Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography
NASA Astrophysics Data System (ADS)
Osei Tutu, Anthony; Steinberger, Bernhard; Sobolev, Stephan V.; Rogozhina, Irina; Popov, Anton A.
2018-05-01
The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere-asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic topography.
Ohuchi, Tomohiro; Kawazoe, Takaaki; Higo, Yuji; Funakoshi, Ken-ichi; Suzuki, Akio; Kikegawa, Takumi; Irifune, Tetsuo
2015-01-01
Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth’s upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 1019.6 to 1020.7 Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size–sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle. PMID:26601281
Ohuchi, Tomohiro; Kawazoe, Takaaki; Higo, Yuji; Funakoshi, Ken-Ichi; Suzuki, Akio; Kikegawa, Takumi; Irifune, Tetsuo
2015-10-01
Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth's upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 10(19.6) to 10(20.7) Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size-sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle.
NASA Astrophysics Data System (ADS)
Anderson, D. L.
2002-12-01
Francis Birch's 1952 paper started the sciences of mineral physics and physics of the Earth's interior. Birch stressed the importance of pressure, compressive strain and volume in mantle physics. Although this may seem to be an obvious lesson many modern paradoxes in the internal constitution of the Earth and mantle dynamics can be traced to a lack of appreciation for the role of compression. The effect of pressure on thermal properties such as expansivity can gravitational stratify the Earth irreversibly during accretion and can keep it chemically stratified. The widespread use of the Boussinesq approximation in mantle geodynamics is the antithesis of Birchian physics. Birch pointed out that eclogite was likely to be an important component of the upper mantle. Plate tectonic recycling and the bouyancy of oceanic crust at midmantle depths gives credence to this suggestion. Although peridotite dominates the upper mantle, variations in eclogite-content may be responsible for melting- or fertility-spots. Birch called attention to the Repetti Discontinuity near 900 km depth as an important geodynamic boundary. This may be the chemical interface between the upper and lower mantles. Recent work in geodynamics and seismology has confirmed the importance of this region of the mantle as a possible barrier. Birch regarded the transition region (TR ; 400 to 1000 km ) as the key to many problems in Earth sciences. The TR contains two major discontinuities ( near 410 and 650 km ) and their depths are a good mantle thermometer which is now being exploited to suggest that much of plate tectonics is confined to the upper mantle ( in Birch's terminology, the mantle above 1000 km depth ). The lower mantle is homogeneous and different from the upper mantle. Density and seismic velocity are very insensitive to temperature there, consistent with tomography. A final key to the operation of the mantle is Birch's suggestion that radioactivities were stripped out of the deeper parts of Earth and placed in the crust and upper mantle. This resolves the lower mantle overheating paradox but the stratified mantle slows down the cooling of the Earth. A completely thermodynamically self-consistent treatment of mantle dynamics, with volume and temperature-dependent parameters has not yet been attempted but the essence of this approach is contained in the 1952 paper, which is must reading for all students of Earth's interior. One implication of this paper is that lower mantle structures should be gigantic and long-lived, a prediction spectacularly confirmed by modern seismic tomography.
The support of long wavelength loads on Venus
NASA Astrophysics Data System (ADS)
Benerdt, W. B.; Saunders, R. S.
1985-04-01
One of the great surprises of the Pioneer Venus mission was the high degree of correlation between topography and gravity found at all wavelengths. This implies a close relationship between topography and lateral subsurface density anomalies, such as those due to passive or dynamic compensation. Sleep-Phillips type compensation model with a variable crustal thickness and a variable upper mantle density was developed. The thin shell theory was used to investigate three end member cases: (1) loading by topographic construction, resulting in a downward deflection of the surface (no mantle support); (2) completely compensated support of a constructional load (no surface deflection); and (3) topography due entirely to upward deflection of the surface supported by a low density upper mantle (no surface load). In general, the models imply relatively thick crust and dense upper mantle for Ishtar Terra and Ovda Regio (western Aphrodite), thinned crust and buoyant upper mantle for Tethus Regio and regions near Sappho and Alpha Regio, and a nearly uniform crust with a buoyant upper mantle for Beta Regio and Atla Regio (eastern Aphrodite).
The Support of Long Wavelength Loads on Venus
NASA Technical Reports Server (NTRS)
Benerdt, W. B.; Saunders, R. S.
1985-01-01
One of the great surprises of the Pioneer Venus mission was the high degree of correlation between topography and gravity found at all wavelengths. This implies a close relationship between topography and lateral subsurface density anomalies, such as those due to passive or dynamic compensation. Sleep-Phillips type compensation model with a variable crustal thickness and a variable upper mantle density was developed. The thin shell theory was used to investigate three end member cases: (1) loading by topographic construction, resulting in a downward deflection of the surface (no mantle support); (2) completely compensated support of a constructional load (no surface deflection); and (3) topography due entirely to upward deflection of the surface supported by a low density upper mantle (no surface load). In general, the models imply relatively thick crust and dense upper mantle for Ishtar Terra and Ovda Regio (western Aphrodite), thinned crust and buoyant upper mantle for Tethus Regio and regions near Sappho and Alpha Regio, and a nearly uniform crust with a buoyant upper mantle for Beta Regio and Atla Regio (eastern Aphrodite).
Abrupt Upper-Plate Tilting Upon Slab-Transition-Zone Collision
NASA Astrophysics Data System (ADS)
Crameri, F.; Lithgow-Bertelloni, C. R.
2017-12-01
During its sinking, the remnant of a surface plate crosses and interacts with multiple boundaries in Earth's interior. The most-prominent dynamic interaction arises at the upper-mantle transition zone where the sinking plate is strongly affected by the higher-viscosity lower mantle. Within our numerical model, we unravel, for the first time, that this very collision of the sinking slab with the transition zone induces a sudden, dramatic downward tilt of the upper plate towards the subduction trench. The slab-transition zone collision sets parts of the higher-viscosity lower mantle in motion. Naturally, this then induces an overall larger return flow cell that, at its onset, tilts the upper plate abruptly by around 0.05 degrees and over around 10 Millions of years. Such a significant and abrupt variation in surface topography should be clearly visible in temporal geologic records of large-scale surface elevation and might explain continental-wide tilting as observed in Australia since the Eocene or North America during the Phanerozoic. Unravelling this crucial mantle-lithosphere interaction was possible thanks to state-of-the-art numerical modelling (powered by StagYY; Tackley 2008, PEPI) and post-processing (powered by StagLab; www.fabiocrameri.ch/software). The new model that is introduced here to study the dynamically self-consistent temporal evolution of subduction features accurate subduction-zone topography, robust single-sided plate sinking, stronger plates close to laboratory values, an upper-mantle phase transition and, crucially, simple continents at a free surface. A novel, fully-automated post-processing includes physical model diagnostics like slab geometry, mantle flow pattern, upper-plate tilt angle and trench location.
The upper-mantle transition zone beneath the Chile-Argentina flat subduction zone
NASA Astrophysics Data System (ADS)
Bagdo, Paula; Bonatto, Luciana; Badi, Gabriela; Piromallo, Claudia
2016-04-01
The main objective of the present work is the study of the upper mantle structure of the western margin of South America (between 26°S and 36°S) within an area known as the Chile-Argentina flat subduction zone. For this purpose, we use teleseismic records from temporary broad band seismic stations that resulted from different seismic experiments carried out in South America. This area is characterized by on-going orogenic processes and complex subduction history that have profoundly affected the underlying mantle structure. The detection and characterization of the upper mantle seismic discontinuities are useful to understand subduction processes and the dynamics of mantle convection; this is due to the fact that they mark changes in mantle composition or phase changes in mantle minerals that respond differently to the disturbances caused by mantle convection. The discontinuities at a depth of 410 km and 660 km, generally associated to phase changes in olivine, vary in width and depth as a result of compositional and temperature anomalies. As a consequence, these discontinuities are an essential tool to study the thermal and compositional structure of the mantle. Here, we analyze the upper-mantle transition zone discontinuities at a depth of 410 km and 660 km as seen from Pds seismic phases beneath the Argentina-Chile flat subduction.
ERIC Educational Resources Information Center
McKenzie, D. P.
1983-01-01
The nature and dynamics of the earth's mantle is discussed. Research indicates that the silicate mantle is heated by the decay of radioactive isotopes and that the heat energizes massive convention currents in the upper 700 kilometers of the ductile rock. These currents and their consequences are considered. (JN)
Free and forced convection in Earth's upper mantle
NASA Astrophysics Data System (ADS)
Hall, Paul S.
Convective motion within Earth's upper mantle occurs as a combination of two primary modes: (1) buoyant upwelling due to the formation of gravitational instabilities at thermochemical boundary layers, and (2) passive flow associated with the divergence of lithospheric plates at mid-ocean ridges and their re-entry into the mantle at subduction zones. The first mode is driven by variations in density and is therefore classified as 'free' convection. Examples of free convection within the Earth include the diapiric flow of hydrous and/or partially molten mantle at subduction zones and mantle plumes. The second mode, while ultimately driven by density on a global scale, can be treated kinematically on the scale of the upper mantle. This type of flow is designated 'forced' convection. On the scale of individual buoyant upwellings in the upper mantle, the forced convection associated with plate tectonics acts to modify the morphology of the flow associated with free convection. Regions in which such interactions occur are typically associated with transfer of significant quantities of both mass and energy (i.e., heat) between the deep interior and the surface of the Earth and thus afford a window into the dynamics of the Earth's interior. The dynamics and the consequences of the interaction between these two modes of convection is the focus of this dissertation. I have employed both laboratory and numerical modeling techniques to investigate the interaction between free and forced convection in this study. Each of these approaches has its own inherent strengths and weaknesses. These approaches are therefore complementary, and their use in combination is particularly powerful. I have focused on two examples interaction between free and forced convection in the upper mantle in this study. Chapter I considers the interaction between ascending diapirs of hydrous and/or partially molten mantle and flow in the mantle wedge at subduction zones using laboratory models. Chapter II and Chapter III consider the interaction between an ascending mantle plume and the large scale shear flow associated with the divergence of plates at a nearby ridge axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohlstedt, David L.
2016-04-26
The goal of this collaborative research effort between W.B. Durham at the Massachusetts Institute of Technology (MIT) and D.L. Kohlstedt and S. Mei at the University of Minnesota (UMN) was to exploit a newly developed technology for high-pressure, high-temperature deformation experimentation, namely, the deformation DIA (D-DIA) to determine the deformation behavior of a number of important upper mantle rock types including olivine, garnet, enstatite, and periclase. Experiments were carried out under both hydrous and anhydrous conditions and at both lithospheric and asthenospheric stress and temperature conditions. The result was a group of flow laws for Earth’s upper mantle that quantitativelymore » describe the viscosity of mantle rocks from shallow depths (the lithosphere) to great depths (the asthenosphere). These flow laws are fundamental for modeling the geodynamic behavior and heat transport from depth to Earth’s surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, William B.
2016-05-02
The goal of this collaborative research effort between W.B. Durham at the Massachusetts Institute of Technology (MIT) and D.L. Kohlstedt and S. Mei at the University of Minnesota (UMN) was to exploit a newly developed technology for high-pressure, high-temperature deformation experimentation, namely, the deformation DIA (D-DIA), to determine the deformation behavior of a number of important upper mantle rock types including olivine, garnet, enstatite, and periclase. Experiments were carried out under both hydrous and anhydrous conditions and at both lithospheric and asthenospheric stress and temperature conditions. The result was a group of flow laws for Earth’s upper mantle that quantitativelymore » describe the viscosity of mantle rocks from shallow depths (the lithosphere) to great depths (the asthenosphere). These flow laws are fundamental for modeling the geodynamic behavior and heat transport from depth to Earth’s surface.-« less
Deep and persistent melt layer in the Archaean mantle
NASA Astrophysics Data System (ADS)
Andrault, Denis; Pesce, Giacomo; Manthilake, Geeth; Monteux, Julien; Bolfan-Casanova, Nathalie; Chantel, Julien; Novella, Davide; Guignot, Nicolas; King, Andrew; Itié, Jean-Paul; Hennet, Louis
2018-02-01
The transition from the Archaean to the Proterozoic eon ended a period of great instability at the Earth's surface. The origin of this transition could be a change in the dynamic regime of the Earth's interior. Here we use laboratory experiments to investigate the solidus of samples representative of the Archaean upper mantle. Our two complementary in situ measurements of the melting curve reveal a solidus that is 200-250 K lower than previously reported at depths higher than about 100 km. Such a lower solidus temperature makes partial melting today easier than previously thought, particularly in the presence of volatiles (H2O and CO2). A lower solidus could also account for the early high production of melts such as komatiites. For an Archaean mantle that was 200-300 K hotter than today, significant melting is expected at depths from 100-150 km to more than 400 km. Thus, a persistent layer of melt may have existed in the Archaean upper mantle. This shell of molten material may have progressively disappeared because of secular cooling of the mantle. Crystallization would have increased the upper mantle viscosity and could have enhanced mechanical coupling between the lithosphere and the asthenosphere. Such a change might explain the transition from surface dynamics dominated by a stagnant lid on the early Earth to modern-like plate tectonics with deep slab subduction.
NASA Astrophysics Data System (ADS)
Keller, Tobias; Katz, Richard F.
2015-04-01
Laboratory experiments indicate that even small concentrations volatiles (H2O or CO2) in the upper mantle significantly affect the silicate melting behavior [HK96,DH06]. The presence of volatiles stabilizes volatile-rich melt at high pressure, thus vastly increasing the volume of the upper mantle expected to be partially molten [H10,DH10]. These small-degree melts have important consequences for chemical differentiation and could affect the dynamics of mantle flow. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+volatilized MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84], while the thermo-chemical formulation of the system is represented by a novel disequilibrium multi-component melting model based on thermo-dynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. Application of this simulation code to a mid-ocean ridge system suggests that the methodology captures the leading-order features of both hydrated and carbonated mantle melting, including deep, low-degree, volatile-rich melt formation. Melt segregation leads to continuous dynamic thermo-chemical dis-equilibration, while phenomenological reaction rates are applied to continually move the system towards re-equilibration. The simulations will be used first to characterize volatile extraction from the MOR system assuming a chemically homogeneous mantle. Subsequently, simulations will be extended to investigate the consequences of heterogeneity in lithology [KW12] and volatile content. These studies will advance our understanding of the role of volatiles in the dynamic and chemical evolution of the upper mantle. Moreover, they will help to gauge the significance of the coupling between the deep carbon cycle and the ocean/atmosphere system. REFERENCES HK96 Hirth & Kohlstedt (1996), Earth Planet Sci Lett DH06 Dasgupta & Hirschmann (2006), doi:10.1038/nature04612. H10 Hirschmann (2010), doi:10.1016/j.pepi.2009.12.003. DH10 Dasgupta & Hirschmann (2010), doi:10.1016/j.epsl.2010.06.039. McK84 McKenzie (1984), J Pet KW12 Katz & Weatherley (2012), doi: 10.1016/j.epsl.2012.04.042. RBS11 Rudge, Bercovici & Spiegelman (2011), doi: 10.1111/j.1365-246X.2010.04870.x
NASA Astrophysics Data System (ADS)
Qian, W.; Wang, W.; Zou, F.; Wu, Z.
2017-12-01
The compositions of the Earth's interiors are critical in understanding the origin and evolution of the Earth and its geodynamics. Orthopyroxene is an important component for the upper mantle both in pyrolite model and in piclogite model. Furthermore, many evidences suggest the local enrichment of opx in the upper mantle. Therefore, its thermodynamic and elastic properties are fundamental for understanding of chemical compositions and dynamics of the upper mantle. We obtain the elastic properties of orthoenstatite (MgSiO3), Mg end-member orthopyroxene with space group Pbca, up to 20 GPa and 2000 K using first principles calculations with local density approximation (LDA). The calculated results are in good agreement with previous available experimental measurements and theoretical results. Both bulk and shear modulus show noticeable nonlinear pressure dependence, and the softening of shear wave velocities is prominent at high pressure. Meanwhile, orthoenstatite exhibits a negative temperature derivate of VP/VS ratios. This is different from other upper mantle minerals, such as olivine, ringwoodite and garnet, whose VP/VS increase with the increasing of the temperature. Compared to other major minerals in the upper mantle, orthoenstatite shows the lowest compressional velocities, shear velocities, and VP/VS (<1.7) ratio up to the depth of 200 km. Recently, many seismic studies have observed unusual low VP/VS (below 1.72) zones in subduction mantle wedge and orthopyroxene has been proposed to be a possible interpretation of this unusual observed. However, this explanation is still under debate because no experimental or calculated elastic data at the conditions of the upper mantle are available before. Our calculations show that VS and VP/VS ratio of orthoenstatite under the mantle wedge conditions (2-3 GPa and 1073-1723 K) are consistent of the unusual seismic observations of VP/VS in subduction mantle wedge. Therefore, the enrichment of orthopyroxene may potentially account for the observed low VP/VS in the mantle wedge.
Mantle dynamics in the Mediterranean
NASA Astrophysics Data System (ADS)
Faccenna, Claudio; Becker, Thorsten W.
2016-04-01
The Mediterranean offers a unique avenue to study the driving forces of tectonic deformation within a complex mobile belt. Lithospheric dynamics are affected by slab rollback and collision of two large, slowly moving plates, forcing fragments of continental and oceanic lithosphere to interact. Here, we review the rich and growing set of constraints from geological reconstructions, geodetic data, and crustal and upper mantle heterogeneity imaged by structural seismology. We discuss a conceptual and quantitative framework for the causes of surface deformations. Exploring existing and newly developed tectonic and numerical geodynamic models, we illustrate the role of mantle convection on surface geology. A coherent picture emerges which can be outlined by two, almost symmetric, upper mantle convection cells. The down-wellings are found in the centre of the Mediterranean, and are associated with the descent of the Tyrrhenian and the Hellenic slabs. During plate convergence, these slabs migrated, driving return flow of the asthenosphere from the backarc regions. These currents can be found at large distance from the subduction zones, and are at present expressed in two upwellings beneath Anatolia and eastern Iberia. This convection system provides an explanation for the general pattern of seismic anisotropy in the Mediterranean, the first-order Anatolia and Adria microplate kinematics, and the positive dynamic topography of Anatolia and Eastern Iberia. More generally, it is an illustration of upper mantle, small-scale convection leading to intraplate deformation and complex plate boundary reconfiguration at the westernmost terminus of the Tethyan collision.
Heterogeneity in mantle carbon content from CO2-undersaturated basalts
Le Voyer, M.; Kelley, K.A.; Cottrell, E.; Hauri, E.H.
2017-01-01
The amount of carbon present in Earth's mantle affects the dynamics of melting, volcanic eruption style and the evolution of Earth's atmosphere via planetary outgassing. Mantle carbon concentrations are difficult to quantify because most magmas are strongly degassed upon eruption. Here we report undegassed carbon concentrations from a new set of olivine-hosted melt inclusions from the Mid-Atlantic Ridge. We use the correlations of CO2 with trace elements to define an average carbon abundance for the upper mantle. Our results indicate that the upper mantle carbon content is highly heterogeneous, varying by almost two orders of magnitude globally, with the potential to produce large geographic variations in melt fraction below the volatile-free solidus. Such heterogeneity will manifest as variations in the depths at which melt becomes interconnected and detectable, the CO2 fluxes at mid-ocean ridges, the depth of the lithosphere-asthenosphere boundary, and mantle conductivity. PMID:28082738
Evidence of lower-mantle slab penetration phases in plate motions.
Goes, Saskia; Capitanio, Fabio A; Morra, Gabriele
2008-02-21
It is well accepted that subduction of the cold lithosphere is a crucial component of the Earth's plate tectonic style of mantle convection. But whether and how subducting plates penetrate into the lower mantle is the subject of continuing debate, which has substantial implications for the chemical and thermal evolution of the mantle. Here we identify lower-mantle slab penetration events by comparing Cenozoic plate motions at the Earth's main subduction zones with motions predicted by fully dynamic models of the upper-mantle phase of subduction, driven solely by downgoing plate density. Whereas subduction of older, intrinsically denser, lithosphere occurs at rates consistent with the model, younger lithosphere (of ages less than about 60 Myr) often subducts up to two times faster, while trench motions are very low. We conclude that the most likely explanation is that older lithosphere, subducting under significant trench retreat, tends to lie down flat above the transition to the high-viscosity lower mantle, whereas younger lithosphere, which is less able to drive trench retreat and deforms more readily, buckles and thickens. Slab thickening enhances buoyancy (volume times density) and thereby Stokes sinking velocity, thus facilitating fast lower-mantle penetration. Such an interpretation is consistent with seismic images of the distribution of subducted material in upper and lower mantle. Thus we identify a direct expression of time-dependent flow between the upper and lower mantle.
NASA Technical Reports Server (NTRS)
Solomon, Sean C.; Jordan, Thomas H.
1993-01-01
Long-wavelength variations in geoid height, bathymetry, and SS-S travel times are all relatable to lateral variations in the characteristic temperature and bulk composition of the upper mantle. The temperature and composition are in turn relatable to mantle convection and the degree of melt extraction from the upper mantle residuum. Thus the combined inversion of the geoid or gravity field, residual bathymetry, and seismic velocity information offers the promise of resolving fundamental aspects of the pattern of mantle dynamics. The use of differential body wave travel times as a measure of seismic velocity information, in particular, permits resolution of lateral variations at scales not resolvable by conventional global or regional-scale seismic tomography with long-period surface waves. These intermediate scale lengths, well resolved in global gravity field models, are crucial for understanding the details of any chemical or physical layering in the mantle and of the characteristics of so-called 'small-scale' convection beneath oceanic lithosphere. In 1991 a three-year project to the NASA Geophysics Program was proposed to carry out a systematic inversion of long-wavelength geoid anomalies, residual bathymetric anomalies, and differential SS-S travel time delays for the lateral variation in characteristic temperature and bulk composition of the oceanic upper mantle. The project was funded as a three-year award, beginning on 1 Jan. 1992.
Self-gravity, self-consistency, and self-organization in geodynamics and geochemistry
NASA Astrophysics Data System (ADS)
Anderson, Don L.
The results of seismology and geochemistry for mantle structure are widely believed to be discordant, the former favoring whole-mantle convection and the latter favoring layered convection with a boundary near 650 km. However, a different view arises from recognizing effects usually ignored in the construction of these models, including physical plausibility and dimensionality. Self-compression and expansion affect material properties that are important in all aspects of mantle geochemistry and dynamics, including the interpretation of tomographic images. Pressure compresses a solid and changes physical properties that depend on volume and does so in a highly nonlinear way. Intrinsic, anelastic, compositional, and crystal structure effects control seismic velocities; temperature is not the only parameter, even though tomographic images are often treated as temperature maps. Shear velocity is not a good proxy for density, temperature, and composition or for other elastic constants. Scaling concepts are important in mantle dynamics, equations of state, and wherever it is necessary to extend laboratory experiments to the parameter range of the Earth's mantle. Simple volume-scaling relations that permit extrapolation of laboratory experiments, in a thermodynamically self-consistent way, to deep mantle conditions include the quasiharmonic approximation but not the Boussinesq formalisms. Whereas slabs, plates, and the upper thermal boundary layer of the mantle have characteristic thicknesses of hundreds of kilometers and lifetimes on the order of 100 million years, volume-scaling predicts values an order of magnitude higher for deep-mantle thermal boundary layers. This implies that deep-mantle features are sluggish and ancient. Irreversible chemical stratification is consistent with these results; plausible temperature variations in the deep mantle cause density variations that are smaller than the probable density contrasts across chemical interfaces created by accretional differentiation and magmatic processes. Deep-mantle features may be convectively isolated from upper-mantle processes. Plate tectonics and surface geochemical cycles appear to be entirely restricted to the upper ˜1,000 km. The 650-km discontinuity is mainly an isochemical phase change but major-element chemical boundaries may occur at other depths. Recycling laminates the upper mantle and also makes it statistically heterogeneous, in agreement with high-frequency scattering studies. In contrast to standard geochemical models and recent modifications, the deeper layers need not be accessible to surface volcanoes. There is no conflict between geophysical and geochemical data, but a physical basis for standard geochemical and geodynamic mantle models, including the two-layer and whole-mantle versions, and qualitative tomographic interpretations has been lacking.
Reconciling Long-Wavelength Dynamic Topography, Geoid Anomalies and Mass Distribution on Earth
NASA Astrophysics Data System (ADS)
Hoggard, M.; Richards, F. D.; Ghelichkhan, S.; Austermann, J.; White, N.
2017-12-01
Since the first satellite observations in the late 1950s, we have known that that the Earth's non-hydrostatic geoid is dominated by spherical harmonic degree 2 (wavelengths of 16,000 km). Peak amplitudes are approximately ± 100 m, with highs centred on the Pacific Ocean and Africa, encircled by lows in the vicinity of the Pacific Ring of Fire and at the poles. Initial seismic tomography models revealed that the shear-wave velocity, and therefore presumably the density structure, of the lower mantle is also dominated by degree 2. Anti-correlation of slow, probably low density regions beneath geoid highs indicates that the mantle is affected by large-scale flow. Thus, buoyant features are rising and exert viscous normal stresses that act to deflect the surface and core-mantle boundary (CMB). Pioneering studies in the 1980s showed that a viscosity jump between the upper and lower mantle is required to reconcile these geoid and tomographically inferred density anomalies. These studies also predict 1-2 km of dynamic topography at the surface, dominated by degree 2. In contrast to this prediction, a global observational database of oceanic residual depth measurements indicates that degree 2 dynamic topography has peak amplitudes of only 500 m. Here, we attempt to reconcile observations of dynamic topography, geoid, gravity anomalies and CMB topography using instantaneous flow kernels. We exploit a density structure constructed from blended seismic tomography models, combining deep mantle imaging with higher resolution upper mantle features. Radial viscosity structure is discretised, and we invert for the best-fitting viscosity profile using a conjugate gradient search algorithm, subject to damping. Our results suggest that, due to strong sensitivity to radial viscosity structure, the Earth's geoid seems to be compatible with only ± 500 m of degree 2 dynamic topography.
NASA Astrophysics Data System (ADS)
Eakin, Caroline M.; Long, Maureen D.; Wagner, Lara S.; Beck, Susan L.; Tavera, Hernando
2015-02-01
The Peruvian flat slab is by far the largest region of flat subduction in the world today, but aspects of its structure and dynamics remain poorly understood. In particular, questions remain over whether the relatively narrow Nazca Ridge subducting beneath southern Peru provides dynamic support for the flat slab or it is just a passive feature. We investigate the dynamics and interaction of the Nazca Ridge and the flat slab system by studying upper mantle seismic anisotropy across southern Peru. We analyze shear wave splitting of SKS, sSKS, and PKS phases at 49 stations distributed across the area, primarily from the PerU Lithosphere and Slab Experiment (PULSE). We observe distinct spatial variations in anisotropic structure along strike, most notably a sharp transition from coherent splitting in the north to pervasive null (non-split) arrivals in the south, with the transition coinciding with the northern limit of the Nazca Ridge. For both anisotropic domains there is evidence for complex and multi-layered anisotropy. To the north of the ridge our *KS splitting measurements likely reflect trench-normal mantle flow beneath the flat slab. This signal is then modified by shallower anisotropic layers, most likely in the supra-slab mantle, but also potentially from within the slab. To the south the sub-slab mantle is similarly anisotropic, with a trench-oblique fast direction, but widespread nulls appear to reflect dramatic heterogeneity in anisotropic structure above the flat slab. Overall the regional anisotropic structure, and thus the pattern of deformation, appears to be closely tied to the location of the Nazca Ridge, which further suggests that the ridge plays a key role in the mantle dynamics of the Peruvian flat slab system.
The interaction of plume heads with compositional discontinuities in the Earth's mantle
NASA Technical Reports Server (NTRS)
Manga, Michael; Stone, Howard A.; O'Connell, Richard J.
1993-01-01
The effects of compositional discontinuities of density and viscosity in the Earth's mantle on the ascent of mantle plume heads is studied using a boundary integral numerical technique. Three specific problems are considered: (1) a plume head rising away from a deformable interface, (2) a plume head passing through an interface, and (3) a plume head approaching the surface of the Earth. For the case of a plume attached to a free-surface, the calculated time-dependent plume shapesare compared with experimental results. Two principle modes of plume head deformation are observed: plume head elingation or the formation of a cavity inside the plume head. The inferred structure of mantle plumes, namely, a large plume head with a long tail, is characteristic of plumes attached to their source region, and also of buoyant material moving away from an interface and of buoyant material moving through an interface from a high- to low-viscosity region. As a rising plume head approaches the upper mantle, most of the lower mantle will quickly drain from the gap between the plume head and the upper mantle if the plume head enters the upper mantle. If the plume head moves from a high- to low-viscosity region, the plume head becomes significantly elongated and, for the viscosity contrasts thought to exist in the Earth, could extend from the 670 km discontinuity to the surface. Plume heads that are extended owing to a viscosity decrease in the upper mantle have a cylindrical geometry. The dynamic surface topography induced by plume heads is bell-shaped when the top of the plume head is at depths greater than about 0.1 plume head radii. As the plume head approaches the surface and spreads, the dynamic topography becomes plateau-shaped. The largest stresses are produced in the early stages of plume spreading when the plume head is still nearly spherical, and the surface expression of these stresses is likely to be dominated by radial extension. As the plume spreads, compressional stresses on the surface are produced beyond the edges of the plume; consequently, extensional features will be produced above the plume head and may be surrounded by a ring of compressional features.
Impact of lithospheric rheology on surface topography
NASA Astrophysics Data System (ADS)
Liao, K.; Becker, T. W.
2017-12-01
The expression of mantle flow such as due to a buoyant plume as surface topography is a classical problem, yet the role of rheological complexities could benefit from further exploration. Here, we investigate the topographic expressions of mantle flow by means of numerical and analytical approaches. In numerical modeling, both conventional, free-slip and more realistic, stress-free boundary conditions are applied. For purely viscous rheology, a high viscosity lithosphere will lead to slight overestimates of topography for certain settings, which can be understood by effectively modified boundary conditions. Under stress-free conditions, numerical and analytical results show that the magnitude of dynamic topography decreases with increasing lithosphere thickness (L) and viscosity (ηL), as L-1 and ηL-3. The wavelength of dynamic topography increases linearly with L and (ηL/ ηM) 1/3. We also explore the time-dependent interactions of a rising plume with the lithosphere. For a layered lithosphere with a decoupling weak lower crust embedded between stronger upper crust and lithospheric mantle, dynamic topography increases with a thinner and weaker lower crust. The dynamic topography saturates when the decoupling viscosity is 3-4 orders lower than the viscosity of upper crust and lithospheric mantle. We further explore the role of visco-elastic and visco-elasto-plastic rheologies.
Mantle dynamics in the Mediterranean
NASA Astrophysics Data System (ADS)
Faccenna, Claudio; Becker, Thorsten W.; Auer, Ludwig; Billi, Andrea; Boschi, Lapo; Brun, Jean Pierre; Capitanio, Fabio A.; Funiciello, Francesca; Horvåth, Ferenc; Jolivet, Laurent; Piromallo, Claudia; Royden, Leigh; Rossetti, Federico; Serpelloni, Enrico
2014-09-01
The Mediterranean offers a unique opportunity to study the driving forces of tectonic deformation within a complex mobile belt. Lithospheric dynamics are affected by slab rollback and collision of two large, slowly moving plates, forcing fragments of continental and oceanic lithosphere to interact. This paper reviews the rich and growing set of constraints from geological reconstructions, geodetic data, and crustal and upper mantle heterogeneity imaged by structural seismology. We proceed to discuss a conceptual and quantitative framework for the causes of surface deformation. Exploring existing and newly developed tectonic and numerical geodynamic models, we illustrate the role of mantle convection on surface geology. A coherent picture emerges which can be outlined by two, almost symmetric, upper mantle convection cells. The downwellings are found in the center of the Mediterranean and are associated with the descent of the Tyrrhenian and the Hellenic slabs. During plate convergence, these slabs migrated backward with respect to the Eurasian upper plate, inducing a return flow of the asthenosphere from the back-arc regions toward the subduction zones. This flow can be found at large distance from the subduction zones and is at present expressed in two upwellings beneath Anatolia and eastern Iberia. This convection system provides an explanation for the general pattern of seismic anisotropy in the Mediterranean, first-order Anatolia, and Adria microplate kinematics and may contribute to the high elevation of scarcely deformed areas such as Anatolia and eastern Iberia. More generally, the Mediterranean is an illustration of how upper mantle, small-scale convection leads to intraplate deformation and complex plate boundary reconfiguration at the westernmost terminus of the Tethyan collision.
Upper Mantle Dynamics of Bangladesh by Splitting Analyzes of Core Refracted SKS and SKKS Waves
NASA Astrophysics Data System (ADS)
Tiwari, A. K.; Bhushan, K.; Eken, T.; Singh, A.
2017-12-01
New shear wave splitting measurements are obtained from hitherto less studied Bengal Basin using core refracted SKS and SKKS phases. Splitting parameters, time delays (δt) and fast polarization directions (Φ) were estimated through analysis of 64 high-quality waveforms (≥ 2.5 signal to noise ratio) from 29 earthquakes with magnitude ≥5.5 recorded at eight seismic stations deployed over Bangladesh. We found no evidence of splitting which indicates azimuthal isotropy beneath the region. Null measurements can be explained by near vertical axis of anisotropy or by the presence of multiple anisotropic layers with different fast polarization directions, where combined effect results in null. We consider that the presence of partial melts within the upper mantle due to Kerguelen mantle plume activities may be the potential geodynamic cause for observed null measurements. It locally perturbed mantle convection flow beneath the region and reoriented the lattice preferred orientation of the upper mantle mineral mainly olivine as this disabled the core refracted SKS and SKKS phases to scan the anisotropic characteristics of the region, and hence null measurements are obtained.
NASA Astrophysics Data System (ADS)
Thoraval, C.
2017-12-01
Describing the large-scale structures of mantle convection and quantifying the mass transfer between upper and lower mantle request to account for the role played by mineral phase transitions in the transition zone. We build a density distribution within the Earth mantle from velocity anomalies described by global seismic tomographic models. The density distribution includes thermal anomalies and topographies of the phase transitions at depths of 410 and 660 km. We compute the flow driven by this density distribution using a 3D spherical circulation model, which account for depth-dependent viscosity. The dynamic topographies at the surface and at the CMB and the geoid are calculated as well. Within the range of viscosity profiles allowing for a satisfying restitution of the long wavelength geoid, we perform a parametric study to decipher the role of the characteristics of phase diagrams - mainly the Clapeyron's slopes - and of the kinetics of phase transitions, which may modify phase transition topographies. Indeed, when a phase transition is delayed, the boundary between two mineral phases is both dragged by the flow and interfere with it. The results are compared to recent estimations of surface dynamic topography and to the phase transition topographies as revealed by seismic studies. The consequences are then discussed in terms of structure of mantle flow. Comparisons between various tomographic models allow us to enlighten the most robust features. At last, the role played by the phase transitions on the lateral variations of mass transfer between upper and lower mantle are quantified by comparison to cases with no phase transitions and confronted to regional tomographic models, which reflect the variability of the behaviors of the descending slabs in the transition zone.
Production and recycling of oceanic crust in the early Earth
NASA Astrophysics Data System (ADS)
van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.
2004-08-01
Because of the strongly different conditions in the mantle of the early Earth regarding temperature and viscosity, present-day geodynamics cannot simply be extrapolated back to the early history of the Earth. We use numerical thermochemical convection models including partial melting and a simple mechanism for melt segregation and oceanic crust production to investigate an alternative suite of dynamics which may have been in operation in the early Earth. Our modelling results show three processes that may have played an important role in the production and recycling of oceanic crust: (1) Small-scale ( x×100 km) convection involving the lower crust and shallow upper mantle. Partial melting and thus crustal production takes place in the upwelling limb and delamination of the eclogitic lower crust in the downwelling limb. (2) Large-scale resurfacing events in which (nearly) the complete crust sinks into the (eventually lower) mantle, thereby forming a stable reservoir enriched in incompatible elements in the deep mantle. New crust is simultaneously formed at the surface from segregating melt. (3) Intrusion of lower mantle diapirs with a high excess temperature (about 250 K) into the upper mantle, causing massive melting and crustal growth. This allows for plumes in the Archean upper mantle with a much higher excess temperature than previously expected from theoretical considerations.
Reconciling laboratory and observational models of mantle rheology in geodynamic modelling
NASA Astrophysics Data System (ADS)
King, Scott D.
2016-10-01
Experimental and geophysical observations constraining mantle rheology are reviewed with an emphasis on their impact on mantle geodynamic modelling. For olivine, the most studied and best-constrained mantle mineral, the tradeoffs associated with the uncertainties in the activation energy, activation volume, grain-size and water content allow the construction of upper mantle rheology models ranging from nearly uniform with depth to linearly increasing from the base of the lithosphere to the top of the transition zone. Radial rheology models derived from geophysical observations allow for either a weak upper mantle or a weak transition zone. Experimental constraints show that wadsleyite and ringwoodite are stronger than olivine at the top of the transition zone; however the uncertainty in the concentration of water in the transition zone precludes ruling out a weak transition zone. Both observational and experimental constraints allow for strong or weak slabs and the most promising constraints on slab rheology may come from comparing inferred slab geometry from seismic tomography with systematic studies of slab morphology from dynamic models. Experimental constraints on perovskite and ferropericlase strength are consistent with general feature of rheology models derived from geophysical observations and suggest that the increase in viscosity through the top of the upper mantle could be due to the increase in the strength of ferropericlase from 20-65 GPa. The decrease in viscosity in the bottom half of the lower mantle could be the result of approaching the melting temperature of perovskite. Both lines of research are consistent with a high-viscosity lithosphere, a low viscosity either in the upper mantle or transition zone, and high viscosity in the lower mantle, increasing through the upper half of the lower mantle and decreasing in the bottom half of the lower mantle, with a low viscosity above the core. Significant regions of the mantle, including high-stress regions of the lower mantle, may be in the dislocation creep (power-law) regime. Due to our limited knowledge of mantle grain size, the best hope to resolve the question of whether a region is in diffusion creep (Newtonian rheology) or dislocation or grain-boundary creep (power-law rheology), may be the presence of absence of seismic anisotropy, because there is no mechanism to rotate crystals in diffusion creep which would be necessary to develop anisotropy from lattice preferred orientation. While non-intuitive, the presence or absence of a weak region in the upper mantle has a profound effect on lower mantle flow. With an asthenosphere, the lower mantle organizes into a long-wavelength plan form with one or two (degree 1 or degree 2) large downwellings and updrafts, which may contain a cluster of plumes. The boundary between the long-wavelength lower mantle flow and upper region flow may be deeper, likely 800-1200 km, than the usually assumed base of the transition zone. There are competing hypotheses as to whether this change in flow pattern is caused by a change in rheology, composition, or phase.
Mantle dynamics and seismic tomography
Tanimoto, Toshiro; Lay, Thorne
2000-01-01
Three-dimensional imaging of the Earth's interior, called seismic tomography, has achieved breakthrough advances in the last two decades, revealing fundamental geodynamical processes throughout the Earth's mantle and core. Convective circulation of the entire mantle is taking place, with subducted oceanic lithosphere sinking into the lower mantle, overcoming the resistance to penetration provided by the phase boundary near 650-km depth that separates the upper and lower mantle. The boundary layer at the base of the mantle has been revealed to have complex structure, involving local stratification, extensive structural anisotropy, and massive regions of partial melt. The Earth's high Rayleigh number convective regime now is recognized to be much more interesting and complex than suggested by textbook cartoons, and continued advances in seismic tomography, geodynamical modeling, and high-pressure–high-temperature mineral physics will be needed to fully quantify the complex dynamics of our planet's interior. PMID:11035784
Constraints from Earth's heat budget on mantle dynamics
NASA Astrophysics Data System (ADS)
Kellogg, L. H.; Ferrachat, S.
2006-12-01
Recent years have seen an increase in the number of proposed models to explain Earth's mantle dynamics: while two end-members, pure layered convection with the upper and lower mantle convecting separately from each other, and pure, whole mantle convection, appear not to satisfy all the observations, several addition models have been proposed. These models include and attempt to characterize least one reservoir that is enriched in radiogenic elements relative to the mid-ocean ridge basalt (MORB) source, as is required to account for most current estimates of the Earth's heat budget. This reservoir would also be responsible for the geochemical signature in some ocean island basalts (OIBs) like Hawaii, but must be rarely sampled at the surface. Our current knowledge of the mass- and heat-budget for the bulk silicate Earth from geochemical, cosmochemical and geodynamical observations and constraints enables us to quantify the radiogenic heat enrichment required to balance the heat budget. Without assuming any particular model for the structure of the reservoir, we first determine the inherent trade-off between heat production rate and mass of the reservoir. Using these constraints, we then investigate the dynamical inferences of the heat budget, assuming that the additional heat is produced within a deep layer above the core-mantle boundary. We carry out dynamical models of layered convection using four different fixed reservoir volumes, corresponding to deep layers of thicknesses 150, 500 1000 and 1600 km, respectively, and including both temperature-dependent viscosity and an instrinsic viscosity jump between upper and lower mantle. We then assess the viability of these cases against 5 criteria: stability of the deep layer through time, topography of the interface, effective density profile, intrinsic chemical density and the heat flux at the CMB.
Constraints on mantle viscosity from convection models with plate motion history
NASA Astrophysics Data System (ADS)
Mao, W.; Zhong, S.
2017-12-01
The Earth's long-wavelength geoid and dynamic topography are mainly controlled by the mantle buoyancy and viscosity structure. Previous dynamical models for the geoid provide constraints on the 1-D mantle viscosity, using mantle buoyancy derived from seismic topography models. However, it is a challenge in these studies on how to convert seismic velocity to density anomalies and mantle buoyancy. Furthermore, these studies provide constraints only on relative viscosity variations but not on absolute magnitude of viscosity. In this study, we formulate time-dependent 3-D spherical mantle convection models with imposed plate motion history and seek constraints on mantle viscosity structure for both its radial relative variations and its absolute magnitude (i.e., Rayleigh number), using the geoid from the convection models. We found that the geoid at intermediate wavelengths of degrees 4-9 is mainly controlled by the subducted slabs in the upper mantle and the upper part of lower mantle that result from subduction from the last 50 Myr or the Cenozoic. To fit the degrees 4-9 geoid, we need viscosity contrast β defined as the ratio of the lower mantle viscosity and the asthenospheric viscosity to be larger than 2000 and Ra to be 1e8 (defined by the Earth's radius). The best fit model leads to 57% variance reduction and 76% correlation between the model and the observations. However, the long-wavelength geoid at degrees 2-3 is controlled by the lower mantle structure which requires much longer time scale to develop, as seen from our modeling. The preferred viscosity structure and Rayleigh number as constrained by the Cenozoic plate motion and the degrees 4-9 geoid no longer provide adequate fit to the geoid in models with the plate motion history for the last 450 Myr. The degrees 4-9 geoid amplitude is smaller for the models with longer plate motion history and a smaller Ra is required to fit the observation. In order to satisfy the relative amplitude between degrees 2-3 and degrees 4-9 geoid, either a gradually increase of viscosity in the upper part of lower mantle or larger thermal expansivity in the lower mantle is needed. We also consider thermo-chemical models to examine the effects of the African and Pacific thermochemical piles (i.e., LLSVPSs) on the geoid and the inferred mantle viscosity and Ra.
NASA Astrophysics Data System (ADS)
Lee, C.; Zhou, Y.; King, S. D.
2008-12-01
Analyses of seismic anisotropy caused by spatial alignments of anisotropic minerals (e.g., olivine) have been widely used to infer mantle flow directions in the upper mantle. Deep seismic anisotropy beneath fast spreading mid-ocean ridges (e.g., East Pacific Rise) has been recently observed at depths of 200-300 km and even down to the transition zone, with polarization changes in radial anisotropy from VSH < VSV (shallow) to VSH < VSV (deep). We investigate the origin of the observed deep seismic anisotropy and polarization changes beneath the EPR in 2-D Cartesian numerical models using both kinematically (prescribed velocity) and dynamically (negative buoyancy) driven ridge spreading. Because subduction is thought to be an important controlling factor in the style of ridge spreading and mantle convection, we consider a subduction zone developing at the prescribed weak zone. A whole mantle domain expressed by a one by four box (2890 by 11560 km) is used to minimize the boundary effects on the subducting slab. For the upper mantle rheology, we consider composite viscosity of diffusion and dislocation creep for dry olivine to evaluate the effects of lateral variation of mantle viscosity and the rheological changes from dislocation to diffusion creep under the mid-ocean ridge. For the lower mantle rheology, we use diffusion creep for dry olivine by increasing grain size to match relevant lower mantle viscosity. We also consider the 660 km phase transition with density and viscosity jump as well as Clapeyron slope. Anisotropy is evaluated using finite-strain ellipses based on the assumption that a-axes of olivine crystals are parallel to the major axes of the finite-strain ellipses. Our preliminary results show 1) in general, the development of VSH < VSV anisotropy is confined only in a narrow region under the ridge axis at depths of 200- 300 km; 2) strong VSH > VSV anisotropy can be found in the 'asthenosphere' beneath the entire spreading oceanic lithosphere; and 3) the dominate creep mechanism changes from dislocation creep to diffusion creep at depths of 300-400 km; indicating a more isotropic lower upper mantle. We conclude that our geodynamical modeling in a passive ridge spreading system does not produce the deep seismic anisotropy recently observed beneath the EPR. However, we do not consider partial melting, dynamic recrystallization and anisotropic viscosity which would change seismic interpretation and mantle flow, and thus further study is required.
Dynamics of upper mantle rocks decompression melting above hot spots under continental plates
NASA Astrophysics Data System (ADS)
Perepechko, Yury; Sorokin, Konstantin; Sharapov, Victor
2014-05-01
Numeric 2D simulation of the decompression melting above the hot spots (HS) was accomplished under the following conditions: initial temperature within crust mantle section was postulated; thickness of the metasomatized lithospheric mantle is determined by the mantle rheology and position of upper asthenosphere boundary; upper and lower boundaries were postulated to be not permeable and the condition for adhesion and the distribution of temperature (1400-2050°C); lateral boundaries imitated infinity of layer. Sizes and distribution of lateral points, their symmetry, and maximum temperature varied between the thermodynamic condition for existences of perovskite - majorite transition and its excess above transition temperature. Problem was solved numerically a cell-vertex finite volume method for thermo hydrodynamic problems. For increasing convergence of iterative process the method of lower relaxation with different value of relaxation parameter for each equation was used. The method of through calculation was used for the increase in the computing rate for the two-layered upper mantle - lithosphere system. Calculated region was selected as 700 x (2100-4900) km. The time step for the study of the asthenosphere dynamics composed 0.15-0.65 Ma. The following factors controlling the sizes and melting degree of the convective upper mantle, are shown: a) the initial temperature distribution along the section of upper mantleb) sizes and the symmetry of HS, c) temperature excess within the HS above the temperature on the upper and lower mantle border TB=1500-2000oC with 5-15% deviation but not exceed 2350oC. It is found, that appearance of decompression melting with HS presence initiate primitive mantle melting at TB > of 1600oC. Initial upper mantle heating influence on asthenolens dimensions with a constant HS size is controlled mainly by decompression melting degree. Thus, with lateral sizes of HS = 400 km the decompression melting appears at TB > 1600oC and HS temperature (THS) > 1900oC asthenolens size ~700 km. When THS = of 2000oC the maximum melting degree of the primitive mantle is near 40%. An increase in the TB > 1900oC the maximum degree of melting could rich 100% with the same size of decompression melting zone (700 km). We examined decompression melting above the HS having LHS = 100 km - 780 km at a TB 1850- 2100oC with the thickness of lithosphere = 100 km.It is shown that asthenolens size (Lln) does not change substantially: Lln=700 km at LHS = of 100 km; Lln= 800 km at LHS = of 780 km. In presence of asymmetry of large HS the region of advection is developed above the HS maximum with the formation of asymmetrical cell. Influence of lithospheric plate thicknesses on appearance and evolution of asthenolens above the HS were investigated for the model stepped profile for the TB ≤ of 1750oS with Lhs = 100km and maximum of THS =2350oC. With an increase of TB the Lln difference beneath lithospheric steps is leveled with retention of a certain difference to melting degrees and time of the melting appearance a top of the HS. RFBR grant 12-05-00625.
