Hayashi, Hiroyuki; Nakashima, Daiki; Matsuoka, Hiroka; Iwai, Midori; Nakamura, Shugo; Kubo, Ayumi; Tomiyama, Naoki
2017-11-06
Upper-limb function is important in patients with hip fracture so they can perform activities of daily living and participate in leisure activities. Upper-limb function of these patients, however, has not been thoroughly investigated. The aim of this study was to evaluate the upper-limb motor and sensory functions in patients with hip fracture by comparing these functions with those of community-dwelling older adults (control group). We compared the results of motor and sensory function tests of upper-limb function - range of motion, strength, sensibility, finger dexterity, comprehensive hand function - between patients with hip fracture (n= 32) and the control group (n= 32). Patients with hip fracture had significantly reduced grip strength, pinch strength, finger dexterity, and comprehensive hand function compared with the control group. Most upper-limb functions are impaired in the patients with hip fracture. Thus, upper-limb function of patients with hip fracture should be considered during treatment.
Upper limb motor function in young adults with spina bifida and hydrocephalus
Salman, M. S.; Jewell, D.; Hetherington, R.; Spiegler, B. J.; MacGregor, D. L.; Drake, J. M.; Humphreys, R. P.; Gentili, F.
2011-01-01
Objective The objective of the study was to measure upper limb motor function in young adults with spina bifida meningomyelocele (SBM) and typically developing age peers. Method Participants were 26 young adults with SBM, with a Verbal or Performance IQ score of at least 70 on the Wechsler scales, and 27 age- and gender-matched controls. Four upper limb motor function tasks were performed under four different visual and cognitive challenge conditions. Motor independence was assessed by questionnaire. Results Fewer SBM than control participants obtained perfect posture and rebound scores. The SBM group performed less accurately and was more disrupted by cognitive challenge than controls on limb dysmetria tasks. The SBM group was slower than controls on the diadochokinesis task. Adaptive motor independence was related to one upper limb motor task, arm posture, and upper rather than lower spinal lesions were associated with less motor independence. Conclusions Young adults with SBM have significant limitations in upper limb function and are more disrupted by some challenges while performing upper limb motor tasks. Within the group of young adults with SBM, upper spinal lesions compromise motor independence more than lower spinal lesions. PMID:19672605
Ickmans, Kelly; Simoens, Fauve; Nijs, Jo; Kos, Daphne; Cras, Patrick; Willekens, Barbara; Meeus, Mira
2014-07-01
Delayed recovery of muscle function following exercise has been demonstrated in the lower limbs of patients with multiple sclerosis (MS). However, studies examining this in the upper limbs are currently lacking. This study compared physical activity level (PAL) and recovery of upper limb muscle function following exercise between MS patients and healthy inactive controls. Furthermore, the relationship between PAL and muscle recovery was examined. PAL of 19 MS patients and 32 controls was measured using an accelerometer for 7 consecutive days. Afterwards, recovery of muscle function was assessed by performing a fatiguing upper limb exercise test with subsequent recovery measures. Muscle recovery of the upper limb muscles was similar in both groups. Average activity counts were significantly lower in MS patients than in the control group. MS patients spent significantly more time being sedentary and less time on activities of moderate intensity compared with the control group. No significant correlation between PAL and recovery of muscle function was found in MS patients. Recovery of upper limb muscle function following exercise is normal in MS patients. MS patients are less physically active than healthy inactive controls. PAL and recovery of upper limb muscle function appear unrelated in MS patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Mirror therapy in complex regional pain syndrome type 1 of the upper limb in stroke patients.
Cacchio, Angelo; De Blasis, Elisabetta; De Blasis, Vincenzo; Santilli, Valter; Spacca, Giorgio
2009-10-01
Complex regional pain syndrome type 1 (CRPSt1) of the upper limb is a painful and debilitating condition, frequent after stroke, and interferes with the rehabilitative process and outcome. However, treatments used for CRPSt1 of the upper limb are limited. . This randomized controlled study was conducted to compare the effectiveness on pain and upper limb function of mirror therapy on CRPSt1 of upper limb in patients with acute stroke. . Of 208 patients with first episode of unilateral stroke admitted to the authors' rehabilitation center, 48 patients with CRPSt1 of the affected upper limb were enrolled in a randomized controlled study, with a 6-month follow-up, and assigned to either a mirror therapy group or placebo control group. The primary end points were a reduction in the visual analogue scale score of pain at rest, on movement, and brush-induced tactile allodynia. The secondary end points were improvement in motor function as assessed by the Wolf Motor Function Test and Motor Activity Log. . The mean scores of both the primary and secondary end points significantly improved in the mirror group (P < .001). No statistically significant improvement was observed in any of the control group values (P > .001). Moreover, statistically significant differences after treatment (P < .001) and at the 6-month follow-up were found between the 2 groups. . The results indicate that mirror therapy effectively reduces pain and enhances upper limb motor function in stroke patients with upper limb CRPSt1.
Reflections on the present and future of upper limb prostheses.
Farina, Dario; Amsüss, Sebastian
2016-01-01
Despite progress in research and media attention on active upper limb prostheses, presently the most common commercial upper limb prosthetic devices are not fundamentally different from solutions offered almost one century ago. Limited information transfer for both control and sensory-motor integration and challenges in socket technology have been major obstacles. By analysing the present state-of-the-art and academic achievements, we provide our opinion on the future of upper limb prostheses. We believe that surgical procedures for muscle reinnervation and osseointegration will become increasingly clinically relevant; muscle electrical signals will remain the main clinical means for prosthetic control; and chronic electrode implants, first in muscles (control), then in nerves (sensory feedback), will become viable clinical solutions. After decades of suspended clinically relevant progress, it is foreseeable that a new generation of upper limb prostheses will enter the market in the near future based on such advances, thereby offering substantial clinical benefit for patients.
Movement analysis of upper limb during resistance training using general purpose robot arm "PA10"
NASA Astrophysics Data System (ADS)
Morita, Yoshifumi; Yamamoto, Takashi; Suzuki, Takahiro; Hirose, Akinori; Ukai, Hiroyuki; Matsui, Nobuyuki
2005-12-01
In this paper we perform movement analysis of an upper limb during resistance training. We selected sanding training, which is one type of resistance training for upper limbs widely performed in occupational therapy. Our final aims in the future are to quantitatively evaluate the therapeutic effect of upper limb motor function during training and to develop a new rehabilitation training support system. For these purposes, first of all we perform movement analysis using a conventional training tool. By measuring upper limb motion during the sanding training we perform feature abstraction. Next we perform movement analysis using the simulated sanding training system. This system is constructed using the general purpose robot arm "PA10". This system enables us to measure the force/torque exerted by subjects and to easily change the load of resistance. The control algorithm is based on impedance control. We found these features of the upper limb motion during the sanding training.
Controlling a multi-degree of freedom upper limb prosthesis using foot controls: user experience.
Resnik, Linda; Klinger, Shana Lieberman; Etter, Katherine; Fantini, Christopher
2014-07-01
The DEKA Arm, a pre-commercial upper limb prosthesis, funded by the DARPA Revolutionizing Prosthetics Program, offers increased degrees of freedom while requiring a large number of user control inputs to operate. To address this challenge, DEKA developed prototype foot controls. Although the concept of utilizing foot controls to operate an upper limb prosthesis has been discussed for decades, only small-sized studies have been performed and no commercial product exists. The purpose of this paper is to report amputee user perspectives on using three different iterations of foot controls to operate the DEKA Arm. Qualitative data was collected from 36 subjects as part of the Department of Veterans Affairs (VA) Study to Optimize the DEKA Arm through surveys, interviews, audio memos, and videotaped sessions. Three major, interrelated themes were identified using the constant comparative method: attitudes towards foot controls, psychomotor learning and physical experience of using foot controls. Feedback about foot controls was generally positive for all iterations. The final version of foot controls was viewed most favorably. Our findings indicate that foot controls are a viable control option that can enable control of a multifunction upper limb prosthesis (the DEKA Arm). Multifunction upper limb prostheses require many user control inputs to operate. Foot controls offer additional control input options for such advanced devices, yet have had minimal study. This study found that foot controls were a viable option for controlling multifunction upper limb prostheses. Most of the 36 subjects in this study were willing to adopt foot controls to control the multiple degrees of freedom of the DEKA Arm. With training and practice, all users were able to develop the psychomotor skills needed to successfully operate food controls. Some had initial difficulty, but acclimated over time.
Stinear, Cathy M; Petoe, Matthew A; Anwar, Samir; Barber, Peter Alan; Byblow, Winston D
2014-01-01
The ability to live independently after stroke depends on the recovery of upper limb function. We hypothesized that bilateral priming with active-passive movements before upper limb physiotherapy would promote rebalancing of corticomotor excitability and would accelerate upper limb recovery at the subacute stage. A single-center randomized controlled trial of bilateral priming was conducted with 57 patients randomized at the subacute stage after first-ever ischemic stroke. The PRIMED group made device-assisted mirror symmetrical bimanual movements before upper limb physiotherapy, every weekday for 4 weeks. The CONTROL group was given intermittent cutaneous electric stimulation of the paretic forearm before physiotherapy. Assessments were made at baseline, 6, 12, and 26 weeks. The primary end point was the proportion of patients who reached their plateau for upper limb function at 12 weeks, measured with the Action Research Arm Test. Odds ratios indicated that PRIMED participants were 3× more likely than controls to reach their recovery plateau by 12 weeks. Intention-to-treat and per-protocol analyses showed a greater proportion of PRIMED participants achieved their plateau by 12 weeks (intention to treat, χ2=4.25; P=0.039 and per protocol, χ2=3.99; P=0.046). ANOVA of per-protocol data showed PRIMED participants had greater rebalancing of corticomotor excitability than controls at 12 and 26 weeks and interhemispheric inhibition at 26 weeks (all P<0.05). Bilateral priming accelerated recovery of upper limb function in the initial weeks after stroke. URL: http://www.anzctr.org.au. Unique identifier: ANZCTR1260900046822.
Upper limb contributions to frontal plane balance control in rollator-assisted walking.
Tung, James Y; Gage, William H; Poupart, Pascal; McIlroy, William E
2014-01-01
While assisting with balance is a primary reason for rollator use, few studies have examined how the upper limbs are used for balance. This study examines upper limb contributions to balance control during rollator-assisted walking. We hypothesized that there would be an increased upper limb contribution, measured by mean vertical loading (Fz) and variation in frontal plane center-of-pressure (COPhigh), when walking balance is challenged/impaired. Experiment 1 compared straight-line and beam-walking in young adults (n = 11). As hypothesized, Fz and COPhighincreased in beam-walking compared to baseline (mean Fz: 13.7 vs. 9.1% body weight (BW), p < 0.001, RMS COPhigh: 1.35 vs. 1.07 cm, p < 0.001). Experiment 2 compared older adults who regularly use rollators (RU, n = 10) to older adult controls (CTL, n = 10). The predicted higher upper limb contribution in the RU group was not supported. However, when individuals were grouped by balance impairment, those with the lowest Berg Balance scores (< 45) demonstrated greater speed-adjusted COPhigh than those with higher scores (p = 0.013). Furthermore, greater COPhigh and Fz were correlated to greater reduction in step width, supporting the role of upper limb contributions to frontal plane balance. This work will guide studies assessing reliance on rollators by providing a basis for measurement of upper limb balance contributions.
Østlie, Kristin; Magnus, Per; Skjeldal, Ola H; Garfelt, Beate; Tambs, Kristian
2011-01-01
To assess how upper limb amputation affects mental health and life satisfaction. Cross-sectional study comparing the mental health and perceived satisfaction with life among adult acquired major upper limb amputees in Norway with a control group drawn from the Norwegian general population. The scales used were the Satisfaction With Life Scale (SWLS) and the Hopkins Symptom Check List 25-item (SCL-25). The groups were compared using multiple linear regression analyses. The amputees scored significantly lower on life satisfaction than the control group. A tendency to poorer mental health in the amputee group was observed, but there was no clear evidence of such a difference. The amputation effect on life satisfaction seemed to be mediated mainly by changes in occupational status and by the occurrence of short- or long-term complications related to the amputation. Our findings imply that rehabilitation of upper limb amputees should emphasise facilitating return to work as well as the prevention of short- and long-term complications, and that this will be of importance not only for the amputees' physical function, but for the maintenance of acceptable life satisfaction. Further studies on the effect of upper limb amputation on mental health are recommended.
Sim, Julius; Lacey, Rosie J; Lewis, Martyn
2006-09-19
Work-related neck and upper limb pain has mainly been studied in specific occupational groups, and little is known about its impact in the general population. The objectives of this study were to estimate the prevalence and population impact of work-related neck and upper limb pain. A cross-sectional survey was conducted of 10,000 adults in North Staffordshire, UK, in which there is a common local manual industry. The primary outcome measure was presence or absence of neck and upper limb pain. Participants were asked to give details of up to five recent jobs, and to report exposure to six work activities involving the neck or upper limbs. Psychosocial measures included job control, demand and support. Odds ratios (ORs) and population attributable fractions were calculated for these risk factors. The age-standardized one-month period prevalence of neck and upper limb pain was 44%. There were significant independent associations between neck and upper limb pain and: repeated lifting of heavy objects (OR = 1.4); prolonged bending of neck (OR = 2.0); working with arms at/above shoulder height (OR = 1.3); little job control (OR = 1.6); and little supervisor support (OR = 1.3). The population attributable fractions were 0.24 (24%) for exposure to work activities and 0.12 (12%) for exposure to psychosocial factors. Neck and upper limb pain is associated with both physical and psychosocial factors in the work environment. Inferences of cause-and-effect from cross-sectional studies must be made with caution; nonetheless, our findings suggest that modification of the work environment might prevent up to one in three of cases of neck and upper limb pain in the general population, depending on current exposures to occupational risk.
[Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].
Wang, Lulu; Hu, Xin; Hu, Jie; Fang, Youfang; He, Rongrong; Yu, Hongliu
2016-12-01
In order to help the patients with upper-limb disfunction go on rehabilitation training,this paper proposed an upper-limb exoskeleton rehabilitation robot with four degrees of freedom(DOF),and realized two control schemes,i.e.,voice control and electromyography control.The hardware and software design of the voice control system was completed based on RSC-4128 chips,which realized the speech recognition technology of a specific person.Besides,this study adapted self-made surface eletromyogram(sEMG)signal extraction electrodes to collect sEMG signals and realized pattern recognition by conducting sEMG signals processing,extracting time domain features and fixed threshold algorithm.In addition,the pulse-width modulation(PWM)algorithm was used to realize the speed adjustment of the system.Voice control and electromyography control experiments were then carried out,and the results showed that the mean recognition rate of the voice control and electromyography control reached 93.1%and 90.9%,respectively.The results proved the feasibility of the control system.This study is expected to lay a theoretical foundation for the further improvement of the control system of the upper-limb rehabilitation robot.
Colomer, Carolina; NOé, Enrique; Llorens, Roberto
2016-06-01
Mirror therapy (MT) has been proposed to improve the motor function of chronic individuals with stroke with mild to moderate impairment. With regards to severe upper limb paresis, MT has shown to provide limited motor improvement in the acute or sub-acute phase. However, no previous research has described the effects of MT in chronic individuals with stroke with severely impaired upper limb function. The aim of this study was to determine the effectiveness of MT on chronic stroke survivors with severe upper-limb impairment in comparison with passive mobilization. A randomized controlled trial. Rehabilitative outpatient unit. A total of 31 chronic subjects poststroke with severely impaired upper limb function were randomly assigned to either an experimental group (N.=15), or a control group (N.=16). Twenty-four intervention sessions were performed for both groups. Each session included 45-minute period of MT (experimental group) or passive mobilization (control group), administered three days a week. Participants were assessed before and after the intervention with the Wolf Motor Function Test, the Fugl-Meyer Assessment, and the Nottingham Sensory Assessment. Improvement in motor function was observed in both groups on the time (P=0.002) and ability (P=0.001) subscales of the Wolf Motor Function Test. No differences were detected in kinesthesis or stereognosis. However, the experimental group showed a significant improvement in tactile sensation that was mainly observed as an increased sensitivity to light touches. In comparison with passive mobilization, MT in chronic stroke survivors with severely impaired upper-limb function may provide a limited but positive effect on light touch sensitivity while providing similar motor improvement. MT is a therapeutic approach that can be used in the rehabilitation of severely impaired upper limb in chronic stroke survivors, specifically to address light touch sensitivity deficits.
Ortiz-Rubio, Araceli; Cabrera-Martos, Irene; Rodríguez-Torres, Janet; Fajardo-Contreras, Waldo; Díaz-Pelegrina, Ana; Valenza, Marie Carmen
2016-12-01
To evaluate the effects of a home-based upper limb training program on arm function in patients with multiple sclerosis (MS). Additionally, the effects of this program on manual dexterity, handgrip strength, and finger prehension force were analyzed. Randomized, single-blind controlled trial. Home based. Patients with a clinical diagnosis of MS acknowledging impaired manual ability (N=37) were randomized into 2 groups. Patients in the experimental group were included in a supervised home-based upper limb training program for 8 weeks twice a week. Patients in the control group received information in the form of a leaflet with a schedule of upper limb exercise training. The primary outcome measure was arm function (motor functioning assessed using the finger tapping test and a functional measure, the Action Research Arm Test). The secondary outcome measures were manual dexterity assessed with the Purdue Pegboard Test and handgrip strength and finger prehension force evaluated with a handgrip and a pinch dynamometer, respectively. After 8 weeks, a significant between-group improvement (P<.05) was found on the Action Research Arm Test bilaterally and the finger tapping test in the most affected upper limb. The secondary outcomes also improved in the most affected limb in the experimental group. An 8-week home-based intervention program focused on upper limbs twice a week improved arm function and physiologic variables with a primary focus on the more affected extremity in patients with MS compared with the control group. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Recovery of upper limb muscle function in chronic fatigue syndrome with and without fibromyalgia.
Ickmans, Kelly; Meeus, Mira; De Kooning, Margot; Lambrecht, Luc; Nijs, Jo
2014-02-01
Chronic fatigue syndrome (CFS) patients frequently complain of muscle fatigue and abnormally slow recovery, especially of the upper limb muscles during and after activities of daily living. Furthermore, disease heterogeneity has not yet been studied in relation to recovery of muscle function in CFS. Here, we examine recovery of upper limb muscle function from a fatiguing exercise in CFS patients with (CFS+FM) and without (CFS-only) comorbid fibromyalgia and compare their results with a matched inactive control group. In this case-control study, 18 CFS-only patients, 30 CFS+FM patients and 30 healthy inactive controls performed a fatiguing upper limb exercise test with subsequent recovery measures. There was no significant difference among the three groups for maximal handgrip strength of the non-dominant hand. A significant worse recovery of upper limb muscle function was found in the CFS+FM, but not in de CFS-only group compared with the controls (P < 0·05). This study reveals, for the first time, delayed recovery of upper limb muscle function in CFS+FM, but not in CFS-only patients. The results underline that CFS is a heterogeneous disorder suggesting that reducing the heterogeneity of the disorder in future research is important to make progress towards a better understanding and uncovering of mechanisms regarding the nature of divers impairments in these patients. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.
Taveggia, Giovanni; Borboni, Alberto; Salvi, Lorena; Mulé, Chiara; Fogliaresi, Stefania; Villafañe, Jorge H; Casale, Roberto
2016-12-01
A prompt and effective physical and rehabilitation medicine approach is essential to obtain recovery of an impaired limb to prevent tendon shortening, spasticity and pain. Robot-assisted virtual reality intervention has been shown to be more effective than conventional interventions and achieved greater improvement in upper limb function. The aim of this study was to evaluate the effectiveness of robotic-assisted motion and activity in addition to PRM for the rehabilitation of the upper limb in post-stroke inpatients. Randomized controlled trial. Departments of Physical and Rehabilitation Medicine from three different hospitals (Sarnico, Brescia; Bergamo; Milan). A total of 54 patients and enrolled 23 men and 31 women with post-stroke hemiparesis, aged 18 to 80 years old, enrolled from July 2014 to February 2015. Of the 54 enrolled patients, 57% were female (mean age 71±12 years), and all had upper limb function deficit post-stroke. The experimental group received a passive mobilization of the upper limb through the robotic device ARMEO Spring and the control group received PRM for 6 consecutive weeks (5 days/week) in addition to traditional PRM. We assessed the impact on functional recovery (Functional Independence Measure [FIM] scale), strength (Motricity Index [MI]), spasticity (Modified Ashworth Scale [MAS]) and pain (Numeric Rating Pain Scale [NRPS]). All patients were evaluated by a blinded observer using the outcomes tests at enrollment (T0), after the treatment (T1) and at follow up 6 weeks later (T2). Both control and experimental groups evidenced an improvement of the outcomes after the treatment (MI, Ashworth and NRPS with P<0.05). The experimental group showed further improvements after the follow up (all outcomes with P<0.01). In the treatment of pain, disability and spasticity in upper limb after stroke, robot-assisted mobilization associated to PRM is as effective as traditional rehabilitation. Robot-assisted treatment has an impact on upper limb motor function in stroke patients.
Outcomes of the Bobath concept on upper limb recovery following stroke.
Luke, Carolyn; Dodd, Karen J; Brock, Kim
2004-12-01
To determine the effectiveness of the Bobath concept at reducing upper limb impairments, activity limitations and participation restrictions after stroke. Electronic databases were searched to identify relevant trials published between 1966 and 2003. Two reviewers independently assessed articles for the following inclusion criteria: population of adults with upper limb disability after stroke; stated use of the Bobath concept aimed at improving upper limb disability in isolation from other approaches; outcomes reflecting changes in upper limb impairment, activity limitation or participation restriction. Of the 688 articles initially identified, eight met the inclusion criteria. Five were randomized controlled trials, one used a single-group crossover design and two were single-case design studies. Five studies measured impairments including shoulder pain, tone, muscle strength and motor control. The Bobath concept was found to reduce shoulder pain better than cryotherapy, and to reduce tone compared to no intervention and compared to proprioceptive neuromuscular facilitation (PNF). However, no difference was detected for changes in tone between the Bobath concept and a functional approach. Differences did not reach significance for measures of muscle strength and motor control. Six studies measured activity limitations, none of these found the Bobath concept was superior to other therapy approaches. Two studies measured changes in participation restriction and both found equivocal results. Comparisons of the Bobath concept with other approaches do not demonstrate superiority of one approach over the other at improving upper limb impairment, activity or participation. However, study limitations relating to methodological quality, the outcome measures used and contextual factors investigated limit the ability to draw conclusions. Future research should use sensitive upper limb measures, trained Bobath therapists and homogeneous samples to identify the influence of patient factors on the response to therapy approaches.
Kong, Keng-He; Loh, Yong-Joo; Thia, Ernest; Chai, Audrey; Ng, Chwee-Yin; Soh, Yan-Ming; Toh, Shirlene; Tjan, Soon-Yin
2016-10-01
To compare the efficacy of a virtual reality commercial gaming device, Nintendo wii (NW) with conventional therapy and customary care in facilitating upper limb recovery after stroke. Randomized, controlled, single-blinded study. Tertiary rehabilitation center. 105 subjects admitted to in inpatient rehabilitation program within 6 weeks of stroke onset. Subjects were randomly assigned to one of three groups of upper limb exercises: (1) NW gaming; (2) conventional therapy; (3) control. NW gaming and conventional therapy were provided fourtimes a week for 3 weeks. The main outcome measure was Fugl-Meyer assessment (FMA) of upper limb function. Secondary outcome measures included Action Research Arm Test, Functional Independence Measure, and Stroke Impact Scale. These measures were assessed at baseline, completion of intervention (week 3) and at 4 weeks and 8 weeks after completion of intervention. The primary outcome measure was the change in FMA scores at completion of intervention. The mean age was 57.5±9.8 years, and subjects were enrolled at a mean of 13.7±8.9 days after stroke. The mean baseline FMA score was 16.4±14.2. There was no difference in FMA scores between all 3 groups at the end of intervention, and at 4 and 8 weeks after completion of intervention. Similar findings were also noted for the secondary outcome measures. Twelve sessions of augmented upper limb exercises via NW gaming or conventional therapy over a 3-week period was not effective in enhancing upper limb motor recovery compared to control.
Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton.
Riani, Akram; Madani, Tarek; Hadri, Abdelhafid El; Benallegue, Abdelaziz
2017-07-01
This paper presents an adaptive control strategy for an upper-limb exoskeleton based on an on-line dynamic parameter estimator. The objective is to improve the control performance of this system that plays a critical role in assisting patients for shoulder, elbow and wrist joint movements. In general, the dynamic parameters of the human limb are unknown and differ from a person to another, which degrade the performances of the exoskeleton-human control system. For this reason, the proposed control scheme contains a supplementary loop based on a new efficient on-line estimator of the dynamic parameters. Indeed, the latter is acting upon the parameter adaptation of the controller to ensure the performances of the system in the presence of parameter uncertainties and perturbations. The exoskeleton used in this work is presented and a physical model of the exoskeleton interacting with a 7 Degree of Freedom (DoF) upper limb model is generated using the SimMechanics library of MatLab/Simulink. To illustrate the effectiveness of the proposed approach, an example of passive rehabilitation movements is performed using multi-body dynamic simulation. The aims is to maneuver the exoskeleton that drive the upper limb to track desired trajectories in the case of the passive arm movements.
Normative Data for an Instrumental Assessment of the Upper-Limb Functionality.
Caimmi, Marco; Guanziroli, Eleonora; Malosio, Matteo; Pedrocchi, Nicola; Vicentini, Federico; Molinari Tosatti, Lorenzo; Molteni, Franco
2015-01-01
Upper-limb movement analysis is important to monitor objectively rehabilitation interventions, contributing to improving the overall treatments outcomes. Simple, fast, easy-to-use, and applicable methods are required to allow routinely functional evaluation of patients with different pathologies and clinical conditions. This paper describes the Reaching and Hand-to-Mouth Evaluation Method, a fast procedure to assess the upper-limb motor control and functional ability, providing a set of normative data from 42 healthy subjects of different ages, evaluated for both the dominant and the nondominant limb motor performance. Sixteen of them were reevaluated after two weeks to perform test-retest reliability analysis. Data were clustered into three subgroups of different ages to test the method sensitivity to motor control differences. Experimental data show notable test-retest reliability in all tasks. Data from older and younger subjects show significant differences in the measures related to the ability for coordination thus showing the high sensitivity of the method to motor control differences. The presented method, provided with control data from healthy subjects, appears to be a suitable and reliable tool for the upper-limb functional assessment in the clinical environment.
Normative Data for an Instrumental Assessment of the Upper-Limb Functionality
Caimmi, Marco; Guanziroli, Eleonora; Malosio, Matteo; Pedrocchi, Nicola; Vicentini, Federico; Molinari Tosatti, Lorenzo; Molteni, Franco
2015-01-01
Upper-limb movement analysis is important to monitor objectively rehabilitation interventions, contributing to improving the overall treatments outcomes. Simple, fast, easy-to-use, and applicable methods are required to allow routinely functional evaluation of patients with different pathologies and clinical conditions. This paper describes the Reaching and Hand-to-Mouth Evaluation Method, a fast procedure to assess the upper-limb motor control and functional ability, providing a set of normative data from 42 healthy subjects of different ages, evaluated for both the dominant and the nondominant limb motor performance. Sixteen of them were reevaluated after two weeks to perform test-retest reliability analysis. Data were clustered into three subgroups of different ages to test the method sensitivity to motor control differences. Experimental data show notable test-retest reliability in all tasks. Data from older and younger subjects show significant differences in the measures related to the ability for coordination thus showing the high sensitivity of the method to motor control differences. The presented method, provided with control data from healthy subjects, appears to be a suitable and reliable tool for the upper-limb functional assessment in the clinical environment. PMID:26539500
Lee, Myung Mo; Cho, Hwi-Young; Song, Chang Ho
2012-08-01
The purpose of this study was to evaluate the effects of the mirror therapy program on upper-limb motor recovery and motor function in patients with acute stroke. Twenty-six patients who had an acute stroke within 6 mos of study commencement were assigned to the experimental group (n = 13) or the control group (n = 13). Both experimental and control group members participated in a standard rehabilitation program, but only the experimental group members additionally participated in mirror therapy program, for 25 mins twice a day, five times a week, for 4 wks. The Fugl-Meyer Assessment, Brunnstrom motor recovery stage, and Manual Function Test were used to assess changes in upper-limb motor recovery and motor function after intervention. In upper-limb motor recovery, the scores of Fugl-Meyer Assessment (by shoulder/elbow/forearm items, 9.54 vs. 4.61; wrist items, 2.76 vs. 1.07; hand items, 4.43 vs. 1.46, respectively) and Brunnstrom stages for upper limb and hand (by 1.77 vs. 0.69 and 1.92 vs. 0.50, respectively) were improved more in the experimental group than in the control group (P < 0.05). In upper-limb motor function, the Manual Function Test score (by shoulder item, 5.00 vs. 2.23; hand item, 5.07 vs. 0.46, respectively) was significantly increased in the experimental group compared with the control group (P < 0.01). No significant differences were found between the groups for the coordination items in Fugl-Meyer Assessment. This study confirms that mirror therapy program is an effective intervention for upper-limb motor recovery and motor function improvement in acute stroke patients. Additional research on mirror therapy program components, intensity, application time, and duration could result in it being used as a standardized form of hand rehabilitation in clinics and homes.
Lee, So Young; Jeon, Young Tae; Kim, Bo Ryun; Han, Eun Young
2017-01-01
Abstract Rationale: Spasticity is a major complication after stroke, and botulinumtoxin A (BoNT-A) injection is commonly used to manage focal spasticity. However, it is uncertain whether BoNT-A can improve voluntary motor control or activities of daily living function of paretic upper limbs. This study investigated whether BoNT-A injection combined with robot-assisted upper limb therapy improves voluntary motor control or functions of upper limbs after stroke. Patient concerns: Two subacute stroke patients were transferred to the Department of Rehabilitation. Diagnoses: Patients demonstrated spasticity in the upper extremity on the affected side. Interventions: BoNT-A was injected into the paretic muscles of the shoulder, arm, and forearm of the 2 patients at the subacute stage. Conventional rehabilitation therapy and robot-assisted upper limb training were performed during the rehabilitation period. Outcomes: Manual dexterity, grip strength, muscle tone, and activities of daily living function were improved after multidisciplinary rehabilitation treatment. Lessons: BoNT-A injection in combination with multidisciplinary rehabilitation treatment, including robot-assisted arm training, should be recommended for subacute spastic stroke patients to enhance appropriate motor recovery. PMID:29390585
Effects of Robot-Assisted Therapy for the Upper Limb After Stroke.
Veerbeek, Janne M; Langbroek-Amersfoort, Anneli C; van Wegen, Erwin E H; Meskers, Carel G M; Kwakkel, Gert
2017-02-01
Robot technology for poststroke rehabilitation is developing rapidly. A number of new randomized controlled trials (RCTs) have investigated the effects of robot-assisted therapy for the paretic upper limb (RT-UL). To systematically review the effects of poststroke RT-UL on measures of motor control of the paretic arm, muscle strength and tone, upper limb capacity, and basic activities of daily living (ADL) in comparison with nonrobotic treatment. Relevant RCTs were identified in electronic searches. Meta-analyses were performed for measures of motor control (eg, Fugl-Meyer Assessment of the arm; FMA arm), muscle strength and tone, upper limb capacity, and basic ADL. Subgroup analyses were applied for the number of joints involved, robot type, timing poststroke, and treatment contrast. Forty-four RCTs (N = 1362) were included. No serious adverse events were reported. Meta-analyses of 38 trials (N = 1206) showed significant but small improvements in motor control (~2 points FMA arm) and muscle strength of the paretic arm and a negative effect on muscle tone. No effects were found for upper limb capacity and basic ADL. Shoulder/elbow robotics showed small but significant effects on motor control and muscle strength, while elbow/wrist robotics had small but significant effects on motor control. RT-UL allows patients to increase the number of repetitions and hence intensity of practice poststroke, and appears to be a safe therapy. Effects on motor control are small and specific to the joints targeted by RT-UL, whereas no generalization is found to improvements in upper limb capacity. The impact of RT-UL started in the first weeks poststroke remains unclear. These limited findings could mainly be related to poor understanding of robot-induced motor learning as well as inadequate designing of RT-UL trials, by not applying an appropriate selection of stroke patients with a potential to recovery at baseline as well as the lack of fixed timing of baseline assessments and using an insufficient treatment contrast early poststroke.
Chiu, Hsiu-Ching; Ada, Louise
2016-07-01
Does constraint-induced movement therapy improve activity and participation in children with hemiplegic cerebral palsy? Does it improve activity and participation more than the same dose of upper limb therapy without restraint? Is the effect of constraint-induced movement therapy related to the duration of intervention or the age of the children? Systematic review of randomised trials with meta-analysis. Children with hemiplegic cerebral palsy with any level of motor disability. The experimental group received constraint-induced movement therapy (defined as restraint of the less affected upper limb during supervised activity practice of the more affected upper limb). The control group received no intervention, sham intervention, or the same dose of upper limb therapy. Measures of upper limb activity and participation were used in the analysis. Constraint-induced movement therapy was more effective than no/sham intervention in terms of upper limb activity (SMD 0.63, 95% CI 0.20 to 1.06) and participation (SMD 1.21, 95% CI 0.41 to 2.02). However, constraint-induced movement therapy was no better than the same dose of upper limb therapy without restraint either in terms of upper limb activity (SMD 0.05, 95% CI -0.21 to 0.32) or participation (SMD -0.02, 95% CI -0.34 to 0.31). The effect of constraint-induced movement therapy was not related to the duration of intervention or the age of the children. This review suggests that constraint-induced movement therapy is more effective than no intervention, but no more effective than the same dose of upper limb practice without restraint. PROSPERO CRD42015024665. [Chiu H-C, Ada L (2016) Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: a systematic review.Journal of Physiotherapy62: 130-137]. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Upper limb movement analysis during gait in multiple sclerosis patients.
Elsworth-Edelsten, Charlotte; Bonnefoy-Mazure, Alice; Laidet, Magali; Armand, Stephane; Assal, Frederic; Lalive, Patrice; Allali, Gilles
2017-08-01
Gait disorders in multiple sclerosis (MS) are well studied; however, no previous study has described upper limb movements during gait. However, upper limb movements have an important role during locomotion and can be altered in MS patients due to direct MS lesions or mechanisms of compensation. The aim of this study was to describe the arm movements during gait in a population of MS patients with low disability compared with a healthy control group. In this observational study we analyzed the arm movements during gait in 52 outpatients (mean age: 39.7±9.6years, female: 40%) with relapsing-remitting MS with low disability (mean EDSS: 2±1) and 25 healthy age-matched controls using a 3-dimension gait analysis. MS patients walked slower, with increased mean elbow flexion and decreased amplitude of elbow flexion (ROM) compared to the control group, whereas shoulder and hand movements were similar to controls. These differences were not explained by age or disability. Upper limb alterations in movement during gait in MS patients with low disability can be characterized by an increase in mean elbow flexion and a decrease in amplitude (ROM) for elbow flexion/extension. This upper limb movement pattern should be considered as a new component of gait disorders in MS and may reflect subtle motor deficits or the use of compensatory mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Weiss, Patrice L.; Keshner, Emily A.
2015-01-01
The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522
Rasotto, Chiara; Bergamin, Marco; Sieverdes, John C; Gobbo, Stefano; Alberton, Cristine L; Neunhaeuserer, Daniel; Maso, Stefano; Zaccaria, Marco; Ermolao, Andrea
2015-02-01
The aim of this study was to evaluate a tailored physical activity protocol performed in a work environment with a group of female workers employed in manual precision tasks to reduce upper limb pain. Sixty female subjects were randomly assigned to an intervention group or a control group. The IG was administered of a 6-month, twice-a-week, tailored exercise program, whereas the CG received no intervention. The IG showed a reduction on shoulder pain accompanied by increases on the range of motion measures. In addition, reductions in upper limb pain and neck disability were detected with concomitant increases in grip strength. This study indicated positive effects of a tailored workplace exercise protocol in female workers exposed to moderate risk for work-related musculoskeletal disorders, showing clinically meaningful reductions of pain symptoms and disability on upper limb and neck regions.
Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques.
Engdahl, Susannah M; Christie, Breanne P; Kelly, Brian; Davis, Alicia; Chestek, Cynthia A; Gates, Deanna H
2015-06-13
Novel techniques for the control of upper limb prostheses may allow users to operate more complex prostheses than those that are currently available. Because many of these techniques are surgically invasive, it is important to understand whether individuals with upper limb loss would accept the associated risks in order to use a prosthesis. An online survey of individuals with upper limb loss was conducted. Participants read descriptions of four prosthetic control techniques. One technique was noninvasive (myoelectric) and three were invasive (targeted muscle reinnervation, peripheral nerve interfaces, cortical interfaces). Participants rated how likely they were to try each technique if it offered each of six different functional features. They also rated their general interest in each of the six features. A two-way repeated measures analysis of variance with Greenhouse-Geisser corrections was used to examine the effect of the technique type and feature on participants' interest in each technique. Responses from 104 individuals were analyzed. Many participants were interested in trying the techniques - 83 % responded positively toward myoelectric control, 63 % toward targeted muscle reinnervation, 68 % toward peripheral nerve interfaces, and 39 % toward cortical interfaces. Common concerns about myoelectric control were weight, cost, durability, and difficulty of use, while the most common concern about the invasive techniques was surgical risk. Participants expressed greatest interest in basic prosthesis features (e.g., opening and closing the hand slowly), as opposed to advanced features like fine motor control and touch sensation. The results of these investigations may be used to inform the development of future prosthetic technologies that are appealing to individuals with upper limb loss.
NASA Astrophysics Data System (ADS)
Pastacaldi, P.; Orsini, P.; Bracciaferri, F.; Neri, G.; Porciani, M.; Liuni, L.; Zolesi, V.
2004-01-01
Experiments executed on the upper limb are assuming increasing significance in the frame of the Human Physiology in space, for at least two reasons: the upper limb is the principal means of locomotion for the subject living in a space station; furthermore, fatigue can have a significant effect on the hand, for the ordinary work on board, and in particular for the extra-vehicular activities. The degradation of the performances affecting the muscular-skeletal apparatus can be easily recognized on the upper limb, by exerting specific scientific protocols, to be repeated through the permanence of the subject in weightlessness conditions. Another aspect relevant to the effect of microgravity on the upper limb is associated with the alteration of the motor control programs due to the different gravity factor, affecting not only the bio-mechanics of the subject, but in general all his/her psycho-physical conditions, induced by the totally different environment. Specific protocols on the upper limb can facilitate the studies on learning mechanisms for the motor control. The results of such experiments can be transferred to the Earth, useful for treatment of subjects with local traumas or diseases of the Central Nervous System.
Can We Achieve Intuitive Prosthetic Elbow Control Based on Healthy Upper Limb Motor Strategies?
Merad, Manelle; de Montalivet, Étienne; Touillet, Amélie; Martinet, Noël; Roby-Brami, Agnès; Jarrassé, Nathanaël
2018-01-01
Most transhumeral amputees report that their prosthetic device lacks functionality, citing the control strategy as a major limitation. Indeed, they are required to control several degrees of freedom with muscle groups primarily used for elbow actuation. As a result, most of them choose to have a one-degree-of-freedom myoelectric hand for grasping objects, a myoelectric wrist for pronation/supination, and a body-powered elbow. Unlike healthy upper limb movements, the prosthetic elbow joint angle, adjusted prior to the motion, is not involved in the overall upper limb movements, causing the rest of the body to compensate for the lack of mobility of the prosthesis. A promising solution to improve upper limb prosthesis control exploits the residual limb mobility: like in healthy movements, shoulder and prosthetic elbow motions are coupled using inter-joint coordination models. The present study aims to test this approach. A transhumeral amputated individual used a prosthesis with a residual limb motion-driven elbow to point at targets. The prosthetic elbow motion was derived from IMU-based shoulder measurements and a generic model of inter-joint coordinations built from healthy individuals data. For comparison, the participant also performed the task while the prosthetic elbow was implemented with his own myoelectric control strategy. The results show that although the transhumeral amputated participant achieved the pointing task with a better precision when the elbow was myoelectrically-controlled, he had to develop large compensatory trunk movements. Automatic elbow control reduced trunk displacements, and enabled a more natural body behavior with synchronous shoulder and elbow motions. However, due to socket impairments, the residual limb amplitudes were not as large as those of healthy shoulder movements. Therefore, this work also investigates if a control strategy whereby prosthetic joints are automatized according to healthy individuals' coordination models can lead to an intuitive and natural prosthetic control. PMID:29456499
Achondroplasia: Really rhizomelic?
Shelmerdine, Susan Cheng; Brittain, Helen; Arthurs, Owen J; Calder, Alistair D
2016-08-01
Achondroplasia is the most common form of short limb dwarfism in humans. The shortening of the limb lengths in achondroplasia is widely described as "rhizomelic." While this appearance may be convincing clinically, the description is not necessarily true or helpful radiologically. The aims of this study, were therefore, to determine whether rhizomelic shortening is a true feature of achondroplasia at diagnosis in infancy. Humeral, radial, femoral, and tibial diaphyseal lengths were recorded by two independent observers from 22 skeletal surveys of infants with achondroplasia and compared with 150 normal age-matched control subjects. Upper and lower limb bone length ratios (radial/humeral and tibial/femoral lengths, respectively) in both groups were compared using an unpaired t-test. Mean upper limb length ratios were statistically higher within the achondroplasia group at 0.87 ± 0.04 (n = 22, mean age 70 ± 94 days) compared to normal controls at 0.79 ± 0.02 (n = 150, mean age 113 days ± 88 days; P < 0.0001). Lower limb length ratios were not significantly different between groups (0.84 ± 0.04 vs. 0.83 ± 0.02, P = 0.46). There was good inter-observer agreement of limb length measurements, with an average measurement difference of 0.1 ± 1.4 mm. In conclusion, infants with achondroplasia demonstrate statistically significant rhizomelic shortening within the upper limbs, but not lower limbs at diagnosis, compared to normal controls. The term "rhizomelic shortening" in relation to achondroplasia should be reserved when describing upper limb proportions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Masiero, Stefano; Armani, Mario; Rosati, Giulio
2011-01-01
The successful motor rehabilitation of stroke patients requires early intensive and task-specific therapy. A recent Cochrane Review, although based on a limited number of randomized controlled trials (RCTs), showed that early robotic training of the upper limb (i.e., during acute or subacute phase) can enhance motor learning and improve functional abilities more than chronic-phase training. In this article, a new subacute-phase RCT with the Neuro-Rehabilitation-roBot (NeReBot) is presented. While in our first study we used the NeReBot in addition to conventional therapy, in this new trial we used the same device in substitution of standard proximal upper-limb rehabilitation. With this protocol, robot patients achieved similar reductions in motor impairment and enhancements in paretic upper-limb function to those gained by patients in a control group. By analyzing these results and those of previous studies, we hypothesize a new robotic protocol for acute and subacute stroke patients based on both treatment modalities (in addition and in substitution).
Bilateral responses of upper limb muscles to transcranial magnetic stimulation in human subjects.
Bawa, P; Hamm, J D; Dhillon, P; Gross, P A
2004-10-01
Anatomical and behavioural work on primates has shown bilateral innervation of axial and proximal limb muscles, and contralateral control of distal limb muscles. The following study examined if a clear boundary exists between the distal and proximal upper limb muscles that are controlled contralaterally or bilaterally. The right motor cortical area representing the upper limb was stimulated, while surface EMG was recorded bilaterally from various upper limb muscles during rest and phasic voluntary contractions. Peak-to-peak amplitude of motor evoked potential (MEP) was measured for each muscle on both sides. The ratio R = (ipsilateral MEP: contralateral MEP) was calculated for seven pairs of muscles. For each of the seven pairs, R was less than 1.0, implying that for each muscle and subject, the contralateral control is stronger. The boundary where R changed from almost zero to a clearly measurable magnitude depended on the subject. Ipsilateral MEPs from trapezius and pectoralis could be recorded with a small background contraction from almost all subjects; on the other hand, in deltoid and biceps brachii, ipsilateral MEPs were observed only with bimanual phasic contractions. The forearm and hand muscles, in general, did not show any ipsilateral MEPs. Major differences between subjects lay in the presence or the absence of ipsilateral MEPs in biceps brachii and deltoid, without defining a sharp boundary between proximal and distal muscles.
Kurzynski, Marek; Jaskolska, Anna; Marusiak, Jaroslaw; Wolczowski, Andrzej; Bierut, Przemyslaw; Szumowski, Lukasz; Witkowski, Jerzy; Kisiel-Sajewicz, Katarzyna
2017-08-01
One of the biggest problems of upper limb transplantation is lack of certainty as to whether a patient will be able to control voluntary movements of transplanted hands. Based on findings of the recent research on brain cortex plasticity, a premise can be drawn that mental training supported with visual and sensory feedback can cause structural and functional reorganization of the sensorimotor cortex, which leads to recovery of function associated with the control of movements performed by the upper limbs. In this study, authors - based on the above observations - propose the computer-aided training (CAT) system, which generating visual and sensory stimuli, should enhance the effectiveness of mental training applied to humans before upper limb transplantation. The basis for the concept of computer-aided training system is a virtual hand whose reaching and grasping movements the trained patient can observe on the VR headset screen (visual feedback) and whose contact with virtual objects the patient can feel as a touch (sensory feedback). The computer training system is composed of three main components: (1) the system generating 3D virtual world in which the patient sees the virtual limb from the perspective as if it were his/her own hand; (2) sensory feedback transforming information about the interaction of the virtual hand with the grasped object into mechanical vibration; (3) the therapist's panel for controlling the training course. Results of the case study demonstrate that mental training supported with visual and sensory stimuli generated by the computer system leads to a beneficial change of the brain activity related to motor control of the reaching in the patient with bilateral upper limb congenital transverse deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tyson, Sarah; Wilkinson, Jack; Thomas, Nessa; Selles, Ruud; McCabe, Candy; Tyrrell, Pippa; Vail, Andy
2015-10-01
Patient-led therapy has the potential to increase the amount of therapy patients undertake during stroke rehabilitation and to enhance recovery. Our objective was to assess the feasibility and acceptability of 2 patient-led therapies during the acute stages of stroke care: mirror therapy for the upper limb and lower-limb exercises for the lower limb. This was a blind assessed, multicenter, pragmatic randomized controlled trial of patient-led upper-limb mirror therapy and patient-led lower leg exercises. Stroke survivors with upper and lower limb limitations, undergoing inpatient rehabilitation and able to consent were recruited at least 1 week poststroke. Both interventions proved feasible, with >90% retention. No serious adverse events were reported. Both groups did less therapy than recommended; typically 5 to 15 minutes for 7 days or less. Participants receiving mirror therapy (n = 63) tended to do less practice than those doing lower-limb exercises (n = 31). Those with neglect did 69% less mirror therapy than those without (P = .02), which was not observed in the exercise group. Observed between-group differences were modest but neglect, upper-limb strength, and dexterity showed some improvement in the mirror therapy group. No changes were seen in the lower-limb group. Both patient-led mirror therapy and lower-limb exercises during inpatient stroke care are safe, feasible, and acceptable and warrant further investigation. Practice for 5 to 15 minutes for 7 days is a realistic prescription unless strategies to enhance adherence are included. © The Author(s) 2015.
Hoe, Victor C W; Urquhart, Donna M; Kelsall, Helen L; Sim, Malcolm R
2012-08-15
Work-related upper limb and neck musculoskeletal disorders (MSDs) are one of the most common occupational disorders around the world. Although ergonomic design and training are likely to reduce the risk of workers developing work-related upper limb and neck MSDs, the evidence is unclear. To assess the effects of workplace ergonomic design or training interventions, or both, for the prevention of work-related upper limb and neck MSDs in adults. We searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL, AMED, Web of Science (Science Citation Index), SPORTDiscus, Cochrane Occupational Safety and Health Review Group Database and Cochrane Bone, Joint and Muscle Trauma Group Specialised Register to July 2010, and Physiotherapy Evidence Database, US Centers for Disease Control and Prevention, the National Institute for Occupational Safety and Health database, and International Occupational Safety and Health Information Centre database to November 2010. We included randomised controlled trials (RCTs) of ergonomic workplace interventions for preventing work-related upper limb and neck MSDs. We included only studies with a baseline prevalence of MSDs of the upper limb or neck, or both, of less than 25%. Two review authors independently extracted data and assessed risk of bias. We included studies with relevant data that we judged to be sufficiently homogeneous regarding the intervention and outcome in the meta-analysis. We assessed the overall quality of the evidence for each comparison using the GRADE approach. We included 13 RCTs (2397 workers). Eleven studies were conducted in an office environment and two in a healthcare setting. We judged one study to have a low risk of bias. The 13 studies evaluated effectiveness of ergonomic equipment, supplementary breaks or reduced work hours, ergonomic training, a combination of ergonomic training and equipment, and patient lifting interventions for preventing work-related MSDs of the upper limb and neck in adults.Overall, there was moderate-quality evidence that arm support with alternative mouse reduced the incidence of neck/shoulder disorders (risk ratio (RR) 0.52; 95% confidence interval (CI) 0.27 to 0.99) but not the incidence of right upper limb MSDs (RR 0.73; 95% CI 0.32 to 1.66); and low-quality evidence that this intervention reduced neck/shoulder discomfort (standardised mean difference (SMD) -0.41; 95% CI -0.69 to -0.12) and right upper limb discomfort (SMD -0.34; 95% CI -0.63 to -0.06).There was also moderate-quality evidence that the incidence of neck/shoulder and right upper limb disorders were not reduced when comparing alternative mouse and conventional mouse (neck/shoulder RR 0.62; 95% CI 0.19 to 2.00; right upper limb RR 0.91; 95% CI 0.48 to 1.72), arm support and no arm support with conventional mouse (neck/shoulder RR 0.67; 95% CI 0.36 to 1.24; right upper limb RR 1.09; 95% CI 0.51 to 2.29), and alternative mouse with arm support and conventional mouse with arm support (neck/shoulder RR 0.58; 95% CI 0.30 to 1.12; right upper limb RR 0.92; 95% CI 0.36 to 2.36).There was low-quality evidence that using an alternative mouse with arm support compared to conventional mouse with arm support reduced neck/shoulder discomfort (SMD -0.39; 95% CI -0.67 to -0.10). There was low- to very low-quality evidence that other interventions were not effective in reducing work-related upper limb and neck MSDs in adults. We found moderate-quality evidence to suggest that the use of arm support with alternative mouse may reduce the incidence of neck/shoulder MSDs, but not right upper limb MSDs. Moreover, we found moderate-quality evidence to suggest that the incidence of neck/shoulder and right upper limb MSDs is not reduced when comparing alternative and conventional mouse with and without arm support. However, given there were multiple comparisons made involving a number of interventions and outcomes, high-quality evidence is needed to determine the effectiveness of these interventions clearly. While we found very-low- to low-quality evidence to suggest that other ergonomic interventions do not prevent work-related MSDs of the upper limb and neck, this was limited by the paucity and heterogeneity of available studies. This review highlights the need for high-quality RCTs examining the prevention of MSDs of the upper limb and neck.
2010-01-01
Background Use of Botulinum toxin-A (BoNT-A) for treatment of upper limb spasticity in children with cerebral palsy has become routine clinical practice in many paediatric treatment centres worldwide. There is now high-level evidence that upper limb BoNT-A injection, in combination with occupational therapy, improves outcomes in children with cerebral palsy at both the body function/structure and activity level domains of the International Classification of Functioning, Disability and Health. Investigation is now required to establish what amount and specific type of occupational therapy will further enhance functional outcomes and prolong the beneficial effects of BoNT-A. Methods/Design A randomised, controlled, evaluator blinded, prospective parallel-group trial. Eligible participants were children aged 18 months to 6 years, diagnosed with spastic hemiplegic cerebral palsy and who were able to demonstrate selective motor control of the affected upper limb. Both groups received upper limb injections of BoNT-A. Children were randomised to either the modified constraint-induced movement therapy group (experimental) or bimanual occupational therapy group (control). Outcome assessments were undertaken at pre-injection and 1, 3 and 6 months following injection of BoNT-A. The primary outcome measure was the Assisting Hand Assessment. Secondary outcomes included: the Quality of Upper Extremity Skills Test; Pediatric Evaluation of Disability Inventory; Canadian Occupational Performance Measure; Goal Attainment Scaling; Pediatric Motor Activity Log; modified Ashworth Scale and; the modified Tardieu Scale. Discussion The aim of this paper is to describe the methodology of a randomised controlled trial comparing the effects of modified constraint-induced movement therapy (a uni-manual therapy) versus bimanual occupational therapy (a bimanual therapy) on improving bimanual upper limb performance of children with hemiplegic cerebral palsy following upper limb injection of BoNT-A. The paper outlines the background to the study, the study hypotheses, outcome measures and trial methodology. It also provides a comprehensive description of the interventions provided. Trial Registration ACTRN12605000002684 PMID:20602795
Bernaards, Claire M; Ariëns, Geertje AM; Hildebrandt, Vincent H
2006-01-01
Background Neck and upper limb symptoms are frequently reported by computer workers. Work style interventions are most commonly used to reduce work-related neck and upper limb symptoms but lifestyle physical activity interventions are becoming more popular to enhance workers health and reduce work-related symptoms. A combined approach targeting work style and lifestyle physical activity seems promising, but little is known on the effectiveness of such combined interventions. Methods/design The RSI@Work study is a randomised controlled trial that aims to assess the added value of a lifestyle physical activity intervention in addition to a work style intervention to reduce neck and upper limb symptoms in computer workers. Computer workers from seven Dutch companies with frequent or long-term neck and upper limb symptoms in the preceding six months and/or the last two weeks are randomised into three groups: (1) work style group, (2) work style and physical activity group, or (3) control group. The work style intervention consists of six group meetings in a six month period that take place at the workplace, during work time, and under the supervision of a specially trained counsellor. The goal of this intervention is to stimulate workplace adjustment and to improve body posture, the number and quality of breaks and coping behaviour with regard to high work demands. In the combined (work style and physical activity) intervention the additional goal is to increase moderate to heavy physical activity. The control group receives usual care. Primary outcome measures are degree of recovery, pain intensity, disability, number of days with neck and upper limb symptoms, and number of months without neck and upper limb symptoms. Outcome measures will be assessed at baseline and six and 12 months after randomisation. Cost-effectiveness of the group meetings will be assessed using an employer's perspective. Discussion This study will be one of the first to assess the added value of a lifestyle physical activity intervention in addition to a work style intervention in reducing neck and upper limb symptoms of computer workers. The results of the study are expected in 2007. PMID:17062141
Rodgers, Helen; Shaw, Lisa; Bosomworth, Helen; Aird, Lydia; Alvarado, Natasha; Andole, Sreeman; Cohen, David L; Dawson, Jesse; Eyre, Janet; Finch, Tracy; Ford, Gary A; Hislop, Jennifer; Hogg, Steven; Howel, Denise; Hughes, Niall; Krebs, Hermano Igo; Price, Christopher; Rochester, Lynn; Stamp, Elaine; Ternent, Laura; Turner, Duncan; Vale, Luke; Warburton, Elizabeth; van Wijck, Frederike; Wilkes, Scott
2017-07-20
Loss of arm function is a common and distressing consequence of stroke. We describe the protocol for a pragmatic, multicentre randomised controlled trial to determine whether robot-assisted training improves upper limb function following stroke. Study design: a pragmatic, three-arm, multicentre randomised controlled trial, economic analysis and process evaluation. NHS stroke services. adults with acute or chronic first-ever stroke (1 week to 5 years post stroke) causing moderate to severe upper limb functional limitation. Randomisation groups: 1. Robot-assisted training using the InMotion robotic gym system for 45 min, three times/week for 12 weeks 2. Enhanced upper limb therapy for 45 min, three times/week for 12 weeks 3. Usual NHS care in accordance with local clinical practice Randomisation: individual participant randomisation stratified by centre, time since stroke, and severity of upper limb impairment. upper limb function measured by the Action Research Arm Test (ARAT) at 3 months post randomisation. upper limb impairment (Fugl-Meyer Test), activities of daily living (Barthel ADL Index), quality of life (Stroke Impact Scale, EQ-5D-5L), resource use, cost per quality-adjusted life year and adverse events, at 3 and 6 months. Blinding: outcomes are undertaken by blinded assessors. Economic analysis: micro-costing and economic evaluation of interventions compared to usual NHS care. A within-trial analysis, with an economic model will be used to extrapolate longer-term costs and outcomes. Process evaluation: semi-structured interviews with participants and professionals to seek their views and experiences of the rehabilitation that they have received or provided, and factors affecting the implementation of the trial. allowing for 10% attrition, 720 participants provide 80% power to detect a 15% difference in successful outcome between each of the treatment pairs. Successful outcome definition: baseline ARAT 0-7 must improve by 3 or more points; baseline ARAT 8-13 improve by 4 or more points; baseline ARAT 14-19 improve by 5 or more points; baseline ARAT 20-39 improve by 6 or more points. The results from this trial will determine whether robot-assisted training improves upper limb function post stroke. ISRCTN, identifier: ISRCTN69371850 . Registered 4 October 2013.
Samuel, Geoffrey Sithamparapillai; Oey, Nicodemus Edrick; Choo, Min; Ju, Han; Chan, Wai Yin; Kok, Stanley; Ge, Yu; Dongen, Antonius M Van; Ng, Yee Sien
2017-01-01
INTRODUCTION This study aimed to evaluate the safety and efficacy of a combination of levodopa and virtual reality (VR)-based therapy for the enhancement of upper limb recovery following acute stroke. METHODS This was a pilot single-blinded case series of acute stroke patients with upper extremity hemiparesis. Patients were randomised to standard care with concomitant administration of either levodopa alone (control group) or combination therapy consisting of VR-based motivational visuomotor feedback training with levodopa neuromodulation (VR group). Main clinical outcome measures were the Fugl-Meyer Upper Extremity (FM-UE) assessment and Action Research Arm Test (ARAT). Kinematic measurements of affected upper limb movement were evaluated as a secondary measure of improvement. RESULTS Of 42 patients screened, four patients were enrolled in each of the two groups. Two patients dropped out from the control group during the trial. Patients receiving combination therapy had clinically significant improvements in FM-UE assessment scores of 16.5 points compared to a 3.0-point improvement among control patients. Similarly, ARAT scores of VR group patients improved by 15.3 points compared to a 10.0-point improvement in the control group. Corresponding improvements were noted in kinematic measures, including hand-path ratio, demonstrating that the quality of upper limb movement improved in the VR group. CONCLUSION Our results suggest that VR-based therapy and pharmacotherapy may be combined for acute stroke rehabilitation. Bedside acquisition of kinematic measurements allows accurate assessment of the quality of limb movement, offering a sensitive clinical tool for quantifying motor recovery during the rehabilitation process after acute stroke. PMID:27311739
Brauer, Sandra G; Hayward, Kathryn S; Carson, Richard G; Cresswell, Andrew G; Barker, Ruth N
2013-07-02
Recovery of upper limb function after stroke is poor. The acute to subacute phase after stroke is the optimal time window to promote the recovery of upper limb function. The dose and content of training provided conventionally during this phase is however, unlikely to be adequate to drive functional recovery, especially in the presence of severe motor disability. The current study concerns an approach to address this shortcoming, through evaluation of the SMART Arm, a non-robotic device that enables intensive and repetitive practice of reaching by stroke survivors with severe upper limb disability, with the aim of improving upper limb function. The outcomes of SMART Arm training with or without outcome-triggered electrical stimulation (OT-stim) to augment movement and usual therapy will be compared to usual therapy alone. A prospective, assessor-blinded parallel, three-group randomised controlled trial is being conducted. Seventy-five participants with a first-ever unilateral stroke less than 4 months previously, who present with severe arm disability (three or fewer out of a possible six points on the Motor Assessment Scale [MAS] Item 6), will be recruited from inpatient rehabilitation facilities. Participants will be randomly allocated to one of three dose-matched groups: SMART Arm training with OT-stim and usual therapy; SMART Arm training without OT-stim and usual therapy; or usual therapy alone. All participants will receive 20 hours of upper limb training over four weeks. Blinded assessors will conduct four assessments: pre intervention (0-weeks), post intervention (4-weeks), 26 weeks and 52 weeks follow-up. The primary outcome measure is MAS item 6. All analyses will be based on an intention-to-treat principle. By enabling intensive and repetitive practice of a functional upper limb task during inpatient rehabilitation, SMART Arm training with or without OT-stim in combination with usual therapy, has the potential to improve recovery of upper limb function in those with severe motor disability. The immediate and long-term effects of SMART Arm training on upper limb impairment, activity and participation will be explored, in addition to the benefit of training with or without OT-stim to augment movement when compared to usual therapy alone. ACTRN12608000457347.
Wallen, Margaret; O'Flaherty, Stephen J; Waugh, Mary-Clare A
2007-01-01
To investigate the functional outcomes of botulinum toxin type A (BTX-A) injections to the upper limb in combination with occupational therapy (OT) in children with cerebral palsy (CP). Randomized controlled trial with follow-up at 2 weeks, 3 months, and 6 months. Specialist outpatient physical disabilities clinic within a public pediatric teaching hospital. Eighty children with spastic quadriplegic, triplegic, or hemiplegic CP from these clinics were randomly assigned to BTX-A plus OT, BTX-A alone, OT alone, or a no-treatment control group. Single set of BTX-A (Botox) injections and 12 weeks of OT. Canadian Occupational Performance Measure (COPM) and Goal Attainment Scale (GAS). The combination of BTX-A and OT resulted in accelerated attainment of functional goals measured by the COPM and GAS. There were no differences between groups on the Melbourne Assessment of Unilateral Upper Limb Function, Quality of Upper Extremity Skills Test, Pediatric Evaluation of Disability Inventory, Child Health Questionnaire, or active and passive range of motion. As expected, there was a significant reduction in muscle tone at follow-up 2 weeks after injection, which returned to baseline level by 6 months. OT enhanced individualized functional outcomes following BTX-A injections in the upper limbs of children with CP.
A hybrid joint based controller for an upper extremity exoskeleton
NASA Astrophysics Data System (ADS)
Mohd Khairuddin, Ismail; Taha, Zahari; Majeed, Anwar P. P. Abdul; Hakeem Deboucha, Abdel; Azraai Mohd Razman, Mohd; Aziz Jaafar, Abdul; Mohamed, Zulkifli
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton. The Euler-Lagrange formulation was used in deriving the dynamic modelling of both the human upper limb as well as the exoskeleton that consists of the upper arm and the forearm. The human model is based on anthropometrical measurements of the upper limb. The proportional-derivative (PD) computed torque control (CTC) architecture is employed in this study to investigate its efficacy performing joint-space control objectives specifically in rehabilitating the elbow and shoulder joints along the sagittal plane. An active force control (AFC) algorithm is also incorporated into the PD-CTC to investigate the effectiveness of this hybrid system in compensating disturbances. It was found that the AFC- PD-CTC performs well against the disturbances introduced into the system whilst achieving acceptable trajectory tracking as compared to the conventional PD-CTC control architecture.
Crenna, P; Carpinella, I; Lopiano, L; Marzegan, A; Rabuffetti, M; Rizzone, M; Lanotte, M; Ferrarin, M
2008-12-01
Clinical evidence of impaired arm swing while walking in patients with Parkinson's disease suggests that basal ganglia and related systems play an important part in the control of upper limb locomotor automatism. To gain more information on this supraspinal influence, we measured arm and thigh kinematics during walking in 10 Parkinson's disease patients, under four conditions: (i) baseline (no treatment), (ii) therapeutic stimulation of the subthalamic nucleus (STN), (iii)L-DOPA medication and (iv) combined STN stimulation and L-DOPA. Ten age-matched controls provided reference data. Under baseline conditions the range of patients' arm motion was severely restricted, with no correlation with the excursion of the thigh. In addition, the arm swing was abnormally coupled in time with oscillation of the ipsilateral thigh. STN stimulation significantly increased the gait speed and improved the spatio-temporal parameters of arm and thigh motion. The kinematic changes as a function of gait speed changes, however, were significantly smaller for the upper than the lower limb, in contrast to healthy controls. Arm motion was also less responsive after L-DOPA. Simultaneous deep brain stimulation and L-DOPA had additive effects on thigh motion, but not on arm motion and arm-thigh coupling. The evidence that locomotor automatisms of the upper and lower limbs display uncorrelated impairment upon dysfunction of the basal ganglia, as well as different susceptibility to electrophysiological and pharmacological interventions, points to the presence of heterogeneously distributed, possibly partially independent, supraspinal control channels, whereby STN and dopaminergic systems have relatively weaker influence on the executive structures involved in the arm swing and preferential action on those for lower limb movements. These findings might be considered in the light of phylogenetic changes in supraspinal control of limb motion related to primate bipedalism.
MacLellan, M J; Catavitello, G; Ivanenko, Y P; Lacquaniti, F
2017-11-01
Habitual quadrupeds have been shown to display a planar covariance of segment elevation angle waveforms in the fore and hind limbs during many forms of locomotion. The purpose of the current study was to determine if humans generate similar patterns in the upper and lower limbs during hand-foot crawling. Nine healthy young adults performed hand-foot crawling on a treadmill at speeds of 1, 2, and 3 km/h. A principal component analysis (PCA) was applied to the segment elevation angle waveforms for the upper (upper arm, lower arm, and hand) and lower (thigh, shank, and foot) limbs separately. The planarity of the elevation angle waveforms was determined using the sum of the variance explained by the first two PCs and the orientation of the covariance plane was quantified using the direction cosines of the eigenvector orthogonal to the plane, projected upon each of the segmental semi-axes. Results showed that planarity of segment elevation angles was maintained in the upper and lower limbs (explained variance >97%), although a slight decrease was present in the upper limb when crawling at 3 km/h. The orientation of the covariance plane was highly limb-specific, consistent with animal studies and possibly related to the functional neural control differences between the upper and lower limbs. These results may suggest that the motor patterns stored in the central nervous system for quadrupedal locomotion may be retained through evolution and may still be exploited when humans perform such tasks.
Physical Mechanisms Controlling Upper Tropospheric Water Vapor as Revealed by MLS Data from UARS
NASA Technical Reports Server (NTRS)
Newell, Reginald E.; Douglass, Anne (Technical Monitor)
2002-01-01
The third year and final report on the physical mechanisms controlling upper tropospheric water vapor revealed by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is presented.
Klimkiewicz, Paulina; Kubsik, Anna; Jankowska, Agnieszka; Woldańska-Okońska, Marta
2014-03-01
Rehabilitation of upper limb in patients after ischemic stroke is a major challenge for modern neurorehabilitation. Function of upper limb of patients after ischemic stroke returns on the end of the rehabilitation comparing with another parts of the body. Below presents two groups of patients after ischemic stroke who were rehabilitated with use of the following methods: kinesiotherapy combined with NDT- Bobath method and kinesiotherapy only. The aim of this study was to assess the impact of kinesiotherapy only and NDT- Bobath method combined with kinesiotherapy on the functional state and muscle tone of upper limb in patients after ischemic stroke. The study involved a group of 40 patients after ischemic stroke with motor control and muscle tone problems of upper limb. Patients were divided into two groups, each of them included 20 people. Upper limb in group I was rehabilitated with the use of kinesiotherapy exercise however group II with the use of kinesiotherapy exercise combined with NDT- Bobath method (Neurodevelopmental Treatment Bobath). To evaluate the patients before and after rehabilitation muscle tone Asworth scale was used and to assess functional status Rivermead Motor Assessment (RMAIII) scale was used. After 5 weeks of rehabilitation in group II in majority patients were observed decrease of muscle tone and improvement in upper limb functional status. In group I the muscle tone were also decreased and functional status were better but in smaller impact than in II group. Classical kinesiotherapy combined with the NDT-Bobath method gives better results in neurorehabilitation of upper limb than the use of kinesiotherapy exercises only in patients after ischemic stroke.
Primed Physical Therapy Enhances Recovery of Upper Limb Function in Chronic Stroke Patients.
Ackerley, Suzanne J; Byblow, Winston D; Barber, P Alan; MacDonald, Hayley; McIntyre-Robinson, Andrew; Stinear, Cathy M
2016-05-01
Recovery of upper limb function is important for regaining independence after stroke. To test the effects of priming upper limb physical therapy with intermittent theta burst stimulation (iTBS), a form of noninvasive brain stimulation. Eighteen adults with first-ever chronic monohemispheric subcortical stroke participated in this randomized, controlled, triple-blinded trial. Intervention consisted of priming with real or sham iTBS to the ipsilesional primary motor cortex immediately before 45 minutes of upper limb physical therapy, daily for 10 days. Changes in upper limb function (Action Research Arm Test [ARAT]), upper limb impairment (Fugl-Meyer Scale), and corticomotor excitability, were assessed before, during, and immediately, 1 month and 3 months after the intervention. Functional magnetic resonance images were acquired before and at one month after the intervention. Improvements in ARAT were observed after the intervention period when therapy was primed with real iTBS, but not sham, and were maintained at 1 month. These improvements were not apparent halfway through the intervention, indicating a dose effect. Improvements in ARAT at 1 month were related to balancing of corticomotor excitability and an increase in ipsilesional premotor cortex activation during paretic hand grip. Two weeks of iTBS-primed therapy improves upper limb function at the chronic stage of stroke, for at least 1 month postintervention, whereas therapy alone may not be sufficient to alter function. This indicates a potential role for iTBS as an adjuvant to therapy delivered at the chronic stage. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Morita, Yoshifumi; Hirose, Akinori; Uno, Takashi; Uchid, Masaki; Ukai, Hiroyuki; Matsui, Nobuyuki
2007-12-01
In this paper we propose a new rehabilitation training support system for upper limbs. The proposed system enables therapists to quantitatively evaluate the therapeutic effect of upper limb motor function during training, to easily change the load of resistance of training and to easily develop a new training program suitable for the subjects. For this purpose we develop control algorithms of training programs in the 3D force display robot. The 3D force display robot has parallel link mechanism with three motors. The control algorithm simulating sanding training is developed for the 3D force display robot. Moreover the teaching/training function algorithm is developed. It enables the therapists to easily make training trajectory suitable for subject's condition. The effectiveness of the developed control algorithms is verified by experiments.
Carlsson, Håkan; Gard, Gunvor; Brogårdh, Christina
2018-01-10
To describe stroke survivors' experiences of sensory impairment in the upper limb, the influence of such impairment on daily life, coping strategies used, and sensory training for the affected hand. A qualitative study with a content analysis approach. Fifteen post-stroke patients interviewed individually. Five categories emerged from the data: "Changed and varied perception of the sensation"; "Affected movement control"; "Problems using the hand in daily life"; "Various strategies to cope with upper limb disability"; and "Lack of sensory training". Numbness and tingling, changes in temperature sensitivity, and increased sensitivity to touch and pain were reported. Many subjects had difficulty adjusting their grip force and performing movements with precision. It was problematic and mentally fatiguing managing personal care and carrying out household and leisure activities. Practical adaptations, compensation with vision, increased concentration, and use of the less affected hand were strategies used to overcome difficulties. Despite their problems very few subjects had received any specific sensory training for the hand. Stroke survivors perceive that sensory impairment of the upper limb has a highly negative impact on daily life, but specific rehabilitation for the upper limb is lacking. These findings imply that the clinical management of upper limb sensory impairment after stroke requires more attention.
Progressive upper limb prosthetics.
Lake, Chris; Dodson, Robert
2006-02-01
The field of upper extremity prosthetics is a constantly changing arena as researchers and prosthetists strive to bridge the gap between prosthetic reality and upper limb physiology. With the further development of implantable neurologic sensing devices and targeted muscle innervation (discussed elsewhere in this issue), the challenge of limited input to control vast outputs promises to become a historical footnote in the future annals of upper limb prosthetics. Soon multidextrous terminal devices, such as that found in the iLimb system(Touch EMAS, Inc., Edinburgh, UK), will be a clinical reality (Fig. 22). Successful prosthetic care depends on good communication and cooperation among the surgeon, the amputee, the rehabilitation team, and the scientists harnessing the power of technology to solve real-life challenges. If the progress to date is any indication, amputees of the future will find their dreams limited only by their imagination.
A short overview of upper limb rehabilitation devices
NASA Astrophysics Data System (ADS)
Macovei, S.; Doroftei, I.
2016-08-01
As some studies show, the number of people over 65 years old increases constantly, leading to the need of solution to provide services regarding patient mobility. Diseases, accidents and neurologic problems affect hundreds of people every day, causing pain and lost of motor functions. The ability of using the upper limb is indispensable for a human being in everyday activities, making easy tasks like drinking a glass of water a real challenge. We can agree that physiotherapy promotes recovery, but not at an optimal level, due to limited financial and human resources. Hence, the need of robot-assisted rehabilitation emerges. A robot for upper-limb exercises should have a design that can accurately control interaction forces and progressively adapt assistance to the patients’ abilities and also to record the patient's motion and evolution. In this paper a short overview of upper limb rehabilitation devices is presented. Our goal is to find the shortcomings of the current developed devices in terms of utility, ease of use and costs, for future development of a mechatronic system for upper limb rehabilitation.
NASA Astrophysics Data System (ADS)
Zhang, Xiu; Wang, Xingyu; Wang, Bei; Sugi, Takenao; Nakamura, Masatoshi
Surface electromyogram (EMG) from elbow, wrist and hand has been widely used as an input of multifunction prostheses for many years. However, for patients with high-level limb deficiencies, muscle activities in upper-limbs are not strong enough to be used as control signals. In this paper, EMG from lower-limbs is acquired and applied to drive a meal assistance robot. An onset detection method with adaptive threshold based on EMG power is proposed to recognize different muscle contractions. Predefined control commands are output by finite state machine (FSM), and applied to operate the robot. The performance of EMG control is compared with joystick control by both objective and subjective indices. The results show that FSM provides the user with an easy-performing control strategy, which successfully operates robots with complicated control commands by limited muscle motions. The high accuracy and comfortableness of the EMG-control meal assistance robot make it feasible for users with upper limbs motor disabilities.
Hale, Leigh A; Satherley, Jessica A; McMillan, Nicole J; Milosavljevic, Stephan; Hijmans, Juha M; King, Marcus J
2012-01-01
This article reports on the perceptions of 14 adults with chronic stroke who participated in a pilot study to determine the utility, acceptability, and potential efficacy of using an adapted CyWee Z handheld game controller to play a variety of computer games aimed at improving upper-limb function. Four qualitative in-depth interviews and two focus groups explored participant perceptions. Data were thematically analyzed with the general inductive approach. Participants enjoyed playing the computer games with the technology. The perceived benefits included improved upper-limb function, concentration, and balance; however, six participants reported shoulder and/or arm pain or discomfort, which presented while they were engaged in play but appeared to ease during rest. Participants suggested changes to the games and provided opinions on the use of computer games in rehabilitation. Using an adapted CyWee Z controller and computer games in upper-limb rehabilitation for people with chronic stroke is an acceptable and potentially beneficial adjunct to rehabilitation. The development of shoulder pain was a negative side effect for some participants and requires further investigation.
Balneotherapy in treatment of spastic upper limb after stroke.
Erceg-Rukavina, Tatjana; Stefanovski, Mihajlo
2015-02-01
After stroke, spasticity is often the main problem that prevents functional recovery. Pain occurs in up to 70% of patients during the first year post-stroke. A total of 70 patients (30 female and 45 male) mean age (65.67) participated in prospective, controlled study. ischaemic stroke, developed spasticity of upper limb, post-stroke interval <6 months. contraindications for balneotherapy and inability to follow commands. Experimental group (Ex) (n=35) was treated with sulphurous baths (31°-33°C) and controlled group (Co) with taped water baths, during 21 days. All patients were additionally treated with kinesitherapy and cryotherapy. The outcome was evaluated using Modified Ashworth scale for spasticity and VAS scale for pain. The significance value was sat at p<0.05. To find out the effects of balneotherapy with sulphurous bath on spasticity and pain in affected upper limb. Reduction in tone of affected upper limb muscles was significant in Ex group (p<0.05). Pain decreased significantly in Ex-group (p<0.01). Our results show that balneotherapy with sulphurous water reduces spasticity and pain significantly and can help in treatment of post-stroke patients.
Kavanagh, Justin J; Wedderburn-Bisshop, Jacob; Keogh, Justin W L
2016-01-01
Although symptoms of Essential Tremor (ET) are typically controlled with medication, it is of interest to explore additional therapies to assist with functionality. The purpose of this study was to determine if a generalized upper limb resistance training (RT) program improves manual dexterity and reduces force tremor in older individuals with ET. Ten Essential Tremor and 9 controls were recruited into a dual group, pretest-posttest intervention study. Participants performed 6 weeks of upper-limb RT, and battery of manual dexterity and isometric force tremor assessments were performed before and after the RT to determine the benefits of the program. The six-week, high-load, RT program produced strength increases in each limb for the ET and healthy older group. These changes in strength aligned with improvements in manual dexterity and tremor-most notably for the ET group. The least affected limb and the most affected limb exhibited similar improvements in functional assessments of manual dexterity, whereas reductions in force tremor amplitude following the RT program were restricted to the most affected limb of the ET group. These findings suggest that generalized upper limb RT program has the potential to improve aspects of manual dexterity and reduce force tremor in older ET patients.
