 trillion cubic feet of gas and 359 million barrels of oil. Many favorable parts of the province have been extensively explored for oil and gas. The lateral and vertical variability of the structure, the distribution and complex geologic nature of source rocks, and the depths of potential exploration targets, as well as the high degree of exploration, all indicate that future discoveries in this province are likely to be numerous but in small fields.
NASA Astrophysics Data System (ADS)
Gouiric-Cavalli, Soledad; Cione, Alberto Luis
2015-11-01
The marine deposits of the Vaca Muerta Formation (Tithonian-Berriasian) houses one of the most diverse Late Jurassic ichthyofaunas of Gondwana. However, most of the specimens remain undescribed. Jurassic fishes have been recovered from several localities at Neuquén Province (i.e., Picún Leufú, Plaza Huincul, Cerro Lotena, Portada Las Lajas, Los Catutos, and Arroyo Covunco) but also from Mendoza Province (i.e., La Valenciana, Los Molles, and Arroyo del Cajón Grande). Presently, the fish fauna of Los Catutos, near Zapala city (Neuquén Province), has yielded the highest number of specimens, which are taxonomically and morphologically diverse. At Los Catutos locality, the Vaca Muerta Formation is represented by the Los Catutos Member, which is considered the only lithographic limestones known in the Southern Hemisphere. Here, we review the Tithonian fish faunas from the Vaca Muerta Formation. During Late Jurassic times, the actual Argentinian territory could have been a morphological diversification center, at least for some actinopterygian groups. The apparently lower species diversity recorded in marine Jurassic ichthyofaunas of Argentina (and some Gondwanan countries) in comparison with Chilean and European fish faunas could be related to the fish paleontological research history in Gondwana and the low number of detailed studies of most of specimens recorded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilodeau, W.L.; Keith, S.B.
1986-06-01
Thick sequences of Lower Jurassic rhyolitic and andesitic volcanic rocks in several mountain ranges of southern Arizona contain interbedded quartzarenites. Locally up to 250 m thick, these sandstone lenses, composed of well-sorted and well-rounded quartz grains, commonly contain large-scale cross-stratification and are considered to be eolian sand deposits. The eolian sands were blown up against the continental side of the Early Jurassic volcanic arc that trended northwest-southeast across the southwestern margin of the North American continent and/or plate at that time. Paleocurrent data suggest southerly eolian transport of the sands from the Colorado Plateau area. Correlation of these sandstones withmore » the Lower Jurassic Navaho and Aztec Sandstones is indicated by the paleocurrent data as well as radiometric dating of the interbedded volcanics. Eolian sand transport southward across central Arizona in the Early Jurassic indicates that the Mogollon highlands either did not then exist, or were merely low, discontinuous inselbergs on a broad back-arc ramp, more appropriately called the Mogollon slope.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vahrenkamp, V.C.; Taylor, S.R.
The use of strontium-isotope ratios of dolomites to constrain timing and mechanism of diagenesis has been investigated on Jurassic Arab IV dolomites from offshore Qatar. Reservoir quality is determined by two types of dolomites, which were differentiated geochemically (cathodoluminescence, fluid inclusions, and carbon and oxygen stable isotopes): (1) stratigraphically concordant sucrosic dolomites with high porosity formed during early near-surface diagenesis (Jurassic) and (2) stratigraphically discordant cylindrical bodies of massive, porosity-destroying dolomites formed late during deep burial diagenesis (Eocene-Pliocene). Detailed Sr-isotope analysis of dolomites from the Arab IV confirms an Early Jurassic age of the sucrosic, high porosity dolomites ({sup 87}Sr/{supmore » 86}SR = 0.70707 for NBS 987 = 0.71024) with magnesium and strontium being derived from Jurassic seawater. Late Tertiary compressional orogeny of the Zagros belt to the north is proposed to have caused large-scale squeezing of fluids from the pore system of sedimentary rocks. A regional deep fluid flow system developed dissolving infra-Cambrian evaporites upflow and causing large-scale deep burial dolomitization downflow.« less
Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals.
Luo, Zhe-Xi; Ji, Qiang; Yuan, Chong-Xi
2007-11-01
Tribosphenic molars of basal marsupials and placentals are a major adaptation, with the protocone (pestle) of the upper molar crushing and grinding in the talonid basin (mortar) on the lower molar. The extinct pseudo-tribosphenic mammals have a reversed tribosphenic molar in which a pseudo-talonid is anterior to the trigonid, to receive the pseudo-protocone of the upper molar. The pseudo-protocone is analogous to the protocone, but the anteriorly placed pseudo-talonid is opposite to the posterior talonid basin of true tribosphenic mammals. Here we describe a mammal of the Middle Jurassic period with highly derived pseudo-tribosphenic molars but predominantly primitive mandibular and skeletal features, and place it in a basal position in mammal phylogeny. Its shoulder girdle and limbs show fossorial features similar to those of mammaliaforms and monotremes, but different compared with those of the earliest-known Laurasian tribosphenic (boreosphenid) mammals. The find reveals a much greater range of dental evolution in Mesozoic mammals than in their extant descendants, and strengthens the hypothesis of homoplasy of 'tribosphenic-like' molars among mammals.
NASA Astrophysics Data System (ADS)
Wegierek, Piotr; Żyła, Dagmara; Homan, Agnieszka; Cai, Chenyang; Huang, Diying
2017-12-01
Recently, we are witnessing an increased appreciation for the importance of the fossil record in phylogenetics and testing various evolutionary hypotheses. However, this approach brings many challenges, especially for such a complex group as aphids and requires a thorough morphological analysis of the extinct groups. The extinct aphid family Szelegiewicziidae is supposed to be one of the oviparous lineages in aphid evolution. New material from the rock fossil deposits of Shar Teg (Upper Jurassic of Mongolia), Baissa (Lower Cretaceous of Siberia-Russia), and Burmese amber (Upper Cretaceous of Myanmar) allowed us to undertake a more detailed examination of the morphological features and carry out an analysis of the taxonomical composition and evolution of the family. This led us to the conclusion that evolution of the body plan and wing structure was similar in different, often not closely related groups, probably as a result of convergence. Additionally, we present a description of a new genus and two species ( Tinaphis mongolica Żyła &Wegierek, sp. nov., and Feroorbis burmensis Wegierek & Huang, gen. et sp. nov.) that belong to this family.
Wegierek, Piotr; Żyła, Dagmara; Homan, Agnieszka; Cai, Chenyang; Huang, Diying
2017-10-24
Recently, we are witnessing an increased appreciation for the importance of the fossil record in phylogenetics and testing various evolutionary hypotheses. However, this approach brings many challenges, especially for such a complex group as aphids and requires a thorough morphological analysis of the extinct groups. The extinct aphid family Szelegiewicziidae is supposed to be one of the oviparous lineages in aphid evolution. New material from the rock fossil deposits of Shar Teg (Upper Jurassic of Mongolia), Baissa (Lower Cretaceous of Siberia-Russia), and Burmese amber (Upper Cretaceous of Myanmar) allowed us to undertake a more detailed examination of the morphological features and carry out an analysis of the taxonomical composition and evolution of the family. This led us to the conclusion that evolution of the body plan and wing structure was similar in different, often not closely related groups, probably as a result of convergence. Additionally, we present a description of a new genus and two species (Tinaphis mongolica Żyła &Wegierek, sp. nov., and Feroorbis burmensis Wegierek & Huang, gen. et sp. nov.) that belong to this family.