NASA Astrophysics Data System (ADS)
Lei, J., Sr.; Zhao, D.
2016-12-01
We determined a new 3-D P-wave velocity model of the upper mantle beneath eastern Tibet using 112,613 high-quality arrival-time data collected from teleseismic seismograms recorded by a new portable seismic array in Yunnan and permanent networks in southwestern China. Our results provide new insights into the mantle structure and dynamics of eastern Tibet. High-velocity (high-V) anomalies are revealed down to 200 km depth under the Sichuan basin and the Ordos and Alashan blocks. Low-velocity (low-V) anomalies are imaged in the upper mantle under the Kunlun-Qilian and Qinling fold zones, and the Songpan-Ganzi, Qiangtang, Lhasa and Chuan-Dian diamond blocks, suggesting that eastward moving low-V materials are extruded to eastern China after the obstruction by the Sichuan basin, and the Ordos and Alashan blocks. Furthermore, the extent and thickness of these low-V anomalies are correlated with the surface topography, suggesting that the uplift of eastern Tibet could be partially related to these low-V materials having a higher temperature and strong positive buoyancy. In the mantle transition zone (MTZ), broad high-V anomalies are visible from the Burma arc northward to the Kunlun fault and eastward to the Xiaojiang fault, and they are connected upward with the Wadati-Benioff seismic zone. These results suggest that the subducted Indian slab has traveled horizontally for a long distance after it descended into the MTZ, and return corner flow and deep slab dehydration have contributed to forming the low-V anomalies in the big mantle wedge. Our results shed new light on the deep origin of Tengchong volcano and large crustal earthquakes as well as the mantle dynamics of the eastern Tibetan plateau.
Formation and modification of chromitites in the mantle
NASA Astrophysics Data System (ADS)
Arai, Shoji; Miura, Makoto
2016-11-01
Podiform chromitites have long supplied us with unrivaled information on various mantle processes, including the peridotite-magma reaction, deep-seated magmatic evolution, and mantle dynamics. The recent discovery of ultrahigh-pressure (UHP) chromitites not only sheds light on a different aspect of podiform chromitites, but also changes our understanding of the whole picture of podiform chromitite genesis. In addition, new evidence was recently presented for hydrothermal modification/formation chromite/chromitite in the mantle, which is a classical but innovative issue. In this context, we present here an urgently needed comprehensive review of podiform chromitites in the upper mantle. Wall-rock control on podiform chromitite genesis demonstrates that the peridotite-magma reaction at the upper mantle condition is an indispensable process. We may need a large system in the mantle, far larger than the size of outcrops or mining areas, to fulfill the Cr budget requirement for podiform chromitite genesis. The peridotite-magma reaction over a large area may form a melt enriched with Na and other incompatible elements, which mixes with a less evolved magma supplied from the depth to create chromite-oversaturated magma. The incompatible-element-rich magma trapped by the chromite mainly precipitates pargasite and aspidolite (Na analogue of phlogopite), which are stable under upper mantle conditions. Moderately depleted harzburgites, which contain chromite with a moderate Cr# (0.4-0.6) and a small amount of clinopyroxene, are the best reactants for the chromitite-forming reaction, and are the best hosts for podiform chromitites. Arc-type chromitites are dominant in ophiolites, but some are of the mid-ocean ridge type; chromitites may be common beneath the ocean floor, although it has not yet been explored for chromitite. The low-pressure (upper mantle) igneous chromitites were conveyed through mantle convection or subduction down to the mantle transition zone to form ultrahigh-pressure chromitites. Some of these reappear at the shallower mantle, and can coexist with newly formed low-pressure igneous chromitites. High-temperature hydrothermal fluids can dissolve and precipitate chromite, and hydrothermal chromitites (chromitites precipitated from aqueous fluids) are possibly formed within the mantle where the circulation of hydrous fluid is available, e.g., at the mantle wedge.
Teleseismic P-wave tomography and mantle dynamics beneath Eastern Tibet
NASA Astrophysics Data System (ADS)
Lei, Jianshe; Zhao, Dapeng
2016-05-01
We determined a new 3-D P-wave velocity model of the upper mantle beneath eastern Tibet using 112,613 high-quality arrival-time data collected from teleseismic seismograms recorded by a new portable seismic array in Yunnan and permanent networks in southwestern China. Our results provide new insights into the mantle structure and dynamics of eastern Tibet. High-velocity (high-V) anomalies are revealed down to 200 km depth under the Sichuan basin and the Ordos and Alashan blocks. Low-velocity (low-V) anomalies are imaged in the upper mantle under the Kunlun-Qilian and Qinling fold zones, and the Songpan-Ganzi, Qiangtang, Lhasa and Chuan-Dian diamond blocks, suggesting that eastward moving low-V materials are extruded to eastern China after the obstruction by the Sichuan basin, and the Ordos and Alashan blocks. Furthermore, the extent and thickness of these low-V anomalies are correlated with the surface topography, suggesting that the uplift of eastern Tibet could be partially related to these low-V materials having a higher temperature and strong positive buoyancy. In the mantle transition zone (MTZ), broad high-V anomalies are visible from the Burma arc northward to the Kunlun fault and eastward to the Xiaojiang fault, and they are connected upward with the Wadati-Benioff seismic zone. These results suggest that the subducted Indian slab has traveled horizontally for a long distance after it descended into the MTZ, and return corner flow and deep slab dehydration have contributed to forming the low-V anomalies in the big mantle wedge. Our results shed new light on the dynamics of the eastern Tibetan plateau.
NASA Astrophysics Data System (ADS)
Yoshida, Masaki
2014-05-01
Previous numerical studies of mantle convection focusing on subduction dynamics have indicated that the viscosity contrast between the subducting plate and the surrounding mantle have a primary effect on the behavior of subducting plates. The seismically observed plate stagnation at the base of the mantle transition zone (MTZ) under the Western Pacific and Eastern Eurasia is considered to mainly result from a viscosity increase at the ringwoodite to perovskite + magnesiowüstite (Rw→Pv+Mw) phase decomposition boundary, i.e., the boundary between the upper and lower mantle. The harzburgite layer, which is sandwiched between basaltic crust and depleted peridotite (lherzolite) layers, is a key component of highly viscous, cold oceanic plates. However, the possible sensitivity of the effective viscosity of harzburgite layers in the morphology of subducting plates that are flattened in the MTZ and/or penetrated in the lower mantle has not been examined systematically in previous three-dimensional (3D) numerical modeling studies that consider the viscosity increase at the boundary between the upper and lower mantle. In this study, in order to investigate the role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers, I performed a series of numerical simulations of mantle convection with semi-dynamic plate subduction in 3D regional spherical-shell geometry. The results show that a buckled crustal layer is observed under the "heel" of the stagnant slab that begins to penetrate into the lower mantle, regardless of the magnitude of the viscosity contrast between the harzburgite layer and the underlying mantle, when the factor of viscosity increase at the boundary of the upper and lower mantle is larger than 60-100. As the viscosity contrast between the harzburgite layer and the underlying mantle increases, the curvature of buckling is larger. When the viscosity increase at the boundary of the upper and lower mantle and the viscosity contrast between the harzburgite layer and the underlying mantle are larger, the volumes of crustal and harzburgite materials trapped in the mantle transition zone (MTZ) are also larger, although almost all of the materials penetrate into the lower mantle. These materials are trapped in the MTZ for over tens of millions of years. The bending of crustal layers numerically observed in the present study is consistent with seismological evidence that there is a piece of subducted oceanic crust in the uppermost lower mantle beneath the subducting slab under the Mariana trench [Niu et al., 2003, JGR]. The results of the present study suggest that when the viscosity increase at the boundary of the upper and lower mantle is larger than 60-100, a seismically observed stagnant slab is reproduced. This result is consistent with the previous independent geodynamic studies. For instance, a 2D geodynamic model with lateral viscosity variations suggested that it would need to be substantially greater than 30, say, around 100, to explain the positive geoid anomaly in the subduction zones where the subducting slab reaches the boundary between the upper and lower mantle such as that of the western Pacific [Tosi et al., 2009, GJI]. References: [1] Tajima, F. Yoshida, M. and Ohtani, E., Conjecture with water and rheological control for subducting slab in the mantle transition zone, Geoscience Frontiers, doi:10.1016/j.gsf.2013.12.005, 2014. [2] Yoshida, M. The role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers, Geophys. Res. Lett., 40(20), 5387-5392, doi:10.1002/2013GL057578, 2013. [3] Yoshida, M. and Tajima, F., On the possibility of a folded crustal layer stored in the hydrous mantle transition zone, Phys. Earth Planet. Inter., 219, 34-48, doi:10.1016/j.pepi.2013.03.004, 2013.
NASA Astrophysics Data System (ADS)
Rajesh, S.
2012-04-01
The Himalaya-Tibet orogen formed as a result of the northward convergence of India into the Asia over the past 55 Ma had caused the north south crustal shortening and Cenozoic upliftment of the Tibetan plateau, which significantly affected the tectonic and climatic framework of the Asia. Geodetic measurements have also shown eastward crustal extrusion of Tibet, especially along major east-southeast strike slip faults at a slip rate of 15-20 mm a-1 and around 40 mm a-1. Such continental scale deformations have been modeled as block rotation by fault boundary stresses developed due to the India-Eurasia collision. However, the Thin Sheet model explained the crustal deformation mechanism by considering varying gravitational potential energy arise out of varying crustal thickness of the viscous lithosphere. The Channel Flow model, which also suggests extrusion is a boundary fault guided flow along the shallow crustal brittle-ductile regime. Although many models have proposed, but no consensus in these models to explain the dynamics of measured surface geodetic deformation of the Tibetan plateau. But what remains conspicuous is the origin of driving forces that cause the observed Tibetan crustal flow towards the South East Asia. Is the crustal flow originated only because of the differential stresses that developed in the shallow crustal brittle-ductile regime? Or should the stress transfer to the shallow crustal layers as a result of gravitational potential energy gradient driven upper mantle flow also to be accounted. In this work, I examine the role of latter in the light of depth distribution of continental geoid anomalies beneath the Himalaya-Tibet across major upper mantle density discontinuities. These discontinuity surfaces in the upper mantle are susceptible to hold the plastic deformation that may occur as a result of the density gradient driven flow. The distribution of geoid anomalies across these density discontinuities at 220, 410 and 660 km depth in the upper mantle beneath the Himalaya-Tibet has been studied by analyzing the geoid undulation data obtained from various satellite geodetic missions along with the recent and old (EGM2008 and EGM2006) Earth Gravity models. Results show that the net geoid anomaly varies from -65 m to -20 m, which signify a density stratified upper mantle beneath the Himalaya-Tibet and the same has been confirmed from the results of regional seismic tomography studies. The density anomaly distribution beneath Tibet from 163 km depth to its upper mantle thickness of 1063 km show a strong NW-SE elliptically oriented positive geoid anomalies of magnitude around 40 meter. Asymmetric density anomaly gradient have been observed along the Himalayan arc from west to east as well as across the arc from north to south. This caused differential gravitational potential gradient and hence an elliptical flow structure of the Tibetan continental mantle along the resultant NW-SE direction, which is in concurrence with the observed present day direction of the Tibetan crustal flow. Thus the geoid anomalies distributed at various depth ranges show how the gradient in the upper mantle gravitational potential energy, especially across the deformed discontinuity surface, is significant in determining the transfer of deviatoric stresses and providing traction to the flow of crustal layers of the Tibetan Plateau. This suggests the viscous flow model could be a preferable choice, which could better accommodate the dynamics of the upper mantle, in explaining the crustal extrusion processes of the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
van Keken, P. E.; Brandenburg, J. P.; Hauri, E. H.; Ballentine, C. J.
2009-12-01
The heterogeneity of the Earth's mantle is expressed in complementary geochemical and geophysical signatures, where the geochemistry provides a time-integrated signal and the geophysics tends to see a recent snapshot of the Earth's interior. While the geophysical evidence tends to support a form of whole mantle convection that is moderated by rheological and phase changes below the transition zone, the geochemical observations have been generally used to support the presence of long-lived and isolated reservoirs. Recent dynamical modeling (Brandenburg et al., EPSL, 2008) employed high resolution finite modeling of mantle convection using an energetically consistent simulation of tectonic plates. A suite of models was developed with a dynamic vigor similar to that of the present day earth. The recycling of oceanic crust combined with a two-stage formation of the continental crust leads to a satisfactory match to the observed spread between HIMU-DMM-EM1 in multiple isotope systems without invoking recycling of continental crust. Due to the rheological contrast between upper and lower mantle there is a natural occurrence of a well-mixed upper mantle overlaying a chemically more heterogeneous lower mantle. The pooling of dense oceanic crust provides the formation of dense piles at the base of the mantle. Together with the occurrence of slabs that thicken and/or stagnate at the 670 discontinuity we find reasonable correspondance with the present day tomographic signatures. At present the models fail to explain noble gas systematics, even when taking the suggested high compatibility of helium into account.
NASA Astrophysics Data System (ADS)
O'Donnell, J. P.; Dunham, C.; Stuart, G. W.; Brisbourne, A.; Nield, G. A.; Whitehouse, P. L.; Hooper, A. J.; Nyblade, A.; Wiens, D.; Aster, R. C.; Anandakrishnan, S.; Huerta, A. D.; Wilson, T. J.; Winberry, J. P.
2017-12-01
Quantifying the geothermal heat flux at the base of ice sheets is necessary to understand their dynamics and evolution. The heat flux is a composite function of concentration of upper crustal radiogenic elements and flow of heat from the mantle into the crust. Radiogenic element concentration varies with tectonothermal age, while heat flow across the crust-mantle boundary depends on crustal and lithospheric thicknesses. Meanwhile, accurately monitoring current ice mass loss via satellite gravimetry or altimetry hinges on knowing the upper mantle viscosity structure needed to account for the superimposed glacial isostatic adjustment (GIA) signal in the satellite data. In early 2016 the UK Antarctic Network (UKANET) of 10 broadband seismometers was deployed for two years across the southern Antarctic Peninsula and Ellsworth Land. Using UKANET data in conjunction with seismic records from our partner US Polar Earth Observing Network (POLENET) and the Antarctic Seismographic Argentinian Italian Network (ASAIN), we have developed a 3D shear wave velocity model of the West Antarctic crust and uppermost mantle based on Rayleigh and Love wave phase velocity dispersion curves extracted from ambient noise cross-correlograms. We combine seismic receiver functions with the shear wave model to help constrain the depth to the crust-mantle boundary across West Antarctica and delineate tectonic domains. The shear wave model is subsequently converted to temperature using a database of densities and elastic properties of minerals common in crustal and mantle rocks, while the various tectonic domains are assigned upper crustal radiogenic element concentrations based on their inferred tectonothermal ages. We combine this information to map the basal geothermal heat flux variation across West Antarctica. Mantle viscosity depends on factors including temperature, grain size, the hydrogen content of olivine and the presence of melt. Using published mantle xenolith and magnetotelluric data to constrain grain size and hydrogen content, respectively, we use the temperature model to estimate the regional upper mantle viscosity structure. The viscosity information will be incorporated in a 3D GIA model that will better constrain estimates of current ice loss from the West Antarctic Ice Sheet.
The importance of grain size to mantle dynamics and seismological observations
NASA Astrophysics Data System (ADS)
Gassmoeller, R.; Dannberg, J.; Eilon, Z.; Faul, U.; Moulik, P.; Myhill, R.
2017-12-01
Grain size plays a key role in controlling the mechanical properties of the Earth's mantle, affecting both long-timescale flow patterns and anelasticity on the timescales of seismic wave propagation. However, dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity, and a limited treatment of changes in mineral assemblage. We study grain size evolution, its interplay with stress and strain rate in the convecting mantle, and its influence on seismic velocities and attenuation. Our geodynamic models include the simultaneous and competing effects of dynamic recrystallization resulting from dislocation creep, grain growth in multiphase assemblages, and recrystallization at phase transitions. They show that grain size evolution drastically affects the dynamics of mantle convection and the rheology of the mantle, leading to lateral viscosity variations of six orders of magnitude due to grain size alone, and controlling the shape of upwellings and downwellings. Using laboratory-derived scaling relationships, we convert model output to seismologically-observable parameters (velocity, attenuation) facilitating comparison to Earth structure. Reproducing the fundamental features of the Earth's attenuation profile requires reduced activation volume and relaxed shear moduli in the lower mantle compared to the upper mantle, in agreement with geodynamic constraints. Faster lower mantle grain growth yields best fit to seismic observations, consistent with our re-examination of high pressure grain growth parameters. We also show that ignoring grain size in interpretations of seismic anomalies may underestimate the Earth's true temperature variations.
Three-dimensional shear wave velocity structure in the Atlantic upper mantle
NASA Astrophysics Data System (ADS)
James, Esther Kezia Candace
Oceanic lithosphere constitutes the upper boundary layer of the Earth's convecting mantle. Its structure and evolution provide a vital window on the dynamics of the mantle and important clues to how the motions of Earth's surface plates are coupled to convection in the mantle below. The three-dimensional shear-velocity structure of the upper mantle beneath the Atlantic Ocean is investigated to gain insight into processes that drive formation of oceanic lithosphere. Travel times are measured for approximately 10,000 fundamental-mode Rayleigh waves, in the period range 30-130 seconds, traversing the Atlantic basin. Paths with >30% of their length through continental upper mantle are excluded to maximize sensitivity to the oceanic upper mantle. The lateral distribution of Rayleigh wave phase velocity in the Atlantic upper mantle is explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Phase velocity shows a strong dependence on seafloor age, and removing age-dependent velocity from the 2-D maps highlights areas of anomalously low velocity, almost all of which are proximal to locations of hotspot volcanism. Depth-dependent variations in vertically-polarized shear velocity (Vsv) are determined with two sets of 3-D models: a layered model that requires constant VSV in each depth layer, and a splined model that allows VSV to vary continuously with depth. At shallow depths (˜75 km) the seismic structure shows the expected dependence on seafloor age. At greater depths (˜200 km) high-velocity lithosphere is found only beneath the oldest seafloor; velocity variations beneath younger seafloor may result from temperature or compositional variations within the asthenosphere. The age-dependent phase velocities are used to constrain temperature in the mantle and show that, in contrast to previous results for the Pacific, phase velocities for the Atlantic are not consistent with a half-space cooling model but are best explained by a plate-cooling model with thickness of 75 km and mantle temperature of 1400°C. Comparison with data such as basalt chemistry and seafloor elevation helps to separate thermal and compositional effects on shear velocity.
Geochemical and Rheological Constraints on the Dynamics of the Oceanic Upper Mantle
2007-09-01
405-412. 201 Dick, H. J. B., Natland, J., Party, L. . S., 1994. Melt transport and evolution in the shallow mantle beneath the East Pacific Rise ...in the shallow mantle beneath the East Pacific Rise . In: M6vel, C., Gillis, K. M., Allan, J. F., Meyer, P. S. (Eds.), Proceedings of the Ocean...according to ridge location: East Pacific Rise (EPR), Mid-Cayman Rise (MCR), Central Indian Ridge/Carlsberg Ridge (CIR/Carl), Mid-Atlantic Ridge (MAR
Investigation of geomagnetic field forecasting and fluid dynamics of the core
NASA Technical Reports Server (NTRS)
Benton, E. R. (Principal Investigator)
1981-01-01
The magnetic determination of the depth of the core-mantle boundary using MAGSAT data is discussed. Refinements to the approach of using the pole-strength of Earth to evaluate the radius of the Earth's core-mantle boundary are reported. The downward extrapolation through the electrically conducting mantle was reviewed. Estimates of an upper bound for the time required for Earth's liquid core to overturn completely are presented. High order analytic approximations to the unsigned magnetic flux crossing the Earth's surface are also presented.
The dynamics of plate tectonics and mantle flow: from local to global scales.
Stadler, Georg; Gurnis, Michael; Burstedde, Carsten; Wilcox, Lucas C; Alisic, Laura; Ghattas, Omar
2010-08-27
Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but observationally constrained high-resolution models of global mantle flow remain a computational challenge. We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of 1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere at trenches amounts to approximately 5 to 20% of the total dissipation through the entire lithosphere and mantle.
The harzburgites-lherzolite cycle: depletion and refertilization processes
NASA Astrophysics Data System (ADS)
Dijkstra, A. H.
2011-12-01
Lherzolites or clinopyroxene-rich harzburgites sampled at the ocean floor are now generally interpreted as refractory harzburgites refertilized by melt-rock reaction or melt impregnation at the spreading center, rather than as relatively undepleted bulk upper mantle. The key evidence for a melt refertilization origin is often textural. Critically, the refertilization can mask the underlying very refractory character: oceanic peridotites prior to melt refertilization at the ridge are often too refractory to be simple mantle residues of bulk upper mantle that was melted at the ridge. This suggests that the upper mantle contains large domains that record prior melting histories. This is supported by ancient rhenium-depletion ages that are common in oceanic peridotites. In this presentation, I will discuss some key examples (e.g., Macquarie Island [1], Pindos, Totalp, Lanzarote) of refertilized oceanic peridotites, which all have recorded previous, ancient depletions. I will show the textural and geochemical evidence for melt refertilization. It has often been assumed that melt refertilization occurs by interaction with mantle melts. However, there is now evidence for melt refertilization through a reaction with eclogite-derived melts, probably at the base of the melting column underneath the ridge system. These eclogitic mantle heterogeneities themselves do not normally survive the melting underneath the spreading center, but their isotopic signature can be recognized in the reacted peridotites. In summary, we have moved away from the idea that oceanic mantle rocks are simple melting residues of homogeneous bulk upper mantle. The picture that emerges is a rich and complex one, suggesting that oceanic mantle rocks record dynamic histories of melting and refertilization. In particular, the melting event in refertilized peridotites can be much older than the age of the ridge system at which they are sampled. Many oceanic peridotites contain evidence for a Mesoproterozoic melting event of perhaps global significance. Regardless of the nature of these melting events, it is now clear that in their complex overprinting history, oceanic peridotites more and more resemble polygenetic metamorphic rocks.
Effects of mantle rheologies on viscous heating induced by Glacial Isostatic Adjustment
NASA Astrophysics Data System (ADS)
Huang, PingPing; Wu, Patrick; van der Wal, Wouter
2018-04-01
It has been argued that viscous dissipation from mantle flow in response to surface loading during glacial cycles can result in short-term heating and thus trigger transient volcanism or changes in mantle properties, which may in turn affect mantle dynamics. Furthermore, heating near the Earth's surface can also affect the stability of ice sheets. We have studied the magnitude and spatial-temporal distribution of viscous heating induced in the mantle by the realistic ice model ICE-6G and gravitationally consistent ocean loads. Three types of mantle rheologies, including linear, non-linear and composite rheologies are considered to see if non-linear creep can induce larger viscous heating than linear rheology. We used the Coupled-Laplace-Finite-Element model of Glacial Isostatic Adjustment (GIA) to compute the strain, stress and shear heating during a glacial cycle. We also investigated the upper bound of temperature change and surface heat flux change due to viscous heating. We found that maximum viscous heating occurs near the end of deglaciation near the edge of the ice sheet with amplitude as high as 120 times larger than that of the chondritic radioactive heating. The maximum heat flux due to viscous heating can reach 30 mW m-2, but the area with large heat flux is small and the timescale of heating is short. As a result, the upper bound of temperature change due to viscous heating is small. Even if 30 glacial cycles are included, the largest temperature change can be of the order of 0.3 °C. Thus, viscous heating induced by GIA cannot induce volcanism and cannot significantly affect mantle material properties, mantle dynamics nor ice-sheet stability.
Resolving Discrepancies Between Observed and Predicted Dynamic Topography on Earth
NASA Astrophysics Data System (ADS)
Richards, F. D.; Hoggard, M.; White, N. J.
2017-12-01
Compilations of well-resolved oceanic residual depth measurements suggest that present-day dynamic topography differs from that predicted by geodynamic simulations in two significant respects. At short wavelengths (λ ≤ 5,000 km), much larger amplitude variations are observed, whereas at long wavelengths (λ > 5,000 km), observed dynamic topography is substantially smaller. Explaining the cause of this discrepancy with a view to reconciling these different approaches is central to constraining the structure and dynamics of the deep Earth. Here, we first convert shear wave velocity to temperature using an experimentally-derived anelasticity model. This relationship is calibrated using a pressure and temperature-dependent plate model that satisfies age-depth subsidence, heat flow measurements, and seismological constraints on the depth to the lithosphere-asthenosphere boundary. In this way, we show that, at short-wavelengths, observed dynamic topography is consistent with ±150 ºC asthenospheric temperature anomalies. These inferred thermal buoyancy variations are independently verified by temperature measurements derived from geochemical analyses of mid-ocean ridge basalts. Viscosity profiles derived from the anelasticity model suggest that the asthenosphere has an average viscosity that is two orders of magnitude lower than that of the underlying upper mantle. The base of this low-viscosity layer coincides with a peak in azimuthal anisotropy observed in recent seismic experiments. This agreement implies that lateral asthenospheric flow is rapid with respect to the underlying upper mantle. We conclude that improved density and viscosity models of the uppermost mantle, which combine a more comprehensive physical description of the lithosphere-asthenosphere system with recent seismic tomographic models, can help to resolve spectral discrepancies between observed and predicted dynamic topography. Finally, we explore possible solutions to the long-wavelength discrepancy that exploit the velocity to density conversion described above combined with radial variation of mantle viscosity.
Dynamical links between small- and large-scale mantle heterogeneity: Seismological evidence
NASA Astrophysics Data System (ADS)
Frost, Daniel A.; Garnero, Edward J.; Rost, Sebastian
2018-01-01
We identify PKP • PKP scattered waves (also known as P‧ •P‧) from earthquakes recorded at small-aperture seismic arrays at distances less than 65°. P‧ •P‧ energy travels as a PKP wave through the core, up into the mantle, then scatters back down through the core to the receiver as a second PKP. P‧ •P‧ waves are unique in that they allow scattering heterogeneities throughout the mantle to be imaged. We use array-processing methods to amplify low amplitude, coherent scattered energy signals and resolve their incoming direction. We deterministically map scattering heterogeneity locations from the core-mantle boundary to the surface. We use an extensive dataset with sensitivity to a large volume of the mantle and a location method allowing us to resolve and map more heterogeneities than have previously been possible, representing a significant increase in our understanding of small-scale structure within the mantle. Our results demonstrate that the distribution of scattering heterogeneities varies both radially and laterally. Scattering is most abundant in the uppermost and lowermost mantle, and a minimum in the mid-mantle, resembling the radial distribution of tomographically derived whole-mantle velocity heterogeneity. We investigate the spatial correlation of scattering heterogeneities with large-scale tomographic velocities, lateral velocity gradients, the locations of deep-seated hotspots and subducted slabs. In the lowermost 1500 km of the mantle, small-scale heterogeneities correlate with regions of low seismic velocity, high lateral seismic gradient, and proximity to hotspots. In the upper 1000 km of the mantle there is no significant correlation between scattering heterogeneity location and subducted slabs. Between 600 and 900 km depth, scattering heterogeneities are more common in the regions most remote from slabs, and close to hotspots. Scattering heterogeneities show an affinity for regions close to slabs within the upper 200 km of the mantle. The similarity between the distribution of large-scale and small-scale mantle structures suggests a dynamic connection across scales, whereby mantle heterogeneities of all sizes may be directed in similar ways by large-scale convective currents.
Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin
Brocher, T.M.; Parsons, T.; Trehu, A.M.; Snelson, C.M.; Fisher, M.A.
2003-01-01
Petrologic models suggest that dehydration and metamorphism of subducting slabs release water that serpentinizes the overlying forearc mantle. To test these models, we use the results of controlled-source seismic surveys and earthquake tomography to map the upper mantle along the Cascadia margin forearc. We find anomalously low upper-mantle velocities and/or weak wide-angle reflections from the top of the upper mantle in a narrow region along the margin, compatible with recent teleseismic studies and indicative of a serpentinized upper mantle. The existence of a hydrated forearc upper-mantle wedge in Cascadia has important geological and geophysical implications. For example, shearing within the upper mantle, inferred from seismic reflectivity and consistent with its serpentinite rheology, may occur during aseismic slow slip events on the megathrust. In addition, progressive dehydration of the hydrated mantle wedge south of the Mendocino triple junction may enhance the effects of a slap gap during the evolution of the California margin.
NASA Astrophysics Data System (ADS)
Glebovitsky, V. A.; Nikitina, L. P.; Khiltova, V. Ya.; Ovchinnikov, N. O.
2004-05-01
The thermal state of the upper mantle beneath tectonic structures of various ages and types (Archaean cratons, Early Proterozoic accretionary and collisional orogens, and Phanerozoic structures) is characterized by geotherms and by thermal gradients (TG) derived from data on the P- T conditions of mineral equilibria in garnet and garnet-spinel peridotite xenoliths from kimberlites (East Siberia, Northeastern Europe, India, Central Africa, North America, and Canada) and alkali basalts (Southeastern Siberia, Mongolia, southeastern China, southeastern Australia, Central Africa, South America, and the Solomon and Hawaiian islands). The use of the same garnet-orthopyroxene thermobarometer (Theophrastus Contributions to Advanced Studies in Geology. 3: Capricious Earth: Models and Modelling of Geologic Processes and Objects 2000 44) for all xenoliths allowed us to avoid discrepancies in estimation of the P- T conditions, which may be a result of the mismatch between different thermometers and barometers, and to compare the thermal regimes in the mantle in various regions. Thus, it was established that (1) mantle geotherms and geothermal gradients, obtained from the estimation of P- T equilibrium conditions of deep xenoliths, correspond to the age of crust tectonic structures and respectively to the time of lithosphere stabilization; it can be suggested that the ancient structures of the upper mantle were preserved within continental roots; (2) thermal regimes under continental mantle between the Archaean cratons and Palaeoproterozoic belts are different today; (3) the continental mantle under Neoproterozoic and Phanerozoic belts is characterized by significantly higher values of geothermal gradient compared to the mantle under Early Precambrian structures; (4) lithosphere dynamics seems to change at the boundary between Early and Mezo-Neoproterozoic and Precambrian and Phanerozoic.
NASA Astrophysics Data System (ADS)
Lynner, Colton; Long, Maureen D.
2015-06-01
Measurements of seismic anisotropy are commonly used to constrain deformation in the upper mantle. Observations of anisotropy at mid-mantle depths are, however, relatively sparse. In this study we probe the anisotropic structure of the mid-mantle (transition zone and uppermost lower mantle) beneath the Japan, Izu-Bonin, and South America subduction systems. We present source-side shear wave splitting measurements for direct teleseismic S phases from earthquakes deeper than 300 km that have been corrected for the effects of upper mantle anisotropy beneath the receiver. In each region, we observe consistent splitting with delay times as large as 1 s, indicating the presence of anisotropy at mid-mantle depths. Clear splitting of phases originating from depths as great as ˜600 km argues for a contribution from anisotropy in the uppermost lower mantle as well as the transition zone. Beneath Japan, fast splitting directions are perpendicular or oblique to the slab strike and do not appear to depend on the propagation direction of the waves. Beneath South America and Izu-Bonin, splitting directions vary from trench-parallel to trench-perpendicular and have an azimuthal dependence, indicating lateral heterogeneity. Our results provide evidence for the presence of laterally variable anisotropy and are indicative of variable deformation and dynamics at mid-mantle depths in the vicinity of subducting slabs.
NASA Astrophysics Data System (ADS)
Esteve, C.; Schaeffer, A. J.; Audet, P.
2017-12-01
Over the past number of decades, the Slave Craton (Canada) has been extensively studied for its diamondiferous kimberlites. Not only are diamonds a valuable resource, but their kimberlitic host rocks provide an otherwise unique direct source of information on the deep upper mantle (and potentially transition zone). Many of the Canadian Diamond mines are located within the Slave Craton. As a result of the propensity for diamondiferous kimberlites, it is imperative to probe the deep mantle structure beneath the Slave Craton. This work is further motivated by the increase in high-quality broadband seismic data across the Northern Canadian Cordillera over the past decade. To this end we have generated a P and S body wave tomography model of the Slave Craton and its surroundings. Furthermore, tomographic inversion techniques are growing ever more capable of producing high resolution Earth models which capture detailed structure and dynamics across a range of scale lengths. Here, we present preliminary results on the structure of the upper mantle underlying the Slave Craton. These results are generated using data from eight different seismic networks such as the Canadian National Seismic Network (CNSN), Yukon Northwest Seismic Network (YNSN), older Portable Observatories for Lithospheric Analysis and Reseach Investigating Seismicity (POLARIS), Regional Alberta Observatory for Earthquake Studies Network (RV), USArray Transportable Array (TA), older Canadian Northwest Experiment (CANOE), Batholith Broadband (XY) and the Yukon Observatory (YO). This regional model brings new insights about the upper mantle structure beneath the Slave Craton, Canada.
Convection in three dimensions with surface plates - Generation of toroidal flow
NASA Technical Reports Server (NTRS)
Gable, Carl W.; O'Connell, Richard J.; Travis, Bryan J.
1991-01-01
This work presents numerical calculations of mantle convection that incorporate some of the basic observational constraints imposed by plate tectonics. The model is three-dimensional and includes surface plates; it allows plate velocity to change dynamically according to the forces which result from convection. It is shown that plates are an effective means of introducing a toroidal component into the flow field. After initial transients the plate motion is nearly parallel to transform faults and in the direction that tends to minimize the toroidal flow field. The toroidal field decays with depth from its value at the surface; the poloidal field is relatively constant throughout the layer but falls off slightly at the top and bottom boundaries. Layered viscosity increasing with depth causes the toroidal field to decay more rapidly, effectively confining it to the upper, low-viscosity layer. The effect of viscosity layering on the poloidal field is relatively small, which is attributed to its generation by temperature variations distributed throughout the system. The generation of toroidal flow by surface plates would seem to account for the observed nearly equal energy of toroidal and poloidal fields of plate motions on the earth. A low-viscosity region in the upper mantle will cause the toroidal flow to decay significantly before reaching the lower mantle. The resulting concentration of toroidal flow in the upper mantle may result in more thorough mixing there and account for some of the geochemical and isotopic differences proposed to exist between the upper and lower mantles.
Haeussler, Peter J.; Saltus, Richard W.
2011-01-01
Subduction of the buoyant Yakutat microplate likely caused deformation to be focused preferentially in upper Cook Inlet. The upper Cook Inlet region has both the highest degree of shortening and the deepest part of the Neogene basin. This forearc region has a long-wavelength magnetic high, a large isostatic gravity low, high conductivity in the lower mantle, low p-wave velocity (Vp), and a high p-wave to shear-wave velocity ratio (Vp/Vs). These data suggest that fluids in the mantle wedge caused serpentinization of mafic rocks, which may, at least in part, contribute to the long-wavelength magnetic anomaly. This area lies adjacent to the subducting and buoyant Yakutat microplate slab. We suggest the buoyant Yakutat slab acts much like a squeegee to focus mantle-wedge fluid flow at the margins of the buoyant slab. Such lateral flow is consistent with observed shear-wave splitting directions. The additional fluid in the adjacent mantle wedge reduces the wedge viscosity and allows greater corner flow. This results in focused subsidence, deformation, and gravity anomalies in the forearc region.
NASA Astrophysics Data System (ADS)
Rosenberg, R. H.; Kirby, E.; Aslan, A.; Karlstrom, K. E.; Heizler, M. T.; Kelley, S. A.; Piotraschke, R. E.; Furlong, K. P.
2011-12-01
It is increasingly recognized that dynamic effects associated with changes in mantle flow and buoyancy can influence the evolution of surface topography. In the Rocky Mountain province of the western United States, recent seismic deployments reveal intriguing correlations between anomalies in the velocity structure of the upper mantle and regions of high topography. Here, we investigate whether regional correlations between upper-mantle structure and topography are associated with the history of Late Cenozoic fluvial incision and exhumation. Major tributaries of the upper Colorado River, including the Gunnison and Dolores Rivers, which drain high topography in central and western Colorado overlie upper mantle with slow seismic wave velocities; these drainages exhibit relatively steep longitudinal profiles (normalized for differences in drainage area and discharge) and are associated with ~1000-1500 m of incision over the past 10 Ma. In contrast, tributaries of the Green River that drain the western slope in northern Colorado (White, Yampa, and Little Snake Rivers) overlie mantle of progressively higher seismic wave velocities. River profiles in northern Colorado are two to three times less steep along reaches with comparable bedrock lithologies. New Ar39/Ar40 ages on ~11 Ma basalt flows capping the Tertiary Brown's Park Formation in northern Colorado indicate that the magnitude of exhumation along these profiles ranges from ~400 - 600 m over this time interval. The correspondence of steep river profiles in regions of greater incision implies that the fluvial systems are dynamically adjusting to an external forcing. New constraints on the exhumation history of the upper Colorado River from apatite fission track ages in boreholes near Rifle, Colorado are best explained by an onset of exhumation at ca. 8-10 Ma. Thus, relative base level fall associated with development of Grand Canyon (ca. 6-5 Ma) does not explain the regional onset of incision along the western slope of the Rockies. Additionally, new cosmogenic burial ages from fan-terrace complexes near Rifle, Colorado show that Colorado River incision occurred at similar rates over both 10 Ma and 2 Ma timescales. Fluvial incision in response to relative base level fall or to changes in regional climate cannot easily explain the history of differential incision along the western slope. Given the correspondence of steep channels, large magnitude incision and regions of low seismic velocity mantle, we suggest that differential rock uplift, driven, in part, by differences in the buoyancy and/or convective flow of the mantle beneath western Colorado is the likely driver for Neogene incision.
Teleseismic array analysis of upper mantle compressional velocity structure. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Walck, M. C.
1984-01-01
Relative array analysis of upper mantle lateral velocity variations in southern California, analysis techniques for dense data profiles, the P-wave upper mantle structure beneath an active spreading center: the Gulf of California, and the upper mantle under the Cascade ranges: a comparison with the Gulf of California are presented.
Dynamical consequences of mantle heterogeneity in two-phase models of mid-ocean ridges
NASA Astrophysics Data System (ADS)
Katz, R. F.
2010-12-01
The mid-ocean ridge system, over 50,000 km in length, samples the magmatic products of a large swath of the asthenosphere. It provides our best means to assess the heterogeneity structure of the upper mantle. Interpretation of the diverse array of observations of MOR petrology, geochemistry, tomography, etc requires models that can map heterogeneity structure onto predictions testable by comparison with these observations. I report on progress to this end; in particular, I describe numerical models of coupled magma/mantle dynamics at mid-ocean ridges [1,2]. These models incorporate heterogeneity in terms of a simple, two-component thermochemical system with specified amplitude and spatial distribution. They indicate that mantle heterogeneity has significant fluid-dynamical consequences for both mantle and magmatic flow. Models show that the distribution of enrichment can lead to asymmetry in the strength of upwelling across the ridge-axis and channelised magmatic transport to the axis. Furthermore, heterogeneity can cause off-axis upwelling of partially molten diapirs, trapping of enriched melts off-axis, and re-fertilization of the mantle by pooled and refrozen melts. Predicted consequences of geochemical heterogeneity may also be considered. References: [1] Katz, RF, (2008); Magma dynamics with the Enthalpy Method: Benchmark Solutions and Magmatic Focusing at Mid-ocean Ridges. Journal of Petrology, doi: 10.1093/petrology/egn058. [2] Katz RF, (2010); Porosity-driven convection and asymmetry beneath mid-ocean ridges. Submitted to G3.
Initial tsunami signals in the lithosphere-ocean-atmosphere medium
NASA Astrophysics Data System (ADS)
Novik, O.; Ershov, S.; Mikhaylovskaya, I.
Satellite and ground based instrumentations for monitoring of dynamical processes under the Ocean floor 3 4 of the Earth surface and resulting catastrophic events should be adapted to unknown physical nature of transformation of the oceanic lithosphere s energy of seismogenic deformations into measurable acoustic electromagnetic EM temperature and hydrodynamic tsunami waves To describe the initial up to a tsunami wave far from a shore stage of this transformation and to understand mechanism of EM signals arising above the Ocean during seismic activation we formulate a nonlinear mathematical model of seismo-hydro-EM geophysical field interaction in the lithosphere-Ocean-atmosphere medium from the upper mantle under the Ocean up to the ionosphere domain D The model is based on the theory of elasticity electrodynamics fluid dynamics thermodynamics and geophysical data On the basis of this model and its mathematical investigation we calculate generation and propagation of different see above waves in the basin of a model marginal sea the data on the central part of the Sea of Japan were used At the moment t 0 the dynamic interaction process is supposed to be caused by weak may be precursory sub-vertical elastic displacements with the amplitude duration and main frequency of the order of a few cm sec and tenth of Hz respectively at the depth of 37 km under the sea level i e in the upper mantle Other seismic excitations may be considered as well The lithosphere EM signal is generated in the upper mantle conductive
Modification of the Western Gondwana craton by plume-lithosphere interaction
NASA Astrophysics Data System (ADS)
Hu, Jiashun; Liu, Lijun; Faccenda, Manuele; Zhou, Quan; Fischer, Karen M.; Marshak, Stephen; Lundstrom, Craig
2018-03-01
The longevity of cratons is generally attributed to persistence of neutrally-to-positively buoyant and mechanically strong lithosphere that shields the cratonic crust from underlying mantle dynamics. Here we show that large portions of the cratonic lithosphere in South America and Africa, however, experienced significant modification during and since the Mesozoic era, as demonstrated by widespread Cretaceous uplift and volcanism, present-day high topography, thin crust, and the presence of seismically fast but neutrally buoyant upper-mantle anomalies. We suggest that these observations reflect a permanent increase in lithospheric buoyancy due to plume-triggered delamination of deep lithospheric roots during the Late Cretaceous and early Cenozoic periods. Lithosphere in these regions has been thermally reestablished since then, as confirmed by its present-day low heat flow, high seismic velocities and realigned seismic anisotropy. We conclude that the original lowermost cratonic lithosphere is compositionally denser than the asthenospheric mantle and can be removed when perturbed by underlying mantle upwelling. Therefore, it is the buoyancy of the upper lithosphere that perpetuates stabilization of cratons.
NASA Astrophysics Data System (ADS)
Menant, Armel; Jolivet, Laurent; Sternai, Pietro; Ducoux, Maxime; Augier, Romain; Rabillard, Aurélien; Gerya, Taras; Guillou-Frottier, Laurent
2014-05-01
In subduction environment, magmatic-hydrothermal processes, responsible for the emplacement of magmatic bodies and related mineralization, are strongly controlled by slab dynamics. This 3D dynamics is often complex, resulting notably in spatial evolution through time of mineralization and magmatism types and in fast kinematic changes at the surface. Study at different scales of the distribution of these magmatic and hydrothermal products is useful to better constrain subduction dynamics. This work is focused on the eastern Mediterranean, where the complex dynamics of the Tethyan active margin since the upper Cretaceous is still largely debated. We propose new kinematic reconstructions of the region also showing the distribution of magmatic products and mineralization in space and time. Three main periods have thus been identified with a general southward migration of magmatic and ore bodies. (1) From late Cretaceous to lower Paleocene, calc-alkaline magmatism and porphyry Cu deposits emplaced notably in the Balkans, along a long linear cordillera. (2) From late Paleocene to Eocene, a barren period occurred while the Pelagonian microcontinent was buried within the subduction zone. (3) Since the Oligocene, Au-rich deposits and related K-rich magmatism emplaced in the Rhodopes, the Aegean and western Anatolian extensional domains in response to fast slab retreat and related mantle flow inducing the partial melting of the lithospheric mantle or the base of the upper crust where Au was previously stored. The emplacement at shallow level of this mineralization was largely controlled by large-scale structures that drained the magmatic-hydrothermal fluids. In the Cyclades for instance, field studies show that Au-rich but also base metal-rich ore deposits are syn-extensional and spatially related to large-scale detachment systems (e.g. on Tinos, Mykonos, Serifos islands), which are recognized as subduction-related structures. These results highlight the importance at different scales of subduction dynamics and related mantle flow on the emplacement of mineralization and magmatic bodies. Indeed, besides a general southward migration of the magmatic-hydrothermal activity since the upper Cretaceous from the Balkans to the present-day Aegean volcanic arc, a secondary westward migration is observed during the Miocene from the Menderes massif to the Cyclades. This feature is a possible consequence of a slab tearing event and related mantle flow, as suggested notably by tomographic models below western Anatolia. To further test the effects of slab retreat and tearing on the flow and temperature field within the mantle, we performed 3D thermo-mechanical numerical modeling. Models suggest that the asthenospheric flow induced by the development of a slab tear controls the migration of magmatic products stored at the base of the crust, influencing the distribution of potentially fertile magmas within the upper crust.
Isotopic Evidence For Chaotic Imprint In The Upper Mantle Heterogeneity
NASA Astrophysics Data System (ADS)
Armienti, P.; Gasperini, D.
2006-12-01
Heterogeneities of the asthenospheric mantle along mid-ocean ridges have been documented as the ultimate effect of complex processes dominated by temperature, pressure and composition of the shallow mantle, in a convective regime that involves mass transfer from the deep mantle, occasionally disturbed by the occurrence of hot spots (e.g. Graham et al., 2001; Agranier et al., 2005; Debaille et al., 2006). Alternatively, upper mantle heterogeneity is seen as the natural result of basically athermal processes that are intrinsic to plate tectonics, such as delamination and recycling of continental crust and of subducted aseismic ridges (Meibom and Anderson, 2003; Anderson, 2006). Here we discuss whether the theory of chaotic dynamical systems applied to isotopic space series along the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR) can delimit the length-scale of upper mantle heterogeneities, then if the model of marble-cake mantle (Allègre and Turcotte, 1986) is consistent with a fractal distribution of such heterogeneity. The correlations between the isotopic (Sr, Nd, Hf, Pb) composition of MORB were parameterized as a function of the ridge length. We found that the distribution of isotopic heterogenity along both the MAR and EPR is self- similar in the range of 7000-9000 km. Self-similarity is the imprint of chaotic mantle processes. The existence of strange attractors in the distribution of isotopic composition of the asthenosphere sampled at ridge crests reveals recursion of the same mantle process(es), endured over long periods of time, up to a stationary state. The occurrence of the same fractal dimension for both the MAR and EPR implies independency of contingent events, suggesting common mantle processes, on a planetary scale. We envisage the cyclic route of "melting, melt extraction and recycling" as the main mantle process which could be able to induce scale invariance. It should have happened for a significant number of times over the Earth's mantle history before it acquired a chaotic structure, thus calling for ancient mantle events. The dimension of 7000 km might be related to the common size of the mantle region which has been affected by these processes.
Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth’s mantle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novella, Davide; Jacobsen, Benjamin; Weber, Peter K.
Nominally anhydrous minerals formed deep in the mantle and transported to the Earth’s surface contain tens to hundreds of ppm wt H 2O, providing evidence for the presence of dissolved water in the Earth’s interior. Even at these low concentrations, H 2O greatly affects the physico-chemical properties of mantle materials, governing planetary dynamics and evolution. The diffusion of hydrogen (H) controls the transport of H 2O in the Earth’s upper mantle, but is not fully understood for olivine ((Mg, Fe) 2SiO 4) the most abundant mineral in this region. Here we present new hydrogen self-diffusion coefficients in natural olivine singlemore » crystals that were determined at upper mantle conditions (2 GPa and 750–900 °C). Hydrogen self-diffusion is highly anisotropic, with values at 900 °C of 10 -10.9, 10 -12.8 and 10 -11.9 m 2/s along [100], [010] and [001] directions, respectively. Combined with the Nernst-Einstein relation, these diffusion results constrain the contribution of H to the electrical conductivity of olivine to be σH = 10 2.12S/m·C H2O·exp -187kJ/mol/(RT). Comparisons between the model presented in this study and magnetotelluric measurements suggest that plausible H 2O concentrations in the upper mantle (≤250 ppm wt) can account for high electrical conductivity values (10 -2–10 -1 S/m) observed in the asthenosphere.« less
Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth’s mantle
Novella, Davide; Jacobsen, Benjamin; Weber, Peter K.; ...
2017-07-13
Nominally anhydrous minerals formed deep in the mantle and transported to the Earth’s surface contain tens to hundreds of ppm wt H 2O, providing evidence for the presence of dissolved water in the Earth’s interior. Even at these low concentrations, H 2O greatly affects the physico-chemical properties of mantle materials, governing planetary dynamics and evolution. The diffusion of hydrogen (H) controls the transport of H 2O in the Earth’s upper mantle, but is not fully understood for olivine ((Mg, Fe) 2SiO 4) the most abundant mineral in this region. Here we present new hydrogen self-diffusion coefficients in natural olivine singlemore » crystals that were determined at upper mantle conditions (2 GPa and 750–900 °C). Hydrogen self-diffusion is highly anisotropic, with values at 900 °C of 10 -10.9, 10 -12.8 and 10 -11.9 m 2/s along [100], [010] and [001] directions, respectively. Combined with the Nernst-Einstein relation, these diffusion results constrain the contribution of H to the electrical conductivity of olivine to be σH = 10 2.12S/m·C H2O·exp -187kJ/mol/(RT). Comparisons between the model presented in this study and magnetotelluric measurements suggest that plausible H 2O concentrations in the upper mantle (≤250 ppm wt) can account for high electrical conductivity values (10 -2–10 -1 S/m) observed in the asthenosphere.« less
Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth's mantle.
Novella, Davide; Jacobsen, Benjamin; Weber, Peter K; Tyburczy, James A; Ryerson, Frederick J; Du Frane, Wyatt L
2017-07-13
Nominally anhydrous minerals formed deep in the mantle and transported to the Earth's surface contain tens to hundreds of ppm wt H 2 O, providing evidence for the presence of dissolved water in the Earth's interior. Even at these low concentrations, H 2 O greatly affects the physico-chemical properties of mantle materials, governing planetary dynamics and evolution. The diffusion of hydrogen (H) controls the transport of H 2 O in the Earth's upper mantle, but is not fully understood for olivine ((Mg, Fe) 2 SiO 4 ) the most abundant mineral in this region. Here we present new hydrogen self-diffusion coefficients in natural olivine single crystals that were determined at upper mantle conditions (2 GPa and 750-900 °C). Hydrogen self-diffusion is highly anisotropic, with values at 900 °C of 10 -10.9 , 10 -12.8 and 10 -11.9 m 2 /s along [100], [010] and [001] directions, respectively. Combined with the Nernst-Einstein relation, these diffusion results constrain the contribution of H to the electrical conductivity of olivine to be σ H = 10 2.12 S/m·C H2O ·exp -187kJ/mol/(RT) . Comparisons between the model presented in this study and magnetotelluric measurements suggest that plausible H 2 O concentrations in the upper mantle (≤250 ppm wt) can account for high electrical conductivity values (10 -2 -10 -1 S/m) observed in the asthenosphere.
Numerical Mantle Convection Models of Crustal Formation in an Oceanic Environment in the Early Earth
NASA Astrophysics Data System (ADS)
van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.
2001-12-01
The generation of basaltic crust in the early Earth by partial melting of mantle rocks, subject to investigation in this study, is thought to be a first step in the creation of proto-continents (consisting largely of felsic material), since partial melting of basaltic material was probably an important source for these more evolved rocks. In the early Archean the earth's upper mantle may have been hotter than today by as much as several hundred degrees centigrade. As a consequence, partial melting in shallow convective upwellings would have produced a layering of basaltic crust and underlying depleted (lherzolitic-harzburgitic) mantle peridotite which is much thicker than found under modern day oceanic ridges. When a basaltic crustal layer becomes sufficiently thick, a phase transition to eclogite may occur in the lower parts, which would cause delamination of this dense crustal layer and recycling of dense eclogite into the upper mantle. This recycling mechanism may have contributed significantly to the early cooling of the earth during the Archean (Vlaar et al., 1994). The delamination mechanism which limits the build-up of a thick basaltic crustal layer is switched off after sufficient cooling of the upper mantle has taken place. We present results of numerical modelling experiments of mantle convection including pressure release partial melting. The model includes a simple approximate melt segregation mechanism and basalt to eclogite phase transition, to account for the dynamic accumulation and recycling of the crust in an upper mantle subject to secular cooling. Finite element methods are used to solve for the viscous flow field and the temperature field, and lagrangian particle tracers are used to represent the evolving composition due to partial melting and accumulation of the basaltic crust. We find that this mechanism creates a basaltic crust of several tens of kilometers thickness in several hundreds of million years. This is accompanied by a cooling of some hundred degrees centigrade. Vlaar, N.J., P.E. van Keken and A.P. van den Berg (1994), Cooling of the Earth in the Archaean: consequences of pressure-release melting in a hotter mantle, Earth and Planetary Science Letters, vol 121, pp. 1-18
A kinematic model for the late Cenozoic development of southern California crust and upper mantle
NASA Technical Reports Server (NTRS)
Humphreys, Eugene D.; Hager, Bradford H.
1990-01-01
A model is developed for the young and ongoing kinematic deformation of the southern California crust and upper mantle. The kinematic model qualitatively explains both the overall seismic structure of the upper mantle and much of the known geological history of the late Cenozoic as consequences of ongoing convection beneath southern California. In this model, the high-velocity upper-mantle anomaly of the Transverse ranges is created through the convergence and sinking of the entire thickness of subcrustal lihtosphere, and the low-velocity upper-mantle anomaly beneath the Salton Trough region is attributed to high temperatures and 1-4 percent partial melt related to adiabatic decompression during mantle upwelling.
Interaction of the Cyprus/Tethys Slab With the Mantle Transition Zone Beneath Anatolia
NASA Astrophysics Data System (ADS)
Thompson, D. A.; Rost, S.; Taylor, G.; Cornwell, D. G.
2017-12-01
The geodynamics of the eastern Mediterranean are dominated by northward motion of the Arabian/African continents and subduction of the oldest oceanic crust on the planet along the Aegean and Cyprean trenches. These slabs have previously been imaged using seismic tomography on a continental scale, but detailed information regarding their descent from upper to lower mantle and how they interact with the mantle transition zone have been severely lacking. The Dense Array for North Anatolia (DANA) was a 73 station passive seismic deployment active between 2012-2013 with the primary aim of imaging shallow structure beneath the North Anatolian Fault. However, we exploit the exceptional dataset recorded by DANA to characterise a region where the Cyprus Slab impinges upon the mantle transition zone beneath northern Turkey, providing arguably the most detailed view of a slab as it transits from the upper to lower mantle. We map varying depths and amplitudes of the transition zone seismic discontinuities (`410', `520' and `660') in 3D using over 1500 high quality receiver functions over an area of approximately 200km x 300km. The `410' is observed close to its predicted depth, but the `660' is depressed to >670 km across the entirety of the study region. This is consistent with an accumulation of cold subducted material at the base of the upper mantle, and the presence of a `520' discontinuity in the vicinity of the slab surface also suggests that the slab is present deep within the transition zone. Anomalous low velocity layers above and within the transition zone are constrained and may indicate hydration and ongoing mass/fluid flux between upper and lower mantle in the presence of subduction. The results of the study have implications not only for the regional geodynamics of Anatolia, but also for slab dynamics globally.
Development of diapiric structures in the upper mantle due to phase transitions
NASA Technical Reports Server (NTRS)
Liu, M.; Yuen, D. A.; Zhao, W.; Honda, S.
1991-01-01
Solid-state phase transition in time-dependent mantle convection can induce diapiric flows in the upper mantle. When a deep mantle plume rises toward phase boundaries in the upper mantle, the changes in the local thermal buoyancy, local heat capacity, and latent heat associated with the phase change at a depth of 670 kilometers tend to pinch off the plume head from the feeding stem and form a diapir. This mechanism may explain episodic hot spot volcanism. The nature of the multiple phase boundaries at the boundary between the upper and lower mantle may control the fate of deep mantle plumes, allowing hot plumes to go through and retarding the tepid ones.
NASA Astrophysics Data System (ADS)
Mazzotti, S.; Tarayoun, A.; Marechal, A.; Audet, P.
2017-12-01
The Northern Cordillera of North America is a type example of present-day strain distribution across a wide orogeny. Several geodynamic models are proposed to explain this large-scale tectonic activity, with two main end-members: strain transfer from the Yakutat collision zone (orogenic float) and strain transfer from upper mantle convection (lithosphere basal traction). One of the main differences between these is the lithosphere vertical rheology profile: the former requires significant crust - mantle decoupling to allow far field strain transfer, whereas the latter requires a vertically coupled lithosphere. Here we combine recent data across the eastern region of the Northern Cordillera (eastern Alaska, Yukon, western Northwest Territories) to characterize its states of strain rate, stress, and crustal and lithospheric structure, in order to test the role of the Yakutat collision and upper mantle convection in its present-day tectonics. Recent GPS data confirm the radial, east- to northeastward motion of the central Yukon and foreland belt (Mackenzie and Richardson Mountains), albeit at a much lower velocity than previously proposed. This motion is primarily accommodated by E-W to NE-SW shortening, mainly in the foreland belt, and small to near-zero lateral motion on the major Denali and Tintina strike-slip faults. Seismic anisotropy data further suggest that these two major faults, like most of the Yukon Cordillera, have kept their early Cenozoic crustal and upper mantle structures, as shown by the fault-parallel (NW-SE) fast anisotropy orientation. We use these new data, combined with numerical models of strain distribution under various boundary conditions, to provide constraints on the respective role of the Yakutat collision and upper mantle convection in the present-day tectonics. Preliminary results suggest that, whichever the driving mechanism (or combination thereof), the total strain associated with the present-day tectonics must remain small in order to preserve the inherited crustal and mantle fabrics. Such small cumulative strain appears in contradiction with a thin decoupling layer (such as lower crust decoupling in the orogenic float model) and seems more suggestive of distributed shear across a large part of the lithosphere.
Full-wave multiscale anisotropy tomography in Southern California
NASA Astrophysics Data System (ADS)
Lin, Yu-Pin; Zhao, Li; Hung, Shu-Huei
2014-12-01
Understanding the spatial variation of anisotropy in the upper mantle is important for characterizing the lithospheric deformation and mantle flow dynamics. In this study, we apply a full-wave approach to image the upper-mantle anisotropy in Southern California using 5954 SKS splitting data. Three-dimensional sensitivity kernels combined with a wavelet-based model parameterization are adopted in a multiscale inversion. Spatial resolution lengths are estimated based on a statistical resolution matrix approach, showing a finest resolution length of ~25 km in regions with densely distributed stations. The anisotropic model displays structural fabric in relation to surface geologic features such as the Salton Trough, the Transverse Ranges, and the San Andreas Fault. The depth variation of anisotropy does not suggest a lithosphere-asthenosphere decoupling. At long wavelengths, the fast directions of anisotropy are aligned with the absolute plate motion inside the Pacific and North American plates.
NASA Astrophysics Data System (ADS)
Park, S. H.; Langmuir, C. H.; Scott, S. R.; Sims, K. W. W.; Lin, J.; Kim, S. S.; Blichert-Toft, J.; Choi, H.; Yang, Y. S.; Michael, P. J.
2017-12-01
Earth's upper mantle is characterized by Indian- and Pacific-type domains with distinctive isotope characteristics. The boundary between these two mantle regions has been hypothesized to be located at the Australian-Antarctic-Discordance (AAD), where regions west and east of the AAD are Indian- and Pacific-type, respectively. It was further posited that the Pacific mantle feeds into the Indian mantle as the boundary is moving westward. These scenarios have important implications for the dynamics of mantle convection in the area. In the present model, regions east of the AAD are assumed to be entirely Pacific-type mantle, but our recent recovery of basalts from a 2,000-km sampling gap along the Australian-Antarctic Ridge (AAR), located east of the AAD on the Pacific side, challenges this picture. Here we show that the Hf, Nd, Pb, and Sr isotopic compositions of AAR MORB are distinct from those of Pacific and Indian MORB. Rather, the AAR lavas show mixing relationships with volcanoes from the Hikurangi seamounts, the Balleney and Scott Islands, the West Antarctic Rift System, New Zealand, and east Australia. According to tectonic reconstruction models, these volcanoes are related to super-plume activity that caused Gondwana to break up at 90 Ma. These results imply that a large-scale plume-derived mantle domain exists between the Indian and Pacific mantle domains, and that mantle dynamics along the AAD should be reinterpreted in light of interaction with a super-plume.
Late Veneer consequences on Venus' long term evolution
NASA Astrophysics Data System (ADS)
Gillmann, C.; Golabek, G.; Tackley, P. J.; Raymond, S. N.
2017-12-01
Modelling of Venus' evolution is able to produce scenarios consistent with present-day observation. These results are however heavily dependent on atmosphere escape and initial volatile inventory. This primordial history (the first 500 Myr) is heavily influenced by collisions. We investigate how Late Veneer impacts change the initial state of Venus and their consequences on its coupled mantle/atmosphere evolution. We focus on volatile fluxes: atmospheric escape and mantle degassing. Mantle dynamics is simulated using the StagYY code. Atmosphere escape covers both thermal and non-thermal processes. Surface conditions are calculated with a radiative-convective model. Feedback of the atmosphere on the mantle through surface temperature is included. Large impacts are capable of contributing to atmospheric escape, volatile replenishment and energy transfer. We use the SOVA hydrocode to take into account volatile loss and deposition during a collision. Large impacts are not numerous enough to substantially erode Venus' atmosphere. Single impacts don't have enough eroding power. Swarms of small bodies (<50km radius) might be a better candidate for this process. The amount of volatiles brought by large ordinary chondrite impactors is superior to losses and comparable to the degassing caused by the impact. Carbonaceous chondrite impactors are unlikely: they release too many volatiles, causing surface temperature to stay above 900K up to present-day. Mantle dynamics can also be modified by the heating caused by impacts. Heated material propagates by spreading across the upper mantle due to its buoyancy. Old crust is destroyed or remixed in the mantle. A large part of the upper mantle melts, leading to its depletion and degassing. With enough evenly distributed high energy impacts, the mantle can be depleted by more than 90% of its volatiles during Late Veneer. This drastically cuts down degassing in the late history of the planet and leads to lower present-day surface temperatures. Total depletion of the mantle seems unlikely, meaning either few large impacts (1 to 4) or low energy (slow, grazing…) collisions. Combined with the lack of plate tectonics and volatile recycling in the interior of Venus, Late Veneer collisions could help explain why Venus seems dry today.
Bunge, Hans-Peter; Richards, M A; Baumgardner, J R
2002-11-15
Data assimilation is an approach to studying geodynamic models consistent simultaneously with observables and the governing equations of mantle flow. Such an approach is essential in mantle circulation models, where we seek to constrain an unknown initial condition some time in the past, and thus cannot hope to use first-principles convection calculations to infer the flow history of the mantle. One of the most important observables for mantle-flow history comes from models of Mesozoic and Cenozoic plate motion that provide constraints not only on the surface velocity of the mantle but also on the evolution of internal mantle-buoyancy forces due to subducted oceanic slabs. Here we present five mantle circulation models with an assimilated plate-motion history spanning the past 120 Myr, a time period for which reliable plate-motion reconstructions are available. All models agree well with upper- and mid-mantle heterogeneity imaged by seismic tomography. A simple standard model of whole-mantle convection, including a factor 40 viscosity increase from the upper to the lower mantle and predominantly internal heat generation, reveals downwellings related to Farallon and Tethys subduction. Adding 35% bottom heating from the core has the predictable effect of producing prominent high-temperature anomalies and a strong thermal boundary layer at the base of the mantle. Significantly delaying mantle flow through the transition zone either by modelling the dynamic effects of an endothermic phase reaction or by including a steep, factor 100, viscosity rise from the upper to the lower mantle results in substantial transition-zone heterogeneity, enhanced by the effects of trench migration implicit in the assimilated plate-motion history. An expected result is the failure to account for heterogeneity structure in the deepest mantle below 1500 km, which is influenced by Jurassic plate motions and thus cannot be modelled from sequential assimilation of plate motion histories limited in age to the Cretaceous. This result implies that sequential assimilation of past plate-motion models is ineffective in studying the temporal evolution of core-mantle-boundary heterogeneity, and that a method for extrapolating present-day information backwards in time is required. For short time periods (of the order of perhaps a few tens of Myr) such a method exists in the form of crude 'backward' convection calculations. For longer time periods (of the order of a mantle overturn), a rigorous approach to extrapolating information back in time exists in the form of iterative nonlinear optimization methods that carry assimilated information into the past through the use of an adjoint mantle convection model.
Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity
NASA Astrophysics Data System (ADS)
Tackley, P. J.; Ammann, M.; Brodholt, J. P.; Dobson, D. P.; Valencia, D.
2013-07-01
The discovery of extra-solar "super-Earth" planets with sizes up to twice that of Earth has prompted interest in their possible lithosphere and mantle dynamics and evolution. Simple scalings suggest that super-Earths are more likely than an equivalent Earth-sized planet to be undergoing plate tectonics. Generally, viscosity and thermal conductivity increase with pressure while thermal expansivity decreases, resulting in lower convective vigour in the deep mantle, which, if extralopated to the largest super-Earths might, according to conventional thinking, result in no convection in their deep mantles due to the very low effective Rayleigh number. Here we evaluate this. First, as the mantle of a super-Earth is made mostly of post-perovskite we here extend the density functional theory (DFT) calculations of post-perovskite activation enthalpy of to a pressure of 1 TPa, for both slowest diffusion (upper-bound rheology) and fastest diffusion (lower-bound rheology) directions. Along a 1600 K adiabat the upper-bound rheology would lead to a post-perovskite layer of a very high (˜1030 Pa s) but relatively uniform viscosity, whereas the lower-bound rheology leads to a post-perovskite viscosity increase of ˜7 orders of magnitude with depth; in both cases the deep mantle viscosity would be too high for convection. Second, we use these DFT-calculated values in statistically steady-state numerical simulations of mantle convection and lithosphere dynamics of planets with up to ten Earth masses. The models assume a compressible mantle including depth-dependence of material properties and plastic yielding induced plate-like lithospheric behaviour. Results confirm the likelihood of plate tectonics for planets with Earth-like surface conditions (temperature and water) and show a self-regulation of deep mantle temperature. The deep mantle is not adiabatic; instead feedback between internal heating, temperature and viscosity regulates the temperature such that the viscosity has the value needed to facilitate convective loss of the radiogenic heat, which results in a very hot perovskite layer for the upper-bound rheology, a super-adiabatic perovskite layer for the lower-bound rheology, and an azimuthally-averaged viscosity of no more than 1026 Pa s. Convection in large super-Earths is characterised by large upwellings (even with zero basal heating) and small, time-dependent downwellings, which for large super-Earths merge into broad downwellings. In the context of planetary evolution, if, as is likely, a super-Earth was extremely hot/molten after its formation, it is thus likely that even after billions of years its deep interior is still extremely hot and possibly substantially molten with a "super basal magma ocean" - a larger version of the proposal of Labrosse et al. (Labrosse, S., Hernlund, J.W., Coltice, N. [2007]. Nature 450, 866-869), although this depends on presently unknown melt-solid density contrast and solidus.
NASA Astrophysics Data System (ADS)
James, D. E.; Fouch, M. J.; Long, M. D.; Druken, K. A.; Wagner, L. S.; Chen, C.; Carlson, R. W.
2012-12-01
We interpret post-20 Ma tectonomagmatism across the U.S. Pacific Northwest in the context of subduction related processes. While mantle plume models have long enjoyed favor as an explanation for the post 20-Ma magmatism in the region, conceptually their support has hinged almost entirely on two major features: (1) Steens/Columbia River flood basalt volcanism (plume head); and (2) The Snake River Plain/Yellowstone hotspot track (plume tail). Recent work, synthesized in this presentation, suggests that these features are more plausibly the result of mantle dynamical processes driven by southerly truncation of the Farallon/Juan de Fuca subduction zone and slab detachment along the evolving margin of western North America (Long et al., 2012; James et al., 2011). Plate reconstructions indicate that shortening of the subduction zone by the northward migration of the Mendocino triple junction resulted in a significant increase in the rate of trench retreat and slab rollback ca 20 Ma. Both numerical modeling and physical tank experiments in turn predict large-scale mantle upwelling and flow around the southern edge of the rapidly retreating slab, consistent both with the observed Steens/Columbia River flood volcanism and with the strong E-W mantle fabric observed beneath the region of the High Lava Plains of central and eastern Oregon. The High Lava Plains and Snake River Plain time-progressive volcanism began concurrently about 12 Ma, but along highly divergent tracks and characterized by strikingly different upper mantle structure. Crustal and upper mantle structure beneath the High Lava Plains exhibits evidence typical of regional extension; i.e. thin crust, flat and sharp Moho, and an uppermost mantle with low velocities but otherwise largely devoid of significant vertical structure. In contrast, the Snake River Plain exhibits ultra-low mantle velocities to depths of about 180 km along the length of the hotspot track. Seismic images of the upper mantle in the depth range 300-600 km show that a northern segment of the orphaned Farallon plate lies sub-horizontally in the mantle transition zone parallel to and along the length of the SRP. The images also provide evidence for present-day upwelling from the deep upper mantle around the northern edge of the remnant slab beneath SRP as well as around its leading tip beneath Yellowstone. These results, coupled with petrologic and geochemical constraints, provide compelling support for a subduction model that accounts for virtually all post-20 Ma Cenozoic volcanism and structural deformation in the Cascadian back arc. James, D.E., Fouch, M.J., Carlson, R.W., Roth, J.B., 2011. Slab fragmentation, edge flow, and the origin of the Yellowstone hotspot track. Earth and Planetary Science Letters 311, 124-135. Long, M.D., Till, C.B., Druken, K.A., Carlson, R.W., Wagner, L.S., Fouch, M.J., James, D.E., Grove, T.L., Schmerr, N., Kincaid, C., 2012. Mantle dynamics beneath the Pacific Northwest and generation of voluminous back-arc volcanism. G-cubed in press.
NASA Astrophysics Data System (ADS)
Kring, D. A.; Needham, D. H.
2018-05-01
Observed melt composition within the SPA basin are consistent with an impact prior to mantle overturn, when the upper mantle contained clinopyroxene rather than olivine. Potentially, the impact triggered mantle overturn.
NASA Astrophysics Data System (ADS)
Ritter, X.; Sanchez-Valle, C.; Laumonier, M.; King, A.; Guignot, N.; Gaillard, F.; Sifre, D.; Perrillat, J. P.
2017-12-01
The occurrence of carbonate-rich mantle rocks and diamonds in kimberlite rocks provide evidence for the presence of CO2 in the mantle. Carbon is recycled into the mantle via subduction and released through volcanic outgassing. An important fraction is retained at depth where partial melting of subducted lithologies produce alkali-rich carbonates along the CaCO3-MgCO3-K2CO3 join that infiltrate the mantle wedge [1]. Although volumetrically minor, these melts act as effective metasomatic agents that are related to source regions for diamond-bearing kimberlites [2]. The mobility of carbon at depth is controlled by the physical properties of carbonate liquids that remain largely unknown [3,4]. Here we report in-situ density measurements of alkaline carbonates at crustal and upper mantle conditions using synchrotron X-ray absorption in a Paris-Edinburgh press at beamline Psiché (Synchrotron Soleil). Experiments were conducted in several compositions along the CaCO3-K2CO3 and MgCO3-K2CO3 join up to 1400 K and 3 GPa. The starting materials included a mixture of synthetic K2CO3 and natural calcite and K2Mg(CO3)2 glasses synthesized at 0.15 GPa and 1098 K in an internally heated pressure vessel. The samples were cold pressurized and heated until the molten stage was confirmed by X-ray diffraction. The results were fitted to derive the first robust model for the density of alkali carbonates that mimic liquids from the incipient melting of subducted lithologies at crustal and upper mantle conditions. We combine the results of the present study with available data on the viscosity of carbonate liquids and molecular dynamic predictions to discuss the mobility and migration rates of carbonate liquids in the upper mantle.[1] Litasov et al. 2012 Geology 41, 79-82. [2] Grassi and Schmidt 2011, Contrib Min Petr 162, 169-191. [3] Dobson et al. 1996, EPSL 143, 207-215. [4] Kono et al. 2014 Nature Communications 5:5091.
NASA Astrophysics Data System (ADS)
Flament, Nicolas; Gurnis, Michael; Williams, Simon; Seton, Maria; Skogseid, Jakob; Heine, Christian; Dietmar Müller, R.
2014-02-01
The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in thirteen model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. The uplift of southern Africa is best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle.
NASA Astrophysics Data System (ADS)
Flament, Nicolas; Gurnis, Michael; Williams, Simon; Seton, Maria; Skogseid, Jakob; Heine, Christian; Müller, Dietmar
2014-05-01
The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in multiple model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. We find the uplift of southern Africa to be best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle.
The rapid cooling of the Nansha Block, southern South China Sea
NASA Astrophysics Data System (ADS)
Dong, M.; Zhang, J.
2017-12-01
Since the Late Cretaceous and Cenozoic, the Nansha Block has experienced a series of tectonic process and separated from South China continent to the south. As an exotic micro-continental, Nansha Block has an obvious different lithospheric rheology property from surrounding region. The lithosphere and mantle dynamic and rheology are mainly controlled by temperature. Therefore, we calculated the 3D temperature field and geothermal gradient of Nansha Block's upper mantle by using the S-wave velocity structure from surface wave tomography. The results show that the depth where temperature of 1300° as the lithospheric thickness is in close correspondence with the top of the seismic low velocity zone. The temperature of the upper mantle in Nansha Block is significantly lower than that of surrounding. It implies that Nansha Block experienced a rapid cooling event. We propose that the rapid cooling can be partly attributed to three reasons: 1) Nansha Block is a relatively stable block with no interior geothermal activity. 2) No external heat source to provide energy. 3) Abnormal mantle convection under Nansha Block accelerated the cooling.
Upper mantle electrical resistivity structure beneath back-arc spreading centers
NASA Astrophysics Data System (ADS)
Seama, N.; Shibata, Y.; Kimura, M.; Shindo, H.; Matsuno, T.; Nogi, Y.; Okino, K.
2011-12-01
We compare four electrical resistivity structure images of the upper mantle across back-arc spreading centers (Mariana Trough at 18 N and 13 N, and the Eastern Lau at 19.7 S and 21.3 S) to provide geophysical constraints on issues of mantle dynamics beneath the back-arc spreading system related to the subducting slab. The central Mariana Trough at 18 N has the full spreading rate of 25 km/Myr, and shows characteristic slow-spreading features; existence of median valley neovolcanic zone and "Bull's eyes" mantle Bouguer anomaly (MBA) along the axes. On the other hand, the southern Mariana Trough at 13 N shows an EPR type axial relief in morphology and lower MBA than that in the central Mariana Trough (Kitada et al., 2006), suggesting abundance of magma supply, even though the full spreading rate is 35 km/Myr that is categorized as a slow spreading ridge. At the Eastern Lau spreading center, crustal thickness and morphology vary systematically with arc proximity and shows the opposed trends against spreading rate: The full spreading rate increases from 65 km/Myr at 21.3 S to 85 km/Myr at 19.7 S, while the crustal thicknesses decrease together with morphology transitions from shallow peaked volcanic highs to a deeper flat axis (Martinez et al., 2006). Matsuno et al. (2010) provides a resistivity structure image of the upper mantle across the central Mariana subduction system, which contains several key features: There is an uppermost resistive layer with a thickness of 80-100 km beneath the central Mariana Trough, suggesting dry residual from the plate accretion process. But there is no evidence for a conductive feature beneath the back-arc spreading center at 18 N, and this feature is clearly independent from the conductive region beneath the volcanic arc below 60 km depth that reflects melting and hydration driven by water release from the subducting slab. The resultant upper mantle resistivity structure well support that the melt supply is not abundant, resulting in characteristic slow-spreading features at the surface. We have conducted marine magnetotelluric (MT) surveys at the southern Mariana in 2010 and at the Eastern Lau in 2009-2010. We obtained 10 ocean bottom electro-magnetometer (OBEM) data from a 130 km length MT transect across the southern Mariana spreading axis at 13 N, while we obtained 2 OBEM data and 11 ocean bottom magnetometer data from two 160 km length MT transects across the Eastern Lau spreading axes at 19.7 S and 21.3 S. After calculation of MT response functions and their correction for topographic distortion, two-dimensional electrical resistivity structures will be derived using an inversion algorithm. At this meeting, first we will show the resistivity structure images of the upper mantle beneath these spreading axes. Then, these structure images will be compared to identify differences in the mantle dynamics and the melt supply beneath the back-arc spreading system related to the subducting slab.
NASA Technical Reports Server (NTRS)
Sheehan, Anne Francis
1991-01-01
Resolution of both the extent and mechanism of lateral heterogeneity in the upper mantle constraints the nature and scales of mantle convection. Oceanic regions are of particular interest as they are likely to provide the closest glimpse at the patterns of temperature anomalies and convective flow in the upper mantle because of their young age and simple crustal structure relative to continental regions. Lateral variations were determined in the seismic velocity and attenuation structure of the lithosphere and astenosphere beneath the oceans, and these seismological observations were combined with the data and theory of geoid and bathymetry anomalies in order to test and improve current models for seafloor spreading and mantle convection. Variations were determined in mantle properties on a scale of about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity, geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density, and inversions were formulated to combine quantitatively these different data and to search for a common origin. Variations in mantle density can be either of thermal or compositional origin and are related to mantle convection or differentiation.
NASA Astrophysics Data System (ADS)
Karlstrom, K.; Kirby, E.; Kelley, S.; Aslan, A.; Ouimet, W.; Coblentz, D.; van Wijk, J.
2008-12-01
The Colorado River (CR) has a double concave-up longitudinal profile with a major knickpoint near Lee's Ferry, Arizona that separates the Lower and Upper CR basins. The knickpoint is proposed here to be a transient feature, as indicated by different incision rates above and below it, and by systematic convex profiles of tributaries below, but not above, the knickpoint. The Lower CR concave portion has evolved, and Grand Canyon has been incised, since 6 Ma due to drainage integration via lake spill-over and headward erosion interacting with tectonic forcings that involve dynamic uplift of the Colorado Plateau and accompanying differential incision due to faulting. Ongoing dynamic uplift of the edge of the Colorado Plateau is supported by mantle tomography and geodynamic modeling that suggest edge-driven mantle convection across a step in lithospheric thickness near the Plateau edge that produces a ~400 m high topographic welt and a 2-4 m geoid high. This model for dynamic surface uplift in the last 6 Ma contrasts with the notion of passive incision of Grand Canyon due solely to river integration and geomorphic response to base level fall. The Upper CR appears to have evolved somewhat separately. Slope/drainage area analysis shows low normalized gradients in the center of the Colorado Plateau and along the Green River. Steep knickzones in the Black Canyon of the Gunnison and Gore Canyon of the CR are interpreted to be transients based on differential incision across them at both long term (10 Ma) and short term (640 ka) timescales. Rapid exhumation began in the Upper CR at 6 Ma as constrained by AFT data in the MWX well and near the summit of 14,000 peaks of the Needle Mountains. This is not readily explained by climate change at ~3.5 Ma, nor by upstream propagation of incision driven by integration of the lower CR at 6 Ma. Instead, the onset of rapid incision and exhumation at 6 Ma in the Upper CR may be a response to epeirogenic uplift and formation of dynamic topography related to the Aspen mantle anomaly.
Vertical coherence in mantle heterogeneity from global seismic data
NASA Astrophysics Data System (ADS)
Boschi, L.; Becker, T. W.
2011-10-01
The vertical coherence of mantle structure is of importance for a range of dynamic issues including convective mass transport and the geochemical evolution of Earth. Here, we use seismic data to infer the most likely depth ranges of strong, global changes in the horizontal pattern of mantle heterogeneity. We apply our algorithm to a comprehensive set of measurements, including various shear- and compressional-wave delay times and Love- and Rayleigh-wave fundamental mode and overtone dispersion, so that tomography resolution is as high as possible at all mantle depths. We find that vertical coherence is minimum at ∼100 km and ∼800 km depths, corresponding to the base of the lithosphere and the transition between upper and lower mantle, respectively. The D″ layer is visible, but not as prominent as the shallower features. The rest of the lower mantle is, essentially, vertically coherent. These findings are consistent with slab stagnation at depths around, and perhaps below, the 660-km phase transition, and inconsistent with global, chemically distinct, mid-mantle layering.
Flow in the Deep Mantle from Seisimc Anisotropy: Progress and Prospects
NASA Astrophysics Data System (ADS)
Long, M. D.
2017-12-01
Observations of seismic anisotropy, or the directional dependence of seismic wavespeeds, provide one some of the most direct constraints on the pattern of flow in the Earth's mantle. In particular, as our understanding of crystallographic preferred orientation (CPO) of olivine aggregates under a range of deformation conditions has improved, our ability to exploit observations of upper mantle anisotropy has led to fundamental discoveries about the patterns of flow in the upper mantle and the drivers of that flow. It has been a challenge, however, to develop a similar framework for understanding flow in the deep mantle (transition zone, uppermost lower mantle, and lowermost mantle), even though there is convincing observational evidence for seismic anisotropy at these depths. Recent progress on the observational front has allowed for an increasingly detailed view of mid-mantle anisotropy (transition zone and uppermost lower mantle), particularly in subduction systems, which may eventually lead to a better understanding of mid-mantle deformation and the dynamics of slab interaction with the surrounding mid-mantle. New approaches to the observation and modeling of lowermost mantle anisotropy, in combination with constraints from mineral physics, are progressing towards interpretive frameworks that allow for the discrimination of different mantle flow geometries in different regions of D". In particular, observational strategies that involve the use of multiple types of body wave phases sampled over a range of propagation azimuths enable detailed forward modeling approaches that can discriminate between different mechanisms for D" anisotropy (e.g., CPO of post-perovskite, bridgmanite, or ferropericlase, or shape preferred orientation of partial melt) and identify plausible anisotropic orientations. We have recently begun to move towards a full waveform modeling approach in this work, which allows for a more accurate simulation for seismic wave propagation. Ongoing improvements in seismic observational strategies, experimental and computational mineral physics, and geodynamic modeling approaches are leading to new avenues for understanding flow in the deep mantle through the study of seismic anisotropy.
Quantifying mantle structure and dynamics using plume tracing in seismic tomography
NASA Astrophysics Data System (ADS)
O'Farrell, K. A.; Eakin, C. M.; Jackson, M. G.; Jones, T. D.; Lekic, V.; Lithgow-Bertelloni, C. R.
2017-12-01
Directly linking deep mantle processes with surface features and dynamics is a complex problem. Hotspot volcanism gives us surface observables of mantle signatures, but the depth and source of the mantle plumes feeding these hotspots are highly debated. To address these issues, it is necessary to consider the entire journey of a plume through the mantle. By analyzing the behavior of mantle plumes we can constrain the vigor of mantle convection, the net rotation of the mantle and the role of thermal versus chemical anomalies as well as the bulk physical properties such as the viscosity profile. To do this, we developed a new algorithm to trace plume-like features in shear-wave (Vs) seismic tomography models based on picking local minima in the velocity and searching for continuous features with depth. We applied this method to recent tomographic models and find 60+ continuous plume conduits that are > 750 km long. Approximately a third of these can be associated with known hotspots at the surface. We analyze the morphology of these continuous conduits and infer large scale mantle flow patterns and properties. We find the largest lateral deflections in the conduits occur near the base of the lower mantle and in the upper mantle (near the thermal boundary layers). The preferred orientation of the plume deflections show large variability at all depths and indicate no net mantle rotation. Plate by plate analysis shows little agreement in deflection below particular plates, indicating these deflected features might be long lived and not caused by plate shearing. Changes in the gradient of plume deflection are inferred to correspond with viscosity contrasts in the mantle and found below the transition zone as well as at 1000 km depth. From this inferred viscosity structure, we explore the dynamics of a plume through these viscosity jumps. We also retrieve the Vs profiles for the conduits and compare with the velocity profiles predicted for different mantle adiabat temperatures. We are able to constrain the average temperature anomaly of the conduits to be around 150 K. We use these thermal anomalies in conjunction with our measured plume tilts/deflections to further explore the dynamics of plume conduits in the lower mantle and transition zone.
Seismic evidence for a tilted mantle plume and north-south mantle flow beneath Iceland
Shen, Y.; Solomon, S.C.; Bjarnason, I. Th; Nolet, G.; Morgan, W.J.; Allen, R.M.; Vogfjord, K.; Jakobsdottir, S.; Stefansson, R.; Julian, B.R.; Foulger, G.R.
2002-01-01
Shear waves converted from compressional waves at mantle discontinuities near 410- and 660-km depth recorded by two broadband seismic experiments in Iceland reveal that the center of an area of anomalously thin mantle transition zone lies at least 100 km south of the upper-mantle low-velocity anomaly imaged tomographically beneath the hotspot. This offset is evidence for a tilted plume conduit in the upper mantle, the result of either northward flow of the Icelandic asthenosphere or southward flow of the upper part of the lower mantle in a no-net-rotation reference frame. ?? 2002 Elsevier Science B.V. All rights reserved.
The rheological effect of water on lower mantle minerals
NASA Astrophysics Data System (ADS)
Muir, J.; Brodholt, J. P.
2017-12-01
The presence of water in many upper mantle minerals has been shown to have a large effect on their rheology in what is generally known as "hydrolytic weakening". A growing number of studies are finding that incorporating a water dependent rheology into global mantle convection models has a strong effect on global dynamics. However, while there is an abundance of experimental evidence showing that upper mantle minerals deformed under hydrous conditions are significantly weaker than when dry, there is no such experimental evidence for lower mantle minerals. In this study we use DFT methods to calculate the partitioning of water between different sites in lower mantle minerals (bridgmanite, cubic and tetragonal calcium perovskite, ferropericlase and phase H) which allows us to speculate on the effects of water on the rheology and phase stability of lower mantle minerals under various conditions. The effect of water on lower mantle minerals is found to depend strongly upon both water content and temperature. Under typical lower mantle conditions and with reasonable water concentrations (<1000 ppm), water partitions preferentially into bridgmanite but with a mechanism that does not increase the concentration of Mg or Si vacancies in bridgmanite and thus is unlikely to affect its rheology. In cooler conditions, such as in a descending slab, water partitions into calcium perovskite or forms water rich aluminous phases. The presence of water in calcium perovskite has large effects on the preferred phase and can induce multiple phase transitions at varying depths of the mantle depending upon both water content and slab temperature. These transitions are likely to be seismically anomalous and could cause large and characteristic seismic heterogeneity in descending slabs.
Three-dimensional mantle dynamics with an endothermic phase transition
NASA Technical Reports Server (NTRS)
Honda, S.; Balachandar, S.; Yuen, D. A.; Reuteler, D.
1993-01-01
3D convection for the spinel to perovskite phase change has been simulated numerically. Results for Rayleigh (Ra) numbers of 0(10 exp 6) show intermittent layering with a strong robust plume rising through the phase boundary. Many descending instabilities are deflected but merging cold sheets come together at a junction. A pool of cold material accumulates underneath in the phase-transition zone. A strong gravitational instability results, which precipitates a rapid and massive discharge of upper-mantle material.
NASA Astrophysics Data System (ADS)
Hansen, Samantha E.; Nyblade, Andrew A.; Benoit, Margaret H.
2012-02-01
While the Cenozoic Afro-Arabian Rift System (AARS) has been the focus of numerous studies, it has long been questioned if low-velocity anomalies in the upper mantle beneath eastern Africa and western Arabia are connected, forming one large anomaly, and if any parts of the anomalous upper mantle structure extend into the lower mantle. To address these questions, we have developed a new image of P-wave velocity variations in the Afro-Arabian mantle using an adaptively parameterized tomography approach and an expanded dataset containing travel-times from earthquakes recorded on many new temporary and permanent seismic networks. Our model shows a laterally continuous, low-velocity region in the upper mantle beneath all of eastern Africa and western Arabia, extending to depths of ~ 500-700 km, as well as a lower mantle anomaly beneath southern Africa that rises from the core-mantle boundary to at least ~ 1100 km depth and possibly connects to the upper mantle anomaly across the transition zone. Geodynamic models which invoke one or more discrete plumes to explain the origin of the AARS are difficult to reconcile with the lateral and depth extent of the upper mantle low-velocity region, as are non-plume models invoking small-scale convection passively induced by lithospheric extension or by edge-flow around thick cratonic lithosphere. Instead, the low-velocity anomaly beneath the AARS can be explained by the African superplume model, where the anomalous upper mantle structure is a continuation of a large, thermo-chemical upwelling in the lower mantle beneath southern Africa. These findings provide further support for a geodynamic connection between processes in Earth's lower mantle and continental break-up within the AARS.
NASA Astrophysics Data System (ADS)
Qian, Wangsheng; Wang, Wenzhong; Zou, Fan; Wu, Zhongqing
2018-01-01
Orthopyroxene (opx) is an important mineral in petrologic models for the upper mantle. Its elastic properties are fundamental for understanding the chemical composition and geodynamics of the upper mantle. Here we calculate the elastic properties of orthoenstatite (MgSiO3), the Mg end-member orthopyroxene under upper mantle pressure and temperature conditions using first principle calculations with local density approximation. Bulk and shear moduli increase nonlinearly with pressure at mantle temperatures, but the shear modulus and
Modelling the isotopic evolution of the Earth.
Paul, Debajyoti; White, William M; Turcotte, Donald L
2002-11-15
We present a flexible multi-reservoir (primitive lower mantle, depleted upper mantle, upper continental crust, lower continental crust and atmosphere) forward-transport model of the Earth, incorporating the Sm-Nd, Rb-Sr, U-Th-Pb-He and K-Ar isotope-decay systematics. Mathematically, the model consists of a series of differential equations, describing the changing abundance of each nuclide in each reservoir, which are solved repeatedly over the history of the Earth. Fluxes between reservoirs are keyed to heat production and further constrained by estimates of present-day fluxes (e.g. subduction, plume flux) and current sizes of reservoirs. Elemental transport is tied to these fluxes through 'enrichment factors', which allow for fractionation between species. A principal goal of the model is to reproduce the Pb-isotope systematics of the depleted upper mantle, which has not been done in earlier models. At present, the depleted upper mantle has low (238)U/(204)Pb (mu) and (232)Th/(238)U (kappa) ratios, but Pb-isotope ratios reflect high time-integrated values of these ratios. These features are reproduced in the model and are a consequence of preferential subduction of U and of radiogenic Pb from the upper continental crust into the depleted upper mantle. At the same time, the model reproduces the observed Sr-, Nd-, Ar- and He-isotope ratios of the atmosphere, continental crust and mantle. We show that both steady-state and time-variant concentrations of incompatible-element concentrations and ratios in the continental crust and upper mantle are possible. Indeed, in some cases, incompatible-element concentrations and ratios increase with time in the depleted mantle. Hence, assumptions of a progressively depleting or steady-state upper mantle are not justified. A ubiquitous feature of this model, as well as other evolutionary models, is early rapid depletion of the upper mantle in highly incompatible elements; hence, a near-chondritic Th/U ratio in the upper mantle throughout the Archean is unlikely. The model also suggests that the optimal value of the bulk silicate Earth's K/U ratio is close to 10000; lower values suggested recently seem unlikely.
Mid-ocean ridges produced thicker crust in the Jurassic than in Recent times
NASA Astrophysics Data System (ADS)
Van Avendonk, H. J.; Harding, J.; Davis, J. K.; Lawver, L. A.
2016-12-01
We present a compilation of published marine seismic refraction data to show that oceanic crust was 1.7 km thicker on average in the mid-Jurassic (170 Ma) than along the present-day mid-ocean ridge system. Plate reconstructions in a fixed hotspot framework show that the thickness of oceanic crust does not correlate with proximity to mantle hotspots, so it is likely that mid-plate volcanism is not the cause of this global trend. We propose that more melt was extracted from the upper mantle beneath mid-ocean ridges in the Jurassic than in recent times. Numerical studies show that temperature increase of 1 degree C in the mantle can lead to approximately 50-70 m thicker crust, so the upper mantle may have cooled 15-20 degrees C/100 Myr since 170 Ma. This average temperature decrease is larger than the secular cooling rate of the Earth's mantle, which is roughly 10 degrees C/100 Myr since the Archean. Apparently, the present-day configuration and dynamics of continental and oceanic plates removes heat more efficiently from the Earth's mantle than in its earlier history. The increase of ocean crustal thickness with plate age is also stronger in the Indian and Atlantic oceans than in the Pacific Ocean basin. This confirms that thermal insulation by the supercontinent Pangaea raised the temperature of the underlying asthenospheric mantle, which in turn led to more magmatic output at the Jurassic mid-ocean ridges of the Indian and Atlantic oceans.
Linking Upper Mantle Processes and Long-wavelength Topographic Swells in Cenozoic Africa
NASA Astrophysics Data System (ADS)
Nixon, S.; Maclennan, J.; White, N.; Fishwick, S.