Amputation rehabilitation and prosthetic restoration. From surgery to community reintegration.
Esquenazi, Alberto
The purpose of this review is to summarize the literature related to the advances that have taken place in the management and rehabilitation care of limb amputation. Prostheses for the lower and upper limb amputee have changed greatly over the past several years, with advances in components, socket fabrication and fitting techniques, suspension systems and sources of power and electronic controls. Higher levels of limb amputation can now be fitted with functional prostheses, which allow more patients to achieve independent life styles. This is of particular importance for the multi-limb amputee. The rehabilitation of more traditional lower limb levels of amputation have also greatly benefited from the technological advances including energy storing feet, electronic control hydraulic knees, ankle rotators and shock absorbers to mention a few. For the upper limb amputee, myoelectric and proportional controlled terminal devices and elbow joints are now used routinely in some rehabilitation facilities. Experimental prosthetic fitting techniques and devices such as the use of osseo-implantation for suspension of the prosthesis, tension control hands or electromagnetic fluids for knee movement control will also be briefly discussed in this paper. It is possible to conclude from this review that many advances have occurred that have greatly impacted the functional outcomes of patients with limb amputation.
Diment, Laura E; Thompson, Mark S; Bergmann, Jeroen HM
2017-01-01
Background: Three-dimensional printing provides an exciting opportunity to customise upper-limb prostheses. Objective: This review summarises the research that assesses the efficacy and effectiveness of three-dimensional printed upper-limb prostheses. Study design: Systematic review. Methods: PubMed, Web of Science and OVID were systematically searched for studies that reported human trials of three-dimensional printed upper-limb prostheses. The studies matching the language, peer-review and relevance criteria were ranked by level of evidence and critically appraised using the Downs and Black Quality Index. Results: After removing duplicates, 321 records were identified. Eight papers met the inclusion criteria. No studies used controls; five were case studies and three were small case-series studies. All studies showed promising results, but none demonstrated external validity, avoidance of bias or statistically significant improvements over conventional prostheses. The studies demonstrated proof-of-concept rather than assessing efficacy, and the devices were designed to prioritise reduction of manufacturing costs, not customisability for comfort and function. Conclusion: The potential of three-dimensional printing for individual customisation has yet to be fully realised, and the efficacy and effectiveness to be rigorously assessed. Until randomised controlled trials with follow-up are performed, the comfort, functionality, durability and long-term effects on quality of life remain unknown. Clinical relevance Initial studies suggest that three-dimensional printing shows promise for customising low-cost upper-limb prosthetics. However, the efficacy and effectiveness of these devices have yet to be rigorously assessed. Until randomised controlled trials with follow-up are performed, the comfort, functionality, durability and long-term effects on patient quality of life remain unknown. PMID:28649911
Xu, Ying; Lin, Shufang; Jiang, Cai; Ye, Xiaoqian; Tao, Jing; Wilfried, Schupp; Wong, Alex W K; Chen, Lidian; Yang, Shanli
2018-05-31
Upper limb dysfunction is common after stroke, posing an important challenge for post-stroke rehabilitation. The clinical efficacy of acupuncture for the recovery of post-stroke upper limb function has been previously demonstrated. Mirror therapy (MT) has also been found to be effective. However, the effects of acupuncture and MT have not been systematically compared. This trial aims to elucidate the synergistic effects of acupuncture and MT on upper limb dysfunction after stroke. A 2 × 2 factorial randomized controlled trial will be conducted at the rehabilitation hospitals affiliated with Fujian University of Traditional Chinese Medicine. A total of 136 eligible subjects will be randomly divided into acupuncture treatment (AT), MT, combined treatment, and control groups in a 1:1:1:1 ratio. All subjects will receive conventional treatment. The interventions will be performed 5 days per week for 4 weeks. AT, MT, and combined treatment will be performed for 30 min per day (combined treatment: AT 15 min + MT 15 min). The primary outcomes in this study will be the mean change in scores on both the FMA and WMFT from baseline to 4 weeks intervention and at 12 weeks follow-up between the two groups and within groups. The secondary outcomes are the mean change in the scores on the Visual Analogue Scale, Stroke Impact Scale, and modified Barthel index. Medical abstraction of adverse events will be assessed at each visit. The results of this trial will demonstrate the synergistic effect of acupuncture and MT on upper limb motor dysfunction after stroke. In addition, whether AT and MT, either combined or alone, are more effective than the conventional treatment in the management of post-stroke upper limb dysfunction will also be determined. Chinese Clinical Trial Registry: ChiCTR-IOR-17011118 . Registered on April 11, 2017. Version number: 01.2016.09.1.
ERIC Educational Resources Information Center
Gkouvatzi, Anastasia N.; Mantis, Konstantinos; Kambas, Antonis
2010-01-01
Using the Bruininks-Oseretsky Test the motor performance of 34 deaf--hard-of-hearing pupils, 6-14 year, was evaluated in reaction time, visual-motor control and upper limb speed and dexterity. The two-way ANOVA variance analysis for two independent variables, group, age, and the Post Hoc (Scheffe test) for multiple comparisons were used. The…
Martin, Caroline; Bideau, Benoit; Bideau, Nicolas; Nicolas, Guillaume; Delamarche, Paul; Kulpa, Richard
2014-11-01
Energy flow has been hypothesized to be one of the most critical biomechanical concepts related to tennis performance and overuse injuries. However, the relationships among energy flow during the tennis serve, ball velocity, and overuse injuries have not been assessed. To investigate the relationships among the quality and magnitude of energy flow, the ball velocity, and the peaks of upper limb joint kinetics and to compare the energy flow during the serve between injured and noninjured tennis players. Case-control study; Level of evidence, 3. The serves of expert tennis players were recorded with an optoelectronic motion capture system. The forces and torques of the upper limb joints were calculated from the motion captures by use of inverse dynamics. The amount of mechanical energy generated, absorbed, and transferred was determined by use of a joint power analysis. Then the players were followed during 2 seasons to identify upper limb overuse injuries with a questionnaire. Finally, players were classified into 2 groups according to the questionnaire results: injured or noninjured. Ball velocity increased and upper limb joint kinetics decreased with the quality of energy flow from the trunk to the hand + racket segment. Injured players showed a lower quality of energy flow through the upper limb kinetic chain, a lower ball velocity, and higher rates of energy absorbed by the shoulder and elbow compared with noninjured players. The findings of this study imply that improper energy flow during the tennis serve can decrease ball velocity, increase upper limb joint kinetics, and thus increase overuse injuries of the upper limb joints. © 2014 The Author(s).
No impaired hemoglobin oxygenation in forearm muscles of patients with chronic CRPS-1.
Brunnekreef, Jaap J J; Oosterhof, Jan; Wolff, André P; Crul, Ben J P; Wilder-Smith, Oliver H G; Oostendorp, Rob A B
2009-01-01
Physiotherapy is considered an important treatment option in patients with upper limb complex regional pain syndrome type-1 (CRPS-1). In case of chronic CRPS-1, exercise therapy of the affected limb forms an important part of the physiotherapeutic program. We investigated whether muscle loading in chronic CRPS-1 patients is associated with impairments in muscle circulation of the forearm of the affected limb. Thirty patients with chronic CRPS-1 unilaterally affecting their upper limbs, and 30 age-matched and sex-matched control participants were included in this study. Local muscle blood flow and hemoglobin oxygenation were measured by near infrared spectroscopy within the muscles of the forearm at rest, after 1-minute isometric handgrip exercises, and after arterial occlusion. Main outcome parameters were: local muscle blood flow, O2 consumption (mVO2), and postischemic reoxygenation (ReOx). We found no differences in baseline muscle blood flow, mVO2, and ReOx between the affected CRPS-1, unaffected CRPS-1, and control arms. After exercise, mVO2 of the affected CRPS-1 arms was not different from the clinically unaffected CRPS-1 arms. Furthermore, in comparison with the control arms, unaffected CRPS-1 arms showed no difference in mVO2 or ReOx. Muscle loading does not seems to be related to impairments in muscle oxygen uptake in forearm muscles of upper limbs affected by chronic CRPS-1. Our results suggest that exercise therapy can be safely used in physiotherapeutic training programs for chronic CRPS-1 of the upper limb.
Upper limb injury in rugby union football: results of a cohort study.
Usman, Juliana; McIntosh, Andrew Stuart
2013-04-01
There have been few in-depth studies of upper limb injury epidemiology in rugby union football, despite reports that they accounted for between 14% and 28% of all rugby injuries. To report on upper limb injury incidence, injury severity and to identify the risk factors associated with upper limb injuries, for example, level of play, season (years) and playing position. Prospective cohort study across five rugby seasons from 2004 to 2008. Formal rugby competitions-suburban, provincial and international. 1475 adult male rugby players in Colts, Grade and Elite competitions. An upper limb injury resulting in a missed game and its characteristics. A total of 61 598 athletic exposures (AE) and 606 upper limb injuries were recorded. About 66% of the injuries were to the shoulder. The overall upper limb injury incidence rate (IIR) was 9.84 injuries/1000 AE (95% CI 9.06 to 10.62). Statistically significant associations were found between upper limb injuries and level of play; and between shoulder injuries and playing position (p<0.05). No association was found between upper limb and shoulder injuries and study year. The overall upper limb IIR decreased as the level of play increased; 10.74 upper limb injuries/1000 AE (95% CI 9.93 to 11.56) in Colts to 6.07 upper limb injuries/1000 AE (95% CI 5.46 to 6.69) in Elite. The upper limb IIR decreased as the level of play increased indicating that age, level of skill and playing experience may be risk factors for upper limb injury.
Factors associated with interest in novel interfaces for upper limb prosthesis control
Engdahl, Susannah M.; Chestek, Cynthia A.; Kelly, Brian; Davis, Alicia
2017-01-01
Background Surgically invasive interfaces for upper limb prosthesis control may allow users to operate advanced, multi-articulated devices. Given the potential medical risks of these invasive interfaces, it is important to understand what factors influence an individual’s decision to try one. Methods We conducted an anonymous online survey of individuals with upper limb loss. A total of 232 participants provided personal information (such as age, amputation level, etc.) and rated how likely they would be to try noninvasive (myoelectric) and invasive (targeted muscle reinnervation, peripheral nerve interfaces, cortical interfaces) interfaces for prosthesis control. Bivariate relationships between interest in each interface and 16 personal descriptors were examined. Significant variables from the bivariate analyses were then entered into multiple logistic regression models to predict interest in each interface. Results While many of the bivariate relationships were significant, only a few variables remained significant in the regression models. The regression models showed that participants were more likely to be interested in all interfaces if they had unilateral limb loss (p ≤ 0.001, odds ratio ≥ 2.799). Participants were more likely to be interested in the three invasive interfaces if they were younger (p < 0.001, odds ratio ≤ 0.959) and had acquired limb loss (p ≤ 0.012, odds ratio ≥ 3.287). Participants who used a myoelectric device were more likely to be interested in myoelectric control than those who did not (p = 0.003, odds ratio = 24.958). Conclusions Novel prosthesis control interfaces may be accepted most readily by individuals who are young, have unilateral limb loss, and/or have acquired limb loss However, this analysis did not include all possible factors that may have influenced participant’s opinions on the interfaces, so additional exploration is warranted. PMID:28767716
Factors associated with interest in novel interfaces for upper limb prosthesis control.
Engdahl, Susannah M; Chestek, Cynthia A; Kelly, Brian; Davis, Alicia; Gates, Deanna H
2017-01-01
Surgically invasive interfaces for upper limb prosthesis control may allow users to operate advanced, multi-articulated devices. Given the potential medical risks of these invasive interfaces, it is important to understand what factors influence an individual's decision to try one. We conducted an anonymous online survey of individuals with upper limb loss. A total of 232 participants provided personal information (such as age, amputation level, etc.) and rated how likely they would be to try noninvasive (myoelectric) and invasive (targeted muscle reinnervation, peripheral nerve interfaces, cortical interfaces) interfaces for prosthesis control. Bivariate relationships between interest in each interface and 16 personal descriptors were examined. Significant variables from the bivariate analyses were then entered into multiple logistic regression models to predict interest in each interface. While many of the bivariate relationships were significant, only a few variables remained significant in the regression models. The regression models showed that participants were more likely to be interested in all interfaces if they had unilateral limb loss (p ≤ 0.001, odds ratio ≥ 2.799). Participants were more likely to be interested in the three invasive interfaces if they were younger (p < 0.001, odds ratio ≤ 0.959) and had acquired limb loss (p ≤ 0.012, odds ratio ≥ 3.287). Participants who used a myoelectric device were more likely to be interested in myoelectric control than those who did not (p = 0.003, odds ratio = 24.958). Novel prosthesis control interfaces may be accepted most readily by individuals who are young, have unilateral limb loss, and/or have acquired limb loss However, this analysis did not include all possible factors that may have influenced participant's opinions on the interfaces, so additional exploration is warranted.
Sun, Runjie; Tian, Liang; Fang, Xiaoli; Du, Xiaozheng; Zhu, Bowen; Song, Zhongyang; Xu, Xuan; Qin, Xiaoguang
2017-04-12
To compare the difference in the clinical efficacy on post-stroke upper limb spasmodic hemiplegia between the combined therapy of jingou diaoyu needling technique and Bobath technology and simple Bobath technology. Sixty patients were randomized into an observation group and a control group, 30 cases in each one. The usual medication of neurological internal medicine was used in the two groups. In the control group, Bobath facilitation technology was applied to the rehabilitation training. In the observation group, on the basis of the treatment as the control group, jingou diaoyu needling technique was used to stimulate Zhongfu (LU 1), Tianfu (LU 3), Chize (LU 5), Quchi (LI 11), Jianshi (PC 5) and Daling (PC 7). The treatment was given once a day; 5 treatments made one session and totally 4-week treatment was required in the two groups. The modified Ashworth scale, the modified Fugle-Meyer assessment (FMA) and the Barthel index (BI) were adopted to evaluate the muscular tension, the upper limb motor function and the activities of daily living (ADL) before and after treatment in the two groups. The clinical efficacy was compared between the two groups. Compared with those before treatment, the modified Ashworth scale, Fugl-Meyer score and BI score were all improved after treatment in the two groups (all P <0.01). The results in the observation group were better than those in the control group (all P <0.01). The total clinical effective rate was 93.3% (28/30) in the observation group and was 80.0% (24/30) in the control group. The efficacy in the observation group was better than that in the control group ( P <0.05). The jingou diaoyu needling technique combined with Bobath therapy achieve the superior efficacy on post-stroke upper limb spasmodic hemiplegia as compared with the simple application Bobath therapy. This combined treatment effectively relieve spasmodic state and improve the upper limb motor function and the activities of daily living.
Electromyography-based analysis of human upper limbs during 45-day head-down bed-rest
NASA Astrophysics Data System (ADS)
Fu, Anshuang; Wang, Chunhui; Qi, Hongzhi; Li, Fan; Wang, Zheng; He, Feng; Zhou, Peng; Chen, Shanguang; Ming, Dong
2016-03-01
Muscle deconditioning occurs in response to simulated or actual microgravity. In spaceflight, astronauts become monkey-like for mainly using their upper limbs to control the operating system and to complete corresponding tasks. The changes of upper limbs' athletic ability will directly affect astronauts' working performance. This study investigated the variation trend of surface electromyography (sEMG) during prolonged simulated microgravity. Eight healthy males participating in this study performed strict 45-day head-down bed-rest (HDBR). On the 5th day of pre-HDBR, and the 15th, the 30th and the 45th days of HDBR, the subjects performed maximum pushing task and maximum pulling task, and sEMG was collected from upper limbs synchronously. Each subject's maximum volunteer contractions of both the tasks during these days were compared, showing no significant change. However, changes were detected by sEMG-based analysis. It was found that integrated EMG, root mean square, mean frequency, fuzzy entropy of deltoid, and fuzzy entropy of triceps brachii changed significantly when comparing pre-HDBR with HDBR. The variation trend showed a recovery tendency after significant decline, which is inconsistent with the monotonic variation of lower limbs that was proved by previous research. These findings suggest that EMG changes in upper limbs during prolonged simulated microgravity, but has different variation trend from lower limbs.
Design and Development of a Novel Upper-Limb Cycling Prosthesis
Soni-Sadar, Shivam; Rowbottom, Jack; Patel, Shilen; Mathewson, Edward; Pearson, Samuel; Hutchins, David; Head, John; Hutchins, Stephen
2017-01-01
The rise in popularity of the Paralympics in recent years has created a need for effective, low-cost sports-prosthetic devices for upper-limb amputees. There are various opportunities for lower-limb amputees to participate in cycling; however, there are only few options for those with upper-limb amputations. If the individual previously participated in cycling, a cycling-specific prosthesis could allow these activities to be integrated into rehabilitation methods. This article describes the processes involved with designing, developing and manufacturing such a prosthesis. The fundamental needs of people with upper-limb amputation were assessed and realised in the prototype of a transradial terminal device with two release mechanisms, including a sliding mechanism (for falls and minor collisions) and clamping mechanism (for head-on collisions). The sliding mechanism requires the rider to exert approximately 200 N, while the clamping mechanism requires about 700 N. The force ranges can be customised to match rider requirements. Experiments were conducted in a controlled environment to demonstrate stability of the device during normal cycling. Moreover, a volunteer test-rider was able to successfully activate the release mechanism during a simulated emergency scenario. The development of this prosthesis has the potential to enable traumatic upper-limb amputees to participate in cycling for rehabilitation or recreation. PMID:29144392
Design and Development of a Novel Upper-Limb Cycling Prosthesis.
Tiele, Akira; Soni-Sadar, Shivam; Rowbottom, Jack; Patel, Shilen; Mathewson, Edward; Pearson, Samuel; Hutchins, David; Head, John; Hutchins, Stephen
2017-11-16
The rise in popularity of the Paralympics in recent years has created a need for effective, low-cost sports-prosthetic devices for upper-limb amputees. There are various opportunities for lower-limb amputees to participate in cycling; however, there are only few options for those with upper-limb amputations. If the individual previously participated in cycling, a cycling-specific prosthesis could allow these activities to be integrated into rehabilitation methods. This article describes the processes involved with designing, developing and manufacturing such a prosthesis. The fundamental needs of people with upper-limb amputation were assessed and realised in the prototype of a transradial terminal device with two release mechanisms, including a sliding mechanism (for falls and minor collisions) and clamping mechanism (for head-on collisions). The sliding mechanism requires the rider to exert approximately 200 N, while the clamping mechanism requires about 700 N. The force ranges can be customised to match rider requirements. Experiments were conducted in a controlled environment to demonstrate stability of the device during normal cycling. Moreover, a volunteer test-rider was able to successfully activate the release mechanism during a simulated emergency scenario. The development of this prosthesis has the potential to enable traumatic upper-limb amputees to participate in cycling for rehabilitation or recreation.
Peripheral Nerve Dysfunction in Middle-Aged Subjects Born with Thalidomide Embryopathy
Nicotra, Alessia; Newman, Claus; Johnson, Martin; Eremin, Oleg; Friede, Tim; Malik, Omar; Nicholas, Richard
2016-01-01
Background Phocomelia is an extremely rare congenital malformation that emerged as one extreme of a range of defects resulting from in utero exposure to thalidomide. Individuals with thalidomide embryopathy (TE) have reported developing symptoms suggestive of peripheral nervous system dysfunction in the mal-developed limbs in later life. Methods Case control study comparing TE subjects with upper limb anomalies and neuropathic symptoms with healthy controls using standard neurophysiological testing. Other causes of a peripheral neuropathy were excluded prior to assessment. Results Clinical examination of 17 subjects with TE (aged 50.4±1.3 [mean±standard deviation] years, 10 females) and 17 controls (37.9±9.0 years; 8 females) demonstrated features of upper limb compressive neuropathy in three-quarters of subjects. Additionally there were examination findings suggestive of mild sensory neuropathy in the lower limbs (n = 1), L5 radiculopathic sensory impairment (n = 1) and cervical myelopathy (n = 1). In TE there were electrophysiological changes consistent with a median large fibre neuropathic abnormality (mean compound muscle action potential difference -6.3 mV ([-9.3, -3.3], p = 0.0002) ([95% CI], p-value)) and reduced sympathetic skin response amplitudes (-0.8 mV ([-1.5, -0.2], p = 0.0089)) in the affected upper limbs. In the lower limbs there was evidence of sural nerve dysfunction (sensory nerve action potential -5.8 μV ([-10.7, -0.8], p = 0.0232)) and impaired warm perception thresholds (+3.0°C ([0.6, 5.4], p = 0.0169)). Conclusions We found a range of clinical features relevant to individuals with TE beyond upper limb compressive neuropathies supporting the need for a detailed neurological examination to exclude other treatable pathologies. The electrophysiological evidence of large and small fibre axonal nerve dysfunction in symptomatic and asymptomatic limbs may be a result of the original insult and merits further investigation. PMID:27100829
Long term effects of intensity of upper and lower limb training after stroke: a randomised trial
Kwakkel, G; Kollen, B; Wagenaar, R
2002-01-01
Objective: To assess long term effects at 1 year after stroke in patients who participated in an upper and lower limb intensity training programme in the acute and subacute rehabilitation phases. Design: A three group randomised controlled trial with repeated measures was used. Method: One hundred and one patients with a primary middle cerebral artery stroke were randomly allocated to one of three groups for a 20 week rehabilitation programme with an emphasis on (1) upper limb function, (2) lower limb function or (3) immobilisation with an inflatable pressure splint (control group). Follow up assessments within and between groups were compared at 6, 9, and 12 months after stroke. Results: No statistically significant effects were found for treatment assignment from 6 months onwards. At a group level, the significant differences in efficacy demonstrated at 20 weeks after stroke in favour of the lower limb remained. However, no significant differences in functional recovery between groups were found for Barthel index (BI), functional ambulation categories (FAC),action research arm test (ARAT), comfortable and maximal walking speed, Nottingham health profile part 1(NHP-part 1), sickness impact profile-68 (SIP-68), and Frenchay activities index (FAI) from 6 months onwards. At an individual subject level a substantial number of patients showed improvement or deterioration in upper limb function (n=8 and 5, respectively) and lower limb function (n=19 and 9, respectively). Activities of daily living (ADL) scores showed that five patients deteriorated and four improved beyond the error threshold from 6 months onwards. In particular, patients with some but incomplete functional recovery at 6 months are likely to continue to improve or regress from 6 months onwards. Conclusions: On average patients maintained their functional gains for up to 1 year after stroke after receiving a 20 week upper or lower limb function training programme. However, a significant number of patients with incomplete recovery showed improvements or deterioration in dexterity, walking ability, and ADL beyond the error threshold. PMID:11909906
Tsay, Anthony J; Giummarra, Melita J
2016-07-01
Awareness of limb position is derived primarily from muscle spindles and higher-order body representations. Although chronic pain appears to be associated with motor and proprioceptive disturbances, it is not clear if this is due to disturbances in position sense, muscle spindle function, or central representations of the body. This study examined position sense errors, as an indicator of spindle function, in participants with unilateral chronic limb pain. The sample included 15 individuals with upper limb pain, 15 with lower limb pain, and 15 sex- and age-matched pain-free control participants. A 2-limb forearm matching task in blindfolded participants, and a single-limb pointer task, with the reference limb hidden from view, was used to assess forearm position sense. Position sense was determined after muscle contraction or stretch, intended to induce a high or low spindle activity in the painful and nonpainful limbs, respectively. Unilateral upper and lower limb chronic pain groups produced position errors comparable with healthy control participants for position matching and pointer tasks. The results indicate that the painful and nonpainful limb are involved in limb-matching. Lateralized pain, whether in the arm or leg, does not influence forearm position sense. Painful and nonpainful limbs are involved in bilateral limb-matching. Muscle spindle function appears to be preserved in the presence of chronic pain. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
An EMG-based robot control scheme robust to time-varying EMG signal features.
Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J
2010-05-01
Human-robot control interfaces have received increased attention during the past decades. With the introduction of robots in everyday life, especially in providing services to people with special needs (i.e., elderly, people with impairments, or people with disabilities), there is a strong necessity for simple and natural control interfaces. In this paper, electromyographic (EMG) signals from muscles of the human upper limb are used as the control interface between the user and a robot arm. EMG signals are recorded using surface EMG electrodes placed on the user's skin, making the user's upper limb free of bulky interface sensors or machinery usually found in conventional human-controlled systems. The proposed interface allows the user to control in real time an anthropomorphic robot arm in 3-D space, using upper limb motion estimates based only on EMG recordings. Moreover, the proposed interface is robust to EMG changes with respect to time, mainly caused by muscle fatigue or adjustments of contraction level. The efficiency of the method is assessed through real-time experiments, including random arm motions in the 3-D space with variable hand speed profiles.
ERIC Educational Resources Information Center
Park, Eun Sook; Sim, Eun Geol; Rha, Dong-wook
2011-01-01
The aims of this study were to investigate the nature and extent of upper limb deformities via the use of various classifications, and to analyze the relationship between upper limb deformities and gross motor or upper limb functionality levels. Upper extremity data were collected from 234 children with spastic cerebral palsy (CP) who were…
Zhang, Di; Sessa, Salvatore; Kong, Weisheng; Cosentino, Sarah; Magistro, Daniele; Ishii, Hiroyuki; Zecca, Massimiliano; Takanishi, Atsuo
2015-11-01
Current training for laparoscopy focuses only on the enhancement of manual skill and does not give advice on improving trainees' posture. However, a poor posture can result in increased static muscle loading, faster fatigue, and impaired psychomotor task performance. In this paper, the authors propose a method, named subliminal persuasion, which gives the trainee real-time advice for correcting the upper limb posture during laparoscopic training like the expert but leads to a lower increment in the workload. A 9-axis inertial measurement unit was used to compute the upper limb posture, and a Detection Reaction Time device was developed and used to measure the workload. A monitor displayed not only images from laparoscope, but also a visual stimulus, a transparent red cross superimposed to the laparoscopic images, when the trainee had incorrect upper limb posture. One group was exposed, when their posture was not correct during training, to a short (about 33 ms) subliminal visual stimulus. The control group instead was exposed to longer (about 660 ms) supraliminal visual stimuli. We found that subliminal visual stimulation is a valid method to improve trainees' upper limb posture during laparoscopic training. Moreover, the additional workload required for subconscious processing of subliminal visual stimuli is less than the one required for supraliminal visual stimuli, which is processed instead at the conscious level. We propose subliminal persuasion as a method to give subconscious real-time stimuli to improve upper limb posture during laparoscopic training. Its effectiveness and efficiency were confirmed against supraliminal stimuli transmitted at the conscious level: Subliminal persuasion improved upper limb posture of trainees, with a smaller increase on the overall workload.
Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
Wu, Wen; Fong, Justin; Crocher, Vincent; Lee, Peter V S; Oetomo, Denny; Tan, Ying; Ackland, David C
2018-04-27
Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject's upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Balneotherapy in Treatment of Spastic Upper Limb after Stroke
Erceg-Rukavina, Tatjana; Stefanovski, Mihajlo
2015-01-01
Introduction: After stroke, spasticity is often the main problem that prevents functional recovery. Pain occurs in up to 70% of patients during the first year post-stroke. Materials and methods: A total of 70 patients (30 female and 45 male) mean age (65.67) participated in prospective, controlled study. Inclusion criteria: ischaemic stroke, developed spasticity of upper limb, post-stroke interval <6 months. Exclusion criteria: contraindications for balneotherapy and inability to follow commands. Experimental group (Ex) (n=35) was treated with sulphurous baths (31°-33°C) and controlled group (Co) with taped water baths, during 21 days. All patients were additionally treated with kinesitherapy and cryotherapy. The outcome was evaluated using Modified Ashworth scale for spasticity and VAS scale for pain. The significance value was sat at p<0.05. Goal: To find out the effects of balneotherapy with sulphurous bath on spasticity and pain in affected upper limb. Results: Reduction in tone of affected upper limb muscles was significant in Ex group (p<0.05). Pain decreased significantly in Ex-group (p<0.01). Conclusion: Our results show that balneotherapy with sulphurous water reduces spasticity and pain significantly and can help in treatment of post-stroke patients. PMID:25870474
Lee, DongJin; Lee, MyungMo; Lee, KyoungJin; Song, ChangHo
2014-07-01
Asymmetric movements with both hands contributed to the improvement of spatially coupled motion. Thus, the aim of this study was to investigate the effects of an asymmetric training program using virtual reality reflection equipment on upper limb function in stroke patients. Twenty-four stroke patients were randomly allocated to an experimental group (n=12) or a control group (n=12). Both groups participated in conventional physical therapy for 2×30 min/d, 5 d/wk, for 4 weeks. The experimental group also participated in an asymmetric training program using virtual reality reflection equipment, and the control group participated in a symmetric training program. Both asymmetric and symmetric programs were conducted for 30 min/d, 5 d/wk, for 4 weeks. To compare upper limb function before and after intervention, the Fugl-Meyer Assessment (FMA), the Box and Block Test (BBT), grip strength, range of motion (ROM), and spasticity were assessed. Both groups showed significant increases in upper limb function, excepting spasticity, after intervention (P<.05, 1-way repeated-measures analysis of variance [ANOVA]). A significant group-time interaction was demonstrated only for shoulder/elbow/wrist items of FMA, BBT, grip strength, and ROM of wrist flexion, extension, and ulnar deviation (P<.05, 2-way repeated-measures ANOVA). This study confirms that the asymmetric training program using virtual reality reflection equipment is an effective intervention method for improving upper limb function in stroke patients. We consider that an additional study based on a program using virtual reflection, which is more functional than performing simple tasks, and consisting of tasks relevant to the activities of daily living be conducted. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Severijns, Deborah; Van Geel, Fanny; Feys, Peter
2018-01-01
Motor fatigability is increasingly acknowledged in persons with MS (pwMS). It is unknown whether fatigability is generalized across upper limb muscles and relates to fatigue and perceived difficulties in upper limb use. This observational case-controlled study included twenty PwMS (median EDSS = 3, range 1.5-6.5) and twenty healthy controls who performed 30″ sustained maximal muscle contractions for index finger abduction, hand grip, elbow flexion and shoulder abduction. A static fatigue index (SFI) was calculated to assess motor fatigability for each muscle group. PwMS completed the Fatigue Severity Scale (FSS) and Modified Fatigue Index Scale (MFIS), to quantify severity and perceived impact of fatigue and the Manual Ability Measure (MAM-36) reflecting perceived difficulty in using the upper limbs. Comparisons between groups and muscles was made by t-tests. Associations between outcomes were calculated with correlation coefficients. Fatigue was highest in pwMS. PwMS showed preserved muscle strength and a greater motor fatigability in elbow flexors compared to healthy controls. SFI of elbow flexors and shoulder abductors were associated, and contributed to FSS and MFIS. SFI of elbow flexors and finger abductors predicted half of the variation in MAM-36. Increased motor fatigability was only present in elbow flexors of PwMS, indicating that expression of motor fatigability is not generalized. Fatigability was associated with perceived fatigue (impact) and daily life upper limb use. Results are preliminary given the small sample size with predominantly persons with mild MS. Copyright © 2017 Elsevier B.V. All rights reserved.
Lv, Jiang-Tao; Zhang, Ying-Ying; Tian, Shao-Qi; Sun, Kang
2016-05-01
To assess the serum of 25-hydroxyvitamin D (25(OH)D) and intact parathyroid hormone (iPTH) levels in postmenopausal women from northern China with hip and upper limb fractures. Case-control. Affiliated Hospital of Qingdao University. Postmenopausal women diagnosed with hip fracture (n = 335) and matched controls without fracture (n = 335). Between 2011 and 2013, fasting venous samples were analyzed for 25(OH)D, iPTH, alkaline phosphatase (ALP), calcium, and phosphorus. All women completed a standardized questionnaire designed to document putative risk factors for fractures. Eight percent of participants had vitamin D deficiency, and 66.0% had secondary hyperparathyroidism. Serum 25(OH)D levels were significantly (P < .001) lower in women with hip fracture than in controls. Multivariate logistic regression analysis adjusted for common risk factors showed that serum 25(OH)D of 20 ng/mL or less was an independent indicator of hip fracture (odds ratio (OR) = 2.98, 95% confidence interval (CI) = 2.11-4.20) and concomitant upper limb fracture in those with existing hip fractures (OR = 4.77, 95% CI = 1.60-10.12). The area under the receiver operating characteristic curve of 25(OH)D was 0.77 (95% CI = 0.68-0.84) for hip fracture and 0.80 (95% CI = 0.72-0.89) for hip and upper limb fractures. Vitamin D insufficiency and secondary hyperparathyroidism were a common problem in postmenopausal women who presented with concomitant hip and upper limb fractures, suggesting that they might contribute to the pathophysiology of fractures in postmenopausal women. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
Upper Limb Absence: Predictors of Work Participation and Work Productivity.
Postema, Sietke G; Bongers, Raoul M; Brouwers, Michael A; Burger, Helena; Norling-Hermansson, Liselotte M; Reneman, Michiel F; Dijkstra, Pieter U; van der Sluis, Corry K
2016-06-01
To analyze work participation, work productivity, contributing factors, and physical work demands of individuals with upper limb absence (ULA). Cross-sectional study: postal survey (response rate, 45%). Twelve rehabilitation centers and orthopedic workshops. Individuals (n=207) with unilateral transverse upper limb reduction deficiency (RD) or acquired amputation (AA), at or proximal to the carpal level, between the ages of 18 and 65 years, and a convenience sample of control subjects (n=90) matched on age and sex. Not applicable. Employment status, self-reported work productivity measured with the Quality-Quantity method, and self-reported upper extremity work demands measured with the Upper Extremity Work Demands scale. Seventy-four percent of the individuals with RD and 57% of the individuals with AA were employed (vs 82% of the control group and 66% of the general population). Male sex, younger age, a medium or higher level of education, prosthesis use, and good general health were predictors of work participation. Work productivity was similar to that of the control group. Higher work productivity was inversely related to musculoskeletal complaint-related pain. When having predominantly mentally demanding work, individuals with ULA perceived higher upper extremity work demands compared with controls. Work participation of individuals with RD was slightly higher compared with that of the general population, whereas employment rates of individuals with AA were slightly lower. Furthermore, work productivity did not differ between individuals with RD, AA, and controls. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Zielinski, Ingar Marie; Steenbergen, Bert; Baas, C Marjolein; Aarts, Pauline; Jongsma, Marijtje L A
2016-01-11
Unilateral Cerebral Palsy (CP) is a neurodevelopmental disorder that is a very common cause of disability in childhood. It is characterized by unilateral motor impairments that are frequently dominated in the upper limb. In addition to a reduced movement capacity of the affected upper limb, several children with unilateral CP show a reduced awareness of the remaining movement capacity of that limb. This phenomenon of disregarding the preserved capacity of the affected upper limb is regularly referred to as Developmental Disregard (DD). Different theories have been postulated to explain DD, each suggesting slightly different guidelines for therapy. Still, cognitive processes that might additionally contribute to DD in children with unilateral CP have never been directly studied. The current protocol was developed to study cognitive aspects involved in upper limb control in children with unilateral CP with and without DD. This was done by recording event-related potentials (ERPs) extracted from the ongoing EEG during target-response tasks asking for a hand-movement response. ERPs consist of several components, each of them associated with a well-defined cognitive process (e.g., the N1 with early attention processes, the N2 with cognitive control and the P3 with cognitive load and mental effort). Due to its excellent temporal resolution, the ERP technique enables to study several covert cognitive processes preceding overt motor responses and thus allows insight into the cognitive processes that might contribute to the phenomenon of DD. Using this protocol adds a new level of explanation to existing behavioral studies and opens new avenues to the broader implementation of research on cognitive aspects of developmental movement restrictions in children.
Zhang, Lijuan; Fan, Aiqun; Yan, Jun; He, Yan; Zhang, Huiting; Zhang, Huizhen; Zhong, Qiaoling; Liu, Feng; Luo, Qinghua; Zhang, Liping; Tang, Hailin; Xin, Mingzhu
2016-06-01
Upper limb lymphedema is a common complication after radical mastectomy in patients with breast cancer. In this study, we examined the efficacy of self-manual lymph drainage (MLD) after modified radical mastectomy for the prevention of upper limb lymphedema, scar formation, or shoulder joint dysfunction in breast cancer patients. Breast cancer patients scheduled for modified radical mastectomy were randomly apportioned to undergo physical exercise only (PE group, the control; n = 500) or self-MLD as well as exercise (MLD group; n = 500) after surgery. In the PE group, patients started to undertake remedial exercises and progressive weight training after recovery from anesthesia. In the MLD group, in addition to receiving the same treatments as in the PE group, the patients were trained to perform self-MLD on the surgical incision for 10 min/session, 3 sessions/day, beginning after suture removal and incision closure (10 to 30 days after the surgery). Scar formation was evaluated at one week, and 1, 3, 6, and 12 months after the surgery, respectively. Upper limb circumference and shoulder abduction were measured 24 h before surgery, and at one week, and 1, 3, 6 and 12 months after the surgery. Compared to those in the PE group, patients in MLD group experienced significant improvements in scar contracture, shoulder abduction, and upper limb circumference. Self-MLD, in combination with physical exercise, is beneficial for breast cancer patients in preventing postmastectomy scar formation, upper limb lymphedema, and shoulder joint dysfunction.
Advances in upper extremity prosthetics.
Zlotolow, Dan A; Kozin, Scott H
2012-11-01
Until recently, upper extremity prostheses had changed little since World War II. In 2006, the Defense Advanced Research Projects Agency responded to an increasing number of military amputees with the Revolutionizing Prosthetics program. The program has yielded several breakthroughs both in the engineering of new prosthetic arms and in the control of those arms. Direct brain-wave control of a limb with 22° of freedom may be within reach. In the meantime, advances such as individually powered digits have opened the door to multifunctional full and partial hand prostheses. Restoring sensation to the prosthetic limb remains a major challenge to full integration of the limb into a patient's self-image. Copyright © 2012 Elsevier Inc. All rights reserved.
Kakinoki, Ryosuke; Duncan, Scott F M; Ikeguchi, Ryosuke; Ohta, Souichi; Nankaku, Manabu; Sakai, Hiroshi; Noguchi, Takashi; Kaizawa, Yukitoshi; Akagi, Masao
2017-06-01
Previous animal studies demonstrated that the sensory and motor functions in ipsilesional upper limbs that had been reconstructed by CC7 transfer eventually associated with the contralesional brain cortices that had originally mediated the functions of the ipsilesional upper limbs before brachial plexus injury (BPI). Our hypothesis was that the same findings would be seen in humans. Four patients with total BPI treated with CC7 transfer were included. Changes in the locations of the activated areas in the primary motor (M1) and somatosensory (S1) cortices corresponding to the motor outputs to and sensory inputs from the ipsilesional limbs were investigated using functional near-infrared spectroscopy (fNIRS) 2-3 years and 6-7 years after surgery. One patient was excluded from the evaluation of motor function after CC7 transfer. The motor and sensory functions of the ipsilesional upper limb in all patients were still controlled by the ipsilesional brain hemisphere 2-3 years after CC7 transfer. The reconstructed motions of the ipsilesional upper limbs correlated with the contralesional M1 in one patient and the bilateral M1s in another patient (both of whom demonstrated good motor recovery in the ipsilesional upper limbs) and with the ipsilesional M1 in a third patient with poor motor recovery in the ipsilesional upper limb. Sensory stimulation of the ipsilesional hands 6-7 years after CC7 transfer activated the contralesional S1 in two patients who achieved good sensory recovery in the ipsilesional hands but activated the ipsilesional S1 in the other two patients with poor sensory recovery of the ipsilesional hands. Transhemispheric transposition of the activated brain cortices associated with the recovery of motor and sensory functions of the ipsilesional upper limbs was seen in patients with CC7 transfer as has been reported for animal models of CC7 transfer.
Upper-limb tremor suppression with a 7DOF exoskeleton power-assist robot.
Kiguchi, Kazuo; Hayashi, Yoshiaki
2013-01-01
A tremor which is one of the involuntary motions is somewhat rhythmic motion that may occur in various body parts. Although there are several kinds of the tremor, an essential tremor is the most common tremor disorder of the arm. The essential tremor is a disorder of unknown cause, and it is common in the elderly. The essential tremor interferes with a patient's daily living activity, because it may occur during a voluntary motion. If a patient of an essential tremor uses an EMG-based controlled power-assist robot, the robot might misunderstand the user's motion intention because of the effect of the essential tremor. In that case, upper-limb power-assist robots must carry out tremor suppression as well as power-assist, since a person performs various precise tasks with certain tools by the upper-limb in daily living. Therefore, it is important to suppress the tremor at the hand and grasped tool. However, in the case of the tremor suppression control method which suppressed the vibrations of the hand and the tip of the tool, vibration of other part such as elbow might occur. In this paper, the tremor suppression control method for upper-limb power-assist robot is proposed. In the proposed method, the vibration of the elbow is suppressed in addition to the hand and the tip of the tool. The validity of the proposed method was verified by the experiments.
Simonsen, Daniel; Popovic, Mirjana B; Spaich, Erika G; Andersen, Ole Kæseler
2017-11-01
The present paper describes the design and test of a low-cost Microsoft Kinect-based system for delivering adaptive visual feedback to stroke patients during the execution of an upper limb exercise. Eleven sub-acute stroke patients with varying degrees of upper limb function were recruited. Each subject participated in a control session (repeated twice) and a feedback session (repeated twice). In each session, the subjects were presented with a rectangular pattern displayed on a vertical mounted monitor embedded in the table in front of the patient. The subjects were asked to move a marker inside the rectangular pattern by using their most affected hand. During the feedback session, the thickness of the rectangular pattern was changed according to the performance of the subject, and the color of the marker changed according to its position, thereby guiding the subject's movements. In the control session, the thickness of the rectangular pattern and the color of the marker did not change. The results showed that the movement similarity and smoothness was higher in the feedback session than in the control session while the duration of the movement was longer. The present study showed that adaptive visual feedback delivered by use of the Kinect sensor can increase the similarity and smoothness of upper limb movement in stroke patients.
EMG-Torque correction on Human Upper extremity using Evolutionary Computation
NASA Astrophysics Data System (ADS)
JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly
2016-09-01
There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.
Robotic exoskeleton assessment of transient ischemic attack.
Simmatis, Leif; Krett, Jonathan; Scott, Stephen H; Jin, Albert Y
2017-01-01
We used a robotic exoskeleton to quantify specific patterns of abnormal upper limb motor behaviour in people who have had transient ischemic attack (TIA). A cohort of people with TIA was recruited within two weeks of symptom onset. All individuals completed a robotic-based assessment of 8 behavioural tasks related to upper limb motor and proprioceptive function, as well as cognitive function. Robotic task performance was compared to a large cohort of controls without neurological impairments corrected for the influence of age. Impairment in people with TIA was defined as performance below the 5th percentile of controls. Participants with TIA were also assessed with the National Institutes of Health Stroke Scale (NIHSS) score, Chedoke-McMaster Stroke Assessment (CMSA) of the arm, the Behavioural Inattention Test (BIT), the Purdue pegboard test (PPB), and the Montreal Cognitive Assessment (MoCA). Age-related white matter change (ARWMC), prior infarction and cella-media index (CMI) were assessed from baseline CT scan that was performed within 24 hours of TIA. Acute infarction was assessed from diffusion-weighted imaging in a subset of people with TIA. Twenty-two people with TIA were assessed. Robotic assessment showed impaired upper limb motor function in 7/22 people with TIA patients and upper limb sensory impairment in 4/22 individuals. Cognitive tasks involving robotic assessment of the upper limb were completed in 13 participants, of whom 8 (61.5%) showed significant impairment. Abnormal performance in the CMSA arm inventory was present in 12/22 (54.5%) participants. ARWMC was 11.8 ± 6.4 and CMI was 5.4 ± 1.5. DWI was positive in 0 participants. Quantitative robotic assessment showed that people who have had a TIA display a spectrum of upper limb motor and sensory performance deficits as well as cognitive function deficits despite resolution of symptoms and no evidence of tissue infarction.
Early manifestation of arm-leg coordination during stepping on a surface in human neonates.
La Scaleia, Valentina; Ivanenko, Y; Fabiano, A; Sylos-Labini, F; Cappellini, G; Picone, S; Paolillo, P; Di Paolo, A; Lacquaniti, F
2018-04-01
The accomplishment of mature locomotor movements relies upon the integrated coordination of the lower and upper limbs and the trunk. Human adults normally swing their arms and a quadrupedal limb coordination persists during bipedal walking despite a strong corticospinal control of the upper extremities that allows to uncouple this connection during voluntary activities. Here we investigated arm-leg coordination during stepping responses on a surface in human neonates. In eight neonates, we found the overt presence of alternating arm-leg oscillations, the arms moving up and down in alternation with ipsilateral lower limb movements. These neonates moved the diagonal limbs together, and the peak of the arm-to-trunk angle (i.e., maximum vertical excursion of the arm) occurred around the end of the ipsilateral stance phase, as it occurs during typical adult walking. Although episodes of arm-leg coordination were sporadic in our sample of neonates, their presence provides significant evidence for a neural coupling between the upper and lower limbs during early ontogenesis of locomotion in humans.
Rajput, B S; Chakrabarti, Swarup K; Dongare, Vaishali S; Ramirez, Christina M; Deb, Kaushik D
2015-01-01
Duchenne muscular dystrophy (DMD) is a musculo-degenerative disease characterized by lack of dystrophin production with no definite cure available currently. Discarded umbilical cord is a potential source of mesenchymal stem cells which are non-immunogenic and can be used for transplantation in allogenic set ups. Given the regenerative and anti-inflammatory properties of mesenchymal stem cells (MSCs), here we investigated its role in the cellular therapy of DMD patients. This is a single-blinded study conducted in various hospitals of India situated in Mumbai, Delhi, and Lucknow. Inclusion criteria for enrolling the patients in the study were boys aged between 5 to 18 years, absence of dystrophin in the immunohistochemistry of muscle biopsy and mutation in dystrophin gene in cytogenetic analysis. The exclusion criteria were presence of dystrophin in the muscle biopsy, patients on corticosteroids etc. UC-MSCs (2 millions/kg body weight) were administered through IV and IM injection. Muscle power in muscles of proximal upper limb, distal upper limb, proximal lower limb, distal lower limb, hip flexors, hip extensors, hip abductors, and paraspinal muscles were measured in 11 DMD patients after UC-MSCs transplantation and were followed for up to 3 years (average follow up 1.5 years). 5 DMD patients did not receive any UC-MSCs transplantation and served as the control group. The treatment group (N = 11 at baseline) had a pretransplantation strength of 3.45 ± 1.0357 and 4.090 ± 0.8312 in muscles of proximal upper limb and distal upper limb respectively. After 1 year (N = 9) these strengths remained stable with an average of 3.78 (1.03) and 4.22 (0.83). In contrast, the control group (N = 5) has a pre-transplantation strength of 3.6 (0.54) and 4 (1) in the proximal and distal upper limb respectively. After 1 year, (N = 5) 3/5 subjects had a slight but not statistically significant decrease in the proximal upper limb, mean 3.0 (1.0) and 5/5 had a lunit decrease in strength, mean 3.0 (1.0). The treatment group had a pre-transplantation strength of 2.0909 ± 0.8312 and 3.1181 ± 0.8738 in muscles of distal and proximal lower limbs respectively. At 1 year (N = 9), 4/9 subjects had a 1 unit increase in strength in the distal lower limb (mean 3.78 (0.97)) and 8/9 subjects had a lunit increase in strength in the proximal lower limb, mean 3.11 (1.05). The control group has a mean of 3.41 (0.54) and 3.0 (1.0) at baseline in the distal and proximal lower limb respectively. By 1 year, 3/5 subjects had a 1 unit decrease (mean 2.8 (0.45)) and 5/5 had a lunit decrease, mean 2.0 (1.0) in distal and proximal lower limb strength. Stability in muscle function was also achieved in muscles of hip flexors, hip extensors, hip abductors, and paraspinal muscles at one year as compared to untreated group. UC-MSCs administration not only resulted in the stabilization of muscle power but also did not show GVHD or any deleterious effects on the patients and thus may be considered as safe option for treatment of DMD as compared to control untreated group although further larger double-blinded studies are needed.
Upper extremity transplantation: current concepts and challenges in an emerging field.
Elliott, River M; Tintle, Scott M; Levin, L Scott
2014-03-01
Loss of an isolated upper limb is an emotionally and physically devastating event that results in significant impairment. Patients who lose both upper extremities experience profound disability that affects nearly every aspect of their lives. While prosthetics and surgery can eventually provide the single limb amputee with a suitable assisting hand, limited utility, minimal haptic feedback, weight, and discomfort are persistent problems with these techniques that contribute to high rates of prosthetic rejection. Moreover, despite ongoing advances in prosthetic technology, bilateral amputees continue to experience high levels of dependency, disability, and distress. Hand and upper extremity transplantation holds several advantages over prosthetic rehabilitation. The missing limb is replaced with one of similar skin color and size. Sensibility, voluntary motor control, and proprioception are restored to a greater degree, and afford better dexterity and function than prosthetics. The main shortcomings of transplantation include the hazards of immunosuppression, the complications of rejection and its treatment, and high cost. Hand and upper limb transplantation represents the most commonly performed surgery in the growing field of Vascularized Composite Allotransplantation (VCA). As upper limb transplantation and VCA have become more widespread, several important challenges and controversies have emerged. These include: refining indications for transplantation, optimizing immunosuppression, establishing reliable criteria for monitoring, diagnosing, and treating rejection, and standardizing outcome measures. This article will summarize the historical background of hand transplantation and review the current literature and concepts surrounding it.
Development of an EMG-ACC-Based Upper Limb Rehabilitation Training System.
Ling Liu; Xiang Chen; Zhiyuan Lu; Shuai Cao; De Wu; Xu Zhang
2017-03-01
This paper focuses on the development of an upper limb rehabilitation training system designed for use by children with cerebral palsy (CP). It attempts to meet the requirements of in-home training by taking advantage of the combination of portable accelerometers (ACC) and surface electromyography (SEMG) sensors worn on the upper limb to capture functional movements. In the proposed system, the EMG-ACC acquisition device works essentially as wireless game controller, and three rehabilitation games were designed for improving upper limb motor function under a clinician's guidance. The games were developed on the Android platform based on a physical engine called Box2D. The results of a system performance test demonstrated that the developed games can respond to the upper limb actions within 210 ms. Positive questionnaire feedbacks from twenty CP subjects who participated in the game test verified both the feasibility and usability of the system. Results of a long-term game training conducted with three CP subjects demonstrated that CP patients could improve in their game performance through repetitive training, and persistent training was needed to improve and enhance the rehabilitation effect. According to our experimental results, the novel multi-feedback SEMG-ACC-based user interface improved the users' initiative and performance in rehabilitation training.
Chen, Kai-Hua; Hsiao, Kuang-Yu; Lin, Chu-Hsu; Chang, Wen-Ming; Hsu, Hung-Chih; Hsieh, Wei-Chi
2013-01-01
Objectives. To demonstrate the use of acupuncture in the lower limbs to treat myofascial pain of the upper trapezius muscles via a remote effect. Methods. Five adults with latent myofascial trigger points (MTrPs) of bilateral upper trapezius muscles received acupuncture at Weizhong (UB40) and Yanglingquan (GB34) points in the lower limbs. Modified acupuncture was applied at these points on a randomly selected ipsilateral lower limb (experimental side) versus sham needling on the contralateral lower limb (control side) in each subject. Each subject received two treatments within a one-week interval. To evaluate the remote effect of acupuncture, the range of motion (ROM) upon bending the contralateral side of the cervical spine was assessed before and after each treatment. Results. There was significant improvement in cervical ROM after the second treatment (P = 0.03) in the experimental group, and the increased ROM on the modified acupuncture side was greater compared to the sham needling side (P = 0.036). Conclusions. A remote effect of acupuncture was demonstrated in this pilot study. Using modified acupuncture needling at remote acupuncture points in the ipsilateral lower limb, our treatments released tightness due to latent MTrPs of the upper trapezius muscle. PMID:23710218
NASA Astrophysics Data System (ADS)
Pastacaldi, P.; Bracciaferri, F.; Neri, G.; Porciani, M.; Zolesi, V.
Experiments executed on the upper limb are assuming increasing significance in the frame of the Human Physiology in space, for at least two reasons: -the upper limb is the principal means of locomotion for the subject living in aspace station -fatigue can have a significant effect the hand, for the ordinary work on board,and in particular for the extra-vehicular activities. The degradation of the performances affecting the muscular-skeletal apparatus can be easily recognized on the upper limb, by exerting specific scientific protocols, to be repeated through the permanence of the subject in weightlessness conditions. Also, the effectiveness of adequate counter-measures aimed to the reduction of calcium and muscular mass need to be verified, by means of specific assessments on the upper limb. Another aspect relevant to the effect of microgravity on the upper limb is associated with the alteration of the motor control programs due to the different gravity factor, affecting not only the bio-mechanics of the subject, but in general all his/her psycho- physical conditions, induced by the totally different environment. Specific protocols on the upper limb can facilitate the studies on learning mechanisms for the motor control. The results of such experiments can be transferred to the Earth, useful for treatment of subjects with local traumas or diseases of the Central Nervous System.In the frame of the mission of the Italian astronaut Roberto Vittori on board the International Space Station (ISS), the Italian Space Agency (ASI) has promoted the program "Marco Polo", with a number of experiments devoted to the study of the effect of microgravity on the human body. The experiment CHIRO ("Crew's Health: Investigation on Reduced Operability) is a part of the program. Its purpose is the determination of the influence of the altered gravity on the control of the grip force exerted by the hand or by a group of fingers and the adaptive behavior of this control through the permanence of the subject in the reduced gravity. The instrumentation has been lifted on board the International Space Station (ISS) on 24 March 2002. The experiment will be exe cuted by the astronaut during his permanence on board the ISS, from the 25t h April 2002.
Creatine Supplementation and Upper Limb Strength Performance: A Systematic Review and Meta-Analysis.
Lanhers, Charlotte; Pereira, Bruno; Naughton, Geraldine; Trousselard, Marion; Lesage, François-Xavier; Dutheil, Frédéric
2017-01-01
Creatine is the most widely used supplementation to increase performance in strength; however, the most recent meta-analysis focused specifically on supplementation responses in muscles of the lower limbs without regard to upper limbs. We aimed to systematically review the effect of creatine supplementation on upper limb strength performance. We conducted a systematic review and meta-analyses of all randomized controlled trials comparing creatine supplementation with a placebo, with strength performance measured in exercises shorter than 3 min in duration. The search strategy used the keywords 'creatine', 'supplementation', and 'performance'. Independent variables were age, sex and level of physical activity at baseline, while dependent variables were creatine loading, total dose, duration, time interval between baseline (T0) and the end of the supplementation (T1), and any training during supplementation. We conducted three meta-analyses: at T0 and T1, and on changes between T0 and T1. Each meta-analysis was stratified within upper limb muscle groups. We included 53 studies (563 individuals in the creatine supplementation group and 575 controls). Results did not differ at T0, while, at T1, the effect size (ES) for bench press and chest press were 0.265 (95 % CI 0.132-0.398; p < 0.001) and 0.677 (95 % CI 0.149-1.206; p = 0.012), respectively. Overall, pectoral ES was 0.289 (95 % CI 0.160-0.419; p = 0.000), and global upper limb ES was 0.317 (95 % CI 0.185-0.449; p < 0.001). Meta-analysis of changes between T0 and T1 gave similar results. The meta-regression showed no link with characteristics of population or supplementation, demonstrating the efficacy of creatine independently of all listed conditions. Creatine supplementation is effective in upper limb strength performance for exercise with a duration of less than 3 min, independent of population characteristics, training protocols, and supplementary doses or duration.
Moura, Renata Calhes Franco; Santos, Cibele Almeida; Grecco, Luanda André Collange; Lazzari, Roberta Delasta; Dumont, Arislander Jonathan Lopes; Duarte, Natalia Carvalho de Almeida; Braun, Luiz Alfredo; Lopes, Jamile Benite Palma; Santos, Ligia Abram Dos; Rodrigues, Eliane Lopes Souza; Albertini, Giorgio; Cimolin, Veronica; Galli, Manuela; Oliveira, Claudia Santos
2016-08-17
The aim of the proposed study is to perform a comparative analysis of functional training effects for the paretic upper limb with and without transcranial direct current stimulation over the primary motor cortex in children with spastic hemiparetic cerebral palsy. The sample will comprise 34 individuals with spastic hemiparetic cerebral palsy, 6 to 16 years old, classified at level I, II, or III of the Manual Ability Classification System. Participants will be randomly allocated to two groups: (1) functional training of the paretic upper limb combined with anodic transcranial stimulation; (2) functional training of the paretic upper limb combined with sham transcranial stimulation. Evaluation will involve three-dimensional movement analysis and electromyography using the SMART-D 140® system (BTS Engineering) and the FREEEMG® system (BTS Engineering), the Quality of Upper Extremity Skills Test, to assess functional mobility, the Portable Device and Ashworth Scale, to measure movement resistance and spasticity, and the Pediatric Evaluation of Disability Inventory, to evaluate performance. Functional reach training of the paretic upper limb will include a range of manual activities using educational toys associated with an induced constraint of the non-paretic limb during the training. Training will be performed in five weekly 20-minute sessions for two weeks. Transcranial stimulation over the primary motor cortex will be performed during the training sessions at an intensity of 1 mA. Findings will be analyzed statistically considering a 5 % significance level (P ≤ 0.05). This paper presents a detailed description of a prospective, randomized, controlled, double-blind, clinical trial designed to demonstrate the effects of combining transcranial direct current stimulation over the primary motor cortex and functional training of the paretic limb in children with cerebral palsy classified at level I, II, or III of the Manual Ability Classification System. The results will be published and evidence found may contribute to the use of transcranial stimulation for this population. ReBEC RBR-6V4Y3K . Registered on 11 February 2015.
Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients
Jarrassé, Nathanaël; Proietti, Tommaso; Crocher, Vincent; Robertson, Johanna; Sahbani, Anis; Morel, Guillaume; Roby-Brami, Agnès
2014-01-01
Upper-limb impairment after stroke is caused by weakness, loss of individual joint control, spasticity, and abnormal synergies. Upper-limb movement frequently involves abnormal, stereotyped, and fixed synergies, likely related to the increased use of sub-cortical networks following the stroke. The flexible coordination of the shoulder and elbow joints is also disrupted. New methods for motor learning, based on the stimulation of activity-dependent neural plasticity have been developed. These include robots that can adaptively assist active movements and generate many movement repetitions. However, most of these robots only control the movement of the hand in space. The aim of the present text is to analyze the potential of robotic exoskeletons to specifically rehabilitate joint motion and particularly inter-joint coordination. First, a review of studies on upper-limb coordination in stroke patients is presented and the potential for recovery of coordination is examined. Second, issues relating to the mechanical design of exoskeletons and the transmission of constraints between the robotic and human limbs are discussed. The third section considers the development of different methods to control exoskeletons: existing rehabilitation devices and approaches to the control and rehabilitation of joint coordinations are then reviewed, along with preliminary clinical results available. Finally, perspectives and future strategies for the design of control mechanisms for rehabilitation exoskeletons are discussed. PMID:25520638
Lee, Myung-Mo; Shin, Doo-Chul; Song, Chang-Ho
2016-07-01
[Purpose] This study was aimed at investigating the preliminary therapeutic efficacy and usefulness of canoe game-based virtual reality training for stroke patients. [Subjects and Methods] Ten stroke patients were randomly assigned to an experimental group (EG; n=5) or a control group (CG; n=5). Patients in both groups participated in a conventional rehabilitation program, but those in the EG additionally participated in a 30-min canoe game-based virtual reality training program 3 days a week for 4 weeks. Therapeutic efficacy was assessed based on trunk postural stability, balance, and upper limb motor function. In addition, the usefulness of canoe game-based virtual reality training was assessed in the EG and therapist group (TG; n=20), which consisted of physical and occupational therapists, by using the System Usability Scale (SUS). [Results] Improvements in trunk postural stability, balance, and upper limb motor function were observed in the EG and CG, but were greater in the EG. The mean SUS scores in the EG and TG were 71 ± 5.2 and 74.2 ± 4.8, respectively. [Conclusion] Canoe game-based virtual reality training is an acceptable and effective intervention for improving trunk postural stability, balance, and upper limb motor function in stroke patients.
Oh, Se-Il; Kim, Jin-Kyung; Park, So-Yeon
2015-12-01
[Purpose] This study aimed to examine the effects of visual field with prism glasses, and intensive upper limb functional training on reduction of hemineglect and improvement in upper limb function and activities of daily living in three stroke patients with hemineglect. [Subjects] This study included three stroke patients hospitalized in a sanatorium. [Methods] Intervention treatment involving prism glass use for 12 hours and 30 minutes and paretic side upper limb training was conducted 5 days a week for 15 weeks. Three upper limb training tasks (hitting a balloon, passing through a ring, and reading a newspaper) were performed for 10 minutes each session, for a total of 30 minutes. Line by Section, Motor-Free Visual Perception Test-3 (MVPT-3), Manual Function Test (MFT), Box & Block Test (BBT), and Assessment of Motor and Process Skills (AMPS) were conducted before and after intervention. [Results] Subjects' hemineglect decreased and upper limb function on the paretic side improved after intervention, which enhanced activities of daily living. [Conclusion] Prism glass use and paretic upper limb functional training effectively ameliorated stroke patients' hemineglect and improved upper limb function. Future research should focus on prism glasses that provide a wide visual field for use in patients with different conditions.
Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review.
Carey, Stephanie L; Lura, Derek J; Highsmith, M Jason
2015-01-01
The choice of a myoelectric or body-powered upper-limb prosthesis can be determined using factors including control, function, feedback, cosmesis, and rejection. Although body-powered and myoelectric control strategies offer unique functions, many prosthesis users must choose one. A systematic review was conducted to determine differences between myoelectric and body-powered prostheses to inform evidence-based clinical practice regarding prescription of these devices and training of users. A search of 9 databases identified 462 unique publications. Ultimately, 31 of them were included and 11 empirical evidence statements were developed. Conflicting evidence has been found in terms of the relative functional performance of body-powered and myoelectric prostheses. Body-powered prostheses have been shown to have advantages in durability, training time, frequency of adjustment, maintenance, and feedback; however, they could still benefit from improvements of control. Myoelectric prostheses have been shown to improve cosmesis and phantom-limb pain and are more accepted for light=intensity work. Currently, evidence is insufficient to conclude that either system provides a significant general advantage. Prosthetic selection should be based on a patient's individual needs and include personal preferences, prosthetic experience, and functional needs. This work demonstrates that there is a lack of empirical evidence regarding functional differences in upper-limb prostheses.
NASA Technical Reports Server (NTRS)
Hu, Hua; Liu, W. Timothy
1998-01-01
This paper presents an analysis of upper tropospheric humidity, as measured by the Microwave Limb Sounder, and the impact of the humidity on the greenhouse effect in the midlatitudes. Enhanced upper tropospheric humidity and an enhanced greenhouse effect occur over the storm tracks in the North Pacific and North Atlantic. In these areas, strong baroclinic activity and the large number of deep convective clouds transport more water vapor to the upper troposphere, and hence increase greenhouse trapping. The greenhouse effect increases with upper tropospheric humidity in areas with a moist upper troposphere (such as areas over storm tracks), but it is not sensitive to changes in upper tropospheric humidity in regions with a dry upper troposphere, clearly demonstrating that there are different mechanisms controlling the geographical distribution of the greenhouse effect in the midlatitudes.
Invernizzi, M; Negrini, S; Carda, S; Lanzotti, L; Cisari, C; Baricich, A
2013-06-01
Upper limb paresis remains a relevant challenge in stroke rehabilitation. To evaluate if adding mirror therapy (MT) to conventional therapy (CT) can improve motor recovery of the upper limb in subacute stroke patients. Prospective, single-center, single-blind, randomised, controlled trial. Subacute stroke patients referred to a Physical and Rehabilitation Medicine Unit between October 2009 and August 2011. Twenty-six subacute stroke patients (time from stroke <4 weeks) with upper limb paresis (Motricity Index ≤ 77). Patients were randomly allocated to the MT (N.=13) or to the CT group (N.=13). Both followed a comprehensive rehabilitative treatment. In addition, MT Group had 30 minutes of MT while the CT group had 30 minutes of sham therapy. Action Research Arm Test (ARAT) was the primary outcome measures. Motricity Index (MI) and the Functional Independence Measure (FIM) were the secondary outcome measures. After one month of treatment patients of both groups showed statistically significant improvements in all the variables measured (P<0.05). Moreover patients of the MT group had greater improvements in the ARAT, MI and FIM values compared to CT group (P<0.01, Glass's Δ Effect Size: 1.18). No relevant adverse event was recorded during the study. MT is a promising and easy method to improve motor recovery of the upper limb in subacute stroke patients. While MT use has been advocated for acute patients with no or negligible motor function, it can be usefully extended to patients who show partial motor recovery. The easiness of implementation, the low cost and the acceptability makes this therapy an useful tool in stroke rehabilitation.
Enhanced left-finger deftness following dominant upper- and lower-limb amputation.
Swanberg, Kelley M; Clark, Abigail M; Kline, Julia E; Yurkiewicz, Ilana R; Chan, Brenda L; Pasquina, Paul F; Heilman, Kenneth M; Tsao, Jack W
2011-09-01
After amputation, the sensorimotor cortex reorganizes, and these alterations might influence motor functions of the remaining extremities. The authors examined how amputation of the dominant or nondominant upper or lower extremity alters deftness in the intact limbs. The participants were 32 unilateral upper- or lower-extremity amputees and 6 controls. Upper-extremity deftness was tested by coin rotation (finger deftness) and pegboard (arm, hand, and finger deftness) tasks. Following right-upper- or right-lower-extremity amputation, the left hand's finger movements were defter than the left-hand fingers of controls. In contrast, with left-upper- or left-lower-extremity amputation, the right hand's finger performance was the same as that of the controls. Although this improvement might be related to increased use (practice), the finding that right-lower-extremity amputation also improved the left hand's finger deftness suggests an alternative mechanism. Perhaps in right-handed persons the left motor cortex inhibits the right side of the body more than the right motor cortex inhibits the left side, and the physiological changes induced by right-sided amputation reduced this inhibition.
Chothia, Muhammed; Doeltgen, Sebastian; Bradnam, Lynley V
2016-01-01
Coordinated muscle synergies in the human upper limb are controlled, in part, by a neural distribution network located in the cervical spinal cord, known as the cervical propriospinal system. Studies in the cat and non-human primate indicate the cerebellum is indirectly connected to this system via output pathways to the brainstem. Therefore, the cerebellum may indirectly modulate excitability of putative propriospinal neurons (PNs) in humans during upper limb coordination tasks. This study aimed to test whether anodal direct current stimulation (DCS) of the cerebellum modulates PNs and upper limb coordination in healthy adults. The hypothesis was that cerebellar anodal DCS would reduce descending facilitation of PNs and improve upper limb coordination. Transcranial magnetic stimulation (TMS), paired with peripheral nerve stimulation, probed activity in facilitatory and inhibitory descending projections to PNs following an established protocol. Coordination was tested using a pursuit rotor task performed by the non-dominant (ipsilateral) hand. Anodal and sham DCS were delivered over the cerebellum ipsilateral to the non-dominant hand in separate experimental sessions. Anodal DCS was applied to a control site lateral to the vertex in a third session. Twelve right-handed healthy adults participated. Pairing TMS with sub-threshold peripheral nerve stimulation facilitated motor evoked potentials at intensities just above threshold in accordance with the protocol. Anodal cerebellar DCS reduced facilitation without influencing inhibition, but the reduction in facilitation was not associated with performance of the pursuit rotor task. The results of this study indicate dissociated indirect control over cervical PNs by the cerebellum in humans. Anodal DCS of the cerebellum reduced excitability in the facilitatory descending pathway with no effect on the inhibitory pathway to cervical PNs. The reduction in PN excitability is likely secondary to modulation of primary motor cortex or brainstem nuclei, and identifies a neuroanatomical pathway for the cerebellum to assist in coordination of upper limb muscle synergies in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Motor Impairment Evaluation for Upper Limb in Stroke Patients on the Basis of a Microsensor
ERIC Educational Resources Information Center
Huang, Shuai; Luo, Chun; Ye, Shiwei; Liu, Fei; Xie, Bin; Wang, Caifeng; Yang, Li; Huang, Zhen; Wu, Jiankang
2012-01-01
There has been an urgent need for an effective and efficient upper limb rehabilitation method for poststroke patients. We present a Micro-Sensor-based Upper Limb rehabilitation System for poststroke patients. The wearable motion capture units are attached to upper limb segments embedded in the fabric of garments. The body segment orientation…
Bertomeu-Motos, Arturo; Blanco, Andrea; Badesa, Francisco J; Barios, Juan A; Zollo, Loredana; Garcia-Aracil, Nicolas
2018-02-20
End-effector robots are commonly used in robot-assisted neuro-rehabilitation therapies for upper limbs where the patient's hand can be easily attached to a splint. Nevertheless, they are not able to estimate and control the kinematic configuration of the upper limb during the therapy. However, the Range of Motion (ROM) together with the clinical assessment scales offers a comprehensive assessment to the therapist. Our aim is to present a robust and stable kinematic reconstruction algorithm to accurately measure the upper limb joints using only an accelerometer placed onto the upper arm. The proposed algorithm is based on the inverse of the augmented Jaciobian as the algorithm (Papaleo, et al., Med Biol Eng Comput 53(9):815-28, 2015). However, the estimation of the elbow joint location is performed through the computation of the rotation measured by the accelerometer during the arm movement, making the algorithm more robust against shoulder movements. Furthermore, we present a method to compute the initial configuration of the upper limb necessary to start the integration method, a protocol to manually measure the upper arm and forearm lengths, and a shoulder position estimation. An optoelectronic system was used to test the accuracy of the proposed algorithm whilst healthy subjects were performing upper limb movements holding the end effector of the seven Degrees of Freedom (DoF) robot. In addition, the previous and the proposed algorithms were studied during a neuro-rehabilitation therapy assisted by the 'PUPArm' planar robot with three post-stroke patients. The proposed algorithm reports a Root Mean Square Error (RMSE) of 2.13cm in the elbow joint location and 1.89cm in the wrist joint location with high correlation. These errors lead to a RMSE about 3.5 degrees (mean of the seven joints) with high correlation in all the joints with respect to the real upper limb acquired through the optoelectronic system. Then, the estimation of the upper limb joints through both algorithms reveal an instability on the previous when shoulder movement appear due to the inevitable trunk compensation in post-stroke patients. The proposed algorithm is able to accurately estimate the human upper limb joints during a neuro-rehabilitation therapy assisted by end-effector robots. In addition, the implemented protocol can be followed in a clinical environment without optoelectronic systems using only one accelerometer attached in the upper arm. Thus, the ROM can be perfectly determined and could become an objective assessment parameter for a comprehensive assessment.
Siebourg-Polster, Juliane; Wolf, Detlef; Czech, Christian; Bonati, Ulrike; Fischer, Dirk; Khwaja, Omar; Strahm, Martin
2017-01-01
Although functional rating scales are being used increasingly as primary outcome measures in spinal muscular atrophy (SMA), sensitive and objective assessment of early-stage disease progression and drug efficacy remains challenging. We have developed a game based on the Microsoft Kinect sensor, specifically designed to measure active upper limb movement. An explorative study was conducted to determine the feasibility of this new tool in 18 ambulant SMA type III patients and 19 age- and gender-matched healthy controls. Upper limb movement was analysed elaborately through derived features such as elbow flexion and extension angles, arm lifting angle, velocity and acceleration. No significant differences were found in the active range of motion between ambulant SMA type III patients and controls. Hand velocity was found to be different but further validation is necessary. This study presents an important step in the process of designing and handling digital biomarkers as complementary outcome measures for clinical trials. PMID:28122039
Chen, Xing; Siebourg-Polster, Juliane; Wolf, Detlef; Czech, Christian; Bonati, Ulrike; Fischer, Dirk; Khwaja, Omar; Strahm, Martin
2017-01-01
Although functional rating scales are being used increasingly as primary outcome measures in spinal muscular atrophy (SMA), sensitive and objective assessment of early-stage disease progression and drug efficacy remains challenging. We have developed a game based on the Microsoft Kinect sensor, specifically designed to measure active upper limb movement. An explorative study was conducted to determine the feasibility of this new tool in 18 ambulant SMA type III patients and 19 age- and gender-matched healthy controls. Upper limb movement was analysed elaborately through derived features such as elbow flexion and extension angles, arm lifting angle, velocity and acceleration. No significant differences were found in the active range of motion between ambulant SMA type III patients and controls. Hand velocity was found to be different but further validation is necessary. This study presents an important step in the process of designing and handling digital biomarkers as complementary outcome measures for clinical trials.
Upper and lower limb functionality: are these compromised in obese children?
Riddiford-Harland, Diane L; Steele, Julie R; Baur, Louise A
2006-01-01
The aim of this study was to investigate the effects of obesity on upper and lower limb functional strength and power in children, and to determine whether the ability to perform the daily activity of rising from a chair was compromised in obese children. It was hypothesised that obese children would display less upper and lower limb functionality compared to their non-obese counterparts. Upper and lower limb strength and power of 43 obese children (aged 8.4 +/- 0.5 y, BMI 24.1 +/- 2.3 kg/m(-2)) and 43 non-obese controls (aged 8.4 +/- 0.5 y, BMI 16.9 +/- 0.4 kg/m(-2)) were assessed using age-appropriate field-based tests: arm push/pull ability; basketball throw; vertical jump (VJ), and standing long jump (SLJ) performance. Functional lower limb strength was assessed for 13 obese and 13 non-obese children by quantifying their chair rising ability. Although obese children displayed significantly greater upper limb push (9.3 +/- 2.3 kg) and pull strength (9.6 +/- 3.0 kg) than their non-obese peers (push: 8.8 +/- 2.2 kg; pull: 8.8 +/- 2.3 kg; p < or = 0.05), their VJ (22.1 +/- 4.3 cm) and SLJ (94.6 +/- 12.8 cm) performance was significantly impaired relative to the non-obese children (VJ: 24.7 +/- 4.0 cm; SLJ: 101.7 +/- 14.0 cm; p < or = 0.05). Obese children spent significantly more time during all transfer phases of the chair rising task, compared to the non-obese children. Lower limb functionality in young obese children is impeded when they move their greater body mass against gravity.
van der Laan, Tallie M J; Postema, Sietke G; Reneman, Michiel F; Bongers, Raoul M; van der Sluis, Corry K
2018-02-10
Reliability study. Quantifying compensatory movements during work-related tasks may help to prevent musculoskeletal complaints in individuals with upper limb absence. (1) To develop a qualitative scoring system for rating compensatory shoulder and trunk movements in upper limb prosthesis wearers during the performance of functional capacity evaluation tests adjusted for use by 1-handed individuals (functional capacity evaluation-one handed [FCE-OH]); (2) to examine the interrater and intrarater reliability of the scoring system; and (3) to assess its feasibility. Movement patterns of 12 videotaped upper limb prosthesis wearers and 20 controls were analyzed. Compensatory movements were defined for each FCE-OH test, and a scoring system was developed, pilot tested, and adjusted. During reliability testing, 18 raters (12 FCE experts and 6 physiotherapists/gait analysts) scored videotapes of upper limb prosthesis wearers performing 4 FCE-OH tests 2 times (2 weeks apart). Agreement was expressed in % and kappa value. Feasibility (focus area's "acceptability", "demand," and "implementation") was determined by using a questionnaire. After 2 rounds of pilot testing and adjusting, reliability of a third version was tested. The interrater reliability for the first and second rating sessions were к = 0.54 (confidence interval [CI]: 0.52-0.57) and к = 0.64 (CI: 0.61-0.66), respectively. The intrarater reliability was к = 0.77 (CI: 0.72-0.82). The feasibility was good but could be improved by a training program. It seems possible to identify compensatory movements in upper limb prosthesis wearers during the performance of FCE-OH tests reliably by observation using the developed observational scoring system. Interrater reliability was satisfactory in most instances; intrarater reliability was good. Feasibility was established. Copyright © 2018 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Meyer, Sarah; Karttunen, Auli H; Thijs, Vincent; Feys, Hilde; Verheyden, Geert
2014-09-01
The association between somatosensory impairments and outcome after stroke remains unclear. The aim of this study was to systematically review the available literature on the relationship between somatosensory impairments in the upper limb and outcome after stroke. The electronic databases PubMed, CINAHL, EMBASE, Cochrane Library, PsycINFO, and Web of Science were systematically searched from inception until July 2013. Studies were included if adult patients with stroke (minimum n=10) were examined with reliable and valid measures of somatosensation in the upper limb to investigate the relationship with upper limb impairment, activity, and participation measures. Exclusion criteria included measures of somatosensation involving an overall score for upper and lower limb outcome and articles including only lower limb outcomes. Eligibility assessment, data extraction, and quality evaluation were completed by 2 independent reviewers. A cutoff score of ≥65% of the maximal quality score was used for further inclusion in this review. Six articles met all inclusion criteria. Two-point discrimination was shown to be predictive for upper limb dexterity, and somatosensory evoked potentials were shown to have predictive value in upper limb motor recovery. Proprioception was significantly correlated with perceived level of physical activity and social isolation and had some predictive value in functional movements of the upper limb. Finally, the combination of light touch and proprioception impairment was shown to be significantly related to upper limb motor recovery as well as handicap situations during activities of daily living. Heterogeneity of the included studies warrants caution when interpreting results. Large variation in results was found due to heterogeneity of the studies. However, somatosensory deficits were shown to have an important role in upper limb motor and functional performance after stroke. © 2014 American Physical Therapy Association.
Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies.
Proietti, Tommaso; Crocher, Vincent; Roby-Brami, Agnes; Jarrasse, Nathanael
2016-01-01
Since the late 1990s, there has been a burst of research on robotic devices for poststroke rehabilitation. Robot-mediated therapy produced improvements on recovery of motor capacity; however, so far, the use of robots has not shown qualitative benefit over classical therapist-led training sessions, performed on the same quantity of movements. Multidegree-of-freedom robots, like the modern upper-limb exoskeletons, enable a distributed interaction on the whole assisted limb and can exploit a large amount of sensory feedback data, potentially providing new capabilities within standard rehabilitation sessions. Surprisingly, most publications in the field of exoskeletons focused only on mechatronic design of the devices, while little details were given to the control aspects. On the contrary, we believe a paramount aspect for robots potentiality lies on the control side. Therefore, the aim of this review is to provide a taxonomy of currently available control strategies for exoskeletons for neurorehabilitation, in order to formulate appropriate questions toward the development of innovative and improved control strategies.
Isolated primary lymphedema tarda of the upper limb.
Shariati, Farzaneh; Ravari, Hasan; Kazemzadeh, Gholamhossein; Sadeghi, Ramin
2013-03-01
Primary lymphedema tarda is considered as a congenital disease with late presentation. Primary lymphedema tarda usually affects lower limbs, and primary lymphedema tarda of the upper limbs usually accompanies lower limb lymphedema. In the current case report, we present an 80-year-old male patient with isolated left upper limb swelling that lymphoscintigraphy imaging proved to be lymphedema.
Chen, Albert; Yao, Jun; Kuiken, Todd; Dewald, Julius P A
2013-01-01
Previous studies have postulated that the amount of brain reorganization following peripheral injuries may be correlated with negative symptoms or consequences. However, it is unknown whether restoring effective limb function may then be associated with further changes in the expression of this reorganization. Recently, targeted reinnervation (TR), a surgical technique that restores a direct neural connection from amputated sensorimotor nerves to new peripheral targets such as muscle, has been successfully applied to upper-limb amputees. It has been shown to be effective in restoring both peripheral motor and sensory functions via the reinnervated nerves as soon as a few months after the surgery. However, it was unclear whether TR could also restore normal cortical motor representations for control of the missing limb. To answer this question, we used high-density electroencephalography (EEG) to localize cortical activity related to cued motor tasks generated by the intact and missing limb. Using a case study of 3 upper-limb amputees, 2 of whom went through pre and post-TR experiments, we present unique quantitative evidence for the re-mapping of motor representations for the missing limb closer to their original locations following TR. This provides evidence that an effective restoration of peripheral function from TR can be linked to the return of more normal cortical expression for the missing limb. Therefore, cortical mapping may be used as a potential guide for monitoring rehabilitation following peripheral injuries.
Design & control of a 3D stroke rehabilitation platform.
Cai, Z; Tong, D; Meadmore, K L; Freeman, C T; Hughes, A M; Rogers, E; Burridge, J H
2011-01-01
An upper limb stroke rehabilitation system is developed which combines electrical stimulation with mechanical arm support, to assist patients performing 3D reaching tasks in a virtual reality environment. The Stimulation Assistance through Iterative Learning (SAIL) platform applies electrical stimulation to two muscles in the arm using model-based control schemes which learn from previous trials of the task. This results in accurate movement which maximises the therapeutic effect of treatment. The principal components of the system are described and experimental results confirm its efficacy for clinical use in upper limb stroke rehabilitation. © 2011 IEEE
A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control.
Tang, Zhichuan; Sun, Shouqian; Zhang, Sanyuan; Chen, Yumiao; Li, Chao; Chen, Shi
2016-12-02
To recognize the user's motion intention, brain-machine interfaces (BMI) usually decode movements from cortical activity to control exoskeletons and neuroprostheses for daily activities. The aim of this paper is to investigate whether self-induced variations of the electroencephalogram (EEG) can be useful as control signals for an upper-limb exoskeleton developed by us. A BMI based on event-related desynchronization/synchronization (ERD/ERS) is proposed. In the decoder-training phase, we investigate the offline classification performance of left versus right hand and left hand versus both feet by using motor execution (ME) or motor imagery (MI). The results indicate that the accuracies of ME sessions are higher than those of MI sessions, and left hand versus both feet paradigm achieves a better classification performance, which would be used in the online-control phase. In the online-control phase, the trained decoder is tested in two scenarios (wearing or without wearing the exoskeleton). The MI and ME sessions wearing the exoskeleton achieve mean classification accuracy of 84.29% ± 2.11% and 87.37% ± 3.06%, respectively. The present study demonstrates that the proposed BMI is effective to control the upper-limb exoskeleton, and provides a practical method by non-invasive EEG signal associated with human natural behavior for clinical applications.
Upper limb load as a function of repetitive task parameters: part 1--a model of upper limb load.
Roman-Liu, Danuta
2005-01-01
The aim of the study was to develop a theoretical indicator of upper limb musculoskeletal load based on repetitive task parameters. As such the dimensionless parameter, Integrated Cycle Load (ICL) was accepted. It expresses upper limb load which occurs during 1 cycle. The indicator is based on a model of a repetitive task, which consists of a model of the upper limb, a model of basic types of upper limb forces and a model of parameters of a repetitive task such as length of the cycle, length of periods of the cycle and external force exerted during each of the periods of the cycle. Calculations of the ICL parameter were performed for 12 different variants of external load characterised by different values of repetitive task parameters. A comparison of ICL, which expresses external load with a physiological indicator of upper limb load, is presented in Part 2 of the paper.
Milot, Marie-Helene; Hamel, Mathieu; Provost, Philippe-Olivier; Bernier-Ouellet, Julien; Dupuis, Maxime; Letourneau, Dominic; Briere, Simon; Michaud, Francois
2016-08-01
Stroke is one of the leading causes of disability worldwide. Consequently, many stroke survivors exhibit difficulties undergoing voluntary movement in their affected upper limb, compromising their functional performance and level of independence. To minimize the negative impact of stroke disabilities, exercises are recognized as a key element in post-stroke rehabilitation. In order to provide the practice of exercises in a uniform and controlled manner as well as increasing the efficiency of therapists' interventions, robotic training has been found, and continues to prove itself, as an innovative intervention for post-stroke rehabilitation. However, the complexity as well as the limited degrees of freedom and workspace of currently commercially available robots can limit their use in clinical settings. Up to now, user-friendly robots covering a sufficiently large workspace for training of the upper limb in its full range of motion are lacking. This paper presents the design and implementation of ERA, an upper-limb 3-DOF force-controlled exerciser robot, which presents a workspace covering the entire range of motion of the upper limb. The ERA robot provides 3D reaching movements in a haptic virtual environment. A description of the hardware and software components of the ERA robot is also presented along with a demonstration of its capabilities in one of the three operational modes that were developed.
Age Effects on Upper Limb Kinematics Assessed by the REAplan Robot in Healthy School-Aged Children.
Gilliaux, Maxime; Dierckx, Floriane; Vanden Berghe, Lola; Lejeune, Thierry M; Sapin, Julien; Dehez, Bruno; Stoquart, Gaëtan; Detrembleur, Christine
2015-05-01
The use of kinematics is recommended to quantitatively evaluate upper limb movements. The aims of this study were to determine the age effects on upper limb kinematics and establish norms in healthy children. Ninety-three healthy children, aged 3-12 years, participated in this study. Twenty-eight kinematic indices were computed from four tasks. Each task was performed with the REAplan, a distal effector robotic device that allows upper limb displacements in the horizontal plane. Twenty-four of the 28 indices showed an improvement during childhood. Indeed, older children showed better upper limb movements. This study was the first to use a robotic device to show the age effects on upper limb kinematics and establish norms in healthy children.
Wang, Nan; Ma, Jie; Jin, Dan; Yu, Bin
2017-01-01
Aim . The purpose of this study was to investigate the relationship between upper limbs' three functional partitions and the golden curve. Materials and Methods . We measured 30 subjects' right or left upper limb data and investigate the relationship between them and the golden curve by use of SPSS version 20.0 statistical software (SPSS, Inc., Chicago, Illinois), one-sample t -test. Results . There are four points on human's upper limbs which have no difference with the four points on the golden curve. And there is one point of which the difference is obvious. But we still could draw the conclusion that human upper limbs are accordant with the golden curve. Conclusion . Human upper limbs are accordant with the golden curve.
Park, Junhyuck; Gong, Jihwan; Yim, Jongeun
2017-01-01
Boxing training including traditional stretching, muscular strength training, and duration training would be considered to be effective for improved functional stretching, dynamic balance, walking speed, and quality of life. We aimed to investigate upper limb function, balance, gait, and quality of life in stroke patients before and after a sitting boxing program. Twenty-six participants were randomly allocated to a boxing group (n = 13) and control group (n = 13) after the upper limb function, balance, gait, and quality of Life were recorded. The boxing group underwent a sitting boxing program (3 times/week) as well as conventional physical therapy (3 times/week) for 6 weeks. The control group only underwent conventional physical therapy (3 times/week) for 6 weeks. The Manual Functional Test (MFT), non-affected hand grip, Berg Balance Scale (BBS), velocity moment with eye opened, 10-m Walk Test (10 MWT), and Stroke-Specific Quality of Life questionnaire (SS-QOL) were significantly improved in the boxing group (p < 0.05) and showed significantly greater improvements in the boxing group compared to the control group (p < 0.05) after 6 weeks. The sitting boxing program group had positive effects on upper extremity function, balance, gait, and quality of life in stroke patients.
Chadwell, Alix; Kenney, Laurence; Granat, Malcolm; Thies, Sibylle; Head, John S; Galpin, Adam
2018-02-01
Current outcome measures used in upper limb myoelectric prosthesis studies include clinical tests of function and self-report questionnaires on real-world prosthesis use. Research in other cohorts has questioned both the validity of self-report as an activity assessment tool and the relationship between clinical functionality and real-world upper limb activity. Previously, 1 we reported the first results of monitoring upper limb prosthesis use. However, the data visualisation technique used was limited in scope. Methodology development. To introduce two new methods for the analysis and display of upper limb activity monitoring data and to demonstrate the potential value of the approach with example real-world data. Upper limb activity monitors, worn on each wrist, recorded data on two anatomically intact participants and two prosthesis users over 1 week. Participants also filled in a diary to record upper limb activity. Data visualisation was carried out using histograms, and Archimedean spirals to illustrate temporal patterns of upper limb activity. Anatomically intact participants' activity was largely bilateral in nature, interspersed with frequent bursts of unilateral activity of each arm. At times when the prosthesis was worn prosthesis users showed very little unilateral use of the prosthesis (≈20-40 min/week compared to ≈350 min/week unilateral activity on each arm for anatomically intact participants), with consistent bias towards the intact arm throughout. The Archimedean spiral plots illustrated participant-specific patterns of non-use in prosthesis users. The data visualisation techniques allow detailed and objective assessment of temporal patterns in the upper limb activity of prosthesis users. Clinical relevance Activity monitoring offers an objective method for the assessment of upper limb prosthesis users' (PUs) activity outside of the clinic. By plotting data using Archimedean spirals, it is possible to visualise, in detail, the temporal patterns of upper limb activity. Further work is needed to explore the relationship between traditional functional outcome measures and real-world prosthesis activity.
Chronic pain associated with upper-limb loss.
Hanley, Marisol A; Ehde, Dawn M; Jensen, Mark; Czerniecki, Joseph; Smith, Douglas G; Robinson, Lawrence R
2009-09-01
To describe the prevalence, intensity, and functional impact of the following types of pain associated with upper-limb loss: phantom limb, residual limb, back, neck, and nonamputated-limb pain. Cross-sectional survey; 104 respondents with upper-limb loss at least 6 months postamputation completed measures of pain intensity, interference, disability, and health-related quality-of-life. Nearly all (90%) of the respondents reported pain, with 76% reporting more than one pain type. Phantom-limb pain and residual-limb pain were the most prevalent (79% and 71%, respectively), followed by back (52%), neck (43%), and nonamputated-limb pain (33%). Although nonamputated-limb pain was least prevalent, it was reported to cause the highest levels of interference and pain-related disability days. Self-reported quality-of-life was significantly lower for individuals with each type of pain compared with those without any pain. Age, time since amputation, and cause of amputation were not associated with pain. In addition to pain in the phantom and residual limb, back, neck, and nonamputated-limb pain are also common after upper-limb loss. All of these pain types are associated with significant disability and activity interference for some individuals, suggesting that assessment of multiple pain types in persons with upper-limb amputation may be important.
A review of supernumerary and absent limbs and digits of the upper limb.
Klaassen, Zachary; Choi, Monica; Musselman, Ruth; Eapen, Deborah; Tubbs, R Shane; Loukas, Marios
2012-03-01
For years people have been enamored by anomalies of the human limbs, particularly supernumerary and absent limbs and digits. Historically, there are a number of examples of such anomalies, including royal families of ancient Chaldea, tribes from Arabia, and examples from across nineteenth century Europe. The development of the upper limbs in a growing embryo is still being elucidated with the recent advent of homeobox genes, but researchers agree that upper limbs develop between stages 12-23 through a complex embryological process. Maternal thalidomide intake during limb development is known to cause limb reduction and subsequent amelia or phocomelia. Additionally, a number of clinical reports have illustrated different limb anomaly cases, with each situation unique in phenotype and developmental abnormality. Supernumerary and absent limbs and digits are not unique to humans, and a number of animal cases have also been reported. This review of the literature illustrates the historical, anatomical, and clinical aspects of supernumerary and absent limbs and digits for the upper limb.
Michmizos, Konstantinos P.; Vaisman, Lev; Krebs, Hermano Igo
2014-01-01
Little is known about whether our knowledge of how the central nervous system controls the upper extremities (UE), can generalize, and to what extent to the lower limbs. Our continuous efforts to design the ideal adaptive robotic therapy for the lower limbs of stroke patients and children with cerebral palsy highlighted the importance of analyzing and modeling the kinematics of the lower limbs, in general, and those of the ankle joints, in particular. We recruited 15 young healthy adults that performed in total 1,386 visually evoked, visually guided, and target-directed discrete pointing movements with their ankle in dorsal–plantar and inversion–eversion directions. Using a non-linear, least-squares error-minimization procedure, we estimated the parameters for 19 models, which were initially designed to capture the dynamics of upper limb movements of various complexity. We validated our models based on their ability to reconstruct the experimental data. Our results suggest a remarkable similarity between the top-performing models that described the speed profiles of ankle pointing movements and the ones previously found for the UE both during arm reaching and wrist pointing movements. Among the top performers were the support-bounded lognormal and the beta models that have a neurophysiological basis and have been successfully used in upper extremity studies with normal subjects and patients. Our findings suggest that the same model can be applied to different “human” hardware, perhaps revealing a key invariant in human motor control. These findings have a great potential to enhance our rehabilitation efforts in any population with lower extremity deficits by, for example, assessing the level of motor impairment and improvement as well as informing the design of control algorithms for therapeutic ankle robots. PMID:25505881
Wang, Zun-Rong; Wang, Ping; Xing, Liang; Mei, Li-Ping; Zhao, Jun; Zhang, Tong
2017-11-01
Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).
Wang, Zun-rong; Wang, Ping; Xing, Liang; Mei, Li-ping; Zhao, Jun; Zhang, Tong
2017-01-01
Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238). PMID:29239328
Velstra, Inge-Marie; Bolliger, Marc; Krebs, Jörg; Rietman, Johan S; Curt, Armin
2016-05-01
To determine which single or combined upper limb muscles as defined by the International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI); upper extremity motor score (UEMS) and the Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP), best predict upper limb function and independence in activities of daily living (ADLs) and to assess the predictive value of qualitative grasp movements (QlG) on upper limb function in individuals with acute tetraplegia. As part of a Europe-wide, prospective, longitudinal, multicenter study ISNCSCI, GRASSP, and Spinal Cord Independence Measure (SCIM III) scores were recorded at 1 and 6 months after SCI. For prediction of upper limb function and ADLs, a logistic regression model and unbiased recursive partitioning conditional inference tree (URP-CTREE) were used. Results: Logistic regression and URP-CTREE revealed that a combination of ISNCSCI and GRASSP muscles (to a maximum of 4) demonstrated the best prediction (specificity and sensitivity ranged from 81.8% to 96.0%) of upper limb function and identified homogenous outcome cohorts at 6 months. The URP-CTREE model with the QlG predictors for upper limb function showed similar results. Prediction of upper limb function can be achieved through a combination of defined, specific upper limb muscles assessed in the ISNCSCI and GRASSP. A combination of a limited number of proximal and distal muscles along with an assessment of grasping movements can be applied for clinical decision making for rehabilitation interventions and clinical trials. © The Author(s) 2015.
Kukke, Sahana N.; Curatalo, Lindsey A.; de Campos, Ana Carolina; Hallett, Mark; Alter, Katharine E.; Damiano, Diane L.
2015-01-01
Functional reaching is impaired in dystonia. Here, we analyze upper extremity kinematics to quantify timing and coordination abnormalities during unimanual reach-to-grasp movements in individuals with childhood-onset unilateral wrist dystonia. Kinematics were measured during movements of both upper limbs in a patient group (n = 11, age = 17.5 ± 5 years), and a typically developing control group (n = 9, age = 16.6 ± 5 years). Hand aperture was computed to study the coordination of reach and grasp. Time-varying joint synergies within one upper limb were calculated using a novel technique based on principal component analysis to study intra-limb coordination. In the non-dominant arm, results indicate reduced coordination between reach and grasp in patients who could not lift the grasped object compared to those who could lift it. Lifters exhibit incoordination in distal upper extremity joints later in the movement and non-lifters lacked coordination throughout the movement and in the whole upper limb. The amount of atypical coordination correlates with dystonia severity in patients. Reduced coordination during movement may reflect deficits in the execution of simultaneous movements, motor planning, or muscle activation. Rehabilitation efforts can focus on particular time points when kinematic patterns deviate abnormally to improve functional reaching in individuals with childhood-onset dystonia. PMID:26208359
Kukke, Sahana N; Curatalo, Lindsey A; de Campos, Ana Carolina; Hallett, Mark; Alter, Katharine E; Damiano, Diane L
2016-05-01
Functional reaching is impaired in dystonia. Here, we analyze upper extremity kinematics to quantify timing and coordination abnormalities during unimanual reach-to-grasp movements in individuals with childhood-onset unilateral wrist dystonia. Kinematics were measured during movements of both upper limbs in a patient group ( n = 11, age = 17.5 ±5 years), and a typically developing control group ( n = 9, age = 16.6 ±5 years). Hand aperture was computed to study the coordination of reach and grasp. Time-varying joint synergies within one upper limb were calculated using a novel technique based on principal component analysis to study intra-limb coordination. In the non-dominant arm, results indicate reduced coordination between reach and grasp in patients who could not lift the grasped object compared to those who could lift it. Lifters exhibit incoordination in distal upper extremity joints later in the movement and non-lifters lacked coordination throughout the movement and in the whole upper limb. The amount of atypical coordination correlates with dystonia severity in patients. Reduced coordination during movement may reflect deficits in the execution of simultaneous movements, motor planning, or muscle activation. Rehabilitation efforts can focus on particular time points when kinematic patterns deviate abnormally to improve functional reaching in individuals with childhood-onset dystonia.
Facts about Upper and Lower Limb Reduction Defects
... its normal size or is missing. What We Know About Upper and Lower Limb Reduction Defects How ... and productive lives. What We Still Do Not Know About Upper and Lower Limb Reduction Defects What ...
Runnalls, Keith D.; Anson, Greg; Wolf, Steven L.; Byblow, Winston D.
2014-01-01
Abstract Partial weight support may hold promise as a therapeutic adjuvant during rehabilitation after stroke by providing a permissive environment for reducing the expression of abnormal muscle synergies that cause upper limb impairment. We explored the neurophysiological effects of upper limb weight support in 13 healthy young adults by measuring motor‐evoked potentials (MEPs) from transcranial magnetic stimulation (TMS) of primary motor cortex and electromyography from anterior deltoid (AD), biceps brachii (BB), extensor carpi radialis (ECR), and first dorsal interosseous (FDI). Five levels of weight support, varying from none to full, were provided to the arm using a commercial device (Saebo Mobile Arm Support). For each level of support, stimulus–response (SR) curves were derived from MEPs across a range of TMS intensities. Weight support affected background EMG activity in each of the four muscles examined (P <0.0001 for each muscle). Tonic background activity was primarily reduced in the AD. Weight support had a differential effect on the size of MEPs across muscles. After curve fitting, the SR plateau for ECR increased at the lowest support level (P =0.004). For FDI, the SR plateau increased at the highest support level (P =0.0003). These results indicate that weight support of the proximal upper limb modulates corticomotor excitability across the forearm and hand. The findings support a model of integrated control of the upper limb and may inform the use of weight support in clinical settings. PMID:25501435
A training platform for many-dimensional prosthetic devices using a virtual reality environment
Putrino, David; Wong, Yan T.; Weiss, Adam; Pesaran, Bijan
2014-01-01
Brain machine interfaces (BMIs) have the potential to assist in the rehabilitation of millions of patients worldwide. Despite recent advancements in BMI technology for the restoration of lost motor function, a training environment to restore full control of the anatomical segments of an upper limb extremity has not yet been presented. Here, we develop a virtual upper limb prosthesis with 27 independent dimensions, the anatomical dimensions of the human arm and hand, and deploy the virtual prosthesis as an avatar in a virtual reality environment (VRE) that can be controlled in real-time. The prosthesis avatar accepts kinematic control inputs that can be captured from movements of the arm and hand as well as neural control inputs derived from processed neural signals. We characterize the system performance under kinematic control using a commercially available motion capture system. We also present the performance under kinematic control achieved by two non-human primates (Macaca Mulatta) trained to use the prosthetic avatar to perform reaching and grasping tasks. This is the first virtual prosthetic device that is capable of emulating all the anatomical movements of a healthy upper limb in real-time. Since the system accepts both neural and kinematic inputs for a variety of many-dimensional skeletons, we propose it provides a customizable training platform for the acquisition of many-dimensional neural prosthetic control. PMID:24726625
Contribution of limb momentum to power transfer in athletic wheelchair pushing.
Masson, G; Bégin, M-A; Lopez Poncelas, M; Pelletier, S-K; Lessard, J-L; Laroche, J; Berrigan, F; Langelier, E; Smeesters, C; Rancourt, D
2016-09-06
Pushing capacity is a key parameter in athletic racing wheelchair performance. This study estimated the potential contribution of upper limb momentum to pushing. The question is relevant since it may affect the training strategy adopted by an athlete. A muscle-free Lagrangian dynamic model of the upper limb segments was developed and theoretical predictions of power transfer to the wheelchair were computed during the push phase. Results show that limb momentum capacity for pushing can be in the order of 40J per push cycle at 10m/s, but it varies with the specific pushing range chosen by the athlete. Although use of momentum could certainly help an athlete improve performance, quantifying the actual contribution of limb momentum to pushing is not trivial. A preliminary experimental investigation on an ergometer, along with a simplified model of the upper limb, suggests that momentum is not the sole contributor to power transfer to a wheelchair. Muscles substantially contribute to pushing, even at high speeds. Moreover, an optimal pushing range is challenging to find since it most likely differs if an athlete chooses a limb momentum pushing strategy versus a muscular exertion pushing strategy, or both at the same time. The study emphasizes the importance of controlling pushing range, although one should optimize it while also taking the dynamics of the recovery period into account. Copyright © 2016 Elsevier Ltd. All rights reserved.
Postema, Sietke G; Bongers, Raoul M; Brouwers, Michael A; Burger, Helena; Norling-Hermansson, Liselotte M; Reneman, Michiel F; Dijkstra, Pieter U; van der Sluis, Corry K
2016-07-01
(1) To determine the prevalence of musculoskeletal complaints (MSCs) in individuals with upper limb absence in The Netherlands, (2) to assess the health status of individuals with upper limb absence in general and in relation to the presence of MSCs, and (3) to explore the predictors of development of MSCs and MSC-related disability in this population. Cross-sectional study: national survey. Twelve rehabilitation centers and orthopedic workshops. Individuals (n=263; mean age, 50.7±16.7y; 60% men) ≥18 years old, with transverse upper limb reduction deficiency (42%) or amputation (58%) at or proximal to the carpal level (response, 45%) and 108 individuals without upper limb reduction deficiency or amputation (n=108; mean age, 50.6±15.7y; 65% men) (N=371). Not applicable. Point and year prevalence of MSCs, MSC-related disability (Pain Disability Index), and general health perception and mental health (RAND-36 subscales). Point and year prevalence of MSCs were almost twice as high in individuals with upper limb absence (57% and 65%, respectively) compared with individuals without upper limb absence (27% and 34%, respectively) and were most often located in the nonaffected limb and upper back/neck. MSCs were associated with decreased general health perception and mental health and higher perceived upper extremity work demands. Prosthesis use was not related to presence of MSCs. Clinically relevant predictors of MSCs were middle age, being divorced/widowed, and lower mental health. Individuals with upper limb absence experienced more MSC-related disability than individuals without upper limb absence. Higher age, more pain, lower general and mental health, and not using a prosthesis were related to higher disability. Presence of MSCs is a frequent problem in individuals with upper limb absence and is associated with decreased general and mental health. Mental health and physical work demands should be taken into account when assessing such a patient. Clinicians should note that MSC-related disability increases with age. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Effect of STS space suit on astronaut dominant upper limb EVA work performance
NASA Technical Reports Server (NTRS)
Greenisen, Michael C.
1987-01-01
The STS Space Suited and unsuited dominant upper limb performance was evaluated in order to quantify future EVA astronaut skeletal muscle upper limb performance expectations. Testing was performed with subjects standing in EVA STS foot restraints. Data was collected with a CYBEX Dynamometer enclosed in a waterproof container. Control data was taken in one g. During one g testing, weight of the Space Suit was relieved from the subject via an overhead crane with a special connection to the PLSS of the suit. Experimental data was acquired during simulated zero g, accomplished by neutral buoyancy in the Weightless Environment Training Facility. Unsuited subjects became neutrally buoyant via SCUBA BC vests. Actual zero g experimental data was collected during parabolic arc flights on board NASA's modified KC-135 aircraft. During all test conditions, subjects performed five EVA work tasks requiring dominant upper limb performance and ten individual joint articulation movements. Dynamometer velocities for each tested movement were 0 deg/sec, 30 or 60 deg/sec and 120 or 180 deg/sec, depending on the test, with three repetitions per test. Performance was measured in foot pounds of torque.
Mirror therapy enhances upper extremity motor recovery in stroke patients.
Mirela Cristina, Luca; Matei, Daniela; Ignat, Bogdan; Popescu, Cristian Dinu
2015-12-01
The purpose of this study was to evaluate the effects of mirror therapy program in addition with physical therapy methods on upper limb recovery in patients with subacute ischemic stroke. 15 subjects followed a comprehensive rehabilitative treatment, 8 subjects received only control therapy (CT) and 7 subjects received mirror therapy (MT) for 30 min every day, five times a week, for 6 weeks in addition to the conventional therapy. Brunnstrom stages, Fugl-Meyer Assessment (upper extremity), the Ashworth Scale, and Bhakta Test (finger flexion scale) were used to assess changes in upper limb motor recovery and motor function after intervention. After 6 weeks of treatment, patients in both groups showed significant improvements in the variables measured. Patients who received MT showed greater improvements compared to the CT group. The MT treatment results included: improvement of motor functions, manual skills and activities of daily living. The best results were obtained when the treatment was started soon after the stroke. MT is an easy and low-cost method to improve motor recovery of the upper limb.
Movement quality of conventional prostheses and the DEKA Arm during everyday tasks
Cowley, Jeffrey; Resnik, Linda; Wilken, Jason; Walters, Lisa Smurr; Gates, Deanna
2017-01-01
Background Conventional prosthetic devices fail to restore the function and characteristic movement quality of the upper limb. The DEKA Arm is a new, advanced prosthesis featuring a compound, powered wrist and multiple grip configurations. Objectives The purpose of this study was to determine if the DEKA Arm improved the movement quality of upper limb prosthesis users compared to conventional prostheses. Study design Case series. Methods Three people with transradial amputation completed tasks of daily life with their conventional prosthesis and with the DEKA Arm. A total of 10 healthy controls completed the same tasks. The trajectory of the wrist joint center was analyzed to determine how different prostheses affected movement duration, speed, smoothness, and curvature compared to patients’ own intact limbs and controls. Results Movement quality decreased with the DEKA Arm for two participants, and increased for the third. Prosthesis users made slower, less smooth, more curved movements with the prosthetic limb compared to the intact limb and controls, particularly when grasping and manipulating objects. Conclusion The effects of one month of training with the DEKA Arm on movement quality varied with participants’ skill and experience with conventional prostheses. Future studies should examine changes in movement quality after long-term use of advanced prostheses. PMID:26932980
7 degree-of-freedom neuroprosthetic control by an individual with tetraplegia
Collinger, Jennifer L; Wodlinger, Brian; Downey, John E; Wang, Wei; Tyler-Kabara, Elizabeth C; Weber, Douglas J; McMorland, Angus JC; Velliste, Meel; Boninger, Michael L; Schwartz, Andrew B
2013-01-01
SUMMARY Background We use our arms to transport and orient the hand which is used to grasp and manipulate objects. Upper limb paralysis or amputation limits a person’s ability to interact with their environment to accomplish activities of daily living. Brain-machine interfaces (BMIs) may provide a solution to restoring much of this function. Methods Two 96-channel intracortical microelectrodes were implanted in the motor cortex of an individual with tetraplegia. Thirteen weeks of BMI training were conducted with the goal of controlling an anthropomorphic prosthetic limb with 7 degrees-of-freedom (3D translation, 3D orientation, 1D grasping). Clinical measures of upper-limb function were used to assess the participant’s ability to use the prosthetic limb. Findings The participant demonstrated the ability to move the device freely in the three-dimensional (3D) workspace on the second day of training. After 13 weeks, robust 7 degree-of-freedom movements were performed routinely. Over time, performance on target-based reaching tasks improved in terms of success rate, completion time, and path efficiency. The participant was also able to use the prosthetic limb to perform skillful and coordinated reach and grasp movements that resulted in clinically significant gains in tests of upper-limb function. Interpretation This study demonstrates that a person with chronic tetraplegia can perform consistent, natural, and complex movements with an anthropomorphic robotic arm to regain clinically significant function. Funding Defense Advanced Research Projects Agency, National Institutes of Health, Department of Veterans Affairs, and UPMC Rehabilitation Institute PMID:23253623
The functional anatomy of suggested limb paralysis.
Deeley, Quinton; Oakley, David A; Toone, Brian; Bell, Vaughan; Walsh, Eamonn; Marquand, Andre F; Giampietro, Vincent; Brammer, Michael J; Williams, Steven C R; Mehta, Mitul A; Halligan, Peter W
2013-02-01
Suggestions of limb paralysis in highly hypnotically suggestible subjects have been employed to successfully model conversion disorders, revealing similar patterns of brain activation associated with attempted movement of the affected limb. However, previous studies differ with regard to the executive regions involved during involuntary inhibition of the affected limb. This difference may have arisen as previous studies did not control for differences in hypnosis depth between conditions and/or include subjective measures to explore the experience of suggested paralysis. In the current study we employed functional magnetic resonance imaging (fMRI) to examine the functional anatomy of left and right upper limb movements in eight healthy subjects selected for high hypnotic suggestibility during (i) hypnosis (NORMAL) and (ii) attempted movement following additional left upper limb paralysis suggestions (PARALYSIS). Contrast of left upper limb motor function during NORMAL relative to PARALYSIS conditions revealed greater activation of contralateral M1/S1 and ipsilateral cerebellum, consistent with the engagement of these regions in the completion of movements. By contrast, two significant observations were noted in PARALYSIS relative to NORMAL conditions. In conjunction with reports of attempts to move the paralysed limb, greater supplementary motor area (SMA) activation was observed, a finding consistent with the role of SMA in motor intention and planning. The anterior cingulate cortex (ACC, BA 24) was also significantly more active in PARALYSIS relative to NORMAL conditions - suggesting that ACC (BA 24) may be implicated in involuntary, as well as voluntary inhibition of prepotent motor responses. Copyright © 2012 Elsevier Ltd. All rights reserved.
Revised upper limb module for spinal muscular atrophy: Development of a new module.
Mazzone, Elena S; Mayhew, Anna; Montes, Jacqueline; Ramsey, Danielle; Fanelli, Lavinia; Young, Sally Dunaway; Salazar, Rachel; De Sanctis, Roberto; Pasternak, Amy; Glanzman, Allan; Coratti, Giorgia; Civitello, Matthew; Forcina, Nicola; Gee, Richard; Duong, Tina; Pane, Marika; Scoto, Mariacristina; Pera, Maria Carmela; Messina, Sonia; Tennekoon, Gihan; Day, John W; Darras, Basil T; De Vivo, Darryl C; Finkel, Richard; Muntoni, Francesco; Mercuri, Eugenio
2017-06-01
There is a growing need for a robust clinical measure to assess upper limb motor function in spinal muscular atrophy (SMA), as the available scales lack sensitivity at the extremes of the clinical spectrum. We report the development of the Revised Upper Limb Module (RULM), an assessment specifically designed for upper limb function in SMA patients. An international panel with specific neuromuscular expertise performed a thorough review of scales currently available to assess upper limb function in SMA. This review facilitated a revision of the existing upper limb function scales to make a more robust clinical scale. Multiple revisions of the scale included statistical analysis and captured clinically relevant changes to fulfill requirements by regulators and advocacy groups. The resulting RULM scale shows good reliability and validity, making it a suitable tool to assess upper extremity function in the SMA population for multi-center clinical research. Muscle Nerve 55: 869-874, 2017. © 2016 Wiley Periodicals, Inc.
Carmo, A.A.; Kleiner, A.F.R.; Lobo da Costa, P.H.; Barros, R.M.L.
2012-01-01
The aim of this study was to analyze the alterations of arm and leg movements of patients during stroke gait. Joint angles of upper and lower limbs and spatiotemporal variables were evaluated in two groups: hemiparetic group (HG, 14 hemiparetic men, 53 ± 10 years) and control group (CG, 7 able-bodied men, 50 ± 4 years). The statistical analysis was based on the following comparisons (P ≤ 0.05): 1) right versus left sides of CG; 2) affected (AF) versus unaffected (UF) sides of HG; 3) CG versus both the affected and unaffected sides of HG, and 4) an intracycle comparison of the kinematic continuous angular variables between HG and CG. This study showed that the affected upper limb motion in stroke gait was characterized by a decreased range of motion of the glenohumeral (HG: 6.3 ± 4.5, CG: 20.1 ± 8.2) and elbow joints (AF: 8.4 ± 4.4, UF: 15.6 ± 7.6) on the sagittal plane and elbow joint flexion throughout the cycle (AF: 68.2 ± 0.4, CG: 46.8 ± 2.7). The glenohumeral joint presented a higher abduction angle (AF: 14.2 ± 1.6, CG: 11.5 ± 4.0) and a lower external rotation throughout the cycle (AF: 4.6 ± 1.2, CG: 22.0 ± 3.0). The lower limbs showed typical alterations of the stroke gait patterns. Thus, the changes in upper and lower limb motion of stroke gait were identified. The description of upper limb motion in stroke gait is new and complements gait analysis. PMID:22473324
Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S; Zhou, Shufeng; Huang, Dongfeng
2013-11-05
The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex.
Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S.; Zhou, Shufeng; Huang, Dongfeng
2013-01-01
The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex. PMID:25206611
Advances in upper limb stroke rehabilitation: a technology push.
Loureiro, Rui C V; Harwin, William S; Nagai, Kiyoshi; Johnson, Michelle
2011-10-01
Strokes affect thousands of people worldwide leaving sufferers with severe disabilities affecting their daily activities. In recent years, new rehabilitation techniques have emerged such as constraint-induced therapy, biofeedback therapy and robot-aided therapy. In particular, robotic techniques allow precise recording of movements and application of forces to the affected limb, making it a valuable tool for motor rehabilitation. In addition, robot-aided therapy can utilise visual cues conveyed on a computer screen to convert repetitive movement practice into an engaging task such as a game. Visual cues can also be used to control the information sent to the patient about exercise performance and to potentially address psychosomatic variables influencing therapy. This paper overviews the current state-of-the-art on upper limb robot-mediated therapy with a focal point on the technical requirements of robotic therapy devices leading to the development of upper limb rehabilitation techniques that facilitate reach-to-touch, fine motor control, whole-arm movements and promote rehabilitation beyond hospital stay. The reviewed literature suggest that while there is evidence supporting the use of this technology to reduce functional impairment, besides the technological push, the challenge ahead lies on provision of effective assessment of outcome and modalities that have a stronger impact transferring functional gains into functional independence.
Strength training improves the tri-digit finger-pinch force control of older adults.
Keogh, Justin W; Morrison, Steve; Barrett, Rod
2007-08-01
To investigate the effect of unilateral upper-limb strength training on the finger-pinch force control of older men. Pretest and post-test 6-week intervention study. Exercise science research laboratory. Eleven neurologically fit older men (age range, 70-80y). The strength training group (n=7) trained twice a week for 6 weeks, performing dumbbell bicep curls, wrist flexions, and wrists extensions, while the control group subjects (n=4) maintained their normal activities. Changes in force variability, targeting error, peak power frequency, proportional power, sample entropy, digit force sharing, and coupling relations were assessed during a series of finger-pinch tasks. These tasks involved maintaining a constant or sinusoidal force output at 20% and 40% of each subject's maximum voluntary contraction. All participants performed the finger-pinch tasks with both the preferred and nonpreferred limbs. Analysis of covariance for between-group change scores indicated that the strength training group (trained limb) experienced significantly greater reductions in finger-pinch force variability and targeting error, as well as significantly greater increases in finger-pinch force, sample entropy, bicep curl, and wrist flexion strength than did the control group. A nonspecific upper-limb strength-training program may improve the finger-pinch force control of older men.
Musculoskeletal disorders among workers in plastic manufacturing plants.
Fernandes, Rita de Cássia Pereira; Assunção, Ada Avila; Silvany Neto, Annibal Muniz; Carvalho, Fernando Martins
2010-03-01
Epidemiological studies have indicated an association between musculoskeletal disorders (MSDs) and physical work demands. Psychosocial work demands have also been identified as possible risk factors, but findings have been inconsistent. To evaluate factors associated with upper back, neck and upper limb MSD among workers from 14 plastic manufacturing companies located in the city of Salvador, Brazil. A cross-sectional study design was used to survey a stratified proportional random sample of 577 workers. Data were collected by questionnaire interviews. Factor analysis was carried out on 11 physical demands variables. Psychosocial work demands were measured by demand, control and social support questions. The role of socio-demographic factors, lifestyle and household tasks was also examined. Multiple logistic regression was used to identify factors related to upper back, neck and upper limb MSDs. Results from multiple logistic regression showed that distal upper limb MSDs were related to manual handling, work repetitiveness, psychosocial demands, job dissatisfaction, and gender. Neck, shoulder or upper back MSDs were related to manual handling, work repetitiveness, psychosocial demands, job dissatisfaction, and physical unfitness. Reducing the prevalence of musculoskeletal disorders requires: improving the work environment, reducing biomechanical risk factors, and replanning work organization. Programs must also be aware of gender specificities related to MSDs.
Meyns, Pieter; Molenaers, Guy; Duysens, Jacques; Jonkers, Ilse
2017-01-01
Background: We aimed to study the contribution of upper limb movements to propulsion during walking in typically developing (TD) children ( n = 5) and children with hemiplegic and diplegic cerebral palsy (CP; n = 5 and n = 4, respectively). Methods: Using integrated three-dimensional motion capture data and a scaled generic musculoskeletal model that included upper limbs, we generated torque driven simulations of gait in OpenSim. Induced acceleration analyses were then used to determine the contributions of the individual actuators located at the relevant degrees of freedoms of the upper and lower limb joints to the forward acceleration of the COM at each time point of the gait simulation. The mean values of the contribution of the actuators of upper limbs, lower limbs, and gravity in different phases of the gait cycle were compared between the three groups. Findings: The results indicated a limited contribution of the upper limb actuators to COM forward acceleration compared to the contribution of lower limbs and gravity, in the three groups. In diplegic CP, the contribution of the upper limbs seemed larger compared to TD during the preswing and swing phases of gait. In hemiplegic CP, the unaffected arm seemed to contribute more to COM deceleration during (pre)swing, while the affected side contributed to COM acceleration. Interpretation: These findings suggest that in the presence of lower limb dysfunction, the contribution of the upper limbs to forward propulsion is altered, although they remain negligible compared to the lower limbs and gravity.
Sehatzadeh, S
2015-01-01
Background After stroke, impairment of the upper and lower limb can limit patients’ motor function and ability to perform activities of daily living (ADL). Physiotherapy (PT) is an established clinical practice for stroke patients, playing an important role in improving limb function. Recently, several randomized trials have evaluated the effect of higher-intensity physiotherapy (increased duration and/or frequency) on patients’ functional ability. Objectives Our objective is to investigate whether an increased intensity of PT after stroke results in better outcomes for patients. Data Sources A literature search was performed on June 7, 2013, for English-language randomized controlled trials published from January 1, 2003, to June 7, 2013. Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), and EBM Reviews were searched. Review Methods We reviewed the full text of articles that compared 2 or more levels of PT intensity. Outcomes of interest included motor function, ADL, and quality of life (QOL). Results High-quality evidence showed that higher-intensity upper-limb PT and higher-intensity lower-limb PT both resulted in significantly greater improvements in motor function. Moderate-quality evidence showed that higher-intensity general PT did not. Moderate-quality evidence showed a significant improvement in ADL performance with higher-intensity upper-limb PT, but no improvement with higher-intensity general PT; no studies reported on ADL outcomes on lower-limb PT specifically. According to moderate-quality evidence, patient QOL did not change significantly after increased intensity of upper-limb, lower-limb, or general PT. When considering the results, one difference should be noted: Compared with the studies examining upper- and lower-limb PT, the studies examining general PT looked at a smaller increase—2 hours or less of additional therapy per week. Limitations This analysis is limited to the earlier post-stroke phase and is not equipped to comment on expected outcomes of later-stage PT. Conclusions Overall, this analysis found support for the use of more intensive PT to improve motor function and ability to perform ADL after stroke. PMID:26356355
The development of the NZ-based international upper limb surgery registry.
Sinnott, K A; Dunn, J A; Rothwell, A G; Hall, A S; Post, M W M
2014-08-01
Implementation study. To describe the development and potential value of the New Zealand (NZ) upper limb surgery registry and report the demographic and spinal cord injury characteristics of individuals with tetraplegia collated to date. Multi Center-coordinated from Burwood Spinal Unit, NZ. Following discussions with eight international units, clinical information and outcomes measures were agreed upon for use in this specific population. To implement this consensus, a web-based upper limb surgery registry was developed in NZ. Inclusion criteria included referral to a hand clinic for clinical assessment for suitability for tendon transfer surgery. Clinical data were collected regardless of acceptance of surgery thereby creating a self-selected control group. Twenty-eight years of retrospective NZ data was entered into the registry, as well as 3 years of prospective data collected in NZ. From 1982 to 2013, a total of 357 persons with tetraplegia were assessed as suitable for surgery. Of those, 223 individuals underwent surgery and 134 declined the intervention(s). The prospective group currently comprises 55 assessments with 23 surgery individuals and 32 who have declined surgery to date. Clinical information is now available within a web-based registry for all individuals reviewed in hand clinics from when upper limb surgery was first introduced. A broad range of outcomes of interest can easily be reported directly from the registry. The self-selected control group will allow comparative studies to be explicitly linked to the specific interventions of interest.
Using virtual reality environment to facilitate training with advanced upper-limb prosthesis.
Resnik, Linda; Etter, Katherine; Klinger, Shana Lieberman; Kambe, Charles
2011-01-01
Technological advances in upper-limb prosthetic design offer dramatically increased possibilities for powered movement. The DEKA Arm system allows users 10 powered degrees of movement. Learning to control these movements by utilizing a set of motions that, in most instances, differ from those used to obtain the desired action prior to amputation is a challenge for users. In the Department of Veterans Affairs "Study to Optimize the DEKA Arm," we attempted to facilitate motor learning by using a virtual reality environment (VRE) program. This VRE program allows users to practice controlling an avatar using the controls designed to operate the DEKA Arm in the real world. In this article, we provide highlights from our experiences implementing VRE in training amputees to use the full DEKA Arm. This article discusses the use of VRE in amputee rehabilitation, describes the VRE system used with the DEKA Arm, describes VRE training, provides qualitative data from a case study of a subject, and provides recommendations for future research and implementation of VRE in amputee rehabilitation. Our experience has led us to believe that training with VRE is particularly valuable for upper-limb amputees who must master a large number of controls and for those amputees who need a structured learning environment because of cognitive deficits.
An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot.
Kiguchi, K; Hayashi, Y
2012-08-01
Many kinds of power-assist robots have been developed in order to assist self-rehabilitation and/or daily life motions of physically weak persons. Several kinds of control methods have been proposed to control the power-assist robots according to user's motion intention. In this paper, an electromyogram (EMG)-based impedance control method for an upper-limb power-assist exoskeleton robot is proposed to control the robot in accordance with the user's motion intention. The proposed method is simple, easy to design, humanlike, and adaptable to any user. A neurofuzzy matrix modifier is applied to make the controller adaptable to any users. Not only the characteristics of EMG signals but also the characteristics of human body are taken into account in the proposed method. The effectiveness of the proposed method was evaluated by the experiments.
Ricotti, Valeria; Evans, Matthew R B; Sinclair, Christopher D J; Butler, Jordan W; Ridout, Deborah A; Hogrel, Jean-Yves; Emira, Ahmed; Morrow, Jasper M; Reilly, Mary M; Hanna, Michael G; Janiczek, Robert L; Matthews, Paul M; Yousry, Tarek A; Muntoni, Francesco; Thornton, John S
2016-01-01
A number of promising experimental therapies for Duchenne muscular dystrophy (DMD) are emerging. Clinical trials currently rely on invasive biopsies or motivation-dependent functional tests to assess outcome. Quantitative muscle magnetic resonance imaging (MRI) could offer a valuable alternative and permit inclusion of non-ambulant DMD subjects. The aims of our study were to explore the responsiveness of upper-limb MRI muscle-fat measurement as a non-invasive objective endpoint for clinical trials in non-ambulant DMD, and to investigate the relationship of these MRI measures to those of muscle force and function. 15 non-ambulant DMD boys (mean age 13.3 y) and 10 age-gender matched healthy controls (mean age 14.6 y) were recruited. 3-Tesla MRI fat-water quantification was used to measure forearm muscle fat transformation in non-ambulant DMD boys compared with healthy controls. DMD boys were assessed at 4 time-points over 12 months, using 3-point Dixon MRI to measure muscle fat-fraction (f.f.). Images from ten forearm muscles were segmented and mean f.f. and cross-sectional area recorded. DMD subjects also underwent comprehensive upper limb function and force evaluation. Overall mean baseline forearm f.f. was higher in DMD than in healthy controls (p<0.001). A progressive f.f. increase was observed in DMD over 12 months, reaching significance from 6 months (p<0.001, n = 7), accompanied by a significant loss in pinch strength at 6 months (p<0.001, n = 9) and a loss of upper limb function and grip force observed over 12 months (p<0.001, n = 8). These results support the use of MRI muscle f.f. as a biomarker to monitor disease progression in the upper limb in non-ambulant DMD, with sensitivity adequate to detect group-level change over time intervals practical for use in clinical trials. Clinical validity is supported by the association of the progressive fat transformation of muscle with loss of muscle force and function.
Davidson, Judith
To use the Disability of the Arm Shoulder and Hand (DASH) scale to measure the disability of patients with upper limb amputation(s) and to compare these to other upper limb injuries. All 274 patients over the age of 18 years presenting to Prince Henry Hospital in Sydney over a 4-year time frame were given the DASH assessment tool and asked to complete it under supervision of the Occupational Therapist. Patients with brachial plexus injuries, Complex Regional Pain Syndrome and bilateral upper limb amputations demonstrated significantly higher levels of disability to patients with unilateral upper limb amputations. Partial hand amputees reported a higher level of disability than major unilateral upper limb amputees. For the 48 patients who completed pre- and post-treatment assessments, there was a significant improvement in their health status. Further research is required to understand the factors that affect a patient's perceptions of their disability. Perhaps the definitive nature of an amputation and the immediate involvement of highly skilled health professionals serve to assist patients to accept their injury and therefore minimizes the level of disability.
Feys, Peter; Coninx, Karin; Kerkhofs, Lore; De Weyer, Tom; Truyens, Veronik; Maris, Anneleen; Lamers, Ilse
2015-07-23
Despite the functional impact of upper limb dysfunction in multiple sclerosis (MS), effects of intensive exercise programs and specifically robot-supported training have been rarely investigated in persons with advanced MS. To investigate the effects of additional robot-supported upper limb training in persons with MS compared to conventional treatment only. Seventeen persons with MS (pwMS) (median Expanded Disability Status Scale of 8, range 3.5-8.5) were included in a pilot RCT comparing the effects of additional robot-supported training to conventional treatment only. Additional training consisted of 3 weekly sessions of 30 min interacting with the HapticMaster robot within an individualised virtual learning environment (I-TRAVLE). Clinical measures at body function (Hand grip strength, Motricity Index, Fugl-Meyer) and activity (Action Research Arm test, Motor Activity Log) level were administered before and after an intervention period of 8 weeks. The intervention group were also evaluated on robot-mediated movement tasks in three dimensions, providing active range of motion, movement duration and speed and hand-path ratio as indication of movement efficiency in the spatial domain. Non-parametric statistics were applied. PwMS commented favourably on the robot-supported virtual learning environment and reported functional training effects in daily life. Movement tasks in three dimensions, measured with the robot, were performed in less time and for the transporting and reaching movement tasks more efficiently. There were however no significant changes for any clinical measure in neither intervention nor control group although observational analyses of the included cases indicated large improvements on the Fugl-Meyer in persons with more marked upper limb dysfunction. Robot-supported training lead to more efficient movement execution which was however, on group level, not reflected by significant changes on standard clinical tests. Persons with more marked upper limb dysfunction may benefit most from additional robot-supported training, but larger studies are needed. This trial is registered within the registry Clinical Trials GOV ( NCT02257606 ).
Keogh, Justin W L; Morrison, Steve; Barrett, Rod
2010-01-01
The current study investigated the effect of 2 different types of unilateral resistance training on the postural tremor output of 19 neurologically healthy men age 70-80 yr. The strength- (n = 7) and coordination-training (n = 7) groups trained twice a week for 6 wk, performing dumbbell biceps curls, wrist flexions, and wrist extensions, while the control group (n = 5) maintained their normal activities. Changes in index-finger tremor (RMS amplitude, peak, and proportional power) and upper limb muscle coactivation were assessed during 4 postural conditions that were performed separately with the trained and untrained limbs. The 2 training groups experienced significantly greater reductions in mean RMS tremor amplitude, peak, and proportional tremor power 8-12 Hz and upper limb muscle coactivation, as well as greater increases in strength, than the control group. These results further demonstrate the benefits of resistance training for improving function in older adults.
Driving ability following upper limb amputation.
Burger, Helena; Marincek, Crt
2013-10-01
In the existing literature, there is scarce information about subjects with upper limb amputation and driving. The aim of this study was to find out how frequently subjects following upper limb amputation have problems when driving; most frequently proposed adaptations and, when possible, factors that influence driving ability. Retrospective clinical study. Medical records were reviewed of all subjects following upper limb amputation who had been amputated in the last 5 years and those with congenital upper limb deficiency who in the last 5 years turned 17. Out of 37 subjects, 7 did not attend the clinic for assessment of driving abilities. They were significantly older at the time of the amputation (p < 0.001). To the remaining 30 who attended driving assessment, zero to four car adaptations (two on average) were proposed. There were no correlations between the number of suggested car adaptations and the age at the time of the amputation, amputation level, education and severity of phantom limb pain. Type of prosthesis also did not influence the number of car adaptations. Most people following upper limb amputation need at least one car adaptation for safe driving.
ERIC Educational Resources Information Center
Desmond, Deirdre M.; MacLachlan, Malcolm
2010-01-01
This study aims to describe the prevalence and characteristics of phantom limb pain and residual limb pain after upper limb amputation. One-hundred and forty-one participants (139 males; mean age 74.8 years; mean time since amputation 50.1 years) completed a self-report questionnaire assessing residual and phantom limb pain experience. Prevalence…
3D-printed upper limb prostheses: a review.
Ten Kate, Jelle; Smit, Gerwin; Breedveld, Paul
2017-04-01
This paper aims to provide an overview with quantitative information of existing 3D-printed upper limb prostheses. We will identify the benefits and drawbacks of 3D-printed devices to enable improvement of current devices based on the demands of prostheses users. A review was performed using Scopus, Web of Science and websites related to 3D-printing. Quantitative information on the mechanical and kinematic specifications and 3D-printing technology used was extracted from the papers and websites. The overview (58 devices) provides the general specifications, the mechanical and kinematic specifications of the devices and information regarding the 3D-printing technology used for hands. The overview shows prostheses for all different upper limb amputation levels with different types of control and a maximum material cost of $500. A large range of various prostheses have been 3D-printed, of which the majority are used by children. Evidence with respect to the user acceptance, functionality and durability of the 3D-printed hands is lacking. Contrary to what is often claimed, 3D-printing is not necessarily cheap, e.g., injection moulding can be cheaper. Conversely, 3D-printing provides a promising possibility for individualization, e.g., personalized socket, colour, shape and size, without the need for adjusting the production machine. Implications for rehabilitation Upper limb deficiency is a condition in which a part of the upper limb is missing as a result of a congenital limb deficiency of as a result of an amputation. A prosthetic hand can restore some of the functions of a missing limb and help the user in performing activities of daily living. Using 3D-printing technology is one of the solutions to manufacture hand prostheses. This overview provides information about the general, mechanical and kinematic specifications of all the devices and it provides the information about the 3D-printing technology used to print the hands.
Pirondini, Elvira; Coscia, Martina; Marcheschi, Simone; Roas, Gianluca; Salsedo, Fabio; Frisoli, Antonio; Bergamasco, Massimo; Micera, Silvestro
2016-01-23
Exoskeletons for lower and upper extremities have been introduced in neurorehabilitation because they can guide the patient's limb following its anatomy, covering many degrees of freedom and most of its natural workspace, and allowing the control of the articular joints. The aims of this study were to evaluate the possible use of a novel exoskeleton, the Arm Light Exoskeleton (ALEx), for robot-aided neurorehabilitation and to investigate the effects of some rehabilitative strategies adopted in robot-assisted training. We studied movement execution and muscle activities of 16 upper limb muscles in six healthy subjects, focusing on end-effector and joint kinematics, muscle synergies, and spinal maps. The subjects performed three dimensional point-to-point reaching movements, without and with the exoskeleton in different assistive modalities and control strategies. The results showed that ALEx supported the upper limb in all modalities and control strategies: it reduced the muscular activity of the shoulder's abductors and it increased the activity of the elbow flexors. The different assistive modalities favored kinematics and muscle coordination similar to natural movements, but the muscle activity during the movements assisted by the exoskeleton was reduced with respect to the movements actively performed by the subjects. Moreover, natural trajectories recorded from the movements actively performed by the subjects seemed to promote an activity of muscles and spinal circuitries more similar to the natural one. The preliminary analysis on healthy subjects supported the use of ALEx for post-stroke upper limb robotic assisted rehabilitation, and it provided clues on the effects of different rehabilitative strategies on movement and muscle coordination.
2012-01-01
Background Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this. PMID:22676920
Meadmore, Katie L; Hughes, Ann-Marie; Freeman, Chris T; Cai, Zhonglun; Tong, Daisy; Burridge, Jane H; Rogers, Eric
2012-06-07
Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients' voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants' arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this.
Comparison of electromyography and force as interfaces for prosthetic control.
Corbett, Elaine A; Perreault, Eric J; Kuiken, Todd A
2011-01-01
The ease with which persons with upper-limb amputations can control their powered prostheses is largely determined by the efficacy of the user command interface. One needs to understand the abilities of the human operator regarding the different available options. Electromyography (EMG) is widely used to control powered upper-limb prostheses. It is an indirect estimator of muscle force and may be expected to limit the control capabilities of the prosthesis user. This study compared EMG control with force control, an interface that is used in everyday interactions with the environment. We used both methods to perform a position-tracking task. Direct-position control of the wrist provided an upper bound for human-operator capabilities. The results demonstrated that an EMG control interface is as effective as force control for the position-tracking task. We also examined the effects of gain and tracking frequency on EMG control to explore the limits of this control interface. We found that information transmission rates for myoelectric control were best at higher tracking frequencies than at the frequencies previously reported for position control. The results may be useful for the design of prostheses and prosthetic controllers.
Upper Extremity Artificial Limb Control as an Issue Related to Movement and Mobility in Daily Living
ERIC Educational Resources Information Center
Wallace, Steve; Anderson, David I.; Trujillo, Michael; Weeks, Douglas L.
2005-01-01
The 1992 NIH Research Planning Conference on Prosthetic and Orthotic Research for the 21st Century (Childress, 1992) recognized that the field of prosthetics lacks theoretical understanding and empirical studies on learning to control an upper-extremity prosthesis. We have addressed this problem using a novel approach in which persons without…
Upper limb dysfunction following selective neck dissection: a retrospective questionnaire study.
Carr, Simon D; Bowyer, Duncan; Cox, Graham
2009-06-01
To determine total upper limb function following selective neck dissection over a mean follow-up of 1.6 years. A retrospective questionnaire study in a tertiary head and neck surgical unit. One hundred forty-eight patients who underwent selective neck dissection for head and neck cancer from January 2000 to December 2005 were invited to participate. The main outcome measure was ipsilateral upper limb dysfunction as measured by the Disability of Arm, Shoulder and Hand (DASH) questionnaire. Sixty-five patients responded to the invitation to join the study from 148 invited. Despite accessory nerve conserving surgery for all the selective neck dissections studied, 23% reported no upper limb dysfunction, 54% reported mild upper limb dysfunction, 15% reported moderate, and 8% reported a severe dysfunction. Long-term upper limb dysfunction is common following nerve preserving surgery. The DASH questionnaire is a useful preoperative and postoperative clinical tool for those patients undergoing selective neck dissections. (c) 2009 Wiley Periodicals, Inc.
Commercial gaming devices for stroke upper limb rehabilitation: a systematic review.
Thomson, Katie; Pollock, Alex; Bugge, Carol; Brady, Marian
2014-06-01
Rehabilitation using commercial gaming devices is a new concept for stroke care. Commercial gaming devices such as Nintendo Wii or Sony PlayStation encourage high repetition of arm movements and are being introduced into some clinical settings. The evidence base for gaming use in rehabilitation is growing rapidly and there is a need to systematically synthesise research. Our review aims to integrate evidence on how gaming is being used, explore patient/therapist experience and synthesise evidence of effectiveness. An integrative systematic review was undertaken searching Cochrane Central Register of Controlled Trials (2013), Medline (2013), Embase (2013) and twelve additional databases. Two review authors independently selected studies based on pre-defined inclusion criteria, extracted data and assessed risk of bias. Nineteen studies including 215 patients met inclusion criteria. Studies were typically small scale feasibility studies using a range of research designs, limiting the ability to reach generalised conclusions. Results have been tabulated (activities of daily living, upper limb function/ movement) and qualitative themes identified. Findings suggest that most patients enjoy using commercial gaming and can tolerate 180 mins per week without significant adverse effects. A trend towards improvement was noted for upper limb function/ movement. Few studies recorded outcomes related to activities of daily living or focused on understanding patients' experiences of this intervention. Commercial gaming can provide high intensity upper limb practice however there is insufficient high quality evidence to reach generalisable conclusions about risks or benefits on activities of daily living or upper limb function/movement. © 2014 The Authors. International Journal of Stroke © 2014 World Stroke Organization.
Can new technologies improve upper limb performance in grown-up diplegic children?
Turconi, Anna C; Biffi, Emilia; Maghini, Cristina; Peri, Elisabetta; Servodio Iammarone, Fernanda; Gagliardi, Chiara
2016-10-01
Few systematic studies describe rehabilitation trainings for upper limb in diplegic children with cerebral palsy (CP), who - especially once grown up - are often not considered as a target for rehabilitation interventions. In this pilot study, we describe the details and the effectiveness of an intensive, technology assisted intervention for upper limb. The treatment combines the utilization of Armeo® Spring with a training focused on hand/finger fluency and dexterity in a pre-post treatment experimental design. Participants were ten school-aged children (mean age 11.2) with bilateral CP and diplegia, attending mainstream schools. Participants underwent 40 therapy sessions in four weeks. Armeo® Spring measures, standardized motor and perceptual outcome indexes, as well as everyday life indicators were utilized to assess the effect of the intervention. Upper limb coordination, fluency and quality of movements mainly of hands and fingers significantly improved, with a good transferability to everyday life also in areas not specifically trained, such as self-care abilities and mobility. Probably due to the visual feedback provided by the virtual reality setting (which was all in one the context, the incentive and the product of activities), perceptual abilities significantly improved, too. Our study suggests the importance of intervention on upper limb even in milder CP diplegic forms and in relatively grown-up children. The possibility of modification at least partially relies on learning processes that are active all along development and benefit from stimulation. Though further studies with control groups and follow-up perspective are needed to confirm, new technologies offer interesting possibilities to be integrated into new evidence-based rehabilitation models.
Quantification of upper limb kinetic asymmetries in front crawl swimming.
Morouço, Pedro G; Marinho, Daniel A; Fernandes, Ricardo J; Marques, Mário C
2015-04-01
This study aimed at quantifying upper limb kinetic asymmetries in maximal front crawl swimming and to examine if these asymmetries would affect the contribution of force exertion to swimming performance. Eighteen high level male swimmers with unilateral breathing patterns and sprint or middle distance specialists, volunteered as participants. A load-cell was used to quantify the forces exerted in water by completing a 30s maximal front crawl tethered swimming test and a maximal 50 m free swimming was considered as a performance criterion. Individual force-time curves were obtained to calculate the mean and maximum forces per cycle, for each upper limb. Following, symmetry index was estimated and breathing laterality identified by questionnaire. Lastly, the pattern of asymmetries along the test was estimated for each upper limb using linear regression of peak forces per cycle. Asymmetrical force exertion was observed in the majority of the swimmers (66.7%), with a total correspondence of breathing laterality opposite to the side of the force asymmetry. Forces exerted by the dominant upper limb presented a higher decrease than from the non-dominant. Very strong associations were found between exerted forces and swimming performance, when controlling the isolated effect of symmetry index. Results point that force asymmetries occur in the majority of the swimmers, and that these asymmetries are most evident in the first cycles of a maximum bout. Symmetry index stood up as an influencing factor on the contribution of tethered forces over swimming performance. Thus, to some extent, a certain degree of asymmetry is not critical for short swimming performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Zoccolillo, L; Morelli, D; Cincotti, F; Muzzioli, L; Gobbetti, T; Paolucci, S; Iosa, M
2015-12-01
Previous studies reported controversial results about the efficacy of video-game based therapy (VGT) in improving neurorehabilitation outcomes in children with cerebral palsy (CP). Primary aim was to investigate the effectiveness of VGT with respect to conventional therapy (CT) in improving upper limb motor outcomes in a group of children with CP. Secondary aim was to quantify if VGT leads children to perform a higher number of movements. A cross-over randomized controlled trial (RCT) for investigating the primary aim and a cross-sectional study for investigating the secondary aim of this study. Outpatients. clinical diagnosis of CP, age between 4 and 14 years, level of GMFC between I and IV. QI<35, severe comorbidities, incapacity to stand even with an external support. Twenty-two children with CP (6.89±1.91-year old) were enrolled in a cross-over RCT with 16 sessions of VGT (using Xbox with Kinect device) and then 16 of CT or vice versa. Upper limb functioning was assessed using the Quality of Upper Extremities Skills Test (QUEST) and hand abilities using Abilhand-kids score. According to the secondary aim of this study a secondary cross-sectional study has been performed. Eight children with CP (6.50±1.60-year old) were enrolled into a trial in which five wireless triaxial accelerometers were positioned on their forearms, legs and trunk for quantifying the physical activity during VGT vs. CT. QUEST scores significantly improved only after VGT (P=0.003), and not after CT (P=0.056). The reverse occurred for Abilhand-kids scores (P=0.165 vs. P=0.013, respectively). Quantity of performed movements was three times higher in VGT than in CT (+198%, P=0.027). VGT resulted effective in improving the motor functions of upper limb extremities in children with CP, conceivably for the increased quantity of limb movements, but failed in improving the manual abilities for performing activities of daily living which benefited more from CT. VGT performed using the X-Box with Kinect device could enhance the number of upper limb movements in children with CP during rehabilitation and in turn improving upper limb motor skills, but CT remained superior for improving performances in manual activities of daily living.
Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial.
Gilliaux, Maxime; Renders, Anne; Dispa, Delphine; Holvoet, Dominique; Sapin, Julien; Dehez, Bruno; Detrembleur, Christine; Lejeune, Thierry M; Stoquart, Gaëtan
2015-02-01
Several pilot studies have evoked interest in robot-assisted therapy (RAT) in children with cerebral palsy (CP). To assess the effectiveness of RAT in children with CP through a single-blind randomized controlled trial. Sixteen children with CP were randomized into 2 groups. Eight children performed 5 conventional therapy sessions per week over 8 weeks (control group). Eight children completed 3 conventional therapy sessions and 2 robot-assisted sessions per week over 8 weeks (robotic group). For both groups, each therapy session lasted 45 minutes. Throughout each RAT session, the patient attempted to reach several targets consecutively with the REAPlan. The REAPlan is a distal effector robot that allows for displacements of the upper limb in the horizontal plane. A blinded assessment was performed before and after the intervention with respect to the International Classification of Functioning framework: body structure and function (upper limb kinematics, Box and Block test, Quality of Upper Extremity Skills Test, strength, and spasticity), activities (Abilhand-Kids, Pediatric Evaluation of Disability Inventory), and participation (Life Habits). During each RAT session, patients performed 744 movements on average with the REAPlan. Among the variables assessed, the smoothness of movement (P < .01) and manual dexterity assessed by the Box and Block test (P = .04) improved significantly more in the robotic group than in the control group. This single-blind randomized controlled trial provides the first evidence that RAT is effective in children with CP. Future studies should investigate the long-term effects of this therapy. © The Author(s) 2014.
Use of botulinum toxin type A and type B for spasticity in upper and lower limbs.
Bell, Kathleen R; Williams, Faren
2003-11-01
BT is likely effective in controlling spasticity in the smaller muscles of the arm and hand, although there has been only one large controlled trial. For lower limb spasticity, the outcomes are more mixed. No large randomized, controlled trials have been done, and the larger size of the muscles results in a decreased ability to treat widespread spasticity. For more focal treatment in the legs and feet, however, and when combined with other denervating agents or physical modalities, BT is probably effective. Careful analysis is warranted before performing any chemodenervation on a limb muscle or muscles.
Prevalence of upper limb disorders among female librarians.
Pandy, R
2013-09-01
Work as a librarian involves exposure to potential risk factors for developing upper limb disorders. The prevalence of upper limb symptoms has, however, not previously been assessed in this occupational group. To estimate the 7-day and annual prevalence of self-reported neck and upper limb symptoms in librarians and to examine associations with specific tasks and ergonomic risk factors. A cross-sectional study using components of the standardized Nordic questionnaire. The study population consisted of librarians employed by a large local authority, and data collection was by means of a self-administered questionnaire. from studies on keyboard workers and on the general population were used as comparators. The 7-day prevalence of self-reported neck and upper limb pain in female librarians was 42% (95% confidence interval (CI) 33.7-50.5) and the annual prevalence was 65% (95% CI 56.6-72.8). The prevalence of reported wrist and hand pain increased with increased working involving a wide thumb-index span (P < 0.05) with a significant linear trend in prevalence with increasing exposure (P < 0.01). There was a strong association between reporting hand and/or wrist pain and awareness of work-related upper limb disorder (P < 0.05). The annual prevalence of self-reported upper limb symptoms among female librarians was high, but there was insufficient evidence to confirm whether the prevalence was higher than in the general population or among keyboard workers. Working with a wide thumb-index span was associated with reporting upper limb symptoms.
Sajan, Jane Elizabeth; John, Judy Ann; Grace, Pearlin; Sabu, Sneha Sara; Tharion, George
2017-08-01
To assess the effect of interactive video gaming (IVG) with Nintendo Wii (Wii) supplemented to conventional therapy in rehabilitation of children with cerebral palsy (CP). Randomized, controlled, assessor-blinded study. Children with CP; 10 children each in the control and intervention groups. IVG using Wii, given as a supplement to conventional therapy, for 45 min per day, 6 days a week for 3 weeks. The children in the control group received conventional therapy alone. Posture control and balance, upper limb function, visual-perceptual skills, and functional mobility. Significant improvement in upper limb functions was seen in the intervention group but not in the control group. Improvements in balance, visual perception, and functional mobility were not significantly different between control and intervention groups. Wii-based IVG may be offered as an effective supplement to conventional therapy in the rehabilitation of children with CP.
Tosun, Aliye; Türe, Sabiha; Askin, Ayhan; Yardimci, Engin Ugur; Demirdal, Secil Umit; Kurt Incesu, Tülay; Tosun, Ozgur; Kocyigit, Hikmet; Akhan, Galip; Gelal, Fazıl Mustafa
2017-07-01
To assess the efficacy of inhibitory repetitive transcranial magnetic stimulation (rTMS) and neuromuscular electrical stimulation (NMES) on upper extremity motor function in patients with acute/subacute ischemic stroke. Twenty-five ischemic acute/subacute stroke subjects were enrolled in this randomized controlled trial. Experimental group 1 received low frequency (LF) rTMS to the primary motor cortex of the unaffected side + physical therapy (PT) including activities to improve strength, flexibility, transfers, posture, balance, coordination, and activities of daily living, mainly focusing on upper limb movements; experimental group 2 received the same protocol combined with NMES to hand extensor muscles; and the control group received only PT. Functional magnetic resonance imaging (fMRI) scan was used to evaluate the activation or inhibition of the affected and unaffected primary motor cortex. No adverse effect was reported. Most of the clinical outcome scores improved significantly in all groups, however no statistically significant difference was found between groups due to the small sample sizes. The highest percent improvement scores were observed in TMS + NMES group (varying between 48 and 99.3%) and the lowest scores in control group (varying between 13.1 and 28.1%). Hand motor recovery was significant in both experimental groups while it did not change in control group. Some motor cortex excitability changes were also observed in fMRI. LF-rTMS with or without NMES seems to facilitate the motor recovery in the paretic hand of patients with acute/subacute ischemic stroke. TMS or the combination of TMS + NMES may be a promising additional therapy in upper limb motor training. Further studies with larger numbers of patients are needed to establish their effectiveness in upper limb motor rehabilitation of stroke.
Meadmore, Katie L; Cai, Zhonglun; Tong, Daisy; Hughes, Ann-Marie; Freeman, Chris T; Rogers, Eric; Burridge, Jane H
2011-01-01
A novel system has been developed which combines robotic therapy with electrical stimulation (ES) for upper limb stroke rehabilitation. This technology, termed SAIL: Stimulation Assistance through Iterative Learning, employs advanced model-based iterative learning control (ILC) algorithms to precisely assist participant's completion of 3D tracking tasks with their impaired arm. Data is reported from a preliminary study with unimpaired participants, and also from a single hemiparetic stroke participant with reduced upper limb function who has used the system in a clinical trial. All participants completed tasks which involved moving their (impaired) arm to follow an image of a slowing moving sphere along a trajectory. The participants' arm was supported by a robot and ES was applied to the triceps brachii and anterior deltoid muscles. During each task, the same tracking trajectory was repeated 6 times and ILC was used to compute the stimulation signals to be applied on the next iteration. Unimpaired participants took part in a single, one hour training session and the stroke participant undertook 18, 1 hour treatment sessions composed of tracking tasks varying in length, orientation and speed. The results reported describe changes in tracking ability and demonstrate feasibility of the SAIL system for upper limb rehabilitation. © 2011 IEEE
Li, Chong; Bi, Sheng; Zhang, Xuemin; Huo, Jianfei
2017-01-01
Numerous robots have been widely used to deliver rehabilitative training for hemiplegic patients to improve their functional ability. Because of the complexity and diversity of upper limb motion, customization of training patterns is one key factor during upper limb rehabilitation training. Most of the current rehabilitation robots cannot intelligently provide adaptive training parameters, and they have not been widely used in clinical rehabilitation. This article proposes a new end-effector upper limb rehabilitation robot, which is a two-link robotic arm with two active degrees of freedom. This work investigated the kinematics and dynamics of the robot system, the control system, and the realization of different rehabilitation therapies. We also explored the influence of constraint in rehabilitation therapies on interaction force and muscle activation. The deviation of the trajectory of the end effector and the required trajectory was less than 1 mm during the tasks, which demonstrated the movement accuracy of the robot. Besides, results also demonstrated the constraint exerted by the robot provided benefits for hemiplegic patients by changing muscle activation in the way similar to the movement pattern of the healthy subjects, which indicated that the robot can improve the patient's functional ability by training the normal movement pattern. PMID:29065614
Liu, Yali; Li, Chong; Ji, Linhong; Bi, Sheng; Zhang, Xuemin; Huo, Jianfei; Ji, Run
2017-01-01
Numerous robots have been widely used to deliver rehabilitative training for hemiplegic patients to improve their functional ability. Because of the complexity and diversity of upper limb motion, customization of training patterns is one key factor during upper limb rehabilitation training. Most of the current rehabilitation robots cannot intelligently provide adaptive training parameters, and they have not been widely used in clinical rehabilitation. This article proposes a new end-effector upper limb rehabilitation robot, which is a two-link robotic arm with two active degrees of freedom. This work investigated the kinematics and dynamics of the robot system, the control system, and the realization of different rehabilitation therapies. We also explored the influence of constraint in rehabilitation therapies on interaction force and muscle activation. The deviation of the trajectory of the end effector and the required trajectory was less than 1 mm during the tasks, which demonstrated the movement accuracy of the robot. Besides, results also demonstrated the constraint exerted by the robot provided benefits for hemiplegic patients by changing muscle activation in the way similar to the movement pattern of the healthy subjects, which indicated that the robot can improve the patient's functional ability by training the normal movement pattern.
Mansoor, Awais; Ahmed, Wamiq M; Samarapungavan, Ala; Cirillo, John; Schwarte, David; Robinson, J Paul; Duerstock, Bradley S
2010-01-01
A web-based application was developed to remotely view slide specimens and control all functions of a research-level light microscopy workstation, called AccessScope. Students and scientists with upper limb mobility and visual impairments are often unable to use a light microscope by themselves and must depend on others in its operation. Users with upper limb mobility impairments and low vision were recruited to assist in the design process of the AccessScope personal computer (PC) user interface. Participants with these disabilities were evaluated in their ability to use AccessScope to perform microscopical tasks. AccessScope usage was compared with inspecting prescanned slide images by grading participants' identification and understanding of histological features and knowledge of microscope operation. With AccessScope subjects were able to independently perform common light microscopy functions through an Internet browser by employing different PC pointing devices or accessibility software according to individual abilities. Subjects answered more histology and microscope usage questions correctly after first participating in an AccessScope test session. AccessScope allowed users with upper limb or visual impairments to successfully perform light microscopy without assistance. This unprecedented capability is crucial for students and scientists with disabilities to perform laboratory coursework or microscope-based research and pursue science, technology, engineering, and mathematics fields.