NASA Astrophysics Data System (ADS)
Chen, Zhonghong; Zha, Ming; Liu, Keyu; Zhang, Yueqian; Yang, Disheng; Tang, Yong; Wu, Kongyou; Chen, Yong
2016-09-01
The Kebai Fault zone of the West Junggar Basin in northwestern China is a unique region to gain insights on the formation of large-scale petroleum reservoirs in volcanic rocks of the western Central Asian Orogenic Belt. Carboniferous volcanic rocks are widespread in the Kebai Fault zone and consist of basalt, basaltic andesite, andesite, tuff, volcanic breccia, sandy conglomerate and metamorphic rocks. The volcanic oil reservoirs are characterized by multiple sources and multi-stage charge and filling history, characteristic of a complex petroleum system. Geochemical analysis of the reservoir oil, hydrocarbon inclusions and source rocks associated with these volcanic rocks was conducted to better constrain the oil source, the petroleum filling history, and the dominant mechanisms controlling the petroleum accumulation. Reservoir oil geochemistry indicates that the oil contained in the Carboniferous volcanic rocks of the Kebai Fault zone is a mixture. The oil is primarily derived from the source rock of the Permian Fengcheng Formation (P1f), and secondarily from the Permian Lower Wuerhe Formation (P2w). Compared with the P2w source rock, P1f exhibits lower values of C19 TT/C23 TT, C19+20TT/ΣTT, Ts/(Ts + Tm) and ααα-20R sterane C27/C28 ratios but higher values of TT C23/C21, HHI, gammacerane/αβ C30 hopane, hopane (20S) C34/C33, C29ββ/(ββ + αα), and C29 20S/(20S + 20R) ratios. Three major stages of oil charge occurred in the Carboniferous, in the Middle Triassic, Late Triassic to Early Jurassic, and in the Middle Jurassic to Late Jurassic periods, respectively. Most of the oil charged during the first stage was lost, while moderately and highly mature oils were generated and accumulated during the second and third stages. Oil migration and accumulation in the large-scale stratigraphic reservoir was primarily controlled by the top Carboniferous unconformity with better porosity and high oil enrichment developed near the unconformity. Secondary dissolution pores and fractures are the two major reservoir storage-space types in the reservoirs. Structural highs and reservoirs near the unconformity are two favorable oil accumulation places. The recognition of the large-scale Carboniferous volcanic reservoirs in the Kebai Fault zone and understanding of the associated petroleum accumulation mechanisms provide new insights for exploring various types of volcanic reservoir plays in old volcanic provinces, and will undoubtedly encourage future oil and gas exploration of deeper strata in the region and basins elsewhere with similar settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konert, G.; Van Den Brink, H.A.; Visser, W.
1991-08-01
The prolific Eastern Flank Heavy Oil province east of the South Oman Salt basin is unique because of the widespread occurrence of Precambrian source rocks from which the hydrocarbons originated. Fission-track analysis and burial studies suggest that most of these source rocks became mature and generated hydrocarbons in the Ordovician; subsequently, the source beds were uplifted and did not re-enter the oil window. Its uniqueness is also based on the all-important role played by Precambrian salt. The traps in Palaeozoic clastics were initially structured by halokinesis, and subsequently by salt dissolution. The latter process gradually removed the salt from themore » area is largely responsible for the present-day structure with palaeo-withdrawal basins inverted in present-day turtles. Present-day traps are mainly post-Late Jurassic in age, significantly post-dating the time of oil generation. Detailed field studies indicate that charge phases appear to correlate with periods of increased salt dissolution in the Late Jurassic-Early Cretaceous, Late Cretaceous, and Tertiary. Oil was probably stored in intermediate traps below and within the salt. It was gradually released upon progressive tilting of the basin flank; it migrated updip toward the basinward retreating salt edge, and subsequently (back) spilled into the stratigraphically younger traps. Also, removal of the top seal of intra-salt and sub-salt traps by salt dissolution allowed upward remigration. It follows that charge concepts in the Eastern Flank Heavy Oil province depend on defining salt-edge-related hydrocarbon release areas, rather than on kitchen modeling.« less
NASA Astrophysics Data System (ADS)
Wang, Gongwen; Ma, Zhenbo; Li, Ruixi; Song, Yaowu; Qu, Jianan; Zhang, Shouting; Yan, Changhai; Han, Jiangwei
2017-04-01
In this paper, multi-source (geophysical, geochemical, geological and remote sensing) datasets were used to construct multi-scale (district-, deposit-, and orebody-scale) 3D geological models and extract 3D exploration criteria for subsurface Mo-polymetallic exploration targeting in the Luanchuan district in China. The results indicate that (i) a series of region-/district-scale NW-trending thrusts controlled main Mo-polymetallic forming, and they were formed by regional Indosinian Qinling orogenic events, the secondary NW-trending district-scale folds and NE-trending faults and the intrusive stock structure are produced based on thrust structure in Caledonian-Indosinian orogenic events; they are ore-bearing zones and ore-forming structures; (ii) the NW-trending district-scale and NE-trending deposit-scale normal faults were crossed and controlled by the Jurassic granite stocks in 3D space, they are associated with the magma-skarn Mo polymetallic mineralization (the 3D buffer distance of ore-forming granite stocks is 600 m) and the NW-trending hydrothermal Pb-Zn deposits which are surrounded by the Jurassic granite stocks and constrained by NW-trending or NE-trending faults (the 3D buffer distance of ore-forming fault is 700 m); and (iii) nine Mo polymetallic and four Pb-Zn targets were identified in the subsurface of the Luanchuan district.
NASA Astrophysics Data System (ADS)
Robertson, A. H. F.
2012-04-01
The objective here is to use the geology and tectonics of a critical part of the Tethyan orogen, represented by Greece and Albania, to shed light on the tectonic development of Tethys on a regional, to global scale, particularly the history of convergence during Late Palaeozoic to Cenozoic time. For Carboniferous time much evidence suggests that the Korabi-Pelagonian crustal unit as exposed in Albania and Greece formed above a northward-dipping subduction zone along the Eurasia continental margin, with Palaeotethys to the south. However, there is also some evidence of southward subduction beneath Gondwana especially from southern Greece and central southern Turkey. Palaeotethys is inferred to have closed in Europe as far to the east as the longitude of Libya, while remaining open beyond this. There is still uncertainty about the Pangea A-type reconstruction that would restore all of the present units in the area to within the E Mediterranean region, versus the Pangea B-type reconstruction that would require right-lateral displacement of exotic terranes, by up to 3,500 km eastwards. In either reconstruction, fragments of the Variscan collisional orogen are likely to have been displaced eastwards (variable distances) in the Balkan region prior to Late Permian-Early Triassic time. From ~Late Permian, the Greece-Albania crustal units were located in their present relative position within Tethys as a whole. From the mid-Permian, onwards the northern margin of Gondwana was affected by crustal extension. A Mesozoic ocean (Pindos-Mirdita ocean) then rifted during Early-Middle Triassic time, culminating in final continental break-up and seafloor spreading during the Late Triassic (Carnian-Norian). Subduction-influenced volcanics of mainly Early-Middle Triassic age probably reflect the extraction of magma from sub-continental lithosphere that was enriched in subduction-related fluids and volatiles during an earlier, ?Variscan subduction event. The existence of Upper Triassic mid-ocean ridge-type igneous rocks, known locally in Albania and Greece, points to rifting of a Red Sea-type oceanic basin rather than a back-arc basin related to contemporaneous subduction. After initial, inferred slow spreading at an Upper Triassic, rifted ocean ridge and spreading during the Early Jurassic, the ocean basin underwent regional convergence. Subduction was initiated at, or near, a spreading axis perhaps adjacent to an oceanic fracture zone. The Jurassic supra-subduction zone-type ophiolites of both Greece and Albania largely relate to melting of rising asthenosphere in the presence of volatiles (water) that originated from subducting oceanic lithosphere. High-magnesian boninite-type magmas that are present in both the Albanian and Greece ophiolites and some underlying melanges reflect remelting of previously depleted oceanic upper mantle. Localised MOR-type ophiolites of Late Middle Jurassic age, mainly exposed in NE Albania, were created at a rifted spreading axis. The amphibolite-facies metamorphic sole of the ophiolites was mainly derived from oceanic crust (including within-plate type seamounts), whereas the underlying lower-grade, greenschist facies sole was mainly sourced from the rifted continental margin. The melange, dismembered thrust sheets and polymict debris flows ("olistostromes") beneath the ophiolites formed by accretion and gravity reworking of continental margin units. The in situ radiolarian chert cover of the ophiolites in northern Albania is overlain by polymict debris flows ("olistostromes"). Pelagic carbonate deposition followed during Tithonian-Berriasian time and then restoration of a regional carbonate platform during the Cretaceous. Exhumation of deeply buried parts of the over-ridden continental margin probably took place during the Early Cretaceous. Structural evidence, mainly from northern Greece (Vourinos, Pindos and Othris areas), indicates that the ophiolites, the metamorphic sole, the accretionary melange, and the underlying continental margin units were all deformed by top-to-the-northeast thrusting during Late Middle-Early Late Jurassic time. However, such kinematic evidence is not obviously replicated in Albania, where there are reports of ~southwest-directed (or variable) emplacement. Remaining Pindos-Mirdita oceanic crust subducted ~southwestwards during Late Cretaceous-Eocene time, while oceanic crust continued to form in the south-Aegean region at least locally during Late Cretaceous time. During Early Cenozoic time the Pindos-Mirdita ocean closed progressively southwards, triggering mainly southward progradation of turbidites derived from the over-riding Korabi-Pelagonian microcontinent. Smaller volumes of sediment were also derived from the Apulia (Adria) continent. The Mesohellenic Trough of Greece and its counterpart in Albania evolved from an Eocene fore-arc-type basin above subducting oceanic lithosphere to a thrust-top basin as continental crust continued to underthrust during the Oligocene after final closure of the Pindos-Mirdita ocean. Miocene and Plio-Quaternary successor flexural foredeeps developed in response to continuing regional plate convergence. The preferred tectonic alternatives are assembled into a new overall tectonic model, which in turn needs to be tested and developed in the light of future studies. Reference: Robertson, A.H.F. Tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region during Late Palaeozoic-Cenozoic time. International Geological Review, in press.