2008-12-01
The topography of present day Africa is influenced by two different wavelengths of dynamic support. The South African Superplume sits beneath Sub-equatorial Africa and is thought to be supported by a lower mantle thermo-chemical anomaly. On a smaller scale a series of topographic domal swells, 1000km in diameter, occur across the continent. The swells are characterised by elevated dynamic topography, a positive long-wavelength gravity anomaly and a negative velocity perturbation from a higher mode surface wave tomography model. In addition, where the lithosphere is thinner than 100km, the swells are capped with volcanic products, erupted periodically since ~30 Ma. These areas include the Cameroon Volcanic line, Hoggar, Tibesti and Darfur in North Africa, and the Ethiopian Plateau and the Kenyan dome found along the East African Rift system. The given relationships suggest the domal swells result from and are supported by upper mantle convection. In order to investigate these relationships a database of 3000 geochemical analyses has been assembled for Cenozoic African volcanism, from both literature search and by new analyses of samples collected from the Al Haruj volcanic field in Libya. Incompatible trace element ratios and REE trends from primitive basalts (>7wt% MgO) erupted less then 10Ma, representing the products of mantle melting, are compared with the upper mantle velocity structure. At depths of 75-100km the greatest velocity perturbation is associated with the Afar/Ethiopia region, where as smaller perturbations are found beneath the North African swells of Hoggar, Tibesti and Darfur. The comparison of absolute velocities, taken from the higher mode tomography model, with trace element ratios has found the low seismic velocity Afar/Ethiopia region to have shallow melting at high melt fractions (La/Yb~9) whereas North African swells with faster seismic velocities at 100 km depth, show deeper melting with smaller melt fractions (La/Yb~30). This positive correlation continues to depths of 150km and is believed to represent variations in mantle potential temperature beneath the African continent. With further modelling of major, trace and REE data we hope to provide insights into variations in mantle potential temperature, melt fraction and velocity structure beneath the topographic swells across the African continent.
The Upper Mantle Flow Field around South-Africa as Reflected by Isotopic Provinciality
NASA Astrophysics Data System (ADS)
Meyzen, C.; Blichert-Toft, J.; Ludden, J.; Humler, E.; Mevel, C.; Albarede, F.
2006-12-01
Isotopic studies of MORB have established the existence of broad isotopic provinces within the underlying asthenosphere, such as in the Indian Ocean (DUPAL). How these features relate to mantle circulation is, however, still unknown. The steepness of the transition between such isotopic provinces will define the geometry of the velocity field in the upper mantle. In this respect, the transition between the Indian and South Atlantic provinces, two domains that are isotopically contrasted, should be readily identifiable over this long ridge segment. Here, we present Hf isotope data for 60 samples dredged along the SWIR between 35° and 69°E. The new Hf isotope data show that the Indian asthenosphere does not spill directly into the South Atlantic upper mantle: the general decreasing southward gradient observed for ^{176}Hf/^{177}Hf down the mid- Atlantic Ridge, and also for Sr isotopes and model Th/U ratios (derived from Pb isotopes), is overprinted by material with radiogenic Sr, unradiogenic Hf and high Th/U. The Indian domain grades into the South Atlantic around Bouvet, while the South Atlantic collides with the Atlantic province around Tristan. We interpret these features to represent fronts between three adjacent isotopic provinces similar to what has been suggested for the Australian-Antarctic Discordance. The common DUPAL signature of MORB and OIB from the Indian province and the geochemistry of Gulf of Aden MORB and the Afar plume suggest that the source of this distinctive mantle component is deep and lies to the north of the province. This is also what the three-dimensional flow field computed by Behn et al. (2004) from shear-wave splitting shows with a major lower mantle upwelling radiating at the base of the asthenosphere under the Afar plume. Lower mantle gushing out from this source flows southward unimpeded along the Indian ridges, whereas it only reaches the South Atlantic ridge after first having been deflected under the deep roots of the South African Archean cratons. Erosion of these roots by the asthenospheric drift confers a distinct continental signature on the source of South Atlantic MORB. This pattern is also consistent with the observation that the lowest He isotope values occur, on average, along the South Atlantic ridge. To some extent, the dynamics of the North Atlantic upper mantle mirrors the Indian situation: the flow field of Behn et al. (2004) shows that the North Atlantic asthenosphere also fills up through deep mantle upwellings, which is consistent with the Dupal-like isotopic signature of the Arctic ridges. M.D. Behn, C.P. Conrad and P.G. Silver (2004), Detection of upper mantle flow associated with the African Superplume, Earth. Planet. Sci. Lett., 224, 259-274.
NASA Astrophysics Data System (ADS)
Contenti, Sean; Gu, Yu Jeffrey; Ökeler, Ahmet; Sacchi, Mauricio D.
2012-01-01
In this study we utilize over 5000 SS waveforms to investigate the high-resolution mantle reflectivity structure down to 1200 km beneath the South American convergent margin. Our results indicate that the dynamics of the Nazca subduction are more complex than previously suggested. The 410- and 660-km seismic discontinuities beneath the Pacific Ocean and Amazonian Shield exhibit limited lateral depth variations, but their depths vary substantially in the vicinity of the subducting Nazca plate. The reflection amplitude of the 410-km discontinuity is greatly diminished in a ˜1300-km wide region in the back-arc of the subducting plate, which is likely associated with a compositional heterogeneity on top of the upper mantle transition zone. The underlying 660-km discontinuity is strongly depressed, showing localized depth and amplitude variations both within and to the east of the Wadati-Benioff zone. The width of this anomalous zone (˜1000 km) far exceeds that of the high-velocity slab structure and suggesting significant slab deformation within the transition zone. The shape of the 660-km discontinuity and the presence of lower mantle reflectivity imply both stagnation and penetration are possible as the descending Nazca slab impinges upon the base of the upper mantle.
Dehydration-driven stress transfer triggers intermediate-depth earthquakes
NASA Astrophysics Data System (ADS)
Ferrand, T. P.; Schubnel, A.; Hilairet, N.; Incel, S.; Deldicque, D.; Labrousse, L.; Gasc, J.; Renner, J.; Wang, Y.; Green, H. W., II
2016-12-01
Intermediate-depth earthquakes (30-300 km) have been extensively documented within subducting oceanic slabs but their physical mechanisms remain enigmatic. Earthquakes occur both in the upper and lower Wadati-Benioff planes of seismicity (UBP and LBP). The LBP is located in the mantle of the subducted oceanic lithosphere, 20-40 km below the plate interface. Several mechanisms have been proposed: dehydration embrittlement of antigorite, shear heating instabilities, and the reactivation of pre-existing shear zones. We dehydrated synthetic antigorite-olivine aggregates, a proxy for serpentinized mantle, during deformation at upper mantle conditions. Acoustic emissions (AEs) were recorded during dehydration of samples with antigorite contents as low as 5 vol.% and with up to 50 vol.%, deformed at pressures of 1.1 GPa and 3.5 GPa, respectively. Source characteristics of these AEs are compatible with faults sealed by fluid-bearing micro-pseudotachylytes in recovered samples, demonstrating that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These intermediate-depth earthquake analogs reconcile the apparent contradictions of previous laboratory studies and confirm that little mantle hydration, as suggested by seismic imaging, may suffice to generate LBP seismicity. We propose an alternative model to dehydration-embrittlement in which dehydration-induced stress transfer, rather than fluid overpressure, is the trigger of mantle rocks embrittlement.
A Global Upper-Mantle Tomographic Model of Shear Attenuation
NASA Astrophysics Data System (ADS)
Karaoglu, H.; Romanowicz, B. A.
2016-12-01
Mapping anelastic 3D structure within the earth's mantle is key to understanding present day mantle dynamics, as it provides complementary constraints to those obtained from elastic structure, with the potential to distinguish between thermal and compositional heterogeneity. For this, we need to measure seismic wave amplitudes, which are sensitive to both elastic (through focusing and scattering) and anelastic structure. The elastic effects are less pronounced at long periods, so previous global upper-mantle attenuation models are based on teleseismic surface wave data, sometimes including overtones. In these studies, elastic effects are considered either indirectly, by eliminating data strongly contaminated by them (e.g. Romanowicz, 1995; Gung and Romanowicz, 2004), or by correcting for elastic focusing effects using an approximate linear approach (Dalton et al., 2008). Additionally, in these studies, the elastic structure is held fixed when inverting for intrinsic attenuation . The importance of (1) having a good starting elastic model, (2) accurate modeling of the seismic wavefield and (3) joint inversion for elastic and anelastic structure, becomes more evident as the targeted resolution level increases. Also, velocity dispersion effects due to anelasticity need to be taken into account. Here, we employ a hybrid full waveform inversion method, inverting jointly for global elastic and anelastic upper mantle structure, starting from the latest global 3D shear velocity model built by our group (French and Romanowicz, 2014), using the spectral element method for the forward waveform modeling (Capdeville et al., 2003), and normal-mode perturbation theory (NACT - Li and Romanowicz, 1995) for kernel computations. We present a 3D upper-mantle anelastic model built by using three component fundamental and overtone surface waveforms down to 60 s as well as long period body waveforms down to 30 s. We also include source and site effects to first order as frequency independent scalar factors. The robustness of the inversion method is assessed through synthetic and resolution tests. We discuss salient features of the resulting anelastic model and in particular the well-resolved strong correlation with tectonics observed in the first 200 km of the mantle.
Sintering mantle mineral aggregates with submicron grains: examples of olivine and clinopyroxene
NASA Astrophysics Data System (ADS)
Tsubokawa, Y.; Ishikawa, M.
2017-12-01
Physical property of the major mantle minerals play an important role in the dynamic behavior of the Earth's mantle. Recently, it has been found that nano- to sub-micron scale frictional processes might control faulting processes and earthquake instability, and ultrafine-grained mineral aggregates thus have attracted the growing interest. Here we investigated a method for preparing polycrystalline clinoyproxene and polycrystalline olivine with grain size of sub-micron scale from natural crystals, two main constituents of the upper mantle. Nano-sized powders of both minerals are sintered under argon flow at temperatures ranging from 1130-1350 °C for 0.5-20 h. After sintering at 1180 °C and 1300 °C, we successfully fabricated polycrystalline clinopyroxene and polycrystalline olivine with grain size of < 500 nm, respectively. Our experiments demonstrate future measurements of ultrafine-grained mineral aggregates on its physical properties of Earth's mantle.
Rheological properties of bridgmanite based on deformation experiments
NASA Astrophysics Data System (ADS)
Tsujino, N.; Yamazaki, D.; Yoshino, T.; Sakurai, M.; Higo, Y.; Tange, Y.
2017-12-01
The lower mantle occupies 65% of Earth's mantle. Therefore, rheology of the Earth's lower mantle is most important to understand dynamic processes in the Earth's mantle. In Tsujino et al. (2016), we developed deformation experimental technique using D-DIA apparatus as Kawai-type (6-8 type). Crystallographic-preferred-orientation (CPO) of bridgmanite at top of the Earth's lower mantle conditions was determined by shear deformation experiments under upper most lower mantle conditions (25 GPa and 1873 K). The observed seismic shear wave anisotropies near several subducted slabs (Tonga-Kermadec, Kurile, Peru and Java) can be explained in terms of the CPO of bridgmanite as induced by mantle flow parallel to the direction of subduction. On the other hands, one dimensional viscosity models of the Earth's mantle were proposed by geophysical observations while there are large inconsistencies of viscosity (2 3 order magnitude) in the lower mantle between suggested models. It is important to determine viscosity of lower mantle minerals by high pressure experiments in order to understand mantle dynamics. In this study, we conducted in-situ stress-strain measurements of MgSiO3-bridgmanite aggregate at 1473-1673 K and 24 GPa using D-DIA type apparatus as Kawai-type at Spring-8 BL04B1. Measured uniaxial stress, strain rate of bridgmanite during deformation experiments were 0.3-1.3 GPa and 4×10-6 - 3×10-5 /s with <6% strain. Creep strength of bridgmanite at 1×10-5 /s is largest in the mantle minerals and 0.5-1 order magnitude larger than those of transition minerals when only the results using D-DIA apparatus are compared.
Self-Organized Mantle Layering After the Magma-Ocean Period
NASA Astrophysics Data System (ADS)
Hansen, U.; Dude, S.
2017-12-01
The thermal history of the Earth, it's chemical differentiation and also the reaction of the interior with the atmosphere is largely determined by convective processes within the Earth's mantle. A simple physical model, resembling the situation, shortly after core formation, consists of a compositionally stable stratified mantle, as resulting from fractional crystallization of the magma ocean. The early mantle is subject to heating from below by the Earth's core and cooling from the top through the atmosphere. Additionally internal heat sources will serve to power the mantle dynamics. Under such circumstances double diffusive convection will eventually lead to self -organized layer formation, even without the preexisting jumps is material properties. We have conducted 2D and 3D numerical experiments in Cartesian and spherical geometry, taking into account mantle realistic values, especially a strong temperature dependent viscosity and a pressure dependent thermal expansivity . The experiments show that in a wide parameter range. distinct convective layers evolve in this scenario. The layering strongly controls the heat loss from the core and decouples the dynamics in the lower mantle from the upper part. With time, individual layers grow on the expense of others and merging of layers does occur. We observe several events of intermittent breakdown of individual layers. Altogether an evolution emerges, characterized by continuous but also spontaneous changes in the mantle structure, ranging from multiple to single layer flow. Such an evolutionary path of mantle convection allows to interpret phenomena ranging from stagnation of slabs at various depth to variations in the chemical signature of mantle upwellings in a new framework.
Facilitating atmosphere oxidation through mantle convection
NASA Astrophysics Data System (ADS)
Lee, K. K. M.; Gu, T.; Creasy, N.; Li, M.; McCammon, C. A.; Girard, J.
2017-12-01
Earth's mantle connects the surface with the deep interior through convection, and the evolution of its redox state will affect the distribution of siderophile elements, recycling of refractory isotopes, and the oxidation state of the atmosphere through volcanic outgassing. While the rise of oxygen in the atmosphere, i.e., the Great Oxidation Event (GOE) occurred 2.4 billion years ago (Ga), multiple lines of evidence point to oxygen production in the atmosphere well before 2.4 Ga. In contrast to the fluctuations of atmospheric oxygen, vanadium in Archean mantle lithosphere suggests that the mantle redox state has been constant for 3.5 Ga. Indeed, the connection between the redox state of the deep Earth and the atmosphere is enigmatic as is the effect of redox state on mantle dynamics. Here we show a redox-induced density contrast affects mantle convection and may potentially cause the oxidation of the upper mantle. We compressed two synthetic enstatite chondritic samples with identical bulk compositions but formed under different oxygen fugacities (fO2) to lower mantle pressures and temperatures and find Al2O3 forms its own phase separate from the dominant bridgmanite phase in the more reduced composition, in contrast to a more Al-rich, bridgmanite-dominated assemblage for a more oxidized starting composition. As a result, the reduced material is 1-1.5% denser than the oxidized material. Subsequent experiments on other plausible mantle compositions, which differ only in redox state of the starting glass materials, show similar results: distinct mineral assemblages and density contrasts up to 4%. Our geodynamic simulations suggest that such a density contrast causes a rapid ascent and accumulation of oxidized material in the upper mantle, with descent of the denser reduced material to the core-mantle boundary. The resulting heterogeneous redox conditions in Earth's interior may have contributed to the large low-shear velocity provinces in the lower mantle and the rise of oxygen in Earth's atmosphere.
NASA Astrophysics Data System (ADS)
Munzarova, H.; Plomerova, J.; Kissling, E. H.
2015-12-01
Consideration of only isotropic wave propagation and neglecting anisotropy in tomography studies is a simplification obviously incongruous with current understanding of mantle-lithosphere plate dynamics. Both fossil anisotropy in the mantle lithosphere and anisotropy due to the present-day flow in the asthenosphere may significantly influence propagation of seismic waves. We present a novel code for anisotropic teleseismic tomography (AniTomo) that allows to invert relative P-wave travel time residuals simultaneously for coupled isotropic-anisotropic P-wave velocity models of the upper mantle. We have modified frequently-used isotropic teleseismic tomography code Telinv by assuming weak hexagonal anisotropy with symmetry axis oriented generally in 3D to be, together with heterogeneities, a source of the observed P-wave travel-time residuals. Careful testing of the new code with synthetics, concentrating on strengths and limitations of the inversion method, is a necessary step before AniTomo is applied to real datasets. We examine various aspects of anisotropic tomography and particularly influence of ray coverage on resolvability of individual model parameters and of initial models on the result. Synthetic models are designed to schematically represent heterogeneous and anisotropic structures in the upper mantle. Several synthetic tests mimicking a real tectonic setting, e.g. the lithosphere subduction in the Northern Apennines in Italy (Munzarova et al., G-Cubed, 2013), allow us to make quantitative assessments of the well-known trade-off between effects of seismic anisotropy and heterogeneities. Our results clearly document that significant distortions of imaged velocity heterogeneities may result from neglecting anisotropy.
NASA Astrophysics Data System (ADS)
Levin, V. L.; Moucha, R.; Yuan, H.
2013-12-01
Global seismic models show gradual and systematic changes in upper mantle seismic properties beneath North America. Faster and thicker lithosphere of the interior thins eastward. Upper mantle rock fabric reflected in observations of seismic anisotropy also varies. Near the coast apparent fast directions of split shear waves are nearly east-west, with considerable scatter. Further inland they are more uniform and align SW-NE, close to the absolute plate motion direction of North America. Mantle convection simulations driven by density inferred from global joint seismic-geodynamic tomography models exhibit complex flow beneath the eastern edge of the North American continent due to the ongoing descent of the Farallon slab deep beneath it (figure 1). Flow predicted beneath the coast is nearly horizontal with a small, though dynamically important, vertical component, while west of the Appalachians it turns downward. Long records of teleseismic observations accumulated at permanent seismic stations HRV, PAL and SSPA (figure 2) are inverted for vertical distribution of anisotropic parameters. We find preference for more than one layer of anisotropy beneath all sites, with significantly different parameters that could reflect either lateral variations in the lithospheric thickness, variations in the asthenospheric flow field, or both. Since we find considerable consistency in directional patterns of P-to-S mode converted waves associated with the lower part of the lithosphere, variations of asthenospheric flow seem to be a more plausible explanation. We explore the links between predicted flow and inferences from seismic data with additional observations of anisotropy and calculations of flow-induced rock fabric.
NASA Astrophysics Data System (ADS)
Jones, M.; Soule, S. A.; Kurz, M. D.; Wanless, V. D.; Le Roux, V.; Klein, F.; Mittelstaedt, E. L.; Curtice, J.
2016-12-01
During a 1985 cruise, the Mid-Atlantic Ridge (MAR) near 14°N yielded an unusually vesicular mid-ocean ridge (MOR) basalt that popped upon recovery from the seafloor due to the release of trapped volatiles. This `popping rock' has been inferred to be representative of primitive, undegassed magmas from the upper mantle due to its high volatile concentrations. Thus, the sample has been used to constrain CO2 flux from the MOR system, upper mantle volatile concentrations, and magma degassing dynamics. However, the lack of geologic context for the original popping rock raises questions about whether it truly reflects the volatile content of its mantle source. Here, we present results from a 2016 cruise to the MAR aimed at characterizing the geologic context of popping rocks and understanding their origins. The newly recovered samples display differences in volatile concentrations and vesicularities between popping and non-popping rocks. These differences may be related to geologic setting and eruption dynamics with potential implications for mantle volatile concentrations. Volatile concentrations in the outer quenched margin of new samples were measured by ion microprobe to elucidate degassing systematics, brine/magma interactions, and popping rock formation. The large variability in dissolved H2O (0.05-0.77 wt%) can be attributed to spatially variable brine contamination. Dissolved CO2 concentrations (153-356 ppm) are likely controlled by initial volatile concentrations and variable degrees of degassing. The subset of popping samples display low dissolved CO2 concentrations (161-178 ppm) and moderate dissolved H2O concentrations (.44-.50 wt%) and are at equilibrium with their eruption depth based on solubility calculations. X-ray microtomography reveals vesicularity in newly collected popping rocks exceeding 19%, making these samples the most highly vesicular recovered from the MAR. The total gas contents in the basaltic glasses are inferred from dissolved volatile concentrations and vesicularity. These calculations are aided by analysis of gas contents in vesicles by confocal Raman spectroscopy and vacuum crushing experiments. The preliminary results and seafloor observations allow an evaluation of the origins of popping rocks and their implications for mantle volatile concentrations.
Upper- and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs
NASA Astrophysics Data System (ADS)
Chang, Sung-Joon; Ferreira, Ana M. G.; Faccenda, Manuele
2016-02-01
Mantle plumes are thought to play a key role in transferring heat from the core-mantle boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate hotspots, large igneous provinces and hence considerable dynamic topography. However, the active role of mantle plumes on subducting slabs remains poorly understood. Here we show that the stagnation at 660 km and fastest trench retreat of the Tonga slab in Southwestern Pacific are consistent with an interaction with the Samoan plume and the Hikurangi plateau. Our findings are based on comparisons between 3D anisotropic tomography images and 3D petrological-thermo-mechanical models, which self-consistently explain several unique features of the Fiji-Tonga region. We identify four possible slip systems of bridgmanite in the lower mantle that reconcile the observed seismic anisotropy beneath the Tonga slab (VSH>VSV) with thermo-mechanical calculations.
NASA Astrophysics Data System (ADS)
Van der Werf, Thomas F.; Chatzaras, Vasileios; Tikoff, Basil; Drury, Martyn R.
2016-04-01
Baja California is an active transtensional rift zone, which links the San Andreas Fault with the East Pacific Rise. The erupted basalts of the Holocene San Quintin volcanic field contain xenoliths, which sample the lower crust and upper mantle beneath Baja California. The aim of this research is to gain insight in the rheology of the lower crust and the upper mantle by investigating the xenolith microstructure. Microstructural observations have been used to determine the dominant deformation mechanisms. Differential stresses were estimated from recrystallized grain size piezometry of plagioclase and clinopyroxene for the lower crust and olivine for the upper mantle. The degree of deformation can be inferred from macroscopic foliations and the deformation microstructures. Preliminary results show that both the lower crust and the upper mantle have been affected by multiple stages of deformation and recrystallization. In addition the dominant deformation mechanism in both the lower crust and the upper mantle is dislocation creep based on the existence of strong crystallographic preferred orientations. The differential stress estimates for the lower crust are 10-29 MPa using plagioclase piezometry and 12-35 MPa using clinopyroxene piezometry. For the upper mantle, differential stress estimates are 10-20 MPa. These results indicate that the strength of the lower crust and the upper mantle are very similar. Our data do not fit with the general models of lithospheric strength and may have important implications for the rheological structure of the lithosphere in transtensional plate margins and for geodynamic models of the region.
Inference of mantle viscosity for depth resolutions of GIA observations
NASA Astrophysics Data System (ADS)
Nakada, Masao; Okuno, Jun'ichi
2016-11-01
Inference of the mantle viscosity from observations for glacial isostatic adjustment (GIA) process has usually been conducted through the analyses based on the simple three-layer viscosity model characterized by lithospheric thickness, upper- and lower-mantle viscosities. Here, we examine the viscosity structures for the simple three-layer viscosity model and also for the two-layer lower-mantle viscosity model defined by viscosities of η670,D (670-D km depth) and ηD,2891 (D-2891 km depth) with D-values of 1191, 1691 and 2191 km. The upper-mantle rheological parameters for the two-layer lower-mantle viscosity model are the same as those for the simple three-layer one. For the simple three-layer viscosity model, rate of change of degree-two zonal harmonics of geopotential due to GIA process (GIA-induced J˙2) of -(6.0-6.5) × 10-11 yr-1 provides two permissible viscosity solutions for the lower mantle, (7-20) × 1021 and (5-9) × 1022 Pa s, and the analyses with observational constraints of the J˙2 and Last Glacial Maximum (LGM) sea levels at Barbados and Bonaparte Gulf indicate (5-9) × 1022 Pa s for the lower mantle. However, the analyses for the J˙2 based on the two-layer lower-mantle viscosity model only require a viscosity layer higher than (5-10) × 1021 Pa s for a depth above the core-mantle boundary (CMB), in which the value of (5-10) × 1021 Pa s corresponds to the solution of (7-20) × 1021 Pa s for the simple three-layer one. Moreover, the analyses with the J˙2 and LGM sea level constraints for the two-layer lower-mantle viscosity model indicate two viscosity solutions: η670,1191 > 3 × 1021 and η1191,2891 ˜ (5-10) × 1022 Pa s, and η670,1691 > 1022 and η1691,2891 ˜ (5-10) × 1022 Pa s. The inferred upper-mantle viscosity for such solutions is (1-4) × 1020 Pa s similar to the estimate for the simple three-layer viscosity model. That is, these analyses require a high viscosity layer of (5-10) × 1022 Pa s at least in the deep mantle, and suggest that the GIA-based lower-mantle viscosity structure should be treated carefully in discussing the mantle dynamics related to the viscosity jump at ˜670 km depth. We also preliminarily put additional constraints on these viscosity solutions by examining typical relative sea level (RSL) changes used to infer the lower-mantle viscosity. The viscosity solution inferred from the far-field RSL changes in the Australian region is consistent with those for the J˙2 and LGM sea levels, and the analyses for RSL changes at Southport and Bermuda in the intermediate region for the North American ice sheets suggest the solution of η670,D > 1022, ηD,2891 ˜ (5-10) × 1022 Pa s (D = 1191 or 1691 km) and upper-mantle viscosity higher than 6 × 1020 Pa s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Y; Nyblade, A; Rodgers, A
2007-11-09
The shear velocity structure of the shallow upper mantle beneath the Arabian Shield has been modeled by inverting new Rayleigh wave phase velocity measurements between 45 and 140 s together with previously published Rayleigh wave group velocity measurement between 10 and 45 s. For measuring phase velocities, we applied a modified array method that minimizes the distortion of raypaths by lateral heterogeneity. The new shear velocity model shows a broad low velocity region in the lithospheric mantle across the Shield and a low velocity region at depths {ge} 150 km localized along the Red Sea coast and Makkah-Madinah-Nafud (MMN) volcanicmore » line. The velocity reduction in the upper mantle corresponds to a temperature anomaly of {approx}250-330 K. These finding, in particular the region of continuous low velocities along the Red Sea and MMN volcanic line, do not support interpretations for the origin of the Cenozoic plateau uplift and volcanism on the Shield invoking two separate plumes. When combined with images of the 410 and 660 km discontinuities beneath the southern part of the Arabian Shield, body wave tomographic models, a S-wave polarization analysis, and SKS splitting results, our new model supports an interpretation invoking a thermal upwelling of warm mantle rock originating in the lower mantle under Africa that crosses through the transition zone beneath Ethiopia and moves to the north and northwest under the eastern margin of the Red Sea and the Arabian Shield. In this interpretation, the difference in mean elevation between the Platform and Shield can be attributed to isostatic uplift caused by heating of the lithospheric mantle under the Shield, with significantly higher region along the Red Sea possibly resulting from a combination of lithosphere thinning and dynamic uplift.« less
NASA Astrophysics Data System (ADS)
Si, Shaokun; Tian, Xiaobo; Gao, Rui
2017-05-01
To detect the thinning, modification, and replacement of the basement of the lithosphere is a key step in understanding the destruction mechanism of the North China lithosphere. The difference of the basement of the lithosphere is mainly displayed by the variation of the peridotite composition and its physical state. Vp/Vs ratio (hereafter referred to as velocity ratio) is more sensitive to this change than Vp or Vs alone. By means of the strong dependence of the travel-time of the wave converted at the 410-km discontinuity (P410s) observed in the receiver function (RF) on the velocity ratio in the upper mantle, we developed a new mapping method to constrain the velocity ratio between the Moho and 410-km discontinuity. Using the RFs extracted from 246 broadband stations beneath the North China Craton (NCC), we obtained a high-resolution velocity ratio image of the upper mantle. The abnormal velocity ratio indicates a strong lateral variation of the mineral composition in the upper mantle beneath North China. Two low-velocity-ratio patches are imaged at the top of the upper mantle and the 410 km depth, respectively. The former may be related to the orthopyroxene enrichment in the lithospheric mantle, and the latter may reflect the stagnant Pacific slab in the mantle transition zone (MTZ). A prominent high-velocity-ratio anomaly is also imaged in the upper mantle beneath the Shaanxi-Shanxi rift system in the central NCC, with the highest anomaly reaching 10%. We speculate that the high velocity ratio of upper mantle is related to convective flow due to slab dehydration in the MTZ. The dehydration of the retained slab in the MTZ results in partial melting and upwelling of upper mantle materials. Such convective flow and their melting are closely related to the Cenozoic basalt eruption in the northern section of the Shaanxi-Shanxi rift system.
NASA Astrophysics Data System (ADS)
Grose, C. J.; Afonso, J. C.
2013-12-01
We have developed new physically comprehensive thermal plate models of the oceanic lithosphere which incorporate temperature- and pressure-dependent heat transport properties and thermal expansivity, melting beneath ridges, hydrothermal circulation near ridge axes, and insulating oceanic crust. These models provide good fits to global databases of seafloor topography and heat flow, and seismic evidence of thermal structure near ridge axes. We couple these thermal plate models with thermodynamic models to predict the petrology of oceanic lithosphere. Geoid height predictions from our models suggest that there is a strong anomaly in geoid slope (over age) above ~25 Ma lithosphere due to the topography of garnet-field mantle. A similar anomaly is also present in geoid data over fracture zones. In addition, we show that a new assessment of a large database of ocean island basalt Sm/Yb systematics indicates that there is an unmistakable step-like increase in Sm/Yb values around 15-20 Ma, indicating the presence of garnet. To explain this feature, we have attempted to couple our thermo-petrological models of oceanic upper mantle with an open system, non-modal, dynamic melting model with diffusion kinetics to investigate trace element partitioning in an ascending mantle column.
Pan, Ding; Spanu, Leonardo; Harrison, Brandon; Sverjensky, Dimitri A; Galli, Giulia
2013-04-23
Water is a major component of fluids in the Earth's mantle, where its properties are substantially different from those at ambient conditions. At the pressures and temperatures of the mantle, experiments on aqueous fluids are challenging, and several fundamental properties of water are poorly known; e.g., its dielectric constant has not been measured. This lack of knowledge of water dielectric properties greatly limits our ability to model water-rock interactions and, in general, our understanding of aqueous fluids below the Earth's crust. Using ab initio molecular dynamics, we computed the dielectric constant of water under the conditions of the Earth's upper mantle, and we predicted the solubility products of carbonate minerals. We found that MgCO3 (magnesite)--insoluble in water under ambient conditions--becomes at least slightly soluble at the bottom of the upper mantle, suggesting that water may transport significant quantities of oxidized carbon. Our results suggest that aqueous carbonates could leave the subducting lithosphere during dehydration reactions and could be injected into the overlying lithosphere. The Earth's deep carbon could possibly be recycled through aqueous transport on a large scale through subduction zones.
Upper Mantle Responses to India-Eurasia Collision in Indochina, Malaysia, and the South China Sea
NASA Astrophysics Data System (ADS)
Hongsresawat, S.; Russo, R. M.
2016-12-01
We present new shear wave splitting and splitting intensity measurements from SK(K)S phases recorded at seismic stations of the Malaysian National Seismic Network. These results, in conjunction with results from Tibet and Yunnan provide a basis for testing the degree to which Indochina and South China Sea upper mantle fabrics are responses to India-Eurasia collision. Upper mantle fabrics derived from shear wave splitting measurements in Yunnan and eastern Tibet parallel geodetic surface motions north of 26°N, requiring transmission of tractions from upper mantle depths to surface, or consistent deformation boundary conditions throughout the upper 200 km of crust and mantle. Shear wave splitting fast trends and surface velocities diverge in eastern Yunnan and south of 26°N, indicating development of an asthenospheric layer that decouples crust and upper mantle, or corner flow above the subducted Indo-Burma slab. E-W fast shear wave splitting trends southwest of 26°N/104°E indicate strong gradients in any asthenospheric infiltration. Possible upper mantle flow regimes beneath Indochina include development of olivine b-axis anisotropic symmetry due to high strain and hydrous conditions in the syntaxis/Indo-Burma mantle wedge (i.e., southward flow), development of strong upper mantle corner flow in the Indo-Burma wedge with olivine a-axis anisotropic symmetry (i.e., westward flow), and simple asthenospheric flow due to eastward motion of Sundaland shearing underlying asthenosphere. Further south, shear-wave splitting delay times at Malaysian stations vary from 0.5 seconds on the Malay Peninsula to over 2 seconds at stations on Borneo. Splitting fast trends at Borneo stations and Singapore trend NE-SW, but in northern Peninsular Malaysia, the splitting fast polarization direction is NW-SE, parallel to the trend of the Peninsula. Thus, there is a sharp transition from low delay time and NW-SE fast polarization to high delay times and fast polarization directions that parallel the strike of the now-inoperative spreading center in the South China Sea. This transition appears to occur in the central portion of Peninsular Malaysia and may mark the boundary between Tethyan upper mantle extruded from the India-Asia collision zone and supra-subduction upper mantle of the Indonesian arc.
NASA Astrophysics Data System (ADS)
Rai, A. K.; Breivik, A. J.; Mjelde, R.; Hanan, B. B.; Ito, G.; Sayit, K.; Howell, S.; Vogt, P. R.; Pedersen, R.
2012-12-01
The Aegir Ridge is an extinct spreading ridge in North-East Atlantic ocean. A thinner than normal crust around the Aegir Ridge appears as a hole in the extensively magmatic surroundings. Its proximity to the Iceland hot-spot makes it particularly important for understanding the changing dynamics of hotspot-ridge interaction. An integrated seismic and dredging experiment was conduced during the summer of 2010 with the primary aim to understand the nature of magmatism along the ridge shortly before cessation of seafloor spreading through variations of sub-seafloor lithological properties. Here, we present results of analysis of converted shear-waves recorded on OBS-sesimic data, and ship-gravity data. The shear-wave study enables us to quantify the variation of Vp/Vs in the sediments, crust and the upper-most mantle. We also inverted the gravity data to determine the sub-seafloor density distribution. The P- to S- converted shear-waves were identified on 20 OBSs along a profile with a total length of 550 km parallel to the ridge-axis. The sedimentary section on top of the crystalline crust is well illuminated in the streamer data. The forward modelling of the OBS data reveals that the Vp/Vs ratio in sediments are as high as 4.8, decreasing rapidly to a value of 3.00, primarily due to compaction of sediments with depth. Identification of sufficient PnS and PSn phases enable us to model the crustal and upper-most mantle Vp/Vs. The upper crystalline crust requires a Vp/Vs value of 1.99 and 1.89 for the southern and the northern profiles respectively, to fit the observations. The lower crust and upper-most part of the mantle have a Vp/Vs of ~1.82 and 1.795 respectively. Slightly lower Vp and moderate increase in Vp/Vs in parts of the crust and upper mantle presumably indicate presence of faulting, fracturing in the crust and moderate degree of serpentinization of the upper mantle. A sub-seafloor density model is derived by non-linear inversion of the gravity anomaly. The distribution of sediments appear to control the short-wavelength features of the gravity data, whereas density variations are required in the upper mantle to optimally fit the overall gravity anomaly. Our results suggest certain degree of temperature and/or compositional heterogeneities towards the southern ends of Aegir Ridge, near the Iceland-Faroes Ridge.
Thermal Evolution of Earth's Mantle During the Accretion
NASA Astrophysics Data System (ADS)
Arkani-Hamed, J.; Roberts, J. H.
2017-12-01
Earth is likely formed by accreting Moon to Mars size embryos. The impact heating by an embryo melts the embryo and the upper mantle of the Earth beneath the impact site. The iron core of the embryo sinks and merges with the core of the Earth, while the mantle of the embryo mixes with the upper mantle of the Earth, producing a buoyant molten/partially molten magma pond. Strong but localized mantle dynamics results in fast lithostatic adjustment that pours out a huge amount of molten and partially molten magma which spread on the Earth, and together with impact ejecta creates a globe encircling magma ocean. The lithostatic adjustment diminishes as the magma ocean becomes globe encircling within 104 to 105 yr. The major part of the thermal evolution of Earth's mantle after an impact takes place in the presence of a thick and hot magma ocean, which hampers heat loss from the mantle and suppresses global mantle dynamics. Because the impact velocity of an embryo increases as the Earth grows, a given magma ocean is hotter than the previous ones. We investigated this scenario using 25 Moon to Mars size embryos. Due to random geographic impact sites we considered vertical impacts since no information is available about the impact angles. This may over estimate the impact heating by a factor of 1.4 with respect to the most probable impact angle of 45o. The thermal structure of the Earth at the end of accretion is layered, aside from the localized magma ponds that are distributed randomly due to the random geographic impact sites. We also take into account the impact heating of the solid lower mantle, the heating of the lower mantle by the gravitational energy released through sinking of an embryo's core. We then follow the thermal evolution of the mantle of a growing Earth using a 3D convection model. The Earth grows due to merging of the impactor iron core with the Earth's core, and the accumulating magma ocean on the surface. The growth enhances the lithostatic pressure in the Earth that in turn increase the temperature by compression. Each overlying magma ocean hampers global convection beneath, and the mean temperature gradient at the end of accretion is less steep than the adiabatic gradient, indicating that mantle convection during accretion is mainly localized [JHR1]Is this range because there are multiple models with different numbers of embryos?yes
Slab flattening and exhumation of the Eastern Cordillera of Colombia
NASA Astrophysics Data System (ADS)
Siravo, G.; Faccenna, C.; Fellin, M. G.; Herman, F.; Becker, T. W.; Molin, P.
2017-12-01
Mountain belt topography is shaped by processes acting at different time scales and depths, from the surface down to the crust and mantle. In particular, subduction dynamics is expected to strongly affect upper plate topography. Here, we present the case of the Eastern Cordillera (EC) in Colombia as a case history for dynamic mantle forcing from a subduction zone on the upper plate topography. The EC is an active double-vergent fold and thrust belt formed during the Cenozoic by the inversion of a Mesozoic rift, and topography there has grown up to 5000 m (Cocuy Sierra). The EC is located far ( 500 km) from the trench where the Nazca slab subducts below the South American plate. Tomography and seismicity show the presence of a flat slab subduction north of 5° N (Chiarabba et al., 2016). Slab flattening may have occurred transitionally from 10 to 5 Ma shutting down the arc volcanism (Wagner et al., 2017). We reconstruct the exhumation of the EC based on previously published and new thermochronologic data collected in the area of the Cocuy Sierra. Results of this analysis show notably fast exhumation rates since Late Miocene. We also analyze the likely contributions to topography and show that neither the present-day crustal thickness nor the cumulative shortening in the Cenozoic as extracted form balanced cross section can isostatically explain the present day topography. We conclude that fast EC exhumation and uplift are driven by mantle dynamics and likely occurred during the recent episode of slab flattening.
Scales of Heterogeneities in the Continental Crust and Upper Mantle
NASA Astrophysics Data System (ADS)
Tittgemeyer, M.; Wenzel, F.; Ryberg, T.; Fuchs, K.
1999-09-01
A seismological characterization of crust and upper mantle can refer to large-scale averages of seismic velocities or to fluctuations of elastic parameters. Large is understood here relative to the wavelength used to probe the earth.¶In this paper we try to characterize crust and upper mantle by the fluctuations in media properties rather than by their average velocities. As such it becomes evident that different scales of heterogeneities prevail in different layers of crust and mantle. Although we cannot provide final models and an explanation of why these different scales exist, we believe that scales of inhomogeneities carry significant information regarding the tectonic processes that have affected the lower crust, the lithospheric and the sublithospheric upper mantle.¶We focus on four different types of small-scale inhomogeneities (1) the characteristics of the lower crust, (2) velocity fluctuations in the uppermost mantle, (3) scattering in the lowermost lithosphere and on (4) heterogeneities in the mantle transition zone.
NASA Astrophysics Data System (ADS)
Jadamec, M. A.; MacDougall, J.; Fischer, K. M.
2017-12-01
The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear-wave splitting observed in real subduction zones.
Dissonance and harmony between global and regional-scale seismic anisotropy and mantle dynamics
NASA Astrophysics Data System (ADS)
Becker, T. W.
2017-12-01
Huge numbers of SKS splitting observations and improved surface-wave based models of azimuthal anisotropy have advanced our understanding of how convection is recorded in mantle fabrics in the upper mantle. However, we are still debating the relative importance of frozen to actively forming olivine fabrics, subduction zone anisotropy lacks a clear reference model, and regional marine studies yield conflicting evidence as to what exactly is going on at the base of the plates and below. Here, I review the degree of agreement between regional and global observations of seismic anisotropy and how well those may be matched by first-order mantle convection models. Updated bean counting can help contextualize the spatial scales of alignment, and I discuss several examples of the relative roles of plate shear to mantle density anomalies and frozen-in structure for oceanic and continental plates. Resolution of seismological models is globally uneven, but there are some locales where such exercises may yield information on the relative strength of asthenosphere and mantle. Another long-standing question is how olivine fabrics record flow under different stress and volatile conditions. I illustrate how different petrological assumptions might be used to reconcile observations of azimuthal dependency of wave speeds for both Love and Rayleigh waves, and how this could improve our models of the upper mantle, much in the spirit of Montagner's vectorial tomography. This is but one approach to improve the regional realism of global geodynamic background models to understand where in space and time dissonance arises, and if a harmonious model may yet be constructed given our assumptions about the workings of the mantle.
Peeling linear inversion of upper mantle velocity structure with receiver functions
NASA Astrophysics Data System (ADS)
Shen, Xuzhang; Zhou, Huilan
2012-02-01
A peeling linear inversion method is presented to study the upper mantle (from Moho to 800 km depth) velocity structures with receiver functions. The influences of the crustal and upper mantle velocity ratio error on the inversion results are analyzed, and three valid measures are taken for its reduction. This method is tested with the IASP91 and the PREM models, and the upper mantle structures beneath the stations GTA, LZH, and AXX in northwestern China are then inverted. The results indicate that this inversion method is feasible to quantify upper mantle discontinuities, besides the discontinuities between 3 h M ( h M denotes the depth of Moho) and 5 h M due to the interference of multiples from Moho. Smoothing is used to overcome possible false discontinuities from the multiples and ensure the stability of the inversion results, but the detailed information on the depth range between 3 h M and 5 h M is sacrificed.
NASA Astrophysics Data System (ADS)
Sembroni, A.; Globig, J.; Rozel, A.; Faccenna, C.; Funiciello, F.; Fernandez, M.
2013-12-01
Density anomalies located beneath the lithosphere are thought to generate dynamic topography at the surface of the Earth. Tomographic models are often used to infer the later variations of the density field in the mantle. Surface topography can then be computed using analytical solutions or numerical simulations of mantle convection. It has been shown that the viscosity profile of the upper mantle has a strong influence on the magnitude and spectral signature of surface topography and uplift rate. Here we present results from analogue modeling of the interaction between a rising ball-shaped density anomaly and the lithosphere in an isoviscous, isothermal Newtonian mantle system. Preliminary data show that surface topography is strongly influenced not only by mantle viscosity but also by density and viscosity profiles of the lithosphere. Our apparatus consists of a plexiglass square box (40x40x50 cm3) filled with glucose syrup. From the bottom a silicon ball was free to rise up until impinging a silicon plate floating on top of the syrup, mimicking the lithosphere. In order to investigate the role of lithospheric thickness and layered continental crust on stress partitioning, maximum dynamic topography, uplift rate and signal wavelength, two different configurations were tested: homogeneous lithosphere and stratified lithosphere including a low-viscosity lower crust. The topographic evolution of the surface was tracked using a laser scanning the top of the apparatus. The rise of the density anomaly was recorded by a side camera. We observe that a thick and then more resistant lithosphere makes up to 2 times lower and laterally wider topographic signatures. Layered lithospheres including a decoupling lower crust decrease the equilibrium topography and its lateral extend by ~30% to 40%. Most importantly, the uplift rate is strongly affected by the choice of lithosphere model. Both lithosphere width and the presence of a decoupling lower crust may modify the uplift rate by a factor 3. Thus, depending on the lithosphere rheology, we show that uplift rate may vary by one order of magnitude, for the same density anomaly and mantle viscosity. This result shows that surface uplift rate can be used to infer the viscosity of the upper mantle in specific Earth regions only if the rheology of the lithosphere is well constrained. With respect to previous approaches, whether numerical or analog modeling of dynamic topography, our experiments represent a new attempt to investigate the propagation of normal stresses generated by mantle flow through a rheologically stratified lithosphere and its resulting topographic signal.
Lithospheric radial anisotropy beneath the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Chu, Risheng; Ko, Justin Yen-Ting; Wei, Shengji; Zhan, Zhongwen; Helmberger, Don
2017-05-01
The Lithosphere-Asthenosphere Boundary (LAB), where a layer of low viscosity asthenosphere decouples with the upper plate motion, plays an essential role in plate tectonics. Most dynamic modeling assumes that the shear velocity can be used as a surrogate for viscosity which provides key information about mantle flow. Here, we derive a shear velocity model for the LAB structure beneath the Gulf of Mexico allowing a detailed comparison with that beneath the Pacific (PAC) and Atlantic (ATL). Our study takes advantage of the USArray data from the March 25th, 2013 Guatemala earthquake at a depth of 200 km. Such data is unique in that we can observe a direct upward traveling lid arrival which remains the first arrival ahead of the triplications beyond 18°. This extra feature in conjunction with upper-mantle triplication sampling allows good depth control of the LAB and a new upper-mantle seismic model ATM, a modification of ATL, to be developed. ATM has a prominent low velocity zone similar to the structure beneath the western Atlantic. The model contains strong radial anisotropy in the lid where VSH is about 6% faster than VSV. This anisotropic feature ends at the bottom of the lithosphere at about the depth of 175 km in contrast to the Pacific where it extends to over 300 km. Another important feature of ATM is the weaker velocity gradient from the depth of 175 to 350 km compared to Pacific models, which may be related to differences in mantle flow.
Crustal and uppermost mantle structure and deformation in east-central China
NASA Astrophysics Data System (ADS)
Li, H.; Yang, X.; Ouyang, L.; Li, J.
2017-12-01
We conduct a non-linear joint inversion of receiver functions and Rayleigh wave dispersions to obtain the crustal and upper mantle velocity structure in east-central China. In the meanwhile, the lithosphere and upper mantle deformation beneath east-central China is also evaluated with teleseismic shear wave splitting measurements. The resulting velocity model reveals that to the east of the North-South Gravity Lineament, the crust and the lithosphere are significantly thinned. Furthermore, three extensive crustal/lithospheric thinning sub-regions are clearly identified within the study area. This indicates that the modification of the crust and lithosphere in central-eastern China is non-uniform due to the heterogeneity of the lithospheric strength. Extensive crustal and lithospheric thinning could occur in some weak zones such as the basin-range junction belts and large faults. The structure beneath the Dabie orogenic belt is complex due to the collision between the North and South China Blocks during the Late Paleozoic-Triassic. The Dabie orogenic belt is generally delineated by a thick crust with a mid-crust low-velocity zone and a two-directional convergence in the lithospheric scale. Obvious velocity contrast exhibits in the crust and upper mantle at both sides of the Tanlu fault, which suggests the deep penetration of this lithospheric-scale fault. Most of our splitting measurements show nearly E-W trending fast polarization direction which is slightly deviating from the direction of plate motion. The similar present-day lithosphere structure and upper mantle deformation may imply that the eastern NCC and the eastern SCB were dominated by a common dynamic process after late Mesozoic, i.e., the westward subduction of Pacific plate and the retreat of the subduction plate. The westward subduction of the Philippine plate and the long-range effects of the collision between the Indian plate and Eurasia plate during Cenozoic may have also contributed to the present velocity structure and stress environment of eastern China.