Cimolin, Veronica; Beretta, Elena; Piccinini, Luigi; Turconi, Anna Carla; Locatelli, Federica; Galli, Manuela; Strazzer, Sandra
2012-01-01
The aims of this study are to quantify the movement limitation of upper limbs in hemiplegic children with traumatic brain injury (TBI) by using a clinical-functional scale and upper limb kinematics and to evaluate the effectiveness of constraint-induced movement therapy (CIMT) on upper limbs. Pre-post study. Clinical rehabilitation research laboratory. Ten children with TBI. The participants were evaluated by clinical examinations (Gross Motor Function Measure, Besta scale, Quality of Upper Extremities Skills Test, and Manual Ability Classification System) and 3D kinematic movement analysis of the upper limb before the CIMT program (pretest: 0.7 years after the injury) and at the end of the program (posttest: 10 weeks later). After the CIMT, most of the clinical measures improved significantly. Some significant improvements were present in terms of kinematics, in particular, in the movement duration and the velocity of movement execution of both tasks; the index of curvature and the average jerk improved, respectively, during reaching and hand-to-mouth task, while the adjusting sway parameter decreased during the 2 movements. Significant improvements were found in upper limb joint excursion after the rehabilitative programme too. Our results suggest that the CIMT program can improve movement efficiency and upper limb function in children after TBI. The integration of the clinical outcomes and upper limb kinematics revealed to be crucial in detecting the effects of the CIMT programme.
Simultaneous, proportional, multi-axis prosthesis control using multichannel surface EMG.
Yatsenko, Dimitri; McDonnall, Daniel; Guillory, K Shane
2007-01-01
Most upper limb prosthesis controllers only allow the individual selection and control of single joints of the limb. The main limiting factor for simultaneous multi-joint control is usually the availability of reliable independent control signals that can intuitively be used. In this paper, a novel method is presented for extraction of individual muscle source signals from surface EMG array recordings, based on EMG energy orthonormalization along principle movement vectors. In cases where independently-controllable muscles are present in residual limbs, this method can be used to provide simultaneous, multi-axis, proportional control of prosthetic systems. Initial results are presented for simultaneous control of wrist rotation, wrist flexion/extension, and grip open/close for two intact subjects under both isometric and non-isometric conditions and for one subject with transradial amputation.
Singh, D K A; Rahman, N N A; Seffiyah, R; Chang, S Y; Zainura, A K; Aida, S R; Rajwinder, K H S
2017-04-01
There is limited information regarding the effects of interactive virtual reality (VR) games on psychological and physical well-being among adults with physical disabilities. We aimed to examine the impact of VR games on psychological well-being, upper limb motor function and reaction time in adults with physical disabilities. Fifteen participants completed the intervention using Wii VR games in this pilot study. Depressive, Anxiety and Stress Scales (DASS) and Capabilities of Upper Extremity (CUE) questionnaires were used to measure psychological well-being and upper limb motor function respectively. Upper limb reaction time was measured using reaction time test. Results showed that there was a significant difference (p<0.05) in DASS questionnaire and average reaction time score after intervention. There is a potential for using interactive VR games as an exercise tool to improve psychological wellbeing and upper limb reaction time among adults with disabilities.
Pérez-Cruzado, David; Merchán-Baeza, Jose Antonio; González-Sánchez, Manuel; Cuesta-Vargas, Antonio I
2017-04-01
Stroke is a leading cause of disability in developed countries. One of the most widespread techniques in clinical practice is mirror therapy (MT). To determine the effectiveness of MT over other methods of intervention in the recovery of upper limb function in people who have had a stroke. A systematic review was conducted. The search string was established based on the last systematic review about MT that dated from 2009: "upper extremity" OR "upper limb "AND "mirror therapy" AND stroke. For this search Pubmed, Scopus and SciELO databases were used. Fifteen studies were included in the systematic review. Recovery of the upper limb, upper limb function and gross manual dexterity were frequently measured in these studies. In the primary variables in promoting recovery, MT alone showed better results in acute and chronic stroke patients in upper limb functioning than either conventional rehabilitation (CR) or CR plus MT. PROSPERO registration number: CRD42015026869. © 2016 Occupational Therapy Australia.
Do, Ji-Hye; Yoo, Eun-Young; Jung, Min-Ye; Park, Hae Yean
2016-01-01
Hemiplegic cerebral palsy is a neurological symptom appearing on the unilateral arm and leg of the body that causes affected upper/lower limb muscle weakening and dysesthesia and accompanies tetany and difficulties in postural control due to abnormal muscle tone, and difficulties in body coordination. The purpose of this study was to examine the impact of virtual reality-based bilateral arm training on the motor skills of children with hemiplegic cerebral palsy, in terms of their upper limb motor skills on the affected side, as well as their bilateral coordination ability. The research subjects were three children who were diagnosed with hemiplegic cerebral palsy. The research followed an ABA design, which was a single-subject experimental design. The procedure consisted of a total of 20 sessions, including four during the baseline period (A1), 12 during the intervention period (B), and four during the baseline regression period (A2), For the independent variable bilateral arm training based on virtual reality, Nintendo Wii game was played for 30 minutes in each of the 12 sessions. For the dependent variables of upper limb motor skills on the affected side and bilateral coordination ability, a Wolf Motor Function Test (WMFT) was carried out for each session and the Pediatric Motor Activity Log (PMAL) was measured before and after the intervention, as well as after the baseline regression period. To test bilateral coordination ability, shooting baskets in basketball with both hands and moving large light boxes were carried out under operational definitions, with the number of shots and time needed to move boxes measured. The results were presented using visual graphs and bar graphs. The study's results indicated that after virtual reality-based bilateral arm training, improvement occurred in upper limb motor skills on the affected sides, and in bilateral coordination ability, for all of the research subjects. Measurements of the effects of sustained therapy after completion of the intervention, during the baseline regression period, revealed that upper limb motor skills on the affected side and bilateral coordination ability were better than in the baseline period for all subjects. This study confirmed that for children with hemiplegic with cerebral palsy, bilateral arm training based on virtual reality can be an effective intervention method for enhancing the upper limb motor skills on the affected side, as well as bilateral coordination ability.
Oral acetylsalicylic acid and prevalence of actinic keratosis.
Schmitt, Juliano; Miot, Hélio
2014-01-01
To investigate the influence of a regular oral use of acetylsalicylic acid in the prevalence of actinic keratosis. A case-control study with dermatologic outpatients above 50 years of age assessed between 2009 and 2011. Cases were defined as those who had been under regular use of oral acetylsalicylic acid for more than six consecutive months. The assessment focused on: age, sex, skin-type, tobacco smoking, use of medication, occurrence of individual or family skin cancer, and sunscreen and sun exposure habits. Actinic keratoses were counted in the medial region of the face and upper limbs. Counts were adjusted by co-variables based on a generalized linear model. A total of 74 cases and 216 controls were assessed. The median time of acetylsalicylic acid use was 36 months. Cases differed from controls as to the highest age, highest prevalence of use of angiotensin-converting enzyme inhibitors and fewer keratosis on the face and on the upper limbs (p<0.05). The multivariate model showed that the use of acetylsalicylic acid was associated to lower counts of face actinic keratosis and upper-limb erythematous actinic keratosis (p<0.05), regardless of other risk factors. The regular use of oral acetylsalicylic acid for more than six months was associated to a lower prevalence of actinic keratosis, especially facial and erythematous ones.
Dipla, Konstantina; Makri, Maria; Zafeiridis, Andreas; Soulas, Dimitrios; Tsalouhidou, Sofia; Mougios, Vassilis; Kellis, Spyros
2008-08-01
Resistance exercise is recommended to individuals following high-protein diets in order to augment changes in body composition. However, alterations in macronutrient composition may compromise physical performance. The present study investigated the effects of an isoenergetic high-protein diet on upper and lower limb strength and fatigue during high-intensity resistance exercise. Ten recreationally active women, aged 25-40 years, followed a control diet (55, 15 and 30 % of energy from carbohydrate, protein and fat, respectively) and a high-protein diet (respective values, 30, 40 and 30) for 7 d each in a random counterbalanced design. Each participant underwent strength testing of upper limb (isometric handgrip strength and endurance) and lower limb (four sets of sixteen maximal knee flexions and extensions on an isokinetic dynamometer) before and after applying each diet. Body weight, body fat and RER were significantly reduced following the high-protein diet (P < 0.05). No differences were found between diets in any of the strength performance parameters (handgrip strength, handgrip endurance, peak torque, total work and fatigue) or the responses of heart rate, systolic and diastolic arterial pressure, blood lactate and blood glucose to exercise. Women on a short-term isoenergetic high-protein, moderate-fat diet maintained muscular strength and endurance of upper and lower limbs during high-intensity resistance exercise without experiencing fatigue earlier compared with a control diet.
Pei, Yu-Cheng; Chen, Jean-Lon; Wong, Alice M K; Tseng, Kevin C
2017-01-01
Case series. IV (case series). Robot-assisted therapy for upper limb rehabilitation is an emerging research topic and its design process must integrate engineering, neurological pathophysiology, and clinical needs. This study developed/evaluated the usefulness of a novel rehabilitation device, the MirrorPath , designed for the upper limb rehabilitation of patients with hemiplegic stroke. The process follows Tseng's methodology for innovative product design and development, namely two stages, device development and usability assessment. During the development process, the design was guided by patients' rehabilitation needs as defined by patients and their therapists. The design applied synchronic movement of the bilateral upper limbs, an approach that is compatible with the bilateral movement therapy and proprioceptive neuromuscular facilitation theories. MirrorPath consists of a robotic device that guides upper limb movement linked to a control module containing software controlling the robotic movement. Five healthy subjects were recruited in the pretest, and 4 patients, 4 caregivers, and 4 therapists were recruited in the formal test for usability. All recruited subjects were allocated to the test group, completed the evaluation, and their data were all analyzed. The total system usability scale score obtained from the patients, caregivers, and therapists was 71.8 ± 11.9, indicating a high level of usability and product acceptance. Following a standard development process, we could yield a design that meets clinical needs. This low-cost device provides a feasible platform for carrying out robot-assisted bilateral movement therapy of patients with hemiplegic stroke. identifier NCT02698605.
Alreni, Ahmad Salah Eldin; Harrop, Deborah; Gumber, Anil; McLean, Sionnadh
2015-04-07
Upper limb disability is a common musculoskeletal condition frequently associated with neck pain. Recent literature has reported the need to utilise validated upper limb outcome measures in the assessment and management of patients with neck pain. However, there is a lack of clear guidance about the suitability of available measures, which may impede utilisation. This review will identify all available measures of upper limb function developed for use in neck pain patients and evaluate their measurement and practical properties in order to identify those measures that are most appropriate for use in clinical practice and research. This review will be performed in two phases. Phase one will identify all measures used to assess upper limb function for patients with neck pain. Phase two will identify all available studies of the measurement and practical properties of identified instrument. The COnsensus-based Standards for selection of health Measurement INstrument (COSMIN) will be used to evaluate the methodological quality of the included studies. To ensure methodological rigour, the findings of this review will be reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guideline. Optimal management of patients with neck pain should incorporate upper limb rehabilitation. The findings of this study will assist clinicians who seek to utilise suitable and accurate measures to assess upper limb function for a patient with neck pain. In addition, the findings of this study may suggest new research directions to support the development of upper limb outcome measures for patients with neck pain. PROSPERO CRD42015016624.
Emmerson, Kellie B; Harding, Katherine E; Taylor, Nicholas F
2017-08-01
To determine whether patients with stroke receiving rehabilitation for upper limb deficits using smart technology (video and reminder functions) demonstrate greater adherence to prescribed home exercise programmes and better functional outcomes when compared with traditional paper-based exercise prescription. Randomized controlled trial comparing upper limb home exercise programmes supported by video and automated reminders on smart technology, with standard paper-based home exercise programmes. A community rehabilitation programme within a large metropolitan health service. Patients with stroke with upper limb deficits, referred for outpatient rehabilitation. Participants were randomly assigned to the control (paper-based home exercise programme) or intervention group (home exercise programme filmed on an electronic tablet, with an automated reminder). Both groups completed their prescribed home exercise programme for four weeks. The primary outcome was adherence using a self-reported log book. Secondary outcomes were change in upper limb function and patient satisfaction. A total of 62 participants were allocated to the intervention ( n = 30) and control groups ( n = 32). There were no differences between the groups for measures of adherence (mean difference 2%, 95% CI -12 to 17) or change in the Wolf Motor Function Test log transformed time (mean difference 0.02 seconds, 95% CI -0.1 to 0.1). There were no between-group differences in how participants found instructions ( p = 0.452), whether they remembered to do their exercises ( p = 0.485), or whether they enjoyed doing their exercises ( p = 0.864). The use of smart technology was not superior to standard paper-based home exercise programmes for patients recovering from stroke. This trial design was registered prospectively with the Australian and New Zealand Clinical Trials Register, ID: ACTRN 12613000786796. http://www.anzctr.org.au/trialSearch.aspx.
Ubiquitous human upper-limb motion estimation using wearable sensors.
Zhang, Zhi-Qiang; Wong, Wai-Choong; Wu, Jian-Kang
2011-07-01
Human motion capture technologies have been widely used in a wide spectrum of applications, including interactive game and learning, animation, film special effects, health care, navigation, and so on. The existing human motion capture techniques, which use structured multiple high-resolution cameras in a dedicated studio, are complicated and expensive. With the rapid development of microsensors-on-chip, human motion capture using wearable microsensors has become an active research topic. Because of the agility in movement, upper-limb motion estimation has been regarded as the most difficult problem in human motion capture. In this paper, we take the upper limb as our research subject and propose a novel ubiquitous upper-limb motion estimation algorithm, which concentrates on modeling the relationship between upper-arm movement and forearm movement. A link structure with 5 degrees of freedom (DOF) is proposed to model the human upper-limb skeleton structure. Parameters are defined according to Denavit-Hartenberg convention, forward kinematics equations are derived, and an unscented Kalman filter is deployed to estimate the defined parameters. The experimental results have shown that the proposed upper-limb motion capture and analysis algorithm outperforms other fusion methods and provides accurate results in comparison to the BTS optical motion tracker.
Design and preliminary evaluation of an exoskeleton for upper limb resistance training
NASA Astrophysics Data System (ADS)
Wu, Tzong-Ming; Chen, Dar-Zen
2012-06-01
Resistance training is a popular form of exercise recommended by national health organizations, such as the American College of Sports Medicine (ACSM) and the American Heart Association (AHA). This form of training is available for most populations. A compact design of upper limb exoskeleton mechanism for homebased resistance training using a spring-loaded upper limb exoskeleton with a three degree-of-freedom shoulder joint and a one degree-of-freedom elbow joint allows a patient or a healthy individual to move the upper limb with multiple joints in different planes. It can continuously increase the resistance by adjusting the spring length to train additional muscle groups and reduce the number of potential injuries to upper limb joints caused by the mass moment of inertia of the training equipment. The aim of this research is to perform a preliminary evaluation of the designed function by adopting an appropriate motion analysis system and experimental design to verify our prototype of the exoskeleton and determine the optimal configuration of the spring-loaded upper limb exoskeleton.
[Venous tone of the limbs. Methods and comparison of 2 areas].
Journo, H; London, G; Pannier, B; Safar, M
1989-07-01
The limb venous tone, index of local venous compliance, was studied with mercury strain gauge plethysmography on 28 male normal subjects (40 +/- 17 years, +/- SD) simultaneously on upper and lower limbs. Measurements were done after 20 mn rest in supine position. Venous tone (VT) equals the slope of the pressure-volume curve established by simultaneous recording of the forearm and calf relative volumes for successive steps of pressure lower than or equal to 30 mmHg. Limb venous capacitance was expressed by means of the maximal limb relative volume (V30) reached for a pressure of 30 mmHg applied through cuffs in standardized conditions. The upper limb venous tone was greater than the lower limb venous tone: 24.3 +/- 8.2 mmHg/ml/100 vs 17.5 +/- 7.9 mmHg/ml/100, p = 0.001. V30 was greater in lower limb than in upper limb: 1.5 +/- 0.5 ml/100 vs 1.1 +/- 0.4 ml/100, p = 0.001. In conclusion, it appears that upper and lower limbs venous distensibility and capacitance are different. They are greater in the lower limb in baseline conditions. Thus simultaneous studies of both these limb venous systems seems important for physiological experiments because of their baseline differences.
Risk factors of the upper limb disorders among cashiers in grocery retail industries: A review
NASA Astrophysics Data System (ADS)
Zuhaidi, Muhammad Fareez Ahmad; Nasrull Abdol Rahman, Mohd
2017-08-01
Cashiers have been appointed as one of top ten occupations in developing musculoskeletal disorders (MSDs) particularly on the upper limb. Many of the workers are still in high risk injury due to incorrect workstations and lack of employee education in basic biomechanical principles. Normally, cashiers are exposed in several risk factors such as awkward and static postures, repetition motion and forceful exertions. Thus, cashiers in supermarket are considered at risk from developing upper limb disorders (ULDs). This review evaluates selected papers that have studied risk factors of the upper limb disorders among cashiers in grocery retail industries. In addition, other studies from related industry were reviewed as applicable. In order to understand risk factors of the upper limb disorders among cashiers, it is recommended that future studies are needed in evaluating these risk factors among cashiers.
Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety.
Kang, Hao-Bo; Wang, Jian-Hui
2013-11-01
This paper studies an adaptive control strategy for a class of 5 DOF upper-limb exoskeleton robot with a special safety consideration. The safety requirement plays a critical role in the clinical treatment when assisting patients with shoulder, elbow and wrist joint movements. With the objective of assuring the tracking performance of the pre-specified operations, the proposed adaptive controller is firstly designed to be robust to the model uncertainties. To further improve the safety and fault-tolerance in the presence of unknown large parameter variances or even actuator faults, the adaptive controller is on-line updated according to the information provided by an adaptive observer without additional sensors. An output tracking performance is well achieved with a tunable error bound. The experimental example also verifies the effectiveness of the proposed control scheme. © 2013 ISA. Published by ISA. All rights reserved.
Feedforward control strategies of subjects with transradial amputation in planar reaching.
Metzger, Anthony J; Dromerick, Alexander W; Schabowsky, Christopher N; Holley, Rahsaan J; Monroe, Brian; Lum, Peter S
2010-01-01
The rate of upper-limb amputations is increasing, and the rejection rate of prosthetic devices remains high. People with upper-limb amputation do not fully incorporate prosthetic devices into their activities of daily living. By understanding the reaching behaviors of prosthesis users, researchers can alter prosthetic devices and develop training protocols to improve the acceptance of prosthetic limbs. By observing the reaching characteristics of the nondisabled arms of people with amputation, we can begin to understand how the brain alters its motor commands after amputation. We asked subjects to perform rapid reaching movements to two targets with and without visual feedback. Subjects performed the tasks with both their prosthetic and nondisabled arms. We calculated endpoint error, trajectory error, and variability and compared them with those of nondisabled control subjects. We found no significant abnormalities in the prosthetic limb. However, we found an abnormal leftward trajectory error (in right arms) in the nondisabled arm of prosthetic users in the vision condition. In the no-vision condition, the nondisabled arm displayed abnormal leftward endpoint errors and abnormally higher endpoint variability. In the vision condition, peak velocity was lower and movement duration was longer in both arms of subjects with amputation. These abnormalities may reflect the cortical reorganization associated with limb loss.
Dawson, Jesse; Pierce, David; Dixit, Anand; Kimberley, Teresa J; Robertson, Michele; Tarver, Brent; Hilmi, Omar; McLean, John; Forbes, Kirsten; Kilgard, Michael P; Rennaker, Robert L; Cramer, Steven C; Walters, Matthew; Engineer, Navzer
2016-01-01
Recent animal studies demonstrate that vagus nerve stimulation (VNS) paired with movement induces movement-specific plasticity in motor cortex and improves forelimb function after stroke. We conducted a randomized controlled clinical pilot study of VNS paired with rehabilitation on upper-limb function after ischemic stroke. Twenty-one participants with ischemic stroke >6 months before and moderate to severe upper-limb impairment were randomized to VNS plus rehabilitation or rehabilitation alone. Rehabilitation consisted of three 2-hour sessions per week for 6 weeks, each involving >400 movement trials. In the VNS group, movements were paired with 0.5-second VNS. The primary objective was to assess safety and feasibility. Secondary end points included change in upper-limb measures (including the Fugl-Meyer Assessment-Upper Extremity). Nine participants were randomized to VNS plus rehabilitation and 11 to rehabilitation alone. There were no serious adverse device effects. One patient had transient vocal cord palsy and dysphagia after implantation. Five had minor adverse device effects including nausea and taste disturbance on the evening of therapy. In the intention-to-treat analysis, the change in Fugl-Meyer Assessment-Upper Extremity scores was not significantly different (between-group difference, 5.7 points; 95% confidence interval, -0.4 to 11.8). In the per-protocol analysis, there was a significant difference in change in Fugl-Meyer Assessment-Upper Extremity score (between-group difference, 6.5 points; 95% confidence interval, 0.4 to 12.6). This study suggests that VNS paired with rehabilitation is feasible and has not raised safety concerns. Additional studies of VNS in adults with chronic stroke will now be performed. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01669161. © 2015 The Authors.
Pierce, David; Dixit, Anand; Kimberley, Teresa J.; Robertson, Michele; Tarver, Brent; Hilmi, Omar; McLean, John; Forbes, Kirsten; Kilgard, Michael P.; Rennaker, Robert L.; Cramer, Steven C.; Walters, Matthew; Engineer, Navzer
2016-01-01
Background and Purpose— Recent animal studies demonstrate that vagus nerve stimulation (VNS) paired with movement induces movement-specific plasticity in motor cortex and improves forelimb function after stroke. We conducted a randomized controlled clinical pilot study of VNS paired with rehabilitation on upper-limb function after ischemic stroke. Methods— Twenty-one participants with ischemic stroke >6 months before and moderate to severe upper-limb impairment were randomized to VNS plus rehabilitation or rehabilitation alone. Rehabilitation consisted of three 2-hour sessions per week for 6 weeks, each involving >400 movement trials. In the VNS group, movements were paired with 0.5-second VNS. The primary objective was to assess safety and feasibility. Secondary end points included change in upper-limb measures (including the Fugl–Meyer Assessment-Upper Extremity). Results— Nine participants were randomized to VNS plus rehabilitation and 11 to rehabilitation alone. There were no serious adverse device effects. One patient had transient vocal cord palsy and dysphagia after implantation. Five had minor adverse device effects including nausea and taste disturbance on the evening of therapy. In the intention-to-treat analysis, the change in Fugl–Meyer Assessment-Upper Extremity scores was not significantly different (between-group difference, 5.7 points; 95% confidence interval, −0.4 to 11.8). In the per-protocol analysis, there was a significant difference in change in Fugl–Meyer Assessment-Upper Extremity score (between-group difference, 6.5 points; 95% confidence interval, 0.4 to 12.6). Conclusions— This study suggests that VNS paired with rehabilitation is feasible and has not raised safety concerns. Additional studies of VNS in adults with chronic stroke will now be performed. Clinical Trial Registration— URL: https://www.clinicaltrials.gov. Unique identifier: NCT01669161. PMID:26645257
Andrade Ortega, Juan Alfonso; Millán Gómez, Ana Pilar; Ribeiro González, Marisa; Martínez Piró, Pilar; Jiménez Anula, Juan; Sánchez Andújar, María Belén
2017-06-21
The early detection of upper limb complications is important in women operated on for breast cancer. The "FACT-B+4-UL" questionnaire, a specific variant of the Functional Assessment of Cancer Therapy-Breast (FACT-B) is available among others to measure the upper limb function. The Spanish version of the upper limb subscale of the FACT-B+4 was validated in a prospective cohort of 201 women operated on for breast cancer (factor analysis, internal consistency, test-retest reliability, construct validity and sensitivity to change were determined). Its predictive capacity of subsequent lymphoedema and other complications in the upper limb was explored using logistic regression. This subscale is unifactorial and has a great internal consistency (Cronbach's alpha: 0.87), its test-retest reliability and construct validity are strong (intraclass correlation coefficient: 0.986; Pearson's R with "Quick DASH": 0.81) as is its sensitivity to change. It didn't predict the onset of lymphedema. Its predictive capacity for other upper limb complications is low. FACT-B+4-UL is useful in measuring upper limb disability in women surgically treated for breast cancer; but it does not predict the onset of lymphoedema and its predictive capacity for others complications in the upper limb is low. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Management of the multiple limb amputee.
Davidson, J H; Jones, L E; Cornet, J; Cittarelli, T
2002-09-10
Multiple limb amputations involving at least one upper extremity are very uncommon. The amputation of both an upper and lower limb is even more uncommon. Due to the rarity of these amputations therapists are uncertain regarding the most appropriate treatment methods. While the majority of the protocols used for single limb amputations are appropriate for these multiple limb amputees, there are differences. Loss of multiple limbs creates a problem of overheating for the individual. Loss of an arm and leg results in difficulty donning the prostheses and difficulty using crutches and parallel bars during mobilization. A review is given of 16 multiple limb amputees seen in our rehabilitation centre in the last 15 years. Return to work was seen in one third and was not related to the number of the amputations. A higher proportion of these multiple limb amputations occur through alcoholism or attempted suicide behaviour than occurs with either single upper limb amputations or lower limb amputations. This existing behaviour can create a management problem for the rehabilitation team during rehabilitation. Guidelines as to appropriate prosthetic and preprosthetic care are provided to assist the practitioner who has the acute and long term care of these patients. All multiple limb amputees should be referred to a specialized rehabilitation centre to discuss prosthetic options and long term rehabilitation requirements. This paper does not discuss bilateral lower limb amputations when not combined with an upper limb amputation.
Working Memory Training Improves Dual-Task Performance on Motor Tasks.
Kimura, Takehide; Kaneko, Fuminari; Nagahata, Keita; Shibata, Eriko; Aoki, Nobuhiro
2017-01-01
The authors investigated whether working memory training improves motor-motor dual-task performance consisted of upper and lower limb tasks. The upper limb task was a simple reaction task and the lower limb task was an isometric knee extension task. 45 participants (age = 21.8 ± 1.6 years) were classified into a working memory training group (WM-TRG), dual-task training group, or control group. The training duration was 2 weeks (15 min, 4 times/week). Our results indicated that working memory capacity increased significantly only in the WM-TRG. Dual-task performance improved in the WM-TRG and dual-task training group. Our study provides the novel insight that working memory training improves dual-task performance without specific training on the target motor task.
Hang Them High: A Hands-Free Technique for Upper Extremity Limb Holding During Surgical Preparation.
Aneja, Arun; Leung, Patrick; Marquez-Lara, Alejandro
Lifting and holding upper and lower limbs during the "prep and drape" portion of certain orthopaedic procedures exert strong forces on the holder and may lead to musculoskeletal disorders. To address these challenges during upper extremity procedures, this article describes a hand-free elevation and traction technique of the upper limbs during preoperative skin preparation with the use of items readily available within the operating room (OR). This technique is particularly useful for heavy or fractured limbs that may impose a physical challenge to lift and maintain in a stable position. Implementation of this technique reduces the risk to nurses, OR personnel, and caregivers of developing work-related musculoskeletal injuries while lifting and holding limbs in the orthopaedic OR.
Street, Alexander J.; Magee, Wendy L.; Odell-Miller, Helen; Bateman, Andrew; Fachner, Jorg C.
2015-01-01
Background: Impairment of upper limb function following stroke is more common than lower limb impairment and is also more resistant to treatment. Several lab-based studies with stroke patients have produced statistically significant gains in upper limb function when using musical instrument playing and techniques where rhythm acts as an external time-keeper for the priming and timing of upper limb movements. Methods: For this feasibility study a small sample size of 14 participants (3–60 months post stroke) has been determined through clinical discussion between the researcher and study host in order to test for management, feasibility and effects, before planning a larger trial determined through power analysis. A cross-over design with five repeated measures will be used, whereby participants will be randomized into either a treatment (n = 7) or wait list control (n = 7) group. Intervention will take place twice weekly over 6 weeks. The ARAT and 9HPT will be used to measure for quantitative gains in arm function and finger dexterity, pre/post treatment interviews will serve to investigate treatment compliance and tolerance. A lab based EEG case comparison study will be undertaken to explore audio-motor coupling, brain connectivity and neural reorganization with this intervention, as evidenced in similar studies. Discussion: Before evaluating the effectiveness of a home-based intervention in a larger scale study, it is important to assess whether implementation of the trial methodology is feasible. This study investigates the feasibility, efficacy and patient experience of a music therapy treatment protocol comprising a chart of 12 different instrumental exercises and variations, which aims at promoting measurable changes in upper limb function in hemiparetic stroke patients. The study proposes to examine several new aspects including home-based treatment and dosage, and will provide data on recruitment, adherence and variability of outcomes. PMID:26441586
Street, Alexander J; Magee, Wendy L; Odell-Miller, Helen; Bateman, Andrew; Fachner, Jorg C
2015-01-01
Impairment of upper limb function following stroke is more common than lower limb impairment and is also more resistant to treatment. Several lab-based studies with stroke patients have produced statistically significant gains in upper limb function when using musical instrument playing and techniques where rhythm acts as an external time-keeper for the priming and timing of upper limb movements. For this feasibility study a small sample size of 14 participants (3-60 months post stroke) has been determined through clinical discussion between the researcher and study host in order to test for management, feasibility and effects, before planning a larger trial determined through power analysis. A cross-over design with five repeated measures will be used, whereby participants will be randomized into either a treatment (n = 7) or wait list control (n = 7) group. Intervention will take place twice weekly over 6 weeks. The ARAT and 9HPT will be used to measure for quantitative gains in arm function and finger dexterity, pre/post treatment interviews will serve to investigate treatment compliance and tolerance. A lab based EEG case comparison study will be undertaken to explore audio-motor coupling, brain connectivity and neural reorganization with this intervention, as evidenced in similar studies. Before evaluating the effectiveness of a home-based intervention in a larger scale study, it is important to assess whether implementation of the trial methodology is feasible. This study investigates the feasibility, efficacy and patient experience of a music therapy treatment protocol comprising a chart of 12 different instrumental exercises and variations, which aims at promoting measurable changes in upper limb function in hemiparetic stroke patients. The study proposes to examine several new aspects including home-based treatment and dosage, and will provide data on recruitment, adherence and variability of outcomes.
Bia, Daniel; Cabrera-Fischer, Edmundo I.; Zócalo, Yanina; Galli, Cintia; Graf, Sebastián; Valtuille, Rodolfo; Pérez-Cámpos, Héctor; Saldías, María; Álvarez, Inés; Armentano, Ricardo L.
2012-01-01
Purpose. To evaluate in chronically haemodialysed patients (CHPs), if: (1) the vascular access (VA) position (upper arm or forearm) is associated with differential changes in upper limb arterial stiffness; (2) differences in arterial stiffness exist between genders associated with the VA; (3) the vascular substitute (VS) of choice, in biomechanical terms, depends on the previous VA location and CHP gender. Methods. 38 CHPs (18 males; VA in upper arm: 18) were studied. Left and right carotid-brachial pulse wave velocity (PWVc-b) was measured. In in vitro studies, PWV was obtained in ePTFE prostheses and in several arterial and venous homografts obtained from donors. The biomechanical mismatch (BM) between CHP native vessel (NV) and VS was calculated. Results/Conclusions. PWVc-b in upper limbs with VA was lower than in the intact contralateral limbs (P < 0.05), and differences were higher (P < 0.05) when the VA was performed in the upper arm. Differences between PWVc-b in upper limbs with VA (in the upper arm) with respect to intact upper limbs were higher (P < 0.05) in males. Independently of the region in which the VA was performed, the homograft that ensured the minimal BM was the brachial artery. The BM was highly dependent on gender and the location in the upper limb in which the VA was performed. PMID:22567282
Kinect-based virtual rehabilitation and evaluation system for upper limb disorders: A case study.
Ding, W L; Zheng, Y Z; Su, Y P; Li, X L
2018-04-19
To help patients with disabilities of the arm and shoulder recover the accuracy and stability of movements, a novel and simple virtual rehabilitation and evaluation system called the Kine-VRES system was developed using Microsoft Kinect. First, several movements and virtual tasks were designed to increase the coordination, control and speed of the arm movements. The movements of the patients were then captured using the Kinect sensor, and kinematics-based interaction and real-time feedback were integrated into the system to enhance the motivation and self-confidence of the patient. Finally, a quantitative evaluation method of upper limb movements was provided using the recorded kinematics during hand-to-hand movement. A preliminary study of this rehabilitation system indicates that the shoulder movements of two participants with ataxia became smoother after three weeks of training (one hour per day). This case study demonstrated the effectiveness of the designed system, which could be promising for the rehabilitation of patients with upper limb disorders.
Hybrid robotic systems for upper limb rehabilitation after stroke: A review.
Resquín, Francisco; Cuesta Gómez, Alicia; Gonzalez-Vargas, Jose; Brunetti, Fernando; Torricelli, Diego; Molina Rueda, Francisco; Cano de la Cuerda, Roberto; Miangolarra, Juan Carlos; Pons, José Luis
2016-11-01
In recent years the combined use of functional electrical stimulation (FES) and robotic devices, called hybrid robotic rehabilitation systems, has emerged as a promising approach for rehabilitation of lower and upper limb motor functions. This paper presents a review of the state of the art of current hybrid robotic solutions for upper limb rehabilitation after stroke. For this aim, studies have been selected through a search using web databases: IEEE-Xplore, Scopus and PubMed. A total of 10 different hybrid robotic systems were identified, and they are presented in this paper. Selected systems are critically compared considering their technological components and aspects that form part of the hybrid robotic solution, the proposed control strategies that have been implemented, as well as the current technological challenges in this topic. Additionally, we will present and discuss the corresponding evidences on the effectiveness of these hybrid robotic therapies. The review also discusses the future trends in this field. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Automated FES for Upper Limb Rehabilitation Following Stroke and Spinal Cord Injury.
Hodkin, Edmund F; Lei, Yuming; Humby, Jonathan; Glover, Isabel S; Choudhury, Supriyo; Kumar, Hrishikesh; Perez, Monica A; Rodgers, Helen; Jackson, Andrew
2018-05-01
Neurorehabilitation aims to induce beneficial neural plasticity in order to restore function following injury to the nervous system. There is an increasing evidence that appropriately timed functional electrical stimulation (FES) can promote associative plasticity, but the dosage is critical for lasting functional benefits. Here, we present a novel approach to closed-loop control of muscle stimulation for the rehabilitation of reach-to-grasp movements following stroke and spinal cord injury (SCI). We developed a simple, low-cost device to deliver assistive stimulation contingent on users' self-initiated movements. The device allows repeated practice with minimal input by a therapist, and is potentially suitable for home use. Pilot data demonstrate usability by people with upper limb weakness following SCI and stroke, and participant feedback was positive. Moreover, repeated training with the device over 1-2 weeks led to functional benefits on a general object manipulation assessment. Thus, automated FES delivered by this novel device may provide a promising and readily translatable therapy for upper limb rehabilitation for people with stroke and SCI.
Iosa, M; Morone, G; Ragaglini, M R; Fusco, A; Paolucci, S
2013-06-01
Bilateral transfer, i.e. the capacity to transfer from one to the other hand a learned motor skill, may help the recovery of upper limb functions after stroke. To investigate the motor strategies at the basis of sensorimotor learning involved in bilateral transfer. Randomized controlled trial. Neurorehabilitation Hospital. Eighty right-handed participants (65 ± 13 years old): 40 patients with subacute stroke, 40 control healthy subjects. Subjects performed the 9 hole-peg-test twice in an order defined by random allocation: first with low and then with high skilled hand (LS-HS) or the reverse (HS-LS). Time spent to complete the test and filling sequence were recorded, together with maximum pinch force (assessed using a dynamometer), upper limb functioning (Motricity Index), spasticity (modified Ashworth Scale), limb dominance (Edinburgh Handeness Inventory). As expected, in patients, the performance was found related to the residual pinch force (P<0.001), upper limb motricity (P=0.006) and side of hemiparesis (P=0.016). The performances of all subjects improved more in HS-LS than in LS-HS subgroups (P=0.043). The strategy adopted in the first trial influenced the velocity in the second one (P=0.030). Bilateral transfer was observed from high to low skilled hand. Learning was not due to a mere sequence repetition, but on a strategy chosen on the basis of the previous performance. The affected hand of patients with subacute stroke may benefit from sensorimotor learning occurred with the un-affected hand.
Poltawski, Leon; Allison, Rhoda; Briscoe, Simon; Freeman, Jennifer; Kilbride, Cherry; Neal, Debbie; Turton, Ailie J; Dean, Sarah
2016-01-01
Upper limb disability following stroke may have multiple effects on the individual. Existing assessment instruments tend to focus on impairment and function and may miss other changes that are personally important. This study aimed to identify personally significant impacts of upper limb disability following stroke. Accounts by stroke survivors, in the form of web-based diaries (blogs) and stories, were sought using a blog search engine and in stroke-related web-sites. Thematic analysis using the World Health Organisation's International Classification of Functioning Disability and Health (ICF) was used to identify personal impacts of upper limb disability following stroke. Ninety-nine sources from at least four countries were analysed. Many impacts were classifiable using the ICF, but a number of additional themes emerged, including emotional, cognitive and behavioural changes. Blogs and other web-based accounts were easily accessible and rich sources of data, although using them raised several methodological issues, including potential sample bias. A range of impacts was identified, some of which (such as use of information technology and alienation from the upper limb) are not addressed in current assessment instruments. They should be considered in post-stroke assessments. Blogs may help in the development of more comprehensive assessments. A comprehensive assessment of the upper limb following stroke should include the impact of upper limb problems on social participation, as well as associated emotional, cognitive and behavioural changes. Using personalised assessment instruments alongside standardised measures may help ensure that these broader domains are considered in discussions between clinicians and patients. Rehabilitation researchers should investigate whether and how these domains could be addressed and operationalised in standard upper limb assessment instruments.
[Tests of hand functionality in upper limb amputation with prosthesis].
Bazzini, G; Orlandini, D; Moscato, T A; Nicita, D; Panigazzi, M
2007-01-01
The need for standardized instruments for clinical measurements has become pressing in the fields of occupational rehabilitation and ergonomics. This is particularly the case for instruments that allow a quantitative evaluation of upper limb function, and especially hand function in patients who have undergone an amputation and then application of an upper limb prosthesis. This study presents a review of the main tests used to evaluate hand function, with a critical analysis of their use in subjects with an upper limb prosthesis. The tests are divided into: tests to evaluate strength, tests to evaluate co-ordination and dexterity, tests of global or overall function, and tests proposed specifically for subjects with an upper limb prosthesis. Of the various tests presented, the authors give their preference to the Bimanual Functional Assessment, Abilhand and/or the ADL Questionnaire, because of the practical usefulness, clinimetric features, simplicity and ease of administration of these tests.
Aiken, Christopher A; Pan, Zhujun; Van Gemmert, Arend W A
2015-01-01
Research has attempted to address what characteristics benefit from transfer of learning; however, it is still unclear which characteristics are effector dependent or independent. Furthermore, it is not clear if intralimb transfer shows, similarly to interlimb transfer, an asymmetry of benefits between the upper limbs. The purpose of the current study is to examine if effector independence effects emerge, as observed in interlimb transfer studies, when transfer to new effector group within the same limb occurs, and whether the pattern of intralimb transfer benefits differ between the limbs. Our results suggest that a visuomotor task transfers within both limbs, even though the transfer benefits within the limbs seem to differ. This was supported by more transfer occurring in the dominant limb than the nondominant limb. Potential control mechanisms used for intralimb transfer are discussed.
Upper extremity prosthesis user perspectives on unmet needs and innovative technology.
Benz, Heather L; Jia Yao; Rose, Laura; Olgac, Okan; Kreutz, Karen; Saha, Anindita; Civillico, Eugene F
2016-08-01
The needs of individuals with upper limb amputation and congenital limb difference are not being fully met by current prostheses, as evidenced by prosthesis rejection, non-wear, and user reports of pain and challenging activities. Emerging technologies such as dexterous sensorized robotic limbs, osseointegrated prostheses, implantable EMG electrodes, and electrical stimulation for sensory feedback have the potential to address unmet needs, but pose additional risks. We plan to assess upper limb prosthesis user needs and perspectives on these new benefits and risks using an extensive quantitative survey. In preparation for this survey, we report here on qualitative interviews with seven individuals with upper limb amputation or congenital limb difference. Unstructured text was mined using topic modeling and the results compared with identified themes. A more complete understanding of how novel technologies could address real user concerns will inform implementation of new technologies and regulatory decision-making.
Upper Extremity Prosthesis User Perspectives on Unmet Needs and Innovative Technology
Benz, Heather L.; Yao, Jia; Rose, Laura; Olgac, Okan; Kreutz, Karen; Saha, Anindita; Civillico, Eugene F.
2017-01-01
The needs of individuals with upper limb amputation and congenital limb difference are not being fully met by current prostheses, as evidenced by prosthesis rejection, non-wear, and user reports of pain and challenging activities. Emerging technologies such as dexterous sensorized robotic limbs, osseointegrated prostheses, implantable EMG electrodes, and electrical stimulation for sensory feedback have the potential to address unmet needs, but pose additional risks. We plan to assess upper limb prosthesis user needs and perspectives on these new benefits and risks using an extensive quantitative survey. In preparation for this survey, we report here on qualitative interviews with seven individuals with upper limb amputation or congenital limb difference. Unstructured text was mined using topic modeling and the results compared with identified themes. A more complete understanding of how novel technologies could address real user concerns will inform implementation of new technologies and regulatory decision-making. PMID:28268333
Quantification of upper limb skills in elderly rehabilitative inpatients: a controlled study.
Bejor, M; Mandrini, S; Caspani, P; Comelli, M; Chiappedi, M
2015-08-01
Aging has a recognized degenerative effect on the functionality of the hand in terms of strength and dexterity. Despite this, there are few studies in literature that quantify the upper limb skills in the elderly. The aim was to present quantitative data regarding upper limb functionality in the elderly and to quantify the effect of aging on them, considering the influence of the comorbidities, of the global level of autonomy, of the cognitive status and of the mood, which are typically compromised in the elderly. It was a controlled study. It was settled in the Rehabilitation Unit of the "Santa Maria alle Fonti" Medical Center, part of the Don Carlo Gnocchi ONLUS Foundation. Thirty-five elderly inpatients (aged 78.6±7.5 years) compared to 30 healthy young adults (aged 30±3.9 years). A task consisting in 12 trials of grasping of rulers was administered to each subject and studied with a video analysis software. To assess the comorbidities, the global level of autonomy, the cognitive status and the mood, we respectively used the Cumulative Illness Rating Scale (CIRS), the Functional Independence Measure (FIM™), the Mini Mental State Examination (MMSE) and the Geriatric Depression Scale in the 15-items version (GDS-15). The scores obtained in these scales were correlated to the mean times of trials execution. The motor performance was significantly worse in the inpatients group compared to the control group in terms of time to complete single tasks (which was on average three times higher in the inpatients group) and of respect of the starting sound stimulus, with more subjects from the inpatients group anticipating the starting signal. This worsening of the motor performance was significantly correlated to the severity of comorbidities and to the global level of autonomy. No significant differences emerged for the correctness of the performance and significant differences were not correlated with depression or cognitive impairment. This study provides quantifiable data regarding upper limb skills in the elderly inpatient, allowing comparisons with other future studies of the rehabilitative environment. It suggests the relevance of considering the severity of comorbidities and the global level of autonomy in the assessment of upper limb skills in the elderly.
Katijjahbe, Md Ali; Denehy, Linda; Granger, Catherine L; Royse, Alistair; Royse, Colin; Bates, Rebecca; Logie, Sarah; Clarke, Sandy; El-Ansary, Doa
2017-06-23
The routine implementation of sternal precautions to prevent sternal complications that restrict the use of the upper limbs is currently worldwide practice following a median sternotomy. However, evidence is limited and drawn primarily from cadaver studies and orthopaedic research. Sternal precautions may delay recovery, prolong hospital discharge and be overly restrictive. Recent research has shown that upper limb exercise reduces post-operative sternal pain and results in minimal micromotion between the sternal edges as measured by ultrasound. The aims of this study are to evaluate the effects of modified sternal precautions on physical function, pain, recovery and health-related quality of life after cardiac surgery. This study is a phase II, double-blind, randomised controlled trial with concealed allocation, blinding of patients and assessors, and intention-to-treat analysis. Patients (n = 72) will be recruited following cardiac surgery via a median sternotomy. Sample size calculations were based on the minimal important difference (two points) for the primary outcome: Short Physical Performance Battery. Thirty-six participants are required per group to counter dropout (20%). All participants will be randomised to receive either standard or modified sternal precautions. The intervention group will receive guidelines encouraging the safe use of the upper limbs. Secondary outcomes are upper limb function, pain, kinesiophobia and health-related quality of life. Descriptive statistics will be used to summarise data. The primary hypothesis will be examined by repeated-measures analysis of variance to evaluate the changes from baseline to 4 weeks post-operatively in the intervention arm compared with the usual-care arm. In all tests to be conducted, a p value <0.05 (two-tailed) will be considered statistically significant, and confidence intervals will be reported. The Sternal Management Accelerated Recovery Trial (S.M.A.R.T.) is a two-centre randomised controlled trial powered and designed to investigate whether the effects of modifying sternal precautions to include the safe use of the upper limbs and trunk impact patients' physical function and recovery following cardiac surgery via median sternotomy. Australian and New Zealand Clinical Trials Registry identifier: ACTRN12615000968572 . Registered on 16 September 2015 (prospectively registered).
Impact of Spinal Manipulation on Cortical Drive to Upper and Lower Limb Muscles
Haavik, Heidi; Niazi, Imran Khan; Jochumsen, Mads; Sherwin, Diane; Flavel, Stanley; Türker, Kemal S.
2016-01-01
This study investigates whether spinal manipulation leads to changes in motor control by measuring the recruitment pattern of motor units in both an upper and lower limb muscle and to see whether such changes may at least in part occur at the cortical level by recording movement related cortical potential (MRCP) amplitudes. In experiment one, transcranial magnetic stimulation input–output (TMS I/O) curves for an upper limb muscle (abductor pollicus brevis; APB) were recorded, along with F waves before and after either spinal manipulation or a control intervention for the same subjects on two different days. During two separate days, lower limb TMS I/O curves and MRCPs were recorded from tibialis anterior muscle (TA) pre and post spinal manipulation. Dependent measures were compared with repeated measures analysis of variance, with p set at 0.05. Spinal manipulation resulted in a 54.5% ± 93.1% increase in maximum motor evoked potential (MEPmax) for APB and a 44.6% ± 69.6% increase in MEPmax for TA. For the MRCP data following spinal manipulation there were significant difference for amplitude of early bereitschafts-potential (EBP), late bereitschafts potential (LBP) and also for peak negativity (PN). The results of this study show that spinal manipulation leads to changes in cortical excitability, as measured by significantly larger MEPmax for TMS induced input–output curves for both an upper and lower limb muscle, and with larger amplitudes of MRCP component post manipulation. No changes in spinal measures (i.e., F wave amplitudes or persistence) were observed, and no changes were shown following the control condition. These results are consistent with previous findings that have suggested increases in strength following spinal manipulation were due to descending cortical drive and could not be explained by changes at the level of the spinal cord. Spinal manipulation may therefore be indicated for the patients who have lost tonus of their muscle and/or are recovering from muscle degrading dysfunctions such as stroke or orthopaedic operations and/or may also be of interest to sports performers. These findings should be followed up in the relevant populations. PMID:28025542
Identification of temporal pathomechanical factors during the tennis serve.
Martin, Caroline; Kulpa, Richard; Ropars, Mickaël; Delamarche, Paul; Bideau, Benoit
2013-11-01
The purpose of this study was twofold: (a) to measure the effects of temporal parameters on both ball velocity and upper limb joint kinetics to identify pathomechanical factors during the tennis serve and (b) to validate these pathomechanical factors by comparing injured and noninjured players. The serves of expert tennis players were recorded with an optoelectronic motion capture system. These experts were then followed during two seasons to identify overuse injuries of the upper limb. Correlation coefficients assessed the relationships between temporal parameters, ball velocity, and peaks of upper limb joint kinetics to identify pathomechanical factors. Temporal parameters and ball velocity were compared between injured and noninjured groups. Temporal pathomechanical factors were identified. The timings of peak angular velocities of pelvis longitudinal rotation, upper torso longitudinal rotation, trunk sagittal rotation, and trunk transverse rotation and the duration between instants of shoulder horizontal adduction and external rotation were significantly related to upper limb joint kinetics and ball velocity. Injured players demonstrated later timings of trunk rotations, improper differences in time between instants of shoulder horizontal adduction and external rotation, lower ball velocities, and higher joint kinetics. The findings of this study imply that improper temporal mechanics during the tennis serve can decrease ball velocity, increase upper limb joint kinetics, and thus possibly increase overuse injuries of the upper limb.
Zuniga, Jorge M; Dimitrios, Katsavelis; Peck, Jean L; Srivastava, Rakesh; Pierce, James E; Dudley, Drew R; Salazar, David A; Young, Keaton J; Knarr, Brian A
2018-06-08
Co-contraction is the simultaneous activation of agonist and antagonist muscles that produces forces around a joint. It is unknown if the use of a wrist-driven 3D printed transitional prostheses has any influence on the neuromuscular motor control strategies of the affected hand of children with unilateral upper-limb reduction deficiencies. Thus, the purpose of the current investigation was to examine the coactivation index (CI) of children with congenital upper-limb reduction deficiencies before and after 6 months of using a wrist-driven 3D printed partial hand prosthesis. Electromyographic activity of wrist flexors and extensors (flexor carpi ulnaris and extensor digitorum) was recorded during maximal voluntary contraction of the affected and non-affected wrists. Co-contraction was calculated using the coactivation index and was expressed as percent activation of antagonist over agonist. Nine children (two girls and seven boys, 6 to 16 years of age) with congenital upper-limb deficiencies participated in this study and were fitted with a wrist-driven 3D printed prosthetic hand. From the nine children, five (two girls and three boys, 7 to 10 years of age) completed a second visit after using the wrist-driven 3D printed partial hand prosthesis for 6 months. Separate two-way repeated measures ANOVAs were performed to analyze the coactivation index and strength data. There was a significant main effect for hand with the affected hand resulting in a higher coactivation index for flexion and extension than the non-affected hand. For wrist flexion there was a significant main effect for time indicating that the affected and non-affected hand had a significantly lower coactivation index after a period of 6 months. The use of a wrist-driven 3D printed hand prosthesis lowered the coactivation index by 70% in children with congenital upper limb reduction deficiencies. This reduction in coactivation and possible improvement in motor control strategies can potentially improve prosthetic rehabilitation outcomes.
Walker-Bone, K; Cooper, C
2005-10-01
Pain in the neck and upper limb is common and contributes considerably to absence from work due to sickness. Evidence suggest that prolonged abnormal posture and repetition contribute to such conditions. Psychosocial risk factors may also play a part in the aetiology of upper limb disorders.
Delwaide, P J; Figiel, C; Richelle, C
1977-06-01
The influence of passive changes in upper limb position on the excitability of three myotatic arc reflexes (soleus, quadriceps, and biceps femoris) of the lower limb has been explored on 42 volunteers. The results indicate that the excitability of the three myotatic arcs can be influenced at a distance by postural modifications of the upper limb. When the ipsilateral upper limb is forwards or the contralateral backwards, a facilitation of both soleus and quadriceps tendon reflexes is observed while the biceps femoris reflexes are reduced. This pattern of facilitation and inhibition is reversed when the ipsilateral upper limb is backwards or the contralateral forwards. The facilitations as well as inhibitions of proximal myotatic arc reflexes are quantitatively more marked than that of the soleus reflex. Facilitation and inhibition are not linearly related to the angle of the arm with the trunk. Effects begin at a considerable angle, become maximal at 45 degrees, and progressively disappear for greater values. It is suggested that the distinct pattern of facilitation and inhibition which is exerted in reciprocal fashion on extensor and flexor motor nuclei might depend on the long propriospinal neurones connecting cervical and lumbar enlargements.
D'Orso, M I; Centemeri, R; Oggionni, P; Latocca, R; Crippa, M; Vercellino, R; Riva, M; Cesana, G
2011-01-01
The movement computerized analysis of upper limb is a valid support in the definition of residual functional capability and of specific work suitability in complex cases. This methodology of evaluation is able to correctly and objectively define the tridimensional ranges of motion of every patient's upper limb. This fact can be particularly useful for workers coming back to work after a work-related or a not work-related accident of for handicapped workers at the beginning of a new work activity. We report a research carried out using computerized analysis of motion of upper limbs in 20 engineering workers.
Venturelli, M; Saggin, P; Muti, E; Naro, F; Cancellara, L; Toniolo, L; Tarperi, C; Calabria, E; Richardson, R S; Reggiani, C; Schena, F
2015-09-01
To parse out the impact of advanced ageing and disuse on skeletal muscle function, we utilized both in vivo and in vitro techniques to comprehensively assess upper- and lower-limb muscle contractile properties in 8 young (YG; 25 ± 6 years) and 8 oldest-old mobile (OM; 87 ± 5 years) and 8 immobile (OI; 88 ± 4 years) women. In vivo, maximal voluntary contraction (MVC), electrically evoked resting twitch force (RT), and physiological cross-sectional area (PCSA) of the quadriceps and elbow flexors were assessed. Muscle biopsies of the vastus lateralis and biceps brachii facilitated the in vitro assessment of single fibre-specific tension (Po). In vivo, compared to the young, both the OM and OI exhibited a more pronounced loss of MVC in the lower limb [OM (-60%) and OI (-75%)] than the upper limb (OM = -51%; OI = -47%). Taking into account the reduction in muscle PCSA (OM = -10%; OI = -18%), only evident in the lower limb, by calculating voluntary muscle-specific force, the lower limb of the OI (-40%) was more compromised than the OM (-13%). However, in vivo, RT in both upper and lower limbs (approx. 9.8 N m cm(-2) ) and Po (approx. 123 mN mm(-2) ), assessed in vitro, implies preserved intrinsic contractile function in all muscles of the oldest-old and were well correlated (r = 0.81). These findings suggest that in the oldest-old, neither advanced ageing nor disuse, per se, impacts intrinsic skeletal muscle function, as assessed in vitro. However, in vivo, muscle function is attenuated by age and exacerbated by disuse, implicating factors other than skeletal muscle, such as neuromuscular control, in this diminution of function. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Development of a 3-D Rehabilitation System for Upper Limbs Using ER Actuators in a Nedo Project
NASA Astrophysics Data System (ADS)
Furusho, Junji; Koyanagi, Ken'ichi; Nakanishi, Kazuhiko; Ryu, Ushio; Takenaka, Shigekazu; Inoue, Akio; Domen, Kazuhisa; Miyakoshi, Koichi
New training methods and exercises for upper limbs rehabilitation are made possible by application of robotics and virtual reality technology. The technologies can also make quantitative evaluations and enhance the qualitative effect of training. We have joined a project managed by NEDO (New Energy and Industrial Technology Development Organization as a semi-governmental organization under the Ministry of Economy, Trade and Industry of Japan) 5-year Project, "Rehabilitation System for the Upper Limbs and Lower Limbs", and developed a 3-DOF exercise machine for upper limbs (EMUL) using ER actuators. In this paper, we also present the development of software for motion exercise trainings and some results of clinical evaluation. Moreover, it is discussed how ER actuators ensure the mechanical safety.
Music Upper Limb Therapy—Integrated: An Enriched Collaborative Approach for Stroke Rehabilitation
Raghavan, Preeti; Geller, Daniel; Guerrero, Nina; Aluru, Viswanath; Eimicke, Joseph P.; Teresi, Jeanne A.; Ogedegbe, Gbenga; Palumbo, Anna; Turry, Alan
2016-01-01
Stroke is a leading cause of disability worldwide. It leads to a sudden and overwhelming disruption in one’s physical body, and alters the stroke survivors’ sense of self. Long-term recovery requires that bodily perception, social participation and sense of self are restored; this is challenging to achieve, particularly with a single intervention. However, rhythmic synchronization of movement to external stimuli facilitates sensorimotor coupling for movement recovery, enhances emotional engagement and has positive effects on interpersonal relationships. In this proof-of-concept study, we designed a group music-making intervention, Music Upper Limb Therapy-Integrated (MULT-I), to address the physical, psychological and social domains of rehabilitation simultaneously, and investigated its effects on long-term post-stroke upper limb recovery. The study used a mixed-method pre-post design with 1-year follow up. Thirteen subjects completed the 45-min intervention twice a week for 6 weeks. The primary outcome was reduced upper limb motor impairment on the Fugl-Meyer Scale (FMS). Secondary outcomes included sensory impairment (two-point discrimination test), activity limitation (Modified Rankin Scale, MRS), well-being (WHO well-being index), and participation (Stroke Impact Scale, SIS). Repeated measures analysis of variance (ANOVA) was used to test for differences between pre- and post-intervention, and 1-year follow up scores. Significant improvement was found in upper limb motor impairment, sensory impairment, activity limitation and well-being immediately post-intervention that persisted at 1 year. Activities of daily living and social participation improved only from post-intervention to 1-year follow up. The improvement in upper limb motor impairment was more pronounced in a subset of lower functioning individuals as determined by their pre-intervention wrist range of motion. Qualitatively, subjects reported new feelings of ownership of their impaired limb, more spontaneous movement, and enhanced emotional engagement. The results suggest that the MULT-I intervention may help stroke survivors re-create their sense of self by integrating sensorimotor, emotional and interoceptive information and facilitate long-term recovery across multiple domains of disability, even in the chronic stage post-stroke. Randomized controlled trials are warranted to confirm the efficacy of this approach. Clinical Trial Registration: National Institutes of Health, clinicaltrials.gov, NCT01586221. PMID:27774059
Miyahara, Yuka; Jitkritsadakul, Onanong; Sringean, Jirada; Aungkab, Nicharee; Khongprasert, Surasa; Bhidayasiri, Roongroj
2018-04-01
Muscle weakness is a frequent complaint amongst Parkinson's disease (PD) patients. However, evidence-based therapeutic options for this symptom are limited. We objectively measure the efficacy of therapeutic Thai massage (TTM) on upper limb muscle strength, using an isokinetic dynamometer. A total of 60 PD patients with muscle weakness that is not related to their 'off' periods or other neurological causes were equally randomized to TTM intervention (n = 30), consisting of six TTM sessions over a 3-week period, or standard medical care (no intervention, n = 30). Primary outcomes included peak extension and flexion torques. Scale-based outcomes, including Unified Parkinson's Disease Rating Scale (UPDRS) and visual analogue scale for pain (VAS) were also performed. From baseline to end of treatment, patients in the intervention group showed significant improvement on primary objective outcomes, including peak flexion torque (F = 30.613, p < .001) and peak extension torque (F = 35.569, p < .001) and time to maximal flexion speed (F = 14.216, p = .001). Scale-based assessments mirrored improvements in the objective outcomes with a significant improvement from baseline to end of treatment of the UPDRS-bradykinesia of a more affected upper limb (F = 9.239, p = .005), and VAS (F = 69.864, p < .001) following the TTM intervention, compared to the control group. No patients reported adverse events in association with TTM. Our findings provide objective evidence that TTM used in combination with standard medical therapies is effective in improving upper limb muscle strength in patients with PD. Further studies are needed to determine the efficacy of TTM on other motor and non-motor symptoms in PD.
Carda, Stefano; Biasiucci, Andrea; Maesani, Andrea; Ionta, Silvio; Moncharmont, Julien; Clarke, Stephanie; Murray, Micah M; Millán, José Del R
2017-08-01
To evaluate the effects of electrically assisted movement therapy (EAMT) in which patients use functional electrical stimulation, modulated by a custom device controlled through the patient's unaffected hand, to produce or assist task-specific upper limb movements, which enables them to engage in intensive goal-oriented training. Randomized, crossover, assessor-blinded, 5-week trial with follow-up at 18 weeks. Rehabilitation university hospital. Patients with chronic, severe stroke (N=11; mean age, 47.9y) more than 6 months poststroke (mean time since event, 46.3mo). Both EAMT and the control intervention (dose-matched, goal-oriented standard care) consisted of 10 sessions of 90 minutes per day, 5 sessions per week, for 2 weeks. After the first 10 sessions, group allocation was crossed over, and patients received a 1-week therapy break before receiving the new treatment. Fugl-Meyer Motor Assessment for the Upper Extremity, Wolf Motor Function Test, spasticity, and 28-item Motor Activity Log. Forty-four individuals were recruited, of whom 11 were eligible and participated. Five patients received the experimental treatment before standard care, and 6 received standard care before the experimental treatment. EAMT produced higher improvements in the Fugl-Meyer scale than standard care (P<.05). Median improvements were 6.5 Fugl-Meyer points and 1 Fugl-Meyer point after the experimental treatment and standard care, respectively. The improvement was also significant in subjective reports of quality of movement and amount of use of the affected limb during activities of daily living (P<.05). EAMT produces a clinically important impairment reduction in stroke patients with chronic, severe upper limb paresis. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Fleming, Melanie K; Sorinola, Isaac O; Roberts-Lewis, Sarah F; Wolfe, Charles D; Wellwood, Ian; Newham, Di J
2015-02-01
Somatosensory stimulation (SS) is a potential adjuvant to stroke rehabilitation, but the effect on function needs further investigation. To explore the effect of combining SS with task-specific training (TST) on upper limb function and arm use in chronic stroke survivors and determine underlying mechanisms. In this double-blinded randomized controlled trial (ISRCTN 05542931), 33 patients (mean 37.7 months poststroke) were block randomized to 2 groups: active or sham SS. They received 12 sessions of 2 hours of SS (active or sham) to all 3 upper limb nerves immediately before 30 minutes of TST. The primary outcome was the Action Research Arm Test (ARAT) score. Secondary outcomes were time to perform the ARAT, Fugl-Meyer Assessment score (FM), Motor Activity Log (MAL), and Goal Attainment Scale (GAS). Underlying mechanisms were explored using transcranial magnetic stimulation stimulus-response curves and intracortical inhibition. Outcomes were assessed at baseline, immediately following the intervention (mean 2 days), and 3 and 6 months (mean 96 and 190 days) after the intervention. The active group (n = 16) demonstrated greater improvement in ARAT score and time immediately postintervention (between-group difference; P < .05), but not at 3- or 6-month follow-ups (P > .2). Within-group improvements were seen for both groups for ARAT and GAS, but for the active group only for FM and MAL (P < .05). Corticospinal excitability did not change. Long-lasting improvements in upper limb function were observed following TST. Additional benefit of SS was seen immediately post treatment, but did not persist and the underlying mechanisms remain unclear. © The Author(s) 2014.
Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation.
Resnik, Linda; Meucci, Marissa R; Lieberman-Klinger, Shana; Fantini, Christopher; Kelty, Debra L; Disla, Roxanne; Sasson, Nicole
2012-04-01
The number of catastrophic injuries caused by improvised explosive devices in the Afghanistan and Iraq Wars has increased public, legislative, and research attention to upper limb amputation. The Department of Veterans Affairs (VA) has partnered with the Defense Advanced Research Projects Agency and DEKA Integrated Solutions to optimize the function of an advanced prosthetic arm system that will enable greater independence and function. In this special communication, we examine current practices in prosthetic rehabilitation including trends in adoption and use of prosthetic devices, financial considerations, and the role of rehabilitation team members in light of our experiences with a prototype advanced upper limb prosthesis during a VA study to optimize the device. We discuss key challenges in the adoption of advanced prosthetic technology and make recommendations for service provision and use of advanced upper limb prosthetics. Rates of prosthetic rejection are high among upper limb amputees. However, these rates may be reduced with sufficient training by a highly specialized, multidisciplinary team of clinicians, and a focus on patient education and empowerment throughout the rehabilitation process. There are significant challenges emerging that are unique to implementing the use of advanced upper limb prosthetic technology, and a lack of evidence to establish clinical guidelines regarding prosthetic prescription and treatment. Finally, we make recommendations for future research to aid in the identification of best practices and development of policy decisions regarding insurance coverage of prosthetic rehabilitation. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
An EMG-controlled neuroprosthesis for daily upper limb support: a preliminary study.
Ambrosini, Emilia; Ferrante, Simona; Tibiletti, Marta; Schauer, Thomas; Klauer, Christian; Ferrigno, Giancarlo; Pedrocchi, Alessandra
2011-01-01
MUNDUS is an assistive platform for recovering direct interaction capability of severely impaired people based on upper limb motor functions. Its main concept is to exploit any residual control of the end-user, thus being suitable for long term utilization in daily activities. MUNDUS integrates multimodal information (EMG, eye tracking, brain computer interface) to control different actuators, such as a passive exoskeleton for weight relief, a neuroprosthesis for arm motion and small motors for grasping. Within this project, the present work integreted a commercial passive exoskeleton with an EMG-controlled neuroprosthesis for supporting hand-to-mouth movements. Being the stimulated muscle the same from which the EMG was measured, first it was necessary to develop an appropriate digital filter to separate the volitional EMG and the stimulation response. Then, a control method aimed at exploiting as much as possible the residual motor control of the end-user was designed. The controller provided a stimulation intensity proportional to the volitional EMG. An experimental protocol was defined to validate the filter and the controller operation on one healthy volunteer. The subject was asked to perform a sequence of hand-to-mouth movements holding different loads. The movements were supported by both the exoskeleton and the neuroprosthesis. The filter was able to detect an increase of the volitional EMG as the weight held by the subject increased. Thus, a higher stimulation intensity was provided in order to support a more intense exercise. The study demonstrated the feasibility of an EMG-controlled neuroprosthesis for daily upper limb support on healthy subjects, providing a first step forward towards the development of the final MUNDUS platform.
Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; Chen, Yasheng; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William
2015-09-01
We evaluated safety and feasibility of high-pressure transvenous limb perfusion in an upper extremity of adult patients with muscular dystrophy, after completing a similar study in a lower extremity. A dose escalation study of single-limb perfusion with 0.9% saline was carried out in nine adults with muscular dystrophies under intravenous analgesia. Our study demonstrates that it is feasible and definitely safe to perform high-pressure transvenous perfusion with 0.9% saline up to 35% of limb volume in the upper extremities of young adults with muscular dystrophy. Perfusion at 40% limb volume is associated with short-lived physiological changes in peripheral nerves without clinical correlates in one subject. This study provides the basis for a phase 1/2 clinical trial using pressurized transvenous delivery into upper limbs of nonambulatory patients with Duchenne muscular dystrophy. Furthermore, our results are applicable to other conditions such as limb girdle muscular dystrophy as a method for delivering regional macromolecular therapeutics in high dose to skeletal muscles of the upper extremity.
The use of bioimpedance analysis to evaluate lymphedema.
Warren, Anne G; Janz, Brian A; Slavin, Sumner A; Borud, Loren J
2007-05-01
Lymphedema, a chronic disfiguring condition resulting from lymphatic dysfunction or disruption, can be difficult to accurately diagnose and manage. Of particular challenge is identifying the presence of clinically significant limb swelling through simple and noninvasive methods. Many historical and currently used techniques for documenting differences in limb volume, including volume displacement and circumferential measurements, have proven difficult and unreliable. Bioimpedance spectroscopy analysis, a technology that uses resistance to electrical current in comparing the composition of fluid compartments within the body, has been considered as a cost-effective and reproducible alternative for evaluating patients with suspected lymphedema. All patients were recruited through the Beth Israel Deaconess Medical Center Lymphedema Clinic. A total of 15 patients (mean age: 55.2 years) with upper-extremity or lower-extremity lymphedema as documented by lymphoscintigraphy underwent bioimpedance spectroscopy analysis using an Impedimed SFB7 device. Seven healthy medical students and surgical residents (mean age: 26.9 years) were selected to serve as normal controls. All study participants underwent analysis of both limbs, which allowed participants to act as their own controls. The multifrequency bioimpedance device documented impedance values for each limb, with lower values correlating with higher levels of accumulated protein-rich edematous fluid. The average ratio of impedance to current flow of the affected limb to the unaffected limb in lymphedema patients was 0.9 (range: 0.67 to 1.01). In the control group, the average impedance ratio of the participant's dominant limb to their nondominant limb was 0.99 (range: 0.95 to 1.02) (P = 0.01). Bioimpedance spectroscopy can be used as a reliable and accurate tool for documenting the presence of lymphedema in patients with either upper- or lower-extremity swelling. Measurement with the device is quick and simple and results are reproducible among patients. Given significant limitations with other methods of evaluating lymphedema, the use of bioimpedance analysis may aid in the diagnosis of lymphedema and allow for tracking patients over time as they proceed with treatment of their disease.
Caires, Tamise Aguiar; Rodrigues Martinho Fernandes, Luciane Fernanda; Patrizzi, Lislei Jorge; de Almeida Oliveira, Rafael; Pascucci Sande de Souza, Luciane Aparecida
2017-10-01
Mental practice (MP) consists of the repeated mental rehearsal of a physical skill without movement, called motor imagery (MI). Studies show that MP and MI associated mirror therapy (MPMT) may improve muscle control of the upper limbs in hemiparesis. This study aimed to evaluate muscle activation during active flexion of the wrist (MA), MP, and MPMT in patients with history of stroke and hemiparesis. Individuals diagnosed with stroke showing sequelae of upper limb hemiparesis were enrolled. The flexor carpi ulnaris was analyzed using electromyography during tasks (MA, MP, MPMT) involving wrist flexion. Greater electromyographic activity was detected during MP and MPMT techniques compared to active movement (p = 0.02). There was no significant difference between MP and MPMT (p = 0.56). These results were found in both the affected limb and unaffected limb. Immediate effects on muscle activation are experienced during MP and MPMT, and muscle activity was similar with both therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Samuelkamaleshkumar, Selvaraj; Reethajanetsureka, Stephen; Pauljebaraj, Paul; Benshamir, Bright; Padankatti, Sanjeev Manasseh; David, Judy Ann
2014-11-01
To investigate the effectiveness of mirror therapy (MT) combined with bilateral arm training and graded activities to improve motor performance in the paretic upper limb after stroke. Randomized, controlled, assessor-blinded study. Inpatient stroke rehabilitation center of a tertiary care teaching hospital. Patients with first-time ischemic or hemorrhagic stroke (N=20), confined to the territory of the middle cerebral artery, occurring <6 months before the commencement of the study. The MT and control group participants underwent a patient-specific multidisciplinary rehabilitation program including conventional occupational therapy, physical therapy, and speech therapy for 5 d/wk, 6 h/d, over 3 weeks. The participants in the MT group received 1 hour of MT in addition to the conventional stroke rehabilitation. The Upper Extremity Fugl-Meyer Assessment for motor recovery, Brunnstrom stages of motor recovery for the arm and hand, Box and Block Test for gross manual hand dexterity, and modified Ashworth scale to assess the spasticity. After 3 weeks of MT, mean change scores were significantly greater in the MT group than in the control group for the Fugl-Meyer Assessment (P=.008), Brunnstrom stages of motor recovery for the arm (P=.003) and hand (P=.003), and the Box and Block Test (P=.022). No significant difference was found between the groups for modified Ashworth scale (P=.647). MT when combined with bilateral arm training and graded activities was effective in improving motor performance of the paretic upper limb after stroke compared with conventional therapy without MT. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Adaptive behaviour and motor skills in children with upper limb deficiency.
Mano, Hiroshi; Fujiwara, Sayaka; Haga, Nobuhiko
2018-04-01
The dysfunction of individuals with upper limb deficiencies affects their daily lives and social participation. To clarify the adaptive behaviours and motor skills of children with upper limb deficiencies. Cross-sectional survey. The subjects were 10 children ranging from 1 to 6 years of age with unilateral upper limb deficiencies at the level distal to the elbow who were using only cosmetic or passive prostheses or none at all. To measure their adaptive behaviour and motor skills, the Vineland Adaptive Behavior Scales, Second Edition was used. They were evaluated on the domains of communication, daily living skills, socialization and motor skills. We also examined the relationship of the scores with age. There were no statistically significant scores for domains or subdomains. The domain standard score of motor skills was significantly lower than the median scores of the domains and was negatively correlated with age. Children with upper limb deficiencies have individual weaknesses in motor skill behaviours, and these weaknesses increase with age. It may be helpful in considering approaches to rehabilitation and the prescription of prostheses to consider the characteristics and course of children's motor skill behaviours. Clinical relevance Even if children with unilateral upper limb deficiencies seem to compensate well for their affected limb function, they have or will experience individual weaknesses in motor skills. We should take this into consideration to develop better strategies for rehabilitation and prostheses prescriptions.
Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review.
Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M
2015-08-01
Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation settings over the last ten years. The primary objective of this review was to determine the effectiveness of virtual reality on upper limb function and activity after stroke. The impact on secondary outcomes including gait, cognitive function and activities of daily living was also assessed. Randomized and quasi-randomized controlled trials comparing virtual reality with an alternative intervention or no intervention were eligible to be included in the review. The authors searched a number of electronic databases including: the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, clinical trial registers, reference lists, Dissertation Abstracts and contacted key researchers in the field. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. A total of 37 randomized or quasi randomized controlled trials with a total of 1019 participants were included in the review. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardized mean difference [SMD] 0.28, 95% confidence intervals [CI] 0.08 to 0.49) based on 12 studies and significantly more effective than no therapy in improving upper limber function (SMD 0.44 [95% CI 0.15 to 0.73]) based on nine studies. The use of virtual reality also significantly improved activities of daily living function when compared to more conventional therapy approaches (SMD 0.43 [95% CI 0.18 to 0.69]) based on eight studies. While there are a large number of studies assessing the efficacy of virtual reality they tend to be small and many are at risk of bias. While there is evidence to support the use of virtual reality intervention as part of upper limb training programs, more research is required to determine whether it is beneficial in terms of improving lower limb function and gait and cognitive function.
Neuroprosthetic limb control with electrocorticography: approaches and challenges.
Thakor, Nitish V; Fifer, Matthew S; Hotson, Guy; Benz, Heather L; Newman, Geoffrey I; Milsap, Griffin W; Crone, Nathan E
2014-01-01
Advanced upper limb prosthetics, such as the Johns Hopkins Applied Physics Lab Modular Prosthetic Limb (MPL), are now available for research and preliminary clinical applications. Research attention has shifted to developing means of controlling these prostheses. Penetrating microelectrode arrays are often used in animal and human models to decode action potentials for cortical control. These arrays may suffer signal loss over the long-term and therefore should not be the only implant type investigated for chronic BMI use. Electrocorticographic (ECoG) signals from electrodes on the cortical surface may provide more stable long-term recordings. Several studies have demonstrated ECoG's potential for decoding cortical activity. As a result, clinical studies are investigating ECoG encoding of limb movement, as well as its use for interfacing with and controlling advanced prosthetic arms. This overview presents the technical state of the art in the use of ECoG in controlling prostheses. Technical limitations of the current approach and future directions are also presented.
Fu, Jianming; Zeng, Ming; Shen, Fang; Cui, Yao; Zhu, Meihong; Gu, Xudong; Sun, Ya
2017-10-01
The aim of this study was to explore the effects of action observation therapy on motor function of upper extremity, activities of daily living, and motion evoked potential in cerebral infarction patients. Cerebral infarction survivors were randomly assigned to an experimental group (28 patients) or a control group (25 patients). The conventional rehabilitation treatments were applied in both groups, but the experimental group received an additional action observation therapy for 8 weeks (6 times per week, 20 minutes per time). Fugl-Meyer assessment (FMA), Wolf Motor Function Test (WMFT), Modified Barthel Index (MBI), and motor evoked potential (MEP) were used to evaluate the upper limb movement function and daily life activity. There were no significant differences between experiment and control group in the indexes, including FMA, WMFT, and MBI scores, before the intervention. However, after 8 weeks treatments, these indexes were improved significantly. MEP latency and center-motion conduction time (CMCT) decreased from 23.82 ± 2.16 and 11.15 ± 1.68 to 22.69 ± 2.11 and 10.12 ± 1.46 ms. MEP amplitude increased from 0.61 ± 0.22 to 1.25 ± 0.38 mV. A remarkable relationship between the evaluations indexes of MEP and FMA was found. Combination of motion observation and traditional upper limb rehabilitation treatment technology can significantly elevate the movement function of cerebral infarction patients in subacute seizure phase with upper limb dysfunction, which expanded the application range of motion observation therapy and provided an effective therapy strategy for upper extremities hemiplegia in stroke patients.
Assistive-as-Needed Strategy for Upper-Limb Robotic Systems: An Initial Survey
NASA Astrophysics Data System (ADS)
Khairuddin, I. M.; Sidek, S. N.; Yusof, H. Md; Baarath, K.; Majeed, A. P. P. A.
2017-11-01
Stroke is amongst the leading causes of deprivation of one’s ability in carrying out activities of daily living. It has been reported from literature that, the functional recovery of stroke patients are rather poor, unless frequent rehabilitative therapy is assumed on the affected limb. Recent trends of rehabilitation therapy have also shifted towards allowing more participation of the patient in the therapy session rather than simple passive treatments as it has been demonstrated to be non-trivial in promoting neural plasticity to expedite motor recovery process. Therefore, the employment of rehabilitation robotics is seen as a means of mitigating the limitations of conventional rehabilitation therapy. It enables unique methods for promoting patient engagement by providing patients assistance only as needed basis. This paper attempts on reviewing assist-as-needed control strategy applied on upper-limb robotic rehabilitation devices.