Plume type ophiolites in Japan, East Russia and Mongolia: Peculiarity of the Late Jurassic examples
NASA Astrophysics Data System (ADS)
Ishiwatari, Akira; Ichiyama, Yuji; Ganbat, Erdenesaikhan
2013-04-01
Dilek and Furnes (2011; GSAB) provided a new comprehensive classification of ophiolites. In addition to the mid-ocean ridge (MOR) and supra-subduction zone (SSZ) types that are known for decades, they introduced rift-zone (passive margin) type, volcanic arc (active margin) type, and plume type. The last type is thought to be originated in oceanic large igneous provinces (LIPs; oceanic plateaus), and is preserved in the subduction-accretion complexes in the Pacific margins. The LIP-origin greenstones occur in the Middle Paleozoic (Devonian) accretionary complex (AC) in central Mongolia (Ganbat et al. 2012; AGU abst.). The Late Paleozoic and Mesozoic plume-type ophiolites are abundant in Japan. They are Carboniferous greenstones covered by thick limestone in the Akiyoshi belt (Permian AC, SW Japan; Tatsumi et al., 2000; Geology), Permian greenstones in the Mino-Tamba belt (Jurassic AC, SW Japan; Ichiyama et al. 2008; Lithos), and Late Jurassic-Early Cretaceous greenstone in the Sorachi (Hokkaido; Ichiyama et al, 2012; Geology) and Mikabu (SW Japan; this study) belts. The LIP origin of these greenstones is indicated by abundance of picrite (partly komatiite and meimechite), geochemical features resembling HIMU basalts (e.g. high Nb/Y and Zr/Y) and Mg-rich (up to Fo93) picritic olivines following the "mantle array", suggesting very high (>1600oC) temperature of the source mantle plume. The Sorachi-Mikabu greenstones are characterized by the shorter time interval between magmatism and accretion than the previous ones, and are coeval with the meimechite lavas and Alaskan-type ultramafic intrusions in the Jurassic AC in Sikhote-Alin Mountains of Primorye (E. Russia), that suggest a superplume activity in the subduction zone (Ishiwatari and Ichiyama, 2004; IGR). The Mikabu greenstones extend for 800 km along the Pacific coast of SW Japan, and are characterized by the fragmented "olistostrome" occurrence of the basalts, gabbros and ultramafic cumulate rocks (but no mantle peridotite), suggesting tectonism in a sediment-starved subduction zone or a transform fault zone that transected the thick oceanic LIP crust. The Sorachi greenstones are associated with depleted mantle peridotite, and are covered by the thick Cretaceous turbidite formation (Yezo Group), and Takashima et al. (2002; JAES) concluded the marginal basin origin for the "Sorachi ophiolite". We know that some oceanic LIPs were developed into marginal basins (e.g. Caribbean basin). The Late Jurassic-Early Cretaceous greenstone belts of Japan and eastern Russia may represent relics of a 2000 km-size superplume activity that hit the subduction zone and the adjacent ocean floor in NW Pacific.
Howard, Keith A.; Bacheller, John; Fitzgibbon, Todd T.; Powell, Robert E.; Allen, Charlotte M.
2013-01-01
The Valley Mountain 15’ quadrangle straddles the Pinto Mountain Fault, which bounds the eastern Transverse Ranges in the south against the Mojave Desert province in the north. The Pinto Mountains, part of the eastern Transverse Ranges in the south part of the quadrangle expose a series of Paleoproterozoic gneisses and granite and the Proterozoic quartzite of Pinto Mountain. Early Triassic quartz monzonite intruded the gneisses and was ductiley deformed prior to voluminous Jurassic intrusion of diorite, granodiorite, quartz monzonite, and granite plutons. The Jurassic rocks include part of the Bullion Mountains Intrusive Suite, which crops out prominently at Valley Mountain and in the Bullion Mountains, as well as in the Pinto Mountains. Jurassic plutons in the southwest part of the quadrangle are deeply denuded from midcrustal emplacement levels in contrast to supracrustal Jurassic limestone and volcanic rocks exposed in the northeast. Dikes inferred to be part of the Jurassic Independence Dike Swarm intrude the Jurassic plutons and Proterozoic rocks. Late Cretaceous intrusion of the Cadiz Valley Batholith in the northeast caused contact metamorphism of adjacent Jurassic plutonic rocks. The Tertiary period saw emplacement of basanitoid basalt at about 23 Ma and deposition of Miocene and (or) Pliocene ridge-capping gravels. An undated east-dipping low-angle normal fault zone in the Pinto Mountains drops hanging-wall rocks eastward and may account for part of the contrast in uplift history across the quadrangle. The eastern Transverse Ranges are commonly interpreted as severely rotated clockwise tectonically in the Neogene relative to the Mojave Desert, but similar orientations of Jurassic dike swarms suggest that any differential rotation between the two provinces is small in this quadrangle. The late Cenozoic Pinto Mountain Fault and other strike-slip faults cut Quaternary deposits in the quadrangle, with two northwest-striking faults cutting Holocene deposits. Geographic Information System and metadata on most geologic features are available on the Geologic map of the Sheep Hole Mountains 30’ by 60’ quadrangle, U.S. Geological Survey map MF–2234, scale 1:100,000, available at http://pubs.usgs.gov/mf/2002/2344/.
NASA Astrophysics Data System (ADS)
Olsen, P. E.; Whiteside, J. H.