NASA Technical Reports Server (NTRS)
Soloman, Sean C.
1991-01-01
The focus was in two broad areas during the most recent 6-month period: (1) the nature and dynamics of time dependent deformation and stress along major seismic zones; and (2) the nature of long-wavelength oceanic geoid anomalies in terms of lateral variations in upper mantle temperature and composition. The principle findings are described in the accompanying appendices.
NASA Astrophysics Data System (ADS)
Gueydan, F.; Frasca, G.; Brun, J. P.
2015-12-01
In the frame of the Africa-Europe convergence, the Mediterranean tectonic system presents a complex interaction between subduction rollback and upper-plate deformation during the Tertiary. The western Mediterranean is characterized by the exhumation of the largest subcontinental mantle massif worldwide (the Ronda Peridotite) and a narrow arcuate geometryacross the Gibraltar arc within the Betic-Rif belt (the internal part being called the Alboran domain), where the relationship between slab dynamics and surface tectonics is not well understood. New structural and geochronological data are used to argue for 1/ hyperstrechting of the continental lithosphere allowing extensional mantle exhumation to shallow depths, followed by 2/ lower miocene thrusting. Two Lower Miocene E-W-trending strike-slip corridors played a major role in the deformation pattern of the Alboran Domain, in which E-W dextral strike-slip faults, N60°-trending thrusts and N140°-trending normal faults developed simultaneously during dextral strike-slip simple shear. The inferred continuous westward translation of the Alboran Domain is accommodated by a major E-W-trending lateral ramp (strike-slip) and a N60°-trending frontal thrust. At lithosphere-scale, we interpret the observed deformation pattern as the upper-plate expression of a lateral slab tear and of its westward propagation since Lower Miocene. The crustal emplacement of the Ronda Peridotites occurred at the onset of this westward motion.The Miocene tectonics of the western Alboran is therefore marked by the inversion of a continental rift, triggered by shortening of the upper continental plate and accommodated by E-W dextral strike-slip corridors. During thrusting and westward displacement of the Alboran domain with respect to Iberia, the hot upper plate, which involved the previously exhumed sub-continental mantle, underwent fast cooling.
Tomography of the upper mantle beneath the African/Iberian collision zone
NASA Astrophysics Data System (ADS)
Mickael, B.; Nolet, G.; Villasenor, A.; Josep, G.; Thomas, C.
2013-12-01
During Cenozoic, geodynamics of the western Mediterranean domain has been characterized by a complex history of subduction of Mesozoic oceanic lithosphere. The final stage of these processes is proposed to have led to the development of the Calabria and Gibraltar arcs, whose formation is still under debate. In this study we take advantage of the dense broadband-station networks now available in Alborán Sea region, to develop a high-resolution 3D tomographic P velocity model of the upper mantle beneath the African/Iberian collision zone that will bring new constraints on the past dynamics of this zone. The model is based on 13200 teleseismic arrival times recorded between 2008 and 2012 at 279 stations for which cross-correlation delays are measured with a new technique in different frequency bands centered between 0.03 and 1.0 Hz, and interpreted using multiple frequency tomography. Our model shows, beneath Alborán Sea, a strong (~ 4%) fast vertically dipping anomaly observed to at least 650 km depth. The arched shape of this anomaly and its extent at depth are coherent with a lithospheric slab, thus favoring the hypothesis of a westward consumption of the Ligurian ocean slab by roll-back during Cenozoic. In addition to this fast anomaly in the deep upper-mantle, several high intensity slow anomalies are widely observed in the lithosphere and asthenosphere beneath Morocco and southern Spain. These anomalies are correlated at surface with the position of the orogens (Rif and Atlas) and with Cenozoic volcanic fields. We thus confirm the presence, beneath Morocco, of an anomalous (hot) upper mantle, with piece of evidence for a lateral connection with the Canary volcanic islands, likely indicating a lateral spreading of the Canary plume to the east.
Structure of the crust and upper mantle in the western United States
Pakiser, L.C.
1963-01-01
Seismic waves generated by underground nuclear and chemical explosions have been recorded in a network of nearly 2,000 stations in the western conterminous United States as a part of the VELA UNIFORM program. The network extends from eastern Colorado to the California coastline and from central Idaho to the border of the United States and Mexico. The speed of compressional waves in the upper-mantle rocks ranges from 7.7 km/sec in the southern part of the Basin and Range province to 8.2 km/sec in the Great Plains province. In general, the speed of compressional waves in the upper-mantle rocks tends to be nearly the same over large areas within individual geologic provinces. Measured crustal thickness ranges from less than 20 km in the Central Valley of California to 50 km in the Great Plains province. Changes in crustal thickness across provincial boundaries are not controlled by regional altitude above sea level unless the properties of the upper mantle are the same across those boundaries. The crust tends to be thick in regions where the speed of compressional waves in the upper-mantle rocks (and presumably the density) is high, and tends to be relatively thin where the speed of compressional waves in the upper-mantle rocks (and density) is lower. With in the Basin and Range province, crustal thickness seems to vary directly with regional altitude above sea level. Evidence that a layer of intermediate compressional-wave speed exists in the lower part of the crust has been accumulated from seismic waves that have traveled least-time paths, as well as secondary arrivals (particularly reflections). On a scale that includes many geologic provinces, isostatic compensation is related largely to variations in the density of the upper- mantle rocks. Within geologic provinces or adjacent provinces, isostatic compensation may be related to variations in the thickness of crustal layers. Regions of thick crust and dense upper mantle have been relatively stable in Cenozoic time. Regions of thinner crust and low-density upper mantle have had a Cenozoic history of intense diastrophism and silicic volcanism.
The Cascadia Paradox: Understanding Mantle Flow in the Cascadia Subduction System
NASA Astrophysics Data System (ADS)
Long, M. D.
2015-12-01
The pattern of mantle flow in subduction systems, and the processes that control the mantle flow field, is a fundamental but still poorly understood aspect of subduction dynamics. Mantle flow plays a key role in controlling the transport of volatiles and melt in the wedge, deformation of the overriding plate, mass transfer between the upper and lower mantle, and the morphology and dynamics of slabs. The Cascadia subduction zone provides a compelling system in which to understand the controls on mantle flow, particularly given the dense geophysical observations provided by EarthScope, GeoPRISMS, the Cascadia Initiative, and related efforts. Cascadia is a particularly intriguing system because observations of seismic anisotropy, which provide relatively direct constraints on mantle flow, seem to yield contradictory views of the mantle flow field in different parts of the system. Observations of seismic anisotropy on the overriding plate apparently require a significant component of three-dimensional, toroidal flow around the slab edge, while new observations from offshore stations are compellingly explained with a simple two-dimensional entrained flow model. Recent evidence from seismic tomography for the fragmentation of the Cascadia slab at depth provides a further puzzle: how can a fragmented slab provide a driving force for either two-dimensional entrained flow or three-dimensional toroidal flow due to slab rollback? I will present a synthesis of recent observations of seismic anisotropy in the Cascadia subduction system, and how they can be integrated with constraints from geodynamical modeling, geochemistry, and the history and timing of Pacific Northwest volcanism. I will discuss the compelling but contradictory evidence for each of the endmember mantle flow models (two-dimensional entrained flow vs. three-dimensional toroidal flow) and explore possible avenues for resolving the Cascadia Paradox.
Dynamically supported geoid highs over hotspots: Observation and theory
NASA Technical Reports Server (NTRS)
Richards, M. A.; Hager, B. H.; Sleep, N. H.
1986-01-01
Hotspots are associated with long wavelength geoid highs, an association that is even stronger when the geoid highs associated with subduction zones are removed. These associations are quantified by expanding the hotspot distribution in spherical harmonics and calculating correlation coefficients as a function of harmonic degree. The hotspot distribution spectrum is essentially white, with peaks at degrees 2 and 6. It is correlated positively with the slab residual geoid for degrees 2 to 6, with low seismic velocity in the lower mantle at degree 2, and with low seismic velocity in the upper mantle at degree 6. A variety of fluid mechanical models were tested for hotspots, including lithospheric delamination and hot plumes, by calculating their predicted dynamic geoid responses and comparing them to the observations. These models include the effects of temperature dependent rheology. The preferred hotspot model, based on observations of the geoid and seismic tomography, has plumes preferentially occurring in regions of large scale background temperature highs in a mantle with substantial viscosity increase with depth, although other models are possible.
Dynamically supported geoid highs over hotspots - Observation and theory
NASA Technical Reports Server (NTRS)
Richards, Mark A.; Hager, Bradford H.; Sleep, Norman H.
1988-01-01
Hotspots are associated with long wavelength geoid highs, an association that is even stronger when the geoid highs associated with subduction zones are removed. These associations are quantified by expanding the hotspot distribution in spherical harmonics and calculating correlation coefficients as a function of harmonic degree. The hotspot distribution spectrum is essentially white, with peaks at degrees 2 and 6. It is correlated positively with the slab residual geoid for degrees 2 to 6, with low seismic velocity in the lower mantle at degree 2, and with low seismic velocity in the upper mantle at degree 6. A variety of fluid mechanical models were tested for hotspots, including lithospheric delamination and hot plumes, by calculating their predicted dynamic geoid responses and comparing them to the observations. These models include the effects of temperature dependent rheology. The preferred hotspot model, based on observations of the geoid and seismic tomography, has plumes preferentially occurring in regions of large scale background temperature highs in a mantle with substantial viscosity increase with depth, although other models are possible.
Inverse problems for torsional modes.
Willis, C.
1984-01-01
Considers a spherically symmetric, non-rotating Earth consisting of an isotropic, perfect elastic material where the density and the S-wave velocity may have one or two discontinuities in the upper mantle. Shows that given the velocity throughout the mantle and the crust and given the density in the lower mantle, then the freqencies of the torsional oscillations of one angular order (one torsional spectrum), determine the density in the upper mantle and in the crust uniquely. If the velocity is known only in the lower mantle, then the frequencies of the torsional oscillations of two angular orders uniquely determine both the density and the velocity in the upper mantle and in the crust. In particular, the position and size of the discontinuities in the density and velocity are uniquely determined by two torsional spectra.-Author
Numerical modeling the genetic mechanism of Cenozoic intraplate Volcanoes in Northeastern China
NASA Astrophysics Data System (ADS)
Qu, Wulin; Chen, Yongshun John; Zhang, Huai; Jin, Yimin; Shi, Yaolin
2017-04-01
Changbaishan Volcano located about 1400 km west of Japan Trench is an intra continental volcano which having different origin from island arc volcanoes. A number of different mechanisms have been proposed to interpret the origin of intraplate volcanoes, such as deep mantle plumes, back-arc extension and decompressional partial melting, asthenosphere upwelling and decompressional melting, and deep stagnant slab dehydration and partial melting. The recent geophysical research reveals that the slow seismic velocity anomaly extends continuously just below 660 km depth to surface beneath Changbaishan by seismic images and three-dimensional waveform modelling [Tang et al., 2014]. The subduction-induced upwelling occurs within a gap in the stagnant subducted Pacific Plate and produces decompressional melting. Water in deep Earth can reduce viscosity and lower melting temperature and seismic velocity and has effects on many other physical properties of mantle materials. The water-storage capacity of wadsleyite and ringwoodite, which are the main phase in the mantle transition zone, is much greater than that of upper mantle and lower mantle. Geophysical evidences have shown that water content in the mantle transition zone is exactly greater than that of upper mantle and lower mantle [Karato, 2011]. Subducted slab could make mantle transition zone with high water content upward or downward across main phase change surface to release water, and lead to partial melting. We infer that the partial melting mantle and subducted slab materials propagate upwards and form the Cenozoic intraplate Volcanoes in Northeastern China. We use the open source code ASPECT [Kronbichler et al., 2012] to simulate the formation and migration of magma contributing to Changbaishan Volcano. We find that the water entrained by subducted slab from surface has only small proportion comparing to water content of mantle transition zone. Our model provide insights into dehydration melting induced by water transport out of the mantle transition zone associated with dynamic interactions between the subducted slab and surrounding mantle. References Karato, S. (2011), Water distribution across the mantle transition zone and its implications for global material circulation, EARTH PLANET SC LETT, 301(3), 413-423. Kronbichler, M., et al. (2012), High accuracy mantle convection simulation through modern numerical methods, GEOPHYS J INT, 191(1), 12-29. Tang, Y., et al. (2014), Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling, NAT GEOSCI, 7(6), 470-475.
Fliedner, M.M.; Ruppert, S.; Malin, P.E.; Park, S.K.; Jiracek, G.; Phinney, R.A.; Saleeby, J.B.; Wernicke, B.; Clayton, R.; Keller, Rebecca Hylton; Miller, K.; Jones, C.; Luetgert, J.H.; Mooney, W.D.; Oliver, H.; Klemperer, S.L.; Thompson, G.A.
1996-01-01
Traveltime data from the 1993 Southern Sierra Nevada Continental Dynamics seismic refraction experiment reveal low crustal velocities in the southern Sierra Nevada and Basin and Range province of California (6.0 to 6.6 km/s), as well as low upper mantle velocities (7.6 to 7.8 km/s). The crust thickens from southeast to northwest along the axis of the Sierra Nevada from 27 km in the Mojave Desert to 43 km near Fresno, California. A crustal welt is present beneath the Sierra Nevada, but the deepest Moho is found under the western slopes, not beneath the highest topography. A density model directly derived from the crustal velocity model but with constant mantle density satisfies the pronounced negative Bouguer anomaly associated with the Sierra Nevada, but shows large discrepancies of >50 mgal in the Great Valley and in the Basin and Range province. Matching the observed gravity with anomalies in the crust alone is not possible with geologically reasonable densities; we require a contribution from the upper mantle, either by lateral density variations or by a thinning of the lithosphere under the Sierra Nevada and the Basin and Range province. Such a model is consistent with the interpretation that the uplift of the present Sierra Nevada is caused and dynamically supported by asthenospheric upwelling or lithospheric thinning under the Basin and Range province and eastern Sierra Nevada.
Upper mantle structure at Walvis Ridge from Pn tomography
NASA Astrophysics Data System (ADS)
Ryberg, Trond; Braeuer, Benjamin; Weber, Michael
2017-10-01
Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break-up. Within the LISPWAL (LIthospheric Structure of the Namibian continental Passive margin at the intersection with the Walvis Ridge from amphibious seismic investigations) project, combined on- and offshore seismic experiments were designed to characterize the Southern African passive margin at the Walvis Ridge in northern Namibia. In addition to extensive analysis of the crustal structures, we carried out seismic investigations targeting the velocity structure of the upper mantle in the landfall region of the Walvis Ridge with the Namibian coast. Upper mantle Pn travel time tomography from controlled source, amphibious seismic data was used to investigate the sub-Moho upper mantle seismic velocity. We succeeded in imaging upper mantle structures potentially associated with continental break-up and/or the Tristan da Cunha hotspot track. We found mostly coast-parallel sub-Moho velocity anomalies, interpreted as structures which were created during Gondwana break-up.
Seismic anisotropy and mantle creep in young orogens
Meissner, R.; Mooney, W.D.; Artemieva, I.
2002-01-01
Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountain-parallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.
Radar-Sounding of Icy Mantles and Comets Using Natural Radio Noise
NASA Astrophysics Data System (ADS)
Winebrenner, D. P.; Sahr, J. D.
2011-10-01
Radar-sounding of ice sheets on Earth yields crucial information on ice history and dynamics, including discoveries of subglacial lakes beneath 3-4 km of ice [1]. Mars Express and the Mars Reconnaissance Orbiter (MRO) have now demonstrated the corresponding power of orbital radar sounding for planetary exploration, in particular by imaging structures within and beneath kilometers of Martian water ice [2-4]. Based on this experience, a sophisticated orbital radar sounder is planned for a flagship mission to Europa, with the aim of imaging stratigraphy, faults, diapirs and other geological structure in the upper few kilometers of the water-ice mantle there, and possibly even detecting the upper surface of the (likely) underlying ocean [5]. Recent modeling of the formation and evolution of volatilerich bodies suggests that oceans or lakes of liquid water occur beneath water-ice mantles in a surprising variety of places, including Ceres in the outer asteroid belt [6], 3 of the 4 Galilean moons of Jupiter as well as Enceladus and Titan in the Saturnian system [7], and possibly even Pluto [8]. Thus there is now a wide scope for low-cost missions to bodies of exceptional interest, and for radar sounding of icy mantles to image near-surface structural geology related to underlying water (whether past or present).
The North American upper mantle: density, composition, and evolution
Mooney, Walter D.; Kaban, Mikhail K.
2010-01-01
The upper mantle of North America has been well studied using various seismic methods. Here we investigate the density structure of the North American (NA) upper mantle based on the integrative use of the gravity field and seismic data. The basis of our study is the removal of the gravitational effect of the crust to determine the mantle gravity anomalies. The effect of the crust is removed in three steps by subtracting the gravitational contributions of (1) topography and bathymetry, (2) low-density sedimentary accumulations, and (3) the three-dimensional density structure of the crystalline crust as determined by seismic observations. Information regarding sedimentary accumulations, including thickness and density, are taken from published maps and summaries of borehole measurements of densities; the seismic structure of the crust is based on a recent compilation, with layer densities estimated from P-wave velocities. The resultant mantle gravity anomaly map shows a pronounced negative anomaly (−50 to −400 mGal) beneath western North America and the adjacent oceanic region and positive anomalies (+50 to +350 mGal) east of the NA Cordillera. This pattern reflects the well-known division of North America into the stable eastern region and the tectonically active western region. The close correlation of large-scale features of the mantle anomaly map with those of the topographic map indicates that a significant amount of the topographic uplift in western NA is due to buoyancy in the hot upper mantle, a conclusion supported by previous investigations. To separate the contributions of mantle temperature anomalies from mantle compositional anomalies, we apply an additional correction to the mantle anomaly map for the thermal structure of the uppermost mantle. The thermal model is based on the conversion of seismic shear-wave velocities to temperature and is consistent with mantle temperatures that are independently estimated from heat flow and heat production data. The thermally corrected mantle density map reveals density anomalies that are chiefly due to compositional variations. These compositional density anomalies cause gravitational anomalies that reach ~250 mGal. A pronounced negative anomaly (−50 to −200 mGal) is found over the Canadian shield, which is consistent with chemical depletion and a corresponding low density of the lithospheric mantle, also referred to as the mantle tectosphere. The strongest positive anomaly is coincident with the Gulf of Mexico and indicates a positive density anomaly in the upper mantle, possibly an eclogite layer that has caused subsidence in the Gulf. Two linear positive anomalies are also seen south of 40°N: one with a NE-SW trend in the eastern United States, roughly coincident with the Grenville-Appalachians, and a second with a NW-SE trend beneath the states of Texas, New Mexico, and Colorado. These anomalies are interpreted as being due to (1) the presence of remnants of an oceanic slab in the upper mantle beneath the Grenville-Appalachian suture and (2) mantle thickening caused by a period of shallow, flat subduction during the Laramie orogeny, respectively. Based on these geophysical results, the evolution of the NA upper mantle is depicted in a series of maps and cartoons that display the primary processes that have formed and modified the NA crust and lithospheric upper mantle.
Radial Anisotropy in the Mantle Transition Zone and Its Implications
NASA Astrophysics Data System (ADS)
Chang, S. J.; Ferreira, A. M.
2016-12-01
Seismic anisotropy is a useful tool to investigate mantle flow, mantle convection, and the presence of melts in mantle, since it provides information on the direction of mantle flow or the orientation of melts by combining it with laboratory results in mineral physics. Although the uppermost and lowermost mantle with strong anisotropy have been well studied, anisotropic properties of the mantle transition zone is still enigmatic. We use a recent global radially anisotropic model, SGLOBE-rani, to examine the patterns of radial anisotropy in the mantle transition zone. Strong faster SV velocity anomalies are found in the upper transition zone beneath subduction zones in the western Pacific, which decrease with depth, thereby nearly isotropic in the lower transition zone. This may imply that the origin for the anisotropy is the lattice-preferred orientation of wadsleyite, the dominant anisotropic mineral in the upper transition zone. The water content in the upper transition zone may be inferred from radial anisotropy because of the report that anisotropic intensity depends on the water content in wadsleyite.
NASA Astrophysics Data System (ADS)
Osmaston, M. F.
2012-04-01
Introduction. The 'deep-keeled cratons' frame for global dynamics is the result of seeking Earth-behaviour answers to the following outside-the-box proposition:- "If cratons have tectospheric keels that reach or approach the 660 km discontinuity, AND the 660 level is an effective barrier to mantle circulation, then obviously (i) when two cratons separate, the upper mantle to put under the nascent ocean must arrive by a circuitous route and, conversely, (ii) if they approach one another, the mantle volume that was in between them must get extruded sideways." Surprisingly it has turned out [1 - 4] that Earth dynamical behaviour for at least the past 150 Ma provides persuasive affirmation of both these expectations and that there is a rational petrological explanation for the otherwise-unexpected immobility of subcratonic material to such depths [5 - 7]. Clockwise rotation of Antarctica? This contribution greatly amplifies my original plate dynamical arguments for suggesting [8] that such rotation is ongoing. Convection is unsuited to causing rotation about a pole within the plate so, as noted then, a gearwheel-like linkage to Africa at the SWIR would provide its clearly CCW (Biscay-Caucasus) relationship to the Mediterranean belt for the past 100 Ma, also seen in its separation from South America. Gearwheel-like linkage of motion requires the presence of some kind of E-W restraint further north. In that case it was the N Africa/Arabia involvement in the Alpide belt, but the earlier opening of the central Atlantic by the eastward motion of Africa, suggests its rigid Gondwanan attachment to Antarctica rotation at that time, with little constraint in the north. Further east, the seafloor data show that Australia-Antarctica separation involved no such opposite rotational linkage, so, with no E-W mechanical constraint in the north by Indonesia, they must have rotated together, as is recorded by Australia's eastward motion to generate the Mesozoic seafloor at its western side. Moving east again, the sigmoidal fracture-zone pattern between W Antarctica and Tonga Trench seems consistent with a gearwheel-linked relative rotation of the Pacific plate by about 35o CCW since about 120 Ma, so about half that (clockwise) by Antarctica. The triangular Cocos plate is then in the position where the two gearwheels separate. Further north, the dextral slip on the San Andreas Fault and the opening of the Gorda Ridge are broadly consistent with such rotation. Note that with our two-layer mantle all reference to 'absolute', lower mantle-related, positions is inappropriate. Our sole concern now is with relative motions of plates. Driving torque on the cratonic keel of East Antarctica. I maintain here my suggestion [8] that this keel, in actual contact with the lower mantle at its boundary, is picking up an electromagnetically generated torque, transmitted up from the polar zone of the CMB through the higher viscosity lower mantle. The reality of the rotation now invites more attention to this mechanism. The involvement of the cratonic keel is supported, as noted [8], by the apparent absence of rotational effects in the Arctic, where there is no keel in the polar position, although a similar CMB coupling to the lower mantle seems likely. The involvement of geomagnetism is supported by the sharp changes in central Pacific fracture zone orientation and the onset of the Ontong Java magmatism, correlating with the start and end of the Cretaceous long normal geochron [8, 9]. Such a change is also seen at M0 time in the Weddell Sea. Presumably the speed of Antarctica rotation was affected. Gondwanaland break-up. In view of these abundant tectonic effects attributable to Antarctica rotation, I propose that this was what broke up Gondwanaland, not a plume, as no such things are recognized in this thick-plate, two-layer mantle, version of the Earth-function paradigm. In this version, magmas with apparently lower mantle chemical signatures can be sourced within the upper mantle [10] and flood basalts can be generated by splitting cratons [11]. So the ~176 Ma age of the Ferrar Dolerite in Antarctica is a record of one of those splits. Gaps in the PalaeoPacific rim. If we restore Australia both westward to before the spreading at its western side and southward to its position against Antarctica, the Pacific rim was a fair approximation to a great circle, so it covered a hemisphere. Spreading of the other oceans, initiated by Gondwanaland break-up, must have been at the expense of the size of the Pacific, so it must formerly have covered much more than a hemisphere, and had a periphery correspondingly rather shorter than a great circle. Thus we have the surprising result that reducing the area of the Pacific actually required that its rim be made longer, by making gaps between the previously defining cratonic keels. A further result was that now-excess upper mantle material from below the Pacific had to flow through those gaps to put beneath the widening 'new' oceans. For all four of the obvious gaps - Caribbean, Scotia, Australia-Antarctica, Bering - there is evidence to support the presence of that outflow, and in two of the cases there is evidence that motions to open the gaps began very soon after Gondwana began to break up. Subduction and a two-layer mantle? In another contribution at this meeting (GD5.1) I explain that, in the thick-plate frame adopted here, subduction is neither a motivating player (for break-up purposes) in plate dynamics nor does it breach significantly our 2-layer mantle picture. The underlying reason is that oceanic 'tectosphere' is actually thicker for the same reason [5 - 7] as that of cratons, giving it ex-LVZ heat content which transforms the subduction picture. Three Conclusions. (1) The thick-plate, 2-layer mantle version of the earth-function paradigm [1 - 7] is alive and well. (2) The break-up of Gondwanaland was caused by Antarctica's clockwise rotation. (3) Such rotation is now to be considered a major agent in plate motion dynamics for the period during which East Antarctica, or any other sufficiently deep-keeled craton previously, was located at one of the Earth's poles. [1] Osmaston M. F. (2006) Global tectonic actions emanating from Arctic opening in the circumstances of a two-layer mantle and a thick-plate paradigm involving deep cratonic tectospheres: the Eurekan (Eocene) compressive motion of Greenland and other examples. In Proc. ICAM IV, 2003 (ed. R. Scott & D. Thurston). OCS Study MMS 2006-003, p.105-124: Also at: http://www.mms.gov/alaska/icam. [2] Osmaston M. (2005) Interrelationships between large-scale plate motions as indicators of mantle structure: new constraints on mantle modelling and compositional layout. In 3rd Workshop on "Earth's mantle composition, structure and phase transitions" St Malo, France. http://deep.earth.free.fr/participants.php. [3] Osmaston M. F. (2007) Cratonic keels and a two-layer mantle tested: mantle expulsion during Arabia-Russia closure linked to westward enlargement of the Black Sea, formation of the Western Alps and subduction of the Tyrrhenian (not the Ionian) Sea. XXIV IUGG, Session JSS 011, Abstr #2105 http://www.iugg2007perugia.it/webbook/. [4] Osmaston M. F. (2009) Deep cratonic keels and a 2-layer mantle? Tectonic basis for some far-reaching new insights on the dynamical properties of the Earth's mantle: example motions from Mediterranean, Atlantic-Arctic and India. Geophys. Res. Abstr. 11, EGU2009-6359 (Solicited). [5] Karato S. (1986) Does partial melting reduce the creep strength of the upper mantle? Nature 319, 309-310. [6] Hirth G. & Kohlstedt D. L. (1996) Water in the oceanic upper mantle: implication for rheology, melt extraction, and the evolution of the lithosphere. EPSL 144, 93-108. [7] Osmaston M. F. (2010) On the actual variety of plate dynamical mechanisms and how mantle evolution affected them through time, from core formation to the Indian collision. Geophys. Res. Abstr. 12, EGU2010-6101. [8] Osmaston M. F. (2003) What drives plate tectonics? Slab pull, ridge push or geomagnetic torque from the CMB? A new look at the old players vis-a-vis an exciting new one. In XXIII IUGG 2003, B129, Abstr no 016795-2. [9] Atwater T., Sclater J., Sandwell D., Severinghaus J., & Marlow M. S. (1993) Fracture zone traces across the North Pacific Cretaceous quiet zone and their tectonic implications. In The Mesozoic Pacific: geology, tectonics and volcanism, (ed. Pringle, Sager, Sliter, & Stein) AGU Geophys. Monogr. 77, 137-154. [10] Osmaston M. F. (2000) An upper mantle source for plumes and Dupal; result of processes and history that have shaped the Earth's interior from core to crust. Goldschmidt 2000, J. Conf. Abstr. 5 (2), 763. [11] Osmaston M. F. (2008) Extra-thick plates: basis for a single model of mantle magmagenesis, all the way from MORB to kimberlite. Goldschmidt 2008. Geochim.Cosmochim. Acta 72(12S), A711.
NASA Astrophysics Data System (ADS)
Yuan, K.; Beghein, C.
2018-04-01
Seismic anisotropy is a powerful tool to constrain mantle deformation, but its existence in the deep upper mantle and topmost lower mantle is still uncertain. Recent results from higher mode Rayleigh waves have, however, revealed the presence of 1 per cent azimuthal anisotropy between 300 and 800 km depth, and changes in azimuthal anisotropy across the mantle transition zone boundaries. This has important consequences for our understanding of mantle convection patterns and deformation of deep mantle material. Here, we propose a Bayesian method to model depth variations in azimuthal anisotropy and to obtain quantitative uncertainties on the fast seismic direction and anisotropy amplitude from phase velocity dispersion maps. We applied this new method to existing global fundamental and higher mode Rayleigh wave phase velocity maps to assess the likelihood of azimuthal anisotropy in the deep upper mantle and to determine whether previously detected changes in anisotropy at the transition zone boundaries are robustly constrained by those data. Our results confirm that deep upper-mantle azimuthal anisotropy is favoured and well constrained by the higher mode data employed. The fast seismic directions are in agreement with our previously published model. The data favour a model characterized, on average, by changes in azimuthal anisotropy at the top and bottom of the transition zone. However, this change in fast axes is not a global feature as there are regions of the model where the azimuthal anisotropy direction is unlikely to change across depths in the deep upper mantle. We were, however, unable to detect any clear pattern or connection with surface tectonics. Future studies will be needed to further improve the lateral resolution of this type of model at transition zone depths.
NASA Astrophysics Data System (ADS)
Hickey-Vargas, Rosemary
1998-09-01
Basalts erupted from spreading centers on the Philippine Sea plate between 50 Ma and the present have the distinctive isotopic characteristics of Indian Ocean mid-ocean ridge basalt (MORB), such as high 208Pb/204Pb and low 143Nd/144Nd for a given 206Pb/204Pb compared with Pacific and Atlantic Ocean MORB. This feature may indicate that the upper mantle of the Philippine Sea plate originated as part of the existing Indian Ocean upper mantle domain, or, alternatively, that local processes duplicated these isotopic characteristics within the sub-Philippine Sea plate upper mantle. Synthesis of new and published isotopic data for Philippine Sea plate basin basalts and island arc volcanic rocks, radiometric ages, and tectonic reconstructions of the plate indicates that local processes, such as contamination of the upper mantle by subducted materials or by western Pacific mantle plumes, did not produce the Indian Ocean-type signature in Philippine Sea plate MORB. It is more likely that the plate originated over a rapidly growing Indian Ocean upper mantle domain that had spread into the area between Australia/New Guinea and southeast Asia before 50 Ma.
Redox state of earth's upper mantle from kimberlitic ilmenites
NASA Technical Reports Server (NTRS)
Haggerty, S. E.; Tompkins, L. A.
1983-01-01
Temperatures and oxygen fugacities are reported on discrete ilmenite nodules in kimberlites from West Africa which demonstrate that the source region in the upper mantle is moderately oxidized, consistent with other nodule suites in kimberlites from southern Africa and the United States. A model is presented for a variety of tectonic settings, proposing that the upper mantle is profiled in redox potential, oxidized in the fertile asthenosphere but reduced in the depleted lithosphere.
Plate tectonics and hotspots: the third dimension.
Anderson, D L; Tanimoto, T; Zhang, Y S
1992-06-19
High-resolution seismic tomographic models of the upper mantle provide powerful new constraints on theories of plate tectonics and hotspots. Midocean ridges have extremely low seismic velocities to a depth of 100 kilometers. These low velocities imply partial melting. At greater depths, low-velocity and high-velocity anomalies record, respectively, previous positions of migrating ridges and trenches. Extensional, rifting, and hotspot regions have deep (> 200 kilometers) low-velocity anomalies. The upper mantle is characterized by vast domains of high temperature rather than small regions surrounding hotspots; the asthenosphere is not homogeneous or isothermal. Extensive magmatism requires a combination of hot upper mantle and suitable lithospheric conditions. High-velocity regions of the upper 200 kilometers of the mantle correlate with Archean cratons.
Os and HSE of the hot upper mantle beneath southern Tibet: Indian mantle affinity?
NASA Astrophysics Data System (ADS)
Zhao, Z.; Dale, C. W.; Pearson, D. G.; Niu, Y.; Zhu, D.; Mo, X.
2011-12-01
The subduction of the Indian plate (including cratonic continental crust and/or upper mantle) beneath southern Tibet is widely accepted from both geological and geophysical studies. Mantle-derived xenoliths from this region provide a means of directly investigating the mantle underlying the southern part of the plateau. Studies of xenoliths hosted in the Sailipu ultrapotassic volcanic rocks, erupted at ~17 Ma, have indicated that the subcontinental mantle of southern Tibetan Plateau is hot and strongly influenced by metasomatism (Zhao et al., 2008a, b; Liu et al., 2011). Here we report comprehensive EPMA and LA-ICP-MS major and trace element data for the Sailipu xenoliths and also whole rock Os isotope and HSE data in order to constrain the depletion history of the mantle and to identify the presence of any potential Indian cratonic mantle. The xenoliths, ranging in size from 0.5cm to 1.5cm in diameter, are mostly peridotites. The calculated temperatures are 1010-1230°C at the given pressures of ~1.6-2.0 GPa (n=47). These P-T conditions are similar to rift-related upper mantle regimes (e.g. Kenya), indicating the influence of regional extension beneath southern Tibet in the Miocene. A series of compositional discriminations for minerals (Cpx, Opx, Ol, and Phl), e.g. Fo<90, suggest that the xenoliths are non-cratonic spinel-peridotite (cratonic peridotite olivine Fo> ~91), with a clear metasomatic signature We obtained Os isotope data and abundances of highly siderophile elements (HSE, including Os, Ir, Ru, Pt, Pd and Re) on a set of six olivine-dominated peridotite samples from Sailipu volcanics, less than 1 cm in dimension. They allow us to further constrain the nature and state of the upper mantle beneath the southern Tibet. Sailipu samples display low total HSE abundances (Os+Ir+Ru+Pt+Pd+Re) ranging from 8.7 to 25 ppb, with nearly constant Os, Ir , and Ru, but rather varied Pt (2-13), Pd (0.4-5.2), and Re (0.01-0.5). Chondrite-normalised Pd/Ir ratios range from 0.2 to 2.4 reflecting significant metasomatism of some samples. The xenoliths exhibit 187Os/188Os ratios of 0.12213-0.12696, corresponding to γOs ranging from -4.2 to -0.4 - much higher than ancient cratonic mantle. Thus, on the basis of mineral chemistry and whole rock Os isotopes, Indian cratonic mantle is absent from our suite of xenoliths. Therefore, assuming the presence of cratonic mantle, it seems likely that the xenoliths do not sample the deep basal section of the lithosphere where cratonic Indian lithosphere is thought to be present under southern Tibet. In which case, testing of the seismic and tectonic models may not be possible without garnet-facies peridotites. More work need to be done to further reveal the mantle compostion and mantle dynamics beneath Tibet. [Financially supported by the National Key Project for Basic Research of China (Project 2011CB403102 and 2009CB421002)]. [1] Zhao Z, et al., 2008a. Acta Petrologica Sinica, 24 (2): 193-202 [2] Zhao Z, et al., 2008b. Geochimica et Cosmochimica Acta, 72, 12 (Supp.): A1095 [3] Liu C-Z, et al., 2011, Geology, in press
Forte, A.M.; Woodward, R.L.
1997-01-01
Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.
Anatomy of a Venusian hot spot - Geology, gravity, and mantle dynamics of Eistla Regio
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Phillips, Roger J.
1992-01-01
Results of a study of the western and central portions of the Venusian hot spot Eistla Regio are presented. Magellan radar images were mapped to elucidate the general geologic history of the region. Radial fracture systems both on the rises and volcanoes indicate that uplift and associated faulting accompanied volcanic construction. Prominent fracture zones strike WNW to NW, parallel to the long axis of the highlands. The largest of these, Guor Linea, exhibits a progressive deformation history that may include minor clockwise rotation in addition to bulk NNE-SSW extension. Pioneer Venus line-of-sight accelerations were inverted for vertical gravity which, when combined with topography, were used to solve for mass anomalies on the crust-mantle boundary and in the upper levels of the mantle convective system.
The African and Pacific Superplume Structures Constrained by Assembly and Breakup of Pangea
NASA Astrophysics Data System (ADS)
Zhang, N.; Zhong, S.; Leng, W.; Li, Z.
2009-12-01
Seismic tomography studies indicate that the Earth’s mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., superplumes) and circum-Pacific seismically fast anomalies (i.e., a globally spherical harmonic degree-2 structure). McNamara and Zhong (2005) have demonstrated that the African and Pacific superplume structures result from dynamic interaction between mantle convection and surface plate motion history in the last 120 Ma. However, their models produce slightly stronger degree 3 structure than degree 2 near the CMB. Here, we construct a proxy model of plate motions for the African hemisphere for the last 450 Ma since the Early Paleozoic using the paleogeographic reconstruction of continents constrained by paleomagnetic and geological observations. Using this proxy model for plate motion history as the time-dependent surface boundary conditions for a 3-dimensional spherical model of thermochemical mantle convection, we calculate the present-day mantle structure and explore the evolution of mantle structures since the Early Paleozoic. Our model calculations reproduce well the present-day mantle structure including the African and Pacific superplumes. The power spectra of our calculated present-day temperature field shows that the strongest power occurs at degree 2 in the lower mantle while in the upper mantle the strongest power is at degree 3. The degree correlation between tomography model S20RTS and our calculated temperature field shows a high correlation at the degree 1 and degree 2 in the lower mantle while the upper mantle and the short wavelength structures do not correlate well. The summed degree correlation for the lower mantle shows a relatively good correlation for the bottom 300 km of the mantle but the correlation is significantly reduced at depth 600 km above the CMB. For the evolution of mantle structures, we focus on the evolution of the African superplume. Our results suggest that the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia and the cold Africa hemisphere changes to hot due to the return flows from the circum-Pangea subduction after Pangea formation. Based on our results, we suggest that the African superplume structure may be formed no earlier than ~230 Ma ago (i.e., ~100 Ma after the assembly of Pangea).
Osmium isotopes suggest fast and efficient mixing in the oceanic upper mantle.
NASA Astrophysics Data System (ADS)
Bizimis, Michael; Salters, Vincent
2010-05-01
The depleted upper mantle (DUM; the source of MORB) is thought to represent the complementary reservoir of continental crust extraction. Previous studies have calculated the "average" DUM composition based on the geochemistry of MORB. However the Nd isotope compositions of abyssal peridotites have been shown to extend to more depleted compositions than associated MORB. While this argues for the presence of both relatively depleted and enriched material within the upper mantle, the extent of compositional variability, length scales of heterogeneity and timescales of mixing in the upper mantle are not well constrained. Model calculations show that 2Ga is a reasonable mean age of depletion for DUM while Hf - Nd isotopes show the persistence of a depleted terrestrial reservoir by the early Archean (3.5-3.8Ga). U/Pb zircon ages of crustal rocks show three distinct peaks at 1.2, 1.9, and 2.7Ga and these are thought to represent the ages of three major crustal growth events. A fundamental question therefore is whether the present day upper mantle retains a memory of multiple ancient depletion events, or has been effectively homogenized. This has important implications for the nature of convection and time scales of survival of heterogeneities in the upper mantle. Here we compare published Os isotope data from abyssal peridotites and ophiolitic Os-Ir alloys with new data from Hawaiian spinel peridotite xenoliths. The Re-Os isotope system has been shown to yield useful depletion age information in peridotites, so we use it here to investigate the distribution of Re-depletion ages (TRD) in these mantle samples as a proxy for the variability of DUM. The probability density functions (PDF) of TRD from osmiridiums, abyssal and Hawaiian peridotites are all remarkably similar and show a distinct peak at 1.2-1.3 Ga (errors for TRD are set at 0.2Ga to suppress statistically spurious age peaks). The Hawaiian peridotites further show a distinct peak at 1.9-2Ga, but no oceanic mantle samples with TRD older than 2Ga have been reported. The TRD age peaks overlap with two major crustal building events recorded in the U/Pb crustal zircon ages. Therefore, peridotites from the convecting upper mantle can retain some memory of ancient depletion events, and these depletions are perhaps linked to major crustal building or large-scale mantle melting events. In the case of the Hawaiian peridotites, an ancient depletion event is further supported by some extremely radiogenic Hf isotope compositions. However, the vast majority of oceanic mantle samples show a narrow rage of Os isotope compositions (187Os/188Os = 0.123-0.126) with TRDs at 300-600 Ma. If the upper mantle has been produced continuously (or episodically) since at least the early Archean, it is then surprising that almost all oceanic mantle samples record such young depletion ages. We suggest that convective mixing in the mantle is rigorous enough that effectively re-homogenizes and resets the Os isotope composition of previously depleted peridotites within short time scales (<500Ma). Similarly recent ages have been derived from modeling the Sr, Nd, Hf, Pb isotopic composition of MORBs. This resetting and homogenization can be due to re-equilibration of depleted mantle with enriched components, e.g. recycled basaltic crust or more fertile mantle. Ancient depletion events are only effectively preserved in the sublithospheric mantle samples (e.g. Kaapval, Slave, Wyoming cratons) because they remain isolated from the convective mantle.
Relationship between the upper mantle high velocity seismic lid and the continental lithosphere
NASA Astrophysics Data System (ADS)
Priestley, Keith; Tilmann, Frederik
2009-04-01
The lithosphere-asthenosphere boundary corresponds to the base of the "rigid" plates - the depth at which heat transport changes from advection in the convecting deeper upper mantle to conduction in the shallow upper mantle. Although this boundary is a fundamental feature of the Earth, mapping it has been difficult because it does not correspond to a sharp change in temperature or composition. Various definitions of the lithosphere and asthenosphere are based on the analysis of different types of geophysical and geological observations. The depth to the lithosphere-asthenosphere boundary determined from these different observations often shows little agreement when they are applied to the same region because the geophysical and geological observations (i.e., seismic velocity, strain rate, electrical resistivity, chemical depletion, etc.) are proxies for the change in rheological properties rather than a direct measure of the rheological properties. In this paper, we focus on the seismic mapping of the upper mantle high velocity lid and low velocity zone and its relationship to the lithosphere and asthenosphere. We have two goals: (a) to examine the differences in how teleseismic body-wave travel-time tomography and surface-wave tomography image upper mantle seismic structure; and (b) to summarise how upper mantle seismic velocity structure can be related to the structure of the lithosphere and asthenosphere. Surface-wave tomography provides reasonably good depth resolution, especially when higher modes are included in the analysis, but lateral resolution is limited by the horizontal wavelength of the long-period surface waves used to constrain upper mantle velocity structure. Teleseismic body-wave tomography has poor depth resolution in the upper mantle, particularly when no strong lateral contrasts are present. If station terms are used, features with large lateral extent and gradual boundaries are attenuated in the tomographic image. Body-wave models are not useful in mapping the thickness of the high velocity upper mantle lid because this type of analysis often determines wave speed perturbations from an unknown horizontal average and not absolute velocities. Thus, any feature which extends laterally across the whole region beneath a seismic network becomes invisible in the teleseismic body-wave tomographic image. We compare surface-wave and body-wave tomographic results using southern Africa as an example. Surface-wave tomographic images for southern Africa show a strong, high velocity upper mantle lid confined to depths shallower than ~ 200 km, whereas body-wave tomographic images show weak high velocity in the upper mantle extending to depths of ~ 300 km or more. However, synthetic tests show that these results are not contradictory. The absolute seismic velocity structure of the upper mantle provided by surface wave analysis can be used to map the thermal lithosphere. Priestley and McKenzie (Priestley, K., McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters 244, 285-301.) derive an empirical relationship between shear wave velocity and temperature. This relationship is used to obtain temperature profiles from the surface-wave tomographic models of the continental mantle. The base of the lithosphere is shown by a change in the gradient of the temperature profiles indicative of the depth where the mode of heat transport changes from conduction to advection. Comparisons of the geotherms determined from the conversion of surface-wave wave speeds to temperatures with upper mantle nodule-derived geotherms demonstrate that estimates of lithospheric thickness from Vs and from the nodule mineralogy agree to within about 25 km. The lithospheric thickness map for Africa derived from the surface-wave tomographic results shows that thick lithosphere underlies most of the Archean crust in Africa. The distribution of diamondiferous kimberlites provides an independent estimate of where thick lithosphere exists. Diamondiferous kimberlites generally occur where the lower part of the thermal lithosphere as indicated by seismology is in the diamond stability field.
Proxies of oceanic Lithosphere/Asthenosphere Boundary from Global Seismic Anisotropy Tomography
NASA Astrophysics Data System (ADS)
Burgos, Gael; Montagner, Jean-Paul; Beucler, Eric; Trampert, Jeannot; Capdeville, Yann
2013-04-01
Surface waves provide essential information on the knowledge of the upper mantle global structure despite their low lateral resolution. This study, based on surface waves data, presents the development of a new anisotropic tomographic model of the upper mantle, a simplified isotropic model and the consequences of these results for the Lithosphere/Asthenosphere Boundary (LAB). As a first step, a large number of data is collected, these data are merged and regionalized in order to derive maps of phase and group velocity for the fundamental mode of Rayleigh and Love waves and their azimuthal dependence (maps of phase velocity are also obtained for the first six overtones). As a second step, a crustal a posteriori model is developped from the Monte-Carlo inversion of the shorter periods of the dataset, in order to take into account the effect of the shallow layers on the upper mantle. With the crustal model, a first Monte-Carlo inversion for the upper mantle structure is realized in a simplified isotropic parameterization to highlight the influence of the LAB properties on the surface waves data. Still using the crustal model, a first order perturbation theory inversion is performed in a fully anisotropic parameterization to build a 3-D tomographic model of the upper mantle (an extended model until the transition zone is also obtained by using the overtone data). Estimates of the LAB depth are derived from the upper mantle models and compared with the predictions of oceanic lithosphere cooling models. Seismic events are simulated using the Spectral Element Method in order to validate the ability of the anisotropic tomographic model of the upper mantle to re- produce observed seismograms.