Work-Related Upper Limb Disorders: A Case Report
Stoyneva, Zlatka Borisova; Dermendjiev, Svetlan; Dermendjiev, Tihomir; Dobrev, Hristo
2015-01-01
In this study the complex interrelationship between physical factors, job stress, lifestyle and genetic factors on symptoms of work-related musculoskeletal disorders of the upper limbs is demonstrated by a case report and discussion of the literature. A 58 year old woman with long lasting complaints of the upper limbs with increasing intensity and duration, generalisation, combined with skin thickness, Raynaud’s phenomenon, joint disorders, arterial and pulmonary hypertension, metabolic lipid dysfunctions is presented. Occupational history proves continuous duration of service at a job with occupational physical static load with numerous repetitive monotonous systematic motions of fingers and hands as a weaver of Persian rugs followed by work at an automated loom and variable labour activities. Though the complaints dated since the time she was a manual weaver, the manifestations of generalized joint degenerative changes, system sclerosis with Raynaud’s phenomenon with similar upper extremities signs and symptoms discount upper limbs musculoskeletal disorder as caused only or mainly by occupational risk factors. The main principles and criteria for occupational diagnosis of musculoskeletal upper limb disorders and legislative requirements for their reglamentation are discussed. PMID:27275213
Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.
Chen, Yanyan; Li, Ge; Zhu, Yanhe; Zhao, Jie; Cai, Hegao
2014-01-01
In this paper, a 6-DOF wearable upper limb exoskeleton with parallel actuated joints which perfectly mimics human motions is proposed. The upper limb exoskeleton assists the movement of physically weak people. Compared with the existing upper limb exoskeletons which are mostly designed using a serial structure with large movement space but small stiffness and poor wearable ability, a prototype for motion assistance based on human anatomy structure has been developed in our design. Moreover, the design adopts balls instead of bearings to save space, which simplifies the structure and reduces the cost of the mechanism. The proposed design also employs deceleration processes to ensure that the transmission ratio of each joint is coincident.
Reaching with cerebral tunnel vision.
Rizzo, M; Darling, W
1997-01-01
We studied reaching movements in a 48-year-old man with bilateral lesions of the calcarine cortex which spared the foveal representation and caused severe tunnel vision. Three-dimensional (3D) reconstruction of brain MR images showed no evidence of damage beyond area 18. The patient could not see his hand during reaching movements, providing a unique opportunity to test the role of peripheral visual cues in limb control. Optoelectronic recordings of upper limb movements showed normal hand paths and trajectories to fixated extrinsic targets. There was no slowing, tremor, or ataxia. Self-bound movements were also preserved. Analyses of limb orientation at the endpoints of reaches showed that the patient could transform an extrinsic target's visual coordinates to an appropriate upper limb configuration for target acquisition. There was no disadvantage created by blocking the view of the reaching arm. Moreover, the patient could not locate targets presented in the hemianopic fields by pointing. Thus, residual nonconscious vision or 'blindsight' in the aberrant fields was not a factor in our patient's reaching performance. The findings in this study show that peripheral visual cues on the position and velocity of the moving limb are not critical to the control of goal directed reaches, at least not until the hand is close to target. Other cues such as kinesthetic feedback can suffice. It also appears that the visuomotor transformations for reaching do not take place before area 19 in humans.
Geroin, Christian; Bortolami, Marta; Saltuari, Leopold; Manganotti, Paolo
2018-01-01
Background Bilateral arm training (BAT) has shown promise in expediting progress toward upper limb recovery in chronic stroke patients, but its neural correlates are poorly understood. Objective To evaluate changes in upper limb function and EEG power after a robot-assisted BAT in chronic stroke patients. Methods In a within-subject design, seven right-handed chronic stroke patients with upper limb paresis received 21 sessions (3 days/week) of the robot-assisted BAT. The outcomes were changes in score on the upper limb section of the Fugl-Meyer assessment (FM), Motricity Index (MI), and Modified Ashworth Scale (MAS) evaluated at the baseline (T0), posttraining (T1), and 1-month follow-up (T2). Event-related desynchronization/synchronization were calculated in the upper alpha and the beta frequency ranges. Results Significant improvement in all outcomes was measured over the course of the study. Changes in FM were significant at T2, and in MAS at T1 and T2. After training, desynchronization on the ipsilesional sensorimotor areas increased during passive and active movement, as compared with T0. Conclusions A repetitive robotic-assisted BAT program may improve upper limb motor function and reduce spasticity in the chronically impaired paretic arm. Effects on spasticity were associated with EEG changes over the ipsilesional sensorimotor network. PMID:29780410
Samuel, Oluwarotimi Williams; Geng, Yanjuan; Li, Xiangxin; Li, Guanglin
2017-10-28
To control multiple degrees of freedom (MDoF) upper limb prostheses, pattern recognition (PR) of electromyogram (EMG) signals has been successfully applied. This technique requires amputees to provide sufficient EMG signals to decode their limb movement intentions (LMIs). However, amputees with neuromuscular disorder/high level amputation often cannot provide sufficient EMG control signals, and thus the applicability of the EMG-PR technique is limited especially to this category of amputees. As an alternative approach, electroencephalograph (EEG) signals recorded non-invasively from the brain have been utilized to decode the LMIs of humans. However, most of the existing EEG based limb movement decoding methods primarily focus on identifying limited classes of upper limb movements. In addition, investigation on EEG feature extraction methods for the decoding of multiple classes of LMIs has rarely been considered. Therefore, 32 EEG feature extraction methods (including 12 spectral domain descriptors (SDDs) and 20 time domain descriptors (TDDs)) were used to decode multiple classes of motor imagery patterns associated with different upper limb movements based on 64-channel EEG recordings. From the obtained experimental results, the best individual TDD achieved an accuracy of 67.05 ± 3.12% as against 87.03 ± 2.26% for the best SDD. By applying a linear feature combination technique, an optimal set of combined TDDs recorded an average accuracy of 90.68% while that of the SDDs achieved an accuracy of 99.55% which were significantly higher than those of the individual TDD and SDD at p < 0.05. Our findings suggest that optimal feature set combination would yield a relatively high decoding accuracy that may improve the clinical robustness of MDoF neuroprosthesis. The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.
Di Blasio, Andrea; Morano, Teresa; Bucci, Ines; Di Santo, Serena; D’Arielli, Alberto; Castro, Cristina Gonzalez; Cugusi, Lucia; Cianchetti, Ettore; Napolitano, Giorgio
2016-01-01
[Purpose] The aims of this study were to verify the effects on upper limb circumferences and total body extracellular water of 10 weeks of Nordic Walking (NW) and Walking (W), both alone and combined with a series of exercises created for breast cancer survivors, the ISA method. [Subjects and Methods] Twenty breast cancer survivors were randomly assigned to 4 different training groups and evaluated for upper limb circumferences, total body and extracellular water. [Results] The breast cancer survivors who performed NW, alone and combined with the ISA method, and Walking combined with the ISA method (but not alone) showed significantly reduced arm and forearm circumferences homolateral to the surgical intervention. [Conclusion] For breast cancer survivors, NW, alone and combined with the ISA method, and Walking combined with the ISA method should be prescribed to prevent the onset and to treat light forms of upper limb lymphedema because Walking training practiced alone had no significant effect on upper limb circumference reduction. PMID:27821934
Golf and upper limb injuries: a summary and review of the literature
McHardy, Andrew J; Pollard, Henry P
2005-01-01
Background Golf is a popular past time that provides exercise with social interaction. However, as with all sports and activities, injury may occur. Many golf-related injuries occur in the upper limb, yet little research on the potential mechanisms of these injuries has been conducted. Objective To review the current literature on golf-related upper limb injuries and report on potential causes of injury as it relates to the golf swing. Discussion An overview of the golf swing is described in terms of its potential to cause the frequently noted injuries. Most injuries occur at impact when the golf club hits the ball. This paper concludes that more research into golf-related upper limb injuries is required to develop a thorough understanding of how injuries occur. Types of research include epidemiology studies, kinematic swing analysis and electromyographic studies of the upper limb during golf. By conducting such research, preventative measures maybe developed to reduce golf related injury. PMID:15967021
Assessing upper limb function in nonambulant SMA patients: development of a new module.
Mazzone, Elena; Bianco, Flaviana; Martinelli, Diego; Glanzman, Allan M; Messina, Sonia; De Sanctis, Roberto; Main, Marion; Eagle, Michelle; Florence, Julaine; Krosschell, Kristin; Vasco, Gessica; Pelliccioni, Marco; Lombardo, Marilena; Pane, Marika; Finkel, Richard; Muntoni, Francesco; Bertini, Enrico; Mercuri, Eugenio
2011-06-01
We report the development of a module specifically designed for assessing upper limb function in nonambulant SMA patients, including young children and those with severe contractures. The application of the module to a preschool cohort of 40 children (age 30-48 months) showed that all the items could be completed by 30 months. The module was also used in 45 nonambulant SMA patients (age 30 months to 27 years). Their scores were more variable than in the preschool cohort, ranging from 0 to 18. The magnitude of scores was not related to age (r=-0.19). The upper limb scores had a good correlation with the Hammersmith Functional Motor Scale, r=0.75, but the upper limb function did not always strictly follow the overall gross motor function. These findings suggest that even some of the very weak nonambulant children possess upper limb skills that can be measured. Copyright © 2011 Elsevier B.V. All rights reserved.
Povlsen, Bo
2012-01-01
Objectives To investigate if typing speed is proportional to the severity of pain in keyboard workers with work-related upper limb disorder (WRULD). Design Standardized functional typing test with participants scoring pain before and after typing; calculation of typing speed. Participants Fifty-nine patients and six controls. Setting Tertiary hospital centre for hand and upper limb pain. Main outcome measures Pain (VAS 0–10) and calculation of typing speed as words per minute. Results Three subgroups of patients were found based on their typing speed: fast, slow and intermediate. Two-tailed student T-test with P level at 0.05 was used for evaluation. The typing speeds were significantly different between all three patient groups (P < 0.05). The typing speed was significantly faster in the fastest patient group than in the control group (P = 0.04) and the slow and middle groups (P = < 0.0001). The pain before typing was highest in the ‘slow’ group, in both hands but this difference was not statistically significant. Conclusion Typing speed is not proportional to the severity of pain in keyboard workers with WRULD. Patients with statistically significant slower or faster typing speeds do not have statistically different levels of pain. PMID:22299070
Literature Review on Needs of Upper Limb Prosthesis Users.
Cordella, Francesca; Ciancio, Anna Lisa; Sacchetti, Rinaldo; Davalli, Angelo; Cutti, Andrea Giovanni; Guglielmelli, Eugenio; Zollo, Loredana
2016-01-01
The loss of one hand can significantly affect the level of autonomy and the capability of performing daily living, working and social activities. The current prosthetic solutions contribute in a poor way to overcome these problems due to limitations in the interfaces adopted for controlling the prosthesis and to the lack of force or tactile feedback, thus limiting hand grasp capabilities. This paper presents a literature review on needs analysis of upper limb prosthesis users, and points out the main critical aspects of the current prosthetic solutions, in terms of users satisfaction and activities of daily living they would like to perform with the prosthetic device. The ultimate goal is to provide design inputs in the prosthetic field and, contemporary, increase user satisfaction rates and reduce device abandonment. A list of requirements for upper limb prostheses is proposed, grounded on the performed analysis on user needs. It wants to (i) provide guidelines for improving the level of acceptability and usefulness of the prosthesis, by accounting for hand functional and technical aspects; (ii) propose a control architecture of PNS-based prosthetic systems able to satisfy the analyzed user wishes; (iii) provide hints for improving the quality of the methods (e.g., questionnaires) adopted for understanding the user satisfaction with their prostheses.
Neuromimetic Event-Based Detection for Closed-Loop Tactile Feedback Control of Upper Limb Prostheses
Osborn, Luke; Kaliki, Rahul; Soares, Alcimar; Thakor, Nitish
2016-01-01
Upper limb amputees lack the valuable tactile sensing that helps provide context about the surrounding environment. Here we utilize tactile information to provide active touch feedback to a prosthetic hand. First, we developed fingertip tactile sensors for producing biomimetic spiking responses for monitoring contact, release, and slip of an object grasped by a prosthetic hand. We convert the sensor output into pulses, mimicking the rapid and slowly adapting spiking responses of receptor afferents found in the human body. Second, we designed and implemented two neuromimetic event-based algorithms, Compliant Grasping and Slip Prevention, on a prosthesis to create a local closed-loop tactile feedback control system (i.e. tactile information is sent to the prosthesis). Grasping experiments were designed to assess the benefit of this biologically inspired neuromimetic tactile feedback to a prosthesis. Results from able-bodied and amputee subjects show the average number of objects that broke or slipped during grasping decreased by over 50% and the average time to complete a grasping task decreased by at least 10% for most trials when comparing neuromimetic tactile feedback with no feedback on a prosthesis. Our neuromimetic method of closed-loop tactile sensing is a novel approach to improving the function of upper limb prostheses. PMID:27777640
Literature Review on Needs of Upper Limb Prosthesis Users
Cordella, Francesca; Ciancio, Anna Lisa; Sacchetti, Rinaldo; Davalli, Angelo; Cutti, Andrea Giovanni; Guglielmelli, Eugenio; Zollo, Loredana
2016-01-01
The loss of one hand can significantly affect the level of autonomy and the capability of performing daily living, working and social activities. The current prosthetic solutions contribute in a poor way to overcome these problems due to limitations in the interfaces adopted for controlling the prosthesis and to the lack of force or tactile feedback, thus limiting hand grasp capabilities. This paper presents a literature review on needs analysis of upper limb prosthesis users, and points out the main critical aspects of the current prosthetic solutions, in terms of users satisfaction and activities of daily living they would like to perform with the prosthetic device. The ultimate goal is to provide design inputs in the prosthetic field and, contemporary, increase user satisfaction rates and reduce device abandonment. A list of requirements for upper limb prostheses is proposed, grounded on the performed analysis on user needs. It wants to (i) provide guidelines for improving the level of acceptability and usefulness of the prosthesis, by accounting for hand functional and technical aspects; (ii) propose a control architecture of PNS-based prosthetic systems able to satisfy the analyzed user wishes; (iii) provide hints for improving the quality of the methods (e.g., questionnaires) adopted for understanding the user satisfaction with their prostheses. PMID:27242413
Eshoj, H; Juul-Kristensen, Birgit; Jørgensen, Rene Gam Bender; Søgaard, Karen
2017-02-01
For the lower limbs, the Nintendo Wii Balance Board (NWBB) has been widely used to measure postural control. However, this has not been performed for upper limb measurements. Further, the NWBB has shown to produce more background noise with decreasing loads, which may be of concern when used for upper limb testing. The aim was to investigate reproducibility and validity of the NWBB. A test-retest design was performed with 68 subjects completing three different prone lying, upper limb weight-bearing balance tasks on a NWBB: two-arms, eyes closed (1) one-arm, non-dominant/non-injured (2) and one-arm, dominant/injured (3). Each task was repeated three times over the course of two test sessions with a 30-min break in between. Further, the level of background noise from a NWBB was compared with a force platform through systematic loading of both boards with increasing deadweights ranging from 5 to 90kg. Test-retest reproducibility was high with ICCs ranging from 0.95 to 0.97 (95% CI 0.92 to 0.98). However, systematic bias and tendencies for funnel effects in the Bland Altman plots for both one-armed tests were present. The concurrent validity of the NWBB was low (CCC 0.17 (95% CI 0.12-0.22)) due to large differences between the NWBB and force platform in noise sensitivity at low deadweights (especially below 50kg). The NWBB prone lying, shoulder sensorimotor control test was highly reproducible. Though, concurrent validity of the NWBB was poor compared to a force platform. Further investigation of the impact of the background noise, especially at low loads, is needed. Copyright © 2016 Elsevier B.V. All rights reserved.
High-density force myography: A possible alternative for upper-limb prosthetic control.
Radmand, Ashkan; Scheme, Erik; Englehart, Kevin
2016-01-01
Several multiple degree-of-freedom upper-limb prostheses that have the promise of highly dexterous control have recently been developed. Inadequate controllability, however, has limited adoption of these devices. Introducing more robust control methods will likely result in higher acceptance rates. This work investigates the suitability of using high-density force myography (HD-FMG) for prosthetic control. HD-FMG uses a high-density array of pressure sensors to detect changes in the pressure patterns between the residual limb and socket caused by the contraction of the forearm muscles. In this work, HD-FMG outperforms the standard electromyography (EMG)-based system in detecting different wrist and hand gestures. With the arm in a fixed, static position, eight hand and wrist motions were classified with 0.33% error using the HD-FMG technique. Comparatively, classification errors in the range of 2.2%-11.3% have been reported in the literature for multichannel EMG-based approaches. As with EMG, position variation in HD-FMG can introduce classification error, but incorporating position variation into the training protocol reduces this effect. Channel reduction was also applied to the HD-FMG technique to decrease the dimensionality of the problem as well as the size of the sensorized area. We found that with informed, symmetric channel reduction, classification error could be decreased to 0.02%.
The Influence of Dopaminergic Striatal Innervation on Upper Limb Locomotor Synergies
Isaias, Ioannis U.; Volkmann, Jens; Marzegan, Alberto; Marotta, Giorgio; Cavallari, Paolo; Pezzoli, Gianni
2012-01-01
To determine the role of striatal dopaminergic innervation on upper limb synergies during walking, we measured arm kinematics in 13 subjects with Parkinson disease. Patients were recruited according to several inclusion criteria to represent the best possible in vivo model of dopaminergic denervation. Of relevance, we included only subjects with normal spatio-temporal parameters of the stride and gait speed to avoid an impairment of upper limbs locomotor synergies as a consequence of gait impairment per se. Dopaminergic innervation of the striatum was measured by FP-CIT and SPECT. All patients showed a reduction of gait-associated arms movement. No linear correlation was found between arm ROM reduction and contralateral dopaminergic putaminal innervation loss. Still, a partition analysis revealed a 80% chance of reduced arm ROM when putaminal dopamine content loss was >47%. A significant correlation was described between the asymmetry indices of the swinging of the two arms and dopaminergic striatal innervation. When arm ROM was reduced, we found a positive correlation between upper-lower limb phase shift modulation (at different gait velocities) and striatal dopaminergic innervation. These findings are preliminary evidence that dopaminergic striatal tone plays a modulatory role in upper-limb locomotor synergies and upper-lower limb coupling while walking at different velocities. PMID:23236504
High-performance neuroprosthetic control by an individual with tetraplegia.
Collinger, Jennifer L; Wodlinger, Brian; Downey, John E; Wang, Wei; Tyler-Kabara, Elizabeth C; Weber, Douglas J; McMorland, Angus J C; Velliste, Meel; Boninger, Michael L; Schwartz, Andrew B
2013-02-16
Paralysis or amputation of an arm results in the loss of the ability to orient the hand and grasp, manipulate, and carry objects, functions that are essential for activities of daily living. Brain-machine interfaces could provide a solution to restoring many of these lost functions. We therefore tested whether an individual with tetraplegia could rapidly achieve neurological control of a high-performance prosthetic limb using this type of an interface. We implanted two 96-channel intracortical microelectrodes in the motor cortex of a 52-year-old individual with tetraplegia. Brain-machine-interface training was done for 13 weeks with the goal of controlling an anthropomorphic prosthetic limb with seven degrees of freedom (three-dimensional translation, three-dimensional orientation, one-dimensional grasping). The participant's ability to control the prosthetic limb was assessed with clinical measures of upper limb function. This study is registered with ClinicalTrials.gov, NCT01364480. The participant was able to move the prosthetic limb freely in the three-dimensional workspace on the second day of training. After 13 weeks, robust seven-dimensional movements were performed routinely. Mean success rate on target-based reaching tasks was 91·6% (SD 4·4) versus median chance level 6·2% (95% CI 2·0-15·3). Improvements were seen in completion time (decreased from a mean of 148 s [SD 60] to 112 s [6]) and path efficiency (increased from 0·30 [0·04] to 0·38 [0·02]). The participant was also able to use the prosthetic limb to do skilful and coordinated reach and grasp movements that resulted in clinically significant gains in tests of upper limb function. No adverse events were reported. With continued development of neuroprosthetic limbs, individuals with long-term paralysis could recover the natural and intuitive command signals for hand placement, orientation, and reaching, allowing them to perform activities of daily living. Defense Advanced Research Projects Agency, National Institutes of Health, Department of Veterans Affairs, and UPMC Rehabilitation Institute. Copyright © 2013 Elsevier Ltd. All rights reserved.
Romkema, Sietske; Bongers, Raoul M; van der Sluis, Corry K
2013-01-01
Intermanual transfer may improve prosthetic handling and acceptance if used in training soon after an amputation. The purpose of this study was to determine whether intermanual transfer effects can be detected after training with a myoelectric upper-limb prosthesis simulator. A mechanistic, randomized, pretest-posttest design was used. A total of 48 right-handed participants (25 women, 23 men) who were able-bodied were randomly assigned to an experimental group or a control group. The experimental group performed a training program of 5 days' duration using the prosthesis simulator. To determine the improvement in skill, a test was administered before, immediately after, and 6 days after training. The control group only performed the tests. Training was performed with the unaffected arm, and tests were performed with the affected arm (the affected arm simulating an amputated limb). Half of the participants were tested with the dominant arm and half with the nondominant arm. Initiation time was defined as the time from starting signal until start of the movement, movement time was defined as the time from the beginning of the movement until completion of the task, and force control was defined as the maximal applied force on a deformable object. The movement time decreased significantly more in the experimental group (F₂,₉₂=7.42, P=.001, η²(G)=.028) when compared with the control group. This finding is indicative of faster handling of the prosthesis. No statistically significant differences were found between groups with regard to initiation time and force control. We did not find a difference in intermanual transfer between the dominant and nondominant arms. The training utilized participants who were able-bodied in a laboratory setting and focused only on transradial amputations. Intermanual transfer was present in the affected arm after training the unaffected arm with a myoelectric prosthesis simulator, and this effect did not depend on laterality. This effect may improve rehabilitation of patients with an upper-limb amputation.
Figueiredo, Priscilla Rezende Pereira; Silva, Paula Lanna; Avelar, Bruna Silva; da Fonseca, Sérgio Teixeira; Bootsma, Reinoud J; Mancini, Marisa Cotta
2015-04-01
Individuals with unilateral cerebral palsy (CP) demonstrate reduced performance in upper limb tasks compared to typically developing (TD) peers. We examined whether task conditions modify differences between teenagers with and without CP during a reciprocal aiming task. Twenty teenagers (nine CP and 11 TD) moved a pointer between two targets as fast as possible without missing a target. Task conditions were manipulated by changing the targets' size, by modifying the inertial properties of the pointer and by varying the upper limb used to perform the task (preferred/non-affected and non-preferred/affected upper limbs). While compared to TD peers, CP teenagers exhibited lower performance (longer movement times). Such differences were attenuated when the task was performed with the preferred upper limb and when accuracy requirements were less stringent. CP teenagers were not differentially affected by the pointer inertia manipulation. Task conditions not only affected performance but also joint kinematics. CP teenagers revealed less movement at the elbow and more movement at the shoulder when performing the task with their less skilled upper limb. However, both CP and TD teenagers demonstrated a larger contribution of trunk movement when facing more challenging task conditions. The overall pattern of results indicated that the joint kinematics employed by individuals with unilateral CP constituted adaptive responses to task requirements. Thus, the explanation of the effects of unilateral CP on upper limb behavior needs to go beyond a context-indifferent manifestation of the brain injury to include the interaction between task demands and action capabilities.
Ushiyama, Junichi; Takahashi, Yuji; Ushiba, Junichi
2010-10-01
It has been well documented that the 15- to 35-Hz oscillatory activity of the sensorimotor cortex shows coherence with the muscle activity during weak to moderate steady contraction. To investigate the muscle dependency of the corticomuscular coherence and its training-related alterations, we quantified the coherence between electroencephalogram (EEG) from the sensorimotor cortex and rectified electromyogram (EMG) from five upper limb (first dorsal interosseous, flexor carpi radialis, extensor carpi radialis, biceps brachii, triceps brachii) and four lower limb muscles (soleus, tibialis anterior, biceps femoris, rectus femoris), while maintaining a constant force level at 30% of maximal voluntary contraction of each muscle, in 24 untrained, 12 skill-trained (ballet dancers), and 10 strength-trained (weightlifters) individuals. Data from untrained subjects demonstrated the muscle dependency of corticomuscular coherence. The magnitude of the EEG-EMG coherence was significantly greater in the distally located lower limb muscles, such as the soleus and tibialis anterior, than in the upper or other lower limb muscles in untrained subjects (P < 0.05). These results imply that oscillatory coupling between the sensorimotor cortex and spinal motoneurons during steady contraction differs among muscles, according to the functional role of each muscle. In addition, the ballet dancers and weightlifters showed smaller EEG-EMG coherences than the untrained subjects, especially in the lower limb muscles (P < 0.05). These results indicate that oscillatory interaction between the sensorimotor cortex and spinal motoneurons can be changed by long-term specialized use of the muscles and that this neural adaptation may lead to finer control of muscle force during steady contraction.
Mechanical Impedance Modeling of Human Arm: A survey
NASA Astrophysics Data System (ADS)
Puzi, A. Ahmad; Sidek, S. N.; Sado, F.
2017-03-01
Human arm mechanical impedance plays a vital role in describing motion ability of the upper limb. One of the impedance parameters is stiffness which is defined as the ratio of an applied force to the measured deformation of the muscle. The arm mechanical impedance modeling is useful in order to develop a better controller for system that interacts with human as such an automated robot-assisted platform for automated rehabilitation training. The aim of the survey is to summarize the existing mechanical impedance models of human upper limb so to justify the need to have an improved version of the arm model in order to facilitate the development of better controller of such systems with ever increase in complexity. In particular, the paper will address the following issue: Human motor control and motor learning, constant and variable impedance models, methods for measuring mechanical impedance and mechanical impedance modeling techniques.
Electromyogram whitening for improved classification accuracy in upper limb prosthesis control.
Liu, Lukai; Liu, Pu; Clancy, Edward A; Scheme, Erik; Englehart
2013-09-01
Time and frequency domain features of the surface electromyogram (EMG) signal acquired from multiple channels have frequently been investigated for use in controlling upper-limb prostheses. A common control method is EMG-based motion classification. We propose the use of EMG signal whitening as a preprocessing step in EMG-based motion classification. Whitening decorrelates the EMG signal and has been shown to be advantageous in other EMG applications including EMG amplitude estimation and EMG-force processing. In a study of ten intact subjects and five amputees with up to 11 motion classes and ten electrode channels, we found that the coefficient of variation of time domain features (mean absolute value, average signal length and normalized zero crossing rate) was significantly reduced due to whitening. When using these features along with autoregressive power spectrum coefficients, whitening added approximately five percentage points to classification accuracy when small window lengths were considered.
Ring, Haim; Rosenthal, Nechama
2005-01-01
Assess the effects of daily neuroprosthetic (NESS Handmaster) functional electrical stimulation in sub-acute stroke. Controlled study, patients clinically stratified to 2 groups; no active finger movement, and partial active finger movements, and then randomized to control and neuroprosthesis groups. Observer blinded evaluations at baseline and completion of the 6-week study. 22 patients with moderate to severe upper limb paresis 3-6 months post-onset. Patients in day hospital rehabilitation, receiving physical and occupational therapy 3 times weekly. The neuroprosthesis group used the device at home. The neuroprosthesis group had significantly greater improvements in spasticity, active range of motion and scores on the functional hand tests (those with partial active motion). Of the few patients with pain and oedema, there was improvement only among those in the neuroprosthesis group. There were no adverse reactions. Supplementing standard outpatient rehabilitation with daily home neuroprosthetic activation improves upper limb outcomes.
Towards the control of individual fingers of a prosthetic hand using surface EMG signals.
Tenore, Francesco; Ramos, Ander; Fahmy, Amir; Acharya, Soumyadipta; Etienne-Cummings, Ralph; Thakor, Nitish V
2007-01-01
The fast pace of development of upper-limb prostheses requires a paradigm shift in EMG-based controls. Traditional control schemes are only capable of providing 2 degrees of freedom, which is insufficient for dexterous control of individual fingers. We present a framework where myoelectric signals from natural hand and finger movements can be decoded with a high accuracy. 32 surface-EMG electrodes were placed on the forearm of an able-bodied subject while performing individual finger movements. Using time-domain feature extraction methods as inputs to a neural network classifier, we show that 12 individuated flexion and extension movements of the fingers can be decoded with an accuracy higher than 98%. To our knowledge, this is the first instance in which such movements have been successfully decoded using surface-EMG. These preliminary findings provide a framework that will allow the results to be extended to non-invasive control of the next generation of upper-limb prostheses for amputees.
Ma, Deqiong; Jones, Graeme
2003-11-01
The effect of physical activity on upper limb fractures was examined in this population-based case control study with 321 age- and gender-matched pairs. Sports participation increased fracture risk in boys and decreased risk in girls. Television viewing had a deleterious dose response association with wrist and forearm fractures while light physical activity was protective. The aim of this population-based case control study was to examine the association between television, computer, and video viewing; types and levels of physical activity; and upper limb fractures in children 9-16 years of age. A total of 321 fracture cases and 321 randomly selected individually matched controls were studied. Television, computer, and video viewing and types and levels of physical activity were determined by interview-administered questionnaire. Bone strength was assessed by DXA and metacarpal morphometry. In general, sports participation increased total upper limb fracture risk in boys and decreased risk in girls. Gender-specific risk estimates were significantly different for total, contact, noncontact, and high-risk sports participation as well as four individual sports (soccer, cricket, surfing, and swimming). In multivariate analysis, time spent television, computer, and video viewing in both sexes was positively associated with wrist and forearm fracture risk (OR 1.6/category, 95% CI: 1.1-2.2), whereas days involved in light physical activity participation decreased fracture risk (OR 0.8/category, 95% CI: 0.7-1.0). Sports participation increased hand (OR 1.5/sport, 95% CI: 1.1-2.0) and upper arm (OR 29.8/sport, 95% CI: 1.7-535) fracture risk in boys only and decreased wrist and forearm fracture risk in girls only (OR 0.5/sport, 95% CI: 0.3-0.9). Adjustment for bone density and metacarpal morphometry did not alter these associations. There is gender discordance with regard to sports participation and fracture risk in children, which may reflect different approaches to sport. Importantly, television, computer, and video viewing has a dose-dependent association with wrist and forearm fractures, whereas light physical activity is protective. The mechanism is unclear but may involve bone-independent factors, or less likely, changes in bone quality not detected by DXA or metacarpal morphometry.
Technology that Touches Lives: Teleconsultation to Benefit Persons with Upper Limb Loss
Whelan, Lynsay R.; Wagner, Nathan
2011-01-01
While over 1.5 million individuals are living with limb loss in the United States (Ziegler-Graham et al., 2008), only 10% of these individuals have a loss that affects an upper limb. Coincident with the relatively low incidence of upper limb loss, is a shortage of the community-based prosthetic rehabilitation experts that can help prosthetic users to more fully integrate their devices into their daily routines. This article describes how expert prosthetists and occupational therapists at Touch Bionics, a manufacturer of advanced upper limb prosthetic devices, employ Voice over the Internet Protocol (VoIP) videoconferencing software telehealth technologies to engage in remote consultation with users of prosthetic devices and/or their local practitioners. The Touch Bionics staff provide follow-up expertise to local prosthetists, occupational therapists, and other health professionals. Contrasted with prior telephone-based consultations, the video-enabled approach provides enhanced capabilities to benefit persons with upper limb loss. Currently, the opportunities for Touch Bionics occupational therapists to fully engage in patient-based services delivered through telehealth technologies are significantly reduced by their need to obtain and maintain professional licenses in multiple states. PMID:25945186
Lopes, Jamile Benite Palma; Grecco, Luanda André Collange; de Moura, Renata Calhes Franco; Lazzari, Roberta Delasta; Duarte, Natalia de Almeida Carvalho; Miziara, Isabela; de Melo, Gileno Edu Lameira; Dumont, Arislander Jonathan Lopes; Galli, Manuela; Santos Oliveira, Claudia
2017-01-01
Introduction Down syndrome results in neuromotor impairment that affects selective motor control, compromising the acquisition of motor skills and functional independence. The aim of the proposed study is to evaluate and compare the effects of multiple-monopolar anodal transcranial direct current stimulation and sham stimulation over the primary motor cortex during upper limb motor training involving virtual reality on motor control, muscle activity, cerebral activity and functional independence. Methods and analysis A randomised, controlled, double-blind, clinical trial is proposed. The calculation of the sample size will be defined based on the results of a pilot study involving the same methods. The participants will be randomly allocated to two groups. Evaluations will be conducted before and after the intervention as well as 1 month after the end of the intervention process. At each evaluation, three-dimensional analysis of upper limb movement muscle activity will be measured using electromyography, cerebral activity will be measured using an electroencephalogram system and intellectual capacity will be assessed using the Wechsler Intelligence Scale for Children. Virtual reality training will be performed three times a week (one 20 min session per day) for a total of 10 sessions. During the protocol, transcranial stimulation will be administered concomitantly to upper limb motor training. The results will be analysed statistically, with a p value≤0.05 considered indicative of statistical significance. Ethical aspects and publicity The present study received approval from the Institutional Review Board of Universidade Nove de Julho (Sao Paulo,Brazil) under process number 1.540.113 and is registered with the Brazilian Registry of Clinical Trials (N° RBR3PHPXB). The participating institutions have presented a declaration of participation. The volunteers will be permitted to drop out of the study at any time with no negative repercussions. The results will be published and will contribute evidence regarding the use of this type of intervention on children. PMID:28801420
Lopes, Jamile Benite Palma; Grecco, Luanda André Collange; Moura, Renata Calhes Franco de; Lazzari, Roberta Delasta; Duarte, Natalia de Almeida Carvalho; Miziara, Isabela; Melo, Gileno Edu Lameira de; Dumont, Arislander Jonathan Lopes; Galli, Manuela; Santos Oliveira, Claudia
2017-08-11
Down syndrome results in neuromotor impairment that affects selective motor control, compromising the acquisition of motor skills and functional independence. The aim of the proposed study is to evaluate and compare the effects of multiple-monopolar anodal transcranial direct current stimulation and sham stimulation over the primary motor cortex during upper limb motor training involving virtual reality on motor control, muscle activity, cerebral activity and functional independence. A randomised, controlled, double-blind, clinical trial is proposed. The calculation of the sample size will be defined based on the results of a pilot study involving the same methods. The participants will be randomly allocated to two groups. Evaluations will be conducted before and after the intervention as well as 1 month after the end of the intervention process. At each evaluation, three-dimensional analysis of upper limb movement muscle activity will be measured using electromyography, cerebral activity will be measured using an electroencephalogram system and intellectual capacity will be assessed using the Wechsler Intelligence Scale for Children. Virtual reality training will be performed three times a week (one 20 min session per day) for a total of 10 sessions. During the protocol, transcranial stimulation will be administered concomitantly to upper limb motor training. The results will be analysed statistically, with a p value≤0.05 considered indicative of statistical significance. The present study received approval from the Institutional Review Board of Universidade Nove de Julho (Sao Paulo,Brazil) under process number 1.540.113 and is registered with the Brazilian Registry of Clinical Trials (N° RBR3PHPXB). The participating institutions have presented a declaration of participation. The volunteers will be permitted to drop out of the study at any time with no negative repercussions. The results will be published and will contribute evidence regarding the use of this type of intervention on children. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Rong, Wei; Li, Waiming; Pang, Mankit; Hu, Junyan; Wei, Xijun; Yang, Bibo; Wai, Honwah; Zheng, Xiaoxiang; Hu, Xiaoling
2017-04-26
It is a challenge to reduce the muscular discoordination in the paretic upper limb after stroke in the traditional rehabilitation programs. In this study, a neuromuscular electrical stimulation (NMES) and robot hybrid system was developed for multi-joint coordinated upper limb physical training. The system could assist the elbow, wrist and fingers to conduct arm reaching out, hand opening/grasping and arm withdrawing by tracking an indicative moving cursor on the screen of a computer, with the support from the joint motors and electrical stimulations on target muscles, under the voluntary intention control by electromyography (EMG). Subjects with chronic stroke (n = 11) were recruited for the investigation on the assistive capability of the NMES-robot and the evaluation of the rehabilitation effectiveness through a 20-session device assisted upper limb training. In the evaluation, the movement accuracy measured by the root mean squared error (RMSE) during the tracking was significantly improved with the support from both the robot and NMES, in comparison with those without the assistance from the system (P < 0.05). The intra-joint and inter-joint muscular co-contractions measured by EMG were significantly released when the NMES was applied to the agonist muscles in the different phases of the limb motion (P < 0.05). After the physical training, significant improvements (P < 0.05) were captured by the clinical scores, i.e., Modified Ashworth Score (MAS, the elbow and the wrist), Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Wolf Motor Function Test (WMFT). The EMG-driven NMES-robotic system could improve the muscular coordination at the elbow, wrist and fingers. ClinicalTrials.gov. NCT02117089 ; date of registration: April 10, 2014.
Workplace management of upper limb disorders: a systematic review.
Dick, F D; Graveling, R A; Munro, W; Walker-Bone, K
2011-01-01
Upper limb pain is common among working-aged adults and a frequent cause of absenteeism. To systematically review the evidence for workplace interventions in four common upper limb disorders. Systematic review of English articles using Medline, Embase, Cinahl, AMED, Physiotherapy Evidence Database PEDro (carpal tunnel syndrome and non-specific arm pain only) and Cochrane Library. Study inclusion criteria were randomized controlled trials, cohort studies or systematic reviews employing any workplace intervention for workers with carpal tunnel syndrome, non-specific arm pain, extensor tenosynovitis or lateral epicondylitis. Papers were selected by a single reviewer and appraised by two reviewers independently using methods based on Scottish Intercollegiate Guidelines Network (SIGN) methodology. 1532 abstracts were identified, 28 papers critically appraised and four papers met the minimum quality standard (SIGN grading + or ++) for inclusion. There was limited evidence that computer keyboards with altered force displacement characteristics or altered geometry were effective in reducing carpal tunnel syndrome symptoms. There was limited, but high quality, evidence that multi-disciplinary rehabilitation for non-specific musculoskeletal arm pain was beneficial for those workers absent from work for at least four weeks. In adults with tenosynovitis there was limited evidence that modified computer keyboards were effective in reducing symptoms. There was a lack of high quality evidence to inform workplace management of lateral epicondylitis. Further research is needed focusing on occupational management of upper limb disorders. Where evidence exists, workplace outcomes (e.g. successful return to pre-morbid employment; lost working days) are rarely addressed.
Upper limb function in persons with long term paraplegia and implications for independence: Part II.
Pentland, W E; Twomey, L T
1994-04-01
Research has shown that wheelchair use in long term paraplegia is associated with upper limb pain and degeneration that interferes with the independent performance of activities of daily living. This paper proposes a model to explain the development of upper limb problems in persons with long term paraplegia, and one that will guide in the prevention and management of this type of long term complication.
Green, Lara A; Gabriel, David A
2018-04-18
Cross education is the strength gain or skill improvement transferred to the contralateral limb following unilateral training or practice. The present study examined the transfer of both strength and skill following a strength training program. Forty participants (20M, 20F) completed a 6-week unilateral training program of dominant wrist flexion or dorsiflexion. Strength, force variability, and muscle activity were assessed pre-training, post-training, and following 6-weeks of detraining (retention). Analyses of covariance compared the experimental limb (trained or untrained) to the control (dominant or non-dominant). There were no sex differences in the training response. Cross education of strength at post-training was 6% (p<0.01) in the untrained arm and 13% (p<0.01) in the untrained leg. Contralateral strength continued to increase following detraining to 15% in the arm (p<0.01) and 14% in the leg (p<0.01). There was no difference in strength gains between upper and lower limbs (p>0.05). Cross education of skill (force variability) demonstrated greater improvements in the untrained limbs compared to the control limbs during contractions performed without concurrent feedback. Significant increases in V-wave amplitude (p=0.02) and central activation (p<0.01) were highly correlated with contralateral strength gains. There was no change in agonist amplitude or motor unit firing rates in the untrained limbs (p>0.05). The neuromuscular mechanisms mirrored the force increases at post-training and retention supporting central drive adaptations of cross education. The continued strength increases at retention identified the presence of motor learning in cross education, as confirmed by force variability.
EEG controlled neuromuscular electrical stimulation of the upper limb for stroke patients
NASA Astrophysics Data System (ADS)
Tan, Hock Guan; Shee, Cheng Yap; Kong, Keng He; Guan, Cuntai; Ang, Wei Tech
2011-03-01
This paper describes the Brain Computer Interface (BCI) system and the experiments to allow post-acute (<3 months) stroke patients to use electroencephalogram (EEG) to trigger neuromuscular electrical stimulation (NMES)-assisted extension of the wrist/fingers, which are essential pre-requisites for useful hand function. EEG was recorded while subjects performed motor imagery of their paretic limb, and then analyzed to determine the optimal frequency range within the mu-rhythm, with the greatest attenuation. Aided by visual feedback, subjects then trained to regulate their mu-rhythm EEG to operate the BCI to trigger NMES of the wrist/finger. 6 post-acute stroke patients successfully completed the training, with 4 able to learn to control and use the BCI to initiate NMES. This result is consistent with the reported BCI literacy rate of healthy subjects. Thereafter, without the loss of generality, the controller of the NMES is developed and is based on a model of the upper limb muscle (biceps/triceps) groups to determine the intensity of NMES required to flex or extend the forearm by a specific angle. The muscle model is based on a phenomenological approach, with parameters that are easily measured and conveniently implemented.
Ahmed, Altayeb Abdalla
2016-09-01
Identification of a deceased individual is an essential component of medicolegal practice. However, personal identification based on commingled limbs or parts of limbs, necessary in investigations of mass disasters or some crimes, is a difficult task. Limb measurements have been utilized in the development of biological parameters for personal identification, but the possibility to estimate the dimensions of parts of limbs other than hands and feet has not been assessed. The present study proposes an approach to estimate the dimensions of various parts of limbs based on other limb measurements. The study included 320 Sudanese adults, with equal representation of men and women. Nine limb dimensions were measured (five based on the upper limb, four based on the lower limb), and extensive statistical analysis of the distribution of values was performed. The results showed that all of the measured dimensions were sexually dimorphic and that there was a significant positive correlation between the dimensions of various parts of limbs. Regression models (direct and stepwise) were developed to estimate the dimensions of parts of limbs based on measurements pertaining to one or more other parts of limbs. The study revealed that the dimensions of parts of the upper and lower limb can be estimated from one another. These findings can be used in medicolegal practice and extended to constructive surgery, orthopedics, and prosthesis design for lost limbs.
Kakuda, Wataru; Abo, Masahiro; Sasanuma, Jinichi; Shimizu, Masato; Okamoto, Takatsugu; Kimura, Chikou; Kakita, Kiyohito; Hara, Hiroyoshi
2016-06-01
Several years ago, we proposed a combination protocol of repetitive transcranial magnetic stimulation (rTMS) and intensive occupational therapy (OT) for upper limb hemiparesis after stroke. Subsequently, the number of patients treated with the protocol has increased in Japan. We aimed to present the latest data on our proposed combination protocol for post-stroke upper limb hemiparesis as a result of a multi-institutional study. After confirming that a patient met the inclusion criteria for the protocol, they were scheduled to receive the 15-day inpatient protocol. In the protocol, two sessions of 20-min rTMS and 120-min occupational therapy were provided daily, except for Sundays and the days of admission/discharge. Motor function of the affected upper limb was evaluated by the Fugl-Meyer assessment (FMA) and Wolf motor function test (WMFT) at admission/discharge and at 4 weeks after discharge if possible. A total of 1725 post-stroke patients were studied (mean age at admission 61.4 ± 13.0 years). The scheduled 15-day protocol was completed by all patients. At discharge, the increase in FMA score, shortening in performance time of WMFT, and increase in functional ability scale (FAS) score of WMFT were significant (FMA score 46.8 ± 12.2 to 50.9 ± 11.4 points, p < 0.001; performance time of WMFT 2.57 ± 1.32 to 2.21 ± 1.33, p < 0.001; FAS score of WMFT 47.4 ± 14. to 51.4 ± 14.3 points, p < 0.001). Our proposed combination protocol can be a potentially safe and useful therapeutic intervention for upper limb hemiparesis after stroke, although its efficacy should be confirmed in a randomized controlled study.
Manaan, Qazi; Bashir, Adil; Zahoor, Adnan; Mokhdomi, Taseem A.
2016-01-01
Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation. PMID:27583121
Manaan, Qazi; Bashir, Adil; Zahoor, Adnan; Mokhdomi, Taseem A; Danish, Qazi
2016-09-01
Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation.
Zhang, Ri-Hui; Kang, Zhi-Xin
2011-05-01
To study training effect of upper limbs and lumbar muscles in the proceed of air striking of straight punch by analyzing boxing athletes' changes of electromyogram (EMG). We measured EMG of ten women boxing athletes' upper arm biceps (contractor muscle), upper arm triceps (antagonistic muscle), forearm flexor muscle (contractor muscle), forearm extensor muscle (antagonistic muscle), and lumbar muscles by ME6000 (Mega Electronics Ltd.). The stipulated exercise was to do air striking of straight punch with loads of 2.5 kg of dumbbell in the hand until exhausted. In the proceed of exercise-induce exhausted, the descend magnitude and speed of median frequency (MF) in upper limb antagonistic muscle exceeded to contracting muscle, moreover, the work percentage showed that contractor have done a larger percentage of work than antagonistic muscle. Compared with world champion's EMG, the majority of ordinary athletes' lumbar muscles MF revealed non-drop tendency, and the work percentage showed that lumbar muscles had a very little percentage of work. After comparing the EMG test index in upper limb and lumbar muscle of average boxing athletes with that of the world champion, we find the testees lack of the training of upper limb antagonistic muscle and lumbar muscle, and more trainings aimed at these muscles need to be taken.
Mirror therapy in children with hemiparesis: a randomized observer-blinded trial.
Bruchez, Roselyn; Jequier Gygax, Marine; Roches, Sylvie; Fluss, Joel; Jacquier, David; Ballabeni, Pierluigi; Grunt, Sebastian; Newman, Christopher J
2016-09-01
To determine the efficacy of mirror therapy in children with hemiparesis. The design was an observer-blinded parallel-group randomized controlled trial (International Standard Randomised Controlled Trial Number 48748291). Randomization was computer-generated, 1:1 allocation to mirror therapy or comparison groups. The settings were home-based intervention and tertiary centre assessments. Participants were 90 children with hemiparesis aged 7 to 17 years. Intervention was 15 minutes per day of simultaneous arm training, 5 days a week, for 5 weeks. The mirror therapy group used a mirror; those in the comparison group looked at their paretic limb. Assessments comprised measures of upper limb strength, function (Melbourne Assessment 2), daily performance (ABILHAND-Kids), and sensory function at weeks 0 (T0 ), 5 (T1 ), and 10 (T2 ). There were no significant differences in outcomes and their progression over time between the mirror therapy and comparison groups. Post-hoc intention-to-treat analyses showed significant improvements in both groups for grasp strength (T0 -T1 +12.6%), pinch strength (T0 -T2 +9.1%), upper limb function in terms of accuracy (T0 -T2 +2.7%) and fluency (T0 -T2 +5.0%), as well as daily performance (T0 -T2 +16.6%). Per protocol analyses showed additional improvements in dexterity (T0 -T2 +4.0%). The use of the mirror illusion during therapy had no significant effect on treatment outcomes. However, 5 weeks of daily simultaneous arm training significantly improved paretic upper limb strength, function, and daily use. © 2016 Mac Keith Press.
Hellman, Randall B.; Chang, Eric; Tanner, Justin; Helms Tillery, Stephen I.; Santos, Veronica J.
2015-01-01
Many upper limb amputees experience an incessant, post-amputation “phantom limb pain” and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech “rubber hand” illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the “BairClaw” presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger–object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden. PMID:25745391
Hellman, Randall B; Chang, Eric; Tanner, Justin; Helms Tillery, Stephen I; Santos, Veronica J
2015-01-01
Many upper limb amputees experience an incessant, post-amputation "phantom limb pain" and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech "rubber hand" illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the "BairClaw" presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden.
Nocchi, Federico; Gazzellini, Simone; Grisolia, Carmela; Petrarca, Maurizio; Cannatà, Vittorio; Cappa, Paolo; D'Alessio, Tommaso; Castelli, Enrico
2012-07-24
The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain's ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual perception, sensory integration, recognition of movement, re-mapping on the somatosensory and motor cortex, storage in memory, and response control. Results from the congruent vs. incongruent trials revealed greater activity for the former condition than the latter in a network including cingulate cortex, right inferior and middle frontal gyrus that are involved in the go-signal and in decision control. Results on healthy subjects would suggest the appropriateness of an abstract visual feedback provided during motor training. The task contributes to highlight the potential of fMRI in improving the understanding of visual motor processes and may also be useful in detecting brain reorganisation during training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinson, B.D.
1963-06-01
Results are reported of autoplastic transplantation of parts of nonirradiated, regenerated forelimb to the contralateral x-irradiated forelimb in adult Triturus viridescens. The right forelimbs were exposed to various doses of localized irradiation (1000 to 5000 r) followed by amputation of both left and right forelimbs through the mid forearm. Left limbs regenerated normally, but irradiated right limbs failed to exhibit any significant degree of regenerative activity over a 3-month period. Both forelimbs were reamputated through the distal humerus and observed for an additional two months. Left limbs produced normal regenerates, but irradiated right limbs gave no gross evidence of regenerationmore » at any of the radiation dose levels. Normal left regenerates were reamputated immediately distal to the elbow on the 60th day after the second amputation; the severed forearm was trimmed with scissors along anterior and posterior borders and denuded of skin over its proximal half, leaving an essentially complete forearm region as a normal autograft. This was implanted into the irradiated right upper arm stump, after ablation of the distal half of its humerus, with normal proximodistal polarity in all cases. The irradiated stump was reamputated through the distal portion of the implanted normal autograft two weeks after implantation, and was observed for four months. Periodic gross observations showed that over 90% of irradiated upper arms formed regenerates at a rate which paralleled that of nonirradiated controls. However, regenerates formed on irradiated upper arms exhibited a restriction of morphogenetic capacity, only 60% attaining 3- and 4-digit stages. Most of the morphologically more complex regenerates which developed on the irradiated upper arm stumps manifested left limb asymmetry despite their formation on right irradiated stumps, suggesting a relation between the asymmetry of the normal graft and that of the resulting regenerate. All regenerates which developed on irradiated upper arms showed marked deficiencies in the restoration of a complete proximodistal structural pattern appropriate to the level of amputation through the irradiated stump. However, the actual pattern produced was appropriate to the level of amputation through the implanted normal autograft. These findings support the hypothesis that normal grafts promote the formation of regenerates on irradiated limbs through the autonomous developmental activity of the transected graft. (BBB)« less
Development of upper limb prostheses: current progress and areas for growth.
González-Fernández, Marlís
2014-06-01
Upper extremity prosthetic technology has significantly changed in recent years. The devices available and those under development are more and more able to approximate the function of the lost limb; however, other challenges remain. This article provides a brief perspective on the most advanced upper limb prostheses available and the challenges present for continued development of the technology. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Importance of upper-limb inertia in calculating concentric bench press force.
Rambaud, Olivier; Rahmani, Abderrahmane; Moyen, Bernard; Bourdin, Muriel
2008-03-01
The purpose of this study was to investigate the influence of upper-limb inertia on the force-velocity relationship and maximal power during concentric bench press exercise. Reference peak force values (Fpeakp) measured with a force plate positioned below the bench were compared to those measured simultaneously with a kinematic device fixed on the barbell by taking (Fpeakt) or not taking (Fpeakb) upper-limb inertia into account. Thirteen men (27.8 +/- 4.1 years, 184.6 +/- 5.5 cm, 99.5 +/- 18.6 kg) performed all-out concentric bench press exercise against 8 loads ranging between 7 and 74 kg. The results showed that for each load, Fpeakb was significantly less than Fpeakp (P < 0.0001), whereas no significant difference was found between Fpeakp and Fpeakt. The values of maximal force (F0), maximal velocity (V0), optimal velocity (Vopt), and maximal power (Pmax), extrapolated from the force- and power-velocity relationships determined with the kinematic device, were significantly underestimated when upper-limb inertia was ignored. The results underline the importance of taking account of the total inertia of the moving system to ensure precise evaluation of upper-limb muscular characteristics in all-out concentric bench press exercise with a kinematic device. A major application of this study would be to develop precise upper-limb muscular characteristic evaluation in laboratory and field conditions by using a simple and cheap kinematic device.
Evaluation of rotator cuff muscle strength in healthy individuals
Cortez, Paulo José Oliveira; Tomazini, José Elias
2015-01-01
OBJECTIVE: To compare the strength generated by the rotator muscles of the shoulder joint between the right upper limb and left upper limb among healthy individuals. METHODS: To evaluate the muscle strength of upper limbs from isometric contractions in the horizontal direction (rotation) an isometric dynamometer was used, equipped with transducers, signal conditioning, a data acquisition board, and finally, a computer. Study participants were 22 male military subjects, aged between 18 and 19 years old, body mass between 57.7 and 93.0 kg (71.8 ± 9.45 kg) and height between 1.67 and 1.90 m (1.75 ± 0.06 m), healthy and without clinical diseases or any type of orthopedic injury in the muscle skeletal system. RESULTS: The internal rotation in the right upper limb (RUL) was higher than the average strength of internal rotation in the left upper limb (LUL) (p = 0.723). The external rotation strength in RUL was lower than the average strength of external rotation in the LUL (p=0.788). No statistical difference was observed by comparing the strength values of all isometric strength tests. CONCLUSION: For the sample and methodology used to assess muscle strength, there was no statistical difference between the strength generated by the muscles of the rotator cuff of the right and left upper limbs. Experimental Study. PMID:26207091
Ibrahim, Marize; Muanza, Thierry; Smirnow, Nadia; Sateren, Warren; Fournier, Beatrice; Kavan, Petr; Palumbo, Michael; Dalfen, Richard; Dalzell, Mary-Ann
2017-12-01
Breast cancer (BC) diagnosis in young adults (YA) is rising, and both disease and treatments are aggressive in this population. Evidence supports the use of physical activity in reducing shoulder dysfunction, which is common among BC survivors. A pilot randomized clinical trial was performed to determine the effectiveness of a 12-week post-radiation exercise program in minimizing upper extremity dysfunction in YA with BC. Participants were randomized to either an exercise arm or a control arm receiving standard care. Data was collected over six time points using: the Disability of Arm, Shoulder, and Hand (DASH); the Metabolic Equivalent of Task-hours per week (MET-hours/week), and a post hoc questionnaire on return to work. In total, 59 young women participated in the study (n = 29 exercise; n = 30 control). No statistically significant differences were found in overall DASH results between groups; however, those who underwent total mastectomy had residual upper limb dysfunction (p < 0.05). Both groups returned to pre-diagnosis activity levels by 18 months. Final evaluation showed that 86% of the women returned to work, and 89% resumed prior work activities with a decrease of 8.5 h/week. Although the short-term targeted exercise program had no effect on long-term upper limb function post-radiation, timing and program specificity may require consideration of tissue healing post-radiation and surgery type. The majority of participants returned to work, however not returning to pre-diagnosis work hours. Exercise interventions alone may not reverse the long-term sequelae of breast cancer treatment and allow young adult patients to return to work.
Impact of early applied upper limb stimulation: the EXPLICIT-stroke programme design.
Kwakkel, Gert; Meskers, Carel G M; van Wegen, Erwin E; Lankhorst, Guus J; Geurts, Alexander C H; van Kuijk, Annet A; Lindeman, Eline; Visser-Meily, Anne; de Vlugt, Erwin; Arendzen, J Hans
2008-12-17
Main claims of the literature are that functional recovery of the paretic upper limb is mainly defined within the first month post stroke and that rehabilitation services should preferably be applied intensively and in a task-oriented way within this particular time window. EXplaining PLastICITy after stroke (acronym EXPLICIT-stroke) aims to explore the underlying mechanisms of post stroke upper limb recovery. Two randomized single blinded trials form the core of the programme, investigating the effects of early modified Constraint-Induced Movement Therapy (modified CIMT) and EMG-triggered Neuro-Muscular Stimulation (EMG-NMS) in patients with respectively a favourable or poor probability for recovery of dexterity. 180 participants suffering from an acute, first-ever ischemic stroke will be recruited. Functional prognosis at the end of the first week post stroke is used to stratify patient into a poor prognosis group for upper limb recovery (N = 120, A2 project) and a group with a favourable prognosis (N = 60, A1 project). Both groups will be randomized to an experimental arm receiving respectively modified CIMT (favourable prognosis) or EMG-NMS (poor prognosis) for 3 weeks or to a control arm receiving usual care. Primary outcome variable will be the Action Research Arm Test (ARAT), assessed at 1,2,3,4,5, 8, 12 and 26 weeks post stroke. To study the impact of modified CIMT or EMG-NMS on stroke recovery mechanisms i.e. neuroplasticity, compensatory movements and upper limb neuromechanics, 60 patients randomly selected from projects A1 and A2 will undergo TMS, kinematical and haptic robotic measurements within a repeated measurement design. Additionally, 30 patients from the A1 project will undergo fMRI at baseline, 5 and 26 weeks post stroke. EXPLICIT stroke is a 5 year translational research programme which main aim is to investigate the effects of early applied intensive intervention for regaining dexterity and to explore the underlying mechanisms that are involved in regaining upper limb function after stroke. EXPLICIT-stroke will provide an answer to the key question whether therapy induced improvements are due to either a reduction of basic motor impairment by neural repair i.e. restitution of function and/or the use of behavioural compensation strategies i.e. substitution of function.
Castro, Marcelo Peduzzi de; Fonseca, Pedro; Morais, Sara Tribuzi; Borgonovo-Santos, Márcio; Coelho, Eduardo Filipe Cruz; Ribeiro, Daniel Cury; Vilas-Boas, João Paulo
2017-12-04
The aim of the present study was to determine which approach to calculating shoulder ratios is the most sensitive for determining shoulder torque imbalance in handball players. Twenty-six participants (handball athletes, n = 13; healthy controls, n = 13) performed isokinetic concentric and eccentric shoulder internal rotation (IR) and external rotation (ER) assessment at 60, 180 and 300°/s. We used eight approaches to calculating shoulder ratios: four concentric (i.e. concentric ER torque divided by concentric IR torque), and four functional (i.e. eccentric ER torque divided by concentric IR torque) at the velocities of 60, 180 and 300°/s for both IR and ER, and combining 60°/s of ER and 300°/s of IR. A three factorial ANOVA (factors: shoulder ratios, upper limb sides, and groups) along with Tukey's post-hoc analysis, and effect sizes were calculated. The findings suggested the functional shoulder ratio combining 60°/s of ER and 300°/s of IR is the most sensitive to detect differences between upper limbs for handball players, and between players and controls for the dominant side. The functional shoulder ratio combining 60°/s of ER with 300°/s of IR seems to present advantages over the other approaches for identifying upper limb asymmetries and differences in shoulder torque balance related to throwing.
Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C.; Rasskin-Gutman, Diego
2015-01-01
How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual’s survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts—their topological patterns relative to each other—using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures. PMID:26452269
Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C; Rasskin-Gutman, Diego
2015-01-01
How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures.
Upper limb function in Duchenne muscular dystrophy: 24 month longitudinal data.
Pane, Marika; Coratti, Giorgia; Brogna, Claudia; Mazzone, Elena Stacy; Mayhew, Anna; Fanelli, Lavinia; Messina, Sonia; D'Amico, Adele; Catteruccia, Michela; Scutifero, Marianna; Frosini, Silvia; Lanzillotta, Valentina; Colia, Giulia; Cavallaro, Filippo; Rolle, Enrica; De Sanctis, Roberto; Forcina, Nicola; Petillo, Roberta; Barp, Andrea; Gardani, Alice; Pini, Antonella; Monaco, Giulia; D'Angelo, Maria Grazia; Zanin, Riccardo; Vita, Gian Luca; Bruno, Claudio; Mongini, Tiziana; Ricci, Federica; Pegoraro, Elena; Bello, Luca; Berardinelli, Angela; Battini, Roberta; Sansone, Valeria; Albamonte, Emilio; Baranello, Giovanni; Bertini, Enrico; Politano, Luisa; Sormani, Maria Pia; Mercuri, Eugenio
2018-01-01
The aim of the study was to establish 24 month changes in upper limb function using a revised version of the performance of upper limb test (PUL 2.0) in a large cohort of ambulant and non-ambulant boys with Duchenne muscular dystrophy and to identify possible trajectories of progression. Of the 187 patients studied, 87 were ambulant (age range: 7-15.8 years), and 90 non-ambulant (age range: 9.08-24.78). The total scores changed significantly over time (p<0.001). Non-ambulant patients had lower total scores at baseline (mean 19.7) when compared to the ambulant ones (mean 38.4). They also had also a bigger decrease in total scores over 24 months compared to the ambulant boys (4.36 vs 2.07 points). Multivariate model analysis showed that the Performance of Upper Limb changes reflected the entry level and ambulation status, that were independently associated to the slope of Performance of Upper Limb changes. This information will be of help both in clinical practice and at the time of designing clinical trials.
Chronic musculoskeletal pain: ultrasound guided pain control.
Chiou, Hong-Jen; Chou, Yi-Hong; Wang, Hsin-Kai; Lai, Yi-Chen
2014-09-01
The review demonstrates the unique advantages of ultrasonography in pain control. Several imaging modalities can be used to guide pain control, such as computed tomography, magnetic resonance imaging, and radiography. Ultrasonography has unique advantages over these other modalities in terms of its non-ionizing radiation, real-time imaging, portability, and cost-effectiveness. Ultrasonography with color Doppler and elastography can provide safer guidance to avoid blood vessels and the nerve trunk when using steroid or xylocaine infusions to encase the nerve trunk. This review focuses on the control of chronic pain in the upper limbs, lower limbs, and trunk. Copyright © 2014. Published by Elsevier B.V.
Kirkpatrick, Emma; Pearse, Janice; James, Peter; Basu, Anna
2016-10-01
To determine whether home-based, parent-delivered therapy comprising action observation (AO) and repeated practice (RP) improves upper limb function more than RP alone in children with unilateral cerebral palsy (UCP). single-blinded parallel-group randomized controlled trial with 1:1 allocation comparing AO+RP (intervention) with RP alone (control). computer-generated, with allocation concealment by opaque sequentially-numbered envelopes. northern England, August 2011 to September 2013. 70 children with UCP; mean age 5.6 years (SD 2.1), 31 female. home-based activities were provided, tailored to interests and abilities. 15 minutes/day, 5 days/week for 3 months. Assisting Hand Assessment (AHA; primary outcome measure), Melbourne Assessment 2 (MA2), and ABILHAND-Kids at baseline, 3 months, and 6 months. Outcome data was available at 3 months for 28 children in the AO+RP group and 31 controls, and at 6 months for 26 and 28 children respectively. There were no between-group differences in AHA, MA2, or ABILHAND-Kids at 3 or 6 months versus baseline (all p>0.05). Combined-group improvements (p<0.001), observed in AHA and MA2 at 3 months, were maintained at 6 months. ABILHAND-Kids also showed improvement at 3 months (p=0.003), maintained at 6 months. Parent-delivered RP (with or without AO) improves upper limb function and could supplement therapist input. © 2016 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.
Upper Limb Kinematics in Stroke and Healthy Controls Using Target-to-Target Task in Virtual Reality.
Hussain, Netha; Alt Murphy, Margit; Sunnerhagen, Katharina S
2018-01-01
Kinematic analysis using virtual reality (VR) environment provides quantitative assessment of upper limb movements. This technique has rarely been used in evaluating motor function in stroke despite its availability in stroke rehabilitation. To determine the discriminative validity of VR-based kinematics during target-to-target pointing task in individuals with mild or moderate arm impairment following stroke and in healthy controls. Sixty-seven participants with moderate (32-57 points) or mild (58-65 points) stroke impairment as assessed with Fugl-Meyer Assessment for Upper Extremity were included from the Stroke Arm Longitudinal study at the University of Gothenburg-SALGOT cohort of non-selected individuals within the first year of stroke. The stroke groups and 43 healthy controls performed the target-to-target pointing task, where 32 circular targets appear one after the other and disappear when pointed at by the haptic handheld stylus in a three-dimensional VR environment. The kinematic parameters captured by the stylus included movement time, velocities, and smoothness of movement. The movement time, mean velocity, and peak velocity were discriminative between groups with moderate and mild stroke impairment and healthy controls. The movement time was longer and mean and peak velocity were lower for individuals with stroke. The number of velocity peaks, representing smoothness, was also discriminative and significantly higher in both stroke groups (mild, moderate) compared to controls. Movement trajectories in stroke more frequently showed clustering (spider's web) close to the target indicating deficits in movement precision. The target-to-target pointing task can provide valuable and specific information about sensorimotor impairment of the upper limb following stroke that might not be captured using traditional clinical scale. The trial was registered with register number NCT01115348 at clinicaltrials.gov, on May 4, 2010. URL: https://clinicaltrials.gov/ct2/show/NCT01115348.
2013-01-01
Background Recent evidence has demonstrated the efficacy of Virtual Reality (VR) for stroke rehabilitation nonetheless its benefits and limitations in large population of patients have not yet been studied. Objectives To evaluate the effectiveness of non-immersive VR treatment for the restoration of the upper limb motor function and its impact on the activities of daily living capacities in post-stroke patients. Methods A pragmatic clinical trial was conducted among post-stroke patients admitted to our rehabilitation hospital. We enrolled 376 subjects who had a motor arm subscore on the Italian version of the National Institutes of Health Stroke Scale (It-NIHSS) between 1 and 3 and without severe neuropsychological impairments interfering with recovery. Patients were allocated to two treatments groups, receiving combined VR and upper limb conventional (ULC) therapy or ULC therapy alone. The treatment programs consisted of 2 hours of daily therapy, delivered 5 days per week, for 4 weeks. The outcome measures were the Fugl-Meyer Upper Extremity (F-M UE) and Functional Independence Measure (FIM) scales. Results Both treatments significantly improved F-M UE and FIM scores, but the improvement obtained with VR rehabilitation was significantly greater than that achieved with ULC therapy alone. The estimated effect size of the minimal difference between groups in F-M UE and FIM scores was 2.5 ± 0.5 (P < 0.001) pts and 3.2 ± 1.2 (P = 0.007) pts, respectively. Conclusions VR rehabilitation in post-stroke patients seems more effective than conventional interventions in restoring upper limb motor impairments and motor related functional abilities. Trial registration Italian Ministry of Health IRCCS Research Programme 2590412 PMID:23914733
Optimal Body Size and Limb Length Ratios Associated with 100-m Personal-Best Swim Speeds.
Nevill, Alan M; Oxford, Samuel W; Duncan, Michael J
2015-08-01
This study aims to identify optimal body size and limb segment length ratios associated with 100-m personal-best (PB) swim speeds in children and adolescents. Fifty national-standard youth swimmers (21 males and 29 females age 11-16 yr; mean ± SD age, 13.5 ± 1.5 yr) participated in the study. Anthropometry comprised stature; body mass; skinfolds; maturity offset; upper arm, lower arm, and hand lengths; and upper leg, lower leg, and foot lengths. Swimming performance was taken as the PB time recorded in competition for the 100-m freestyle swim. To identify the optimal body size and body composition components associated with 100-m PB swim speeds (having controlled for age and maturity offset), we adopted a multiplicative allometric log-linear regression model, which was refined using backward elimination. Lean body mass was the singularly most important whole-body characteristic. Stature and body mass did not contribute to the model, suggesting that the advantage of longer levers was limb-specific rather than a general whole-body advantage. The allometric model also identified that having greater limb segment length ratios [i.e., arm ratio = (low arm)/(upper arm); foot-to-leg ratio = (foot)/(lower leg)] was key to PB swim speeds. It is only by adopting multiplicative allometric models that the above mentioned ratios could have been derived. The advantage of having a greater lower arm is clear; however, having a shorter upper arm (achieved by adopting a closer elbow angle technique or by possessing a naturally endowed shorter upper arm), at the same time, is a new insight into swimming performance. A greater foot-to-lower-leg ratio suggests that a combination of larger feet and shorter lower leg length may also benefit PB swim speeds.
Track and Field Practice and Bone Outcomes among Adolescents: A Pilot Study (ABCD-Growth Study).
Faustino-da-Silva, Yuri da Silva Ventura; Agostinete, Ricardo Ribeiro; Werneck, André Oliveira; Maillane-Vanegas, Santiago; Lynch, Kyle Robinson; Exupério, Isabella Neto; Ito, Igor Hideki; Fernandes, Romulo Araújo
2018-02-01
Osteoporosis is considered a public health problem with high worldwide prevalence. One approach to prevention is through the promotion of physical activity, especially exercise, during adolescence. This study compared bone variables in different body segments in adolescents according to participation in track and field. The study included 34 adolescents (22 boys), of whom 17 were track and field athletes and 17 were control subjects. Bone mineral density (BMD, g/cm 2 ) and bone mineral content (BMC, g) were analyzed using dual energy X-ray absorptiometry (total body stratified by body segments). Peak height velocity was used to estimate somatic maturation. Athletes had higher BMD ( P =0.003) and BMC ( P =0.011) values in the lower limbs and higher whole body BMD ( P =0.025) than the control group. However, when adjusted for confounding factors, the difference was not maintained. The groups had similar lean soft tissue values ( P =0.094). Training overload was positively correlated with BMD in the upper limbs (r=0.504; 95% confidence interval, 0.031-0.793). Although track and field athletes had higher BMD and BMC values in the lower limbs, these differences were not significant when adjusted for confounding factors. Track and field participation in adolescence appears to influence BMD and BMC in lower limbs, and fat-free mass seems to mediate this effect. Also, higher training loads were found to be positive for bone health in upper limbs.
Track and Field Practice and Bone Outcomes among Adolescents: A Pilot Study (ABCD-Growth Study)
Faustino-da-Silva, Yuri da Silva Ventura; Werneck, André Oliveira; Maillane-Vanegas, Santiago; Lynch, Kyle Robinson; Exupério, Isabella Neto; Ito, Igor Hideki; Fernandes, Romulo Araújo
2018-01-01
Background Osteoporosis is considered a public health problem with high worldwide prevalence. One approach to prevention is through the promotion of physical activity, especially exercise, during adolescence. Methods This study compared bone variables in different body segments in adolescents according to participation in track and field. The study included 34 adolescents (22 boys), of whom 17 were track and field athletes and 17 were control subjects. Bone mineral density (BMD, g/cm2) and bone mineral content (BMC, g) were analyzed using dual energy X-ray absorptiometry (total body stratified by body segments). Peak height velocity was used to estimate somatic maturation. Results Athletes had higher BMD (P=0.003) and BMC (P=0.011) values in the lower limbs and higher whole body BMD (P=0.025) than the control group. However, when adjusted for confounding factors, the difference was not maintained. The groups had similar lean soft tissue values (P=0.094). Training overload was positively correlated with BMD in the upper limbs (r=0.504; 95% confidence interval, 0.031-0.793). Although track and field athletes had higher BMD and BMC values in the lower limbs, these differences were not significant when adjusted for confounding factors. Conclusions Track and field participation in adolescence appears to influence BMD and BMC in lower limbs, and fat-free mass seems to mediate this effect. Also, higher training loads were found to be positive for bone health in upper limbs. PMID:29564304
Yoo, In-gyu; Jung, Min-ye; Yoo, Eun-young; Park, Ji-hyuk; Kang, Dae-hyuk; Lee, Jin
2014-01-01
Stroke patients have major problems with impaired upper-extremity function. Unfortunately, many patients do not experience a full recovery from movement deficits in the upper extremities. The purpose of this study was to compare the effectiveness of inter-limb learning transfer (ILT) to the contralateral upper limb after both hemisphere-specific and -unspecific ipsilateral upper limb training for stroke patients with hemiparesis. Twenty-four stroke patients with hemiparesis participated. The hemisphere-specific training group performed reaching movements in a customized training setting in which non-dominant limb training participants began from a single starting location and proceeded to one of three target locations (1S3T condition); the dominant limb training participants started from one of three starting locations and proceeded to a single target location (3S1T condition). The hemisphere-unspecific training group performed these movements starting under reverse-start and target conditions. The non-dominant to dominant limb transfer, the hemisphere-specific training group performance time decreased significantly as compared with the pre-training session (p < 0.05). Also, the isolation contraction ratio was decreased significantly from that of the pre-training session in the biceps brachii muscles and increased significantly in the upper trapezius muscles (p < 0.05). And, dominant to non-dominant limb transfer in the hemisphere-specific training group significantly increased RMS amplitudes from the pre-training session in the biceps brachii and triceps muscles (p < 0.05). Also, the isolation contraction ratio was increased significantly from that of the pre-training session in the biceps brachii muscles and decreased significantly in the upper trapezius muscles (p < 0.05). However, the hemisphere-unspecific training group showed no significant differences in inter-limb learning transfer (ILT). The transfer of hemisphere-specific training from one arm to the other had a more positive influence on functional recovery than did hemisphere-unspecific training for patients with stroke and hemiparesis.
Coker-Bolt, Patty; Downey, Ryan J; Connolly, Jacqueline; Hoover, Reagin; Shelton, Daniel; Seo, Na Jin
2017-01-01
The aim of this pilot study was to determine the feasibility and use accelerometers before, during, and after a camp-based constraint-induced movement therapy (CIMT) program for children with hemiplegic cerebral palsy. A pre-test post-test design was used for 12 children with CP (mean = 4.9 yrs) who completed a 30-hour camp-based CIMT program. The accelerometer data were collected using ActiGraph GT9X Link. Children wore accelerometers on both wrists one day before and after the camp and on the affected limb during each camp day. Three developmental assessments were administered pre-post CIMT program. Accelerometers were successfully worn before, during, and directly after the CIMT program to collect upper limb data. Affected upper limb accelerometer activity significantly increased during the CIMT camp compared to baseline (p< 0.05). Significant improvements were seen in all twelve children on all assessments of affected upper limb function (p< 0.05) measuring capacity and quality of affected upper limb functioning. Accelerometers can be worn during high intensity pediatric CIMT programs to collect data about affected upper limb function. Further study is required to determine the relationship between accelerometer data, measure of motor capacity, and real-world performance post-CIMT.
Lymphoedema of the upper limb: a rare complication of thyroid surgery?
Stephen, Christopher; Munnoch, David Alexander
2016-01-01
A 40-year-old woman underwent an elective thyroidectomy for a non-toxic, multinodular goitre. In the early postoperative period, the patient developed a significant unilateral swelling of the right upper limb, which was subsequently confirmed to be lymphoedema. This was eventually treated successfully using liposuction and compression garment therapies. We report the case due to its rarity and present a possible explanation for such an unexpected complication based on known anatomical variations of lymphatic drainage of the upper limb. PMID:27090542
Modelling and control of an upper extremity exoskeleton for rehabilitation
NASA Astrophysics Data System (ADS)
Taha, Zahari; Majeed, Anwar P. P. Abdul; Tze, Mohd Yashim Wong Paul; Abdo Hashem, Mohammed; Mohd Khairuddin, Ismail; Azraai Mohd Razman, Mohd
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton for rehabilitation. The Lagrangian formulation was employed to obtain the dynamic modelling of both the anthropometric based human upper limb as well as the exoskeleton that comprises of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed to investigate its efficacy performing a joint task trajectory tracking in performing flexion/extension on the elbow joint as well as the forward adduction/abduction on the shoulder joint. An active force control (AFC) algorithm is also incorporated into the aforementioned controller to examine its effectiveness in compensating disturbances. It was found from the study that the AFC-PD performed well against the disturbances introduced into the system without compromising its tracking performances as compared to the conventional PD control architecture.
Innovations in prosthetic interfaces for the upper extremity.
Kung, Theodore A; Bueno, Reuben A; Alkhalefah, Ghadah K; Langhals, Nicholas B; Urbanchek, Melanie G; Cederna, Paul S
2013-12-01
Advancements in modern robotic technology have led to the development of highly sophisticated upper extremity prosthetic limbs. High-fidelity volitional control of these devices is dependent on the critical interface between the patient and the mechanical prosthesis. Recent innovations in prosthetic interfaces have focused on several control strategies. Targeted muscle reinnervation is currently the most immediately applicable prosthetic control strategy and is particularly indicated in proximal upper extremity amputations. Investigation into various brain interfaces has allowed acquisition of neuroelectric signals directly or indirectly from the central nervous system for prosthetic control. Peripheral nerve interfaces permit signal transduction from both motor and sensory nerves with a higher degree of selectivity. This article reviews the current developments in each of these interface systems and discusses the potential of these approaches to facilitate motor control and sensory feedback in upper extremity neuroprosthetic devices.
Force Control Characteristics for Generation and Relaxation in the Lower Limb.
Ohtaka, Chiaki; Fujiwara, Motoko
2018-05-29
We investigated the characteristics for force generation and relaxation using graded isometric contractions of the knee extensors. Participants performed the following tasks as quickly and accurately as possible. For the force generation task, force was increased from 0% to 20%, 40% and 60% of the maximal voluntary force (MVF). For the force relaxation task, force was decreased from 60% to 40%, 20% and 0%. The following parameters of the recorded force were calculated: error, time, and rate of force development. The error was consistently greater for force relaxation than generation. Reaction and adjustment times were independent of the tasks. The control strategy was markedly different for force relaxation and generation, this tendency was particularly evident for the lower limb compared to the upper limb.