2003-12-01
The Triassic-Jurassic boundary at ˜200 Ma marks one of the five major mass-extinctions of the Phanerozoic and, depending on the metrics used, was similar in magnitude to the K-T mass extinction. In continental environments about 50% of all tetrapod families are eliminated and although floral diversity change is difficult to gauge, a similar proportion of palynomorph taxa disappear at the boundary. The extinction event appears to have been very abrupt, followed by a roughly 900 ky super-greenhouse period characterized by increased precipitation. We hypothesize a series of biological consequences of the drop in diversity and associated super-greenhouse based on observations of the earliest Jurassic assemblages, largely from eastern North America. 1) The drop in diversity results in a collapse of ecological interactions that tend to stabilize the composition of regional biotas and buffer them from invading forms. Triassic assemblages show considerable biogeographic provinciality despite the existence of Pangea, but the earliest Jurassic assemblages were extraordinarily homogenous with many vertebrate genera being essentially global in distribution. 2) Initially the post-boundary terrestrial assemblages were comprised of eurytopic trophic generalists, with animal communities with few herbivores, but abundant carnivores and detritivores subsisting on aquatic-based food webs. The earliest Jurassic tetrapod footprint record is overwhelmingly dominated by the footprints of ceratosaurian theropod dinosaurs, the latter having skull characteristics usually associated at least in part with piscivory. 3) The dramatic size changes over very short periods of time were likely due to an absence of competition (i.e., ecological release). The maximum size of theropod dinosaur footprints increased by about 25% within 10 ky following the boundary, corresponding to a doubling of mass. 4) Representatives of clades with intrinsically high rates of speciation tend to form species flocks after the boundary. Species flocks of semionotid fishes dominated earliest Jurassic giant rift lakes in eastern North America, but not Triassic or later Early Jurassic lakes in the same basins. Based on footprint data, it is quite possible that there were also species flocks of morphologically similar ceratosaurian theropod dinosaurs in the Early Jurassic.
Mercury evidence for pulsed volcanism during the end-Triassic mass extinction
Percival, Lawrence M. E.; Ruhl, Micha; Hesselbo, Stephen P.; Jenkyns, Hugh C.; Mather, Tamsin A.; Whiteside, Jessica H.
2017-01-01
The Central Atlantic Magmatic Province (CAMP) has long been proposed as having a causal relationship with the end-Triassic extinction event (∼201.5 Ma). In North America and northern Africa, CAMP is preserved as multiple basaltic units interbedded with uppermost Triassic to lowermost Jurassic sediments. However, it has been unclear whether this apparent pulsing was a local feature, or if pulses in the intensity of CAMP volcanism characterized the emplacement of the province as a whole. Here, six geographically widespread Triassic–Jurassic records, representing varied paleoenvironments, are analyzed for mercury (Hg) concentrations and Hg/total organic carbon (Hg/TOC) ratios. Volcanism is a major source of mercury to the modern environment. Clear increases in Hg and Hg/TOC are observed at the end-Triassic extinction horizon, confirming that a volcanically induced global Hg cycle perturbation occurred at that time. The established correlation between the extinction horizon and lowest CAMP basalts allows this sedimentary Hg excursion to be stratigraphically tied to a specific flood basalt unit, strengthening the case for volcanic Hg as the driver of sedimentary Hg/TOC spikes. Additional Hg/TOC peaks are also documented between the extinction horizon and the Triassic–Jurassic boundary (separated by ∼200 ky), supporting pulsatory intensity of CAMP volcanism across the entire province and providing direct evidence for episodic volatile release during the initial stages of CAMP emplacement. Pulsatory volcanism, and associated perturbations in the ocean–atmosphere system, likely had profound implications for the rate and magnitude of the end-Triassic mass extinction and subsequent biotic recovery. PMID:28630294
Geological history of the west Libyan offshore and adjoining regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benniran, M.M.; Taleb, T.M.; McCrossan, R.G.
1988-08-01
The continental margin of the African plate north of Libya is separated from the Saharan platform to the south by a major Variscan fault system running along the coastline. The structural evolution of three sedimentary basins within the margin is discussed. The Jeffara basin, onshore western Libya-southern Tunisia, formed as a right-lateral pull-part late in the Variscan event. When the strike-slip motion ceased in the Late Permian, the basin continued to subside thermally. The Sabratah (Tripolitanian) basin, offshore western Libya-southern Tunisia, and the Benghazi basin in the Sirte rise were both formed as left-lateral pull-aparts in the Late Triassic-Early Jurassic.more » From the Middle Jurassic to the present they have subsided thermally. Onshore the lower Mesozoic is characterized by continental and nearshore clastics, separated by an evaporite sequence of Late Triassic-Early Jurassic age. Offshore this sequence is thought to grade northward into open marine carbonates. Uplift along the edge of the Saharan platform during the Early Cretaceous sourced coarse clastics, which grade northward into a thick sequence of shallow-water carbonates. Throughout the Late Cretaceous and early Tertiary, high-energy carbonates were deposited around the flanks of the Sabratah basin, grading into deeper-water, fine-grained clastics and carbonates toward the center of the basin. The late Tertiary succession is dominated by clastics derived from the growing Tellian Atlas to the northwest. During the Mesozoic and Tertiary a thick sequence of carbonates was deposited on the Pelagian platform to the north of the Sabratah basin. Periodically the platform was exposed subaerially.« less
Mercury evidence for pulsed volcanism during the end-Triassic mass extinction
NASA Astrophysics Data System (ADS)
Percival, Lawrence M. E.; Ruhl, Micha; Hesselbo, Stephen P.; Jenkyns, Hugh C.; Mather, Tamsin A.; Whiteside, Jessica H.
2017-07-01
The Central Atlantic Magmatic Province (CAMP) has long been proposed as having a causal relationship with the end-Triassic extinction event (˜201.5 Ma). In North America and northern Africa, CAMP is preserved as multiple basaltic units interbedded with uppermost Triassic to lowermost Jurassic sediments. However, it has been unclear whether this apparent pulsing was a local feature, or if pulses in the intensity of CAMP volcanism characterized the emplacement of the province as a whole. Here, six geographically widespread Triassic-Jurassic records, representing varied paleoenvironments, are analyzed for mercury (Hg) concentrations and Hg/total organic carbon (Hg/TOC) ratios. Volcanism is a major source of mercury to the modern environment. Clear increases in Hg and Hg/TOC are observed at the end-Triassic extinction horizon, confirming that a volcanically induced global Hg cycle perturbation occurred at that time. The established correlation between the extinction horizon and lowest CAMP basalts allows this sedimentary Hg excursion to be stratigraphically tied to a specific flood basalt unit, strengthening the case for volcanic Hg as the driver of sedimentary Hg/TOC spikes. Additional Hg/TOC peaks are also documented between the extinction horizon and the Triassic-Jurassic boundary (separated by ˜200 ky), supporting pulsatory intensity of CAMP volcanism across the entire province and providing direct evidence for episodic volatile release during the initial stages of CAMP emplacement. Pulsatory volcanism, and associated perturbations in the ocean-atmosphere system, likely had profound implications for the rate and magnitude of the end-Triassic mass extinction and subsequent biotic recovery.