NASA Astrophysics Data System (ADS)
Burov, Evgueni; Gerya, Taras
2013-04-01
It has been long assumed that the dynamic topography associated with mantle-lithosphere interactions should be characterized by long-wavelength features (> 1000 km) correlating with morphology of mantle flow and expanding beyond the scale of tectonic processes. For example, debates on the existence of mantle plumes largely originate from interpretations of expected signatures of plume-induced topography that are compared to the predictions of analytical and numerical models of plume- or mantle-lithosphere interactions (MLI). Yet, most of the large-scale models treat the lithosphere as a homogeneous stagnant layer. We show that in continents, the dynamic topography is strongly affected by rheological properties and layered structure of the lithosphere. For that we reconcile mantle- and tectonic-scale models by introducing a tectonically realistic continental plate model in 3D large-scale plume-mantle-lithosphere interaction context. This model accounts for stratified structure of continental lithosphere, ductile and frictional (Mohr-Coulomb) plastic properties and thermodynamically consistent density variations. The experiments reveal a number of important differences from the predictions of the conventional models. In particular, plate bending, mechanical decoupling of crustal and mantle layers and intra-plate tension-compression instabilities result in transient topographic signatures such as alternating small-scale surface features that could be misinterpreted in terms of regional tectonics. Actually thick ductile lower crustal layer absorbs most of the "direct" dynamic topography and the features produced at surface are mostly controlled by the mechanical instabilities in the upper and intermediate crustal layers produced by MLI-induced shear and bending at Moho and LAB. Moreover, the 3D models predict anisotropic response of the lithosphere even in case of isotropic solicitations by axisymmetric mantle upwellings such as plumes. In particular, in presence of small (i.e. insufficient to produce solely any significant deformation) uniaxial extensional tectonic stress field, the plume-produced surface and LAB features have anisotropic linear shapes perpendicular to the far-field tectonic forces, typical for continental rifts. Compressional field results in singular sub-linear folds above the plume head, perpendicular to the direction of compression. Small bi-axial tectonic stress fields (compression in one direction and extension in the orthogonal direction) result in oblique, almost linear segmented normal or inverse faults with strike-slip components (or visa verse , strike-slip faults with normal or inverse components)
Subducting Slabs: Jellyfishes in the Earth's Mantle
NASA Astrophysics Data System (ADS)
Loiselet, C.; Braun, J.; Husson, L.; Le Carlier de Veslud, C.; Thieulot, C.; Yamato, P.; Grujic, D.
2010-12-01
The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.
Subducting slabs: Jellyfishes in the Earth's mantle
NASA Astrophysics Data System (ADS)
Loiselet, Christelle; Braun, Jean; Husson, Laurent; Le Carlier de Veslud, Christian; Thieulot, Cedric; Yamato, Philippe; Grujic, Djordje
2010-08-01
The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.
Compositional mantle layering revealed by slab stagnation at ~1000-km depth
Ballmer, Maxim D.; Schmerr, Nicholas C.; Nakagawa, Takashi; Ritsema, Jeroen
2015-01-01
Improved constraints on lower-mantle composition are fundamental to understand the accretion, differentiation, and thermochemical evolution of our planet. Cosmochemical arguments indicate that lower-mantle rocks may be enriched in Si relative to upper-mantle pyrolite, whereas seismic tomography images suggest whole-mantle convection and hence appear to imply efficient mantle mixing. This study reconciles cosmochemical and geophysical constraints using the stagnation of some slab segments at ~1000-km depth as the key observation. Through numerical modeling of subduction, we show that lower-mantle enrichment in intrinsically dense basaltic lithologies can render slabs neutrally buoyant in the uppermost lower mantle. Slab stagnation (at depths of ~660 and ~1000 km) and unimpeded slab sinking to great depths can coexist if the basalt fraction is ~8% higher in the lower mantle than in the upper mantle, equivalent to a lower-mantle Mg/Si of ~1.18. Global-scale geodynamic models demonstrate that such a moderate compositional gradient across the mantle can persist can in the presence of whole-mantle convection. PMID:26824060
Electrical conductivity imaging in the western Pacific subduction zone
NASA Astrophysics Data System (ADS)
Utada, Hisashi; Baba, Kiyoshi; Shimizu, Hisayoshi
2010-05-01
Oceanic plate subduction is an important process for the dynamics and evolution of the Earth's interior, as it is regarded as a typical downward flow of the mantle convection that transports materials from the near surface to the deep mantle. Recent seismological study showed evidence suggesting the transportation of a certain amount of water by subduction of old oceanic plate such as the Pacific plate down to 150-200 km depth into the back arc mantle. However it is not well clarified how deep into the mantle the water can be transported. The electromagnetic induction method to image electrical conductivity distribution is a possible tool to answer this question as it is known to be sensitive to the presence of water. Here we show recent result of observational study from the western Pacific subduction zone to examine the electrical conductivity distribution in the upper mantle and in the mantle transition zone (MTZ), which will provide implications how water distributes in the mantle. We take two kinds of approach for imaging the mantle conductivity, (a) semi-global and (b) regional induction approaches. Result may be summarized as follows: (a) Long (5-30 years) time series records from 8 submarine cables and 13 geomagnetic observatories in the north Pacific region were analyzed and long period magnetotelluric (MT) and geomagnetic deep sounding (GDS) responses were estimated in the period range from 1.7 to 35 days. These frequency dependent response functions were inverted to 3-dimensional conductivity distribution in the depth range between 350 and 850 km. Three major features are suggested in the MTZ depth such as, (1) a high conductivity anomaly beneath the Philippine Sea, (2) a high conductivity anomaly beneath the Hawaiian Islands, and (3) a low conductivity anomaly beneath and in the vicinity of northern Japan. (b) A three-year long deployment of ocean bottom electro-magnetometers (OBEM's) was conducted in the Philippine Sea and west Pacific Ocean from 2005 to 2008. As a preliminary investigation, MT response functions from 20 sites in the Philippine Sea and 4 sites in the west Pacific basin in the period range between 300 and 80000 sec were respectively inverted to one-dimensional (1-D) profile of electrical conductivity by quantitatively considering the effect of the heterogeneous conductivity distribution (ocean and lands) at the surface. The resultant 1-D models show three main features: (1) Strong contrast in the conductivity for the shallower 200 km of the upper mantle depths is recognized between the two regions, which is qualitatively consistent with the difference in lithospheric age. (2) The conductivity at 200-300 km depth is more or less similar to each other at about 0.3 S /m. (3) The conductivity around the MTZ depth is higher for the Philippine Sea mantle than for the Pacific mantle, which is consistent with the implication obtained from a semi-global approach (a). As already suggested in our previous work, the high conductivity in the MTZ below the Philippine Sea can be explained by the excess conduction due to the presence of hydrogen (water) in wadesleyite or in ringwoodite. Therefore, it implies a large scale circulation of water in the back arc mantle not only in the upper mantle but also down to the MTZ depth. However, our interpretation indicates that the high conductivity of the Philippine Sea uppermost upper mantle cannot be explained only by the effect of hydrogen conduction in olivine, but that additional conduction enhancement such as the presence of partial melt is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forte, A M; Quere, S; Moucha, R
Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep mantle structure below the African continent. With these latest tomography results we predict flow patterns under Africa that reveal a large-scale, active hot upwelling, or superplume, below the western margin of Africa under the Cape Verde Islands. The scale and dynamical intensity of this West African superplume (WASP) is comparable to that of the south African superplume (SASP) that has long been assumed to dominate the flow dynamics under Africa. On the basis of this new tomographymore » model, we find the dynamics of the SASP is strongly controlled by chemical contributions to deep mantle buoyancy that significantly compensate its thermal buoyancy. In contrast, the WASP appears to be entirely dominated by thermal buoyancy. New calculations of mantle convection incorporating these two superplumes reveal that the plate-driving forces due to the flow generated by the WASP is as strong as that due to the SASP. We find that the chemical buoyancy of the SASP exerts a strong stabilising control on the pattern and amplitude of shallow mantle flow in the asthenosphere below the southern half of the African plate. The asthenospheric flow predictions provide the first high resolution maps of focussed upwellings that lie below the major centres of Late Cenozoic volcanism, including the Kenya domes and Hoggar massif that lies above a remnant plume head in the upper mantle. Inferences of sublithospheric deformation from seismic anisotropy data are shown to be sensitive to the contributions of chemical buoyancy in the SASP.« less
NASA Astrophysics Data System (ADS)
Hu, Y.; Burgmann, R.; Shestakov, N.; Titkov, N. N.; Serovetnikov, S.; Prytkov, A.; Vasilenko, N. F.; Wang, K.
2016-12-01
The upper mantle rheology at depths within a few hundred kilometers has been well studied through shallow great megathrust earthquakes. However, understanding of the mantle rheology at greater depths, such as in the vicinity of the transition zone, has been limited by the lack of direct or indirect measurements. The largest well-recorded deep earthquake with magnitude Mw 8.3 occurred within the subducting Pacific plate at 600 km depth beneath the Okhotsk Sea on May 24, 2013. Twenty-seven continuous GPS stations in this region recorded coseismic displacements of up to 15 mm in the horizontal direction and up to 20 mm in the vertical direction. Within three years after the earthquake seventeen continuous GPS stations underwent transient westward motion of up to 8 mm/yr and vertical motion of up to 10 mm/yr. The geodetically delineated postseismic crustal deformation thus provides a unique opportunity to study the three dimensional heterogeneity of the mantle rheology and properties of the subducting slab at great depths. We have developed three-dimensional viscoelastic finite element models of the 2013 Okhotsk earthquake to explore these questions. Our initial model includes an elastic lithosphere including the subducting slab, a viscoelastic continental upper mantle and a viscoelastic oceanic upper mantle. We assume that the upper mantle is characterized by a bi-viscous Burgers rheology. For simplicity, we assume that the transient Kelvin viscosity is one order of magnitude lower than that of the steady-state Maxwell viscosity. Our preliminary models indicate that the viscosity of the upper mantle beneath the transition zone has to be at least one order of magnitude lower than that of the upper mantle at shallower depths. A viscoelastic subducting slab at depths >400 km with viscosities of 2-3 orders of magnitude higher than that of the mantle wedge provides a better fit to the observed surface velocities.
NASA Astrophysics Data System (ADS)
Dokht, R.; Gu, Y. J.; Sacchi, M. D.
2016-12-01
Seismic velocities and the topography of mantle discontinuities are crucial for the understanding of mantle structure, dynamics and mineralogy. While these two observables are closely linked, the vast majority of high-resolution seismic images are retrieved under the assumption of horizontally stratified mantle interfaces. This conventional correction-based process could lead to considerable errors due to the inherent trade-off between velocity and discontinuity depth. In this study, we introduce a nonlinear joint waveform inversion method that simultaneously recovers discontinuity depths and seismic velocities using the waveforms of SS precursors. Our target region is the upper mantle and transition zone beneath Northeast Asia. In this region, the inversion outcomes clearly delineate a westward dipping high-velocity structure in association with the subducting Pacific plate. Above the flat part of the slab west of the Japan sea, our results show a shear wave velocity reduction of 1.5% in the upper mantle and 10-15 km depression of the 410 km discontinuity beneath the Changbaishan volcanic field. We also identify the maximum correlation between shear velocity and transition zone thickness at an approximate slab dip of 30 degrees, which is consistent with previously reported values in this region.To validate the results of the 1D waveform inversion of SS precursors, we discretize the mantle beneath the study region and conduct a 2D waveform tomographic survey using the same nonlinear approach. The problem is simplified by adopting the discontinuity depths from the 1D inversion and solving only for perturbations in shear velocities. The resulting models obtained from the 1D and 2D approaches are self-consistent. Low-velocities beneath the Changbai intraplate volcano likely persist to a depth of 500 km. Collectively, our seismic observations suggest that the active volcanoes in eastern China may be fueled by a hot thermal anomaly originating from the mantle transition zone.
Seismically imaging the Afar plume
NASA Astrophysics Data System (ADS)
Hammond, J. O.; Kendall, J. M.; Bastow, I. D.; Stuart, G. W.; Keir, D.; Ayele, A.; Ogubazghi, G.; Ebinger, C. J.; Belachew, M.
2011-12-01
Plume related flood basalt volcanism in Ethiopia has long been cited to have instigated continental breakup in northeast Africa. However, to date seismic images of the mantle beneath the region have not produced conclusive evidence of a plume-like structure. As a result the nature and even existence of a plume in the region and its role in rift initiation and continental rupture are debated. Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie northeast Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 6 other regional experiments and global network stations across Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S- wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that the top 100km is dominated by focussed low velocity zones, likely associated with melt in the lithosphere/uppermost asthenosphere. Below these depths a broad SW-NE oriented sheet like upwelling extends down to the top of the transition zone. Within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. The nature of the transition zone anomalies suggests that small upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. Our images of secondary upwellings suggest that there is no evidence for a plume in the classical sense (i.e. a narrow conduit). Instead, we propose that secondary upwellings rise from the base of the transition zone and connect in the upper mantle. This coupled with measurements of seismic anisotropy suggest that mantle material flows northeast towards Arabia, and may be responsible for the dramatic dynamic topography observed in northeast Africa and western Arabia.
NASA Astrophysics Data System (ADS)
Čížková, Hana; Čadek, Ondřej; van den Berg, Arie P.; Vlaar, Nicolaas J.
Below subduction zones, high resolution seismic tomographic models resolve fast anomalies that often extend into the deep lower mantle. These anomalies are generally interpreted as slabs penetrating through the 660-km seismic discontinuity, evidence in support of whole-mantle convection. However, thermal coupling between two flow systems separated by an impermeable interface might provide an alternative explanation of the tomographic results. We have tested this hypothesis within the context of an axisymmetric model of mantle convection in which an impermeable boundary is imposed at a depth of 660 km. When an increase in viscosity alone is imposed across the impermeable interface, our results demonstrate the dominant role of mechanical coupling between shells, producing lower mantle upwellings (downwellings) below upper mantle downwellings (upwellings). However, we find that the effect of mechanical coupling can be significantly weakened if a narrow low viscosity zone exists beneath the 660-km discontinuity. In such a case, both thermally induced ‘slabs’ in the lower mantle and thermally activated plumes that rise from the upper/lower mantle boundary are observed even though mass transfer between the shells does not exist.
Water partitioning in the Earth's mantle
NASA Astrophysics Data System (ADS)
Inoue, Toru; Wada, Tomoyuki; Sasaki, Rumi; Yurimoto, Hisayoshi
2010-11-01
We have conducted H2O partitioning experiments between wadsleyite and ringwoodite and between ringwoodite and perovskite at 1673 K and 1873 K, respectively. These experiments were performed in order to constrain the relative distribution of H2O in the upper mantle, the mantle transition zone, and the lower mantle. We successfully synthesized coexisting mineral assemblages of wadsleyite-ringwoodite and ringwoodite-perovskite that were large enough to measure the H2O contents by secondary ion mass spectrometry (SIMS). Combining our previous H2O partitioning data (Chen et al., 2002) with the present results, the determined water partitioning between olivine, wadsleyite, ringwoodite, and perovskite under H2O-rich fluid saturated conditions are 6:30:15:1, respectively. Because the maximum H2O storage capacity in wadsleyite is ∼3.3 wt% (e.g. Inoue et al., 1995), the possible maximum H2O storage capacity in the olivine high-pressure polymorphs are as follows: ∼0.7 wt% in olivine (upper mantle just above 410 km depth), ∼3.3 wt% in wadsleyite (410-520 km depth), ∼1.7 wt% in ringwoodite (520-660 km depth), and ∼0.1 wt% in perovskite (lower mantle). If we assume ∼0.2 wt% of the H2O content in wadsleyite in the mantle transition zone estimated by recent electrical conductivity measurements (e.g. Dai and Karato, 2009), the estimated H2O contents throughout the mantle are as follows; ∼0.04 wt% in olivine (upper mantle just above 410 km depth), ∼0.2 wt% in wadsleyite (410-520 km depth), ∼0.1 wt% in ringwoodite (520-660 km depth) and ∼0.007 wt% in perovskite (lower mantle). Thus, the mantle transition zone should contain a large water reservoir in the Earth's mantle compared to the upper mantle and the lower mantle.
NASA Astrophysics Data System (ADS)
Sanchez-Valle, Carmen; Malfait, Wim J.
2016-04-01
Although silicate melts comprise only a minor volume fraction of the present day Earth, they play a critical role on the Earth's geochemical and geodynamical evolution. Their physical properties, namely the density, are a key control on many magmatic processes, including magma chamber dynamics and volcanic eruptions, melt extraction from residual rocks during partial melting, as well as crystal settling and melt migration. However, the quantitative modeling of these processes has been long limited by the scarcity of data on the density and compressibility of volatile-bearing silicate melts at relevant pressure and temperature conditions. In the last decade, new experimental designs namely combining large volume presses and synchrotron-based techniques have opened the possibility for determining in situ the density of a wide range of dry and volatile-bearing (H2O and CO2) silicate melt compositions at high pressure-high temperature conditions. In this contribution we will illustrate some of these progresses with focus on recent results on the density of dry and hydrous felsic and intermediate melt compositions (rhyolite, phonolite and andesite melts) at crustal and upper mantle conditions (up to 4 GPa and 2000 K). The new data on felsic-intermediate melts has been combined with in situ data on (ultra)mafic systems and ambient pressure dilatometry and sound velocity data to calibrate a continuous, predictive density model for hydrous and CO2-bearing silicate melts with applications to magmatic processes down to the conditions of the mantle transition zone (up to 2773 K and 22 GPa). The calibration dataset consist of more than 370 density measurements on high-pressure and/or water-and CO2-bearing melts and it is formulated in terms of the partial molar properties of the oxide components. The model predicts the density of volatile-bearing liquids to within 42 kg/m3 in the calibration interval and the model extrapolations up to 3000 K and 100 GPa are in good agreement with results from ab initio calculations. The density model has been applied to examine the mineral-melt buoyancy relations at depth and the implications of these results for the dynamics of magma chambers, crystal settling and the stability and mobility of magmas in the upper mantle will be discussed.
NASA Astrophysics Data System (ADS)
Liu, Y.-S.; Kuo, B.-Y.
2009-04-01
Taiwan is located in the convergent plate boundary zone where the Philippine Sea plate has obliquely collided on the Asian continental margin, initiating the arc-continent collision and subsequent mountain-building in Taiwan. Receiver function has been a powerful tool to image seismic velocity discontinuity structure in the crust and upper mantle which can help illuminate the deep dynamic process of active Taiwan orogeny. In this study, we adopt backprojection migration processing of teleseismic receiver functions to investigate the crust and upper mantle discontinuities beneath southern Taiwan, using the data from Southern Taiwan Transect Seismic Array (STTA), broadband stations of Central Weather Bureau (CWB), Broadband Array in Taiwan for Seismology (BATS), and Taiwan Integrated Geodynamics Research (TAIGER). This composite east-west trending linear array has the aperture of about 150 km with the station spacing of ~5-10 km. Superior to the common midpoint (CMP) stack approach, the migration can properly image the dipping, curved, or laterally-varying topography of discontinuous interfaces which very likely exist under the complicated tectonic setting of Taiwan. We first conduct synthetic experiments to test the depth and lateral resolution of migration images based on the WKBJ synthetic waveforms calculated from available source and receiver distributions. We will next construct the 2-D migration image under the array to reveal the topographic variation of the Moho and lithosphere discontinuities beneath southern Taiwan.
History and evolution of Subduction in the Precambrium
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2013-12-01
Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g. Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic subduction is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further subduction history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction changes to shallow underplating and buckling. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere starts to delaminate and drip-off. But the subduction style is not only a function of upper-mantle temperature but also strongly depends on the thickness of the subducting plate. If thinner present day oceanic plates are used in the Precambrian models, no shallow underplating is observed but steep subduction can be found up to an upper-mantle temperature of 200 K above present day values. Increasing oceanic plate thickness introduces a transition from steep to flat subduction at lower temperatures of around 150 K. Thicker oceanic plates in the Precambrium also agree with results from earlier studies, e.g. Abbott (1994). References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370. Subduction depends strongly on upper-mantle temperature. (a) Modern subduction with present day temperature gradients in upper-mantle and lithosphere. (b) Increase of temperature by 100 K at the lithosphere-asthenosphere boundary (LAB) leads to melting and drip-off of the of the slab-tip. (c) A temperature increase of 200 K leads to buckling of the subducting slab and Rayleigh-Taylor instabilities not only at the slab-tip but the whole LAB. At this stage subduction is no longer possible as the slab melts or breaks before it can be subducted into the mantle.
NASA Astrophysics Data System (ADS)
de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.
1998-10-01
The long-term growth and stability of compositionally layered continental upper mantle has been investigated by numerical modelling. We present the first numerical model of a convecting mantle including differentiation through partial melting resulting in a stable compositionally layered continental upper mantle structure. This structure includes a continental root extending to a depth of about 200 km. The model covers the upper mantle including the crust and incorporates physical features important for the study of the continental upper mantle during secular cooling of the Earth since the Archaean. Among these features are: a partial melt generation mechanism allowing consistent recurrent melting, time-dependent non-uniform radiogenic heat production, and a temperature- and pressure-dependent rheology. The numerical results reveal a long-term growth mechanism of the continental compositional root. This mechanism operates through episodical injection of small diapiric upwellings from the deep layer of undepleted mantle into the continental root which consists of compositionally distinct depleted mantle material. Our modelling results show the layered continental structure to remain stable during at least 1.5 Ga. After this period mantle differentiation through partial melting ceases due to the prolonged secular cooling and small-scale instabilities set in through continental delamination. This stable period of 1.5 Ga is related to a number of limitations in our model. By improving on these limitations in the future this stable period will be extended to more realistic values.
Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions.
Walter, M J; Kohn, S C; Araujo, D; Bulanova, G P; Smith, C B; Gaillou, E; Wang, J; Steele, A; Shirey, S B
2011-10-07
A primary consequence of plate tectonics is that basaltic oceanic crust subducts with lithospheric slabs into the mantle. Seismological studies extend this process to the lower mantle, and geochemical observations indicate return of oceanic crust to the upper mantle in plumes. There has been no direct petrologic evidence, however, of the return of subducted oceanic crustal components from the lower mantle. We analyzed superdeep diamonds from Juina-5 kimberlite, Brazil, which host inclusions with compositions comprising the entire phase assemblage expected to crystallize from basalt under lower-mantle conditions. The inclusion mineralogies require exhumation from the lower to upper mantle. Because the diamond hosts have carbon isotope signatures consistent with surface-derived carbon, we conclude that the deep carbon cycle extends into the lower mantle.
The influence of mantle refertilisation on the formation of TTGs in a plume-lid tectonics setting
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2017-12-01
Higher amounts of radiogenic elements and leftover primordial heat in the early Earth both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Early Earth. The increased upper mantle temperature precludes the modern plate tectonics regime and stabilizes another type of global tectonics often called plume-lid tectonics (Fischer and Gerya, 2016) or 'plutonic squishy lid' tectonics(Rozel et al., 2017). Plume-lid tectonics is dominated by intrusive mantle-derived magmatism which results in a thickening of the overlaying crust. The overthickened basaltic crust is transformed into eclogite and episodically recycled back into the mantle. Melt extraction from hydrated partially molten basaltic crust leads to the production of primordial tonalite-trondhjemite-granodiorite (TTG) continental crust. TTGs make up over half of the Archean crust and can be classied into low-, medium- and high-pressure types (Moyen, 2011). Field studies show that the three different types (low-, medium- and high-pressure) appear in a ratio of 20%, 60% and 20% (Moyen, 2011). Numerical models of plume-lid tectonics generally agree very well with these values (Rozel et al., 2017) but also show that the ratio between the three different TTG types varies greatly during the two phases of the plume-lid tectonics cycle: growth phase and overturn phase. Melt productivity of the mantle decreases rapidly after removal of the garnet and clinopyroxene components. Addition of new garnet and clinopyroxene-rich material into the harzburgitic residue should lead to a refertilised lherzolite which could potentially yield new melt (Bédard, 2006). Mixing of eclogite drips back into the mantle can lead to the geochemical refertilisation of already depleted mantle and allow for further extraction of melt (Bédard, 2006). We will explore this process of mantle refertilisation in our 3D petrological-magmatic-thermomechanical numerical modelling experiments and study its influence on the three types of TTGs during different phases of the plume-lid tectonics cycle.
Continent-Wide Maps of Lg Coda Q Variation and Rayleigh-wave Attenuation Variation for Eurasia
2007-01-30
lithosphere and crustal strain lead us to infer that fluids, originating by hydrothermal release from subducting lithosphere or other upper mantle heat...relatively low Qo values in the Arabian Peninsula are produced by fluids that have been released in the upper mantle by hydrothermal processes and have...Advection of plumes in mantle flow: Implications for hotspot motion, mantle viscosity and plume distribution, Geophys. J. Int., 132, 412–434. Talebian, M
Study on 3-D velocity structure of crust and upper mantle in Sichuan-yunnan region, China
Wang, C.; Mooney, W.D.; Wang, X.; Wu, J.; Lou, H.; Wang, F.
2002-01-01
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others appear the characteristic of tectonic boundary, indicating that the faults litely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the Indian and the Asian plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal.value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.
NASA Astrophysics Data System (ADS)
Eakin, Caroline M.; Rychert, Catherine A.; Harmon, Nicholas
2018-02-01
Mantle anisotropy beneath mid-ocean ridges and oceanic transforms is key to our understanding of seafloor spreading and underlying dynamics of divergent plate boundaries. Observations are sparse, however, given the remoteness of the oceans and the difficulties of seismic instrumentation. To overcome this, we utilize the global distribution of seismicity along transform faults to measure shear wave splitting of over 550 direct S phases recorded at 56 carefully selected seismic stations worldwide. Applying this source-side splitting technique allows for characterization of the upper mantle seismic anisotropy, and therefore the pattern of mantle flow, directly beneath seismically active transform faults. The majority of the results (60%) return nulls (no splitting), while the non-null measurements display clear azimuthal dependency. This is best simply explained by anisotropy with a near vertical symmetry axis, consistent with mantle upwelling beneath oceanic transforms as suggested by numerical models. It appears therefore that the long-term stability of seafloor spreading may be associated with widespread mantle upwelling beneath the transforms creating warm and weak faults that localize strain to the plate boundary.
P wave anisotropic tomography of the Alps
NASA Astrophysics Data System (ADS)
Hua, Yuanyuan; Zhao, Dapeng; Xu, Yixian
2017-06-01
The first tomographic images of P wave azimuthal and radial anisotropies in the crust and upper mantle beneath the Alps are determined by joint inversions of arrival time data of local earthquakes and teleseismic events. Our results show the south dipping European plate with a high-velocity (high-V) anomaly beneath the western central Alps and the north dipping Adriatic plate with a high-V anomaly beneath the Eastern Alps, indicating that the subduction polarity changes along the strike of the Alps. The P wave azimuthal anisotropy is characterized by mountain chain-parallel fast-velocity directions (FVDs) in the western central Alps and NE-SW FVDs in the Eastern Alps, which may be caused by mantle flow induced by the slab subductions. Our results reveal a negative radial anisotropy (i.e., Vph < Vpv) within the subducting slabs and a positive radial anisotropy (i.e., Vph > Vpv) in the low-velocity mantle wedge, which may reflect the subvertical plate subduction and its induced mantle flow. The results of anisotropic tomography provide important new information on the complex mantle structure and dynamics of the Alps and adjacent regions.
Tectonic predictions with mantle convection models
NASA Astrophysics Data System (ADS)
Coltice, Nicolas; Shephard, Grace E.
2018-04-01
Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough for an accurate prediction of instantaneous flow, but not for a prediction after 10 My of evolution. Therefore, inverse methods (sequential or data assimilation methods) using short-term fully dynamic evolution that predict surface kinematics are promising tools for a better understanding of the state of the Earth's mantle.
NASA Astrophysics Data System (ADS)
Barantsrva, O.
2014-12-01
We present a preliminary analysis of the crustal and upper mantle structure for off-shore regions in the North Atlantic and Arctic oceans. These regions have anomalous oceanic lithosphere: the upper mantle of the North Atlantic ocean is affected by the Iceland plume, while the Arctic ocean has some of the slowest spreading rates. Our specific goal is to constrain the density structure of the upper mantle in order to understand the links between the deep lithosphere dynamics, ocean spreading, ocean floor bathymetry, heat flow and structure of the oceanic lithosphere in the regions where classical models of evolution of the oceanic lithosphere may not be valid. The major focus is on the oceanic lithosphere, but the Arctic shelves with a sufficient data coverage are also included into the analysis. Out major interest is the density structure of the upper mantle, and the analysis is based on the interpretation of GOCE satellite gravity data. To separate gravity anomalies caused by subcrustal anomalous masses, the gravitational effect of water, crust and the deep mantle is removed from the observed gravity field. For bathymetry we use the global NOAA database ETOPO1. The crustal correction to gravity is based on two crustal models: (1) global model CRUST1.0 (Laske, 2013) and, for a comparison, (2) a regional seismic model EUNAseis (Artemieva and Thybo, 2013). The crustal density structure required for the crustal correction is constrained from Vp data. Previous studies have shown that a large range of density values corresponds to any Vp value. To overcome this problem and to reduce uncertainty associated with the velocity-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007), and apply different Vp-density conversions for different parts of the region. We present preliminary results, which we use to examine factors that control variations in bathymetry, sedimentary and crustal thicknesses in these anomalous oceanic domains.
Tomography-based mantle flow beneath Mongolia-Baikal area
NASA Astrophysics Data System (ADS)
Zhu, Tao
2014-12-01
Recent progress in seismic tomography of Asia allows us to explore and understand more clearly the mantle flow below the Mongolia-Baikal area. We present a tomography-based model of mantle convection that provides a good match to the residual topography. The model provides predictions on the present-day mantle flow and flow-induced asthenospheric deformation which give us new insights on the mantle dynamics in the Mongolia-Baikal area. The predicted mantle flow takes on a very similar pattern at the depths shallower or deeper than 400 km and almost opposite flow directions between the upper (shallower than 400 km) and lower (deeper than 400 km) parts. The flow pattern could be divided into the 'simple' eastern region and the 'complex' western region in the Mongolia. The upwelling originating from about 350 km depth beneath Baikal rift zone is an important possible drive force to the rifting. The seismic anisotropy cannot be simply related with asthenospheric flow and flow-induced deformation in the entire Mongolia-Baikal area, but they could be considered as an important contributor to the seismic anisotropy in the eastern region of Mongolia and around and in Sayan-Baikal orogenic belt.
Upper mantle seismic anisotropy beneath Northern Peru from shear wave splitting analysis.
NASA Astrophysics Data System (ADS)
Franca, G. S.; Condori, C.; Tavera, H.; Eakin, C. M.; Beck, S. L.
2017-12-01
Beneath much of Peru lies the largest region of flat-slab subduction in the world today. The origins and dynamics of the Peruvian flat-slab however remain elusive, particularly in the north away from the Nazca Ridge. Studies of seismic anisotropy can potentially provide us with insight into the dynamics of recent and past deformational processes in the upper mantle. In this study, we conduct shear wave splitting to investigate seismic anisotropy across the northern extent of the Peruvian flat-slab for the first time. For the analysis, we used arrivals of SKS, SKKS and PKS phases from teleseismic events (88° > Δ < 150°) recorded at 30 broadband seismic stations from the Peruvian permanent and portable seismic networks, and international networks (CTBTO and RSBR-Brazil). The preliminary results reveal a complex anisotropy pattern with variations along strike. In the northernmost region, the average delay times range between 1.0 s and 1.2 s, with fast directions predominantly ENE-WSW oriented in a direction approximately perpendicular to the trench, parallel with subduction of the Nazca plate. Meanwhile towards the central region of Peru, the predominant fast direction changes to SE-NW oblique with the trench, but consistent with the pattern seen previously over the southern extent of the flat-slab by Eakin et al. (2013, 2015). These characteristics suggest a fundamental difference between the anisotropic structures, and therefore underlying mantle processes, beneath the northern and central portions of the Peruvian flat-slab.
Upper-mantle origin of the Yellowstone hotspot
Christiansen, R.L.; Foulger, G.R.; Evans, J.R.
2002-01-01
Fundamental features of the geology and tectonic setting of the northeast-propagating Yellowstone hotspot are not explained by a simple deep-mantle plume hypothesis and, within that framework, must be attributed to coincidence or be explained by auxiliary hypotheses. These features include the persistence of basaltic magmatism along the hotspot track, the origin of the hotspot during a regional middle Miocene tectonic reorganization, a similar and coeval zone of northwestward magmatic propagation, the occurrence of both zones of magmatic propagation along a first-order tectonic boundary, and control of the hotspot track by preexisting structures. Seismic imaging provides no evidence for, and several contraindications of, a vertically extensive plume-like structure beneath Yellowstone or a broad trailing plume head beneath the eastern Snake River Plain. The high helium isotope ratios observed at Yellowstone and other hotspots are commonly assumed to arise from the lower mantle, but upper-mantle processes can explain the observations. The available evidence thus renders an upper-mantle origin for the Yellowstone system the preferred model; there is no evidence that the system extends deeper than ???200 km, and some evidence that it does not. A model whereby the Yellowstone system reflects feedback between upper-mantle convection and regional lithospheric tectonics is able to explain the observations better than a deep-mantle plume hypothesis.
Secular rotational motions and the mechanical structure of a dynamical viscoelastic earth
NASA Technical Reports Server (NTRS)
Yuen, D. A.; Sabadini, R.
1984-01-01
A survey is presented of analytical methods for computing the linear responses of the rotational axis of a layered viscoelastic earth to surface loading. Theoretical research in this area is first summarized, and the differences between the mechanical boundary conditions to be applied at the interface separating the upper and lower mantles for an adiabatically and chemically stratified mantle are discussed. Some examples of polar wander and secular variation of the spin rate from glacial excitation are presented for various types of chemical and viscosity stratifications. The effects of an artificial density jump at the base of the lithosphere in models are examined, and certain issues concerning the fluid tidal Love number for different types of density stratification are addressed. The meaning of effective plate thickness over geological time scales for rotational dynamics is discussed.
40K-(40)Ar constraints on recycling continental crust into the mantle
Coltice; Albarede; Gillet
2000-05-05
Extraction of potassium into magmas and outgassing of argon during melting constrain the relative amounts of potassium in the crust with respect to those of argon in the atmosphere. No more than 30% of the modern mass of the continents was subducted back into the mantle during Earth's history. It is estimated that 50 to 70% of the subducted sediments are reincorporated into the deep continental crust. A consequence of the limited exchange between the continental crust and the upper mantle is that the chemistry of the upper mantle is driven by exchange of material with the deep mantle.
Postglacial rebound with a non-Newtonian upper mantle and a Newtonian lower mantle rheology
NASA Technical Reports Server (NTRS)
Gasperini, Paolo; Yuen, David A.; Sabadini, Roberto
1992-01-01
A composite rheology is employed consisting of both linear and nonlinear creep mechanisms which are connected by a 'transition' stress. Background stress due to geodynamical processes is included. For models with a non-Newtonian upper-mantle overlying a Newtonian lower-mantle, the temporal responses of the displacements can reproduce those of Newtonian models. The average effective viscosity profile under the ice-load at the end of deglaciation turns out to be the crucial factor governing mantle relaxation. This can explain why simple Newtonian rheology has been successful in fitting the uplift data over formerly glaciated regions.
Wang, Chun-Yong; Chan, W.W.; Mooney, W.D.
2003-01-01
Using P and S arrival times from 4625 local and regional earthquakes recorded at 174 seismic stations and associated geophysical investigations, this paper presents a three-dimensional crustal and upper mantle velocity structure of southwestern China (21??-34??N, 97??-105??E). Southwestern China lies in the transition zone between the uplifted Tibetan plateau to the west and the Yangtze continental platform to the east. In the upper crust a positive velocity anomaly exists in the Sichuan Basin, whereas a large-scale negative velocity anomaly exists in the western Sichuan Plateau, consistent with the upper crustal structure under the southern Tibetan plateau. The boundary between these two anomaly zones is the Longmen Shan Fault. The negative velocity anomalies at 50-km depth in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with temperature and composition variations in the upper mantle. The Red River Fault is the boundary between the positive and negative velocity anomalies at 50-km depth. The overall features of the crustal and the upper mantle structures in southwestern China are a low average velocity, large crustal thickness variations, the existence of a high-conductivity layer in the crust or/and upper mantle, and a high heat flow value. All these features are closely related to the collision between the Indian and the Asian plates.
Gravity field over northern Eurasia and variations in the strength of the upper mantle
NASA Technical Reports Server (NTRS)
Kogan, Mikhail G.; Mcnutt, Marcia K.
1993-01-01
The correlation of long-wavelength gravity anomalies in northern Eurasia with seismic velocity anomalies in the upper mantle reverses in sign between western and eastern Eurasia. The difference between western and eastern Eurasia can be explained by the presence of a low-viscosity zone in the uppermost mantle beneath eastern Eurasia that is absent to the west. The location of the lateral change in viscosity corresponds with the geologic boundary between the older shields and platforms of the Baltics, Russia, and Siberia and the younger, geologically active mountain belts of eastern Asia. This relation provides evidence that differences in the strength of the upper mantle control the locus of intracontinental deformation.
NASA Astrophysics Data System (ADS)
Tiwari, Ashwani Kant; Bhushan, Kirti; Eken, Tuna; Singh, Arun
2018-06-01
New shear wave splitting measurements are obtained from the Bengal Basin using core-mantle refracted SKS, PKS, and SKKS phases. The splitting parameters, namely time delays (δ t) and fast polarization directions (ϕ), were estimated through analysis of 54 high-quality waveforms (⩾ 2.5 signal to noise ratio) from 30 earthquakes with magnitude ⩾ 5.5 recorded at ten seismic stations deployed over Bangladesh. No evidence of splitting was found, which indicates azimuthal isotropy beneath the region. These null measurements can be explained by either vertically dipping anisotropic fast axes or by the presence of multiple horizontal anisotropic layers with different fast polarization directions, where the combined effect results in a null characterization. The anisotropic fabric preserved from rifting episodes of Antarctica and India, subduction-related dynamics of the Indo-Burmese convergence zone, and northward movement of the Indian plate creating shear at the base of the lithosphere can explain the observed null measurements. The combined effect of all these most likely results in a strong vertical anisotropic heterogeneity, creating the observed null results.
NASA Astrophysics Data System (ADS)
Glišović, Petar; Forte, Alessandro
2016-04-01
The paleo-distribution of density variations throughout the mantle is unknown. To address this question, we reconstruct 3-D mantle structure over the Cenozoic era using a data assimilation method that implements a new back-and-forth nudging algorithm. For this purpose, we employ convection models for a compressible and self-gravitating mantle that employ 3-D mantle structure derived from joint seismic-geodynamic tomography as a starting condition. These convection models are then integrated backwards in time and are required to match geologic estimates of past plate motions derived from marine magnetic data. Our implementation of the nudging algorithm limits the difference between a reconstruction (backward-in-time solution) and a prediction (forward-in-time solution) on over a sequence of 5-million-year time windows that span the Cenozoic. We find that forward integration of reconstructed mantle heterogeneity that is constrained to match past plate motions delivers relatively poor fits to the seismic-tomographic inference of present-day mantle heterogeneity in the upper mantle. We suggest that uncertainties in the past plate motions, related for example to plate reorganization episodes, could partly contribute to the poor match between predicted and observed present-day heterogeneity. We propose that convection models that allow tectonic plates to evolve freely in accord with the buoyancy forces and rheological structure in the mantle could provide additional constraints on geologic estimates of paleo-configurations of the major tectonic plates.
Upper mantle velocity structure beneath southern Africa from modeling regional seismic data
NASA Astrophysics Data System (ADS)
Zhao, Ming; Langston, Charles A.; Nyblade, Andrew A.; Owens, Thomas J.
1999-03-01
The upper mantle seismic velocity structure beneath southern Africa is investigated using travel time and waveform data which come from a large mine tremor in South Africa (mb 5.6) recorded by the Tanzania broadband seismic experiment and by several stations in southern Africa. The waveform data show upper mantle triplications for both the 410- and 670-km discontinuities between distances of 2100 and 3000 km. Auxiliary travel time data along similar profiles obtained from other moderate events are also used. P wave travel times are inverted for velocity structure down to ˜800-km depth using the Wiechert-Herglotz technique, and the resulting model is evaluated by perturbing it at three depth intervals and then testing the perturbed model against the travel time and waveform data. The results indicate a typical upper mantle P wave velocity structure for a shield. P wave velocities from the top of the mantle down to 300-km depth are as much as 3% higher than the global average and are slightly slower than the global average between 300- and 420-km depth. Little evidence is found for a pronounced low-velocity zone in the upper mantle. A high-velocity gradient zone is required above the 410-km discontinuity, but both sharp and smooth 410-km discontinuities are permitted by the data. The 670-km discontinuity is characterized by high-velocity gradients over a depth range of ˜80 km around 660-km depth. Limited S wave travel time data suggest fast S wave velocities above ˜150-km depth. These results suggest that the bouyant support for the African superswell does not reside at shallow depths in the upper mantle.
NASA Astrophysics Data System (ADS)
Frei, Robert; Polat, Ali; Meibom, Anders
2004-04-01
Here we present Sm-Nd, Re-Os, and Pb isotopic data of carefully screened, least altered samples of boninite-like metabasalts from the Isua Supracrustal Belt (ISB, W Greenland)that characterize their mantle source at the time of their formation. The principal observations of this study are that by 3.7-3.8 Ga melt source regions existed in the upper mantle with complicated enrichment/depletion histories. Sm-Nd isotopic data define a correlation line with a slope corresponding to an age of 3.69 ± 0.18 Gy and an initial εNd value of +2.0 ± 4.7. This Sm-Nd age is consistent with indirect (but more precise) U-Pb geochronological estimates for their formation between 3.69-3.71 Ga. Relying on the maximum formation age of 3.71 Gy defined by the external age constraints, we calculate an average εNd [T = 3.71 Ga] value of +2.2 ± 0.9 (n = 18, 1σ) for these samples, which is indicative of a strongly depleted mantle source. This is consistent with the high Os concentrations, falling in the range between 1.9-3.4 ppb, which is similar to the estimated Os concentration for the primitive upper mantle. Re-Os isotopic data (excluding three outliers) yield an isochron defining an age of 3.76 ± 0.09 Gy (with an initial γOs value of 3.9 ± 1.2), within error consistent with the Sm-Nd age and the indirect U-Pb age estimates. An average initial γOs [T = 3.71 Ga] value of + 4.4 ± 1.2 (n = 8; 2σ) is indicative of enrichment of their source region during, or prior to, its melting. Thus, this study provides the first observation of an early Archean upper mantle domain with a distinctly radiogenic Os isotopic signature. This requires a mixing component characterized by time-integrated suprachondritic Re/Os evolution and a Os concentration high enough to strongly affect the Os budget of the mantle source; modern sediments, recycled basaltic crust, or the outer core do not constitute suitable candidates. At this point, the nature of the mantle or crustal component responsible for the radiogenic Os isotopic signature is not known. Compared with the Sm-Nd and Re-Os isotope systems, the Pb isotope systematics show evidence for substantial perturbation by postformational hydrothermal-metasomatic alteration processes accompanying an early Archean metamorphic event at 3510 ± 65 Ma and indicate that the U-Th-Pb system was partially opened to Pb-loss on a whole rock scale. Single stage mantle evolution models fail to provide a solution to the Pb isotopic data, which requires that a high-μ component was mixed with the depleted mantle component before or during the extrusion of the basalts. Relatively high 207Pb/204Pb ratios (compared to contemporaneous mantle), support the hypothesis that erosion products of the ancient terrestrial protocrust existed for several hundred My before recycling into the mantle before ∼3.7 Ga. Our results are broadly consistent with models favoring a time-integrated Hadean history of mantle depletion and with the existence of an early Hadean protocrust, the complement to the Hadean depleted mantle, which after establishment of subduction-like processes was, at least locally, recycled into the upper mantle before 3.7 Ga. Thus, already in the Hadean, the upper mantle seems to be characterized by geochemical heterogeneity on a range of length scales; one property that is shared with the modern upper mantle. However, a simple two component mixing scenario between depleted mantle and an enriched-, crustal component with a modern analogue can not account for the complicated and contradictory geochemical properties of this particular Hadean upper mantle source.
NASA Astrophysics Data System (ADS)
Arcay, Diane
2017-08-01
The present study aims at better deciphering the different mechanisms involved in the functioning of the subduction interplate. A 2D thermo-mechanical model is used to simulate a subduction channel, made of oceanic crust, free to evolve. Convergence at constant rate is imposed under a 100 km thick upper plate. Pseudo-brittle and non-Newtonian behaviours are modelled. The influence of the subduction channel strength, parameterized by the difference in activation energy between crust and mantle (ΔEa) is investigated to examine in detail the variations in depth of the subduction plane down-dip extent, zcoup . First, simulations show that numerical resolution may be responsible for an artificial and significant shallowing of zcoup if the weak crustal layer is not correctly resolved. Second, if the age of the subducting plate is 100 Myr, subduction occurs for any ΔEa . The stiffer the crust is, that is, the lower ΔEa is, the shallower zcoup is (60 km depth if ΔEa = 20 kJ/mol) and the hotter the fore-arc base is. Conversely, imposing a very weak subduction channel (ΔEa > 135 J/mol) leads there to an extreme mantle wedge cooling and inhibits mantle melting in wet conditions. Partial kinematic coupling at the fore-arc base occurs if ΔEa = 145 kJ/mol. If the incoming plate is 20 Myr old, subduction can occur under the conditions that the crust is either stiff and denser than the mantle, or weak and buoyant. In the latter condition, cold crust plumes rise from the subduction channel and ascend through the upper lithosphere, triggering (1) partial kinematic coupling under the fore-arc, (2) fore-arc lithosphere cooling, and (3) partial or complete hindrance of wet mantle melting. zcoup then ranges from 50 to more than 250 km depth and is time-dependent if crust plumes form. Finally, subduction plane dynamics is intimately linked to the regime of subduction-induced corner flow. Two different intervals of ΔEa are underlined: 80-120 kJ/mol to reproduce the range of slab surface temperature inferred from geothermometry, and 10-40 kJ/mol to reproduce the shallow hot mantle wedge core inferred from conditions of last equilibration of near-primary arc magmas and seismic tomographies. Therefore, an extra process controlling mantle wedge dynamics is needed to satisfy simultaneously the aforementioned observations. A mantle viscosity reduction, by a factor 4-20, caused by metasomatism in the mantle wedge is proposed. From these results, I conclude that the subduction channel down-dip extent, zcoup , should depend on the subduction setting, to be consistent with the observed variability of sub-arc depths of the subducting plate surface.