Physiologically Relevant Prosthetic Limb Movement Feedback for Upper and Lower Extremity Amputees
2016-10-01
upper arm (elbow movement), Upper leg (knee movement) and lower leg ( ankle movement) to provide a physiologically relevant sense of limb movement...Additionally a BOA cable tensioning system is passed through these plates and anchored to the external surface of the socket. When tension is applied the
[The importance of upper limb diseases in occupational medicine].
Riva, Matteo Marco; Santini, Marisa; Mosconi, Giovanni
2013-01-01
In this work the authors analyse the results of the clinical evaluation of patients affected by suspected work related musculo-skeletal disorders (WMSDs), observed throughout 2008-2009 in the specific ambulatory of Occupational Medicine Division of Ospedali Riuaniti di Bergamo. The aim is to illustrate the epidemiological relevance of upper limb (UL) WMSDs. We observed 430 patients (mean age 46,9 years, DS 9,3; mean working seniority 29 years, DS 10,4), investigating 600 disorders in diferent musculoskeletal segments. Most of the patients (66%) got to the division for a clinical consultation requested by general practitioners, 29,8% by occupational physicians, 4,2% by national insurance for occupational injuries and diseases (INAIL). Most of the patients (38,4%) were employed in construction industry. Among the 600 disorders investigated, 34,5% was at lumbar spine, 74,5% was at upper limb. The clinical diagnosis was already clear at the first consultation for 81,6% of subjects with low back pain and for 56,5% of patients with upper limb disorders; for the others was necessary to prescribe some instrumental exams or specialistic (neurologic, physiatric, orthopaedic) medical examination. We concluded for a diagnosis of WMSDs in 48,3% of the 600 cases: the percentage is 50,2% if we consider only disorders at lumbar spine and 52,5% among disorders at upper limb. The most frequent reason of refusing occupational aetiology, in the cases of low back pain, was the concomitant presence of other diseases at the segment; on the contrary, for the cases of upper limb disorders, was the lack of correlation between type of disease and professional exposure. All physicians demonstrate a high attention about upper limb disorders, topical subject of great epidemiological interest. General practitioners and occupational physicians have to take more advantage of diagnostic support and clinical evaluations offered by Occupational Medicine Divisions an Universities about WMSDs. In consideration of the dificulties to diagnose upper limb disorders and proving correlation with professional exposure is useful to promote specific courses for general practitioners and occupational physicians.
Chau, Brian; Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc
2017-01-01
Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain.
Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc
2017-01-01
Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain. PMID:29616149
Implications of low mechanical impedance in upper limb reaching motion.
Popescu, Florin C; Rymeri, W Zev
2003-10-01
The equilibrium point hypothesis (EPH), much discussed in recent years, is central in a class of theories that posits an important role for muscular mechanical and reflex properties in the control of voluntary movement. We review briefly the findings of our studies testing the idea of equifinality, a major tenet of the EPH, which predicts that terminal limb position will be achieved regardless of transient perturbations in initial position or during ongoing movement. Our observations do not support this prediction of equifinality. We also report our findings that joint viscosity and elastic stiffness estimated during ballistic motion are unexpectedly low, limiting their potential contributions to the regulation either of limb movement trajectory or of limb stability. Taken together, our results imply that neuromuscular mechanical properties are unlikely to be used for regulating voluntary motion, and that other control strategies, most notably the use of feedforward controllers in which muscles act as force generators acting primarily on inertial loads, are more consistent with our observations.
Husman, M A B; Maqbool, H F; Awad, M I; Abouhossein, A; Dehghani-Sanij, A A
2016-08-01
Haptic feedback to lower limb amputees is essential to maximize the functionality of a prosthetic device by providing information to the user about the interaction with the environment and the position of the prostheses in space. Severed sensory pathway and the absence of connection between the prosthesis and the Central Nervous System (CNS) after lower limb amputation reduces balance control, increases visual dependency and increases risk of falls among amputees. This work describes the design of a wearable haptic feedback device for lower limb amputees using lateral skin-stretch modality intended to serve as a feedback cue during ambulation. A feedback scheme was proposed based on gait event detection for possible real-time postural adjustment. Preliminary perceptual test with healthy subjects in static condition was carried out and the results indicated over 98% accuracy in determining stimuli location around the upper leg region, suggesting good perceptibility of the delivered stimuli.
Vu, Dinh-Son; Allard, Ulysse Cote; Gosselin, Clement; Routhier, Francois; Gosselin, Benoit; Campeau-Lecours, Alexandre
2017-07-01
Robotic assistive devices enhance the autonomy of individuals living with physical disabilities in their day-to-day life. Although the first priority for such devices is safety, they must also be intuitive and efficient from an engineering point of view in order to be adopted by a broad range of users. This is especially true for assistive robotic arms, as they are used for the complex control tasks of daily living. One challenge in the control of such assistive robots is the management of the end-effector orientation which is not always intuitive for the human operator, especially for neophytes. This paper presents a novel orientation control algorithm designed for robotic arms in the context of human-robot interaction. This work aims at making the control of the robot's orientation easier and more intuitive for the user, in particular, individuals living with upper limb disabilities. The performance and intuitiveness of the proposed orientation control algorithm is assessed through two experiments with 25 able-bodied subjects and shown to significantly improve on both aspects.
Using commercial video games for upper limb stroke rehabilitation: is this the way of the future?
Pietrzak, Eva; Cotea, Cristina; Pullman, Stephen
2014-01-01
The increasing number of people living with poststroke sequelae has stimulated the search for novel ways of providing poststroke rehabilitation without putting additional stress on overburdened health care systems. One of them is the use of commercially available technology and off-the-shelf video games for hemiparetic upper limb rehabilitation. The MEDLINE, EMBASE, and Cochrane Library databases were searched using key word synonyms for stroke, upper limb, and video games. Included studies investigated upper limb stroke rehabilitation using commercially available consoles and video games, reported outcomes that included measures of upper limb functionality, and were published in a peer-reviewed journal written in English. Thirteen studies were identified - 6 published as full articles and 7 as abstracts. Studies were generally small and only 3 were randomized. The gaming systems investigated were the Nintendo Wii (n = 10), EyeToy PlayStation (n = 2), and CyWee Z (n = 1). The Nintendo Wii appears to provide the greatest benefits to patients, with improvements seen in upper extremity function measures such as joint range of motion, hand motor function, grip strength, and dexterity. Three studies indicate that video therapy appears to be safe and that long-term improvements continue at follow-up. At present, the evidence that the use of commercial video games in rehabilitation improves upper limb functionality after stroke is very limited. However, this approach has the potential to provide easily available and affordable stroke rehabilitation therapy in settings where access to therapy is limited by geographical or financial constraints.
A survey of overuse problems in patients with acquired or congenital upper limb deficiency.
Burger, Helena; Vidmar, Gaj
2016-08-01
Little is known about secondary impairments and overuse problems in patient with acquired or congenital upper limb deficiency. Our aim was to estimate the frequency of overuse problems in persons after unilateral upper limb deficiency and identify the factors relevant for development of these problems. Cross-sectional study conducted at the University Rehabilitation Institute in Ljubljana. In total, 65 persons after unilateral upper limb deficiency who had visited our subspecialist outpatient clinic during the 2011-2013 period (excluding those with other possible medical causes of overuse-type problems) were interviewed about the frequency, duration and severity of neck, elbow and shoulder pain and the presence of carpal tunnel syndrome and filled in the Orthotics and Prosthetics User Survey-Upper Extremity Functional Status questionnaire. The most frequent problem was carpal tunnel syndrome, followed by shoulder pain, neck pain and elbow pain. No statistically significant association of deficiency level, cause of deficiency, time since deficiency, extent of daily prosthesis use or type of prosthesis with frequency or severity of pain or number of problems was found. The presence of carpal tunnel syndrome decreased from wearing no prosthesis through aesthetic and body-powered to myoelectric prosthesis (p = 0.014). Factors contributing to overuse problems after upper limb deficiency are not straightforward, so a large multicentric study is warranted. Persons with acquired or congenital upper limb deficiency are under a heightened risk of developing overuse problems but the contributing factors are not clear, so regular individual follow-up is required. © The International Society for Prosthetics and Orthotics 2015.
Jung, Ji-Yoon; Park, So-Yeon; Kim, Jin-Kyung
2018-01-01
[Purpose] This study aimed to examine the effects of a client-centered leisure activity program on satisfaction, upper limb function, self-esteem, and depression in elderly residents of a long-term care facility. [Subjects and Methods] This study included 12 elderly subjects, aged 65 or older, residing in a nursing home. The subjects were divided into an experimental and a control group. Subjects in the control group received leisure activities already provided by the facility. The experimental group participated in a client-centered leisure activity program. The subjects conducted individual activities three times per week, 30 minutes per session. The group activity was conducted three times per week for eight weeks. Each subject’s performance of and satisfaction with the leisure activity programs, upper limb function, self-esteem, and depression were measured before and after the intervention. [Results] After participating in a program, significant improvements were seen in both the Canadian Occupational Performance Measure and upper limb function in the experimental group. Also after the intervention, the subjects’ self-esteem significantly increased and their depression significantly decreased. [Conclusion] A client-centered leisure activity program motivates elderly people residing in a long-term care facility and induces their voluntary participation. Such customized programs are therefore effective for enhancing physical and psychological functioning in this population. PMID:29410570
Dimbwadyo-Terrer, I; Gil-Agudo, A; Segura-Fragoso, A; de los Reyes-Guzmán, A; Trincado-Alonso, F; Piazza, S; Polonio-López, B
2016-01-01
The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients' satisfaction with the virtual reality system. Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with Toyra(®) virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while control group only received conventional therapy. All patients were assessed at baseline, after intervention, and at three-month follow-up with a battery of clinical, functional, and satisfaction scales. Control group showed significant improvements in the manual muscle test (p = 0,043, partial η (2) = 0,22) in the follow-up evaluation. Both groups demonstrated clinical, but nonsignificant, changes to their arm function in 4 of the 5 scales used. All patients showed a high level of satisfaction with the virtual reality system. This study showed that virtual reality added to conventional therapy produces similar results in upper limb function compared to only conventional therapy. Moreover, the gaming aspects incorporated in conventional rehabilitation appear to produce high motivation during execution of the assigned tasks. This trial is registered with EudraCT number 2015-002157-35.
Dimbwadyo-Terrer, I.; Gil-Agudo, A.; Segura-Fragoso, A.; de los Reyes-Guzmán, A.; Trincado-Alonso, F.; Piazza, S.; Polonio-López, B.
2016-01-01
The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients' satisfaction with the virtual reality system. Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with Toyra® virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while control group only received conventional therapy. All patients were assessed at baseline, after intervention, and at three-month follow-up with a battery of clinical, functional, and satisfaction scales. Control group showed significant improvements in the manual muscle test (p = 0,043, partial η 2 = 0,22) in the follow-up evaluation. Both groups demonstrated clinical, but nonsignificant, changes to their arm function in 4 of the 5 scales used. All patients showed a high level of satisfaction with the virtual reality system. This study showed that virtual reality added to conventional therapy produces similar results in upper limb function compared to only conventional therapy. Moreover, the gaming aspects incorporated in conventional rehabilitation appear to produce high motivation during execution of the assigned tasks. This trial is registered with EudraCT number 2015-002157-35. PMID:26885511
Update on embryology of the upper limb.
Al-Qattan, Mohammad M; Kozin, Scott H
2013-09-01
Current concepts in the steps of upper limb development and the way the limb is patterned along its 3 spatial axes are reviewed. Finally, the embryogenesis of various congenital hand anomalies is delineated with an emphasis on the pathogenetic basis for each anomaly. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Prior nonhip limb fracture predicts subsequent hip fracture in institutionalized elderly people.
Nakamura, K; Takahashi, S; Oyama, M; Oshiki, R; Kobayashi, R; Saito, T; Yoshizawa, Y; Tsuchiya, Y
2010-08-01
This 1-year cohort study of nursing home residents revealed that historical fractures of upper limbs or nonhip lower limbs were associated with hip fracture (hazard ratio = 2.14), independent of activities of daily living (ADL), mobility, dementia, weight, and type of nursing home. Prior nonhip fractures are useful for predicting of hip fracture in institutional settings. The aim of this study was to evaluate the utility of fracture history for the prediction of hip fracture in nursing home residents. This was a cohort study with a 1-year follow-up. Subjects were 8,905 residents of nursing homes in Niigata, Japan (mean age, 84.3 years). Fracture histories were obtained from nursing home medical records. ADL levels were assessed by caregivers. Hip fracture diagnosis was based on hospital medical records. Subjects had fracture histories of upper limbs (5.0%), hip (14.0%), and nonhip lower limbs (4.6%). Among historical single fractures, only prior nonhip lower limbs significantly predicted subsequent fracture (adjusted hazard ratio, 2.43; 95% confidence interval (CI), 1.30-4.57). The stepwise method selected the best model, in which a combined historical fracture at upper limbs or nonhip lower limbs (adjusted hazard ratio, 2.14; 95% CI, 1.30-3.52), dependence, ADL levels, mobility, dementia, weight, and type of nursing home independently predicted subsequent hip fracture. A fracture history at upper or nonhip lower limbs, in combination with other known risk factors, is useful for the prediction of future hip fracture in institutional settings.
Barker, Ruth N; Brauer, Sandra G; Carson, Richard G
2008-06-01
Severe upper limb paresis is a major contributor to disability after stroke. This study investigated the efficacy of a new nonrobotic training device, the Sensorimotor Active Rehabilitation Training (SMART) Arm, that was used with or without electromyography-triggered electrical stimulation of triceps brachii to augment elbow extension, permitting stroke survivors with severe paresis to practice a constrained reaching task. A single-blind, randomized clinical trial was conducted with 42 stroke survivors with severe and chronic paresis. Thirty-three participants completed the study, of whom 10 received training using the SMART Arm with electromyography-triggered electrical stimulation, 13 received training using the SMART Arm alone, and 10 received no intervention (control). Training consisted of 12 1-hour sessions over 4 weeks. The primary outcome measure was "upper arm function," item 6 of the Motor Assessment Scale. Secondary outcome measures included impairment measures; triceps muscle strength, reaching force, modified Ashworth scale; and activity measures: reaching distance and Motor Assessment Scale. Assessments were administered before (0 weeks) and after training (4 weeks) and at 2 months follow-up (12 weeks). Both SMART Arm groups demonstrated significant improvements in all impairment and activity measures after training and at follow-up. There was no significant difference between these 2 groups. There was no change in the control group. Our findings indicate that training of reaching using the SMART Arm can reduce impairment and improve activity in stroke survivors with severe and chronic upper limb paresis, highlighting the benefits of intensive task-oriented practice, even in the context of severe paresis.
Pasquina, Paul F; Evangelista, Melissa; Carvalho, A J; Lockhart, Joseph; Griffin, Sarah; Nanos, George; McKay, Patricia; Hansen, Morten; Ipsen, Derek; Vandersea, James; Butkus, Josef; Miller, Matthew; Murphy, Ian; Hankin, David
2015-04-15
Advanced motorized prosthetic devices are currently controlled by EMG signals generated by residual muscles and recorded by surface electrodes on the skin. These surface recordings are often inconsistent and unreliable, leading to high prosthetic abandonment rates for individuals with upper limb amputation. Surface electrodes are limited because of poor skin contact, socket rotation, residual limb sweating, and their ability to only record signals from superficial muscles, whose function frequently does not relate to the intended prosthetic function. More sophisticated prosthetic devices require a stable and reliable interface between the user and robotic hand to improve upper limb prosthetic function. Implantable Myoelectric Sensors (IMES(®)) are small electrodes intended to detect and wirelessly transmit EMG signals to an electromechanical prosthetic hand via an electro-magnetic coil built into the prosthetic socket. This system is designed to simultaneously capture EMG signals from multiple residual limb muscles, allowing the natural control of multiple degrees of freedom simultaneously. We report the status of the first FDA-approved clinical trial of the IMES(®) System. This study is currently in progress, limiting reporting to only preliminary results. Our first subject has reported the ability to accomplish a greater variety and complexity of tasks in his everyday life compared to what could be achieved with his previous myoelectric prosthesis. The interim results of this study indicate the feasibility of utilizing IMES(®) technology to reliably sense and wirelessly transmit EMG signals from residual muscles to intuitively control a three degree-of-freedom prosthetic arm. Copyright © 2014 Elsevier B.V. All rights reserved.
Pasquina, Paul F.; Evangelista, Melissa; Carvalho, Antonio J.; Lockhart, Joseph; Griffin, Sarah; Nanos, George; McKay, Patricia; Hansen, Morten; Ipsen, Derek; Vandersea, James; Butkus, Josef; Miller, Matthew; Murphy, Ian; Hankin, David
2014-01-01
Background Advanced motorized prosthetic devices are currently controlled by EMG signals generated by residual muscles and recorded by surface electrodes on the skin. These surface recordings are often inconsistent and unreliable, leading to high prosthetic abandonment rates for individuals with upper limb amputation. Surface electrodes are limited because of poor skin contact, socket rotation, residual limb sweating, and their ability to only record signals from superficial muscles, whose function frequently does not relate to the intended prosthetic function. More sophisticated prosthetic devices require a stable and reliable interface between the user and robotic hand to improve upper limb prosthetic function. New Method Implantable Myoelectric Sensors (IMES®) are small electrodes intended to detect and wirelessly transmit EMG signals to an electromechanical prosthetic hand via an electromagnetic coil built into the prosthetic socket. This system is designed to simultaneously capture EMG signals from multiple residual limb muscles, allowing the natural control of multiple degrees of freedom simultaneously. Results We report the status of the first FDA-approved clinical trial of the IMES® System. This study is currently in progress, limiting reporting to only preliminary results. Comparison with Existing Methods Our first subject has reported the ability to accomplish a greater variety and complexity of tasks in his everyday life compared to what could be achieved with his previous myoelectric prosthesis. Conclusion The interim results of this study indicate the feasibility of utilizing IMES® technology to reliably sense and wirelessly transmit EMG signals from residual muscles to intuitively control a three degree-of-freedom prosthetic arm. PMID:25102286
Alfred, Vinu Mervick; Srinivasan, Gnanasekaran; Zachariah, Mamie
2018-01-01
The supraclavicular approach is considered to be the easiest and most effective approach to block the brachial plexus for upper limb surgeries. The classical approach using the anatomical landmark technique was associated with higher failure rates and complications. Ultrasonography (USG) guidance and peripheral nerve stimulator (PNS) have improved the success rates and safety margin. The aim of the present study is to compare USG with PNS in supraclavicular brachial plexus block for upper limb surgeries with respect to the onset of motor and sensory blockade, total duration of blockade, procedure time, and complications. Prospective, randomized controlled study. Sixty patients aged above 18 years scheduled for elective upper limb surgery were randomly allocated into two groups. Group A patients received supraclavicular brachial plexus block under ultrasound guidance and in Group B patients, PNS was used. In both groups, local anesthetic mixture consisting of 15 ml of 0.5% bupivacaine and 10 ml of 2% lignocaine with 1:200,000 adrenaline were used. Independent t -test used to compare mean between groups; Chi-square test for categorical variables. The procedure time was shorter with USG (11.57 ± 2.75 min) compared to PNS (21.73 ± 4.84). The onset time of sensory block (12.83 ± 3.64 min vs. 16 ± 3.57 min) and onset of motor block (23 ± 4.27 min vs. 27 ± 3.85 min) were significantly shorter in Group A compared to Group B ( P < 0.05). The duration of sensory block was significantly prolonged in Group A (8.00 ± 0.891 h) compared to Group B (7.25 ± 1.418 h). None of the patients in either groups developed any complications. The ultrasound-guided supraclavicular brachial plexus block can be done quicker, with a faster onset of sensory and motor block compared to nerve stimulator technique.
Pérez-Mármol, Jose Manuel; García-Ríos, Ma Carmen; Ortega-Valdivieso, María Azucena; Cano-Deltell, Enrique Elías; Peralta-Ramírez, María Isabel; Ickmans, Kelly; Aguilar-Ferrándiz, María Encarnación
A randomized clinical trial. Rehabilitation treatments for improving fine motor skills (FMS) in hand osteoarthritis (HOA) have not been well explored yet. To assess the effectiveness of a rehabilitation program on upper limb disability, independence of activities of daily living (ADLs), fine motor abilities, functional independency, and general self-efficacy in older adults with HOA. About 45 adults (74-86 years) with HOA were assigned to an experimental group for completing an FMS intervention or a control group receiving conventional occupational therapy. Both interventions were performed 3 times/wk, 45 minutes each session, during 8 weeks. Upper limb disability, performance in ADLs, pinch strength, manual dexterity, range of fingers motion, functional independency, and general self-efficacy were assessed at baseline, immediately after treatment, and after 2 months of follow-up. FMS group showed significant improvements with a small effect size on manual dexterity (P ≤ .034; d ≥ 0.48) and a moderate-high effect on range of index (P ≤ .018; d ≥ 0.58) and thumb (P ≤ .027; d ≥ 0.39) motion. The control group showed a significant worse range of motion over time in some joints at the index (P ≤ .037; d ≥ 0.36) finger and thumb (P ≤ .017; d ≥ 0.55). A rehabilitation intervention for FMS may improve manual dexterity and range of fingers motion in HOA, but its effects on upper limb disability, performance in ADLs, pinch strength, functionality, and self-efficacy remain uncertain. Specific interventions of the hand are needed to prevent a worsening in range of finger motion. 1b. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Upper limb prosthesis use and abandonment: a survey of the last 25 years.
Biddiss, Elaine A; Chau, Tom T
2007-09-01
This review presents an analytical and comparative survey of upper limb prosthesis acceptance and abandonment as documented over the past 25 years, detailing areas of consumer dissatisfaction and ongoing technological advancements. English-language articles were identified in a search of Ovid, PubMed, and ISI Web of Science (1980 until February 2006) for key words upper limb and prosthesis. Articles focused on upper limb prostheses and addressing: (i) Factors associated with abandonment; (ii) Rejection rates; (iii) Functional analyses and patterns of wear; and (iv) Consumer satisfaction, were extracted with the exclusion of those detailing tools for outcome measurement, case studies, and medical procedures. Approximately 200 articles were included in the review process with 40 providing rates of prosthesis rejection. Quantitative measures of population characteristics, study methodology, and prostheses in use were extracted from each article. Mean rejection rates of 45% and 35% were observed in the literature for body-powered and electric prostheses respectively in pediatric populations. Significantly lower rates of rejection for both body-powered (26%) and electric (23%) devices were observed in adult populations while the average incidence of non-wear was similar for pediatric (16%) and adult (20%) populations. Documented rates of rejection exhibit a wide range of variance, possibly due to the heterogeneous samples involved and methodological differences between studies. Future research should comprise of controlled, multifactor studies adopting standardized outcome measures in order to promote comprehensive understanding of the factors affecting prosthesis use and abandonment. An enhanced understanding of these factors is needed to optimize prescription practices, guide design efforts, and satiate demand for evidence-based measures of intervention.
Sindou, Marc; Georgoulis, George
2016-01-01
Focal dystonia in hemiplegic upper limbs is poorly responsive to medications or classical neurosurgical treatments. Only repeated botulinum toxin injections show efficacy, but in most severe cases effects are transient. Cervical DREZ lesioning, which has proven efficacious in hyperspasticity when done deeply (3-5 mm) in the dorsal horn, may have favorable effects on the dystonic component when performed down to, and including, the base of the ventral horn (5-6 mm in depth). Three patients underwent deep cervical microsurgical DREZotomy (MDT) for focal dystonia in the upper limb. Hypertonia was reduced, and sustained dystonic postures were suppressed. Residual motor function (hidden behind hypertonia) came to the surface. Cervical MDT may be a useful armamentarium for treating refractory focal dystonia in the upper limb. © 2016 S. Karger AG, Basel.
Upper limb functional electrical stimulation devices and their man-machine interfaces.
Venugopalan, L; Taylor, P N; Cobb, J E; Swain, I D
2015-01-01
Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson's disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5-C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man-machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn't fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required.
Fuentes, María Antonia; Borrego, Adrián; Latorre, Jorge; Colomer, Carolina; Alcañiz, Mariano; Sánchez-Ledesma, María José; Noé, Enrique; Llorens, Roberto
2018-04-02
Impairments of the upper limb function are a major cause of disability and rehabilitation. Most of the available therapeutic options are based on active exercises and on motor and attentional inclusion of the affected arm in task oriented movements. However, active movements may not be possible after severe impairment of the upper limbs. Different techniques, such as mirror therapy, motor imagery, and non-invasive brain stimulation have been shown to elicit cortical activity in absence of movements, which could be used to preserve the available neural circuits and promote motor learning. We present a virtual reality-based paradigm for upper limb rehabilitation that allows for interaction of individuals with restricted movements from active responses triggered when they attempt to perform a movement. The experimental system also provides multisensory stimulation in the visual, auditory, and tactile channels, and transcranial direct current stimulation coherent to the observed movements. A feasibility study with a chronic stroke survivor with severe hemiparesis who seemed to reach a rehabilitation plateau after two years of its inclusion in a physical therapy program showed clinically meaningful improvement of the upper limb function after the experimental intervention and maintenance of gains in both the body function and activity. The experimental intervention also was reported to be usable and motivating. Although very preliminary, these results could highlight the potential of this intervention to promote functional recovery in severe impairments of the upper limb.
A survey on robotic devices for upper limb rehabilitation
2014-01-01
The existing shortage of therapists and caregivers assisting physically disabled individuals at home is expected to increase and become serious problem in the near future. The patient population needing physical rehabilitation of the upper extremity is also constantly increasing. Robotic devices have the potential to address this problem as noted by the results of recent research studies. However, the availability of these devices in clinical settings is limited, leaving plenty of room for improvement. The purpose of this paper is to document a review of robotic devices for upper limb rehabilitation including those in developing phase in order to provide a comprehensive reference about existing solutions and facilitate the development of new and improved devices. In particular the following issues are discussed: application field, target group, type of assistance, mechanical design, control strategy and clinical evaluation. This paper also includes a comprehensive, tabulated comparison of technical solutions implemented in various systems. PMID:24401110
Tieri, Gaetano; Gioia, Annamaria; Scandola, Michele; Pavone, Enea F; Aglioti, Salvatore M
2017-05-01
To explore the link between Sense of Embodiment (SoE) over a virtual hand and physiological regulation of skin temperature, 24 healthy participants were immersed in virtual reality through a Head Mounted Display and had their real limb temperature recorded by means of a high-sensitivity infrared camera. Participants observed a virtual right upper limb (appearing either normally, or with the hand detached from the forearm) or limb-shaped non-corporeal control objects (continuous or discontinuous wooden blocks) from a first-person perspective. Subjective ratings of SoE were collected in each observation condition, as well as temperatures of the right and left hand, wrist and forearm. The observation of these complex, body and body-related virtual scenes resulted in increased real hand temperature when compared to a baseline condition in which a 3d virtual ball was presented. Crucially, observation of non-natural appearances of the virtual limb (discontinuous limb) and limb-shaped non-corporeal objects elicited high increase in real hand temperature and low SoE. In contrast, observation of the full virtual limb caused high SoE and low temperature changes in the real hand with respect to the other conditions. Interestingly, the temperature difference across the different conditions occurred according to a topographic rule that included both hands. Our study sheds new light on the role of an external hand's visual appearance and suggests a tight link between higher-order bodily self-representations and topographic regulation of skin temperature. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Redgrave, Jessica N; Moore, Lucy; Oyekunle, Tosin; Ebrahim, Maryam; Falidas, Konstantinos; Snowdon, Nicola; Ali, Ali; Majid, Arshad
2018-03-23
Invasive vagus nerve stimulation (VNS) has the potential to enhance the effects of physiotherapy for upper limb motor recovery after stroke. Noninvasive, transcutaneous auricular branch VNS (taVNS) may have similar benefits, but this has not been evaluated in stroke recovery. We sought to determine the feasibility of taVNS delivered alongside upper limb repetitive task-specific practice after stroke and its effects on a range of outcome measures evaluating limb function. Thirteen participants at more than 3 months postischemic stroke with residual upper limb dysfunction were recruited from the community of Sheffield, United Kingdom (October-December 2016). Participants underwent 18 × 1-hour sessions over 6 weeks in which they made 30-50 repetitions of 8-10 arm movements concurrently with taVNS (NEMOS; Cerbomed, Erlangen, Germany, 25 Hz, .1-millisecond pulse width) at maximum tolerated intensity (mA). An electrocardiogram and rehabilitation outcome scores were obtained at each visit. Qualitative interviews determined the acceptability of taVNS to participants. Median time after stroke was 1.16 years, and baseline median/interquartile range upper limb Fugl-Meyer (UFM) score was 63 (54.5-99.5). Participants attended 92% of the planned treatment sessions. Three participants reported side effects, mainly fatigue, but all performed mean of more than 300 arm repetitions per session with no serious adverse events. There was a significant change in the UFM score with a mean increase per participant of 17.1 points (standard deviation 7.8). taVNS is feasible and well-tolerated alongside upper limb repetitive movements in poststroke rehabilitation. The motor improvements observed justify a phase 2 trial in patients with residual arm weakness. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Volumetric Effects of Motor Cortex Injury on Recovery of Ipsilesional Dexterous Movements
Darling, Warren G.; Pizzimenti, Marc A.; Hynes, Stephanie M.; Rotella, Diane L.; Headley, Grant; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; McNeal, David W.; Solon-Cline, Kathryn M.; Morecraft, Robert J.
2011-01-01
Damage to the motor cortex of one hemisphere has classically been associated with contralateral upper limb paresis, but recent patient studies have identified deficits in both upper limbs. In non-human primates, we tested the hypothesis that the severity of ipsilesional upper limb motor impairment in the early post-injury phase depends on the volume of gray and white matter damage of the motor areas of the frontal lobe. We also postulated that substantial recovery would accompany minimal task practice and that ipsilesional limb recovery would be correlated with recovery of the contralesional limb. Gross (reaching) and fine hand motor functions were assessed for 3-12 months post-injury using two motor tests. Volumes of white and gray matter lesions were assessed using quantitative histology. Early changes in post-lesion motor performance were inversely correlated with white matter lesion volume indicating that larger lesions produced greater decreases in ipsilesional hand movement control. All monkeys showed improvements in ipsilesional hand motor skill during the post-lesion period, with reaching skill improvements being positively correlated with total lesion volume indicating larger lesions were associate with greater ipsilesional motor skill recovery. We suggest that reduced trans-callosal inhibition from the lesioned hemisphere may play a role in the observed skill improvements. Our findings show that significant ipsilesional hand motor recovery is likely to accompany injury limited to frontal motor areas. In humans, more pronounced ipsilesional motor deficits that invariably develop after stroke may, in part, be a consequence of more extensive subcortical white and gray matter damage. PMID:21703261
EMG based FES for post-stroke rehabilitation
NASA Astrophysics Data System (ADS)
Piyus, Ceethal K.; Anjaly Cherian, V.; Nageswaran, Sharmila
2017-11-01
Annually, 15 million in world population experiences stroke. Nearly 9 million stroke survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG Abstract—Annually, 15 million in world population experiences stroke. Nearly 9 million stroke survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG based FES system can be used for effective upper limb motor re-education in post stroke upper limb rehabilitation. The governing feature of the designed system is its synchronous activation, in which the FES stimulation is dependent on the amplitude of the EMG signal acquired from the unaffected upper limb muscle of the hemiplegic patient. This proportionate operation eliminates the undesirable damage to the patient’s skin by generating stimulus in proportion to voluntary EMG signals. This feature overcomes the disadvantages of currently available manual motor re-education systems. This model can be used in home-based post stroke rehabilitation, to effectively improve the upper limb functions.
Gilliaux, Maxime; Lejeune, Thierry M; Sapin, Julien; Dehez, Bruno; Stoquart, Gaëtan; Detrembleur, Christine
2016-04-01
Kinematics is recommended for the quantitative assessment of upper limb movements. The aims of this study were to determine the age effects on upper limb kinematics and establish normative values in healthy subjects. Three hundred and seventy healthy subjects, aged 3-93 years, participated in the study. They performed two unidirectional and two geometrical tasks ten consecutive times with the REAplan, a distal effector robotic device that allows upper limb displacements in the horizontal plane. Twenty-six kinematic indices were computed for the four tasks. For the four tasks, nineteen of the computed kinematic indices showed an age effect. Seventeen indices (the accuracy, speed and smoothness indices and the reproducibility of the accuracy, speed and smoothness) improved in young subjects aged 3-30 years, showed stabilization in adults aged 30-60 years and declined in elderly subjects aged 60-93 years. Additionally, for both geometrical tasks, the speed index exhibited a decrease throughout life. Finally, a principal component analysis provided the relations between the kinematic indices, tasks and subjects' age. This study is the first to assess age effects on upper limb kinematics and establish normative values in subjects aged 3-93 years.
Wijdenes, Paula; Brouwers, Michael; van der Sluis, Corry K
2018-02-01
In order to create more uniformity in the prescription of upper limb prostheses by Dutch rehabilitation teams, the development and implementation of a Prosthesis Prescription Protocol of the upper limb (PPP-Arm) was initiated. The aim was to create a national digital protocol to structure, underpin, and evaluate the prescription of upper limb prostheses for clients with acquired or congenital arm defects. Prosthesis Prescription Protocol of the Arm (PPP-Arm) was developed on the basis of the International Classification of Functioning and consisted of several layers. All stakeholders (rehabilitation teams, orthopedic workshops, patients, and insurance companies) were involved in development and implementation. A national project coordinator and knowledge brokers in each team were essential for the project. PPP-Arm was successfully developed and implemented in nine Dutch rehabilitation teams. The protocol improved team collaboration, structure, and completeness of prosthesis prescriptions and treatment uniformity and might be interesting for other countries as well. Clinical relevance A national protocol to prescribe upper limb prostheses can be helpful to create uniformity in treatment of patients with upper limb defects. Such a protocol improves quality of care for all patients in the country.
Predictive classification of self-paced upper-limb analytical movements with EEG.
Ibáñez, Jaime; Serrano, J I; del Castillo, M D; Minguez, J; Pons, J L
2015-11-01
The extent to which the electroencephalographic activity allows the characterization of movements with the upper limb is an open question. This paper describes the design and validation of a classifier of upper-limb analytical movements based on electroencephalographic activity extracted from intervals preceding self-initiated movement tasks. Features selected for the classification are subject specific and associated with the movement tasks. Further tests are performed to reject the hypothesis that other information different from the task-related cortical activity is being used by the classifiers. Six healthy subjects were measured performing self-initiated upper-limb analytical movements. A Bayesian classifier was used to classify among seven different kinds of movements. Features considered covered the alpha and beta bands. A genetic algorithm was used to optimally select a subset of features for the classification. An average accuracy of 62.9 ± 7.5% was reached, which was above the baseline level observed with the proposed methodology (30.2 ± 4.3%). The study shows how the electroencephalography carries information about the type of analytical movement performed with the upper limb and how it can be decoded before the movement begins. In neurorehabilitation environments, this information could be used for monitoring and assisting purposes.
Biomimetics in the design of a robotic exoskeleton for upper limb therapy
NASA Astrophysics Data System (ADS)
Baniqued, Paul Dominick E.; Dungao, Jade R.; Manguerra, Michael V.; Baldovino, Renann G.; Abad, Alexander C.; Bugtai, Nilo T.
2018-02-01
Current methodologies in designing robotic exoskeletons for upper limb therapy simplify the complex requirements of the human anatomy. As a result, such devices tend to compromise safety and biocompatibility with the intended user. However, a new design methodology uses biological analogues as inspiration to address these technical issues. This approach follows that of biomimetics, a design principle that uses the extraction and transfer of useful information from natural morphologies and processes to solve technical design issues. In this study, a biomimetic approach in the design of a 5-degree-of-freedom robotic exoskeleton for upper limb therapy was performed. A review of biomimetics was first discussed along with its current contribution to the design of rehabilitation robots. With a proposed methodological framework, the design for an upper limb robotic exoskeleton was generated using CATIA software. The design was inspired by the morphology of the bones and the muscle force transmission of the upper limbs. Finally, a full design assembly presented had integrated features extracted from the biological analogue. The successful execution of a biomimetic design methodology made a case in providing safer and more biocompatible robots for rehabilitation.
[Study on the center-driven multiple degrees of freedom upper limb rehabilitation training robot].
Huang, Xiaohai; Yu, Hongliu; Wang, Jinchao; Dong, Qi; Zhang, Linling; Meng, Qiaoling; Li, Sujiao; Wang, Duojin
2018-03-01
With the aging of the society, the number of stroke patients has been increasing year by year. Compared with the traditional rehabilitation therapy, the application of upper limb rehabilitation robot has higher efficiency and better rehabilitation effect, and has become an important development direction in the field of rehabilitation. In view of the current development status and the deficiency of upper limb rehabilitation robot system, combined with the development trend of all kinds of products of the upper limb rehabilitation robot, this paper designed a center-driven upper limb rehabilitation training robot for cable transmission which can help the patients complete 6 degrees of freedom (3 are driven, 3 are underactuated) training. Combined the structure of robot with more joints rehabilitation training, the paper choosed a cubic polynomial trajectory planning method in the joint space planning to design two trajectories of eating and lifting arm. According to the trajectory equation, the movement trajectory of each joint of the robot was drawn in MATLAB. It laid a foundation for scientific and effective rehabilitation training. Finally, the experimental prototype is built, and the mechanical structure and design trajectories are verified.
Using upper limb kinematics to assess cognitive deficits in people living with both HIV and stroke.
Bui, Kevin D; Rai, Roshan; Johnson, Michelle J
2017-07-01
In this study, we aim to explore ways to objectively assess cognitive deficits in the stroke and HIV/stroke populations, where cognitive and motor impairments can be hard to separate. Using an upper limb rehabilitation robot called the Haptic TheraDrive, we collect performance error scores and motor learning data on the impaired and unimpaired limb during a trajectory tracking task. We compare these data to clinical cognitive scores. The preliminary results suggest a possible relationship between unimpaired upper limb performance error and visuospatial/executive function cognitive domains, but more work needs to be done to further investigate this. The potential of using robot-assisted technologies to measure unimpaired limb kinematics as a tool to assess cognitive deficits would be useful to inform more effective rehabilitation strategies for HIV, stroke, and HIV/stroke populations.
Evidence for existence of trunk-limb neural interaction in the corticospinal pathway.
Sasaki, Atsushi; Milosevic, Matija; Sekiguchi, Hirofumi; Nakazawa, Kimitaka
2018-03-06
In humans, trunk muscles have an essential role in postural control as well as walking. However, little is known about the mechanisms of interaction with different muscles, especially related to how trunk muscles interact with the limbs. Contraction of muscles can modulate the corticospinal excitability not only of the contracted muscle, but also of other muscles even in the remote segments of the body. However, "remote effect" mechanism has only been examined for inter-limb interactions. The aim of our current study was to test if there are trunk-limb interactions in the corticospinal pathways. We examined corticospinal excitability of: (a) trunk muscles at rest when hands, legs and jaw muscles were contracted and; (b) hand, leg, and jaw muscles at rest when trunk muscles were contracted. We measured motor evoked potentials elicited using transcranial magnetic stimulation in the rectus abdominis, flexor digitorum superficialis, masseter, tibialis anterior muscles under the following experimental conditions: (1) participants remained relaxed (Rest); (2) during trunk contraction (Trunk); (3) during bilateral hand clenching (Hands); (4) during jaw clenching (Jaw); and (5) during bilateral ankle dorsiflexion (Legs). Each condition was performed at three different stimulation intensities and conditions were randomized between participants. We found that voluntary contraction of trunk muscle facilitated the corticospinal excitability of upper-limb and lower-limb muscles during rest state. Furthermore, voluntary contraction of upper-limb muscle also facilitated the corticospinal excitability of trunk muscles during rest state. Overall, these results suggest the existence of trunk-limb interaction in the corticospinal pathway, which is likely depended on proximity of the trunk and limb representation in the motor cortex. Copyright © 2018 Elsevier B.V. All rights reserved.
Fuller, Louise M; El-Ansary, Doa; Button, Brenda M; Corbett, Monique; Snell, Greg; Marasco, Silvana; Holland, Anne E
2017-10-16
To investigate the effect of a supervised upper limb (UL) program (SULP) compared to no supervised UL program (NULP) after lung transplantation (LTx). Randomized controlled trial. Physiotherapy gym. Participants (N=80; mean age, 56±11y; 37 [46%] men) were recruited after LTx. All participants underwent lower limb strength thrice weekly and endurance training. Participants randomized to SULP completed progressive UL strength training program using handheld weights and adjustable pulley equipment. Overall bodily pain was rated on the visual analog scale. Shoulder flexion and abduction muscle strength were measured on a hand held dynamometer. Health related quality of life was measured with Medical Outcomes Study 36-item Short Form health Survey and the Quick Dash. Measurements were made at baseline, 6 weeks, 12 weeks, and 6 months by blinded assessors. After 6 weeks of training, participants in the SULP (n=41) had less overall bodily pain on the visual analog scale than did participants in the NULP (n=36) (mean VAS bodily pain score, 2.1±1.3cm vs 3.8±1.7cm; P<.001) as well as greater UL strength than did participants in the NULP (mean peak force, 8.4±4.0Nm vs 6.7±2.8Nm; P=.037). At 12 weeks, participants in the SULP better quality of life related to bodily pain (76±17 vs 66±26; P=.05), but at 6 months there were no differences between the groups in any outcome measures. No serious adverse events were reported. UL rehabilitation results in short-term improvements in pain and muscle strength after LTx, but no longer-term effects were evident. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Considerations for designing robotic upper limb rehabilitation devices
NASA Astrophysics Data System (ADS)
Nadas, I.; Vaida, C.; Gherman, B.; Pisla, D.; Carbone, G.
2017-12-01
The present study highlights the advantages of robotic systems for post-stroke rehabilitation of the upper limb. The latest demographic studies illustrate a continuous increase of the average life span, which leads to a continuous increase of stroke incidents and patients requiring rehabilitation. Some studies estimate that by 2030 the number of physical therapists will be insufficient for the patients requiring physical rehabilitation, imposing a shift in the current methodologies. A viable option is the implementation of robotic systems that assist the patient in performing rehabilitation exercises, the physical therapist role being to establish the therapeutic program for each patient and monitor their individual progress. Using a set of clinical measurements for the upper limb motions, the analysis of rehabilitation robotic systems provides a comparative study between the motions required by clinicians and the ones that robotic systems perform for different therapeutic exercises. A critical analysis of existing robots is performed using several classifications: mechanical design, assistance type, actuation and power transmission, control systems and human robot interaction (HRI) strategies. This classification will determine a set of pre-requirements for the definition of new concepts and efficient solutions for robotic assisted rehabilitation therapy.
Supervised physical therapy in women treated with radiotherapy for breast cancer 1
Leal, Nara Fernanda Braz da Silva; de Oliveira, Harley Francisco; Carrara, Hélio Humberto Angotti
2016-01-01
ABSTRACT Objective: to evaluate the effect of physical therapy on the range of motion of the shoulders and perimetry of the upper limbs in women treated with radiotherapy for breast cancer. Methods: a total of 35 participants were randomized into two groups, with 18 in the control group (CG) and 17 in the study group (SG). Both of the groups underwent three evaluations to assess the range of motion of the shoulders and perimetry of the upper limbs, and the study group underwent supervised physical therapy for the upper limbs. Results: the CG had deficits in external rotation in evaluations 1, 2, and 3, whereas the SG had deficits in flexion, abduction, and external rotation in evaluation 1. The deficit in abduction was recovered in evaluation 2, whereas the deficits in all movements were recovered in evaluation 3. No significant differences in perimetry were observed between the groups. Conclusion: the applied supervised physical therapy was effective in recovering the deficit in abduction after radiotherapy, and the deficits in flexion and external rotation were recovered within two months after the end of radiotherapy. Registration number of the clinical trial: NCT02198118. PMID:27533265
Schultz, Aimee E; Kuiken, Todd A
2011-01-01
Current treatment of upper limb amputation restores some degree of functional ability, but this ability falls far below the standard set by the natural arm. Although acceptance rates can be high when patients are highly motivated and receive proper training and care, current prostheses often fail to meet the daily needs of amputees and frequently are abandoned. Recent advancements in science and technology have led to promising methods of accessing neural information for communication or control. Researchers have explored invasive and noninvasive methods of connecting with muscles, nerves, or the brain to provide increased functionality for patients experiencing disease or injury, including amputation. These techniques offer hope of more natural and intuitive prosthesis control, and therefore increased quality of life for amputees. In this review, we discuss the current state of the art of neural interfaces, particularly those that may find application within the prosthetics field. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Evaluation of bone microstructure in CRPS-affected upper limbs by HR-pQCT.
Mussawy, Haider; Schmidt, Tobias; Rolvien, Tim; Rüther, Wolfgang; Amling, Michael
2017-01-01
Complex regional pain syndrome (CRPS) is a major complication after trauma, surgery, and/or immobilization of an extremity. The disease often starts with clinical signs of local inflammation and develops into a prolonged phase that is characterized by trophic changes and local osteoporosis and sometimes results in functional impairment of the affected limb. While the pathophysiology of CRPS remains poorly understood, increased local bone resorption plays an undisputed pivotal role. The aim of this retrospective clinical study was to assess the bone microstructure in patients with CRPS. Patients with CRPS type I of the upper limb whose affected and unaffected distal radii were analyzed by high-resolution peripheral quantitative computed tomography (HR-pQCT) were identified retrospectively. The osteology laboratory data and dual-energy X-ray absorptiometry (DXA) images of the left femoral neck and lumbar spine, which were obtained on the same day as HR-pQCT, were extracted from the medical records. Five patients were identified. The CRPS-affected upper limbs had significantly lower trabecular numbers and higher trabecular thicknesses than the unaffected upper limbs. However, the trabecular bone volume to total bone volume and cortical thickness values of the affected and unaffected sides were similar. Trabecular thickness tended to increase with time since disease diagnosis. CRPS associated with significant alterations in the bone microstructure of the affected upper limb that may amplify as the duration of disease increases.
Rogowski, Isabelle; Creveaux, Thomas; Genevois, Cyril; Klouche, Shahnaz; Rahme, Michel; Hardy, Philippe
2016-01-01
The purpose of this study was to examine the relationship between the upper limb anthropometric dimensions and a history of dominant upper limb injury in tennis players. Dominant and non-dominant wrist, forearm, elbow and arm circumferences, along with a history of dominant upper limb injuries, were assessed in 147 male and female players, assigned to four groups based on location of injury: wrist (n = 9), elbow (n = 25), shoulder (n = 14) and healthy players (n = 99). From anthropometric dimensions, bilateral differences in circumferences and in proportions were calculated. The wrist group presented a significant bilateral difference in arm circumference, and asymmetrical bilateral proportions between wrist and forearm, as well as between elbow and arm, compared to the healthy group (6.6 ± 3.1% vs. 4.9 ± 4.0%, P < 0.01; -3.6 ± 3.0% vs. -0.9 ± 2.9%, P < 0.05; and -2.2 ± 2.2% vs. 0.1 ± 3.4%, P < 0.05, respectively). The elbow group displayed asymmetrical bilateral proportions between forearm and arm compared to the healthy group (-0.4 ± 4.3% vs. 1.5 ± 4.0%, P < 0.01). The shoulder group showed significant bilateral difference in elbow circumference, and asymmetrical bilateral proportions between forearm and elbow when compared to the healthy group (5.8 ± 4.7% vs. 3.1 ± 4.8%, P < 0.05 and -1.7 ± 4.5% vs. 1.4 ± 4.3%, P < 0.01, respectively). These findings suggest that players with a history of injury at the upper limb joint present altered dominant upper limb proportions in comparison with the non-dominant side, and such asymmetrical proportions would appear to be specific to the location of injury. Further studies are needed to confirm the link between location of tennis injury and asymmetry in upper limb proportions using high-tech measurements in symptomatic tennis players.
Simpson, Lisa A.; Eng, Janice J.; Chan, May
2017-01-01
Abstract Purpose: To investigate the feasibility of a phone-monitored home exercise program for the upper limb following stroke. Methods: A pre-post double baseline repeated measures design was used. Participants completed an 8-week home exercise program that included behavioural strategies to promote greater use of the affected upper limb. Participants were monitored weekly by therapists over the phone. The following feasibility outcomes were collected: Process (e.g. recruitment rate); Resources (e.g. exercise adherence rate); Management (e.g. therapist monitoring) and Scientific (e.g. safety, effect sizes). Clinical outcomes included: The Chedoke Arm and Hand Inventory, Motor Activity Log, grip strength and the Canadian Occupational Performance Measure. Results: Eight individuals with stroke were recruited and six participants completed the exercise program. All but one of the six participants met the exercise target of 60 minutes/day, 6 days/week. Participants were stable across the baseline period. The following post-treatment effect sizes were observed: CAHAI (0.944, p = 0.046); MALQ (0.789, p = 0.03) grip strength (0.947, p = 0.046); COPM (0.789, p = 0.03). Improvements were maintained at three and six month follow ups. Conclusions: Community dwelling individuals with stroke may benefit from a phone-monitored upper limb home exercise program that includes behavioural strategies that promote transfer of exercise gains into daily upper limb use.Implications for RehabilitationA repetitive, task-oriented home exercise program that utilizes telephone supervision may be an effective method for the treatment of the upper limb following strokeThis program is best suited for individuals with mild to moderate level impairment and experience a sufficient level of challenge from the exercisesAn exercise program that includes behavioural strategies may promote transfer of exercise gains into greater use of the affected upper limb during daily activities PMID:27017890
Di Monaco, Marco; Vallero, Fulvia; Castiglioni, Carlotta; Di Monaco, Roberto; Tappero, Rosa
2011-01-01
To investigate the association between serum levels of 25-hydroxyvitamin D and the occurrence of simultaneous fractures of the upper limb in older women who sustain a fall-related fracture of the hip. Cross-sectional study. We investigated 472 of 480 white women consecutively admitted to a rehabilitation hospital because of a fall-related hip fracture. Twenty-seven (5.7%) of the 472 women sustained a concomitant upper-limb fracture of either distal radius (20 women) or proximal humerus (seven women). We assessed serum levels of 25-hydroxyvitamin D 14.2 ± 4.1 (mean ± SD) days after surgical repair of the hip fracture in the 472 women by an immunoenzymatic assay. Twenty-five-hydroxyvitamin D levels were significantly lower in the 27 women with concomitant fractures of both hip and upper limb than in the remaining 445 hip-fracture women: mean ± SD values were 6.5 ± 5.0 ng/ml and 11.7 ± 10.4 ng/ml respectively in the two groups (mean difference between groups 5.2 ng/ml: 95% CI 1.2-9.2; p=0.011). Low levels of 25-hydroxyvitamin D were significantly associated with concomitant fractures of the upper limb (p=0.017), after adjustment for eight potential confounders including age, height, weight, hip-fracture type, cognitive impairment, neurologic impairment, previous hip fracture, and previous upper-limb fracture. Low levels of 25-hydroxyvitamin D were significantly associated with concomitant upper-limb fractures in our sample of older women with a fall-related fracture of the hip. Preventing vitamin D deficiency may lower the incidence of simultaneous fractures due to a singe fall in elderly women. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Combined mirror visual and auditory feedback therapy for upper limb phantom pain: a case report
2011-01-01
Introduction Phantom limb sensation and phantom limb pain is a very common issue after amputations. In recent years there has been accumulating data implicating 'mirror visual feedback' or 'mirror therapy' as helpful in the treatment of phantom limb sensation and phantom limb pain. Case presentation We present the case of a 24-year-old Caucasian man, a left upper limb amputee, treated with mirror visual feedback combined with auditory feedback with improved pain relief. Conclusion This case may suggest that auditory feedback might enhance the effectiveness of mirror visual feedback and serve as a valuable addition to the complex multi-sensory processing of body perception in patients who are amputees. PMID:21272334
Neck and Upper Limb Dysfunction in Patients following Neck Dissection: Looking beyond the Shoulder.
Gane, Elise M; O'Leary, Shaun P; Hatton, Anna L; Panizza, Benedict J; McPhail, Steven M
2017-10-01
Objective To measure patient-perceived upper limb and neck function following neck dissection and to investigate potential associations between clinical factors, symptoms, and function. Study Design Cross-sectional. Setting Two tertiary hospitals in Brisbane, Australia. Subjects and Methods Inclusion criteria: patients treated with neck dissection (2009-2014). aged <18 years, accessory nerve or sternocleidomastoid sacrifice, previous neck dissection, preexisting shoulder/neck injury, and inability to provide informed consent (cognition, insufficient English). Primary outcomes were self-reported function of the upper limb (Quick Disabilities of the Arm, Shoulder, and Hand) and neck (Neck Disability Index). Secondary outcomes included demographics, oncological management, self-efficacy, and pain. Generalized linear models were prepared to examine relationships between explanatory variables and self-reported function. Results Eighty-nine participants (male n = 63, 71%; median age, 62 years; median 3 years since surgery) reported mild upper limb and neck dysfunction (median [quartile 1, quartile 3] scores of 11 [3, 32] and 12 [4, 28], respectively). Significant associations were found between worse upper limb function and longer time since surgery (coefficient, 1.76; 95% confidence interval [CI], 0.01-3.51), having disease within the thyroid (17.40; 2.37-32.44), postoperative radiation therapy (vs surgery only) (13.90; 6.67-21.14), and shoulder pain (0.65; 0.44-0.85). Worse neck function was associated with metastatic cervical lymph nodes (coefficient, 6.61; 95% CI, 1.14-12.08), shoulder pain (0.19; 0.04-0.34), neck pain (0.34; 0.21-0.47), and symptoms of neuropathic pain (0.61; 0.25-0.98). Conclusion Patients can experience upper limb and neck dysfunction following nerve-preserving neck dissection. The upper quadrant as a whole should be considered when assessing rehabilitation priorities after neck dissection.
3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor
NASA Astrophysics Data System (ADS)
Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki
The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].
Bower, Kelly J; Clark, Ross A; McGinley, Jennifer L; Martin, Clarissa L; Miller, Kimberly J
2014-09-01
To investigate the feasibility and potential efficacy of the Nintendo Wii™ for balance rehabilitation after stroke. Phase II, single-blind, randomized controlled trial. Inpatient rehabilitation facility. Thirty adults (mean age 63.6 (14.7) years) undergoing inpatient rehabilitation who were less than three months post-stroke and able to stand unsupported. Participants were allocated to a Balance Group, using the 'Wii Fit Plus' in standing, or Upper Limb Group, using the 'Wii Sports/Sports Resort' in sitting. Both groups undertook three 45 minute sessions per week over two to four weeks in addition to standard care. The primary focus was feasibility, addressed by recruitment, retention, adherence, acceptability and safety. Efficacy was evaluated by balance, mobility and upper limb outcomes. Twenty-one percent of individuals screened were recruited and 86% (n = 30) of eligible people agreed to participate. Study retention and session adherence was 90% and > 99%, respectively, at two weeks; dropping to 70% and 87% at four weeks due to early discharge. All participants reported enjoying the sessions and most felt they were beneficial. No major adverse events occurred. Wii use by the Balance Group was associated with trends for improved balance, with significantly greater improvement in outcomes including the Step Test and Wii Balance Board-derived centre of pressure scores. The Upper Limb Group had larger, non-significant changes in arm function. A Wii-based approach appears feasible and promising for post-stroke balance rehabilitation. A larger randomized controlled trial is recommended to further investigate efficacy. © The Author(s) 2014.
Compensatory Versus Noncompensatory Shoulder Movements Used for Reaching in Stroke.
Levin, Mindy F; Liebermann, Dario G; Parmet, Yisrael; Berman, Sigal
2016-08-01
Background The extent to which the upper-limb flexor synergy constrains or compensates for arm motor impairment during reaching is controversial. This synergy can be quantified with a minimal marker set describing movements of the arm-plane. Objectives To determine whether and how (a) upper-limb flexor synergy in patients with chronic stroke contributes to reaching movements to different arm workspace locations and (b) reaching deficits can be characterized by arm-plane motion. Methods Sixteen post-stroke and 8 healthy control subjects made unrestrained reaching movements to targets located in ipsilateral, central, and contralateral arm workspaces. Arm-plane, arm, and trunk motion, and their temporal and spatial linkages were analyzed. Results Individuals with moderate/severe stroke used greater arm-plane movement and compensatory trunk movement compared to those with mild stroke and control subjects. Arm-plane and trunk movements were more temporally coupled in stroke compared with controls. Reaching accuracy was related to different segment and joint combinations for each target and group: arm-plane movement in controls and mild stroke subjects, and trunk and elbow movements in moderate/severe stroke subjects. Arm-plane movement increased with time since stroke and when combined with trunk rotation, discriminated between different subject groups for reaching the central and contralateral targets. Trunk movement and arm-plane angle during target reaches predicted the subject group. Conclusions The upper-limb flexor synergy was used adaptively for reaching accuracy by patients with mild, but not moderate/severe stroke. The flexor synergy, as parameterized by the amount of arm-plane motion, can be used by clinicians to identify levels of motor recovery in patients with stroke. © The Author(s) 2015.
The Effect of Upper Limb Massage on Infants' Venipuncture Pain.
Chik, Yuen-Man; Ip, Wan-Yim; Choi, Kai-Chow
2017-02-01
The purpose of the study was to investigate the effect of upper limb massage on relieving pain among infants undergoing venipuncture in Hong Kong. This study was a crossover, double-blind, randomized controlled trial. Eighty infants at the neonatal intensive care unit were randomly assigned to 2 groups in different order to receive interventions. The massage first group (N = 40) received 2-minute massage before venipuncture on the first occasion then received usual care (control) on the second occasion, and vice versa in the massage second group (N = 40). The infants' behavior and physiological responses were recorded on two occasions: (1) right after the intervention and (2) during the first 30 seconds of venipuncture procedure. The mean pain scores (Premature Infant Pain Profile) were significantly lower in infants who received massage (massage first: 6.0 [standard deviation = 3.3]; massage second: 7.30 [standard deviation = 4.4]) versus control (massage first: 12.0 [standard deviation = 4.3]; massage second: 12.7 [standard deviation = 3.1]). The crude and adjusted generalized estimating equations model showed that the infants had significantly lower pain score when receiving massage as compared to receiving the control treatment, and there were no significant time and carryover effects: -6.03 (95% confidence interval: -7.67 to -4.38), p < .001 and -5.96 (95% confidence interval: -7.56 to -4.36), p < .001, respectively. Upper limb massage may be effective in decreasing infants' venipuncture pain perception. Copyright © 2016 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.
An objective assessment of safety to drive in an upper limb cast.
Stevenson, H L; Peterson, N; Talbot, C; Dalal, S; Watts, A C; Trail, I A
2013-03-01
Patients managed with upper limb cast immobilization often seek advice about driving. There is very little published data to assist in decision making, and advice given varies between healthcare professionals. There are no specific guidelines available from the UK Drivers and Vehicles Licensing Agency, police, or insurance companies. Evidence-based guidelines would enable clinicians to standardize the advice given to patients. Six individuals (three male, three female; mean age 36 years, range 27-43 years) were assessed by a mobility occupational therapist and driving standards agency examiner while completing a formal driving test in six different types of upper limb casts (above-elbow, below-elbow neutral, and below-elbow cast incorporating the thumb [Bennett's cast]) on both left and right sides. Of the 36 tests, participants passed 31 tests, suggesting that most people were able to safely drive with upper limb cast immobilization. However, driving in a left above-elbow cast was considered unsafe.
Guang, Hui; Ji, Linhong; Shi, Yingying; Misgeld, Berno J E
2018-01-01
The robot-assisted therapy has been demonstrated to be effective in the improvements of limb function and even activities of daily living for patients after stroke. This paper presents an interactive upper-limb rehabilitation robot with a parallel mechanism and an isometric screen embedded in the platform to display trajectories. In the dynamic modeling for impedance control, the effects of friction and inertia are reduced by introducing the principle of virtual work and derivative of Jacobian matrix. To achieve the assist-as-needed impedance control for arbitrary trajectories, the strategy based on orthogonal deviations is proposed. Simulations and experiments were performed to validate the dynamic modeling and impedance control. Besides, to investigate the influence of the impedance in practice, a subject participated in experiments and performed two types of movements with the robot, that is, rectilinear and circular movements, under four conditions, that is, with/without resistance or impedance, respectively. The results showed that the impedance and resistance affected both mean absolute error and standard deviation of movements and also demonstrated the significant differences between movements with/without impedance and resistance ( p < 0.001). Furthermore, the error patterns were discussed, which suggested that the impedance environment was capable of alleviating movement deviations by compensating the synergetic inadequacy between the shoulder and elbow joints.
Shi, Yingying; Misgeld, Berno J. E.
2018-01-01
The robot-assisted therapy has been demonstrated to be effective in the improvements of limb function and even activities of daily living for patients after stroke. This paper presents an interactive upper-limb rehabilitation robot with a parallel mechanism and an isometric screen embedded in the platform to display trajectories. In the dynamic modeling for impedance control, the effects of friction and inertia are reduced by introducing the principle of virtual work and derivative of Jacobian matrix. To achieve the assist-as-needed impedance control for arbitrary trajectories, the strategy based on orthogonal deviations is proposed. Simulations and experiments were performed to validate the dynamic modeling and impedance control. Besides, to investigate the influence of the impedance in practice, a subject participated in experiments and performed two types of movements with the robot, that is, rectilinear and circular movements, under four conditions, that is, with/without resistance or impedance, respectively. The results showed that the impedance and resistance affected both mean absolute error and standard deviation of movements and also demonstrated the significant differences between movements with/without impedance and resistance (p < 0.001). Furthermore, the error patterns were discussed, which suggested that the impedance environment was capable of alleviating movement deviations by compensating the synergetic inadequacy between the shoulder and elbow joints. PMID:29850004
Principles of Tendon Reconstruction Following Complex Trauma of the Upper Limb
Chattopadhyay, Arhana; McGoldrick, Rory; Umansky, Elise; Chang, James
2015-01-01
Reconstruction of tendons following complex trauma to the upper limb presents unique clinical and research challenges. In this article, the authors review the principles guiding preoperative assessment, surgical reconstruction, and postoperative rehabilitation and management of the upper extremity. Tissue engineering approaches to address tissue shortages for tendon reconstruction are also discussed. PMID:25685101
Wang, Jun; Pei, Jian; Cui, Xiao; Sun, Kexing; Ni, Huanhuan; Zhou, Cuixia; Wu, Ji; Huang, Mei; Ji, Li
2015-10-01
To compare the clinical efficacy on upper limb motor impairment in stroke between the interactive dynamic scalp acupuncture therapy and the traditional scalp acupuncture therapy. The randomized controlled trial and MINIMIZE layering randomization software were adopted. Seventy patients of upper limb with III to V grade in Brunnstrom scale after stroke were randomized into an interactive dynamic scalp acupuncture group and a traditional scalp acupuncture group, 35 cases in each one. In the interactive dynamic scalp acupuncture group, the middle 2/5 of Dingnieqianxiexian (anterior oblique line of vertex-temporal), the middle 2/5 of Dingniehouxiexian (posterior oblique line of vertex-temporal) and Dingpangerxian (lateral line 2 of vertex) on the affected side were selected as the stimulation areas. Additionally, the rehabilitation training was applied during scalp acupuncture treatment. In the traditional scalp acupuncture group, the scalp stimulation areas were same as the interactive dynamic scalp acupuncture group. But the rehabilitation training was applied separately. The rehabilitation training was applied in the morning and the scalp acupuncture was done in the afternoon. The results in Fugl-Meyer for the upper limb motor function (U-FMA), the Wolf motor function measure scale (WM- FT) and the modified Barthel index in the two groups were compared between the two groups before treatment and in 1 and 2 months of treatment, respectively. After treatment, the U-FMA score, WMFT score and the score of the modified Barthel index were all apparently improved as compared with those before treatment (all P < 0.01). The improvement in the U-FMA score after treatment in the interactive dynamic scalp acupuncture group was better than that in the traditional scalp acupuncture group (P < 0.05). For the patients of IV to V grade in Brunnstrom scale, WMFT score in 2 months of treatment and the score of Barthel index after treatment in the interactive dynamic scalp acupuncture group were improved apparently as compared with those in the traditional scalp acupuncture group (P < 0.05, P < 0.01). But, for the patients of III grade in Brunnstrom scale, WMFT score and the score of Barthel index after treatment in the interactive dynamic scalp acupuncture group were not different significantly as compared with those in the traditional scalp acupuncture group (both P > 0.05). For the patients of IV to V grade in Brunnstrom scale in stroke, the interactive dynamic scalp acupuncture therapy achieves the superior improvements of the upper limb motor function and the activity of daily life as compared with the traditional scalp acupuncture therapy, and the longer the treatment lasts, the more apparent the improvements are. For the patients of III grade in Brunnstrom scale, the interactive dynamic scalp acupuncture therapy achieves the similar improvement in the upper limb motor impairment as compared with the traditional scalp acupuncture therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madaric, Juraj, E-mail: jurmad@hotmail.com; Klepanec, Andrej; Mistrik, Martin
Induction of therapeutic angiogenesis by autologous bone marrow mononuclear cell transplantation has been identified as a potential new option in patients with advanced lower-limb ischemia. There is little evidence of the benefit of intra-arterial cell application in upper-limb critical ischemia. We describe a patient with upper-extremity critical limb ischemia with digital gangrene resulting from hypothenar hammer syndrome successfully treated by intra-arterial autologous bone marrow mononuclear cell transplantation.
Shimizu, Yukiyo; Kadone, Hideki; Kubota, Shigeki; Suzuki, Kenji; Abe, Tetsuya; Ueno, Tomoyuki; Soma, Yuichiro; Sankai, Yoshiyuki; Hada, Yasushi; Yamazaki, Masashi
2017-01-01
Patients with complete paraplegia after spinal cord injury (SCI) are unable to stand or walk on their own. Standing exercise decreases the risk of decubitus ulcers, osteoporosis, and joint deformities in patients with SCI. Conventional gait training for complete paraplegia requires excessive upper limb usage for weight bearing and is difficult in cases of complete quadriplegia. The purpose of this study was to describe voluntary ambulation triggered by upper limb activity using the Hybrid Assistive Limb® (HAL) in patients with complete quadri/paraplegia after chronic SCI. Four patients (3 men, 1 woman) were enrolled in this study. The mean patient age ± standard deviation was 37.2 ± 17.8 (range, 20-67) years. Clinical evaluation before intervention revealed the following findings: case 1, neurological level C6, American Spinal Cord Injury Association impairment scale (AIS) grade B; case 2, T6, AIS A; case 3, T10 AIS A; and case 4, T11, AIS A. The HAL intervention consisted of 10 sessions. Each HAL session lasted 60-90 min. The HAL electrodes for hip and knee flexion-extension were placed on the anterior and posterior sides of the upper limbs contralaterally corresponding to each of the lower limbs. Surface electromyography (EMG) was used to evaluate muscle activity of the tensor fascia lata and quadriceps femoris (Quad) in synchronization with a Vicon motion capture system. The modified Ashworth scale (mAs) score was also evaluated before and after each session. All participants completed all 10 sessions. Cases 1, 2, and 3 demonstrated significant decreases in mAs score after the sessions compared to pre-session measurements. In all cases, EMG before the intervention showed no apparent activation in either Quad. However, gait phase dependent activity of the lower limb muscles was seen during voluntarily triggered ambulation driven by upper limb muscle activities. In cases 3 and 4, active contraction in both Quads was observed after intervention. These findings suggest that upper-limb-triggered HAL ambulation is a safe and feasible option for rehabilitation in patients with complete quadri/paraplegia caused by chronic SCI.
Shimizu, Yukiyo; Kadone, Hideki; Kubota, Shigeki; Suzuki, Kenji; Abe, Tetsuya; Ueno, Tomoyuki; Soma, Yuichiro; Sankai, Yoshiyuki; Hada, Yasushi; Yamazaki, Masashi
2017-01-01
Patients with complete paraplegia after spinal cord injury (SCI) are unable to stand or walk on their own. Standing exercise decreases the risk of decubitus ulcers, osteoporosis, and joint deformities in patients with SCI. Conventional gait training for complete paraplegia requires excessive upper limb usage for weight bearing and is difficult in cases of complete quadriplegia. The purpose of this study was to describe voluntary ambulation triggered by upper limb activity using the Hybrid Assistive Limb® (HAL) in patients with complete quadri/paraplegia after chronic SCI. Four patients (3 men, 1 woman) were enrolled in this study. The mean patient age ± standard deviation was 37.2 ± 17.8 (range, 20–67) years. Clinical evaluation before intervention revealed the following findings: case 1, neurological level C6, American Spinal Cord Injury Association impairment scale (AIS) grade B; case 2, T6, AIS A; case 3, T10 AIS A; and case 4, T11, AIS A. The HAL intervention consisted of 10 sessions. Each HAL session lasted 60–90 min. The HAL electrodes for hip and knee flexion-extension were placed on the anterior and posterior sides of the upper limbs contralaterally corresponding to each of the lower limbs. Surface electromyography (EMG) was used to evaluate muscle activity of the tensor fascia lata and quadriceps femoris (Quad) in synchronization with a Vicon motion capture system. The modified Ashworth scale (mAs) score was also evaluated before and after each session. All participants completed all 10 sessions. Cases 1, 2, and 3 demonstrated significant decreases in mAs score after the sessions compared to pre-session measurements. In all cases, EMG before the intervention showed no apparent activation in either Quad. However, gait phase dependent activity of the lower limb muscles was seen during voluntarily triggered ambulation driven by upper limb muscle activities. In cases 3 and 4, active contraction in both Quads was observed after intervention. These findings suggest that upper-limb-triggered HAL ambulation is a safe and feasible option for rehabilitation in patients with complete quadri/paraplegia caused by chronic SCI. PMID:29209163
Nyberg, Andrè; Saey, Didier; Martin, Mickaël; Maltais, François
2015-04-27
Low-load, high-repetitive single-limb resistance training may increase limb muscle function and functional exercise capacity in patients with chronic obstructive pulmonary disease (COPD) while minimizing the occurrence of limiting exertional symptoms. Whether high-repetitive single-limb resistance training would perform better than high-repetitive two-limb resistance training is unknown. In addition, the mechanisms underlying possible benefits of high-repetitive resistance training has not been investigated. The aims of this study are to compare single versus two-limb high-repetitive resistance training in patients with COPD and to investigate mechanisms of action of these training modalities. This trial is a prospective, assessor-blind, randomized controlled trial. The participants are patients with stable severe to very severe COPD who are older than 40 years of age and healthy controls. The intervention is single-limb, high-repetitive, resistance training with elastic bands, three times/week for 8 weeks. The control is two-limb high-repetitive resistance training with elastic bands, three times/week for 8 weeks. The primary outcomes is change in the 6-min walking distance after 8 weeks of single-limb or two-limb high-repetitive resistance training. The secondary outcomes are changes in limb muscle strength and endurance capacity, key protein involved in quadriceps anabolic/catabolic signalization, fiber-type distribution and capillarization, subjective dyspnea and muscle fatigue, muscle oxygenation, cardiorespiratory demand and health-related quality-of-life after 8 weeks of single-limb or two-limb high-repetitive resistance training. The acute effects of single-limb versus two-limb high-repetitive resistance training on contractile fatigue, exercise stimulus (the product of number of repetition and load), subjective dyspnea and muscle fatigue, muscle oxygenation, and cardiorespiratory demand during upper and lower limb exercises will also be investigated in patients with COPD and healthy controls. Randomization will be performed using a random number generator by a person independent of the recruitment process, using 1:1 allocation to the intervention and the control group using random block sizes. All outcome assessors will be blinded to group assignment. The results of this project will provide important information to help developing and implementing customized exercise training programs for patients with COPD. ClinicalTrials.gov Identifier NCT02283580 Registration date: 4 November 2014. First participant randomized: 10 November 2014.
Bang, Dae-Hyouk; Shin, Won-Seob; Choi, Ho-Suk
2018-01-01
Reducing compensatory strategies during repetitive upper-limb training may be helpful in relearning motor skills. To explore the effects of modified constraint-induced movement therapy (mCIMT), additionally modified by adding trunk restraint (TR), on upper-limb function and activities of daily living (ADLs) in early post-stroke patients. Twenty-four participants with early stroke were randomly assigned to mCIMT combined with TR (mCIMT + TR) or mCIMT alone. Each group underwent twenty sessions (1 h/d, 5 d/wk for 4 weeks). Patients were assessed with the action research arm test (ARAT), the Fugl-Meyer Assessment-Upper extremity (FMA-UE), the Modified Barthel index (MBI), the Maximal elbow extension angle during reaching (MEEAR), and Motor Activity Logs (MAL-AOU and MAL-QOM). The mCIMT + TR group exhibited greater improvement in the ARAT, FMA-UE, MBI, MEEAR, and MAL-AOU, and MAL-QOM than the mCIMT group. Statistical analyses showed significant differences in ARAT (P = 0.003), FMA-UE (P = 0.042), MBI (P = 0.001), MEEAR (P = 0.002), and MAL-AOU (P = 0.005) between the groups. Modified CIMT combined with TR may be more effective than mCIMT alone in improving upper-limb function and ADLs in patients with early stroke.
Wang, Yue; Yu, Lei; Fu, Jianming; Fang, Qiang
2014-04-01
In order to realize an individualized and specialized rehabilitation assessment of remoteness and intelligence, we set up a remote intelligent assessment system of upper limb movement function of post-stroke patients during rehabilitation. By using the remote rehabilitation training sensors and client data sampling software, we collected and uploaded the gesture data from a patient's forearm and upper arm during rehabilitation training to database of the server. Then a remote intelligent assessment system, which had been developed based on the extreme learning machine (ELM) algorithm and Brunnstrom stage assessment standard, was used to evaluate the gesture data. To evaluate the reliability of the proposed method, a group of 23 stroke patients, whose upper limb movement functions were in different recovery stages, and 4 healthy people, whose upper limb movement functions were normal, were recruited to finish the same training task. The results showed that, compared to that of the experienced rehabilitation expert who used the Brunnstrom stage standard table, the accuracy of the proposed remote Brunnstrom intelligent assessment system can reach a higher level, as 92.1%. The practical effects of surgery have proved that the proposed system could realize the intelligent assessment of upper limb movement function of post-stroke patients remotely, and it could also make the rehabilitation of the post-stroke patients at home or in a community care center possible.
Losier, Y; Englehart, K; Hudgins, B
2007-01-01
The integration of multiple input sources within a control strategy for powered upper limb prostheses could provide smoother, more intuitive multi-joint reaching movements based on the user's intended motion. The work presented in this paper presents the results of using myoelectric signals (MES) of the shoulder area in combination with the position of the shoulder as input sources to multiple linear discriminant analysis classifiers. Such an approach may provide users with control signals capable of controlling three degrees of freedom (DOF). This work is another important step in the development of hybrid systems that will enable simultaneous control of multiple degrees of freedom used for reaching tasks in a prosthetic limb.
Microwave Limb Sounder/El Niño Watch - Water Vapor Measurement, October, 1997
1997-10-30
This image shows atmospheric water vapor in Earth upper troposphere, about 10 kilometers 6 miles above the surface, as measured by NASA Microwave Limb Sounder MLS instrument flying aboard the Upper Atmosphere Research Satellite.
Electromyographic control of functional electrical stimulation in selected patients.
Graupe, D; Kohn, K H; Basseas, S; Naccarato, E
1984-07-01
The paper describes initial results of above-lesion electromyographic (EMG) controlled functional electrical stimulation (FES) of paraplegics. Such controlled stimulation is to provide upper-motor-neuron paraplegics (T5 to T12) with self-controlled standing and some walking without braces and with only the help of walkers or crutches. The above-lesion EMG signal employed serves to map the posture of the patient's upper trunk via a computerized mapping of the temporal patterns of that EMG. Such control also has an inherent safety feature in that it prevents the patient from performing a lower-limb movement via FES unless his trunk posture is adequate. Copyright 2013, SLACK Incorporated.