NASA Astrophysics Data System (ADS)
Zaw, Khin
The granitoid rocks in Burma extend over a distance of 1450 km from Putao, Kachin State in the north, through Mogok, Kyaukse, Yamethin and Pyinmana in the Mandalay Division, to Tavoy and Mergui areas, Tenasserim Division, in the south. The Burmese granitoids can be subdivided into three N-S trending, major belts viz. western granitoid belt, central graniotoid belt and eastern granitoid belt. The Upper Cretaceous-Lower Eocene western belt granitoids are characterized by high-level intrusions associated with porphyry Cu(Au) related, younger volcanics; these plutonic and volcanic rocks are thought to have been emplaced as a magmatic-volcanic arc (inner magmatic-volcanic arc) above an east-dipping, but westwardly migrating, subduction zone related to the prolonged plate convergence which occurred during Upper Mesozoic and Cenozoic. The central granitoid belt is characterized by mesozonal, Mostly Upper Cretaceous to Lower Eocene plutons associated with abundant pegmalites and aplites, numerous vein-type W-Sn deposits and rare co-magmatic volcanics. The country rocks are structurally deformed, metamorphic rocks of greenschist to upper amphibolite facies ranging in age as early as Upper Precambrian to Upper Paleozoic and locally of fossiliferous, metaclastic rocks (Mid Jurassic to Lower Cretaceous). Available K/Ar radiometric data indicate significant and possibly widespread thermal disturbances in the central granitoid belt during the Tertiary (mostly Miocence). In this study, the distribution, lithological, textural and structural characteristics of the central belt granitoids are reviewed, and their mineralogical, petrological, and geochemical features are presented. A brief description of W-Sn ore veins associated with these granitoid plutons is also reported. Present geological, petrological and geochemical evidences demonstrate that the W-Sn related, central belt granitoids are mostly granodiorite and granite which are commonly transformed into granitoid gneisses. These central belt granitoids were formed from a calc-alkaline magma derived from a source of continental, sialic materials. Highly potassiccharacters and high initial Sr 87/Sr 86 ratios (0.717±0.002) and Rb/Sr ratios (0.40-33.10) with an average value of 6.70, further corroborate their derivation from a well established continental, sialic basement. Although future chemical and isotopic investigations would be desirable, none of the present evidence argues the interpretation that the granitoid magma was generated by the re-melting of the regionally metamorphosed country rocks. The close association of W-Sn bearing quartz veins and the granitoid rocks also suggests that the metals were derived from the same crustal sources as their host granitoids. The central belt granitoids are considered to have been emplaced during the continent-arc collision of inferred Upper Triassic-Jurassic magmatic-volcanic arc with the continental foreland to the east at the early stage of westward migration of the east-dipping subduction zone to the west. The W-Sn related, central belt granitoids of Upper Mesozoic-Lower Eocene are notably different from those of mainly Triassic granitoids from northern Thailand and Permo-Triassic granites of the Malay Peninsula, and thus the central belt granitoids were emplaced in a uniquely distinct geologic and tetonic setting in the SE Asian region. Major element data for the central belt granitoids, which are associated with W-Sn mineralization lie within the field of Sn-mineralizing granites from New England in Na-K-Ca plot (Juniper and Kleeman, J. Geochem. Explor.11, 321-333, 1979), but largely outside the field on SiO 2CaO +_MgO + FeONa 2O + K 2O + Al 2O 3 plot. Trace element abundances of the central belt granitoid rocks suggest that the Sn content of the granitoids alone should be used with great caution to discriminate the W-Sn bearing (mineralized) granitoid plutons from the W-Sn poor (barren) plutons in search for the W-Sn deposits in Burma, but trace element data show the tendency for granitoid plutons which bear W-Sn mineralization to be comparatively more enriched in Be, Bi, Cu, Mo, Pb, Sn, Y, and Zn, but less depleted in Ba and Zr than those plutons in which no W-Sn occurrences are recorded. The eastern belt granitoids are still largely unknown but characterized by medium to coarsely porphyritic textures and country rocks of regionally metamorphosed, turbiditic sediments of Chaung Magyi Group (Upper Precambrian). This eastern granitoid belt lies immediately to the north of mostly Triassic granitoids in northern Thailand, and the Sn-W bearing, mesozonal, Permo-Triassic, Main Range granitoids in the western part of the Malay Peninsula. The latter granitoid swere considered to have been emplaced during continental collision, but geologic and tectonic information for the eastern belt grantoids in Burma are still incomplete to confirm this contention. Alternatively, present available geologic evidences cannot rule out the possibility that the eastern belt granitoids were emplaced in a continental margin above an eastward subducting ocean floor during the Lower Paleozoic. According to the criteria given by Chappell and White ( Pacific Geol.8, 173-174, 1974), the porphyry Cu(Au)-related, western granitoid belt plutons have I-type characteristics, whereas the W-Sn related, central granitoid belt contains both the hornblende-bearing I-type granitoids as older intrusive phases and the W-Sn bearing, S-type granitoids as younger plutonic phases. The eastern belt granitoids cannot be classified as being of either I- or S-type, as petrochemical data are still lacking.
Oil prospection using the tectonic plate model
NASA Astrophysics Data System (ADS)
Pointu, Agnès
2015-04-01
Tectonic plate models are an intellectual setting to understand why oil deposits are so uncommon and unequally distributed and how models can be used in actual oil and gas prospection. In this case, we use the example of the Ghawar deposit (Saudi Arabia), one of the largest producing well in the world. In the first step, physical properties of rocks composing the oil accumulation are studied by laboratory experiments. Students estimate the porosity of limestone and clay by comparing their mass before and after water impregnation. Results are compared to microscopic observations. Thus, students come to the conclusion that oil accumulations are characterized by superposition of rocks with very different properties: a rich organic source rock (clays of the Hanifa formation), a porous reservoir rock to store the petroleum in (limestones of the Arab formation) and above an impermeable rock with very low porosity (evaporites of the Tithonien). In previous lessons, students have seen that organic matter is usually mineralized by bacteria and that this preservation requires particular conditions. The aim is to explain why biomass production has been so important during the deposit of the clays of the Hanifa formation. Tectonic plate models make it possible to estimate the location of the Arabian Peninsula during Jurassic times (age of Hanifa formation). In order to understand why the paleo-location of the Arabian Peninsula is important to preserve organic matter, students have different documents showing: - That primary production of biomass by phytoplankton is favored by climatic conditions, - That the position of continents determinate the ocean currents and the positions of upwelling zones and zones where organic matter will be able to be preserved, - That north of the peninsula there was a passive margin during Jurassic times. An actual seismic line is studied in order to highlight that this extensive area allowed thick sedimentary deposits to accumulate and that fast sedimentation rate is necessary to bury organic matter and to restrict the mineralization. Consequences of crustal extension are also studied by using an experimental sand box model. The creation of faults is related to the subsidence of the margin. This subsidence allows the crossing of the oil window, leading to pyrolysis of organic matter and its transformation into oil. Afterwards, students compare the structures obtained after extension in their sand box to the actual organization of the Ghawar oil accumulation (seismic line). They can see that faults created by extension forces have not been preserved and can assume that compression forces have caused formation of the traps. An animation of paleo-location of continents during the upper Jurassic helps them to think that compression forces are linked to the closure of the Tethys Sea. A model using gravel and clay is used to show the principle of oil trapping. This way, students understand how the tectonic plate models explain the actual location of oil deposits and then how it can be used to look for new deposits.
Higley, D.K.; Lewan, M.D.; Roberts, L.N.R.; Henry, M.
2009-01-01
The Lower Cretaceous Mannville Group oil sands of northern Alberta have an estimated 270.3 billion m3 (BCM) (1700 billion bbl) of in-place heavy oil and tar. Our study area includes oil sand accumulations and downdip areas that partially extend into the deformation zone in western Alberta. The oil sands are composed of highly biodegraded oil and tar, collectively referred to as bitumen, whose source remains controversial. This is addressed in our study with a four-dimensional (4-D) petroleum system model. The modeled primary trap for generated and migrated oil is subtle structures. A probable seal for the oil sands was a gradual updip removal of the lighter hydrocarbon fractions as migrated oil was progressively biodegraded. This is hypothetical because the modeling software did not include seals resulting from the biodegradation of oil. Although the 4-D model shows that source rocks ranging from the Devonian-Mississippian Exshaw Formation to the Lower Cretaceous Mannville Group coals and Ostracode-zone-contributed oil to Mannville Group reservoirs, source rocks in the Jurassic Fernie Group (Gordondale Member and Poker Chip A shale) were the initial and major contributors. Kinetics associated with the type IIS kerogen in Fernie Group source rocks resulted in the early generation and expulsion of oil, as early as 85 Ma and prior to the generation from the type II kerogen of deeper and older source rocks. The modeled 50% peak transformation to oil was reached about 75 Ma for the Gordondale Member and Poker Chip A shale near the west margin of the study area, and prior to onset about 65 Ma from other source rocks. This early petroleum generation from the Fernie Group source rocks resulted in large volumes of generated oil, and prior to the Laramide uplift and onset of erosion (???58 Ma), which curtailed oil generation from all source rocks. Oil generation from all source rocks ended by 40 Ma. Although the modeled study area did not include possible western contributions of generated oil to the oil sands, the amount generated by the Jurassic source rocks within the study area was 475 BCM (2990 billion bbl). Copyright ?? 2009. The American Association of Petroleum Geologists. All rights reserved.
Warnock, Jonathan P.; Eberhart, Shawn L.; Clawson, Steven R.; Noto, Christopher R.