Dynamics of metasomatic transformation of lithospheric mantle rocks under Siberian Craton
NASA Astrophysics Data System (ADS)
Sharapov, Victor; Perepechko, Yury; Tomilenko, Anatoly; Chudnenko, Konstantin; Sorokin, Konstantin
2014-05-01
Numerical problem for one- and two-velocity hydrodynamics of heat and mass transfer in permeable zones over 'asthenospheric lenses' (with estimates for dynamics of non-isothermal metasomatosis of mantle rocks, using the approximation of flow reactor scheme) was formulated and solved based on the study of inclusion contents in minerals of metamorphic rocks of the lithosphere mantle and earth crust, estimates of thermodynamic conditions of inclusions appearance, and the results of experimental modeling of influence of hot reduced gases on rocks and minerals of xenoliths in mantle rocks under the cratons of Siberian Platform (SP): 1) the supply of fluid flows of any composition from upper mantle magma sources results in formation of zonal metasomatic columns in ultrabasic lithosphere mantle in permeable zones of deep faults; 2) when major element or petrogenetic components are supplied from magma source, depleted ultrabasic rocks of the lithosphere mantle are transformed into substrates which can be regarded as deep analogs of crust rodingites; 3) other fluid compositions cause deep calcinations and noticeable salination of metasomated substrate, or garnetization (eclogitization) of primary ultrabasic matrix develops; 4) above these zones the zone of basification appears; it is changed by the area of pyroxenitization, amphibolization, and biotitization; 5) modeling of thermo and mass exchange for two-velocity hydrodynamic problem showed that hydraulic approximation increases velocities of heat front during convective heating and decreases pressure in fluid along the flow. It was shown that grospydites, regarded earlier as eclogites, in permeable areas of lithosphere mantle, are typical zones draining upper mantle magma sources of metasomatic columns. As a result of the convective melting the polybaric magmatic sources may appear. Thus the formation of the (kimberlites?) melilitites or carbonatites is possible at the base of the lithospheric plates. It is shown that the physico - chemical conditions of the carbonation of the depleted mantle peridotites refer to the narrow interval of the possible fluid compositions. The bulk fluid content near 4 weight % with the SiO2 CaO 0.5 - 0.1 molar volumes the 1) the Si/Ca molar ratio is < 1; 2) in the C-H-O system the molar ration should be 1/2/3 - 2/1/2; 3) the pO2 variations should be -8 < lg pO2 < -11; 4) in the fluid the CO2 content is twice higher than H2O and Cl essentially prevail under F. In the system with smaller fraction of the fluid phase less increased by the major element rock components the carbonation is more intensive when the Ca content decrease. The fusions of the basic magmas are possible within the wehrlitization zones. The work is supported by RFBR grant 12-05-00625.
Southern hemisphere craton modification by plume-lithosphere interaction
NASA Astrophysics Data System (ADS)
Hu, J.; Liu, L.; Faccenda, M.; Zhou, Q.; Fischer, K. M.; Marshak, S.; Lundstrom, C.
2017-12-01
The longevity of cratons is generally attributed to neutrally-to-positively buoyant and mechanically strong lithosphere that shields the cratonic crust from underlying mantle dynamics. Large portions of the cratonic lithospheres in South America and Africa, however, have experienced significant modification since the Mesozoic, as demonstrated by widespread Cretaceous uplift and volcanism, present-day high topography, thin crust, and the presence of seismically fast but neutrally buoyant upper-mantle anomalies. We show that these observations reflect a permanent increase in lithospheric buoyancy due to plume-triggered lithosphere deformation and deep lithospheric loss during Late Cretaceous to early Tertiary, as further evidenced by positive lithosphere residual topography, negative lithosphere residual gravity and the realignment of seismic anisotropy in the cratonic roots. Lithosphere in these regions has been thermally reestablished since then, as confirmed by its present-day low heat flow and high seismic velocities. We conclude that lowermost cratonic lithospheres is compositionally denser than the asthenospheric mantle and can be episodically removed when perturbed by underlying mantle dynamics, while the shallower buoyant lithosphere helps to stabilize cratonic crust over billions of years. We further propose that zones where lithosphere was lost would take tens of millions of years to recover thermally, but the density of the new thermal root would remain less than that of the intact root.
NASA Astrophysics Data System (ADS)
Nyblade, A.; Lloyd, A. J.; Anandakrishnan, S.; Wiens, D. A.; Aster, R. C.; Huerta, A. D.; Wilson, T. J.; Shore, P.; Zhao, D.
2011-12-01
As part of the International Polar Year in Antarctica, 37 seismic stations have been installed across West Antarctica as part of the Polar Earth Observing Network (POLENET). 23 stations form a sparse backbone network of which 21 are co-located on rock sites with a network of continuously recording GPS stations. The remaining 14 stations, in conjunction with 2 backbone stations, form a seismic transect extending from the Ellsworth Mountains across the West Antarctic Rift System (WARS) and into Marie Byrd Land. Here we present preliminary P and S wave velocity models of the upper mantle from regional body wave tomography using P and S travel times from teleseismic events recorded by the seismic transect during the first year (2009-2010) of deployment. Preliminary P wave velocity models consisting of ~3,000 ray paths from 266 events indicate that the upper mantle beneath the Whitmore Mountains is seismically faster than the upper mantle beneath Marie Byrd Land and the WARS. Furthermore, we observe two substantial upper mantle low velocity zones located beneath Marie Byrd Land and near the southern boundary of the WARS.
NASA Astrophysics Data System (ADS)
Civiero, C.; Custodio, S.; Silveira, G. M.; Rawlinson, N.; Arroucau, P.
2017-12-01
The processes responsible for the geodynamical evolution of the Ibero-Maghrebian domain are still enigmatic. Several geophysical studies have improved our understanding of the region, but no single model has been accepted yet. This study takes advantage of the dense station networks deployed from France in the north to Canary Islands and Morocco in the south to provide a new high-resolution P-wave velocity model of the structure of the upper-mantle and top of the lower mantle. These images show subvertical small-scale upwellings below Atlas Range, Canary Islands and Central Iberia that seem to cross the transition zone. The results, together with geochemical evidence and a comparison with previous global tomographic models, reveal the ponding or flow of deep-plume material beneath the transition zone, which seems to feed upper-mantle "secondary" pulses. In the upper mantle the plumes, in conjunction with the subduction-related upwellings, allow the hot mantle to rise in the surrounding zones. During its rising, the mantle interacts with horizontal SW slab-driven flow which skirts the Alboran slab and connects with the mantle upwelling below Massif Central through the Valencia Trough rift.
NASA Astrophysics Data System (ADS)
Matchette-Downes, H.; van der Hilst, R. D.; Priestley, K. F.
2017-12-01
We have estimated the thickness of the crust in western Tibet by measuring the time delays between the direct S and the SsPmp seismic phases. We find that the thickness of the crust increases from around 50 km beneath the Tethyan Himalayas to around 80 km beneath the Lhasa block, and then decreases to around 70 km beneath the Qiangtang terrane.This method, virtual deep seismic sounding (VDSS), also yields robust estimates of the contribution of crust buoyancy to elevation. By subtracting the predicted elevation from the real topography, we find there is no observable deviation from hydrostatic topography beneath the Tethyan Himalaya, but there is negative residual topography of 1.5 to 2.0 km beneath the Lhasa and Qiangtang terranes. It is also known that the interior of the Plateau is isostatically compensated, as it has small free air gravity anomalies.Additionally, we have estimated the 3D shear speed structure of the crust and upper mantle. This model is derived from maps of the fundamental mode Rayleigh wave phase speed dispersion in the period range from 20 to 140 s, obtained from a standard two-plane-wave inversion constrained with receiver functions and group speeds from ambient noise. The observations agree with previous observations of a low-wavespeed zone in the mid-crust and a gradual Moho. Furthermore, the long-period Rayleigh waves detect a high-wavespeed upper mantle.Together, the observations of high upper mantle wavespeeds, negative residual topography, and small free air gravity anomalies support the hypothesis that cold, dense Indian lithosphere has underthrust the Plateau in this region. However, in the presentation we also consider contributions to residual topography from plate flexure, lower crustal flow, or deeper mantle flow (dynamic topography).
NASA Astrophysics Data System (ADS)
Boese, C. M.; Warren-Smith, E.; Townend, J.; Stern, T. A.; Lamb, S. H.
2016-12-01
Seismicity in the upper mantle in continental collision zones is relatively rare, but observed around the world. Temporary seismometer deployments have repeatedly detected mantle earthquakes at depths of 40-100 km within the Australia-Pacific plate boundary zone beneath the South Island of New Zealand. Here, the transpressive Alpine Fault constitutes the primary plate boundary structure linking subduction zones of opposite polarity farther north and south. The Southern Alps Microearthquake Borehole Array (SAMBA) has been operating continuously since November 2008 along a 50 km-long section of the central Alpine Fault, where the rate of uplift of the Southern Alps is highest. To date it has detected more than 40 small to moderate-sized mantle events (1≤ML≤3.9). The Central Otago Seismic Array (COSA) has been in operation since late 2012 and detected 15 upper mantle events along the sub-vertical southern Alpine Fault. Various mechanisms have been proposed to explain the occurrence of upper mantle seismicity in the South Island, including intra-continental subduction (Reyners 1987, Geology); high shear-strain gradients due to depressed geotherms and viscous deformation of mantle lithosphere (Kohler and Eberhart-Phillips 2003, BSSA); high strain rates resulting from plate bending (Boese et al. 2013, EPSL), and underthrusting of the Australian plate (Lamb et al. 2015, G3). Focal mechanism analysis reveals a variety of mechanisms for the upper mantle events but predominantly strike-slip and reverse faulting. In this study, we apply spectral analysis to better constrain source parameters for these mantle events. These results are interpreted in conjunction with new information about crustal structure and low-frequency earthquakes near the Moho and in light of existing velocity, attenuation and resistivity models.
Surface wave tomography applied to the North American upper mantle
NASA Astrophysics Data System (ADS)
van der Lee, Suzan; Frederiksen, Andrew
Tomographic techniques that invert seismic surface waves for 3-D Earth structure differ in their definitions of data and the forward problem as well as in the parameterization of the tomographic model. However, all such techniques have in common that the tomographic inverse problem involves solving a large and mixed-determined set of linear equations. Consequently these inverse problems have multiple solutions and inherently undefinable accuracy. Smoother and rougher tomographic models are found with rougher (confined to great circle path) and smoother (finite-width) sensitivity kernels, respectively. A powerful, well-tested method of surface wave tomography (Partitioned Waveform Inversion) is based on inverting the waveforms of wave trains comprising regional S and surface waves from at least hundreds of seismograms for 3-D variations in S wave velocity. We apply this method to nearly 1400 seismograms recorded by digital broadband seismic stations in North America. The new 3-D S-velocity model, NA04, is consistent with previous findings that are based on separate, overlapping data sets. The merging of US and Canadian data sets, adding Canadian recordings of Mexican earthquakes, and combining fundamental-mode with higher-mode waveforms provides superior resolution, in particular in the US-Canada border region and the deep upper mantle. NA04 shows that 1) the Atlantic upper mantle is seismically faster than the Pacific upper mantle, 2) the uppermost mantle beneath Precambrian North America could be one and a half times as rigid as the upper mantle beneath Meso- and Cenozoic North America, with the upper mantle beneath Paleozoic North America being intermediate in seismic rigidity, 3) upper-mantle structure varies laterally within these geologic-age domains, and 4) the distribution of high-velocity anomalies in the deep upper mantle aligns with lower mantle images of the subducted Farallon and Kula plates and indicate that trailing fragments of these subducted oceanic plates still reside in the transition zone. The thickness of the high-velocity layer beneath Precambrian North America is estimated to be 250±70 km thick. On a smaller scale NA04 shows 1) high-velocities associated with subduction of the Pacific plate beneath the Aleutian arc, 2) the absence of expected high velocities in the upper mantle beneath the Wyoming craton, 3) a V-shaped dent below 150 km in the high-velocity cratonic lithosphere beneath New England, 4) the cratonic lithosphere beneath Precambrian North America being confined southwest of Baffin Bay, west of the Appalachians, north of the Ouachitas, east of the Rocky Mountains, and south of the Arctic Ocean, 5) the cratonic lithosphere beneath the Canadian shield having higher S-velocities than that beneath Precambrian basement that is covered with Phanerozoic sediments, 6) the lowest S velocities are concentrated beneath the Gulf of California, northern Mexico, and the Basin and Range Province.
Magmatic plumbing system from lower mantle of Hainan plume
NASA Astrophysics Data System (ADS)
Xia, Shaohong; Sun, Jinlong; Xu, Huilong; Huang, Haibo; Cao, Jinghe
2017-04-01
Intraplate volcanism during Late Cenozoic in the Leiqiong area of southernmost South China, with basaltic lava flows covering a total of more than 7000 km2, has been attributed to an underlying Hainan plume. However, detailed features of Hainan plume, such as morphology of magmatic conduits, depth of magmatic pool in the upper mantle and pattern of mantle upwelling, are still enigmatic. Here we present seismic tomographic images of the upper 1100 km of the mantle beneath the southern South China. Our results show a mushroom-like continuous low-velocity anomaly characterized by a columnar tail with diameter of about 200-300 km that tilts downward to lower mantle beneath north of Hainan hotspot and a head that spreads laterally near the mantle transition zone, indicating a magmatic pool in the upper mantle. Further upward, this head is decomposed into small patches, but when encountering the base of the lithosphere, a pancake-like anomaly is shaped again to feed the Hainan volcanism. Our results challenge the classical model of a fixed thermal plume that rises vertically to the surface, and propose the new layering-style pattern of magmatic upwelling of Hainan plume. This work indicates the spatial complexities and differences of global mantle plumes probably due to heterogeneous compositions and changefully thermochemical structures of deep mantle.
NASA Astrophysics Data System (ADS)
Benoit, Margaret H.; Nyblade, Andrew A.; Owens, Thomas J.; Stuart, Graham
2006-11-01
Ethiopia has been subjected to widespread Cenozoic volcanism, rifting, and uplift associated with the Afar hot spot. The hot spot tectonism has been attributed to one or more thermal upwellings in the mantle, for example, starting thermal plumes and superplumes. We investigate the origin of the hot spot by imaging the S wave velocity structure of the upper mantle beneath Ethiopia using travel time tomography and by examining relief on transition zone discontinuities using receiver function stacks. The tomographic images reveal an elongated low-velocity region that is wide (>500 km) and extends deep into the upper mantle (>400 km). The anomaly is aligned with the Afar Depression and Main Ethiopian Rift in the uppermost mantle, but its center shifts westward with depth. The 410 km discontinuity is not well imaged, but the 660 km discontinuity is shallower than normal by ˜20-30 km beneath most of Ethiopia, but it is at a normal depth beneath Djibouti and the northwestern edge of the Ethiopian Plateau. The tomographic results combined with a shallow 660 km discontinuity indicate that upper mantle temperatures are elevated by ˜300 K and that the thermal anomaly is broad (>500 km wide) and extends to depths ≥660 km. The dimensions of the thermal anomaly are not consistent with a starting thermal plume but are consistent with a flux of excess heat coming from the lower mantle. Such a broad thermal upwelling could be part of the African Superplume found in the lower mantle beneath southern Africa.
NASA Astrophysics Data System (ADS)
Li, J.; Guo, G.; WANG, X.; Chen, Q.
2017-12-01
The northwest Pacific subduction region is an ideal location to study the interaction between the subducting slab and upper mantle discontinuities. Various and complex geometry of the Pacific subducting slab can be well traced downward from the Kuril, Japan and Izu-Bonin trench using seismicity and tomography images (Fukao and Obayashi, 2013). Due to the sparse distribution of seismic stations in the sea, investigation of the deep mantle structure beneath the broad sea regions is very limited. In this study, we applied the well- developed multiple-ScS reverberations method (Wang et al., 2017) to analyze waveforms recorded by the Chinese Regional Seismic Network, the densely distributed temporary seismic array stations installed in east Asia. A map of the topography of the upper mantle discontinuities beneath the broad oceanic regions in northwest Pacific subduction zone is imaged. We also applied the receiver function analysis to waveforms recorded by stations in northeast China and obtain the detailed topography map beneath east Asia continental regions. We then combine the two kinds of topography of upper mantle discontinuities beneath oceanic and continental regions respectively, which are obtained from totally different methods. A careful image matching and spatial correlation is made in the overlapping study regions to calibrate results with different resolution. This is the first time to show systematically a complete view of the topography of the 410-km and 660-km discontinuities beneath the east Asia "Big mantle wedge" (Zhao and Ohtani, 2009) covering the broad oceanic and continental regions in the Northwestern Pacific Subduction zone. Topography pattern of the 660 and 410 is obtained and discussed. Especially we discovered a broad depression of the 410-km discontinuity covering more than 1000 km in lateral, which seems abnormal in the cold subducting tectonic environment. Based on plate tectonic reconstruction studies and HTHP mineral experiments, we argue that the east-retreat trench motion of the subducting Pacific slab might play an important role in the observed broad depression of the 410-km discontinuity.
NASA Astrophysics Data System (ADS)
Wu, S.; Yang, Y.; Wang, K.
2017-12-01
The Tien Shan orogeny, situated in central Asia about 2000 km away from the collision boundary between Indian plate and Eurasian plate, is one of the highest, youngest, and most active intracontinental mountain belts on the earth. It first formed during the Paleozoic times and became reactivated at about 20Ma. Although many studies on the dynamic processes of the Tien Shan orogeny have been carried out before, its tectonic rejuvenation and uplift mechanism are still being debated. A high-resolution model of crust and mantle beneath Tien Shan is critical to discern among competing models for the mountain building. In this study, we collect and process seismic data recorded by several seismic arrays in the central and western Tien Shan region to generate surface wave dispersion curves at 6-140 s period using ambient noise tomography (ANT) and two-plane surface wave tomography (TPWT) methods. Using these dispersion curves, we construct a high-resolution 3-D image of shear wave velocity (Vs) in the crust and upper mantle up to 300 km depth. Our current model constrained only by surface waves shows that, under the Tien Shan orogenic belt, a strong low S-wave velocity anomaly exists in the uppermost mantle down to the depth of 200km, supporting the model that the hot upper mantle is upwelling under the Tien Shan orogenic belt, which may be responsible for the mountain building. To the west of central Tien Shan across the Talas-Fergana fault, low S-wave velocity anomalies in the upper mantle become much weaker and finally disappear beneath the Fergana basin. Because surface waves are insensitive to the structures below 300 km, body wave arrival times will be included for a joint inversion with surface waves to generate S-wave velocity structure from the surface down to the mantle transition zone. The joint inversion of both body and surface waves provide complementary constraints on structures at different depths and helps to achieve a more realistic model compared with body wave or surface wave tomography alone. The joint inversion model will be presented.
NASA Astrophysics Data System (ADS)
Schmerr, N. C.; Beghein, C.; Kostic, D.; Baldridge, A. M.; West, J. D.; Nittler, L. R.; Bull, A. L.; Montesi, L.; Byrne, P. K.; Hummer, D. R.; Plescia, J. B.; Elkins-Tanton, L. T.; Lekic, V.; Schmidt, B. E.; Elkins, L. J.; Cooper, C. M.; ten Kate, I. L.; Van Hinsbergen, D. J. J.; Parai, R.; Glass, J. B.; Ni, J.; Fuji, N.; McCubbin, F. M.; Michalski, J. R.; Zhao, C.; Arevalo, R. D., Jr.; Koelemeijer, P.; Courtier, A. M.; Dalton, H.; Waszek, L.; Bahamonde, J.; Schmerr, B.; Gilpin, N.; Rosenshein, E.; Mach, K.; Ostrach, L. R.; Caracas, R.; Craddock, R. A.; Moore-Driskell, M. M.; Du Frane, W. L.; Kellogg, L. H.
2015-12-01
Seismic discontinuities within the mantle arise from a wide range of mechanisms, including changes in mineralogy, major element composition, melt content, volatile abundance, anisotropy, or a combination of the above. In particular, the depth and sharpness of upper mantle discontinuities at 410 and 660 km depth are attributed to solid-state phase changes sensitive to both mantle temperature and composition, where regions of thermal heterogeneity produce topography and chemical heterogeneity changes the impedance contrast across the discontinuity. Seismic mapping of this topography and sharpness thus provides constraint on the thermal and compositional state of the mantle. The EarthScope USArray is providing unprecedented access to a wide variety of new regions previously undersampled by the SS precursors. This includes the boundary between the oceanic plate in the western Atlantic Ocean and continental margin of eastern North America. Here we use a seismic array approach to image the depth, sharpness, and topography of the upper mantle discontinuities, as well as other possible upper mantle reflectors beneath this region. This array approach utilizes seismic waves that reflect off the underside of a mantle discontinuity and arrive several hundred seconds prior to the SS seismic phase as precursory energy. In this study, we collected high-quality broadband data SS precursors data from shallow focus (< 30 km deep), mid-Atlantic ridge earthquakes recorded by USArray seismometers in Alaska. We generated 4th root vespagrams to enhance the SS precursors and determine how they sample the mantle. Our data show detection of localized structure on the discontinuity boundaries as well as additional horizons, such as the X-discontinuity and a potential reflection from a discontinuity near the depth of the lithosphere-asthenosphere boundary. These structures are related to the transition from predominantly old ocean lithosphere to underlying continental lithosphere, as while deeper reflectors are associated with the subduction of the ancient Farallon slab. A comparison of the depth of upper mantle discontinuities to changes in seismic velocity and anisotropy will further quantify the relationship to mantle flow, compositional layering, and phases changes.
Yellowstone Hotspot Geodynamics
NASA Astrophysics Data System (ADS)
Smith, R. B.; Farrell, J.; Massin, F.; Chang, W.; Puskas, C. M.; Steinberger, B. M.; Husen, S.
2012-12-01
The Yellowstone hotspot results from the interaction of a mantle plume with the overriding N. America plate producing a ~300-m high topographic swell centered on the Late Quaternary Yellowstone volcanic field. The Yellowstone area is dominated by earthquake swarms including a deadly M7.3 earthquake, extraordinary high heat flow up to ~40,000 mWm-2, and unprecedented episodes of crustal deformation. Seismic tomography and gravity data reveal a crustal magma reservoir, 6 to 15 km deep beneath the Yellowstone caldera but extending laterally ~20 km NE of the caldera and is ~30% larger than previously hypothesized. Kinematically, deformation of Yellowstone is dominated by regional crustal extension at up to ~0.4 cm/yr but with superimposed decadal-scale uplift and subsidence episodes, averaging ~2 cm/yr from 1923. From 2004 to 2009 Yellowstone experienced an accelerated uplift episode of up to 7 cm/yr whose source is modeled as magmatic recharge of a sill at the top of the crustal magma reservoir at 8-10-km depth. New mantle tomography suggest that Yellowstone volcanism is fed by an upper-mantle plume-shaped low velocity body that is composed of melt "blobs", extending from 80 km to 650 km in depth, tilting 60° NW, but then reversing tilt to ~60° SE to a depth of ~1500 km. Moreover, images of upper mantle conductivity from inversion of MT data reveal a high conductivity annulus around the north side of the plume in the upper mantle to resolved depths of ~300 km. On a larger scale, upper mantle flow beneath the western U.S. is characterized by eastward flow beneath Yellowstone at 5 cm/yr that deflects the plume to the west, and is underlain by a deeper zone of westerly return flow in the lower mantle reversing the deflection of the plume body to the SE. Dynamic modeling of the Yellowstone plume including a +15 m geoid anomaly reveals low excess plume temperatures, up to 150°K, consistent with a weak buoyancy flux of ~0.25 Mg/s. Integrated kinematic modeling of GPS, Quaternary fault slip, and seismic data suggest that the gravitational potential of the Yellowstone swell creates a regional extension affecting much of the western U.S. Overall, the Yellowstone hotspot swell is the vertex of tensional stress axes rotation from E-W in the Basin-Range to NE-SW at the Yellowstone Plateau as well as the cause of edge faulting, nucleating the nearby Teton and Centennial faults. We extrapolate the original location of the Yellowstone mantle-source southwestward 800 km to an initial position at 17 million years ago beneath eastern Oregon and Washington suggesting a common origin for the YSRP and Columbia Plateau volcanism. We propose that the original plume head ascended vertically behind the subducting Juan de Fuca plate, but was entrained ~12 Ma ago in a faster mantle flow beneath the continental lithosphere and tilted into its present configuration.
Miller, Nathaniel; Lizarralde, Daniel
2016-01-01
Effects of serpentine-filled fault zones on seismic wave propagation in the upper mantle at the outer rise of subduction zones are evaluated using acoustic wave propagation models. Modeled wave speeds depend on azimuth, with slowest speeds in the fault-normal direction. Propagation is fastest along faults, but, for fault widths on the order of the seismic wavelength, apparent wave speeds in this direction depend on frequency. For the 5–12 Hz Pn arrivals used in tomographic studies, joint-parallel wavefronts are slowed by joints. This delay can account for the slowing seen in tomographic images of the outer rise upper mantle. At the Middle America Trench, confining serpentine to fault zones, as opposed to a uniform distribution, reduces estimates of bulk upper mantle hydration from ~3.5 wt % to as low as 0.33 wt % H2O.
Geochemical cycling, mass balance, and Earth’s dynamic structure (Invited)
NASA Astrophysics Data System (ADS)
Allegre, C. J.
2009-12-01
The use of radiogenic tracers is now established as one of the standard methods (together with seismic tomography) to constrain Earth models. One of the advantages of radiogenic tracers is that they constrain not only present day structures, but also their historical evolution since the earliest time. A mandatory condition is to use not only one but all of the available isotopic systems, with their diverse cycling properties and different radioactive half-lives. Mass balances calculations are the basic tool which allows one to use quantitatively the various tracers. However, the inverse method approach, when applied to mass balance, is strongly non-linear, particularly for tracers with intermediate to short half lives. 142Nd, 82W, and 129Xe allows one to define a consistent model for the Present and past evolutions. Results point to a 3-layer model for the present mantle: an upper mantle with two layers separated by the 450 km discontinuity, and a lower mantle below the 670 km discontinuity. These layers all convect independently though none of them is fully isolated. They exchange matter and energy, not necessarily through the same process. For instance, most hotspots (though not all of them!) are boundary layer instabilities generated at the 670 km discontinuity, but there is important heat transfer from the lower mantle through megablobs. Recent results on the Hadean period are in agreement with core-mantle- atmosphere differentiation at 4444 My. The early crust was mostly anorthositic but has been recycled into the upper mantle within the first billion years. Formation of granitic continents started at 4300 My. 80% of their material was already present on the surface as acidic rocks by 2500 My. The reworking process involved in continental development increased continuously with time and today is the dominant process. Continents are now in a stage of steady state, with general addition of mantle and subducted continental material.
The Importance of Lower Mantle Structure to Plate Stresses and Plate Motions
NASA Astrophysics Data System (ADS)
Holt, W. E.; Wang, X.; Ghosh, A.
2016-12-01
Plate motions and plate stresses are widely assumed as the surface expression of mantle convection. The generation of plate tectonics from mantle convection has been studied for many years. Lithospheric thickening (or ridge push) and slab pull forces are commonly accepted as the major driving forces for the plate motions. However, the importance of the lower mantle to plate stresses and plate motions remains less clear. Here, we use the joint modeling of lithosphere and mantle dynamics approach of Wang et al. (2015) to compute the tractions originating from deeper mantle convection and follow the method of Ghosh et al. (2013) to calculate gravitational potential energy per unit area (GPE) based on Crust 1.0 (Laske et al., 2013). Absolute values of deviatoric stresses are determined by the body force distributions (GPE gradients and traction magnitudes applied at the base of the lithosphere). We use the same relative viscosity model that Ghosh et al. (2013) used, and we solve for one single adjustable scaling factor that multiplies the entire relative viscosity field to provide absolute values of viscosity throughout the lithosphere. This distribution of absolute values of lithosphere viscosities defines the magnitudes of surface motions. In this procedure, the dynamic model first satisfies the internal constraint of no-net-rotation of motions. The model viscosity field is then scaled by the single factor until we achieve a root mean square (RMS) minimum between computed surface motions and the kinematic no-net-rotation (NNR) model of Kreemer et al. (2006). We compute plate stresses and plate motions from recently published global tomography models (over 70 based on Wang et al., 2015). We find that RMS misfits are significantly reduced when details of lower mantle structure from the latest tomography models are added to models that contain only upper and mid-mantle density distributions. One of the key reasons is that active upwelling from the Large Low Shear Velocity Provinces (LLSVPs) in the lower mantle in Pacific (Frost and Rost, 2014) provides important components of mantle flow affecting plate stresses and motions. We demonstrate in this paper how lower mantle density heterogeneity has a marked influence on plate stresses and plate motions.
NASA Astrophysics Data System (ADS)
Assumpcao, M.; Melo, B. C.
2017-12-01
Shear-wave splitting from core-refracted (SKS) waves indicates the amount and orientation of seismic anisotropy in the upper mantle, and is used to infer past and present mantle dynamics and continental evolution. Previous SKS studies in South America concentrated mainly in the Andes and in SE Brazil. Although effects of frozen anisotropy in the lithospheric mantle were suggested in some parts of SE Brazil, the main contribution to the orientation of the fast polarization directions have been attributed to asthenospheric flow around cratonic keels, especially around the São Francisco craton in eastern Brazil (Assumpção et al., 2006,2011). We added extra SKS splitting measurements in the area of the Pantanal and Paraná-Chaco basins (FAPESP-funded "3-Basins" Project). Results from 47 new stations will be presented, both from the temporary deployments and from the Brazilian permanent net. This data set partly fills the gap in SKS measurements between the Andes and SE Brazil, providing a more complete and robust anisotropy map of the S. American stable platform. On average, over most of the mid-continent, the fast polarization orientation tends to be close to the absolute plate motion given by the hotspot reference frame HS3-NUVEL-1A. Nevertheless, the new and previously published fast polarizations results suggest mantle flow around the Amazon and São Francisco cratons. A comparison with recent modeling of upper mantle flow induced by the Nazca plate subduction (Hu et al., 2017) shows good agreement with the predictions of mantle flow around the Amazon craton. Further south, however, especially in the Pantanal Basin, the observed SKS fast orientations are ENE-WSW, deviating from the general ESE-WNW predicted orientations. We propose that the observed ENE-WSW orientation may be due to flow around a possible cratonic nucleus beneath the northern part of the Paraná Basin ("Paranapanema block"). This cratonic block (inferred from geological observations) is also seen in regional surface-wave tomography. Large delay times at the Pantanal Basin may indicate a stronger asthenospheric channel, a more coherent flow, or a thicker asthenosphere. Similarly, small delay times beneath the northern Paraná Basin may indicate thinner anisotropic asthenosphere in that region, similar to the observations in the Amazon craton.
Origin and Distribution of Water Contents in Continental and Oceanic Lithospheric Mantle
NASA Technical Reports Server (NTRS)
Peslier, Anne H.
2013-01-01
The water content distribution of the upper mantle will be reviewed as based on the peridotite record. The amount of water in cratonic xenoliths appears controlled by metasomatism while that of the oceanic mantle retains in part the signature of melting events. In both cases, the water distribution is heterogeneous both with depth and laterally, depending on localized water re-enrichments next to melt/fluid channels. The consequence of the water distribution on the rheology of the upper mantle and the location of the lithosphere-asthenosphere boundary will also be discussed.
NASA Astrophysics Data System (ADS)
Lassiter, J. C.
2007-12-01
The style of mantle convection (e.g., layered- vs. whole-mantle convection) is one of the most hotly contested questions in the Geological Sciences. Geochemical arguments for and against mantle layering have largely focused on mass-balance evidence for the existence of "hidden" geochemical reservoirs. However, the size and location of such reservoirs are largely unconstrained, and most geochemical arguments for mantle layering are consistent with a depleted mantle comprising most of the mantle mass and a comparatively small volume of enriched, hidden material either within D" or within seismically anomalous "piles" beneath southern Africa and the South Pacific. The mass flux associated with subduction of oceanic lithosphere is large and plate subduction is an efficient driver of convective mixing in the mantle. Therefore, the depth to which oceanic lithosphere descends into the mantle is effectively the depth of the upper mantle in any layered mantle model. Numerous geochemical studies provide convincing evidence that many mantle plumes contain material which at one point resided close to the Earth's surface (e.g., recycled oceanic crust ± sediments, possibly subduction-modified mantle wedge material). Fluid dynamic models further reveal that only the central cores of mantle plumes are involved in melt generation. The presence of recycled material in the sources of many ocean island basalts therefore cannot be explained by entrainment of this material during plume ascent, but requires that recycled material resides within or immediately above the thermo-chemical boundary layer(s) that generates mantle plumes. More recent Os- isotope studies of mantle xenoliths from OIB settings reveal the presence not only of recycled crust in mantle plumes, but also ancient melt-depleted harzburgite interpreted to represent ancient recycled oceanic lithosphere [1]. Thus, there is increasing evidence that subducted slabs accumulate in the boundary layer(s) that provide the source of mantle plumes, as suggested 25 years ago by Hofmann & White [2]. Determination of the depth of origin of mantle plumes would provide a 1st-order constraint on the depth of plate subduction and the volume of the "upper" mantle. Improved seismic techniques and deployment of OBS arrays may soon allow robust imaging of mantle plumes in the deep mantle, although preliminary results are controversial [3]. Detection of a conclusive geochemical signature of core/mantle interaction would also provide strong evidence for a deep origin of mantle plumes, although there is considerable debate as to what such a signature would entail. In summary, determination of the depth of origin of mantle plumes may provide the key to deciphering the fate of subducted slabs and the overall style of mantle convection. Although this problem remains unresolved after several decades of work, recent developments in both geophysics and geochemistry provide hope for a final resolution within the next 10 years. [1] M Bizimis, M Griselin, JC Lassiter, VJM Salters, G Sen, EPSL 257, 259-293, 2007. [2] AW Hofmann, WM White, EPSL 57, 421-436, 1982. [3] R Montelli, G Nolet, F Dahlens, G Masters, E Engdahl, S-H Hung, Science 303, 338-343, 2004.
NASA Astrophysics Data System (ADS)
Eguchi, J.; Dasgupta, R.
2017-12-01
Investigating the redox state of the convective upper mantle remains challenging as there is no way of retrieving samples from this part of the planet. Current views of mantle redox are based on Fe3+/∑Fe of minerals in mantle xenoliths and thermodynamic calculations of fO2 [1]. However, deep xenoliths are only recoverable from continental lithospheric mantle, which may have different fO2s than the convective oceanic upper mantle [1]. To gain insight on the fO2 of the deep parts of the oceanic upper mantle, we probe CO2-trace element systematics of basalts that have been argued to receive contributions from subducted crustal lithologies that typically melt deeper than peridotite. Because CO2 contents of silicate melts at graphite saturation vary with fO2 [2], we suggest CO2-trace element systematics of oceanic basalts which sample deep heterogeneities may provide clues about the fO2 of the convecting mantle containing embedded heterogeneities. We developed a new model to predict CO2 contents in nominally anhydrous silicate melts from graphite- to fluid-saturation over a range of P (0.05- 5 GPa), T (950-1600 °C), and composition (foidite-rhyolite). We use the model to calculate CO2 content as a function of fO2 for partial melts of lithologies that vary in composition from rhyolitic sediment melt to silica-poor basaltic melt of pyroxenites. We then use modeled CO2 contents in mixing calculations with partial melts of depleted mantle to constrain the fO2 required for partial melts of heterogeneities to deliver sufficient CO2 to explain CO2-trace element systematics of natural basalts. As an example, Pitcairn basalts, which show evidence of a subducted crustal component [3] require mixing of 40% of partial melts of a garnet pyroxenite at ΔFMQ -1.75 at 3 GPa. Mixing with a more silicic composition such as partial melts of a MORB-eclogite cannot deliver enough CO2 at graphite saturation, so in this scenario fO2 must be above the EMOG/D buffer at 4 GPa. Results suggest convecting upper mantle may be more oxidized than continental lithospheric mantle, and fO2 profiles of continental lithospheric mantle may not be applicable to convective upper mantle.[1] Frost, D, McCammon, C. 2008. An Rev E & P Sci. (36) p.389-420; [2] Holloway, J, et al. 1992. Eu J. Min. (4) p. 105-114; [3] Woodhead, J, Devey C. 1993. EPSL. (116) p. 81-99.
Osmium Isotopic Evolution of the Mantle Sources of Precambrian Ultramafic Rocks
NASA Astrophysics Data System (ADS)
Gangopadhyay, A.; Walker, R. J.
2006-12-01
The Os isotopic composition of the modern mantle, as recorded collectively by ocean island basalts, mid- oceanic ridge basalts (MORB) and abyssal peridotites, is evidently highly heterogeneous (γ Os(I) ranging from <-10 to >+25). One important question, therefore, is how and when the Earth's mantle developed such large-scale Os isotopic heterogeneities. Previous Os isotopic studies of ancient ultramafic systems, including komatiites and picrites, have shown that the Os isotopic heterogeneity of the terrestrial mantle can be traced as far back as the late-Archean (~ 2.7-2.8 Ga). This observation is based on the initial Os isotopic ratios obtained for the mantle sources of some of the ancient ultramafic rocks determined through analyses of numerous Os-rich whole-rock and/or mineral samples. In some cases, the closed-system behavior of these ancient ultramafic rocks was demonstrated via the generation of isochrons of precise ages, consistent with those obtained from other radiogenic isotopic systems. Thus, a compilation of the published initial ^{187}Os/^{188}Os ratios reported for the mantle sources of komatiitic and picritic rocks is now possible that covers a large range of geologic time spanning from the Mesozoic (ca. 89 Ma Gorgona komatiites) to the Mid-Archean (e.g., ca. 3.3 Ga Commondale komatiites), which provides a comprehensive picture of the Os isotopic evolution of their mantle sources through geologic time. Several Precambrian komatiite/picrite systems are characterized by suprachondritic initial ^{187}Os/^{188}Os ratios (e.g., Belingwe, Kostomuksha, Pechenga). Such long-term enrichments in ^{187}Os of the mantle sources for these rocks may be explained via recycling of old mafic oceanic crust or incorporation of putative suprachondritic outer core materials entrained into their mantle sources. The relative importance of the two processes for some modern mantle-derived systems (e.g., Hawaiian picrites) is an issue of substantial debate. Importantly, however, the high-precision initial Os isotopic compositions of the majority of ultramafic systems show strikingly uniform initial ^{187}Os/^{188}Os ratios, consistent with their derivation from sources that had Os isotopic evolution trajectory very similar to that of carbonaceous chondrites. In addition, the Os isotopic evolution trajectories of the mantle sources for most komatiites show resolvably lower average Re/Os than that estimated for the Primitive Upper Mantle (PUM), yet significantly higher than that obtained in some estimates for the modern convecting upper mantle, as determined via analyses of abyssal peridotites. One possibility is that most of the komatiites sample mantle sources that are unique relative to the sources of abyssal peridotites and MORB. Previous arguments that komatiites originate via large extents of partial melting of relatively deep upper mantle, or even lower mantle materials could, therefore, implicate a source that is different from the convecting upper mantle. If so, this source is remarkably uniform in its long-term Re/Os, and it shows moderate depletion in Re relative to the PUM. Alternatively, if the komatiites are generated within the convective upper mantle through relatively large extents of partial melting, they may provide a better estimate of the Os isotopic composition of the convective upper mantle than that obtained via analyses of MORB, abyssal peridotites and ophiolites.
NASA Technical Reports Server (NTRS)
Bindschadler, Duane L.; Parmentier, E. Marc
1990-01-01
The crust and mantle of Venus can be represented by a model of a layered structure stratified in both density and viscosity. This structure consists of a brittle-elastic upper crustal layer; a ductile weaker crustal layer; a strong upper mantle layer, about 10 percent denser than the crust; and a weaker substrate, representing the portion of the mantle in which convective flow occurs which is a primary source of large-scale topographic and tectonic features. This paper examines the interactions between these four layers and the mantle flow driven by thermal or compositional variations. Solutions are found for a flow driven by a buoyancy-force distribution within the mantle and by relief at the surface and crust-mantle boundary. It is shown that changes in crustal thickness are driven by vertical normal stresses due to mantle flow and by shear coupling of horizontal mantle flow into the crust.
Primordial helium entrained by the hottest mantle plumes
NASA Astrophysics Data System (ADS)
Jackson, M. G.; Konter, J. G.; Becker, T. W.
2017-02-01
Helium isotopes provide an important tool for tracing early-Earth, primordial reservoirs that have survived in the planet’s interior. Volcanic hotspot lavas, like those erupted at Hawaii and Iceland, can host rare, high 3He/4He isotopic ratios (up to 50 times the present atmospheric ratio, Ra) compared to the lower 3He/4He ratios identified in mid-ocean-ridge basalts that form by melting the upper mantle (about 8Ra; ref. 5). A long-standing hypothesis maintains that the high-3He/4He domain resides in the deep mantle, beneath the upper mantle sampled by mid-ocean-ridge basalts, and that buoyantly upwelling plumes from the deep mantle transport high-3He/4He material to the shallow mantle beneath plume-fed hotspots. One problem with this hypothesis is that, while some hotspots have 3He/4He values ranging from low to high, other hotspots exhibit only low 3He/4He ratios. Here we show that, among hotspots suggested to overlie mantle plumes, those with the highest maximum 3He/4He ratios have high hotspot buoyancy fluxes and overlie regions with seismic low-velocity anomalies in the upper mantle, unlike plume-fed hotspots with only low maximum 3He/4He ratios. We interpret the relationships between 3He/4He values, hotspot buoyancy flux, and upper-mantle shear wave velocity to mean that hot plumes—which exhibit seismic low-velocity anomalies at depths of 200 kilometres—are more buoyant and entrain both high-3He/4He and low-3He/4He material. In contrast, cooler, less buoyant plumes do not entrain this high-3He/4He material. This can be explained if the high-3He/4He domain is denser than low-3He/4He mantle components hosted in plumes, and if high-3He/4He material is entrained from the deep mantle only by the hottest, most buoyant plumes. Such a dense, deep-mantle high-3He/4He domain could remain isolated from the convecting mantle, which may help to explain the preservation of early Hadean (>4.5 billion years ago) geochemical anomalies in lavas sampling this reservoir.
Venusian Applications of 3D Convection Modeling
NASA Technical Reports Server (NTRS)
Bonaccorso, Timary Annie
2011-01-01
This study models mantle convection on Venus using the 'cubed sphere' code OEDIPUS, which models one-sixth of the planet in spherical geometry. We are attempting to balance internal heating, bottom mantle viscosity, and temperature difference across Venus' mantle, in order to create a realistic model that matches with current planetary observations. We also have begun to run both lower and upper mantle simulations to determine whether layered (as opposed to whole-mantle) convection might produce more efficient heat transfer, as well as to model coronae formation in the upper mantle. Upper mantle simulations are completed using OEDIPUS' Cartesian counterpart, JOCASTA. This summer's central question has been how to define a mantle plume. Traditionally, we have defined a hot plume the region with temperature at or above 40% of the difference between the maximum and horizontally averaged temperature, and a cold plume as the region with 40% of the difference between the minimum and average temperature. For less viscous cases (1020 Pa?s), the plumes generated by that definition lacked vigor, displaying buoyancies 1/100th of those found in previous, higher viscosity simulations (1021 Pa?s). As the mantle plumes with large buoyancy flux are most likely to produce topographic uplift and volcanism, the low viscosity cases' plumes may not produce observable deformation. In an effort to eliminate the smallest plumes, we experimented with different lower bound parameters and temperature percentages.
Constructing a Teleseismic Tomographic Image of Taiwan using BATS Recordings
NASA Astrophysics Data System (ADS)
Krajewski, J.; Roecker, S.
2005-12-01
Taiwan is an evolving arc-continent collision located at a complicated part of the plate boundary between the Eurasian and Philippine Sea plates. To better understand the role of the upper mantle in the dynamics of this collision, we reviewed 4 years of data from the Broadband Array in Taiwan for Seismology (BATS) in Taiwan to construct a teleseismic dataset for tomographic imaging of the subsurface of the island. From an initial selection of approximately 300 events, we used waveform correlation to generate a dataset of 4500 relative arrival times. To calculate accurate travel times in three dimensional wavespeed models over the large lateral distances in our model (~800 km), we solve the eikonal equation directly in a spherical coordinate system. We reduce the influence of smearing of crustal heterogeneity into the deeper mantle, we fix the upper 30 km to a previously determined P wavespeed model for the region. Initial resolution tests suggest a spatial limit on the order of 40 km.
Ancient mantle in a modern arc: osmium isotopes in izu-bonin-mariana forearc peridotites
Parkinson; Hawkesworth; Cohen
1998-09-25
Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from magmatism during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium isotopes record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile isotope tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium isotopes than previously recognized.
Mantle discontinuities mapped by inversion of global surface wave data
NASA Astrophysics Data System (ADS)
Khan, A.; Boschi, L.; Connolly, J.
2009-12-01
We invert global observations of fundamental and higher order Love and Rayleigh surface-wave dispersion data jointly at selected locations for 1D radial profiles of Earth's mantle composition, thermal state and anisotropic structure using a stochastic sampling algorithm. Considering mantle compositions as equilibrium assemblages of basalt and harzburgite, we employ a self-consistent thermodynamic method to compute their phase equilibria and bulk physical properties (P, S wave velocity and density). Combining these with locally varying anisotropy profiles, we determine anisotropic P and S wave velocities to calculate dispersion curves for comparison with observations. Models fitting data within uncertainties, provide us with a range of profiles of composition, temperature and anisotropy. This methodology presents an important complement to conventional seismic tomograpy methods. Our results indicate radial and lateral gradients in basalt fraction, with basalt depletion in the upper and enrichment of the upper part of the lower mantle, in agreement with results from geodynamical calculations, melting processes at mid-ocean ridges and subduction of chemically stratified lithosphere. Compared with PREM and seismic tomography models, our velocity models are generally faster in the upper transition zone (TZ), and slower in the lower TZ, implying a steeper velocity gradient. While less dense than PREM, density gradients in the TZ are also steeper. Mantle geotherms are generally adiabatic in the TZ, whereas in the upper part of the lower mantle stronger lateral variations are observed. The TZ structure, and thus location of the phase transitions in the Olivine system as well as their physical properties, are found to be controlled to a large degree by thermal rather than compositional variations. The retrieved anistropy structure agrees with previous studies indicating positive as well as laterally varying upper mantle anisotropy, while there is little evidence for anisotropy in and below the TZ.
NASA Astrophysics Data System (ADS)
Khan, A.; Boschi, L.; Connolly, J. A. D.
2009-09-01
We invert global observations of fundamental and higher-order Love and Rayleigh surface wave dispersion data jointly at selected locations for 1-D radial profiles of Earth's mantle composition, thermal state, and anisotropic structure using a stochastic sampling algorithm. Considering mantle compositions as equilibrium assemblages of basalt and harzburgite, we employ a self-consistent thermodynamic method to compute their phase equilibria and bulk physical properties (P, S wave velocity and density). Combining these with locally varying anisotropy profiles, we determine anisotropic P and S wave velocities to calculate dispersion curves for comparison with observations. Models fitting data within uncertainties provide us with a range of profiles of composition, temperature, and anisotropy. This methodology presents an important complement to conventional seismic tomography methods. Our results indicate radial and lateral gradients in basalt fraction, with basalt depletion in the upper and enrichment of the upper part of the lower mantle, in agreement with results from geodynamical calculations, melting processes at mid-ocean ridges, and subduction of chemically stratified lithosphere. Compared with preliminary reference Earth model (PREM) and seismic tomography models, our velocity models are generally faster in the upper transition zone (TZ) and slower in the lower TZ, implying a steeper velocity gradient. While less dense than PREM, density gradients in the TZ are also steeper. Mantle geotherms are generally adiabatic in the TZ, whereas in the upper part of the lower mantle, stronger lateral variations are observed. The retrieved anisotropy structure agrees with previous studies indicating positive as well as laterally varying upper mantle anisotropy, while there is little evidence for anisotropy in and below the TZ.