Jodoin, Marianne; Rouleau, Dominique M; Charlebois-Plante, Camille; Benoit, Benoit; Leduc, Stéphane; Laflamme, G-Yves; Gosselin, Nadia; Larson-Dupuis, Camille; De Beaumont, Louis
2016-08-01
This study compares the incidence rate of mild traumatic brain injury (mild TBI) detected at follow-up visits (retrospective diagnosis) in patients suffering from an isolated limb trauma, with the incidence rate held by the hospital records (prospective diagnosis) of the sampled cohort. This study also seeks to determine which types of fractures present with the highest incidence of mild TBI. Retrospective assessment of mild TBI among orthopaedic monotrauma patients, randomly selected for participation in an Orthopaedic clinic of a Level I Trauma Hospital. Patients in the remission phase of a limb fracture were recruited between August 2014 and May 2015. No intervention was done (observational study). Standardized semi-structured interviews were conducted with all patients to retrospectively assess for mild TBI at the time of the fracture. Emergency room related medical records of all patients were carefully analyzed to determine whether a prospective mild TBI diagnosis was made following the accident. A total of 251 patients were recruited (54% females, Mean age=49). Study interview revealed a 23.5% incidence rate of mild TBI compared to an incidence rate of 8.8% for prospective diagnosis (χ(2)=78.47; p<0.0001). Patients suffering from an upper limb monotrauma (29.6%; n=42/142) are significantly more at risk of sustaining a mild TBI compared to lower limb fractures (15.6%; n=17/109) (χ(2)=6.70; p=0.010). More specifically, patients with a proximal upper limb injury were significantly more at risk of sustaining concomitant mild TBI (40.6%; 26/64) compared to distal upper limb fractures (20.25%; 16/79) (χ(2)=7.07; p=0.008). Results suggest an important concomitance of mild TBI among orthopaedic trauma patients, the majority of which go undetected during acute care. Patients treated for an upper limb fracture are particularly at risk of sustaining concomitant mild TBI. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nunes, João Pedro; Ribeiro, Alex S; Schoenfeld, Brad J; Tomeleri, Crisieli M; Avelar, Ademar; Trindade, Michele Cc; Nabuco, Hellen Cg; Cavalcante, Edilaine F; Junior, Paulo Sugihara; Fernandes, Rodrigo R; Carvalho, Ferdinando O; Cyrino, Edilson S
2017-12-01
Creatine (Cr) supplementation associated with resistance training produces greater muscular strength improvements in the upper compared with the lower body; however, no study has investigated if such region-specific results are seen with gains in muscle mass. We aimed to evaluate the effect of Cr supplementation in combination with resistance training on lean soft tissue changes in the upper and lower limbs and trunk in resistance-trained young adult men. In a randomized, double-blind and placebo-controlled design, 43 resistance-trained men (22.7 ± 3.0 years, 72.9 ± 8.7 kg, 177.9 ± 5.7 cm, 23.0 ± 2.5 kg/m 2 ) received either creatine (Cr, n = 22) or placebo (PLA, n = 21) over an 8-week study period. The supplementation protocol included a loading phase (7 days, four doses of 0.3 g/kg per day) and a maintenance phase (7 weeks, single dose of 0.03 g/kg per day). During the same period, subjects performed resistance training four times per week using the following two-way split routine: Monday and Thursday = pectoral, shoulders, triceps, and abdomen, Tuesday and Friday = back, biceps, thighs, and calves. Lean soft tissue of the upper limbs (ULLST), lower limbs (LLLST), and trunk (TLST) was assessed by dual-energy X-ray absorptiometry before and after the intervention. Both groups showed significant ( p < 0.001) improvements in ULLST, LLLST, TLST, and the Cr group achieved greater ( p < 0.001) increases in these outcomes compared with PLA. For the Cr group, improvements in ULLST (7.1 ± 2.9%) were higher than those observed in LLLST (3.2 ± 2.1%) and TLST (2.1 ± 2.2%). Otherwise, for PLA group there was no significant difference in the magnitude of segmental muscle hypertrophy (ULLST = 1.6 ± 3.0%; LLLST = 0.7 ± 2.8%; TLST = 0.7 ± 2.8%). Our results suggest that Cr supplementation can positively augment muscle hypertrophy in resistance-trained young adult men, particularly in the upper limbs.
Abo, Masahiro; Kakuda, Wataru; Momosaki, Ryo; Harashima, Hiroaki; Kojima, Miki; Watanabe, Shigeto; Sato, Toshihiro; Yokoi, Aki; Umemori, Takuma; Sasanuma, Jinichi
2014-07-01
Many poststroke patients suffer functional motor limitation of the affected upper limb, which is associated with diminished health-related quality of life. The aim of this study is to conduct a randomized, multicenter, comparative study of low-frequency repetitive transcranial magnetic stimulation combined with intensive occupational therapy, NEURO (NovEl intervention Using Repetitive TMS and intensive Occupational therapy) versus constraint-induced movement therapy in poststroke patients with upper limb hemiparesis. In this randomized controlled study of NEURO and constraint-induced movement therapy, 66 poststroke patients with upper limb hemiparesis were randomly assigned at 2:1 ratio to low-frequency repetitive transcranial magnetic stimulation plus occupational therapy (NEURO group) or constraint-induced movement therapy (constraint-induced movement therapy group) for 15 days. Fugl-Meyer Assessment and Wolf Motor Function Test and Functional Ability Score of Wolf Motor Function Test were used for assessment. No differences in patients' characteristics were found between the two groups at baseline. The Fugl-Meyer Assessment score was significantly higher in both groups after the 15-day treatment compared with the baseline. Changes in Fugl-Meyer Assessment scores and Functional Ability Score of Wolf Motor Function Test were significantly higher in the NEURO group than in the constraint-induced movement therapy group, whereas the decrease in the Wolf Motor Function Test log performance time was comparable between the two groups (changes in Fugl-Meyer Assessment score, NEURO: 5·39 ± 4·28, constraint-induced movement therapy: 3·09 ± 4·50 points; mean ± standard error of the mean; P < 0·05) (changes in Functional Ability Score of Wolf Motor Function Test, NEURO: 3·98 ± 2·99, constraint-induced movement therapy: 2·09 ± 2·96 points; P < 0·05). The results of the 15-day rehabilitative protocol showed the superiority of NEURO relative to constraint-induced movement therapy; NEURO improved the motion of the whole upper limb and resulted in functional improvement in activities of daily living. © 2013 The Authors. International Journal of Stroke © 2013 World Stroke Organization.
Aging and Concurrent Task Performance: Cognitive Demand and Motor Control
ERIC Educational Resources Information Center
Albinet, Cedric; Tomporowski, Phillip D.; Beasman, Kathryn
2006-01-01
A motor task that requires fine control of upper limb movements and a cognitive task that requires executive processing--first performing them separately and then concurrently--was performed by 18 young and 18 older adults. The motor task required participants to tap alternatively on two targets, the sizes of which varied systematically. The…
Studying Upper-Limb Amputee Prosthesis Use to Inform Device Design
2016-10-01
study of the resulting videos led to a new prosthetics-use taxonomy that is generalizable to various levels of amputation and terminal devices. The...taxonomy was applied to classification of the recorded videos via custom tagging software with midi controller interface. The software creates...a motion capture studio and video cameras to record accurate and detailed upper body motion during a series of standardized tasks. These tasks are
Clinical studies on teenage Brazilian victims of thalidomide.
Schmidt, M; Salzano, F M
1983-07-01
Ninety-three Brazilian teenagers with thalidomide embryopathy were studied. The pattern of distribution of their most significant defect was: upper limbs, 66; lower limbs, 8; all four limbs, 12; head, 7. Only 10 individuals presented the major defect unilaterally. In 30 of 83 with bilateral defects there were differences in severity between the two sides. Of the 31 patients whose spines had been X-rayed, 16 showed defects, the most common being spina bifida occulta at S1. Gynecomasty was found in three of the patients having major upper limb defects.
Somatic and movement inductions phantom limb in non-amputees
NASA Astrophysics Data System (ADS)
Casas, D. M.; Gentiletti, G. G.; Braidot, A. A.
2016-04-01
The illusion of the mirror box is a tool for phantom limb pain treatment; this article proposes the induction of phantom limb syndrome on non-amputees upper limb, with a neurological trick of the mirror box. With two study situations: a) Somatic Induction is a test of the literature reports qualitatively, and novel proposal b) Motor Induction, which is an objective report by recording surface EEG. There are 3 cases proposed for Motor illusion, for which grasped movement is used: 1) Control: movement is made, 2) illusion: the mirror box is used, and 3) Imagination: no movement is executed; the subject only imagines its execution. Three different tasks are registered for each one of them (left hand, right hand, and both of them). In 64% of the subjects for somatic experience, a clear response to the illusion was observed. In the experience of motor illusion, cortical activation is detected in both hemispheres of the primary motor cortex during the illusion, where the hidden hand remains motionless. These preliminary findings in phantom limb on non-amputees can be a tool for neuro-rehabilitation and neuro-prosthesis control training.
Furlan, Leonardo; Conforto, Adriana Bastos; Cohen, Leonardo G.; Sterr, Annette
2016-01-01
Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well. PMID:26843992
Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
Borbély, Bence J; Szolgay, Péter
2017-01-17
Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.
Hancock, Laura; Correia, Stephen; Ahern, David; Barredo, Jennifer; Resnik, Linda
2017-07-01
Purpose The objectives were to 1) identify major cognitive domains involved in learning to use the DEKA Arm; 2) specify cognitive domain-specific skills associated with basic versus advanced users; and 3) examine whether baseline memory and executive function predicted learning. Method Sample included 35 persons with upper limb amputation. Subjects were administered a brief neuropsychological test battery prior to start of DEKA Arm training, as well as physical performance measures at the onset of, and following training. Multiple regression models controlling for age and including neuropsychological tests were developed to predict physical performance scores. Prosthetic performance scores were divided into quartiles and independent samples t-tests compared neuropsychological test scores of advanced scorers and basic scorers. Baseline neuropsychological test scores were used to predict change in scores on physical performance measures across time. Results Cognitive domains of attention and processing speed were statistically significantly related to proficiency of DEKA Arm use and predicted level of proficiency. Conclusions Results support use of neuropsychological tests to predict learning and use of a multifunctional prosthesis. Assessment of cognitive status at the outset of training may help set expectations for the duration and outcomes of treatment. Implications for Rehabilitation Cognitive domains of attention and processing speed were significantly related to level of proficiencyof an advanced multifunctional prosthesis (the DEKA Arm) after training. Results provide initial support for the use of neuropsychological tests to predict advanced learningand use of a multifunctional prosthesis in upper-limb amputees. Results suggest that assessment of patients' cognitive status at the outset of upper limb prosthetictraining may, in the future, help patients, their families and therapists set expectations for theduration and intensity of training and may help set reasonable proficiency goals.
Prosthetic Cost Projections for Servicemembers with Major Limb Loss from Vietnam and OIF/OEF
2010-01-01
death rates ), DOD = Department of Defense, DSS = Decision Support Sys- tem, MFCL = Medicare Functional Classification Level, OEF = Operation...age-sex-race-adjusted death rates . Figure 3. Markov model for unilateral upper limb and bilateral upper limbs for Operation Iraqi Freedom...Operation Enduring Freedom (OIF/OEF) group. ASR = age-sex-race-adjusted death rates . 394 JRRD, Volume 47, Number 4, 2010 higher, one level lower, or
Shimizu, Yukiyo; Kadone, Hideki; Kubota, Shigeki; Suzuki, Kenji; Saotome, Kousaku; Ueno, Tomoyuki; Abe, Tetsuya; Marushima, Aiki; Watanabe, Hiroki; Endo, Ayumu; Tsurumi, Kazue; Ishimoto, Ryu; Matsushita, Akira; Koda, Masao; Matsumura, Akira; Sankai, Yoshiyuki; Hada, Yasushi; Yamazaki, Masashi
2018-01-19
We sought to describe our experience with the Hybrid Assistive Limb® (HAL®) for active knee extension and voluntary ambulation with remaining muscle activity in a patient with complete paraplegia after spinal cord injury. A 30-year-old man with complete paraplegia used the HAL® for 1 month (10 sessions) using his remaining muscle activity, including hip flexor and upper limb activity. Electromyography was used to evaluate muscle activity of the gluteus maximus, tensor fascia lata, quadriceps femoris, and hamstring muscles in synchronization with the Vicon motion capture system. A HAL® session included a knee extension session with the hip flexor and voluntary gait with upper limb activity. After using the HAL® for one month, the patient's manual muscle hip flexor scores improved from 1/5 to 2/5 for the right and from 2/5 to 3/5 for the left knee, and from 0/5 to 1/5 for the extension of both knees. Knee extension sessions with HAL®, and hip flexor and upper-limb-triggered HAL® ambulation seem a safe and feasible option in a patient with complete paraplegia due to spinal cord injury.
High-voltage electrical burn injuries: functional upper extremity assessment.
Mazzetto-Betti, K C; Amâncio, A C G; Farina, J A; Barros, M E P M; Fonseca, M C R
2009-08-01
High-voltage electric injuries have many manifestations, and an important complication is the damage of the central/peripheral nervous system. The purpose of this work was to assess the upper limb dysfunction in patients injured by high-voltage current. The evaluation consisted of analysis of patients' records, cutaneous-sensibility threshold, handgrip and pinch strength and a specific questionnaire about upper limb dysfunctions (DASH) in 18 subjects. All subjects were men; the average age at the time of the injury was 38 years. Of these, 72% changed job/retired after the injury. The current entrance was the hand in 94% and grounding in the lower limb in 78%. The average burned surface area (BSA) was 8.6%. The handgrip strength of the injured limb was reduced (p<0.05) and so also that of the three pinch types. The relationship between the handgrip strength and the DASH was statistically significant (p<0.001) as well as the relationship between the three pinch types (p
Evaluation of bone microstructure in CRPS-affected upper limbs by HR-pQCT
Mussawy, Haider; Schmidt, Tobias; Rolvien, Tim; Rüther, Wolfgang; Amling, Michael
2017-01-01
Summary Introduction Complex regional pain syndrome (CRPS) is a major complication after trauma, surgery, and/or immobilization of an extremity. The disease often starts with clinical signs of local inflammation and develops into a prolonged phase that is characterized by trophic changes and local osteoporosis and sometimes results in functional impairment of the affected limb. While the pathophysiology of CRPS remains poorly understood, increased local bone resorption plays an undisputed pivotal role. The aim of this retrospective clinical study was to assess the bone microstructure in patients with CRPS. Methods Patients with CRPS type I of the upper limb whose affected and unaffected distal radii were analyzed by high-resolution peripheral quantitative computed tomography (HR-pQCT) were identified retrospectively. The osteology laboratory data and dual-energy X-ray absorptiometry (DXA) images of the left femoral neck and lumbar spine, which were obtained on the same day as HR-pQCT, were extracted from the medical records. Results Five patients were identified. The CRPS-affected upper limbs had significantly lower trabecular numbers and higher trabecular thicknesses than the unaffected upper limbs. However, the trabecular bone volume to total bone volume and cortical thickness values of the affected and unaffected sides were similar. Trabecular thickness tended to increase with time since disease diagnosis. Discussion CRPS associated with significant alterations in the bone microstructure of the affected upper limb that may amplify as the duration of disease increases. PMID:28740526
Disorders of Upper Limb Movements in Ataxia-Telangiectasia
Shaikh, Aasef G.; Zee, David S.; Mandir, Allen S.; Lederman, Howard M.; Crawford, Thomas O.
2013-01-01
Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia. PMID:23826191
Disorders of Upper Limb Movements in Ataxia-Telangiectasia.
Shaikh, Aasef G; Zee, David S; Mandir, Allen S; Lederman, Howard M; Crawford, Thomas O
2013-01-01
Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia.
Ashford, Stephen; Jackson, Diana; Turner-Stokes, Lynne
2015-03-01
Following stroke or brain injury, goals for rehabilitation of the hemiparetic upper limb include restoring active function if there is return of motor control or, if none is possible, improving passive function, and facilitating care for the limb. To inform development of a new patient reported outcome measure (PROM) of active and passive function in the hemiparetic upper limb, the Arm Activity measure, we examined functional goals for the upper limb, identified during goal setting for spasticity intervention (physical therapy and concomitant botulinum toxin A interventions). Using secondary analysis of a prospective observational cohort study, functional goals determined between patients, their carers and the clinical team were assigned into categories by two raters. Goal category identification, followed by assignment of goals to a category, was undertaken and then confirmed by a second reviewer. Participants comprised nine males and seven females of mean (SD) age 54.5 (15.7) years and their carers. Fifteen had sustained a stroke and one a traumatic brain injury. Goals were used to identify five categories: passive function, active function, symptoms, cosmesis and impairment. Two passive function items not previously identified by a previous systematic review were identified. Analysis of goals important to patients and carers revealed items for inclusion in a new measure of arm function and provide a useful alternative method to involve patients and carers in standardised measure development. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Betthauser, Joseph L; Hunt, Christopher L; Osborn, Luke E; Masters, Matthew R; Levay, Gyorgy; Kaliki, Rahul R; Thakor, Nitish V
2018-04-01
Myoelectric signals can be used to predict the intended movements of an amputee for prosthesis control. However, untrained effects like limb position changes influence myoelectric signal characteristics, hindering the ability of pattern recognition algorithms to discriminate among motion classes. Despite frequent and long training sessions, these deleterious conditional influences may result in poor performance and device abandonment. We present a robust sparsity-based adaptive classification method that is significantly less sensitive to signal deviations resulting from untrained conditions. We compare this approach in the offline and online contexts of untrained upper-limb positions for amputee and able-bodied subjects to demonstrate its robustness compared against other myoelectric classification methods. We report significant performance improvements () in untrained limb positions across all subject groups. The robustness of our suggested approach helps to ensure better untrained condition performance from fewer training conditions. This method of prosthesis control has the potential to deliver real-world clinical benefits to amputees: better condition-tolerant performance, reduced training burden in terms of frequency and duration, and increased adoption of myoelectric prostheses.
Shared and task-specific muscle synergies of Nordic walking and conventional walking.
Boccia, G; Zoppirolli, C; Bortolan, L; Schena, F; Pellegrini, B
2018-03-01
Nordic walking is a form of walking that includes a poling action, and therefore an additional subtask, with respect to conventional walking. The aim of this study was to assess whether Nordic walking required a task-specific muscle coordination with respect to conventional walking. We compared the electromyographic (EMG) activity of 15 upper- and lower-limb muscles of 9 Nordic walking instructors, while executing Nordic walking and conventional walking at 1.3 ms -1 on a treadmill. Non-negative matrix factorization method was applied to identify muscle synergies, representing the spatial and temporal organization of muscle coordination. The number of muscle synergies was not different between Nordic walking (5.2 ± 0.4) and conventional walking (5.0 ± 0.7, P = .423). Five muscle synergies accounted for 91.2 ± 1.1% and 92.9 ± 1.2% of total EMG variance in Nordic walking and conventional walking, respectively. Similarity and cross-reconstruction analyses showed that 4 muscle synergies, mainly involving lower-limb and trunk muscles, are shared between Nordic walking and conventional walking. One synergy acting during upper limb propulsion is specific to Nordic walking, modifying the spatial organization and the magnitude of activation of upper limb muscles compared to conventional walking. The inclusion of the poling action in Nordic walking does not increase the complexity of movement control and does not change the coordination of lower limb muscles. This makes Nordic walking a physical activity suitable also for people with low motor skill. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Myoelectrically controlled wrist robot for stroke rehabilitation
2013-01-01
Background Robot-assisted rehabilitation is an advanced new technology in stroke rehabilitation to provide intensive training. Post-stroke motor recovery depends on active rehabilitation by voluntary participation of patient’s paretic motor system as early as possible in order to promote reorganization of brain. However, voluntary residual motor efforts to the affected limb have not been involved enough in most robot-assisted rehabilitation for patients after stroke. The objective of this study is to evaluate the feasibility of robot-assisted rehabilitation using myoelectric control on upper limb motor recovery. Methods In the present study, an exoskeleton-type rehabilitation robotic system was designed to provide voluntarily controlled assisted torque to the affected wrist. Voluntary intention was involved by using the residual surface electromyography (EMG) from flexor carpi radialis(FCR) and extensor carpi radialis (ECR)on the affected limb to control the mechanical assistance provided by the robotic system during wrist flexion and extension in a 20-session training. The system also applied constant resistant torque to the affected wrist during the training. Sixteen subjects after stroke had been recruited for evaluating the tracking performance and therapeutical effects of myoelectrically controlled robotic system. Results With the myoelectrically-controlled assistive torque, stroke survivors could reach a larger range of motion with a significant decrease in the EMG signal from the agonist muscles. The stroke survivors could be trained in the unreached range with their voluntary residual EMG on the paretic side. After 20-session rehabilitation training, there was a non-significant increase in the range of motion and a significant decrease in the root mean square error (RMSE) between the actual wrist angle and target angle. Significant improvements also could be found in muscle strength and clinical scales. Conclusions These results indicate that robot-aided therapy with voluntary participation of patient’s paretic motor system using myoelectric control might have positive effect on upper limb motor recovery. PMID:23758925
Huang, Wei Pin; Wang, Chia Cheng; Hung, Jo Hua; Chien, Kai Chun; Liu, Wen-Yu; Cheng, Chih-Hsiu; Ng, How-Hing; Lin, Yang-Hua
2015-02-01
[Purpose] This study aimed to determine the effectiveness of joystick-controlled video console games in enhancing subjects' ability to control power wheelchairs. [Subjects and Methods] Twenty healthy young adults without prior experience of driving power wheelchairs were recruited. Four commercially available video games were used as training programs to practice joystick control in catching falling objects, crossing a river, tracing the route while floating on a river, and navigating through a garden maze. An indoor power wheelchair driving test, including straight lines, and right and left turns, was completed before and after the video game practice, during which electromyographic signals of the upper limbs were recorded. The paired t-test was used to compare the differences in driving performance and muscle activities before and after the intervention. [Results] Following the video game intervention, participants took significantly less time to complete the course, with less lateral deviation when turning the indoor power wheelchair. However, muscle activation in the upper limbs was not significantly affected. [Conclusion] This study demonstrates the feasibility of using joystick-controlled commercial video games to train individuals in the control of indoor power wheelchairs.
Niu, Jie; Yang, Qianqian; Wang, Xiaoyun; Song, Rong
2017-01-01
Robot-aided rehabilitation has become an important technology to restore and reinforce motor functions of patients with extremity impairment, whereas it can be extremely challenging to achieve satisfactory tracking performance due to uncertainties and disturbances during rehabilitation training. In this paper, a wire-driven rehabilitation robot that can work over a three-dimensional space is designed for upper-limb rehabilitation, and sliding mode control with nonlinear disturbance observer is designed for the robot to deal with the problem of unpredictable disturbances during robot-assisted training. Then, simulation and experiments of trajectory tracking are carried out to evaluate the performance of the system, the position errors, and the output forces of the designed control scheme are compared with those of the traditional sliding mode control (SMC) scheme. The results show that the designed control scheme can effectively reduce the tracking errors and chattering of the output forces as compared with the traditional SMC scheme, which indicates that the nonlinear disturbance observer can reduce the effect of unpredictable disturbances. The designed control scheme for the wire-driven rehabilitation robot has potential to assist patients with stroke in performing repetitive rehabilitation training.
Montagnani, Federico; Controzzi, Marco; Cipriani, Christian
2015-01-01
Although significant technological advances have been made in the last forty years, natural and effortless control of upper limb prostheses is still an open issue. Commercially available myoelectric prostheses present limited Degrees of Freedom (DoF) mainly because of the lack of available and reliable independent control signals from the human body. Thus, despite the crucial role that an actuated wrist could play in a transradial prosthesis in terms of avoiding compensatory movements, commercial hand prostheses present only manually adjustable passive wrists or actuated rotators controlled by (unnatural) sequential control strategies. In the present study we investigated the synergies between the humeral orientation with respect to the trunk and the forearm pronation/supination angles during the execution of a wide range of activities of daily living, in healthy subjects. Our results showed consistent postural synergies between the two selected body segments for almost the totality of the activities of daily living under investigation. This is a promising result because these postural synergies could be exploited to automatically control the wrist rotator unit in transradial prostheses improving the fluency and the dexterity of the amputee.
Neural substrates underlying stimulation-enhanced motor skill learning after stroke
Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques
2015-01-01
Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the ‘circuit game’, involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention’s enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham series. Finally, dual transcranial direct current stimulation applied during the first session enhanced continued learning with the paretic limb 1 week later, relative to the sham series. This lasting behavioural enhancement was associated with more efficient recruitment of the motor skill learning network, that is, focused activation on the motor-premotor areas in the damaged hemisphere, especially on the dorsal premotor cortex. Dual transcranial direct current stimulation applied during motor skill learning with a paretic upper limb resulted in prolonged shaping of brain activation, which supported behavioural enhancements in stroke patients. PMID:25488186
Beretta, Elena; Cesareo, Ambra; Biffi, Emilia; Schafer, Carolyn; Galbiati, Sara; Strazzer, Sandra
2018-01-01
Acquired brain injuries (ABIs) can lead to a wide range of impairments, including weakness or paralysis on one side of the body known as hemiplegia. In hemiplegic patients, the rehabilitation of the upper limb skills is crucial, because the recovery has an immediate impact on patient quality of life. For this reason, several treatments were developed to flank physical therapy (PT) and improve functional recovery of the upper limbs. Among them, Constraint-Induced Movement Therapy (CIMT) and robot-aided therapy have shown interesting potentialities in the rehabilitation of the hemiplegic upper limb. Nevertheless, there is a lack of quantitative evaluations of effectiveness in a standard clinical setting, especially in children, as well as a lack of direct comparative studies between these therapeutic techniques. In this study, a group of 18 children and adolescents with hemiplegia was enrolled and underwent intensive rehabilitation treatment including PT and CIMT or Armeo®Spring therapy. The effects of the treatments were assessed using clinical functional scales and upper limb kinematic analysis during horizontal and vertical motor tasks. Results showed CIMT to be the most effective in terms of improved functional scales, while PT seemed to be the most significant in terms of kinematic variations. Specifically, PT resulted to have positive influence on distal movements while CIMT conveyed more changes in the proximal kinematics. Armeo treatment delivered improvements mainly in the vertical motor task, showing trends of progresses of the movement efficiency and reduction of compensatory movements of the shoulder with respect to other treatments. Therefore, every treatment gave advantages in a specific and different upper limb district. Therefore, results of this preliminary study may be of help to define the best rehabilitation treatment for each patient, depending on the goal, and may thus support clinical decision.
Horki, Petar; Neuper, Christa; Pfurtscheller, Gert; Müller-Putz, Gernot
2010-12-01
A brain-computer interface (BCI) provides a direct connection between the human brain and a computer. One type of BCI can be realized using steady-state visual evoked potentials (SSVEPs), resulting from repetitive stimulation. The aim of this study was the realization of an asynchronous SSVEP-BCI, based on canonical correlation analysis, suitable for the control of a 2-degrees of freedom (DoF) hand and elbow neuroprosthesis. To determine whether this BCI is suitable for the control of 2-DoF neuroprosthetic devices, online experiments with a virtual and a robotic limb feedback were conducted with eight healthy subjects and one tetraplegic patient. All participants were able to control the artificial limbs with the BCI. In the online experiments, the positive predictive value (PPV) varied between 69% and 83% and the false negative rate (FNR) varied between 1% and 17%. The spinal cord injured patient achieved PPV and FNR values within one standard deviation of the mean for all healthy subjects.
Cutaneous sensitivity in unilateral trans-tibial amputees
Templeton, Cale A.; Strzalkowski, Nicholas D. J.; Galvin, Patti
2018-01-01
Aim To examine tactile sensitivity in the leg and foot sole of below-knee amputees (diabetic n = 3, traumatic n = 1), and healthy control subjects (n = 4), and examine the association between sensation and balance. Method Vibration perception threshold (VPT; 3, 40, 250Hz) and monofilaments (MF) were used to examine vibration and light touch sensitivity on the intact limb, residual limb, and homologous locations on controls. A functional reach test was performed to assess functional balance. Results Tactile sensitivity was lower for diabetic amputee subjects compared to age matched controls for both VPT and MF; which was expected due to presence of diabetic peripheral neuropathy. In contrast, the traumatic amputee participant showed increased sensitivity for VPT at 40Hz and 250Hz vibration in both the intact and residual limbs compared to controls. Amputees with lower tactile sensitivity had shorter reach distances compared to those with higher sensitivity. Conclusion Changes in tactile sensitivity in the residual limb of trans-tibial amputees may have implications for the interaction between the amputee and the prosthetic device. The decreased skin sensitivity observed in the residual limb of subjects with diabetes is of concern as changes in skin sensitivity may be important in 1) identification/prevention of excessive pressure and 2) for functional stability. Interestingly, we saw increased residual limb skin sensitivity in the individual with the traumatic amputation. Although not measured directly in the present study, this increase in tactile sensitivity may be related to cortical reorganisation, which is known to occur following amputation, and would support similar findings observed in upper limb amputees. PMID:29856766
Kingston, David C; Riddell, Maureen F; McKinnon, Colin D; Gallagher, Kaitlin M; Callaghan, Jack P
2016-02-01
We evaluated the effect of work surface angle and input hardware on upper-limb posture when using a hybrid computer workstation. Offices use sit-stand and/or tablet workstations to increase worker mobility. These workstations may have negative effects on upper-limb joints by increasing time spent in non-neutral postures, but a hybrid standing workstation may improve working postures. Fourteen participants completed office tasks in four workstation configurations: a horizontal or sloped 15° working surface with computer or tablet hardware. Three-dimensional right upper-limb postures were recorded during three tasks: reading, form filling, and writing e-mails. Amplitude probability distribution functions determined the median and range of upper-limb postures. The sloped-surface tablet workstation decreased wrist ulnar deviation by 5° when compared to the horizontal-surface computer when reading. When using computer input devices (keyboard and mouse), the shoulder, elbow, and wrist were closest to neutral joint postures when working on a horizontal work surface. The elbow was 23° and 15° more extended, whereas the wrist was 6° less ulnar deviated, when reading compared to typing forms or e-mails. We recommend that the horizontal-surface computer configuration be used for typing and the sloped-surface tablet configuration be used for intermittent reading tasks in this hybrid workstation. Offices with mobile employees could use this workstation for alternating their upper-extremity postures; however, other aspects of the device need further investigation. © 2015, Human Factors and Ergonomics Society.
Buyukavci, Raikan; Akturk, Semra; Ersoy, Yüksel
2018-02-07
Ultrasound-guided botulinum toxin type A injection is an effective treatment for spasticity. Euro-musculus spasticity approach is a new method for administering injections to the correct point of the correct muscle. The clinical outcomes of this practical approach is not yet available in the literature. The purpose of this study was to evaluate the effects on spasticity and the functional outcomes of ultrasound guided botulinum toxin type A injections via the Euro-musculus spasticity approach to treat upper limb spasticity in post-stroke patients. An observational study. Inpatient post-stroke patients. Twenty five post-stroke patients with post-stroke upper limb spasticity were recruited. The ultrasound-guided botulinum toxin type A injections were administered into the spastic target muscles using the Euro-musculus spasticity approach, and all of the patients were enrolled in rehabilitation programmes after the injections. This research included the innervation zone and injection site figures and ultrasound images of each muscle in the upper limb. The degree of spasticity was assessed via the Modified Ashworth Scale and the upper limb motor function via the Fugl Meyer Upper Extremity Scale at the baseline and 4 and 12 weeks after the botulinum toxin type A injection. Significant decreases in the Modified Ashworth Scale scores of the upper limb flexor muscle tone measured 4 and 12 weeks after the botulinum toxin type A injection were found when compared to the baseline scores (p<0.025). When compared with the baseline Fugl Meyer Upper Extremity subgroup scores, the sitting position, wrist and total scores at 4 and 12 weeks were significantly improved (p<0.025). However, only the Fugl Meyer Upper Extremity hand scores were significantly improved 12 weeks after the injection (p<0.025). Ultrasound-guided botulinum toxin type A injection via the Euro- musculus spasticity approach is a practical and effective method for administering injections to the correct point of the correct muscle. Ultrasound-guided botulinum toxin type A injections combined with rehabilitation programmes decrease spasticity and improve the upper extremity motor functions in stroke patients. This new approach for ultrasound- guided botulinum toxin type A injection is very practical and effective method for upper extremity spasticity.
Ethical considerations in providing an upper limb exoskeleton device for stroke patients.
Bulboacă, Adriana E; Bolboacă, Sorana D; Bulboacă, Angelo C
2017-04-01
The health care system needs to face new and advanced medical technologies that can improve the patients' quality of life by replacing lost or decreased functions. In stroke patients, the disabilities that follow cerebral lesions may impair the mandatory daily activities of an independent life. These activities are dependent mostly on the patient's upper limb function so that they can carry out most of the common activities associated with a normal life. Therefore, an upper limb exoskeleton device for stroke patients can contribute a real improvement of quality of their life. The ethical problems that need to be considered are linked to the correct adjustment of the upper limb skills in order to satisfy the patient's expectations, but within physiological limits. The debate regarding the medical devices dedicated to neurorehabilitation is focused on their ability to be beneficial to the patient's life, keeping away damages, injustice, and risks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling
2010-01-01
Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG) and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance motor output up to 32%. Enhancement observed in experimental data exceeded 32%. Enhancement within this symmetrical four-CPG neural architecture was more sensitive to relatively small interlimb coupling gains. Excitatory sensory feedback gains could produce greater output amplitudes, but larger gains were required for entrainment compared to inhibitory sensory feedback gains. Conclusions Based on these simulations, symmetrical interlimb coupling can account for much, but not all of the excitatory neural coupling between upper and lower limbs during rhythmic locomotor-like movements. PMID:21143960
The effect of arm weight support on upper limb muscle synergies during reaching movements
2014-01-01
Background Compensating for the effect of gravity by providing arm-weight support (WS) is a technique often utilized in the rehabilitation of patients with neurological conditions such as stroke to facilitate the performance of arm movements during therapy. Although it has been shown that, in healthy subjects as well as in stroke survivors, the use of arm WS during the performance of reaching movements leads to a general reduction, as expected, in the level of activation of upper limb muscles, the effects of different levels of WS on the characteristics of the kinematics of motion and of the activity of upper limb muscles have not been thoroughly investigated before. Methods In this study, we systematically assessed the characteristics of the kinematics of motion and of the activity of 14 upper limb muscles in a group of 9 healthy subjects who performed 3-D arm reaching movements while provided with different levels of arm WS. We studied the hand trajectory and the trunk, shoulder, and elbow joint angular displacement trajectories for different levels of arm WS. Besides, we analyzed the amplitude of the surface electromyographic (EMG) data collected from upper limb muscles and investigated patterns of coordination via the analysis of muscle synergies. Results The characteristics of the kinematics of motion varied across WS conditions but did not show distinct trends with the level of arm WS. The level of activation of upper limb muscles generally decreased, as expected, with the increase in arm WS. The same eight muscle synergies were identified in all WS conditions. Their level of activation depended on the provided level of arm WS. Conclusions The analysis of muscle synergies allowed us to identify a modular organization underlying the generation of arm reaching movements that appears to be invariant to the level of arm WS. The results of this study provide a normative dataset for the assessment of the effects of the level of arm WS on muscle synergies in stroke survivors and other patients who could benefit from upper limb rehabilitation with arm WS. PMID:24594139
The accuracy and precision of radiostereometric analysis in upper limb arthroplasty.
Ten Brinke, Bart; Beumer, Annechien; Koenraadt, Koen L M; Eygendaal, Denise; Kraan, Gerald A; Mathijssen, Nina M C
2017-06-01
Background and purpose - Radiostereometric analysis (RSA) is an accurate method for measurement of early migration of implants. Since a relation has been shown between early migration and future loosening of total knee and hip prostheses, RSA plays an important role in the development and evaluation of prostheses. However, there have been few RSA studies of the upper limb, and the value of RSA of the upper limb is not yet clear. We therefore performed a systematic review to investigate the accuracy and precision of RSA of the upper limb. Patients and methods - PRISMA guidelines were followed and the protocol for this review was published online at PROSPERO under registration number CRD42016042014. A systematic search of the literature was performed in the databases Embase, Medline, Cochrane, Web of Science, Scopus, Cinahl, and Google Scholar on April 25, 2015 based on the keywords radiostereometric analysis, shoulder prosthesis, elbow prosthesis, wrist prosthesis, trapeziometacarpal joint prosthesis, humerus, ulna, radius, carpus. Articles concerning RSA for the analysis of early migration of prostheses of the upper limb were included. Quality assessment was performed using the MINORS score, Downs and Black checklist, and the ISO RSA Results - 23 studies were included. Precision values were in the 0.06-0.88 mm and 0.05-10.7° range for the shoulder, the 0.05-0.34 mm and 0.16-0.76° range for the elbow, and the 0.16-1.83 mm and 11-124° range for the TMC joint. Accuracy data from marker- and model-based RSA were not reported in the studies included. Interpretation - RSA is a highly precise method for measurement of early migration of orthopedic implants in the upper limb. However, the precision of rotation measurement is poor in some components. Challenges with RSA in the upper limb include the symmetrical shape of prostheses and the limited size of surrounding bone, leading to over-projection of the markers by the prosthesis. We recommend higher adherence to RSA guidelines and encourage investigators to publish long-term follow-up RSA studies.
Barredo, Jennifer; Acluche, Frantzy; Disla, Roxanne; Fantini, Christopher; Fishelis, Leah; Sasson, Nicole; Resnik, Linda
2017-08-01
To describe a participant with scapulo-thoracic amputation and cognitive impairment trained to use the DEKA Arm and discuss factors relevant to the determination that he was not an appropriate candidate for independent home use of the device. The participant underwent 40 h of in-laboratory training with the DEKA Arm Advanced Upper Limb Prosthesis. Pre-training neuropsychological measures of cognition were collected. Qualitative and quantitative data related to functional performance, quality of life and pain were collected after 10 h of training, and at the conclusion of training. Using a constant comparative approach, data were binned into major themes; elements within each theme were identified. Six themes were relevant to the determination that the participant was inappropriate for home use of the DEKA Arm: physical and mental health; learning, memory and cognition; adult role function; functional performance; user safety and judgement and capacity for independent device use. Issues contraindicating unsupervised device use included: uncontrolled health symptoms, poor knowledge application, safety concerns, absenteeism and performance degradation under stress. The findings have implications for training with and prescription of the DEKA Arm and other complex upper limb prostheses. Further research is needed to develop a model to guide prescription of technologically complex upper limb prostheses. Implications for Rehabilitation Advanced upper limb prostheses, like the DEKA Arm, promise greater functionality, but also may be cognitively demanding, raising questions of when, and if, prescription is appropriate for patients with cognitive impairment. At this time, no formal criteria exist to guide prescription of advanced upper limb prostheses. Each clinical team applies their own informal standards in decision-making. In this case report, we described six factors that were considered in determining whether or not a research participant, with scapulo-thoracic amputation and cognitive impairment was appropriate for home use of a complex upper limb prosthesis. The findings have implications for training with and prescription of the DEKA Arm, and highlights the need for further research to develop prescription guidelines for advanced assistive devices.
Consumer design priorities for upper limb prosthetics.
Biddiss, Elaine; Beaton, Dorcas; Chau, Tom
2007-11-01
To measure consumer satisfaction with upper limb prosthetics and provide an enumerated list of design priorities for future developments. A self-administered, anonymous survey collected information on participant demographics, history of and goals for prosthesis use, satisfaction, and design priorities. The questionnaire was available online and in paper format and was distributed through healthcare providers, community support groups, and one prosthesis manufacturer; 242 participants of all ages and levels of upper limb absence completed the survey. Rates of rejection for myoelectric hands, passive hands, and body-powered hooks were 39%, 53%, and 50%, respectively. Prosthesis wearers were generally satisfied with their devices while prosthesis rejecters were dissatisfied. Reduced prosthesis weight emerged as the highest priority design concern of consumers. Lower cost ranked within the top five design priorities for adult wearers of all device types. Life-like appearance is a priority for passive/cosmetic prostheses, while improved harness comfort, wrist movement, grip control and strength are required for body-powered devices. Glove durability, lack of sensory feedback, and poor dexterity were also identified as design priorities for electric devices. Design priorities reflect consumer goals for prosthesis use and vary depending on the type of prosthesis used and age. Future design efforts should focus on the development of more light-weight, comfortable prostheses.
A strategy for computer-assisted mental practice in stroke rehabilitation.
Gaggioli, Andrea; Meneghini, Andrea; Morganti, Francesca; Alcaniz, Mariano; Riva, Giuseppe
2006-12-01
To investigate the technical and clinical viability of using computer-facilitated mental practice in the rehabilitation of upper-limb hemiparesis following stroke. A single-case study. Academic-affiliated rehabilitation center. A 46-year-old man with stable motor deficit of the upper right limb following subcortical ischemic stroke. Three computer-enhanced mental practice sessions per week at the rehabilitation center, in addition to usual physical therapy. A custom-made virtual reality system equipped with arm-tracking sensors was used to guide mental practice. The system was designed to superimpose over the (unseen) paretic arm a virtual reconstruction of the movement registered from the nonparetic arm. The laboratory intervention was followed by a 1-month home-rehabilitation program, making use of a portable display device. Pretreatment and posttreatment clinical assessment measures were the upper-extremity scale of the Fugl-Meyer Assessment of Sensorimotor Impairment and the Action Research Arm Test. Performance of the affected arm was evaluated using the healthy arm as the control condition. The patient's paretic limb improved after the first phase of intervention, with modest increases after home rehabilitation, as indicated by functional assessment scores and sensors data. Results suggest that technology-supported mental training is a feasible and potentially effective approach for improving motor skills after stroke.
Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects.
Sheng, Bo; Zhang, Yanxin; Meng, Wei; Deng, Chao; Xie, Shengquan
2016-07-01
Robot-assisted bilateral upper-limb training grows abundantly for stroke rehabilitation in recent years and an increasing number of devices and robots have been developed. This paper aims to provide a systematic overview and evaluation of existing bilateral upper-limb rehabilitation devices and robots based on their mechanisms and clinical-outcomes. Most of the articles studied here were searched from nine online databases and the China National Knowledge Infrastructure (CNKI) from year 1993 to 2015. Devices and robots were categorized as end-effectors, exoskeletons and industrial robots. Totally ten end-effectors, one exoskeleton and one industrial robot were evaluated in terms of their mechanical characteristics, degrees of freedom (DOF), supported control modes, clinical applicability and outcomes. Preliminary clinical results of these studies showed that all participants could gain certain improvements in terms of range of motion, strength or physical function after training. Only four studies supported that bilateral training was better than unilateral training. However, most of clinical results cannot definitely verify the effectiveness of mechanisms and clinical protocols used in robotic therapies. To explore the actual value of these robots and devices, further research on ingenious mechanisms, dose-matched clinical protocols and universal evaluation criteria should be conducted in the future. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Pulman, Jennifer; Buckley, Emily
2013-01-01
This review aims to assess the efficacy of upper limb interventions on stroke survivors' health-related quality of life (QOL). Published studies were identified following a systematic search of the literature from 10 electronic databases, 3 subject-relevant journals, a Web search via a popular search engine, and reference lists of the included articles. In total, 22 articles met the inclusion criteria and were subjected to data extraction to establish the effectiveness of the intervention on QOL scores. Interventions varied according to their content, including acupuncture treatment, botulinum toxin type A (BTX-A) injections, constraint-induced movement therapy (CIMT), task training, and therapeutic exercise. Studies were required to have at least 1 quantitative outcome QOL measure. Of the 22 studies, 12 reported significant findings within groups and between control groups. Interventions including BTX-A injections, CIMT, exercise programs, baclofen pump, robotic-assisted therapy, electrical stimulation, and acupuncture were reported to significantly improve either overall health-related QOL or certain individual QOL domains, such as strength, hand function, memory, mood, activities of daily living, mobility, social participation, communication, energy, pain, and sleep. The review demonstrates the need for upper limb intervention studies to focus on QOL as a primary outcome measure in addition to the functional outcomes currently used.
Galvin, Jane; McDonald, Rachael; Catroppa, Cathy; Anderson, Vicki
2011-01-01
Virtual reality (VR) is an emerging area of paediatric clinical and research practice, however the majority of research to date has focused on outcomes for adults following stroke. This paper appraises and describes current evidence for use of virtual reality interventions to improve upper limb function of children with neurological impairment. A comprehensive database search was undertaken to explore literature on the use of VR systems for rehabilitation of upper limb skills of children with neurological impairment. Studies investigating the use of robotics or other mechanical devices were excluded. Five studies were found and were critiqued using the Downs and Black scale for measuring study quality. One randomized control trial and four case studies were found. No study scored over 50% on the Downs and Black scale, indicating methodological limitations that limit generalizability. Current evidence for the use of VR to improve hand and arm skills is at an emerging stage. Small sample sizes and inconsistencies in outcome measurement limit the ability to generalize findings. Further studies are required to investigate the ability to maintain gains made in VR over time and to determine whether gains transfer from the VR to real life tasks and activities.
Timmermans, Annick AA; Seelen, Henk AM; Willmann, Richard D; Kingma, Herman
2009-01-01
Background It is the purpose of this article to identify and review criteria that rehabilitation technology should meet in order to offer arm-hand training to stroke patients, based on recent principles of motor learning. Methods A literature search was conducted in PubMed, MEDLINE, CINAHL, and EMBASE (1997–2007). Results One hundred and eighty seven scientific papers/book references were identified as being relevant. Rehabilitation approaches for upper limb training after stroke show to have shifted in the last decade from being analytical towards being focussed on environmentally contextual skill training (task-oriented training). Training programmes for enhancing motor skills use patient and goal-tailored exercise schedules and individual feedback on exercise performance. Therapist criteria for upper limb rehabilitation technology are suggested which are used to evaluate the strengths and weaknesses of a number of current technological systems. Conclusion This review shows that technology for supporting upper limb training after stroke needs to align with the evolution in rehabilitation training approaches of the last decade. A major challenge for related technological developments is to provide engaging patient-tailored task oriented arm-hand training in natural environments with patient-tailored feedback to support (re) learning of motor skills. PMID:19154570
Valkenborghs, Sarah R; Visser, Milanka M; Dunn, Ashlee; Erickson, Kirk I; Nilsson, Michael; Callister, Robin; van Vliet, Paulette
2017-09-01
Motor function may be enhanced if aerobic exercise is paired with motor training. One potential mechanism is that aerobic exercise increases levels of brain-derived neurotrophic factor (BDNF), which is important in neuroplasticity and involved in motor learning and motor memory consolidation. This study will examine the feasibility of a parallel-group assessor-blinded randomised controlled trial investigating whether task-specific training preceded by aerobic exercise improves upper limb function more than task-specific training alone, and determine the effect size of changes in primary outcome measures. People with upper limb motor dysfunction after stroke will be allocated to either task-specific training or aerobic exercise and consecutive task-specific training. Both groups will perform 60 hours of task-specific training over 10 weeks, comprised of 3 × 1 hour sessions per week with a therapist and 3 × 1 hours of home-based self-practice per week. The combined intervention group will also perform 30 minutes of aerobic exercise (70-85%HR max ) immediately prior to the 1 hour of task-specific training with the therapist. Recruitment, adherence, retention, participant acceptability, and adverse events will be recorded. Clinical outcome measures will be performed pre-randomisation at baseline, at completion of the training program, and at 1 and 6 months follow-up. Primary clinical outcome measures will be the Action Research Arm Test (ARAT) and the Wolf Motor Function Test (WMFT). If aerobic exercise prior to task-specific training is acceptable, and a future phase 3 randomised controlled trial seems feasible, it should be pursued to determine the efficacy of this combined intervention for people after stroke.
Sundstrup, Emil; Jakobsen, Markus D; Andersen, Christoffer H; Jay, Kenneth; Persson, Roger; Aagaard, Per; Andersen, Lars L
2014-01-01
Chronic pain and disability of the arm, shoulder, and hand severely affect labor market participation. Ergonomic training and education is the default strategy to reduce physical exposure and thereby prevent aggravation of pain. An alternative strategy could be to increase physical capacity of the worker by physical conditioning. To investigate the effect of 2 contrasting interventions, conventional ergonomic training (usual care) versus resistance training, on pain and disability in individuals with upper limb chronic pain exposed to highly repetitive and forceful manual work. Examiner-blinded, parallel-group randomized controlled trial with allocation concealment. Slaughterhouses located in Denmark, Europe. Sixty-six adults with chronic pain in the shoulder, elbow/forearm, or hand/wrist and work disability were randomly allocated to 10 weeks of specific resistance training for the shoulder, arm, and hand muscles for 3 x 10 minutes per week, or ergonomic training and education (usual care control group). Pain intensity (average of shoulder, arm, and hand, scale 0 - 10) was the primary outcome, and disability (Work module of DASH questionnaire) as well as isometric shoulder and wrist muscle strength were secondary outcomes. Pain intensity, disability, and muscle strength improved more following resistance training than usual care (P < 0.001, P = 0.05, P <0.0001, respectively [corrected]). Pain intensity decreased by 1.5 points (95% confidence interval -2.0 to -0.9) following resistance training compared with usual care, corresponding to an effect size of 0.91 (Cohen's d). Blinding of participants is not possible in behavioral interventions. However, at baseline outcome expectations of the 2 interventions were similar. Resistance training at the workplace results in clinical relevant improvements in pain, disability, and muscle strength in adults with upper limb chronic pain exposed to highly repetitive and forceful manual work. NCT01671267.
Measuring upper limb function in children with hemiparesis with 3D inertial sensors.
Newman, Christopher J; Bruchez, Roselyn; Roches, Sylvie; Jequier Gygax, Marine; Duc, Cyntia; Dadashi, Farzin; Massé, Fabien; Aminian, Kamiar
2017-12-01
Upper limb assessments in children with hemiparesis rely on clinical measurements, which despite standardization are prone to error. Recently, 3D movement analysis using optoelectronic setups has been used to measure upper limb movement, but generalization is hindered by time and cost. Body worn inertial sensors may provide a simple, cost-effective alternative. We instrumented a subset of 30 participants in a mirror therapy clinical trial at baseline, post-treatment, and follow-up clinical assessments, with wireless inertial sensors positioned on the arms and trunk to monitor motion during reaching tasks. Inertial sensor measurements distinguished paretic and non-paretic limbs with significant differences (P < 0.01) in movement duration, power, range of angular velocity, elevation, and smoothness (normalized jerk index and spectral arc length). Inertial sensor measurements correlated with functional clinical tests (Melbourne Assessment 2); movement duration and complexity (Higuchi fractal dimension) showed moderate to strong negative correlations with clinical measures of amplitude, accuracy, and fluency. Inertial sensor measurements reliably identify paresis and correlate with clinical measurements; they can therefore provide a complementary dimension of assessment in clinical practice and during clinical trials aimed at improving upper limb function.
Active unicameral bone cysts in the upper limb are at greater risk of fracture.
Tey, Inn Kuang; Mahadev, Arjandas; Lim, Kevin Boon Leong; Lee, Eng Hin; Nathan, Saminathan Suresh
2009-08-01
To elucidate the natural history of unicameral bone cyst (UBC) and risk factors for pathological fracture. 14 males and 8 females (mean age, 9 years) diagnosed with UBC were reviewed. Cyst location, symptoms, and whether there was any fracture or surgery were recorded. Cyst parameters were measured on radiographs, and included (1) the cyst index, (2) the ratio of the widest cyst diameter to the growth plate diameter, and (3) the adjusted distance of the cyst border from the growth plate. There were 11 upper- and 11 lower-limb cysts. 13 patients had pathological fractures and 9 did not. 20 patients were treated conservatively with limb immobilisation; 2 underwent curettage and bone grafting (one resolved and one did not). Seven cysts resolved (5 had fractures and 2 did not). The risk of fracture was higher in the upper than lower limbs (100% vs 18%, p<0.001). Fractured cysts were larger than unfractured cysts (mean cyst index, 4.5 vs. 2.2, p=0.07). Active cysts were more likely to fracture. Conservative management had a 30% resolution rate. Surgery should be considered for large active cysts in the upper limbs in order to minimise the fracture risk.
An extremely lightweight fingernail worn prosthetic interface device
NASA Astrophysics Data System (ADS)
Yetkin, Oguz; Ahluwalia, Simranjit; Silva, Dinithi; Kasi-Okonye, Isioma; Volker, Rachael; Baptist, Joshua R.; Popa, Dan O.
2016-05-01
Upper limb prosthetics are currently operated using several electromyography sensors mounted on an amputee's residual limb. In order for any prosthetic driving interface to be widely adopted, it needs to be responsive, lightweight, and out of the way when not being used. In this paper we discuss the possibility of replacing such electrodes with fingernail optical sensor systems mounted on the sound limb. We present a prototype device that can detect pinch gestures and communicate with the prosthetic system. The device detects the relative position of fingers to each other by measuring light transmitted via tissue. Applications are not limited to prosthetic control, but can be extended to other human-machine interfaces.
Sheerin, Kelly R; Hume, Patria A; Whatman, Chris
2012-11-01
To investigate the effectiveness of 8-weeks of lower limb functional exercises on frontal plane hip and knee angles during running in youth athletes. Pre- and post-intervention quantitative experimental. Nineteen athletes (11 male, 8 female, 11.54 ± 1.34 years) from a long-term athletic development programme had 3-dimensional running gait measured pre and post an 8-week exercise intervention. Youth athletes randomised to control (upper limb strengthening exercises) or experimental (lower limb functional exercises aimed at minimising knee valgus angle) interventions completed the exercises during the first 10 min of training, three mornings a week. Pre- and post-parallel groups' analysis provided estimates of intervention effects for control and experimental groups. Differences in pre- to post-intervention changes in mean frontal plane angles between control and experimental groups were trivial for the left hip (0.1°) and right knee (-0.3°). There was a small beneficial decrease in right hip joint angle (0.4°) but a very large (ES = 0.77, CI 0.1-3.7) detrimental increase in left knee valgus angle (1.9°) between groups. The 8-week lower limb functional exercises had little beneficial effects on lower limb hip and knee mechanics in youth athletes aged 9-14 years. Copyright © 2012 Elsevier Ltd. All rights reserved.
Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects.
Lo, Ho Shing; Xie, Sheng Quan
2012-04-01
Current health services are struggling to provide optimal rehabilitation therapy to victims of stroke. This has motivated researchers to explore the use of robotic devices to provide rehabilitation therapy for strokepatients. This paper reviews the recent progress of upper limb exoskeleton robots for rehabilitation treatment of patients with neuromuscular disorders. Firstly, a brief introduction to rehabilitation robots will be given along with examples of existing commercial devices. The advancements in upper limb exoskeleton technology and the fundamental challenges in developing these devices are described. Potential areas for future research are discussed. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Wong, Joyce Y P; Chin, David; Fung, Henry; Li, Ann; Wong, Marcus M S; Kwok, Henry K H
2014-01-01
Upper limb musculoskeletal complaints are common among certain health professionals. We report two cases, both involving technicians working in a diagnostic tuberculosis laboratory in Hong Kong. A work process evaluation suggest that the need to repeatedly open and close small bottles, as well as to work for prolonged periods of time in confined areas, could be related to the workers' clinical presentation. The cases are also compatible with the diagnosis of repetitive strain injury (RSI) of the upper limb, but this term is not commonly used nowadays because of various definitional issues. A review of the various diagnostic issues in RSI is presented.
NASA Astrophysics Data System (ADS)
Hayashi, Ryota; Ishimine, Tomoyasu; Kawahira, Kazumi; Yu, Yong; Tsujio, Showzow
In this research, we focus on the method of rehabilitation with stretch reflexes for the hemiplegic upper limb in stroke patients. We propose a new device which utilizes electromagnetic force to evoke stretch reflexes. The device can exert an assisting force safely, because the electromagnetic force is non contact force. In this paper, we develop a support system applying the proposed device for the functional recovery training of the hemiplegic upper limb. The results obtained from several clinical tests with and without our support system are compared. Then we discuss the validity of our support system.
Rajabally, Yusuf A; Wong, Siew L
2012-03-01
We describe a patient presenting with progressive upper limb numbness and sensory ataxia of the 4 limbs. Motor nerve conduction studies were completely normal. Sensory electrophysiology showed reduced/absent upper limb sensory action potentials (SAPs). In the lower limbs, SAPs were mostly normal. Sensory conduction velocities were normal. Forearm sensory conduction blocks were present for both median nerves on antidromic testing. The maximal recordable sural SAP was preserved in comparison to maximal recordable radial SAP, consistent with an "abnormal radial normal sural" pattern. Somatosensory evoked potentials were unrecordable for tibial and median nerves. Cerebrospinal fluid protein was raised (0.99 g/L). The patient worsened on oral corticosteroids but subsequently made substantial functional recovery on intravenous immunoglobulins. This case is different to those previously reported of sensory chronic inflammatory demyelinating polyradiculoneuropathy, given its exclusive sensory electrophysiologic presentation, presence of predominant upper limb reduced sensory amplitudes, and detection of sensory conduction blocks. These electrophysiologic features were of paramount importance in establishing diagnosis and effective therapy.
Temporal-spatial parameters of the upper limb during a Reach & Grasp Cycle for children.
Butler, Erin E; Ladd, Amy L; Lamont, Lauren E; Rose, Jessica
2010-07-01
The objective of this study was to characterize normal temporal-spatial patterns during the Reach & Grasp Cycle and to identify upper limb motor deficits in children with cerebral palsy (CP). The Reach & Grasp Cycle encompasses six sequential tasks: reach, grasp cylinder, transport to self (T(1)), transport back to table (T(2)), release cylinder, and return to initial position. Three-dimensional motion data were recorded from 25 typically developing children (11 males, 14 females; ages 5-18 years) and 12 children with hemiplegic CP (2 males, 10 females; ages 5-17 years). Within-day and between-day coefficients of variation for the control group ranged from 0 to 0.19, indicating good repeatability of all parameters. The mean duration of the Cycle for children with CP was nearly twice as long as controls, 9.5±4.3s versus 5.1±1.2s (U=37.0, P=.002), partly due to prolonged grasp and release durations. Peak hand velocity occurred at approximately 40% of each phase and was greater during the transport (T(1), T(2)) than non-transport phases (reach, return) in controls (P<.001). Index of curvature was lower during transport versus non-transport phases for all children. Children with CP demonstrated an increased index of curvature during reach (U=46.0, P=.0074) and an increased total number of movement units (U=16.5, P<.0001) compared to controls, indicating less efficient and less smooth movements. Total duration of the Reach & Grasp Cycle (rho=.957, P<.0001), index of curvature during reach and T(1) (rho=.873, P=.0002 and rho=.778, P=.0028), and total number of movement units (rho=.907, P<.0001) correlated strongly with MACS score. The consistent normative data and the substantial differences between children with CP and controls reflect utility of the Reach & Grasp Cycle for quantitative evaluation of upper limb motor deficits. Copyright © 2010 Elsevier B.V. All rights reserved.
Comparison of two techniques of robot-aided upper limb exercise training after stroke.
Stein, Joel; Krebs, Hermano Igo; Frontera, Walter R; Fasoli, Susan E; Hughes, Richard; Hogan, Neville
2004-09-01
This study examined whether incorporating progressive resistive training into robot-aided exercise training provides incremental benefits over active-assisted robot-aided exercise for the upper limb after stroke. A total of 47 individuals at least 1 yr poststroke were enrolled in this 6-wk training protocol. Paretic upper limb motor abilities were evaluated using clinical measures and a robot-based assessment to determine eligibility for robot-aided progressive resistive training at study entry. Subjects capable of participating in resistance training were randomized to receive either active-assisted robot-aided exercises or robot-aided progressive resistance training. Subjects who were incapable of participating in resistance training underwent active-assisted robotic therapy and were again screened for eligibility after 3 wks of robotic therapy. Those subjects capable of participating in resistance training at 3 wks were then randomized to receive either robot-aided resistance training or to continue with robot-aided active-assisted training. One subject withdrew due to unrelated medical issues, and data for the remaining 46 subjects were analyzed. Subjects in all groups showed improvement in measures of motor control (mean increase in Fugl-Meyer of 3.3; 95% confidence interval, 2.2-4.4) and maximal force (mean increase in maximal force of 3.5 N, P = 0.027) over the course of robot-aided exercise training. No differences in outcome measures were observed between the resistance training groups and the matched active-assisted training groups. Subjects' ability to perform the robotic task at the time of group assignment predicted the magnitude of the gain in motor control. The incorporation of robot-aided progressive resistance exercises into a program of robot-aided exercise did not favorably or negatively affect the gains in motor control or strength associated with this training, though interpretation of these results is limited by sample size. Individuals with better motor control at baseline experienced greater increases in motor control with robotic training.
Kawahira, Kazumi; Shimodozono, Megumi; Etoh, Seiji; Kamada, Katsuya; Noma, Tomokazu; Tanaka, Nobuyuki
2010-01-01
Objective To study the effects on the hemiplegic upper limb of repetitive facilitation exercises (RFEs) using a novel facilitation technique, in which the patient's intention to move the hemiplegic upper limb or finger was followed by realization of the movement using multiple sensory stimulations. Methods Twenty-three stroke patients were enrolled in a cross-over study in which 2-week RFE sessions (100 repetitions each of five-to-eight types of facilitation exercise per day) were alternated with 2-week conventional rehabilitation (CR) sessions, for a total of four sessions. Treatments were begun with the 2-week RFE session in one group and the 2-week CR session in the second group. Results After the first 2-week RFE session, both groups showed improvements in the Brunnstrom stages of the upper limb and the hand, in contrast to the small improvements observed during the first CR session. The Simple Test for Evaluating Hand Function (STEF) score, which evaluates the ability of manipulating objects, in both groups improved during both sessions. After the second 2-week RFE and CR sessions, both groups showed little further improvement except in the STEF score. Conclusion The novel RFEs promoted the functional recovery of the hemiplegic upper limb and hand to a greater extent than the CR sessions. PMID:20715890
Upper limb module in non-ambulant patients with spinal muscular atrophy: 12 month changes.
Sivo, Serena; Mazzone, Elena; Antonaci, Laura; De Sanctis, Roberto; Fanelli, Lavinia; Palermo, Concetta; Montes, Jacqueline; Pane, Marika; Mercuri, Eugenio
2015-03-01
Recent studies have suggested that in non-ambulant patients affected by spinal muscular atrophy the Upper Limb Module can increase the range of activities assessed by the Hammersmith Functional Motor Scale Expanded. The aim of this study was to establish 12-month changes in the Upper Limb Module in a cohort of non-ambulant spinal muscular atrophy patients and their correlation with changes on the Hammersmith Functional Motor Scale Expanded. The Upper Limb Module scores ranged between 0 and 17 (mean 10.23, SD 4.81) at baseline and between 1 and 17 at 12 months (mean 10.27, SD 4.74). The Hammersmith Functional Motor Scale Expanded scores ranged between 0 and 34 (mean 12.43, SD 9.13) at baseline and between 0 and 34 at 12 months (mean 12.08, SD 9.21). The correlation betweeen the two scales was 0.65 at baseline and 0.72 on the 12 month changes. Our results confirm that the Upper Limb Module can capture functional changes in non-ambulant spinal muscular atrophy patients not otherwise captured by the other scale and that the combination of the two measures allows to capture changes in different subgroups of patients in whom baseline scores and functional changes may be influenced by several variables such as age. Copyright © 2014 Elsevier B.V. All rights reserved.
A novel upper limb rehabilitation system with self-driven virtual arm illusion.
Aung, Yee Mon; Al-Jumaily, Adel; Anam, Khairul
2014-01-01
This paper proposes a novel upper extremity rehabilitation system with virtual arm illusion. It aims for fast recovery from lost functions of the upper limb as a result of stroke to provide a novel rehabilitation system for paralyzed patients. The system is integrated with a number of technologies that include Augmented Reality (AR) technology to develop game like exercise, computer vision technology to create the illusion scene, 3D modeling and model simulation, and signal processing to detect user intention via EMG signal. The effectiveness of the developed system has evaluated via usability study and questionnaires which is represented by graphical and analytical methods. The evaluation provides with positive results and this indicates the developed system has potential as an effective rehabilitation system for upper limb impairment.
Costantino, Cosimo; Galuppo, Laura; Romiti, Davide
2017-02-01
In recent years, local muscle vibration received considerable attention as a useful method for muscle stimulation in clinical therapy. Some studies described specific vibration training protocol, and few of them were conducted on post-stroke patients. Therefore there is a general uncertainty regarding the vibrations protocol. The aim of this study was to evaluate the effects of local muscle high frequency mechano-acoustic vibratory treatment on grip muscle strength, muscle tonus, disability and pain in post-stroke individuals with upper limb spasticity. Single-blind randomized controlled trial. Outpatient rehabilitation center. Thirty-two chronic poststroke patients with upper-limb spasticity: 21 males, 11 females, mean age 61.59 years ±15.50, time passed from stroke 37.78±17.72 months. The protocol treatment consisted of the application of local muscle vibration, set to a frequency of 300 Hz, for 30 minutes 3 times per week, for 12 sessions, applied to the skin covering the venter of triceps brachii and extensor carpi radialis longus and brevis muscles during voluntary isometric contraction. All participants were randomized in two groups: group A treated with vibration protocol; group B with sham therapy. All participants were evaluated before and after 4-week treatment with Hand Grip Strength Test, Modified Ashworth Scale, QuickDASH score, FIM scale, Fugl-Meyer Assessment, Jebsen-Taylor Hand Function Test and Verbal Numerical Rating Scale of pain. Outcomes between groups was compared using a repeated-measures ANOVA. Over 4 weeks, the values recorded in group A when compared to group B demonstrated statistically significant improvement in grip muscle strength, pain and quality of life and decrease of spasticity; P-values were <0.05 in all tested parameters. Rehabilitation treatment with local muscle high frequency (300 Hz) vibration for 30 minutes, 3 times a week for 4 weeks, could significantly improve muscle strength and decrease muscle tonus, disability and pain in upper limb of hemiplegic post-stroke patients. Local muscle vibration treatment might be an additional and safe tool in the management of chronic poststroke patients, granted its high therapeutic efficiency, limited cost and short and repeatable protocol of use.
Schuster-Amft, Corina; Henneke, Andrea; Hartog-Keisker, Birgit; Holper, Lisa; Siekierka, Ewa; Chevrier, Edith; Pyk, Pawel; Kollias, Spyros; Kiper, Daniel; Eng, Kynan
2015-01-01
To evaluate feasibility and neurophysiological changes after virtual reality (VR)-based training of upper limb (UL) movements. Single-case A-B-A-design with two male stroke patients (P1:67 y and 50 y, 3.5 and 3 y after onset) with UL motor impairments, 45-min therapy sessions 5×/week over 4 weeks. Patients facing screen, used bimanual data gloves to control virtual arms. Three applications trained bimanual reaching, grasping, hand opening. Assessments during 2-week baseline, weekly during intervention, at 3-month follow-up (FU): Goal Attainment Scale (GAS), Chedoke Arm and Hand Activity Inventory (CAHAI), Chedoke-McMaster Stroke Assessment (CMSA), Extended Barthel Index (EBI), Motor Activity Log (MAL). Functional magnetic resonance imaging scans (FMRI) before, immediately after treatment and at FU. P1 executed 5478 grasps (paretic arm). Improvements in CAHAI (+4) were maintained at FU. GAS changed to +1 post-test and +2 at FU. P2 executed 9835 grasps (paretic arm). CAHAI improvements (+13) were maintained at FU. GAS scores changed to -1 post-test and +1 at FU. MAL scores changed from 3.7 at pre-test to 5.5 post-test and 3.3 at FU. The VR-based intervention was feasible, safe, and intense. Adjustable application settings maintained training challenge and patient motivation. ADL-relevant UL functional improvements persisted at FU and were related to changed cortical activation patterns. Implications for Rehabilitation YouGrabber trains uni- and bimanual upper motor function. Its application is feasible, safe, and intense. The control of the virtual arms can be done in three main ways: (a) normal (b) virtual mirror therapy, or (c) virtual following. The mirroring feature provides an illusion of affected limb movements during the period when the affected upper limb (UL) is resting. The YouGrabber training led to ADL-relevant UL functional improvements that were still assessable 12 weeks after intervention finalization and were related to changed cortical activation patterns.
Wang, Yong Tai; Vrongistinos, Konstantinos Dino; Xu, Dali
2008-08-01
The purposes of this study were to examine the consistency of wheelchair athletes' upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.
Upper limb malformations in DiGeorge syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cormier-Daire, V.; Iserin, L.; Sidi, D.
1995-03-13
We report on upper limb anomalies in two children with a complete DiGeorge sequence: conotruncal defects, hypocalcemia, thymic aplasia, and facial anomalies. One child had preaxial polydactyly, and the other had club hands with hypoplastic first metacarpal. In both patients, molecular analysis documented a 22q11 deletion. To our knowledge, limb anomalies have rarely been reported in DiGeorge syndrome, and they illustrate the variable clinical expression of chromosome 22q11 deletions. 13 refs., 2 figs.
A hybrid system for upper limb movement restoration in quadriplegics.
Varoto, Renato; Barbarini, Elisa Signoreto; Cliquet, Alberto
2008-09-01
Generally, quadriplegic individuals have difficulties performing object manipulation. Toward satisfactory manipulation, reach and grasp movements must be performed with voluntary control, and for that, grasp force feedback is essential. A hybrid system aiming at partial upper limb sensory-motor restoration for quadriplegics was built. Such device is composed of an elbow dynamic orthosis that provides elbow flexion/extension (range was approximately from 20 degrees to 120 degrees , and average angular speed was approximately 15 degrees /s) with forearm support, a wrist static orthosis and neuromuscular electrical stimulation for grasping generation, and a glove with force sensors that allows grasping force feedback. The glove presents two user interface modes: visual by light emitting diodes or audio emitted by buzzer. Voice control of the entire system (elbow dynamic orthosis and electrical stimulator) is performed by the patient. The movements provided by the hybrid system, combined with the scapular and shoulder movements performed by the patient, can aid quadriplegic individuals in tasks that involve reach and grasp movements.
Ergonomics and comfort in lawn mower handle positioning: An evaluation of handle geometry.
Lowndes, Bethany R; Heald, Elizabeth A; Hallbeck, M Susan
2015-11-01
Hand operation accompanied with any combination of large forces, awkward positions and repetition may lead to upper limb injury or illness and may be exacerbated by vibration. Commercial lawn mowers expose operators to these factors during actuation of hand controls and therefore may be a health concern. A nontraditional lawn mower control system may decrease upper limb illnesses and injuries through more neutral hand and body positioning. This study compared maximum grip strength in twelve different orientations (3 grip spans and 4 positions) and evaluated self-described comfortable handle positions. The results displayed force differences between nontraditional (X) and both vertical (V) and pistol (P) positions (p < 0.0001) and among the different grip spans (p < 0.0001). Based on these results, recommended designs should incorporate a tilt between 45 and 70°, handle rotations between 48 and 78°, and reduced force requirements or decreased grip spans to improve user health and comfort. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Wang, Dongqing; Zhang, Xu; Gao, Xiaoping; Chen, Xiang; Zhou, Ping
2016-01-01
This study presents wavelet packet feature assessment of neural control information in paretic upper limb muscles of stroke survivors for myoelectric pattern recognition, taking advantage of high-resolution time-frequency representations of surface electromyogram (EMG) signals. On this basis, a novel channel selection method was developed by combining the Fisher's class separability index and the sequential feedforward selection analyses, in order to determine a small number of appropriate EMG channels from original high-density EMG electrode array. The advantages of the wavelet packet features and the channel selection analyses were further illustrated by comparing with previous conventional approaches, in terms of classification performance when identifying 20 functional arm/hand movements implemented by 12 stroke survivors. This study offers a practical approach including paretic EMG feature extraction and channel selection that enables active myoelectric control of multiple degrees of freedom with paretic muscles. All these efforts will facilitate upper limb dexterity restoration and improved stroke rehabilitation.
The occurrence of dystonia in upper-limb multiple sclerosis tremor.
Van der Walt, A; Buzzard, K; Sung, S; Spelman, T; Kolbe, S C; Marriott, M; Butzkueven, H; Evans, A
2015-12-01
The pathophysiology of multiple sclerosis (MS) tremor is uncertain with limited phenotypical studies available. To investigate whether dystonia contributes to MS tremor and its severity. MS patients (n = 54) with and without disabling uni- or bilateral upper limb tremor were recruited (39 limbs per group). We rated tremor severity, writing and Archimedes spiral drawing; cerebellar dysfunction (SARA score); the Global Dystonia Scale (GDS) for proximal and distal upper limbs, dystonic posturing, mirror movements, geste antagoniste, and writer's cramp. Geste antagoniste, mirror dystonia, and dystonic posturing were more frequent and severe (p < 0.001) and dystonia scores were correlated with tremor severity in tremor compared to non-tremor patients. A 1-unit increase in distal dystonia predicted a 0.52-Bain unit (95% confidence interval (CI) 0.08-0.97), p = 0.022) increase in tremor severity and a 1-unit (95% CI 0.48-1.6, p = 0.001) increase in drawing scores. A 1-unit increase in proximal dystonia predicted 0.93-Bain unit increase (95% CI 0.45-1.41, p < 0.001) in tremor severity and 1.5-units (95% CI 0.62-2.41, p = 0.002) increase in the drawing score. Cerebellar function in the tremor limb and tremor severity was correlated (p < 0.001). Upper limb dystonia is common in MS tremor suggesting that MS tremor pathophysiology involves cerebello-pallido-thalamo-cortical network dysfunction. © The Author(s), 2015.
Two-dimensional myoelectric control of a robotic arm for upper limb amputees
NASA Astrophysics Data System (ADS)
López Celani, Natalia M.; Soria, Carlos M.; Orosco, Eugenio C.; di Sciascio, Fernando A.; Valentinuzzi, Max E.
2007-11-01
Rehabilitation engineering and medicine have become integral and significant parts of health care services, particularly and unfortunately in the last three or four decades, because of wars, terrorism and large number of car accidents. Amputees show a high rate of rejection to wear prosthetic devices, often because of lack of an adequate period of adaptation. A robotic arm may appear as a good preliminary stage. To test the hypothesis, myoelectric signals from two upper limb amputees and from four normal volunteers were fed, via adequate electronic conditioning and using MATLAB, to an industrial robotic arm. Proportional strength control was used for two degrees of freedom (x-y plane) by means of eight signal features of control (four traditional statistics plus energy, integral of the absolute value, Willison's amplitude, waveform length and envelope) for comparison purposes, and selecting the best of them as final reference. Patients easily accepted the system and learned in short time how to operate it. Results were encouraging so that valuable training, before prosthesis is implanted, appears as good feedback; besides, these patients can be hired as specialized operators in semi-automatized industry.
Park, Youngju; Chang, Moonyoung; Kim, Kyeong-Mi; An, Duk-Hyun
2015-05-01
[Purpose] The purpose of this study was to determine the effects of mirror therapy with tasks on upper extremity unction and self-care in stroke patients. [Subjects] Thirty participants were randomly assigned to either an experimental group (n=15) or a control group (n=15). [Methods] Subjects in the experimental group received mirror therapy with tasks, and those in the control group received a sham therapy; both therapies were administered, five times per week for six weeks. The main outcome measures were the Manual Function Test for the paralyzed upper limb and the Functional Independence Measure for self-care performance. [Results] The experimental group had more significant gains in change scores compared with the control group after the intervention. [Conclusion] We consider mirror therapy with tasks to be an effective form of intervention for upper extremity function and self-care in stroke patients.
The influence of musical cadence into aquatic jumping jacks kinematics.
Costa, Mário J; Oliveira, Cristiana; Teixeira, Genoveva; Marinho, Daniel A; Silva, António J; Barbosa, Tiago M
2011-01-01
The aim of this study was to analyze the relationships between the head-out aquatic exercise "Jumping jacks" kinematics and the musical cadence in healthy and fit subjects. Five young women, with at least one year of experience conducting head- out aquatic programs were videotaped in the frontal plane, with a pair of cameras providing a double projection (above and below the water surface). Subjects performed an incremental protocol of five bouts (120 b·min(-1), 135 b·min(-1), 150 b·min(-1), 165 b·min(-1) and 180 b·min(-1)) with 16 full cycles of the "Jumping jacks" exercise. Data processing and calculation of upper limbs' (i.e. hands), lower limbs' (i.e. feet) and center of mass' 2D linear velocity and displacement were computed with the software Ariel Performance Analysis System and applying the 2D-DLT algorithm. Subjects decreased the cycle period during the incremental protocol. Significant and negative relationships with the musical cadence were verified for the center of mass and upper limbs vertical displacement. On the other hand, for the lower limbs lateral velocity, a significant and positive relationship was observed. It is concluded that expert and fit subjects increase the lower limb's velocity to maintain the range of motion, while the upper limb's displacement is reduced to coupe the music cadence. Key pointsWhile performing the Jumping Jacks, expert and fit subjects increase their lower limbs segmental velocity to maintain the range of motion.The upper limbs displacement is reduced to maintain the music cadence.Expert and fit subjects present similar response for alternating or simultaneously head-out aquatic exercises when increasing the music cadence.