2017-01-01
The Cleveland-Lloyd Dinosaur Quarry (CLDQ) is the densest deposit of Jurassic theropod dinosaurs discovered to date. Unlike typical Jurassic bone deposits, it is dominated by the presence of Allosaurus fragilis. Since excavation began in the 1920s, numerous hypotheses have been put forward to explain the taphonomy of CLDQ, including a predator trap, a drought assemblage, and a poison spring. In an effort to reconcile the various interpretations of the quarry and reach a consensus on the depositional history of CLDQ, new data is required to develop a robust taphonomic framework congruent with all available data. Here we present two new data sets that aid in the development of such a robust taphonomic framework for CLDQ. First, x-ray fluorescence of CLDQ sediments indicate elevated barite and sulfide minerals relative to other sediments from the Morrison Formation in the region, suggesting an ephemeral environment dominated by periods of hypereutrophic conditions during bone accumulation. Second, the degree of abrasion and hydraulic equivalency of small bone fragments dispersed throughout the matrix were analyzed from CLDQ. Results of these analyses suggest that bone fragments are autochthonous or parautochthonous and are derived from bones deposited in the assemblage rather than transported. The variability in abrasion exhibited by the fragments is most parsimoniously explained by local periodic re-working and re-deposition during seasonal fluctuations throughout the duration of the quarry assemblage. Collectively, these data support previous interpretations that the CLDQ represents an attritional assemblage in a poorly-drained overbank deposit where vertebrate remains were introduced post-mortem to an ephemeral pond during flood conditions. Furthermore, while the elevated heavy metals detected at the Cleveland-Lloyd Dinosaur Quarry are not likely the primary driver for the accumulation of carcasses, they are likely the result of multiple sources; some metals may be derived from post-depositional and diagenetic processes, and others are potentially produced from an abundance of decomposing vertebrate carcasses. These new data help to support the inferred depositional environment of the quarry as an ephemeral pond, and represent a significant step in understanding the taphonomy of the bonebed and Late Jurassic paleoecology in this region. PMID:28603668
NASA Astrophysics Data System (ADS)
Bromley, Michael
1992-09-01
Outliers of Navajo Sandstone (Lower Jurassic Glen Canyon Group) form low paleohills east of the main body of the Formation in the Salt Anticline region of southwestern Colorado. The paleohills consist of interdune deposits which developed topographic inversion during erosion of the Jurassic J-2 unconformity owing to a tough shell of early cemented sandstones and cherty limestones. The interdune deposits accumulated over playa mudstones of the Kayenta Formation which formed in a structural low between the Uncompahgre Uplift and the Paradox Valley salt anticline. Open-framework textures indicate the early formation of quartz or chert cement in sandstone beds immediately above the impermeable playa mudstones. The mudstones enhanced the subsequent formation of wet interdune deposits keeping groundwater near the surface. Microcrystalline quartz cements and fresh feldspars suggest that groundwater was alkaline. A source of alkalinity may have been eolian dust carried from emergent Pennsylvanian evaporite intrusions upwind of the playa deposits. The high specific surface of siliceous and evaporite dusts combined with shallow groundwater and high evaporation rates resulted in the rapid formation of quartzitic silcrete crusts above the playa mudstone aquacludes. As these early silcretes were buried, the impermeable mudstone foundations beneath them continued to serve as aquacludes. The inclined potentiometric surface of perched water tables above the isolated aquacludes intersected the land surface at progressively higher levels as the mudstone lenses were buried. Groundwater moving laterally from above the aquacludes carried dissolved material towards the inclined water tables at their margins. This mobilized material was redeposited as early cement where the capillary fringe intersected the land surface. As the land surface aggraded vertically, the zone of cement formation migrated laterally in response of a change of the relative positions of the land surface and an inclined perched water table. The final products of this process were topographic remnants of Navajo Sandstone with a resistant rind of cemented material enclosing a core of leached, compacted and friable sandstones. Erosion of the J-2 unconformity left the cemented rind in relief while removing all material around it. The resulting hills survived the onlap of the Middle Jurassic Entrada Formation, leaving considerable relief beneath the unconformity.
Tectonostratigraphic Evolution of the Levant domain since Late Palaeozoic: a Review
NASA Astrophysics Data System (ADS)
Barrier, Eric
2015-04-01
During the last 270 my, the evolution of the African/Arabian platform and margins in Levant and surroundings is controlled by a succession of regional tectonic events, starting with a rifting period in the late Paleozoic, and ending with the ongoing Arabia-Eurasia collision. The main rifting period initiated in the mid-late Permian and lasted until the early-Jurassic, as a consequence of the Pangea break up. During this period the Anatolian blocks are still attached to southern Pangea, but some of the Palmyra-Levant and East Mediterranean basins were initiating. From the Mid-Late Permian to the Early Triassic the sedimentation is clastic-dominated in the continental platforms and basins. In the Early Mesozoic, with the initiation and development of the Levant and East Mediterranean basins, the sedimentation changed from clastic to carbonate deposition. Widespread Triassic to Liassic sediments accumulated in subsiding basins (Levant, Palmyride, Sinjar) and margins (East Mediterranean Basin). The rifting aborted in the Palmyride Trough and Levant Basin in the early Jurassic, while the East Mediterranean Basin (Mesogea) the oceanic accretion probably developed during the mid-Jurassic. Then, a 60 My-long cycle lasted from the late Jurassic to the Turonian, mainly characterized by the thermal subsidence of main the basins and margins. Only the early Cretaceous is marked by an extensional tectonic event, associated with magmatism, widespread all around the East Mediterranean Basin. This event, together with the early Cretaceous eustatic regressions, originated a major stratigraphic gap with emersions at the top-Jurassic - Neocomian period, and the deposition of thick clastic sequences in grabens. The following Cenomanian - Early Turonian interval is a major transgressive period characterized by the extension of the carbonate platforms on the African platform, and subsidence of the margins. The Senonian is characterized by an increase in water depth, mainly resulting from the opening of NW- to WNW-oriented major Senonian grabens (e.g. the Sirt, Azraq and Euphrates grabens). The main pulse of rifting is Campanian in age. In the northeastern African plate this extensional tectonics is coeval with the obduction of the Neo-Tethyan ophiolites onto the Northern Arabian platform where thick flysch sequences deposited. Within the upper-most Maastrichtian to Paleocene times, some of the basins and margins were inverted, resulting in unconformities in some of the Mesozoic basins. A 1600 km long right lateral strike-slip zone developed in the southern Mesogean margin (Cyrenaica, northern Egypt, Negev). In the Eocene-Oligocene period a sub-meridian extension prevailed in the Levant area pre-dating the Arabia-Anatolia collision. Chalky deposits are widespread in the western Arabian platform, significantly thickening and deepening westward toward the Levant Basin. The Neogene period is dominated by compressive deformations following the closure of Eastern Mesogea, and related to the Arabia/Anatolia collision that initiated at the Oligocene-Miocene boundary. This period is marked by the inversion of the Mesozoic basins in the western Arabian plate (Afrin, Palmyrides, Sinjar) Finally, in the Late Miocene, a regional strike-slip fault system developed, including the Levant Fault, and the eastern and north Anatolian faults in Anatolia.
Cretaceous combined structure in eastern Sichuan Basin, China
NASA Astrophysics Data System (ADS)
Wang, P.; Liu, S.
2009-12-01
Eastern Sichuan Basin is confined by two thin-skinned fold-thrust belt, NW-trending Southern Daba Shan (Shan=Mountain) (SDB) in the northeast and NNE- or NE-trending Western XueFeng Shan (WXF) in the southeast, which constitute two convergent salients convex to the inner basin respectively. Although many factors can lead to the formation of fold-thrust belt salients, the eastern Sichuan salients would be attributed to the combined structure (firstly nominated by Chinese geologist, Li Siguang), which means the interaction of two structural belts in the same period. By field surveying and geological map interpreting, we found that WXF deformation began in Late Jurassic along the eastern side of structral belt, where the synclines cored by Upper-Middle Jurassic rock. The initial time of SDB deformation remains poorly determined, however our palaeocurrent data of Lower Cretaceous rock in adjecent foreland basin indicate the provenance from northeast or east. Hence we considered the two fold-thrust belt started interactive in Late Jurassic and mainly combined during Cretaceous. In Early Cretaceous, the front belt of WXF salient arrived near KaiXian where NEE-trending arc-shape folds converged with the NWW-trending arc-shape folds of SDB.The two salients shaped like an westward "open mouth", east of which EW-trending folds of two structural belts juxtaposed. Particularly in the middle belt of WXF (FengJie - WuFeng) the earlier NEE-trending folds were refolded by later NNE-trending folds. We interpret the NEE-trending folds as the front belt of earlier (maybe Late Jurassic) WXF salient. When the two combined fold belts propagated westward together, the original NNE-trending front belt of WXF constrained by the front belt of SDB and formed the curved fold trend lines convex to NNW. Then as WXF deformation continued but SDB gradually terminated, the consequent NNE-trending folds could not be curved and would superpose on the earlier NEE-trending folds.In Late Cretaceous, WXF still propagated westward but without combination with SDB, and formed three NNE-trending parallel anticlines flanking the central Sichuan Basin. These anticlines dominated by steep dips and west-vergent thrust faults, which suggests the eastward back pushing force. We suppose that the pre-existing deep fault obstructed the WXF westward propagation. In addition, thermochronolgy analysis proved that SDB underwent tectonic sequence in Late Cretaceous. Thus the convergent salients broke up with only NNE-trending parallel fold being present in the front belt of WXF. We also use a finite-element model (FEM) to illustrate the maximum horizontal compressive stress (SHmax) under the combined structure in ABAQUSTM software. A 2D plane stress model with realistic mechanical properties for whole Sichuan Basin was built based on the Late Jurassic paleogeographic boundaries. The model consists of 5,400 elements, providing a resolution of 0.1° in both latitude and longitude. In general, FEM analysis result shows the SHmax direction well perpendicular to the arc-shape folds trend lines in eastern Sichuan Basin when pressure loaded on the SDB and WXF boundaries. The SHmax contours reflect two convergent salients incorporating the gradually decreased stress value from the boundaries to inner basin.
NASA Astrophysics Data System (ADS)
Cohen, Benjamin E.; Mark, Darren F.; Lee, Martin R.; Simpson, Sarah L.
2017-08-01
The Rochechourt impact structure in south-central France, with maximum diameter of 40-50 km, has previously been dated to within 1% uncertainty of the Triassic-Jurassic boundary, at which time 30% of global genera became extinct. To evaluate the temporal relationship between the impact and the Triassic-Jurassic boundary at high precision, we have re-examined the structure's age using multicollector ARGUS-V 40Ar/39Ar mass spectrometry. Results from four aliquots of impact melt are highly reproducible, and yield an age of 206.92 ± 0.20/0.32 Ma (2σ, full analytical/external uncertainties). Thus, the Rochechouart impact structure predates the Triassic-Jurassic boundary by 5.6 ± 0.4 Ma and so is not temporally linked to the mass extinction. Rochechouart has formerly been proposed to be part of a multiple impact event, but when compared with new ages from the other purported "paired" structures, the results provide no evidence for synchronous impacts in the Late Triassic. The widespread Central Atlantic Magmatic Province flood basalts remain the most likely cause of the Triassic-Jurassic mass extinction.
The first 50Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity.
Brusatte, Stephen L; Benton, Michael J; Ruta, Marcello; Lloyd, Graeme T
2008-12-23
The evolutionary radiation of dinosaurs in the Late Triassic and Early Jurassic was a pivotal event in the Earth's history but is poorly understood, as previous studies have focused on vague driving mechanisms and have not untangled different macroevolutionary components (origination, diversity, abundance and disparity). We calculate the morphological disparity (morphospace occupation) of dinosaurs throughout the Late Triassic and Early Jurassic and present new measures of taxonomic diversity. Crurotarsan archosaurs, the primary dinosaur 'competitors', were significantly more disparate than dinosaurs throughout the Triassic, but underwent a devastating extinction at the Triassic-Jurassic boundary. However, dinosaur disparity showed only a slight non-significant increase after this event, arguing against the hypothesis of ecological release-driven morphospace expansion in the Early Jurassic. Instead, the main jump in dinosaur disparity occurred between the Carnian and Norian stages of the Triassic. Conversely, dinosaur diversity shows a steady increase over this time, and measures of diversification and faunal abundance indicate that the Early Jurassic was a key episode in dinosaur evolution. Thus, different aspects of the dinosaur radiation (diversity, disparity and abundance) were decoupled, and the overall macroevolutionary pattern of the first 50Myr of dinosaur evolution is more complex than often considered.
Amato, J.M.; Lawton, T.F.; Mauel, D.J.; Leggett, W.J.; Gonzalez-Leon, C. M.; Farmer, G.L.; Wooden, J.L.
2009-01-01
U-Pb ages and Nd isotope values of Proterozoic rocks in Sonora, Mexico, indicate the presence of Caborca-type basement, predicted to lie only south of the Mojave-Sonora mega-shear, 40 km north of the postulated megashear. Granitoids have U-Pb zircon ages of 1763-1737 Ma and 1076 Ma, with ??Nd(t) values from +1.4 to -4.3, typical of the Caborca block. Lower Jurassic strata near the Proterozoic rocks contain large granitic clasts with U-Pb ages and ??Nd(t) values indistinguishable from those of Caborcan basement. Caborca-type basement was thus present at this location north of the megashear by 190 Ma, the depositional age of the Jurassic strata. The Proterozoic rocks are interpreted as parautochthonous, exhumed and juxtaposed against the Mesozoic section by a reverse fault that formed a footwall shortcut across a Jurassic normal fault. Geochronology, isotope geochemistry, and structural geology are therefore inconsistent with Late Jurassic megashear displacement and require either that no major transcurrent structure is present in Sonora or that strike-slip displacement occurred prior to Early Jurassic time. ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Hagstrum, Jonathan T.
1992-06-01
Paleomagnetic data are presented for a 50-m-thick sequence of Oxfordian to Tithonian sedimentary rocks conformably overlying Upper Jurassic pillow basalt within the Coast Range ophiolite at Stanley Mountain, California. These new data are similar in direction and polarity to previously published paleomagnetic data for the pillow basalt. The Jurassic sedimentary rocks were deposited during a mixed-polarity interval of the geomagnetic field, and uniformity of the remanent magnetization within the entire section of pillow basalt and sedimentary rocks indicates later remagnetization. Remagnetization of the Coast Range ophiolite is interpreted to have occurred during accretion to the continental margin, possibly by burial and low-temperature alteration related to this event. Similar paleolatitudes calculated for the ophiolite (11° ±3°) and for mid-Cretaceous sedimentary rocks of the Stanley Mountain terrane at Figueroa Mountain (6° ±5°) are consistent with remagnetization of the ophiolite at low paleo-latitudes. Uniform-polarity directions for other remnants of ophiolite in southern California and elsewhere along the Pacific coast imply that these rocks were also overprinted, and their magnetic inclinations suggest remagnetization at low paleolatitudes as well. The Coast Range ophiolite at Stanley Mountain is thus inferred to have been remagnetized along the North American margin near 10°N paleolatitude between earliest and mid-Cretaceous time and subsequently transported northward by strike-slip faulting related to relative motions between the Farallon, Kula, Pacific, and North American plates.
Hagstrum, Jonathan T.