Young People's Computer Use: Implications for Health Education
ERIC Educational Resources Information Center
Alexander, Leslie M.; Currie, Candace
2004-01-01
Increasing numbers of young people use Information and Communication Technology (ICT) for education, work and leisure activities. Research on ICT and Upper Limb Disorders (ULDs) in adults has shown that functional impairment, pain and discomfort in the upper limbs, neck and shoulder increases with frequency and duration of exposure to computer…
Symons, J E; Hawkins, D A; Fyhrie, D P; Upadhyaya, S K; Stover, S M
2017-09-01
The metacarpophalangeal joint (fetlock) is the most commonly affected site of racehorse injury, with multiple observed pathologies consistent with extreme fetlock dorsiflexion. Race surface mechanics affect musculoskeletal structure loading and injury risk because surface forces applied to the hoof affect limb motions. Race surface mechanics are a function of controllable factors. Thus, race surface design has the potential to reduce the incidence of musculoskeletal injury through modulation of limb motions. However, the relationship between race surface mechanics and racehorse limb motions is unknown. To determine the effect of changing race surface and racehorse limb model parameters on distal limb motions. Sensitivity analysis of in silico fetlock motion to changes in race surface and racehorse limb parameters using a validated, integrated racehorse and race surface computational model. Fetlock motions were determined during gallop stance from simulations on virtual surfaces with differing average vertical stiffness, upper layer (e.g. cushion) depth and linear stiffness, horizontal friction, tendon and ligament mechanics, as well as fetlock position at heel strike. Upper layer depth produced the greatest change in fetlock motion, with lesser depths yielding greater fetlock dorsiflexion. Lesser fetlock changes were observed for changes in lower layer (e.g. base or pad) mechanics (nonlinear), as well as palmar ligament and tendon stiffness. Horizontal friction and fetlock position contributed less than 1° change in fetlock motion. Simulated fetlock motions are specific to one horse's anatomy reflected in the computational model. Anatomical differences among horses may affect the magnitude of limb flexion, but will likely have similar limb motion responses to varied surface mechanics. Race surface parameters affected by maintenance produced greater changes in fetlock motion than other parameters studied. Simulations can provide evidence to inform race surface design and management to reduce the incidence of injury. © 2017 EVJ Ltd.
Temperature-salinity structure of the AMOC in high-resolution ocean simulations and in CMIP5 models
NASA Astrophysics Data System (ADS)
Wang, F.; Xu, X.; Chassignet, E.
2017-12-01
On average, the CMIP5 models represent the AMOC structure, water properties, Heat transport and Freshwater transport reasonably well. For temperature, CMIP5 models exhibit a colder northward upper limb and a warmer southward lower limb. the temperature contrast induces weaker heat transport than observation. For salinity, CMIP5 models exhibit saltier southward lower limb, thus contributes to weaker column freshwater transport. Models have large spread, among them, AMOC strength contributes to Heat transport but not freshwater transport. AMOC structure (the overturning depth) contributes to transport-weighted temperature not transport-weighted salinity in southward lower limb. The salinity contrast in upper and lower limb contributes to freshwater transport, but temperature contrast do not contribute to heat transport.
Dias, Naiara T; Ferreira, Letícia R; Fernandes, Mariana G; Resende, Ana Paula M; Pereira-Baldon, Vanessa S
2018-01-01
The aim of this study was to evaluate the effectiveness of a Pilates exercise program with pelvic floor muscle (PFM) contraction compared to a conventional intervention in pregnant women. Fifty primiparous women, without gestational alterations, were randomized to the Pilates group (n = 25) and control group (n = 25). Interventions for both groups consisted of twice-weekly sessions of 1 h each during the period between the 14-16th and 32-34th gestational weeks. The Pilates group performed a Pilates exercises program with the addition of voluntary PFM contraction. Mat-based Pilates exercises were performed involving movement of the upper limbs, lower limbs and trunk in all sessions. The Control group walked for 10 min and performed strengthening exercises of the lower limbs, upper limbs, and trunk with resistance from an elastic band and body weight. Each woman was evaluated by an unblinded physiotherapist before and after intervention for primary (PFM strength using a manometer) and secondary (PFM strength using Oxford Scale, endurance and repeatability) outcomes. Covariance analysis (ANCOVA) was used to compare the groups using the baseline values as a covariate. Thirty-six women were included in the analysis. There were no differences between the groups for manometry. An increase in the PFM strength, endurance, and repeatability was only observed in the Pilates group. In addition, the Pilates group showed greater adherence to the intervention. Pilates exercise program with PFM contraction is not able to change the PFM strength assessed by manometer in pregnant women, but it improved adherence to the intervention. © 2017 Wiley Periodicals, Inc.
Melorheostosis of Leri: report of a case in a young African.
Adeyomoye, A A O; Awosanya, G O G; Arogundade, R A
2004-09-01
Melorheostosis of Leri is a non-familial condition of hyperostosis of the cortical bone that usually presents unilaterally in long bones of the upper and lower limbs, but may also present in vertebra, ribs, skull and jaw. The incidence of this disease is quite rare, only about 300 cases have been reported worldwide. We present a case, which may be the first documented case in sub-Saharan Africa. S.K. is a 14 year old male student who presented to the hospital with an 18 month history of persistent pain in the joints of the right upper limb and a limb length discrepancy since birth which has worsened with growth. Examination revealed generalised hypoplasia of the right upper limb with shortening of the limb and atrophy of the muscles, also hypoplasia and contracture of the thumb was observed. The radiographs of the limb showed multiple areas of dense hyperostosis and scleroderma, which showed a linear distribution along the radial half of the bones. In children presentation of melorheostosis, is more likely be as limb length discrepancy, deformity or joint contractures which may be seen before radiographic evidence of any bony changes. Improvement in imaging techniques will therefore result in early diagnosis and greater success with conservative management. Also the increased frequency of tumours necessitates long-term follow up. melorheostosis, scleroderma.
Stein, Joel; Narendran, Kailas; McBean, John; Krebs, Kathryn; Hughes, Richard
2007-04-01
Robot-assisted exercise shows promise as a means of providing exercise therapy for weakness that results from stroke or other neurological conditions. Exoskeletal or "wearable" robots can, in principle, provide therapeutic exercise and/or function as powered orthoses to help compensate for chronic weakness. We describe a novel electromyography (EMG)-controlled exoskeletal robotic brace for the elbow (the active joint brace) and the results of a pilot study conducted using this brace for exercise training in individuals with chronic hemiparesis after stroke. Eight stroke survivors with severe chronic hemiparesis were enrolled in this pilot study. One subject withdrew from the study because of scheduling conflicts. A second subject was unable to participate in the training protocol because of insufficient surface EMG activity to control the active joint brace. The six remaining subjects each underwent 18 hrs of exercise training using the device for a period of 6 wks. Outcome measures included the upper-extremity component of the Fugl-Meyer scale and the modified Ashworth scale of muscle hypertonicity. Analysis revealed that the mean upper-extremity component of the Fugl-Meyer scale increased from 15.5 (SD 3.88) to 19 (SD 3.95) (P = 0.04) at the conclusion of training for the six subjects who completed training. Combined (summated) modified Ashworth scale for the elbow flexors and extensors improved from 4.67 (+/-1.2 SD) to 2.33 (+/-0.653 SD) (P = 0.009) and improved for the entire upper limb as well. All subjects tolerated the device, and no complications occurred. EMG-controlled powered elbow orthoses can be successfully controlled by severely impaired hemiparetic stroke survivors. This technique shows promise as a new modality for assisted exercise training after stroke.
Scott, Stephen H; Dukelow, Sean P
2011-01-01
Robotic technologies have profoundly affected the identification of fundamental properties of brain function. This success is attributable to robots being able to control the position of or forces applied to limbs, and their inherent ability to easily, objectively, and reliably quantify sensorimotor behavior. Our general hypothesis is that these same attributes make robotic technologies ideal for clinically assessing sensory, motor, and cognitive impairments in stroke and other neurological disorders. Further, they provide opportunities for novel therapeutic strategies. The present opinionated review describes how robotic technologies combined with virtual/augmented reality systems can support a broad range of behavioral tasks to objectively quantify brain function. This information could potentially be used to provide more accurate diagnostic and prognostic information than is available from current clinical assessment techniques. The review also highlights the potential benefits of robots to provide upper-limb therapy. Although the capital cost of these technologies is substantial, it pales in comparison with the potential cost reductions to the overall healthcare system that improved assessment and therapeutic interventions offer.
Pain, functional disability, and psychologic status in tennis elbow.
Alizadehkhaiyat, Omid; Fisher, Anthony C; Kemp, Graham J; Frostick, Simon P
2007-01-01
First to compare pain and functional disability in tennis elbow (TE) patients with healthy controls. Second, to evaluate the relationship between the 2 major psychologic factors (anxiety and depression) and TE. Sixteen TE patients were recruited from 46 consecutive attendees at an upper limb clinic: inclusion criteria were lateral epicondyle tenderness, pain with resisted wrist and middle finger extension and at least 3 months localized lateral elbow pain. Sixteen healthy controls with no upper limb problem were recruited from students and staff. Participants were given 4 questionnaires, together with instructions for completion: Disabilities of the Arm, Shoulder, and Hand, Patient-Rated Forearm Evaluation Questionnaire, Patient-Rated Wrist Evaluation Questionnaire, and Hospital Anxiety and Depression Scale. The independent t test was used to compare the total and subscale scores between the groups. Significantly higher scores were found in TE for pain and function subscales and also total score for Disabilities of the Arm, Shoulder, and Hand, Patient-Rated Forearm Evaluation Questionnaire, and Patient-Rated Wrist Evaluation Questionnaire. For Hospital Anxiety and Depression Scale, both anxiety and depression subscales (P<0.001) and the total score (P<0.01) were significantly higher in TE. According to the anxiety and depression subscales, 55% and 36% of patients, respectively, were classified as probable cases (score >11). TE patients showed markedly increased pain and functional disability. Significantly elevated levels of depression and anxiety pointed out the importance of psychologic assessment in TE patients. In the development of supportive and treatment strategies, we suggest the combination of "upper limb" and "psychologic" assessment tools.
Control of the seven-degree-of-freedom upper limb exoskeleton for an improved human-robot interface
NASA Astrophysics Data System (ADS)
Kim, Hyunchul; Kim, Jungsuk
2017-04-01
This study analyzes a practical scheme for controlling an exoskeleton robot with seven degrees of freedom (DOFs) that supports natural movements of the human arm. A redundant upper limb exoskeleton robot with seven DOFs is mechanically coupled to the human body such that it becomes a natural extension of the body. If the exoskeleton robot follows the movement of the human body synchronously, the energy exchange between the human and the robot will be reduced significantly. In order to achieve this, the redundancy of the human arm, which is represented by the swivel angle, should be resolved using appropriate constraints and applied to the robot. In a redundant 7-DOF upper limb exoskeleton, the pseudoinverse of the Jacobian with secondary objective functions is widely used to resolve the redundancy that defines the desired joint angles. A secondary objective function requires the desired joint angles for the movement of the human arm, and the angles are estimated by maximizing the projection of the longest principle axis of the manipulability ellipsoid for the human arm onto the virtual destination toward the head region. Then, they are fed into the muscle model with a relative damping to achieve more realistic robot-arm movements. Various natural arm movements are recorded using a motion capture system, and the actual swivel-angle is compared to that estimated using the proposed swivel angle estimation algorithm. The results indicate that the proposed algorithm provides a precise reference for estimating the desired joint angle with an error less than 5°.
Castro-Sánchez, Adelaida María; Moreno-Lorenzo, Carmen; Matarán-Peñarrocha, Guillermo A.; Feriche-Fernández-Castanys, Belen; Granados-Gámez, Genoveva; Quesada-Rubio, José Manuel
2011-01-01
The objective of this study was to evaluate the efficacy of connective tissue massage to improve blood circulation and intermittent claudication symptoms in type 2 diabetic patients. A randomized, placebo-controlled trial was undertaken. Ninety-eight type 2 diabetes patients with stage I or II-a peripheral arterial disease (PAD) (Leriche-Fontaine classification) were randomly assigned to a massage group or to a placebo group treated using disconnected magnetotherapy equipment. Peripheral arterial circulation was determined by measuring differential segmental arterial pressure, heart rate, skin temperature, oxygen saturation and skin blood flow. Measurements were taken before and at 30 min, 6 months and 1 year after the 15-week treatment. After the 15-week program, the groups differed (P < .05) in differential segmental arterial pressure in right lower limb (lower one-third of thigh, upper and lower one-third of leg) and left lower limb (lower one-third of thigh and upper and lower one-third of leg). A significant difference (P < .05) was also observed in skin blood flow in digits 1 and 4 of right foot and digits 2, 4 and 5 of left foot. ANOVA results were significant (P < .05) for right and left foot oxygen saturation but not for heart rate and temperature. At 6 months and 1 year, the groups differed in differential segmental arterial pressure in upper third of left and right legs. Connective tissue massage improves blood circulation in the lower limbs of type 2 diabetic patients at stage I or II-a and may be useful to slow the progression of PAD. PMID:19933770
Workplace-Based Rehabilitation of Upper Limb Conditions: A Systematic Review.
Hoosain, Munira; de Klerk, Susan; Burger, Marlette
2018-05-23
Purpose The objective of this systematic review was to identify, collate and analyse the current available evidence on the effectiveness of workplace-based rehabilitative interventions in workers with upper limb conditions on work performance, pain, absenteeism, productivity and other outcomes. Methods We searched Medline, Cochrane Library, Scopus, Web of Science, Academic Search Premier, Africa-Wide Information, CINAHL, OTSeeker and PEDro with search terms in four broad areas: upper limb, intervention, workplace and clinical trial (no date limits). Studies including neck pain only or musculoskeletal pain in other areas were not included. Results Initial search located 1071 articles, of which 80 were full text reviewed. Twenty-eight articles were included, reporting on various outcomes relating to a total of seventeen studies. Nine studies were of high methodological quality, seven of medium quality, and one of low quality. Studies were sorted into intervention categories: Ergonomic controls (n = 3), ergonomic training and workstation adjustments (n = 4), exercise and resistance training (n = 6), clinic-based versus workplace-based work hardening (n = 1), nurse case manager training (n = 1), physiotherapy versus Feldenkrais (n = 1), and ambulant myofeedback training (n = 1). The largest body of evidence supported workplace exercise programs, with positive effects for ergonomic training and workstation adjustments, and mixed effects for ergonomic controls. Ambulant myofeedback training had no effect. The remaining three categories had positive effects in the single study on each intervention. Conclusion While there is substantial evidence for workplace exercise programs, other workplace-based interventions require further high quality research. Systematic review registration PROSPERO CRD42017059708.
Characterization of interfacial socket pressure in transhumeral prostheses: A case series.
Schofield, Jonathon S; Schoepp, Katherine R; Williams, Heather E; Carey, Jason P; Marasco, Paul D; Hebert, Jacqueline S
2017-01-01
One of the most important factors in successful upper limb prostheses is the socket design. Sockets must be individually fabricated to arrive at a geometry that suits the user's morphology and appropriately distributes the pressures associated with prosthetic use across the residual limb. In higher levels of amputation, such as transhumeral, this challenge is amplified as prosthetic weight and the physical demands placed on the residual limb are heightened. Yet, in the upper limb, socket fabrication is largely driven by heuristic practices. An analytical understanding of the interactions between the socket and residual limb is absent in literature. This work describes techniques, adapted from lower limb prosthetic research, to empirically characterize the pressure distribution occurring between the residual limb and well-fit transhumeral prosthetic sockets. A case series analyzing the result of four participants with transhumeral amputation is presented. A Tekscan VersaTek pressure measurement system and FaroArm Edge coordinate measurement machine were employed to capture socket-residual limb interface pressures and geometrically register these values to the anatomy of participants. Participants performed two static poses with their prosthesis under two separate loading conditions. Surface pressure maps were constructed from the data, highlighting pressure distribution patterns, anatomical locations bearing maximum pressure, and the relative pressure magnitudes. Pressure distribution patterns demonstrated unique characteristics across the four participants that could be traced to individual socket design considerations. This work presents a technique that implements commercially available tools to quantitatively characterize upper limb socket-residual limb interactions. This is a fundamental first step toward improved socket designs developed through informed, analytically-based design tools.
Characterization of interfacial socket pressure in transhumeral prostheses: A case series
Schoepp, Katherine R.; Williams, Heather E.; Carey, Jason P.; Marasco, Paul D.
2017-01-01
One of the most important factors in successful upper limb prostheses is the socket design. Sockets must be individually fabricated to arrive at a geometry that suits the user’s morphology and appropriately distributes the pressures associated with prosthetic use across the residual limb. In higher levels of amputation, such as transhumeral, this challenge is amplified as prosthetic weight and the physical demands placed on the residual limb are heightened. Yet, in the upper limb, socket fabrication is largely driven by heuristic practices. An analytical understanding of the interactions between the socket and residual limb is absent in literature. This work describes techniques, adapted from lower limb prosthetic research, to empirically characterize the pressure distribution occurring between the residual limb and well-fit transhumeral prosthetic sockets. A case series analyzing the result of four participants with transhumeral amputation is presented. A Tekscan VersaTek pressure measurement system and FaroArm Edge coordinate measurement machine were employed to capture socket-residual limb interface pressures and geometrically register these values to the anatomy of participants. Participants performed two static poses with their prosthesis under two separate loading conditions. Surface pressure maps were constructed from the data, highlighting pressure distribution patterns, anatomical locations bearing maximum pressure, and the relative pressure magnitudes. Pressure distribution patterns demonstrated unique characteristics across the four participants that could be traced to individual socket design considerations. This work presents a technique that implements commercially available tools to quantitatively characterize upper limb socket-residual limb interactions. This is a fundamental first step toward improved socket designs developed through informed, analytically-based design tools. PMID:28575012
Agency over Phantom Limb Enhanced by Short-Term Mirror Therapy
Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi
2017-01-01
Most amputees experience phantom limb, whereby they feel that the amputated limb is still present. In some cases, these experiences include pain that can be alleviated by “mirror therapy.” Mirror therapy consists of superimposing a mirrored image of the moving intact limb onto the phantom limb. This therapy provides a closed loop between the motor command to the amputated limb and its predicted visual feedback. This loop is also involved in the sense of agency, a feeling of controlling one’s own body. However, it is unclear how mirror therapy is related to the sense of agency over a phantom limb. Using mirror therapy, we investigated phantom limb pain and the senses of agency and ownership (i.e., a feeling of having one’s own body) of the phantom limb. Nine upper-limb amputees, five of whom reported recent phantom limb pain, underwent a single 15-min trial of mirror therapy. Before and after the trial, the participants completed a questionnaire regarding agency, ownership, and pain related to their phantom limb. They reported that the sense of agency over the phantom limb increased following the mirror therapy trial, while the ownership slightly increased but not as much as did the agency. The reported pain did not change; that is, it was comparably mild before and after the trial. These results suggest that short-term mirror therapy can, at least transiently, selectively enhance the sense of agency over a phantom limb, but may not alleviate phantom limb pain. PMID:29046630
Agency over Phantom Limb Enhanced by Short-Term Mirror Therapy.
Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi
2017-01-01
Most amputees experience phantom limb, whereby they feel that the amputated limb is still present. In some cases, these experiences include pain that can be alleviated by "mirror therapy." Mirror therapy consists of superimposing a mirrored image of the moving intact limb onto the phantom limb. This therapy provides a closed loop between the motor command to the amputated limb and its predicted visual feedback. This loop is also involved in the sense of agency, a feeling of controlling one's own body. However, it is unclear how mirror therapy is related to the sense of agency over a phantom limb. Using mirror therapy, we investigated phantom limb pain and the senses of agency and ownership (i.e., a feeling of having one's own body) of the phantom limb. Nine upper-limb amputees, five of whom reported recent phantom limb pain, underwent a single 15-min trial of mirror therapy. Before and after the trial, the participants completed a questionnaire regarding agency, ownership, and pain related to their phantom limb. They reported that the sense of agency over the phantom limb increased following the mirror therapy trial, while the ownership slightly increased but not as much as did the agency. The reported pain did not change; that is, it was comparably mild before and after the trial. These results suggest that short-term mirror therapy can, at least transiently, selectively enhance the sense of agency over a phantom limb, but may not alleviate phantom limb pain.
NASA Astrophysics Data System (ADS)
Profumieri, A.; Bonell, C.; Catalfamo, P.; Cherniz, A.
2016-04-01
Virtual reality has been proposed for different applications, including the evaluation of new control strategies and training protocols for upper limb prostheses and for the study of new rehabilitation programs. In this study, a lower limb simulation environment commanded by surface electromyography signals is evaluated. The time delays generated by the acquisition and processing stages for the signals that would command the knee joint, were measured and different acquisition windows were analysed. The subjective perception of the quality of simulation was also evaluated when extra delays were added to the process. The results showed that the acquisition window is responsible for the longest delay. Also, the basic implemented processes allowed for the acquisition of three signal channels for commanding the simulation. Finally, the communication between different applications is arguably efficient, although it depends on the amount of data to be sent.
Lower-Limb Rehabilitation Robot Design
NASA Astrophysics Data System (ADS)
Bouhabba, E. M.; Shafie, A. A.; Khan, M. R.; Ariffin, K.
2013-12-01
It is a general assumption that robotics will play an important role in therapy activities within rehabilitation treatment. In the last decade, the interest in the field has grown exponentially mainly due to the initial success of the early systems and the growing demand caused by increasing numbers of stroke patients and their associate rehabilitation costs. As a result, robot therapy systems have been developed worldwide for training of both the upper and lower extremities. This paper investigates and proposes a lower-limb rehabilitation robot that is used to help patients with lower-limb paralysis to improve and resume physical functions. The proposed rehabilitation robot features three rotary joints forced by electric motors providing linear motions. The paper covers mechanism design and optimization, kinematics analysis, trajectory planning, wearable sensors, and the control system design. The design and control system demonstrate that the proposed rehabilitation robot is safe and reliable with the effective design and better kinematic performance.
LeBlanc, M
1990-01-01
Present body-powered upper-limb prostheses use a cable control system employing World War II aircraft technology to transmit force from the body to the prosthesis for operation. The cable and associated hardware are located outside the prosthesis. Because individuals with arm amputations want prostheses that are natural looking with a smooth, soft outer surface, a design and development project was undertaken to replace the cable system with hydraulics located inside the prosthesis. Three different hydraulic transmission systems were built for evaluation, and other possibilities were explored. Results indicate that a hydraulic force transmission system remains an unmet challenge as a practical replacement for the cable system. The author was unable to develop a hydraulic system that meets the necessary dynamic requirements and is acceptable in size and appearance.
Wang, Cheng; Chen, Shijiu; Wang, Zengtao
2014-09-01
The aim of this study is to characterize and dynamically monitor the progress of peripheral neuropathy induced by n-hexane by electromyography and nerve conduction velocity (NCV-EMG). Twenty-five patients with n-hexane poisoning from an electronic company were investigated in the year 2009. The occupational history of these workers was collected, and toxic substance exposure was identified. Neurologic inspection and regular NCV-EMG inspection were performed for all patients upon hospital admission and after 3, 6, and 12 months of treatment. NCV-EMG results shown that patients with n-hexane poisoning have simultaneous damage on motor and sensory nerves, of which sensory nerve damage was more severe. Motor nerves of the lower limbs were severe damaged than those of the upper limbs; whereas injury of sensory nerve in the upper limbs was more severe than that of the lower limbs. After treatment, clinical signs and symptoms of the patients were significantly improved. NCV-EMG result showed a delayed worsening at 3 months then gradually recovered after 12 months. Recovery of the motor nerve was better compared with sensory nerve, with upper limbs faster than that of the lower limbs.
Panzone, I; Carra, G; Melosi, A; Rappazzo, G; Innocenti, A
1996-01-01
In order to assess the prevalence of work-related musculo-skeletal disorders of the upper limbs, a total population of 29 female workers in an industrial vegetable preserving plant were examined. The average age of the workers was 41.3 years (SD = 9.2), and their average length of service was 16.7 years (SD = 7.2). Only 20% of the workers were anamnestically negative, whilst 80% had one or more disorders attributable to repetitive trauma of the upper limbs. The disorders showed no prevalence for the right side, a finding in line with the risk analysis which indicated that both limbs were equally used. The results of the risk analysis and clinical assessment confirm that high-frequency actions, combined with improper posture and a shortage of suitable recovery times, play a causal role in determining the onset of the disorders studied.
Upper and Lower Limb Muscle Architecture of a 104 Year-Old Cadaver
Infantolino, Benjamin
2016-01-01
Muscle architecture is an important component to typical musculoskeletal models. Previous studies of human muscle architecture have focused on a single joint, two adjacent joints, or an entire limb. To date, no study has presented muscle architecture for the upper and lower limbs of a single cadaver. Additionally, muscle architectural parameters from elderly cadavers are lacking, making it difficult to accurately model elderly populations. Therefore, the purpose of this study was to present muscle architecture of the upper and lower limbs of a 104 year old female cadaver. The major muscles of the upper and lower limbs were removed and the musculotendon mass, tendon mass, musculotendon length, tendon length, pennation angle, optimal fascicle length, physiological cross-sectional area, and tendon cross-sectional area were determined for each muscle. Data from this complete cadaver are presented in table format. The data from this study can be used to construct a musculoskeletal model of a specific individual who was ambulatory, something which has not been possible to date. This should increase the accuracy of the model output as the model will be representing a specific individual, not a synthesis of measurements from multiple individuals. Additionally, an elderly individual can be modeled which will provide insight into muscle function as we age. PMID:28033339
Upper and Lower Limb Muscle Architecture of a 104 Year-Old Cadaver.
Ruggiero, Marissa; Cless, Daniel; Infantolino, Benjamin
2016-01-01
Muscle architecture is an important component to typical musculoskeletal models. Previous studies of human muscle architecture have focused on a single joint, two adjacent joints, or an entire limb. To date, no study has presented muscle architecture for the upper and lower limbs of a single cadaver. Additionally, muscle architectural parameters from elderly cadavers are lacking, making it difficult to accurately model elderly populations. Therefore, the purpose of this study was to present muscle architecture of the upper and lower limbs of a 104 year old female cadaver. The major muscles of the upper and lower limbs were removed and the musculotendon mass, tendon mass, musculotendon length, tendon length, pennation angle, optimal fascicle length, physiological cross-sectional area, and tendon cross-sectional area were determined for each muscle. Data from this complete cadaver are presented in table format. The data from this study can be used to construct a musculoskeletal model of a specific individual who was ambulatory, something which has not been possible to date. This should increase the accuracy of the model output as the model will be representing a specific individual, not a synthesis of measurements from multiple individuals. Additionally, an elderly individual can be modeled which will provide insight into muscle function as we age.
ERIC Educational Resources Information Center
Cowart, Jim
1979-01-01
The booklet discusses sports adaptations for unilateral and bilateral upper limb amputees. Designs for adapted equipment are illustrated and information on adaptations are described for archery (including an archery release aid and a stationary bow holder); badminton (serving tray); baseball/softball (adaptations for catching, throwing, and…
ERIC Educational Resources Information Center
Jaspers, Ellen; Desloovere, Kaat; Bruyninckx, Herman; Klingels, Katrijn; Molenaers, Guy; Aertbelien, Erwin; Van Gestel, Leen; Feys, Hilde
2011-01-01
The aim of this study was to measure which three-dimensional spatiotemporal and kinematic parameters differentiate upper limb movement characteristics in children with hemiplegic cerebral palsy (HCP) from those in typically developing children (TDC), during various clinically relevant tasks. We used a standardized protocol containing three reach…
[Restoration of function by microsurgical reconstruction after sarcoma excision in the upper limb].
Voigtländer, D; Schmidt, A
2006-08-01
The treatment of soft tissue sarcomas includes different modalities, but the complete excision of the tumor is the most important one. It is often difficult to resect the tumor completely and simultaneously restore a good function of the upper limb. Therefore a microsurgical reconstruction is often necessary as demonstrated here.
[Characteristics of pain syndrome in patients with upper limbs occupational polyneuropathies].
Kochetova, O A; Mal'kova, N Yu
2015-01-01
Pain syndrome accompanies various diseases of central and peripheral nervous system--that is one of the most important problems in contemporary neurology. Many scientists are in search for effective diagnostic and therapeutic tools. The article covers characteristics of the pain syndrome and its mechanisms in patients with upper limbs occupational polyneuropathies.
Short-Term Upper Limb Immobilization Affects Action-Word Understanding
ERIC Educational Resources Information Center
Bidet-Ildei, Christel; Meugnot, Aurore; Beauprez, Sophie-Anne; Gimenes, Manuel; Toussaint, Lucette
2017-01-01
The present study aimed to investigate whether well-established associations between action and language can be altered by short-term upper limb immobilization. The dominant arm of right-handed participants was immobilized for 24 hours with a rigid splint fixed on the hand and an immobilization vest restraining the shoulder, arm, and forearm. The…
Timed activity performance in persons with upper limb amputation: A preliminary study.
Resnik, Linda; Borgia, Mathew; Acluche, Frantzy
55 subjects with upper limb amputation were administered the T-MAP twice within one week. To develop a timed measure of activity performance for persons with upper limb amputation (T-MAP); examine the measure's internal consistency, test-retest reliability and validity; and compare scores by prosthesis use. Measures of activity performance for persons with upper limb amputation are needed The time required to perform daily activities is a meaningful metric that implication for participation in life roles. Internal consistency and test-retest reliability were evaluated. Construct validity was examined by comparing scores by amputation level. Exploratory analyses compared sub-group scores, and examined correlations with other measures. Scale alpha was 0.77, ICC was 0.93. Timed scores differed by amputation level. Subjects using a prosthesis took longer to perform all tasks. T-MAP was not correlated with other measures of dexterity or activity, but was correlated with pain for non-prosthesis users. The timed scale had adequate internal consistency and excellent test-retest reliability. Analyses support reliability and construct validity of the T-MAP. 2c "outcomes" research. Published by Elsevier Inc.
Grosmaire, Anne-Gaëlle; Duret, Christophe
2017-01-01
Repetitive, active movement-based training promotes brain plasticity and motor recovery after stroke. Robotic therapy provides highly repetitive therapy that reduces motor impairment. However, the effect of assist-as-needed algorithms on patient participation and movement quality is not known. To analyze patient participation and motor performance during highly repetitive assist-as-needed upper limb robotic therapy in a retrospective study. Sixteen patients with sub-acute stroke carried out a 16-session upper limb robotic training program combined with usual care. The Fugl-Meyer Assessment (FMA) score was evaluated pre and post training. Robotic assistance parameters and Performance measures were compared within and across sessions. Robotic assistance did not change within-session and decreased between sessions during the training program. Motor performance did not decrease within-session and improved between sessions. Velocity-related assistance parameters improved more quickly than accuracy-related parameters. An assist-as-needed-based upper limb robotic training provided intense and repetitive rehabilitation and promoted patient participation and motor performance, facilitating motor recovery.
Awais, Syed; Saeed, Ayesha; Ch, Asad
2014-08-01
In the 2005 Pakistan earthquake, the great many injured with multiple fractures and open wounds provided a unique opportunity to practice damage-control orthopaedics. External fixators remain a time-tested tools for operating surgeons on such occasions. The locally manufactured, readily available Naseer-Awais (NA) external fixator filled such needs of this disaster with good outcome. This is a retrospective descriptive study of 19,700 patients that presented over seven months to the two centres established by the lead author (SMA) in Muzaffarabad and Mansehra just one night after the 2005 earthquake. A series of local and foreign orthopaedic surgeon teams operated in succession. The computerised patient data collection of 1,145 operations was retrospectively analysed. Of the 19,700 patients presenting to the SMA centres, 50% had limb injuries. Total fracture fixations were 1,145, of which 295 were external fixations: 185 were applied on the lower limb and 90 on upper limb, the majority were applied on tibia. External fixators are valuable damage-control tools in natural disasters and warfare injuries. The locally manufactured NA external fixator served the needs of the many limb injuries during the 2005 Pakistan earthquake.
Niimi, Masachika; Hashimoto, Kenji; Kakuda, Wataru; Miyano, Satoshi; Momosaki, Ryo; Ishima, Tamaki; Abo, Masahiro
2016-01-01
Repetitive transcranial magnetic stimulation (rTMS) can improve upper limb hemiparesis after stroke but the mechanism underlying its efficacy remains elusive. rTMS seems to alter brain-derived neurotrophic factor (BDNF) and such effect is influenced by BDNF gene polymorphism. To investigate the molecular effects of rTMS on serum levels of BDNF, its precursor proBDNF and matrix metalloproteinase-9 (MMP-9) in poststroke patients with upper limb hemiparesis. Poststroke patients with upper limb hemiparesis were studied. Sixty-two patients underwent rehabilitation plus rTMS combination therapy and 33 patients underwent rehabilitation monotherapy without rTMS for 14 days at our hospital. One Hz rTMS was applied over the motor representation of the first dorsal interosseous muscle on the non-lesional hemisphere. Fugl-Meyer Assessment and Wolf Motor Function (WMFT) were used to evaluate motor function on the affected upper limb before and after intervention. Blood samples were collected for analysis of BDNF polymorphism and measurement of BDNF, proBDNF and MMP-9 levels. Two-week combination therapy increased BDNF and MMP-9 serum levels, but not serum proBDNF. Serum BDNF and MMP-9 levels did not correlate with motor function improvement, though baseline serum proBDNF levels correlated negatively and significantly with improvement in WMFT (ρ = -0.422, p = 0.002). The outcome of rTMS therapy was not altered by BDNF gene polymorphism. The combination therapy of rehabilitation plus low-frequency rTMS seems to improve motor function in the affected limb, by activating BDNF processing. BDNF and its precursor proBDNF could be potentially suitable biomarkers for poststroke motor recovery.
Lee, Suhyun; Kim, Yumi; Lee, Byoung-Hee
2016-12-01
In the present study, we aimed to investigate the effect of virtual reality-based bilateral upper extremity training (VRBT) on paretic upper limb function and muscle strength in patients with stroke. Eighteen stroke survivors were assigned to either the VRBT group (n = 10) or the bilateral upper limb training group (BT, n = 8). Patients in the VRBT group performed bilateral upper extremity exercises in a virtual reality environment, whereas those in the BT group performed conventional bilateral upper extremity exercises. All training was conducted for 30 minutes day -1 , 3 days a week, for a period of 6 weeks. Patients were assessed for upper extremity function and hand strength. Compared with the BT group, the VRBT group exhibited significant improvements in upper extremity function and muscle strength (p < 0.05) after the 6-week training programme. The Box and Block test results revealed that upper extremity function and elbow flexion in hand strength were significantly improved in terms of group, time and interaction effect of group by time. Furthermore, the VRBT group demonstrated significant improvements in upper extremity function, as measured by the Jebsen Hand Function Test and Grooved Pegboard test, and in the hand strength test, as measured by elbow extension, grip, palmar pinch, lateral pinch and tip pinch, in both time and the interaction effect of group by time. These results suggest that VRBT is a feasible and beneficial means of improving upper extremity function and muscle strength in individuals following stroke. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Shaw, Colin N; Stock, Jay T
2013-04-01
Descriptions of Pleistocene activity patterns often derive from comparisons of long bone diaphyseal robusticity across contemporaneous fossilized hominins. The purpose of this study is to augment existing understanding of Pleistocene hominin mobility patterns by interpreting fossil variation through comparisons with a) living human athletes with known activity patterns, and b) Holocene foragers where descriptions of group-level activity patterns are available. Relative tibial rigidity (midshaft tibial rigidity (J)/midshaft humeral rigidity (J)) was compared amongst Levantine and European Neandertals, Levantine and Upper Palaeolithic Homo sapiens, Holocene foragers and living human athletes and controls. Cross-country runners exhibit significantly (p<0.05) greater relative tibial rigidity compared with swimmers, and higher values compared with controls. In contrast, swimmers displayed significantly (p<0.05) lower relative tibial rigidity than both runners and controls. While variation exists among all Holocene H. sapiens, highly terrestrially mobile Later Stone Age (LSA) southern Africans and cross-country runners display the highest relative tibial rigidity, while maritime Andaman Islanders and swimmers display the lowest, with controls falling between. All fossil hominins displayed relative tibial rigidity that exceeded, or was similar to, the highly terrestrially mobile Later Stone Age southern Africans and modern human cross-country runners. The more extreme skeletal structure of most Neandertals and Levantine H. sapiens, as well as the odd Upper Palaeolithic individual, appears to reflect adaptation to intense and/or highly repetitive lower limb (relative to upper limb) loading. This loading may have been associated with bipedal travel, and appears to have been more strenuous than that encountered by even university varsity runners, and Holocene foragers with hunting grounds 2000-3000 square miles in size. Skeletal variation among the athletes and foraging groups is consistent with known or inferred activity profiles, which support the position that the Pleistocene remains reflect adaptation to extremely active and mobile lives. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ou, S-M; Chen, Y-T; Shih, C-J; Tarng, D-C
2015-04-01
Urinary calculi were associated with higher risk of vertebral and upper limb fracture. Therefore, patients with urinary calculi should be evaluated carefully because they may have a higher risk of subsequent fracture later in life. The contribution of urinary calculi to reduced bone mineral density has been recognized. However, the association of urinary calculi with the risk of fracture remains inconclusive. The aim of the study was to determine the risk of overall fracture and fractures at different anatomic sites in patients with urinary calculi. The records of inpatients and outpatients with urinary calculi were retrieved from the Taiwan National Health Insurance Database from 2000 to 2010. Among patients with urinary calculi at the cohort entry, controls were matched using propensity scores on a 1:1 ratio. All subjects were followed up from the date of enrollment until fracture occurrence, death, or December 31, 2010. There were 46,243 Medicare beneficiaries with a diagnosis of urinary calculi and 46,243 controls without calculi enrolled. Among these patients, 6005 patients with a diagnosis of urinary calculi and 5339 controls developed fractures during a median follow-up period of 5.3 years. Patients with urinary calculi had a higher incidence of fracture compared with controls (23.9 versus 22.1 per 1000 person-years) and a greater risk of overall fractures (adjusted hazard ratio [aHR] 1.08, 95 % confidence interval [CI], 1.04-1.12), mainly located at the vertebrae (aHR 1.15, 95 % CI, 1.06-1.25) and upper limb (aHR 1.07, 95 % CI, 1.01-1.14), but the risk for hip fracture was not increased (aHR 1.09, 95 % CI, 0.96-1.22). Urinary calculus is independently associated with higher risk of subsequent fracture. Patients with urinary calculi should pay attention to the future vertebral and upper limb fractures.
The 6 minute walk test and performance of upper limb in ambulant duchenne muscular dystrophy boys.
Pane, Marika; Mazzone, Elena Stacy; Sivo, Serena; Fanelli, Lavinia; De Sanctis, Roberto; D'Amico, Adele; Messina, Sonia; Battini, Roberta; Bianco, Flaviana; Scutifero, Marianna; Petillo, Roberta; Frosini, Silvia; Scalise, Roberta; Vita, Gian Luca; Bruno, Claudio; Pedemonte, Marina; Mongini, Tiziana; Pegoraro, Elena; Brustia, Francesca; Gardani, Alice; Berardinelli, Angela; Lanzillotta, Valentina; Viggiano, Emanuela; Cavallaro, Filippo; Sframeli, Maria; Bello, Luca; Barp, Andrea; Busato, Fabio; Bonfiglio, Serena; Rolle, Enrica; Colia, Giulia; Bonetti, Annamaria; Palermo, Concetta; Graziano, Alessandra; D'Angelo, Grazia; Pini, Antonella; Corlatti, Alice; Gorni, Ksenija; Baranello, Giovanni; Antonaci, Laura; Bertini, Enrico; Politano, Luisa; Mercuri, Eugenio
2014-10-07
The Performance of Upper Limb (PUL) test was specifically developed for the assessment of upper limbs in Duchenne muscular dystrophy (DMD). The first published data have shown that early signs of involvement can also be found in ambulant DMD boys. The aim of this longitudinal Italian multicentric study was to evaluate the correlation between the 6 Minute Walk Test (6MWT) and the PUL in ambulant DMD boys. Both 6MWT and PUL were administered to 164 ambulant DMD boys of age between 5.0 and 16.17 years (mean 8.82). The 6 minute walk distance (6MWD) ranged between 118 and 557 (mean: 376.38, SD: 90.59). The PUL total scores ranged between 52 and 74 (mean: 70.74, SD: 4.66). The correlation between the two measures was 0.499. The scores on the PUL largely reflect the overall impairment observed on the 6MWT but the correlation was not linear. The use of the PUL appeared to be less relevant in the very strong patients with 6MWD above 400 meters, who, with few exceptions had near full scores. In patients with lower 6MWD the severity of upper limb involvement was more variable and could not always be predicted by the 6MWD value or by the use of steroids. Our results confirm that upper limb involvement can already be found in DMD boys even in the ambulant phase.
Gravity-supported exercise with computer gaming improves arm function in chronic stroke.
Jordan, Kimberlee; Sampson, Michael; King, Marcus
2014-08-01
To investigate the effect of 4 to 6 weeks of exergaming with a computer mouse embedded within an arm skate on upper limb function in survivors of chronic stroke. Intervention study with a 4-week postintervention follow-up. In home. Survivors (N=13) of chronic (≥6 mo) stroke with hemiparesis of the upper limb with stable baseline Fugl-Meyer assessment scores received the intervention. One participant withdrew, and 2 participants were not reassessed at the 4-week follow-up. No participants withdrew as a result of adverse effects. Four to 6 weeks of exergaming using the arm skate where participants received either 9 (n=5) or 16 (n=7) hours of game play. Upper limb component of the Fugl-Meyer assessment. There was an average increase in the Fugl-Meyer upper limb assessment score from the beginning to end of the intervention of 4.9 points. At the end of the 4-week period after the intervention, the increase was 4.4 points. A 4- to 6-week intervention using the arm skate significantly improved arm function in survivors of chronic stroke by an average of 4.9 Fugl-Meyer upper limb assessment points. This research shows that a larger-scale randomized trial of this device is warranted and highlights the potential value of using virtual reality technology (eg, computer games) in a rehabilitation setting. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Artilheiro, Mariana Cunha; Fávero, Francis Meire; Caromano, Fátima Aparecida; Oliveira, Acary de Souza Bulle; Carvas, Nelson; Voos, Mariana Callil; Sá, Cristina Dos Santos Cardoso de
2017-12-08
The Jebsen-Taylor Test evaluates upper limb function by measuring timed performance on everyday activities. The test is used to assess and monitor the progression of patients with Parkinson disease, cerebral palsy, stroke and brain injury. To analyze the reliability, internal consistency and validity of the Jebsen-Taylor Test in people with Muscular Dystrophy and to describe and classify upper limb timed performance of people with Muscular Dystrophy. Fifty patients with Muscular Dystrophy were assessed. Non-dominant and dominant upper limb performances on the Jebsen-Taylor Test were filmed. Two raters evaluated timed performance for inter-rater reliability analysis. Test-retest reliability was investigated by using intraclass correlation coefficients. Internal consistency was assessed using the Cronbach alpha. Construct validity was conducted by comparing the Jebsen-Taylor Test with the Performance of Upper Limb. The internal consistency of Jebsen-Taylor Test was good (Cronbach's α=0.98). A very high inter-rater reliability (0.903-0.999), except for writing with an Intraclass correlation coefficient of 0.772-1.000. Strong correlations between the Jebsen-Taylor Test and the Performance of Upper Limb Module were found (rho=-0.712). The Jebsen-Taylor Test is a reliable and valid measure of timed performance for people with Muscular Dystrophy. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
Simões, Elington L; Bramati, Ivanei; Rodrigues, Erika; Franzoi, Ana; Moll, Jorge; Lent, Roberto; Tovar-Moll, Fernanda
2012-02-29
Previous studies have indicated that amputation or deafferentation of a limb induces functional changes in sensory (S1) and motor (M1) cortices, related to phantom limb pain. However, the extent of cortical reorganization after lower limb amputation in patients with nonpainful phantom phenomena remains uncertain. In this study, we combined functional magnetic resonance (fMRI) and diffusion tensor imaging (DTI) to investigate the existence and extent of cortical and callosal plasticity in these subjects. Nine "painless" patients with lower limb amputation and nine control subjects (sex- and age-matched) underwent a 3-T MRI protocol, including fMRI with somatosensory stimulation. In amputees, we observed an expansion of activation maps of the stump in S1 and M1 of the deafferented hemisphere, spreading to neighboring regions that represent the trunk and upper limbs. We also observed that tactile stimulation of the intact foot in amputees induced a greater activation of ipsilateral S1, when compared with controls. These results demonstrate a functional remapping of S1 in lower limb amputees. However, in contrast to previous studies, these neuroplastic changes do not appear to be dependent on phantom pain but do also occur in those who reported only the presence of phantom sensation without pain. In addition, our findings indicate that amputation of a limb also induces changes in the cortical representation of the intact limb. Finally, DTI analysis showed structural changes in the corpus callosum of amputees, compatible with the hypothesis that phantom sensations may depend on inhibitory release in the sensorimotor cortex.
Murray, R S; Keeling, J W; Ellis, P M; FitzPatrick, D R
2002-04-01
We report a female fetus of 20 weeks gestation with severe symmetrical deformity affecting all four limbs. These deformities were unusual in that there was upper limb peromelia and lower limb phocomelia. No additional major malformations were identified on postmortem examination. In particular there was no evidence of splenogonadal fusion or micrognathia and hypoglossia. The limb malformations in this case are associated with a de novo apparently balanced reciprocal translocation 46,XX,t(2;12)(p25.1;q24.1). The cytogenetic features of Roberts-SC phocomelia syndrome were not detected. Unfortunately, the fibroblast line died and no FISH or DNA analysis could be carried out. In spite of this, the case is presented as it may be useful to other researchers in the selection of candidate genes for mendelian forms of peromelia and phocomelia.
Weedon, Benjamin David; Liu, Francesca; Mahmoud, Wala; Metz, Renske; Beunder, Kyle; Delextrat, Anne; Morris, Martyn G; Esser, Patrick; Collett, Johnny; Meaney, Andy; Howells, Ken; Dawes, Helen
2018-01-01
Motor competence (MC) is an important factor in the development of health and fitness in adolescence. This cross-sectional study aims to explore the distribution of MC across school students aged 13-14 years old and the extent of the relationship of MC to measures of health and fitness across genders. A total of 718 participants were tested from three different schools in the UK, 311 girls and 407 boys (aged 13-14 years), pairwise deletion for correlation variables reduced this to 555 (245 girls, 310 boys). Assessments consisted of body mass index, aerobic capacity, anaerobic power, and upper limb and lower limb MC. The distribution of MC and the strength of the relationships between MC and health/fitness measures were explored. Girls performed lower for MC and health/fitness measures compared with boys. Both measures of MC showed a normal distribution and a significant linear relationship of MC to all health and fitness measures for boys, girls and combined genders. A stronger relationship was reported for upper limb MC and aerobic capacity when compared with lower limb MC and aerobic capacity in boys (t=-2.21, degrees of freedom=307, P=0.03, 95% CI -0.253 to -0.011). Normally distributed measures of upper and lower limb MC are linearly related to health and fitness measures in adolescents in a UK sample. NCT02517333.
Upper Limb Posture Estimation in Robotic and Virtual Reality-Based Rehabilitation
Cortés, Camilo; Ardanza, Aitor; Molina-Rueda, F.; Cuesta-Gómez, A.; Ruiz, Oscar E.
2014-01-01
New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation. PMID:25110698
Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels
NASA Astrophysics Data System (ADS)
Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari
2010-10-01
A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.
Hereditary motor and sensory neuropathy-russe: new autosomal recessive neuropathy in Balkan Gypsies.
Thomas, P K; Kalaydjieva, L; Youl, B; Rogers, T; Angelicheva, D; King, R H; Guergueltcheva, V; Colomer, J; Lupu, C; Corches, A; Popa, G; Merlini, L; Shmarov, A; Muddle, J R; Nourallah, M; Tournev, I
2001-10-01
A novel peripheral neuropathy of autosomal recessive inheritance has been identified in Balkan Gypsies and termed hereditary motor and sensory neuropathy-Russe (HMSN-R). We investigated 21 affected individuals from 10 families. Distal lower limb weakness began between the ages of 8 and 16 years, upper limb involvement beginning between 10 and 43 years, with an average of 22 years. This progressive disorder led to severe weakness of the lower limbs, generalized in the oldest subject (aged 57 years), and marked distal upper limb weakness. Prominent distal sensory loss involved all modalities, resulting in neuropathic joint degeneration in two instances. All patients showed foot deformity, and most showed hand deformity. Motor nerve conduction velocity was moderately reduced in the upper limbs but unobtainable in the legs. Sensory nerve action potentials were absent. There was loss of larger myelinated nerve fibers and profuse regenerative activity in the sural nerve. HMSN-R is a new form of autosomal recessive inherited HMSN caused by a single founder mutation in a 1 Mb interval on chromosome 10q.
Kirschner, J; Schorling, D; Hauschke, D; Rensing-Zimmermann, C; Wein, U; Grieben, U; Schottmann, G; Schara, U; Konrad, K; Müller-Felber, W; Thiele, S; Wilichowski, E; Hobbiebrunken, E; Stettner, G M; Korinthenberg, R
2014-02-01
In preclinical studies growth hormone and its primary mediator IGF-1 have shown potential to increase muscle mass and strength. A single patient with spinal muscular atrophy reported benefit after compassionate use of growth hormone. Therefore we evaluated the efficacy and safety of growth hormone treatment for spinal muscular atrophy in a multicenter, randomised, double-blind, placebo-controlled, crossover pilot trial. Patients (n = 19) with type II/III spinal muscular atrophy were randomised to receive either somatropin (0.03 mg/kg/day) or placebo subcutaneously for 3 months, followed by a 2-month wash-out phase before 3 months of treatment with the contrary remedy. Changes in upper limb muscle strength (megascore for elbow flexion and hand-grip in Newton) were assessed by hand-held myometry as the primary measure of outcome. Secondary outcome measures included lower limb muscle strength, motor function using the Hammersmith Functional Motor Scale and other functional tests for motor function and pulmonary function. Somatropin treatment did not significantly affect upper limb muscle strength (point estimate mean: 0.08 N, 95% confidence interval (CI:-3.79;3.95, p = 0.965), lower limb muscle strength (point estimate mean: 2.23 N, CI:-2.19;6.63, p = 0.302) or muscle and pulmonary function. Side effects occurring during somatropin treatment corresponded with well-known side effects of growth hormone substitution in patients with growth hormone deficiency. In this pilot study, growth hormone treatment did not improve muscle strength or function in patients with spinal muscular atrophy type II/III. Copyright © 2013 Elsevier B.V. All rights reserved.
Interactive visuo-motor therapy system for stroke rehabilitation.
Eng, Kynan; Siekierka, Ewa; Pyk, Pawel; Chevrier, Edith; Hauser, Yves; Cameirao, Monica; Holper, Lisa; Hägni, Karin; Zimmerli, Lukas; Duff, Armin; Schuster, Corina; Bassetti, Claudio; Verschure, Paul; Kiper, Daniel
2007-09-01
We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas ("mirror neurons"); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, facilitates motor re-learning and improves functional recovery. The patient controls a first-person view of virtual arms in tasks varying from simple (hitting objects) to complex (grasping and moving objects). The therapist adjusts weighting factors in the non-paretic limb to move the paretic virtual limb, thereby stimulating the mirror neuron system and optimizing patient motivation through graded task success. We present the system's neuroscientific background, technical details and preliminary results.
Neural substrates underlying stimulation-enhanced motor skill learning after stroke.
Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves
2015-01-01
Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the 'circuit game', involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention's enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham series. Finally, dual transcranial direct current stimulation applied during the first session enhanced continued learning with the paretic limb 1 week later, relative to the sham series. This lasting behavioural enhancement was associated with more efficient recruitment of the motor skill learning network, that is, focused activation on the motor-premotor areas in the damaged hemisphere, especially on the dorsal premotor cortex. Dual transcranial direct current stimulation applied during motor skill learning with a paretic upper limb resulted in prolonged shaping of brain activation, which supported behavioural enhancements in stroke patients. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lacerda, Eliana M; Nácul, Luis C; Augusto, Lia G da S; Olinto, Maria Teresa A; Rocha, Dyhanne C; Wanderley, Danielle C
2005-10-11
The repetitive strain injury syndrome (RSI) is a worldwide occupational health problem affecting all types of economic activities. We investigated the prevalence and some risk factors for RSI and related conditions, namely 'symptoms of upper limbs' and 'RSI-like condition'. We conducted a cross-sectional study with 395 bank workers in Recife, Northeast Brazil. Symptoms of upper limbs and 'RSI-like condition' were assessed by a simple questionnaire, which was used to screen probable cases of RSI. The diagnosis of RSI was confirmed by clinical examination. The associations of potential risk factors and the outcomes were assessed by multiple logistic regression analysis. We found prevalence rates of 56% for symptoms of the upper limbs and 30% for 'RSI-like condition'. The estimated prevalence of clinically confirmed cases of RSI was 22%. Female sex and occupation (as cashier or clerk) increased the risk of all conditions, but the associations were stronger for cases of RSI than for less specific diagnoses of 'RSI-like condition' and symptoms of upper limbs. Age was inversely related to the risk of symptoms of upper limbs but not to 'RSI-like' or RSI. The variation in the magnitude of risk according to the outcome assessed suggests that previous studies using different definitions may not be immediately comparable. We propose the use of a simple instrument to screen cases of RSI in population based studies, which still needs to be validated in other populations. The high prevalence of RSI and related conditions in this population suggests the need for urgent interventions to tackle the problem, which could be directed to individuals at higher risk and to changes in the work organization and environment of the general population.
Rodríguez-Romero, Beatriz; Pérez-Valiño, Coral; Ageitos-Alonso, Beatriz; Pértega-Díaz, Sonia
2016-12-01
To assess the prevalence of and factors associated with musculoskeletal pain (MSP) and neck and upper limb disability among music conservatory students. An observational study in two Spanish conservatories, investigating a total of 206 students, administered the Nordic Musculoskeletal Questionnaire, visual analog scale for pain intensity, Neck Disability Index, DASH, and SF-36. Demographic and lifestyle characteristics and musical performance variables were recorded. Regression models were performed to identify variables associated with MSP for the four most affected anatomical regions and with neck and upper limb disability. The locations with the highest prevalence of MSP were the neck, upper back, shoulders, and lower back. Mild disability affected 47% of participants in the neck and 31% in the upper limbs. Mental health (SF-36) was below the average for the general population (45.5±10.2). Women were more likely to suffer neck pain (odds ratio [OR] 1.1-5.2), lower back pain (OR 1.7-8.7), and neck disability (B 0.6-7.8). The risk for shoulder pain was higher in those who played for more hours (OR 1.7-24.7) and lower among those who performed physical activity (OR 0.23-1.00). Disability in the neck (B -0.3) and upper limbs (B -0.4) was associated with poorer mental health (SF-36). MSP is highly prevalent in music students. Neck and upper limb disability were slight to moderate and both were associated with poorer mental health. The main factors associated with MSP were being female, hours spent practicing, and physical activity. Physical and psychological factors should be taken into account in the prevention of MSP in student-musicians.
Responsiveness of outcome measures for upper limb prosthetic rehabilitation.
Resnik, Linda; Borgia, Matthew
2016-02-01
There is limited research on responsiveness of prosthetic rehabilitation outcome measures. To examine responsiveness of the Box and Block test, Jebsen-Taylor Hand Function tests, Upper Extremity Functional Scale, University of New Brunswick skill and spontaneity tests, Activity Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale. This was a quasi-experimental study with repeated measurements in a convenience sample of upper limb amputees. Measures were collected before, during, and after training with the DEKA Arm. Largest effect sizes were observed for Patient-Specific Functional Scale (effect size: 1.59, confidence interval: 1.00, 2.14), Activity Measure for Upper Limb Amputation (effect size: 1.33, confidence interval: 0.73, 1.90), and University of New Brunswick skill test (effect size: 1.18, confidence interval: 0.61, 1.73). Other measures that were responsive to change were Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, and University of New Brunswick spontaneity test. Responsiveness and pattern of responsiveness varied by prosthetic level. The Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, University of New Brunswick skill and spontaneity tests, Activities Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale were responsive to change during prosthetic training. These findings have implications for choice of measures for research and practice and inform clinicians about the amount of training necessary to maximize outcomes with the DEKA Arm. Findings on responsiveness of outcome measures have implications for the choice of measures for clinical trials and practice. Findings regarding the responsiveness to change over the course of training can inform clinicians about the amount of training that may be necessary to maximize specific outcomes with the DEKA Arm. © The International Society for Prosthetics and Orthotics 2014.
d'Errico, Angelo; Fontana, Dario; Merogno, Angela
2016-01-01
to assess reproducibility of self-reported exposure to ergonomic hazards for the upper limbs, measured through a questionnaire based on a diffused checklist for the assessment of ergonomic risk (OCRA) in a sample of mechanical assemblers of an automotive industry. cross-sectional study; reproducibility was assessed as interrater agreement of a composite index of ergonomic risk, estimated through the intraclass correlation coefficient (ICC). 58 mechanical assemblers, working in 29 twin areas, characterised by same work stations and tasks. composite index of ergonomic risk for the upper limbs. reproducibility of the ergonomic index was high in the overall sample (ICC: 0.81) and it was higher for the twin areas employing same-gender workers (ICC: 0.96), compared to those with workers of the opposite gender (ICC: 0.66). these results indicate that a questionnaire measuring with a great detail the exposure to the main ergonomic risk factors for the upper limbs, as the one based on the OCRA checklist used for this study, would allow to obtain a highly reproducible ergonomic index. If its validity against the corresponding observational checklist will be found elevated by future studies, this questionnaire may represent a useful tool for a preliminary assessment of workers' exposure to ergonomic hazards for the upper limbs.
Age-Related Differences in Bilateral Asymmetry in Cycling Performance
ERIC Educational Resources Information Center
Liu, Ting; Jensen, Jody L.
2012-01-01
Bilateral asymmetry, a form of limb laterality in the context of moving two limbs, emerges in childhood. Children and adults show lateral preference in tasks that involve the upper and lower limbs. The importance of research in limb laterality is the insight it could provide about lateralized functions of the cerebral hemispheres. Analyzing…
Multi-limb necrotizing fasciitis in a patient with rectal cancer
Liu, Shirley Yuk Wah; Ng, Simon Siu Man; Lee, Janet Fung Yee
2006-01-01
Necrotizing fasciitis is a devastating soft tissue infection affecting fascias and subcutaneous soft tissues. Literature reviews have identified several related risk factors, including malignancy, alcoholism, malnutrition, diabetes, male gender and old age. There are only scanty case reports in the literature describing its rare association with colorectal malignancy. All published cases are attributed to bowel perforation resulting in necrotizing fasciitis over the perineal region. Isolated upper or lower limb diseases are rarely identified. Simultaneous upper and lower limb infection in colorectal cancer patients has never been described in the literature. We report an unusual case of multi-limb necrotizing fasciitis in a patient with underlying non-perforated rectal carcinoma. PMID:16937546
Robot-Mediated Upper Limb Physiotherapy: Review and Recommendations for Future Clinical Trials
ERIC Educational Resources Information Center
Peter, Orsolya; Fazekas, Gabor; Zsiga, Katalin; Denes, Zoltan
2011-01-01
Robot-mediated physiotherapy provides a new possibility for improving the outcome of rehabilitation of patients who are recovering from stroke. This study is a review of robot-supported upper limb physiotherapy focusing on the shoulder, elbow, and wrist. A literature search was carried out in PubMed, OVID, and EBSCO for clinical trials with robots…
The principles of management of congenital anomalies of the upper limb.
Watson, S
2000-07-01
Management of congenital anomalies of the upper limb is reviewed with reference to classification and aetiology, incidence, diagnosis before birth, broad principles of treatment, timing of x rays and scans, functional aims, cosmetic appearance, counselling of parents, therapists, scars, skin grafts, growth, and timing of surgery. Notes on 11 congenital hand conditions are given.
Cahill, Liana S; Lannin, Natasha A; Mak-Yuen, Yvonne Y K; Turville, Megan L; Carey, Leeanne M
2018-01-23
The treatment of somatosensory loss in the upper limb after stroke has been historically overshadowed by therapy focused on motor recovery. A double-blind randomized controlled trial has demonstrated the effectiveness of SENSe (Study of the Effectiveness of Neurorehabilitation on Sensation) therapy to retrain somatosensory discrimination after stroke. Given the acknowledged prevalence of upper limb sensory loss after stroke and the evidence-practice gap that exists in this area, effort is required to translate the published research to clinical practice. The aim of this study is to determine whether evidence-based knowledge translation strategies change the practice of occupational therapists and physiotherapists in the assessment and treatment of sensory loss of the upper limb after stroke to improve patient outcomes. A pragmatic, before-after study design involving eight (n = 8) Australian health organizations, specifically sub-acute and community rehabilitation facilities. Stroke survivors (n = 144) and occupational therapists and physiotherapists (~10 per site, ~n = 80) will be involved in the study. Stroke survivors will be provided with SENSe therapy or usual care. Occupational therapists and physiotherapists will be provided with a multi-component approach to knowledge translation including i) tailoring of the implementation intervention to site-specific barriers and enablers, ii) interactive group training workshops, iii) establishing and fostering champion therapists and iv) provision of written educational materials and online resources. Outcome measures for occupational therapists and physiotherapists will be pre- and post-implementation questionnaires and audits of medical records. The primary outcome for stroke survivors will be change in upper limb somatosensory function, measured using a standardized composite measure. This study will provide evidence and a template for knowledge translation in clinical, organizational and policy contexts in stroke rehabilitation. Australian New Zealand Clinical Trials Registry (ANZCTR) retrospective registration ACTRN12615000933550 .
Tong, Yanna; Forreider, Brian; Sun, Xinting; Geng, Xiaokun; Zhang, Weidong; Du, Huishan; Zhang, Tong; Ding, Yuchuan
2015-05-01
Music-supported therapy (MST) is a new approach for motor rehabilitation of stroke patients. Recently, many studies have demonstrated that MST improved the motor functions of post-stroke patients. However, the underlying mechanism for this effect is still unclear. It may result from repeated practice or repeated practice combined with musical stimulation. Currently, few studies have been designed to clarify this discrepancy. In this study, the application of "mute" musical instruments allowed for the study of music as an independent factor. Thirty-three post-stroke patients with no substantial previous musical training were included. Participants were assigned to either audible music group (MG) or mute music group (CG), permitting observation of music's independent effect. All subjects received the conventional rehabilitation treatments. Patients in MG (n = 15) received 20 extra sessions of audible musical instrument training over 4 weeks. Patients in CG (n = 18) received "mute" musical instrument training of the same protocol as that of MG. Wolf motor function test (WMFT) and Fugl-Meyer assessment (FMA) for upper limbs were utilised to evaluate motor functions of patients in both groups before and after the treatment. Three patients in CG dropped out. All participants in both groups showed significant improvements in motor functions of upper limbs after 4 weeks' treatment. However, significant differences in the WMFT were found between the two groups (WMFT-quality: P = 0.025; WMFT-time: P = 0.037), but not in the FMA (P = 0.448). In short, all participants showed significant improvement after 4 weeks' treatment, but subjects in MG demonstrated greater improvement than those in CG. This study supports that MST, when combined with conventional treatment, is effective for the recovery of motor skills in post-stroke patients. Additionally, it suggests that apart from the repetitive practices of MST, music may play a unique role in improving upper-limb motor function for post-stroke patients.
Nicoletti, S; Carino, M; Di Leone, G; Trani, G; Carella, F; Rubino, G; Leone, E; Popolizio, R; Colafiglio, S; Ambrosi, L
2008-01-01
The upholstered furniture industry, the so-called "triangle of the sofa industry", is a geographic area of national and strategic economic importance in southern Italy. The single tasks are carried out mostly manually, with the characteristics of a handicraft approach. The aim of the survey was to assess the prevalence of upper limb work-related musculoskeletal disorders (UL-WMSDs) in 30 factories of the sofa industry located in a large geographic area of the Puglia and Basilicata Regions. In the period 1 January-31 December 2003 a network of occupational physicians investigated a population of 5.477 subjects (exposed n=3481, controls n=1996, M=3865, F=1612) in 30 different factories of the area. More than 60 percent of the total workforce studied was employed in large-sized companies (>500 employees). The following work tasks were considered: filling preparation workers, leather-cutting operators, sewing and upholstery-assembly workers. Case-definition was assessed through standardized procedures: symptoms by questionnaire plus physical and laboratory/imaging findings. Cumulative prevalence rates of UL-WMSDs as at 31 December 2003 reached values of up to 30% in high risk groups. Prevalence rates showed good correlation with the concise OCRA index used for assessment of exposure to repetitive strain and movements of the upper limb. The most frequently occurring disorders were tendon-related cysts and wrist tendonitis. Shoulder disorders were more frequent in male and female leather-cutting operators. This survey showed a significantly high prevalence of UL-WMSDs in sofa industry workers. It did not seem to be confirmed in this study that there was a greater female susceptibility to UL-WMSDs with the exception of carpal tunnel syndrome: gender difference seems to be less relevant at increasing levels of occupational exposure to repetitive movements and exertion of the upper limbs.
Ertekin, Cumhur; On, Arzu Yagiz; Kirazli, Yeşim; Kurt, Tülay; Gürgör, Nevin
2002-04-01
To demonstrate a clear-cut M response recorded from the severely affected thigh muscles to the stimulation of the upper limb nerves in a serial of patients with late poliomyelitis. Fifteen patients with late poliomyelitis, 7 patients with spinal cord disorders and 11 control subjects were included. Evoked muscle responses were investigated in quadriceps femoris and/or thigh adductor muscles to the stimulation of the brachial plexus, median and ulnar nerves. Evoked muscle responses were obtained from the thigh muscles in all 12 late polio patients with proximal lower extremity involvement. The response could not be recorded from the thigh muscles neither in the 3 polio patients with upper extremity involvement nor in the healthy control subjects and in patients with other spinal cord disorders of anterior horn cell. It is proposed that the electrical stimulation of the arm nerves produce interlimb descending muscle responses in the severely affected atrophic thigh muscles of the patients with late polio. This finding suggests that there might be a focal and/or specific loss of inhibitory interneurons between injured and normal motor neurons and increased facilitatory synaptic action at the end of long propriospinal descending fibers in the case of late poliomyelitis.
Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung
2017-07-01
In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.
Bird, M L; Cannell, J; Callisaya, M L; Moles, E; Rathjen, A; Lane, K; Tyson, A; Smith, S
2016-04-16
Stroke results in significant disability, which can be reduced by physical rehabilitation. High levels of repetition and activity are required in rehabilitation, but patients are typically sedentary. Using clinically relevant and fun computer games may be one way to achieve increased activity in rehabilitation. A single-blind randomized controlled trial will be conducted to evaluate the feasibility, efficacy and safety of novel stroke-specific rehabilitation software. This software uses controller-free client interaction and inertial motion sensors. Elements of feasibility include recruitment into the trial, ongoing participation (adherence and dropout), perceived benefit, enjoyment and ease of use of the games. Efficacy will be determined by measuring activity and using upper-limb tasks as well as measures of balance and mobility. The hypothesis that the intervention group will have increased levels of physical activity within rehabilitation and improved physical outcomes compared with the control group will be tested. Results from this study will provide a basis for discussion of feasibility of this interactive video technological solution in an inpatient situation. Differences in activity levels between groups will be the primary measure of efficacy. It will also provide data on measures of upper-limb function, balance and mobility. ACTRN12614000427673 . Prospectively registered 17 April 2014.
Rouse, Elliott J; Nahlik, David C; Peshkin, Michael A; Kuiken, Todd A
2011-04-01
The lack of proprioceptive feedback is a serious deficiency of current prosthetic control systems. The Osseo-Magnetic Link (OML) is a novel humeral or wrist rotation control system that could preserve proprioception. It utilizes a magnet implanted within the residual bone and sensors mounted in the prosthetic socket to detect magnetic field vectors and determine the bone's orientation. This allows the use of volitional bone rotation to control a prosthetic rotator. We evaluated the performance of the OML using a physical model of a transhumeral residual limb. A small Neodymium-Iron-Boron magnet was placed in a model humerus, inside a model upper arm. Four three-axis Hall-effect sensors were mounted on a ring 3 cm distal to the magnet. An optimization algorithm based on Newton's method determined the position and orientation of the magnet within the model humerus under various conditions, including bone translations, interference, and magnet misalignment. The orientation of the model humerus was determined within 3° for rotations centered in the arm; an additional 6° error was found for translations 20 mm from center. Adjustments in sensor placement may reduce these errors. The results demonstrate that the OML is a feasible solution for providing prosthesis rotation control while preserving rotational proprioception.
Fonseca, Líllian Beatriz; Brito, Ciro J.; Silva, Roberto Jerônimo S.; Silva-Grigoletto, Marzo Edir; da Silva, Walderi Monteiro; Franchini, Emerson
2016-01-01
Context: Cold-water immersion (CWI) has been applied widely as a recovery method, but little evidence is available to support its effectiveness. Objective: To investigate the effects of CWI on muscle damage, perceived muscle soreness, and muscle power recovery of the upper and lower limbs after jiu-jitsu training. Design: Crossover study. Setting: Laboratory and field. Patients or Other Participants: A total of 8 highly trained male athletes (age = 24.0 ± 3.6 years, mass = 78.4 ± 2.4 kg, percentage of body fat = 13.1% ± 3.6%) completed all study phases. Intervention(s): We randomly selected half of the sample for recovery using CWI (6.0°C ± 0.5°C) for 19 minutes; the other participants were allocated to the control condition (passive recovery). Treatments were reversed in the second session (after 1 week). Main Outcome Measure(s): We measured serum levels of creatine phosphokinase, lactate dehydrogenase (LDH), aspartate aminotransferase, and alanine aminotransferase enzymes; perceived muscle soreness; and recovery through visual analogue scales and muscle power of the upper and lower limbs at pretraining, postrecovery, 24 hours, and 48 hours. Results: Athletes who underwent CWI showed better posttraining recovery measures because circulating LDH levels were lower at 24 hours postrecovery in the CWI condition (441.9 ± 81.4 IU/L) than in the control condition (493.6 ± 97.4 IU/L; P = .03). Estimated muscle power was higher in the CWI than in the control condition for both upper limbs (757.9 ± 125.1 W versus 695.9 ± 56.1 W) and lower limbs (53.7 ± 3.7 cm versus 35.5 ± 8.2 cm; both P values = .001). In addition, we observed less perceived muscle soreness (1.5 ± 1.1 arbitrary units [au] versus 3.1 ± 1.0 au; P = .004) and higher perceived recovery (8.8 ± 1.9 au versus 6.9 ± 1.7 au; P = .005) in the CWI than in the control condition at 24 hours postrecovery. Conclusions: Use of CWI can be beneficial to jiu-jitsu athletes because it reduces circulating LDH levels, results in less perceived muscle soreness, and helps muscle power recovery at 24 hours postrecovery. PMID:27575565
Fonseca, Líllian Beatriz; Brito, Ciro J; Silva, Roberto Jerônimo S; Silva-Grigoletto, Marzo Edir; da Silva, Walderi Monteiro; Franchini, Emerson
2016-07-01
Cold-water immersion (CWI) has been applied widely as a recovery method, but little evidence is available to support its effectiveness. To investigate the effects of CWI on muscle damage, perceived muscle soreness, and muscle power recovery of the upper and lower limbs after jiu-jitsu training. Crossover study. Laboratory and field. A total of 8 highly trained male athletes (age = 24.0 ± 3.6 years, mass = 78.4 ± 2.4 kg, percentage of body fat = 13.1% ± 3.6%) completed all study phases. We randomly selected half of the sample for recovery using CWI (6.0°C ± 0.5°C) for 19 minutes; the other participants were allocated to the control condition (passive recovery). Treatments were reversed in the second session (after 1 week). We measured serum levels of creatine phosphokinase, lactate dehydrogenase (LDH), aspartate aminotransferase, and alanine aminotransferase enzymes; perceived muscle soreness; and recovery through visual analogue scales and muscle power of the upper and lower limbs at pretraining, postrecovery, 24 hours, and 48 hours. Athletes who underwent CWI showed better posttraining recovery measures because circulating LDH levels were lower at 24 hours postrecovery in the CWI condition (441.9 ± 81.4 IU/L) than in the control condition (493.6 ± 97.4 IU/L; P = .03). Estimated muscle power was higher in the CWI than in the control condition for both upper limbs (757.9 ± 125.1 W versus 695.9 ± 56.1 W) and lower limbs (53.7 ± 3.7 cm versus 35.5 ± 8.2 cm; both P values = .001). In addition, we observed less perceived muscle soreness (1.5 ± 1.1 arbitrary units [au] versus 3.1 ± 1.0 au; P = .004) and higher perceived recovery (8.8 ± 1.9 au versus 6.9 ± 1.7 au; P = .005) in the CWI than in the control condition at 24 hours postrecovery. Use of CWI can be beneficial to jiu-jitsu athletes because it reduces circulating LDH levels, results in less perceived muscle soreness, and helps muscle power recovery at 24 hours postrecovery.
Context-Dependent Upper Limb Prosthesis Control for Natural and Robust Use.
Amsuess, Sebastian; Vujaklija, Ivan; Goebel, Peter; Roche, Aidan D; Graimann, Bernhard; Aszmann, Oskar C; Farina, Dario
2016-07-01
Pattern recognition and regression methods applied to the surface EMG have been used for estimating the user intended motor tasks across multiple degrees of freedom (DOF), for prosthetic control. While these methods are effective in several conditions, they are still characterized by some shortcomings. In this study we propose a methodology that combines these two approaches for mutually alleviating their limitations. This resulted in a control method capable of context-dependent movement estimation that switched automatically between sequential (one DOF at a time) or simultaneous (multiple DOF) prosthesis control, based on an online estimation of signal dimensionality. The proposed method was evaluated in scenarios close to real-life situations, with the control of a physical prosthesis in applied tasks of varying difficulties. Test prostheses were individually manufactured for both able-bodied and transradial amputee subjects. With these prostheses, two amputees performed the Southampton Hand Assessment Procedure test with scores of 58 and 71 points. The five able-bodied individuals performed standardized tests, such as the box&block and clothes pin test, reducing the completion times by up to 30%, with respect to using a state-of-the-art pure sequential control algorithm. Apart from facilitating fast simultaneous movements, the proposed control scheme was also more intuitive to use, since human movements are predominated by simultaneous activations across joints. The proposed method thus represents a significant step towards intelligent, intuitive and natural control of upper limb prostheses.
The classification of phocomelia.
Tytherleigh-Strong, G; Hooper, G
2003-06-01
We studied 24 patients with 44 phocomelic upper limbs. Only 11 limbs could be grouped in the classification system of Frantz and O' Rahilly. The non-classifiable limbs were further studied and their characteristics identified. It is confirmed that phocomelia is not an intercalary defect.
Mazzoleni, S; Filippi, M; Carrozza, M C; Posteraro, F; Puzzolante, L; Falchi, E
2011-01-01
The goal of this study is to propose a methodology for evaluating recovery mechanisms in subacute and chronic post-stroke patients after a robot-aided upper-limb therapy, using a set of biomechanical parameters. Fifty-six post-stroke subjects, thirteen subacute and forty-three chronic patients participated in the study. A 2 dof robotic system, implementing an "assist-as-needed" control strategy, was used. Biomechanical parameters related (i) to the speed measured at the robot's end-effector and (ii) to the movement's smoothness were computed. Outcome clinical measures show a decrease in motor impairment after the treatment both in chronic and subacute patients. All the biomechanical parameters show an improvement between admission and discharge. Our results show that the robot-aided training can contribute to reduce the motor impairment in both subacute and chronic patients and identify neurophysiological mechanisms underlying the different stages of motor recovery. © 2011 IEEE
Virtual reality gaming in the rehabilitation of the upper extremities post-stroke.
Yates, Michael; Kelemen, Arpad; Sik Lanyi, Cecilia
2016-01-01
Occurrences of strokes often result in unilateral upper limb dysfunction. Dysfunctions of this nature frequently persist and can present chronic limitations to activities of daily living. Research into applying virtual reality gaming systems to provide rehabilitation therapy have seen resurgence. Themes explored in stroke rehab for paretic limbs are action observation and imitation, versatility, intensity and repetition and preservation of gains. Fifteen articles were ultimately selected for review. The purpose of this literature review is to compare the various virtual reality gaming modalities in the current literature and ascertain their efficacy. The literature supports the use of virtual reality gaming rehab therapy as equivalent to traditional therapies or as successful augmentation to those therapies. While some degree of rigor was displayed in the literature, small sample sizes, variation in study lengths and therapy durations and unequal controls reduce generalizability and comparability. Future studies should incorporate larger sample sizes and post-intervention follow-up measures.
Volpe, Bruce T.; Lynch, Daniel; Rykman-Berland, Avrielle; Ferraro, Mark; Galgano, Michael; Hogan, Neville; Krebs, Hermano I.
2016-01-01
Investigators have demonstrated that a variety of intensive movement training protocols for persistent upper limb paralysis in patients with chronic stroke (6 months or more after stroke) improve motor outcome. This randomized controlled study determined in patients with upper limb motor impairment after chronic stroke whether movement therapy delivered by a robot or by a therapist using an intensive training protocol was superior. Robotic training (n = 11) and an intensive movement protocol (n = 10) improved the impairment measures of motor outcome significantly and comparably; there were no significant changes in disability measures. Motor gains were maintained at the 3-month evaluation after training. These data contribute to the growing awareness that persistent impairments in those with chronic stroke may not reflect exhausted capacity for improvement. These new protocols, rendered by either therapist or robot, can be standardized, tested, and replicated, and potentially will contribute to rational activity-based programs. PMID:18184932