1992-01-01
Paleomagnetic data are presented for a 50-m-thick sequence of Oxfordian to Tithonian sedimentary rocks conformably overlying Upper Jurassic pillow basalt within the Coast Range ophiolite at Stanley Mountain, California. These new data are similar in direction and polarity to previously published paleomagnetic data for the pillow basalt. The Jurassic sedimentary rocks were deposited during a mixed-polarity interval of the geomagnetic field, and uniformity of the remanent magnetization within the entire section of pillow basalt and sedimentary rocks indicates later remagnetization. Remagnetization of the Coast Range ophiolite is interpreted to have occurred during accretion to the continental margin, possibly by burial and low-temperature alteration related to this event. Similar paleolatitudes calculated for the ophiolite (11° ±3°) and for mid-Cretaceous sedimentary rocks of the Stanley Mountain terrane at Figueroa Mountain (6° ±5°) are consistent with remagnetization of the ophiolite at low paleo-latitudes. Uniform-polarity directions for other remnants of ophiolite in southern California and elsewhere along the Pacific coast imply that these rocks were also overprinted, and their magnetic inclinations suggest remagnetization at low paleolatitudes as well. The Coast Range ophiolite at Stanley Mountain is thus inferred to have been remagnetized along the North American margin near 10°N paleolatitude between earliest and mid-Cretaceous time and subsequently transported northward by strike-slip faulting related to relative motions between the Farallon, Kula, Pacific, and North American plates.
Palynology of the Kashafrud Formation, Koppeh Dagh basin, Northeastern Iran
NASA Astrophysics Data System (ADS)
Hashemi, H.; Sajjadi, F.; Dehbozorgi, A.
2009-04-01
Diverse and moderately well-preserved palynofloras occur in Middle Jurassic sediments of the Kashafrud Formation at the Senjedak section, southeast of Mashhad, northeastern Iran. Trilete and monolete spores and pollen dominate the assemblages, whereas dinoflagellate cysts, foraminiferal test linings, and fungal spores are minor components. Forty-seven species of spores (30 genera) and 15 species of pollen (eight genera) are identified. Representatives of Dictyophyllidites and Klukisporites are particularly abundant. Based on the stratigraphic distribution of miospores, three distinctive stratigraphically successive palynofloras informally termed in ascending order, Assemblages A, B, and C are identified within the Kashafrud Formation. These are compared with palynozones known from Iran and elsewhere. Based on the presence of certain miospore species, the Kashafrud palynofloras are collectively dated as Middle Jurassic (Bajocian-Bathonian), thus corroborating the faunal (ammonoid) evidence. The appearance of a key miospore species, Contignisporites burgeri, within the succession has been used to attribute a late Bajocian age and early Bathonian age to the lower and upper parts of the studied interval, respectively. Inferred natural relationships of the miospores imply derivation from a diverse parental flora of Pterophyta and gymnosperms, such as Coniferophyta, Cycadophyta, and Ginkgophyta, growing under warm, humid conditions during the Bajocian-Bathonian. The associated marine fauna (ammonites), marine palynomorphs (proximate dinoflagellate cysts, and acritarchs such as Micrhystridium), and foraminiferal test linings, along with terrestrial palynomorphs (spores and pollen) collectively indicate an open marine, nearshore depositional setting for the Kashafrud Formation at the section studied.
NASA Astrophysics Data System (ADS)
Bambridge, Helen; Barraclough, Alison
2016-04-01
All teachers love the light bulb moment; that moment when a student says, "Ah ha, I get it!" and makes the move from remembering to understanding. This boosts their confidence, leading to increased engagement with the subject and, in turn, increased progress and enjoyment. For many young geologists such moments occur outside the classroom when they are given the opportunity to carry out fieldwork. Understanding involves making links and investigations within the field allow students to make these essential links between actual observations and theory. All A-Level geologists at Sir William Borlase's Grammar School are given the opportunity to take part in a five day fieldtrip. This poster celebrates key 'lightbulb moments' that occurred during fieldwork to the famous Jurassic Coast, England. Students investigated the geological setting at Kimmeridge Bay where the cyclic sedimentation in the Lias helped their understanding of orbital obliquity and precession. The processes of fossilisation and preservation were examined at West Bay and in the upper Jurassic at Bowleaze Cove, which also enabled students to appreciate the incompleteness of the fossil record. Modern day processes and coastal management at Swanage allowed sixth formers to understand the non-permanent nature of landscapes and the difficulties encountered when attempting to conserve eroding areas. Therefore, the chance to get outside the classroom and study in the field is an invaluable opportunity for students to make those all important links through investigative learning and to develop a deeper understanding of the world around them.
NASA Astrophysics Data System (ADS)
Liang, Chenyue; Neubauer, Franz; Liu, Yongjiang; Jin, Wei; Zeng, Zuoxun; Bernroider, Manfred; Li, Weimin; Wen, Quanbo; Han, Guoqing; Zhao, Yingli
2014-05-01
The ductile shear zone in Xingcheng-Taili area (western Liaoning Province in China) is tectonically located in the eastern section of the northern margin of the North China craton, and dominantly comprises deformed granitic rocks of Neoarchean and Triassic to Late Jurassic age, which were affected by shearing within middle- to low-grade metamorphic conditions. Because a high-temperature metamorphic overprint is lacking, microstructures attesting to low-temperature ductile deformation are well preserved. However, the rocks and its structures have not been previously analyzed in detail except by U-Pb zircon dating and some geochemistry. Here, we describe the deformation characteristics and tectonic evolution of the Xingcheng-Taili ductile shear zone, in order to understand the mode of lithosphericscale reactivation, extension and thinning of the North China craton. The ductile deformation history comprises four successive deformation phases: (1) In the Neoarchean granitic rocks, a steep gneissosity and banded structures trend nearly E-W (D1). (2) A NE-striking sinistral structure of Upper Triassic rocks may indicate a deformation event (D2) in Late Triassic times, which ductile deformation structures superimposed on Neoarchean granitic rocks. (3) A gneissose structure with S-C fabrics as well as an ENE-trending sinistral strike-slip characteristic (D3) developed in Upper Jurassic biotite adamellite and show the deformation characteristics of a shallow crustal level and generated mylonitic fabrics superimposed on previous structures. (4) Late granitic dykes show different deformational behavior, and shortening with D4 folds. The attitude of the foliation S and mineral stretching lineation of three main types of rocks shows remarkable differences in orientation. The shapes of recrystallized quartz grains from three main types of granitic rocks with their jagged and indented boundaries were natural records of deformation conditions (D1to D3). Crystal preferred orientation of quartz determined by electron back scatter diffraction (EBSD) suggest sinistral strike-slip displacement within a temperature at about 400 to 500° C. Quartz mainly shows low-temperature fabrics with dominant {0001}-slip system. As the deformed rocks show obvious deformation overprint, we have estimated flow stresses from dynamically recrystallized grain sizes of quartz separately. But coincident fractal analysis showed that the boundaries of recrystallized grains had statistically self similarities with the numbers of fractal dimension from 1.153 to 1.196 with the range of deformation temperatures from 500 to 600° C, which is corresponding to upper greenschist to lower amphibolite facies conditions. Together with published flow laws to estimated deformation rates between the region of 10-11 - 10-13 S-1depending on the temperature 500 ° C, and the paleo-stress was calculated with grain size of recrystallized quartz to be at 5.0 to 32.3 MPa. Even though the deformation history and kinematics are different, progressive microstructures and texture analysis indicate an overprint by the low-temperature deformation (D3). Typical regional-dynamic metamorphic conditions ere deduced by mineral pair hornblende-plagioclase and phengite barometry identified within the ductile shear zone. The hornblende-plagioclase pair of porphyritic granitic gneiss gives metamorphic conditions of T =450-500 ° C and p=0.39 GPa, which indicate a metamorphic grade of lower-amphibolite facies conditions and a depth of around 13 km estimated following a normal lithostatic pressure. All of the structural characteristics indicate that the Xingcheng-Taili ductile shear zone represents a mainly ENE-striking sinistral ductile strike-slip zone, which formed after intrusion of the Upper Jurassic biotite adamellite and transformed and superimposed previous deformation structures. This deformation event might have occurred in Early Cretaceous times and was related to the lithospheric thinning and extension, due to roll-back of the Pacific plate beneath the eastern North China craton.