Mantle convection patterns reveal the enigma of the Red Sea rifting
NASA Astrophysics Data System (ADS)
Petrunin, Alexey; Kaban, Mikhail; El Khrepy, Sami; Al-Arifi, Nassir
2017-04-01
Initiation and further development of the Red Sea rift (RSR) is usually associated with the Afar plume at the Oligocene-Miocene separating the Arabian plate from the rest of the continent. Usually, the RSR is divided into three parts with different geological, tectonic and geophysical characteristics, but the nature of this partitioning is still debatable. To understand origin and driving forces responsible for the tectonic partitioning of the RSR, we have developed a global mantle convection model based on the refined density model and viscosity distribution derived from tectonic, rheological and seismic data. The global density model of the upper mantle is refined for the Middle East based on the high-resolution 3D model (Kaban et al., 2016). This model based on a joint inversion of the residual gravity and residual topography provides much better constraints on the 3D density structure compared to the global model based on seismic tomography. The refined density model and the viscosity distribution based on a homologous temperature approach provide an initial setup for further numerical calculations. The present-day snapshot of the mantle convection is calculated by using the code ProSpher 3D that allows for strong lateral variations of viscosity (Petrunin et al., 2013). The setup includes weak plate boundaries, while the measured GPS velocities are used to constrain the solution. The resulting mantle flow patterns show clear distinctions among the mantle flow patterns below the three parts of the RSR. According to the modeling results, tectonics of the southern part of the Red Sea is mainly determined by the Afar plume and the Ethiopian rift opening. It is characterized by a divergent mantle flow, which is connected to the East African Rift activity. The rising mantle flow is traced down to the transition zone and continues in the lower mantle for a few thousand kilometers south-west of Afar. The hot mantle anomaly below the central part of the RSR can be explained either by the asthenospheric upwelling due to the Red Sea floor spreading or by a secondary plume rising from the transition zone. According to our model, there is no obvious evidence for a direct connection of the hot anomaly below the central part of the RSR and the Afar plume in the upper mantle. In the northern part of the RSR, we found the ridge-axis aligned downstream flow contradicting the hypothesis of the intra-continental rifting in this area. Likely, the tectonics of this area implies a complex interplay of the Dead Sea transform fault development and the Sinai and Mediterranean tectonics. Kaban, M. K., S. El Khrepy, N. Al-Arifi, M. Tesauro, and W. Stolk (2016), Three dimensional density model of the upper mantle in the Middle East: Interaction of diverse tectonic processes, J. Geophys. Res. Solid Earth, 121, doi:10.1002/2015JB012755. Petrunin, A. G.; Kaban, M. K.; Rogozhina, I.; Trubitsyn, V. (2013). Revising the spectral method as applied to modeling mantle dynamics. Geochemistry Geophysics Geosystems (G3), EDOC: 21048.
NASA Astrophysics Data System (ADS)
Nakada, Masao; Okuno, Jun'ichi; Yokoyama, Yusuke
2016-02-01
Inference of globally averaged eustatic sea level (ESL) rise since the Last Glacial Maximum (LGM) highly depends on the interpretation of relative sea level (RSL) observations at Barbados and Bonaparte Gulf, Australia, which are sensitive to the viscosity structure of Earth's mantle. Here we examine the RSL changes at the LGM for Barbados and Bonaparte Gulf ({{RSL}}_{{L}}^{{{Bar}}} and {{RSL}}_{{L}}^{{{Bon}}}), differential RSL for both sites (Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}}) and rate of change of degree-two harmonics of Earth's geopotential due to glacial isostatic adjustment (GIA) process (GIA-induced J˙2) to infer the ESL component and viscosity structure of Earth's mantle. Differential RSL, Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}} and GIA-induced J˙2 are dominantly sensitive to the lower-mantle viscosity, and nearly insensitive to the upper-mantle rheological structure and GIA ice models with an ESL component of about (120-130) m. The comparison between the predicted and observationally derived Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}} indicates the lower-mantle viscosity higher than ˜2 × 1022 Pa s, and the observationally derived GIA-induced J˙2 of -(6.0-6.5) × 10-11 yr-1 indicates two permissible solutions for the lower mantle, ˜1022 and (5-10) × 1022 Pa s. That is, the effective lower-mantle viscosity inferred from these two observational constraints is (5-10) × 1022 Pa s. The LGM RSL changes at both sites, {{RSL}}_{{L}}^{{{Bar}}} and {{RSL}}_{{L}}^{{{Bon}}}, are also sensitive to the ESL component and upper-mantle viscosity as well as the lower-mantle viscosity. The permissible upper-mantle viscosity increases with decreasing ESL component due to the sensitivity of the LGM sea level at Bonaparte Gulf ({{RSL}}_{{L}}^{{{Bon}}}) to the upper-mantle viscosity, and inferred upper-mantle viscosity for adopted lithospheric thicknesses of 65 and 100 km is (1-3) × 1020 Pa s for ESL˜130 m and (4-10) × 1020 Pa s for ESL˜125 m. The former solution of (1-3) × 1020 Pa s is consistent with the inferences from the postglacial differential RSL changes in the Australian region and also inversion study of far-field sea-level data. The inference of the viscosity structure based on these four observational constraints is, however, relatively insensitive to the viscosity structure of D″ layer.
NASA Astrophysics Data System (ADS)
Nakada, Masao; Okuno, Jun'ichi; Irie, Yoshiya
2018-03-01
A viscosity model with an exponential profile described by temperature (T) and pressure (P) distributions and constant activation energy (E_{{{um}}}^{{*}} for the upper mantle and E_{{{lm}}}^* for the lower mantle) and volume (V_{{{um}}}^{{*}} and V_{{{lm}}}^*) is employed in inferring the viscosity structure of the Earth's mantle from observations of glacial isostatic adjustment (GIA). We first construct standard viscosity models with an average upper-mantle viscosity ({\\bar{η }_{{{um}}}}) of 2 × 1020 Pa s, a typical value for the oceanic upper-mantle viscosity, satisfying the observationally derived three GIA-related observables, GIA-induced rate of change of the degree-two zonal harmonic of the geopotential, {\\dot{J}_2}, and differential relative sea level (RSL) changes for the Last Glacial Maximum sea levels at Barbados and Bonaparte Gulf in Australia and for RSL changes at 6 kyr BP for Karumba and Halifax Bay in Australia. Standard viscosity models inferred from three GIA-related observables are characterized by a viscosity of ˜1023 Pa s in the deep mantle for an assumed viscosity at 670 km depth, ηlm(670), of (1 - 50) × 1021 Pa s. Postglacial RSL changes at Southport, Bermuda and Everglades in the intermediate region of the North American ice sheet, largely dependent on its gross melting history, have a crucial potential for inference of a viscosity jump at 670 km depth. The analyses of these RSL changes based on the viscosity models with {\\bar{η }_{{{um}}}} ≥ 2 × 1020 Pa s and lower-mantle viscosity structures for the standard models yield permissible {\\bar{η }_{{{um}}}} and ηlm (670) values, although there is a trade-off between the viscosity and ice history models. Our preferred {\\bar{η }_{{{um}}}} and ηlm (670) values are ˜(7 - 9) × 1020 and ˜1022 Pa s, respectively, and the {\\bar{η }_{{{um}}}} is higher than that for the typical value of oceanic upper mantle, which may reflect a moderate laterally heterogeneous upper-mantle viscosity. The mantle viscosity structure adopted in this study depends on temperature distribution and activation energy and volume, and it is difficult to discuss the impact of each quantity on the inferred lower-mantle viscosity model. We conclude that models of smooth depth variation in the lower-mantle viscosity following η ( z ) ∝ {{ exp}}[ {( {E_{{{lm}}}^* + P( z )V_{{{lm}}}^*} )/{{R}}T( z )} ] with constant E_{{{lm}}}^* and V_{{{lm}}}^* are consistent with the GIA observations.
Mantle structure and tectonic history of SE Asia
NASA Astrophysics Data System (ADS)
Hall, Robert; Spakman, Wim
2015-09-01
Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region's tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs that detached in the Early Miocene such as the Sula slab, now found in the lower mantle north of Lombok, and the Proto-South China Sea slab now at depths below 700 km curving from northern Borneo to the Philippines. Based on our tectonic model we interpret virtually all features seen in upper mantle and lower mantle to depths of at least 1200 km to be the result of Cenozoic subduction.
NASA Astrophysics Data System (ADS)
Lei, J.; Zhao, D.; Zha, X.
2014-12-01
We present a new 3-D P-wave velocity model of the upper mantle under eastern Tibet determined from 113,831 high-quality teleseismic arrival-time data. Our data are hand-picked from seismograms of 784 teleseismic events (30o-90o) with magnitudes of 5.2 or greater. These events were recorded by 21 portable seismic stations deployed in Yunnan during April 2010 to July 2011 and 259 permanent stations of Chinese provincial seismic networks during September 2008 to December 2011 in the study region. Our results provide new insights into the mantle structure and dynamics of eastern Tibet. High-velocity (high-V) anomalies are revealed down to 200 km depth under stable cratonic regions, such as Sichuan basin, Ordos and Alashan blocks. Prominent low-velocity (low-V) anomalies are revealed in the upper mantle under the Kunlun-Qinling fold zone, Songpan-Ganzi, Qiangtang, Lahsa, and Chuan-Dian diamond blocks, suggesting that the eastward moving low-V materials are obstructed by Sichuan basin, Ordos and Alashan blocks, and they could be extruded through the Qinling fold zone and the Chuan-Dian block to eastern China. In addition, the extent and thickness of these low-V anomalies are well correlated with the surface topography, suggesting that uplift of eastern Tibet is closely related to the low-V anomalies which may reflect hot materials and have strong buoyancy. In the mantle transition zone, broad high-V anomalies are visible from the Burma arc northward to the Kunlun fault and eastward to the Xiaojiang fault, which extend for a total of approximately 700 km. The high-V anomalies are connected upward to the Wadati-Benioff seismic zone beneath the Burma arc. These results suggest that the Indian slab has subducted horizontally for a long distance in the mantle transition zone after it descended into the mantle, and its deep dehydration has contributed to forming the low-V anomalies in the big mantle wedge above the slab. Our present results shed new light on the formation and evolution of the Tibetan plateau.
NASA Astrophysics Data System (ADS)
Madrigal Quesada, P.; Gazel, E.
2017-12-01
Monogenetic seamounts related to non-plume intraplate magmatism provide a window into the composition of upper mantle heterogeneities, nevertheless, the origin of these heterogeneities are still not well constrained. Radiogenic isotopes (Sr-Nd-Pb) from present-day ocean island basalts (OIB) produced by this type of magmatism can help establish the source compositions of these chemically and isotopically enriched reservoirs. Here we present evidence that suggests that a highly enriched mantle reservoir can originate from OIB-type subducted material that gets incorporated and stirred throughout the upper mantle. We explore this hypothesis using data from non-plume related OIB volcanism; focusing on isolated monogenetic seamounts with no apparent age progression and interpreted to be related to either plate flexure, shear driven convection and/or edge convection. The isotopic record compiled, added to new results obtained from accreted petit-spot seamounts from Santa Elena Peninsula in Costa Rica, suggest that a highly radiogenic mantle reservoir originated from recycled seamount materials can be formed in a shorter time scale than ancient subducted oceanic crust (>1 Ga), thought to be the forming agent of the HIMU mantle "flavor" found in some of these small-scale seamounts. The implications of these results entail that the recycling of already enriched materials in short time scales and in restricted depths within the Upper Mantle may play an important role in the source of OIBs (plume and non-plume related), as well as, the most enriched suites of EMORBs.
NASA Astrophysics Data System (ADS)
Chen, X.; Park, J. J.
2012-12-01
The high uplift of the Tibet area is caused by the continental collision between the Indian plate and the Eurasian plate. The style of deformation along with the collision is still being debated, particularly whether the deformation is vertically coherent or not, i.e., whether the upper mantle deforms coherently with the crust. In this work, we have used quasi-Love (QL) waves to constrain the anisotropy pattern around the Tibet region. The existence of anisotropy gradients has been identified with the observations of QL waves, which is a converted Rayleigh-wave motion that follows the arrival of the Love wave. Further, the locations of the anisotropy gradients have been pinned with the delay time between the Love wave and the QL wave, which is determined from cross-correlation. Our results show that the frequency content of Tibetan QL wave is centered around 10 mHz, indicating the depth range of anisotropy should be in the asthenosphere. Most of the scatterers of QL wave that we can detect lie outside the Tibet Plateau. Their distribution correlates well with the boundary of the Persia-Tibet- Burma orogeny, which has been identified from surface geologic data. This correlation, between surface geology and upper mantle anisotropy inferred from QL observations at the orogenic boundary, suggests that the crust and upper mantle of the orogeny are deforming coherently. Other scatterers that are off the Persia-Tibet-Burma orogenic boundary mostly cluster in two locations, the Tarim Basin, and the Bangong-Nujiang Suture, where there could exist contrasting anisotropy patterns in the upper mantle. The deformation in the Tibet region is complicated, yet our research suggests a vertically coherent deformation style of the upper mantle in Tibet.
Adjoint tomography of crust and upper-mantle structure beneath Continental China
NASA Astrophysics Data System (ADS)
Chen, M.; Niu, F.; Liu, Q.; Tromp, J.
2013-12-01
Four years of regional earthquake recordings from 1,869 seismic stations are used for high-resolution and high-fidelity seismic imaging of the crust and upper-mantle structure beneath Continental China. This unprecedented high-density dataset is comprised of seismograms recorded by the China Earthquake Administration Array (CEArray), NorthEast China Extended SeiSmic Array (NECESSArray), INDEPTH-IV Array, F-net and other global and regional seismic networks, and involves 1,326,384 frequency-dependent phase measurements. Adjoint tomography is applied to this unprecedented dataset, aiming to resolve detailed 3D maps of compressional and shear wavespeeds, and radial anisotropy. Contrary to traditional ray-theory based tomography, adjoint tomography takes into account full 3D wave propagation effects and off-ray-path sensitivity. In our implementation, it utilizes a spectral-element method for precise wave propagation simulations. The tomographic method starts with a 3D initial model that combines smooth radially anisotropic mantle model S362ANI and 3D crustal model Crust2.0. Traveltime and amplitude misfits are minimized iteratively based on a conjugate gradient method, harnessing 3D finite-frequency kernels computed for each updated 3D model. After 17 iterations, our inversion reveals strong correlations of 3D wavespeed heterogeneities in the crust and upper mantle with surface tectonic units, such as the Himalaya Block, the Tibetan Plateau, the Tarim Basin, the Ordos Block, and the South China Block. Narrow slab features emerge from the smooth initial model above the transition zone beneath the Japan, Ryukyu, Philippine, Izu-Bonin, Mariana and Andaman arcs. 3D wavespeed variations appear comparable to or much sharper than in high-frequency P-and S-wave models from previous studies. Moreover our results include new information, such as 3D variations of radial anisotropy and the Vp/Vs ratio, which are expected to shed new light to the composition, thermal state, flow or fabric structure in the crust and upper mantle, as well as the related dynamical processes. We intend to use these seismic images to answer important tectonic questions, namely, 1) what controls the strength of the lithosphere; 2) how does lithosphere deform during the formation of orogens, basins and plateaus; 3) how pervasive is lithospheric delamination or partial removal beneath orogens and plateaus; 3) whether or not (and how) are slab segmentation and penetration into the lower mantle linked to upwellings associated with widespread magmatism in East Asia.
NASA Astrophysics Data System (ADS)
Levandowski, Will; Jones, Craig H.; Shen, Weisen; Ritzwoller, Michael H.; Schulte-Pelkum, Vera
2014-03-01
To investigate the physical basis for support of topography in the western U.S., we construct a subcontinent scale, 3-D density model using 1000 estimated crustal thicknesses and S velocity profiles to 150 km depth at each of 947 seismic stations. Crustal temperature and composition are considered, but we assume that mantle velocity variations are thermal in origin. From these densities, we calculate crustal and mantle topographic contributions. Typical 2σ uncertainty of topography is 500 m, and elevations in 84% of the region are reproduced within error. Remaining deviations from observed elevations are attributed to melt, variations in crustal quartz content, and dynamic topography; compositional variations in the mantle, while plausible, are not necessary to reproduce topography. Support for western U.S. topography is heterogeneous, with each province having a unique combination of mechanisms. Topography due to mantle buoyancy is nearly constant (within 250 m) across the Cordillera; relief there (>2 km) results from variations in crustal chemistry and thickness. Cold mantle provides 1.5 km of ballast to the thick crust of the Great Plains and Wyoming craton. Crustal temperature variations and dynamic pressures have smaller magnitude and/or more localized impacts. Positive gravitational potential energy (GPE) anomalies ( 2 × 1012N/m) calculated from our model promote extension in the northern Basin and Range and near the Sierra Nevada. Negative GPE anomalies (-3 × 1012N/m) along the western North American margin and Yakima fold and thrust belt add compressive stresses. Stresses derived from lithospheric density variations may strongly modulate tectonic stresses in the western U.S. continental interior.
NASA Astrophysics Data System (ADS)
Hung, S. H.; Lin, P. Y.; Gaherty, J. B.; Russell, J. B.; Jin, G.; Collins, J. A.; Lizarralde, D.; Evans, R. L.; Hirth, G.
2017-12-01
Surface wave dispersion and magnetotelluric survey from the NoMelt Experiment conducted on 70 Ma central Pacific seafloor revealed an electrically resistive, high shear wave velocity lid of 80 km thick underlain by a non-highly conductive, low-velocity layer [Sarafian et al., 2015; Lin et al., 2016]. The vertical structure of the upper mantle consistent with these observational constraints suggests a plausible convection scenario, where the seismically fast, dehydrated lithosphere preserving very strong fossil spreading fabric moves at a constant plate speed over the hydrated, melt-free athenospheric mantle with the presence of either pressure-driven return flow or thermally-driven small scale circulation. To explore 3-D variations in compressional shear wave velocities related to the lithospheric and asthenospheric mantle dynamics, we employ a multichannel cross correlation method to measure relative traveltime residuals based on the vertical P and traverse S waveforms filtered at 10-33 s from telseismic earthquakes at epicentral distance between 30 and 98 degrees. The obtained P and S residuals show on average peak-to-peak variations of ±0.5 s and ±1 s, respectively, across the NoMelt OBS array. Particularly, the P residuals for most of the events display an asymmetrical pattern with respect to an axis oriented nearly N-S to NE-SW through the array. Preliminary ray-based P tomography results reveal similar asymmetric variations in the uppermost 100 km mantle. To verify the resulting structural features, we will further perform both the P and S traveltime tomography and resolution tests based on a multiscale finite-frequency approach which properly takes into account both the 3D off-path sensitivities of the measured residuals and data-adaptive resolution of the model.
NASA Technical Reports Server (NTRS)
Li, Xiaoyuan; Jeanloz, Raymond
1987-01-01
Electrical conductivity measurements of Perovskite and a Perovskite-dominated assemblage synthesized from pyroxene and olivine demonstrate that these high-pressure phases are insulating to pressures of 82 GPa and temperatures of 4500 K. Assuming an anhydrous upper mantle composition, the result provides an upper bound of 0.01 S/m for the electrical conductivity of the lower mantle between depths of 700 and 1900 km. This is 2 to 4 orders of magnitude lower than previous estimates of lower-mantle conductivity derived from studies of geomagnetic secular variations.
Storage and recycling of water and carbon dioxide in the earth
NASA Technical Reports Server (NTRS)
Wood, Bernard J.
1994-01-01
The stabilities and properties of water- and carbon-bearing phases in the earth have been determined from phase equilibrium measurements, combined with new data on the equations of state of water, carbon dioxide, carbonates and hydrates. The data have then been used to predict the fate of calcite and hydrous phases in subducting oceanic lithosphere. From the compositions of MORB's one can estimate concentrations of water and carbon of around 200 ppm and 80 ppm respectively in the upper mantle. Lower mantle estimates are very uncertain, but 1900 ppm water and 2000 ppm C are plausible concentrations. Measurements of the density of supercritical water to 3 GPa demonstrate that this phase is less compressible than anticipated from the equations of state of Haar et al. or Saul and Wagner and is closer to predictions based on molecular dynamics simulations. Conversely, fugacity measurements on carbon dioxide to 7 GPa show that this fluid is more compressible than predicted from the MRK equation of state. The results imply that hydrates are relatively more stable and carbonates less stable at pressures greater than 5 GPa than would be predicted from simple extrapolation of the low pressure data. Nevertheless, carbonates remain extremely refractory phases within both the upper and lower mantle.
Olivine water contents in the continental lithosphere and the longevity of cratons.
Peslier, Anne H; Woodland, Alan B; Bell, David R; Lazarov, Marina
2010-09-02
Cratons, the ancient cores of continents, contain the oldest crust and mantle on the Earth (>2 Gyr old). They extend laterally for hundreds of kilometres, and are underlain to depths of 180-250 km by mantle roots that are chemically and physically distinct from the surrounding mantle. Forming the thickest lithosphere on our planet, they act as rigid keels isolated from the flowing asthenosphere; however, it has remained an open question how these large portions of the mantle can stay isolated for so long from mantle convection. Key physical properties thought to contribute to this longevity include chemical buoyancy due to high degrees of melt-depletion and the stiffness imparted by the low temperatures of a conductive thermal gradient. Geodynamic calculations, however, suggest that these characteristics are not sufficient to prevent the lithospheric mantle from being entrained during mantle convection over billions of years. Differences in water content are a potential source of additional viscosity contrast between cratonic roots and ambient mantle owing to the well-established hydrolytic weakening effect in olivine, the most abundant mineral of the upper mantle. However, the water contents of cratonic mantle roots have to date been poorly constrained. Here we show that olivine in peridotite xenoliths from the lithosphere-asthenosphere boundary region of the Kaapvaal craton mantle root are water-poor and provide sufficient viscosity contrast with underlying asthenosphere to satisfy the stability criteria required by geodynamic calculations. Our results provide a solution to a puzzling mystery of plate tectonics, namely why the oldest continents, in contrast to short-lived oceanic plates, have resisted recycling into the interior of our tectonically dynamic planet.
Pakiser, L.C.
1964-01-01
The structure of the Earth’s crust (the outer shell of the earth above the M-discontinuity) has been intensively studied in many places by use of geophysical methods. The velocity of seismic compressional waves in the crust and in the upper mantle varies from place to place in the conterminous United States. The average crust is thick in the eastern two-thirds of the United States, in which the crustal and upper-mantle velocities tend to be high. The average crust is thinner in the western one-third of the United States, in which these velocities tend to be low. The concept of eastern and western superprovinces can be used to classify these differences. Crustal and upper-mantle densities probably vary directly with compressional-wave velocity, leading to the conclusion that isostasy is accomplished by the variation in densities of crustal and upper-mantle rocks as well as in crustal thickness, and that there is no single, generally valid isostatic model. The nature of the M-discontinuity is still speculative.
NASA Technical Reports Server (NTRS)
Sheehan, Anne F.; Solomon, Sean C.
1991-01-01
Measurements were carried out for SS-S differential travel time residuals for nearly 500 paths crossing the northern Mid-Atlantic Ridge, assuming that the residuals are dominated by contributions from the upper mantle near the surface bounce point of the reflected phase SS. Results indicate that the SS-S travel time residuals decrease linearly with square root of age, to an age of 80-100 Ma, in general agreement with the plate cooling model. A joint inversion was formulated of travel time residuals and geoid and bathymetric anomalies for lateral variation in the upper mantle temperature and composition. The preferred inversion solutions were found to have variations in upper mantle temperature along the Mid-Atlantic Ridge of about 100 K. It was calculated that, for a constant bulk composition, such a temperature variation would produce about a 7-km variation in crustal thickness, larger than is generally observed.
New constraints on the upper mantle structure of the Slave craton from Rayleigh wave inversion
NASA Astrophysics Data System (ADS)
Chen, Chin-Wu; Rondenay, Stéphane; Weeraratne, Dayanthie S.; Snyder, David B.
2007-05-01
Rayleigh wave phase and amplitude data are analyzed to provide new insight into the velocity structure of the upper mantle beneath the Slave craton, in the northwestern Canadian Shield. We invert for phase velocities at periods between 20 s-142 s (with greatest sensitivity at depths of 28-200 km) using crossing ray paths from events recorded by the POLARIS broadband seismic network and the Yellowknife array. Phase velocities obtained for the Slave province are comparable to those from other cratons at shorter periods, but exceed the global average by ~2% at periods above 60 s, suggesting that the Slave craton may be an end member in terms of its high degree of mantle depletion. The one-dimensional inversion of phase velocities yields high upper-mantle S-wave velocities of 4.7 +/- 0.2 km/s that persist to 220 +/- 65 km depth and thus define the cratonic lithosphere. Azimuthal anisotropy is well resolved at all periods with a dominant fast direction of N59°E +/- 20°, suggesting that upper mantle anisotropy beneath the Slave craton is influenced by both lithospheric fabric and sub-lithospheric flow.
NASA Astrophysics Data System (ADS)
Romanowicz, B. A.; French, S. W.
2014-12-01
Many questions remain on the detailed morphology of mantle convection patterns. While high resolution P wave studies show a variety of subducted slab behaviors, some stagnating in the transition zone, others penetrating into the lower mantle (e.g. Fukao & Obayashi, 2013), low velocity structures - the upwelling part of flow - are more difficult to resolve at the same scale. Indeed, depth extent and morphology of the low velocity roots of hotspot volcanoes is still debated, along with the existence of "mantle plumes". Using spectral element waveform tomography, we previously constructed a global, radially anisotropic, upper mantle Vs model (SEMum2, French et al., 2013) and have now extended it to the whole mantle by adding shorter period waveform data (SEMUCB-WM1, French & Romanowicz, GJI, in revision). This model shows long wavelength structure in good agreement with other recent global Vs models derived under stronger approximations (Ritsema et al. 2011; Kustowski, et al. 2008), but exhibits better focused, finer scale structure throughout the mantle. SEMUCB-WM1 confirms the presence in all major ocean basins of the quasi-periodic, upper mantle low velocity anomalies, previously seen in SEMum2. At the same time, lower mantle low velocity structure is dominated by a small number (~15 globally) of quasi-vertical anomalies forming discrete "column"" rooted at the base of the mantle. Most columns are positioned near major hotspots, as defined by buoyancy flux, and are wider (~800-1000 km diameter) than expected from the thermal plume model - suggestive of thermo-chemical plumes, which may be stable for long times compared to purely thermal ones. Some columns reach the upper mantle, while others deflect horizontally near 1000 km - the same depth where many slabs appear to stagnate. As they reach the transition zone, the wide columnar structure can be lost, as these "plumes" appear to meander through the upper mantle, perhaps entrained by more vigorous, lower viscosity, convection. Most "plumes" in the Pacific LLSVP region appear as isolated columns rising from the CMB, such as beneath Hawaii (rooted near a known ultra low velocity zone, Cottaar & Romanowicz, 2012). Conversely, the African LLSVP region appears more massive up to mid-mantle depths, with isolated "plumes" at its borders, including that beneath Iceland.
NASA Astrophysics Data System (ADS)
Nakao, A.; Hikaru, I.; Nakakuki, T.; Suzuki, Y.; Nakamura, H.
2017-12-01
Water liberated from subducting oceanic slabs can affect the subduction dynamics such as mantle wedge flows and plate motion (e.g., Gerya & Meilick, 2011; Horiuchi & Iwamori, 2016; Nakao et al., 2016). However, how water liberated from the slabs, in particular a hydrated part within the oceanic lithosphere (e.g., Fujie et al., 2013), is transported and affects the subduction dynamics has not been fully understood. In order to clarify the roles of water in subduction dynamics, we conducted 2-D dynamical simulations of water transport and mantle convection without imposing the geometry and velocity of subducting slabs. Using the simulations with various thicknesses (0-20 km) of a partially serpentinized layer (hereafter referred to as "SL") underlaying the altered oceanic basalt crust (AOC) in the subducting oceanic lithosphere, we estimate the subduction rate, back-arc spreading, trench migration, and slab geometry. The simulations show that the plate motion significantly changes depending on the amount of liberated water. When the SL is absent (0 km thick), the AOC mostly dehydrates at shallow depths (< 70 km). In this case, the plate subducts slowly, the trench is stationary, and the slab penetrates the 660-km boundary. If the SL is 7.5 km in thickness, it dehydrates at a greater depth compared to AOC, and more water enters the mantle wedge and the back-arc region. The liberated water reduces the viscosity of mantle wedge, and consequently, the subduction rate increases, the trench migrates seaward, and the slab stagnates on the 660-km. If the SL is 20 km in thickness, the upper SL releases much water into the mantle wedge and the back-arc region, whereas the lower SL does not dehydrate because of water uptake by phase A and phase D. In this case, because buoyancy of the subducting slab increases, the subduction is slow, back-arc spreading is weakened, and the slab penetrates the 660-km. Our results imply that the observed variety of subducting slabs reflects different amounts of water liberated from and within the slabs.
NASA Astrophysics Data System (ADS)
Plomerová, Jaroslava; Munzarová, Helena; Vecsey, Luděk.; Kissling, Eduard; Achauer, Ulrich; Babuška, Vladislav
2016-08-01
New high-resolution tomographic models of P- and S-wave isotropic-velocity perturbations for the Bohemian upper mantle are estimated from carefully preprocessed travel-time residuals of teleseismic P, PKP and S waves recorded during the BOHEMA passive seismic experiment. The new data resolve anomalies with scale lengths 30-50 km. The models address whether a small mantle plume in the western Bohemian Massif is responsible for this geodynamically active region in central Europe, as expressed in recurrent earthquake swarms. Velocity-perturbations of the P- and S-wave models show similar features, though their resolutions are different. No model resolves a narrow subvertical low-velocity anomaly, which would validate the "baby-plume" concept. The new tomographic inferences complement previous studies of the upper mantle beneath the Bohemian Massif, in a broader context of the European Cenozoic Rift System (ECRIS) and of other Variscan Massifs in Europe. The low-velocity perturbations beneath the Eger Rift, observed in about 200km-broad zone, agree with shear-velocity models from full-waveform inversion, which also did not identify a mantle plume beneath the ECRIS. Boundaries between mantle domains of three tectonic units that comprise the region, determined from studies of seismic anisotropy, represent weak zones in the otherwise rigid continental mantle lithosphere. In the past, such zones could have channeled upwelling of hot mantle material, which on its way could have modified the mantle domain boundaries and locally thinned the lithosphere.
History and Evolution of Precambrian plate tectonics
NASA Astrophysics Data System (ADS)
Fischer, Ria; Gerya, Taras
2014-05-01
Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g., Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic tectonics is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further tectonic history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction continues but the plates are weakened enough to allow buckling and also lithospheric delamination and drip-offs. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere is delaminating and due to strong volcanism and formation of a thicker crust subduction is inhibited. This stage of 200-250 K higher upper mantle temperature which corresponds roughly to the early Archean (Abbott, 1994) is marked by strong volcanism due to sublithospheric decompression melting which leads to an equal thickness for both oceanic and continental plates. As a consequence subduction is inhibited, but a compressional setup instead will lead to orogeny between a continental or felsic terrain and an oceanic or mafic terrain as well as internal crustal convection. Small-scale convection with plume shaped cold downwellings also in the upper mantle is of increased importance compared to the large-scale subduction cycle observed for present temperature conditions. It is also observed that lithospheric downwellings may initiate subduction by pulling at and breaking the plate. References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370.
Dynamical Generation of the Transition Zone in the Earth's Mantle
NASA Astrophysics Data System (ADS)
Hansen, U.; Stemmer, K.
2005-12-01
The internal structure of the Earth is made up by a series of layers, though it is unclear how many layers exist and if there are layers invisible to remote sensing techniques. The transition zone is likely to be a boundary layer separating the convective systems in the lower and upper mantle. It seems likely that currently there is some mass exchange across this boundary, rather than the two systems beeing strictly separated.a Double-diffusive convection(d.d.c) is a vital mechanism which can generate layered structure and may thus be an important mmical machinery behind the formation of the transition zone. Double-diffusive convection determines the dynamics of systems whose density is influenced by at least two components with different molecular diffusivities.In the mantle, composition and temperature play the role of those two components. By means of numerical experiments we demonstrate that under mantle relevant conditions d.d.c typically leads to the formation of a transition zone. The calculations encompass two- and three dimensional Cartesian geometries as well as fully 3D spherical domains. We have further included strongly temperature dependent viscosity and find that this leads to even more pronounced layering. In most cases a layered flow pattern emerges, where two layers with a transition zone in between resembles a quasistationary state. Thus, the transition zone can be the result of a self organization process of the convective flow in the mantle. The presence of a phase transition further helps to stabilize the boundary against overturning, even on a time scale on the order of the age of the Earth.
The redox state of the mantle during and just after core formation.
Frost, D J; Mann, U; Asahara, Y; Rubie, D C
2008-11-28
Siderophile elements are depleted in the Earth's mantle, relative to chondritic meteorites, as a result of equilibration with core-forming Fe-rich metal. Measurements of metal-silicate partition coefficients show that mantle depletions of slightly siderophile elements (e.g. Cr, V) must have occurred at more reducing conditions than those inferred from the current mantle FeO content. This implies that the oxidation state (i.e. FeO content) of the mantle increased with time as accretion proceeded. The oxygen fugacity of the present-day upper mantle is several orders of magnitude higher than the level imposed by equilibrium with core-forming Fe metal. This results from an increase in the Fe2O3 content of the mantle that probably occurred in the first 1Ga of the Earth's history. Here we explore fractionation mechanisms that could have caused mantle FeO and Fe2O3 contents to increase while the oxidation state of accreting material remained constant (homogeneous accretion). Using measured metal-silicate partition coefficients for O and Si, we have modelled core-mantle equilibration in a magma ocean that became progressively deeper as accretion proceeded. The model indicates that the mantle would have become gradually oxidized as a result of Si entering the core. However, the increase in mantle FeO content and oxygen fugacity is limited by the fact that O also partitions into the core at high temperatures, which lowers the FeO content of the mantle. (Mg,Fe)(Al,Si)O3 perovskite, the dominant lower mantle mineral, has a strong affinity for Fe2O3 even in the presence of metallic Fe. As the upper mantle would have been poor in Fe2O3 during core formation, FeO would have disproportionated to produce Fe2O3 (in perovskite) and Fe metal. Loss of some disproportionated Fe metal to the core would have enriched the remaining mantle in Fe2O3 and, if the entire mantle was then homogenized, the oxygen fugacity of the upper mantle would have been raised to its present-day level.
NASA Astrophysics Data System (ADS)
Heeszel, David S.; Wiens, Douglas A.; Anandakrishnan, Sridhar; Aster, Richard C.; Dalziel, Ian W. D.; Huerta, Audrey D.; Nyblade, Andrew A.; Wilson, Terry J.; Winberry, J. Paul
2016-03-01
The seismic velocity structure of Antarctica is important, both as a constraint on the tectonic history of the continent and for understanding solid Earth interactions with the ice sheet. We use Rayleigh wave array analysis methods applied to teleseismic data from recent temporary broadband seismograph deployments to image the upper mantle structure of central and West Antarctica. Phase velocity maps are determined using a two-plane wave tomography method and are inverted for shear velocity using a Monte Carlo approach to estimate three-dimensional velocity structure. Results illuminate the structural dichotomy between the East Antarctic Craton and West Antarctica, with West Antarctica showing thinner crust and slower upper mantle velocity. West Antarctica is characterized by a 70-100 km thick lithosphere, underlain by a low-velocity zone to depths of at least 200 km. The slowest anomalies are beneath Ross Island and the Marie Byrd Land dome and are interpreted as upper mantle thermal anomalies possibly due to mantle plumes. The central Transantarctic Mountains are marked by an uppermost mantle slow-velocity anomaly, suggesting that the topography is thermally supported. The presence of thin, higher-velocity lithosphere to depths of about 70 km beneath the West Antarctic Rift System limits estimates of the regionally averaged heat flow to less than 90 mW/m2. The Ellsworth-Whitmore block is underlain by mantle with velocities that are intermediate between those of the West Antarctic Rift System and the East Antarctic Craton. We interpret this province as Precambrian continental lithosphere that has been altered by Phanerozoic tectonic and magmatic activity.
Constraints on Thermochemical Convection of the Mantle from Plume-related Observations
NASA Astrophysics Data System (ADS)
Zhong, S.
2005-05-01
Although geochemical observations have long suggested a layered mantle with more enriched mantle material in the bottom layer to provide a significant amount of heat to the top layer, the nature of such a layering remains unclear. An important observation that has been used to argue against the conventional layered mantle model (i.e., the layering at the 670 km depth) was the plume heat flux [Davies, 1999]. Plume heat flux is estimated as ~ 3.5 TW, or 10% of the surface heat flux [Davies, 1988; Sleep, 1990]. In this study, we demonstrate with 3-D spherical models of mantle convection with depth- and temperature-dependent viscosity that observed plume heat flux, plume excess temperature (<350°C), and upper mantle temperature (~ 1300°C) can pose important constraints on the layered mantle convection. We show that for a purely thermal convection model (i.e., a whole mantle convection), the observations of plume heat flux, plume excess temperature, and upper mantle temperature can be simultaneously explained only when internal heating rate is about 65%. For smaller internal heating rate, plume heat flux and plume excess temperature would be too large, and upper mantle temperature would be too small, compared with the observed. This suggests that for a whole mantle convection the CMB heat flux needs to be > 10 TW. For a core with no significant heat producing elements, such large CMB heat flux may lead to too rapid cooling of the core or a too young inner core. A layered mantle convection may help reduce the CMB heat flux. For layered convection models, we found that the top layer needs to be ~70% internally heated to explain the upper mantle temperature and plume-related observations, and this required internal heating ratio is insensitive to the layer thickness for the bottom layer (we used ~600 km and 1100 km thicknesses). This result suggests that heat generation rate for the bottom layer cannot be significantly larger (< a factor of 2) than that for the top layer. thus challenging the conventional geochemical inference for an significantly enriched bottom layer. However, this is more consistent with recent estimate of the MORB source composition that increases heat producing element concentration by a factor of three compared with the previously proposed.
NASA Astrophysics Data System (ADS)
Hallis, L. J.; Huss, G. R.; Nagashima, K.; Taylor, J.; Hilton, D. R.; Mottl, M. J.; Meech, K. J.; Halldorsson, S. A.
2016-12-01
Experimentally based chemical models suggest Jeans escape could have caused an increase in Earth's atmospheric D/H ratio of between a factor of 2 and 9 since the planets formation1. Plate tectonic mixing ensures this change has been incorporated into the mantle. In addition, collisions with hydrogen bearing planetesimals or cometary material after Earth's accretion could have altered the D/H ratio of the planet's surface and upper mantle2. Therefore, to determine Earth's original D/H ratio, a reservoir that has been completely unaffected by these surface and upper mantle changes is required. Most studies suggest that high 3He/4He ratios in some OIBs indicate the existence of relatively undegassed regions in the deep mantle compared to the upper mantle, which retain a greater proportion of their primordial He3-4. Early Tertiary (60-million-year-old) picrites from Baffin Island and west Greenland, which represent volcanic rocks from the proto/early Iceland mantle plume, contain the highest recorded terrestrial 3He/4He ratios3-4. These picrites also have Pb and Nd isotopic ratios consistent with primordial mantle ages (4.45 to 4.55 Ga)5, indicating the persistence of an ancient, isolated reservoir in the mantle. The undegassed and primitive nature6of this reservoir suggests that it could preserve Earth's initial D/H ratio. We measured the D/H ratios of olivine-hosted glassy melt inclusions in Baffin Island and Icelandic picrites to establish whether their deep mantle source region exhibits a different D/H ratio to known upper mantle and surface reservoirs. Baffin Island D/H ratios were found to extend lower than any previously measured mantle values (δD -97 to -218 ‰), suggesting that areas of the deep mantle do preserve a more primitive hydrogen reservoir, hence are unaffected by plate tectonic mixing. Comparing our measured low D/H ratios to those of known extra-terrestrial materials can help determine where Earths water came from. References: [1] Genda and Ikoma, 2008 Icarus 194, 42-52. [2] Abramov, and Mojzsis, (2009) Nature 459, 419-422. [3] Stuart et al. (2003) Nature 424, 57-59. [4] Starkey et al. (2009) Earth Planet. Sci. Lett. 277, 91-100. [5] Jackson et al. (2010) Nature 466, 853-856. [6] Robillard et al. (1992) Contrib. Mineral. Petrol. 112, 230-241.
A global geochemical model for the evolution of the mantle
NASA Technical Reports Server (NTRS)
Anderson, D. L.
1979-01-01
It is proposed that the upper mantle transition region, 220 to 670 km, is composed of eclogite which has been derived from primitive mantle by about 20 percent partial melting and that this is the source and sink of oceanic crust. The remainder of the upper mantle is garnet peridotite which is the source of continental basalts and hotspot magmas. This region is enriched in incompatible elements by hydrous and CO2 rich metasomatic fluids which have depleted the underlying layers in the L.I.L. elements and L.R.E.E. The volatiles make this a low-velocity, high attenuation, low viscosity region. The eclogite layer is internally heated and its controls the convection pattern in the upper mantle. Plate tectonics is intermittent. The continental thermal anomaly at a depth of 150-220 km triggers kimberlite and carbonatite activity, alkali and flood basalt volcanism, vertical tectonics and continental breakup. Hot spots remain active after the continents leave and build the oceanic islands. Mantle plumes rise from a depth of about 220 km. Midocean ridge basalts rise from the depleted layer below this depth. Material from this layer can also be displaced upwards by subducted oceanic lithosphere to form back-arc basins.
Subduction Related Crustal and Mantle Deformations and Their Implications for Plate Dynamics
NASA Astrophysics Data System (ADS)
Okeler, Ahmet
Ocean-continent convergence and subsequent continental collision are responsible for continental growth, mountain building, and severe tectonic events including volcanic eruptions and earthquake activity. They are also key driving forces behind the extensive thermal and compositional heterogeneities at crustal and mantle depths. Active subduction along the Calabrian Arc in southern Italy and the Hellenic Arc are examples of such collisional tectonics. The first part of this thesis examines the subduction related deformations within the crust beneath the southern Apennines. By modeling regional surface wave recordings of the largest temporary deployment in the southern Apennines, a lower-crustal/upper-mantle low-velocity volume extending down to 50 km beneath the mountain chain is identified. The magnitude (˜ 0.4 km/s slower) and anisotropic nature (˜ 10%) of the anomaly suggest the presence of hot and partially molten emplacement that may extend into the upper-crust towards Mt. Vulture, a once active volcano. Since the Apulian basement units are deformed during the compressional and consequent extensional events, our observations favor the "thick-skin" tectonic growth model for the region. In the deeper mantle, active processes are thermodynamically imprinted on the depth and strength of the phase transitions. This thesis examines more than 15000 SS precursors and provides the present-day reflectivity structure and topography associated with these phase transitions. Through case studies I present ample evidence for both slab penetration into the lower mantle (beneath the Hellenic Arc, Kurile Island and South America) and slab stagnation at the bottom of the Mantle Transition Zone (beneath the Tyrrhenian Sea and eastern China). Key findings include (1) thermal anomalies (˜ 200 K) at the base of the MTZ, which represent the deep source for Cenozoic European Rift Zone, Mount Etna and Mount Cameroon volcanism, (2) significant depressions (by 20-40 km) at the bottom of the Mantle Transition Zone beneath subducting slabs, (3) a strong 520-km reflector near subducting slabs, (4) a weak and elevated (15-25 km) 410-km reflector within active deformation zones, (5) strong lower mantle reflectors (˜ 900 km) while slabs penetrate into the lower mantle, and (6) consistency between the topography of a 300-km reflector and an exothermic phase transformation.
Volatile element content of the heterogeneous upper mantle
NASA Astrophysics Data System (ADS)
Shimizu, K.; Saal, A. E.; Hauri, E. H.; Forsyth, D. W.; Kamenetsky, V. S.; Niu, Y.
2014-12-01
The physical properties of the asthenosphere (e.g., seismic velocity, viscosity, electrical conductivity) have been attributed to either mineral properties at relevant temperature, pressure, and water content or to the presence of a low melt fraction. We resort to the geochemical studies of MORB to unravel the composition of the asthenosphere. It is important to determine to what extent the geochemical variations in axial MORB do represent a homogeneous mantle composition and variations in the physical conditions of magma generation and transport; or alternatively, they represent mixing of melts from a heterogeneous upper mantle. Lavas from intra-transform faults and off-axis seamounts share a common mantle source with axial MORB, but experience less differentiation and homogenization. Therefore they provide better estimates for the end-member volatile budget of the heterogeneous upper mantle. We present major, trace, and volatile element data (H2O, CO2, Cl, F, S) as well as Sr, Nd, and Pb isotopic compositions [1, 2] of basaltic glasses (MgO > 6.0 wt%) from the NEPR seamounts, Quebrada-Discovery-Gofar transform fault system, and Macquarie Island. The samples range from incompatible trace element (ITE) depleted (DMORB: Th/La<0.035) to enriched (EMORB: Th/La>0.07) spanning the entire range of EPR MORB. The isotopic composition of the samples correlates with the degree of trace element enrichment indicating long-lived mantle heterogeneity. Once shallow-level processes (degassing, crystallization, and crustal assimilation) have been considered, we conducted a two-component (DMORB- and EMORB-) mantle melting-mixing model. Our model reproduces the major, trace and volatile element contents and isotopic composition of our samples and suggests that (1) 90% of the upper mantle is highly depleted in ITE (DMORB source) with only 10% of an enriched component (EMORB source), (2) the EMORB source is peridotitic rather than pyroxenitic, and (3) NMORB do not represent an actual mantle source, but the product of magma mixing between D- and E-MORB. Finally we use the volatile to trace element ratios of our samples to estimate the volatile element budget of the end-member components of the upper mantle. [1] Niu, Y. et al. (2002) EPSL, 199, 327-345. [2] Kamenetsky, V. S. et al. (2000) J. Petrology, 41, 411-430.
3D Thermo-Mechanical Models of Plume-Lithosphere Interactions: Implications for the Kenya rift
NASA Astrophysics Data System (ADS)
Scheck-Wenderoth, M.; Koptev, A.; Sippel, J.
2017-12-01
We present three-dimensional (3D) thermo-mechanical models aiming to explore the interaction of an active mantle plume with heterogeneous pre-stressed lithosphere in the Kenya rift region. As shown by the recent data-driven 3D gravity and thermal modeling (Sippel et al., 2017), the integrated strength of the lithosphere for the region of Kenya and northern Tanzania appears to be strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localization and propagation of rifting. In order to test this hypothesis, we have performed a series of ultra-high resolution 3D numerical experiments that include a coupled mantle/lithosphere system in a dynamically and rheologically consistent framework. In contrast to our previous studies assuming a simple and quasi-symmetrical initial condition (Koptev et al., 2015, 2016, 2017), the complex 3D distribution of rock physical properties inferred from geological and geophysical observations (Sippel et al., 2017) has been incorporated into the model setup that comprises a stratified three-layer continental lithosphere composed of an upper and lower crust and lithospheric mantle overlaying the upper mantle. Following the evidence of the presence of a broad low-velocity seismic anomaly under the central parts of the East African Rift system (e.g. Nyblade et al, 2000; Chang et al., 2015), a 200-km radius mantle plume has been seeded at the bottom of a 635 km-depth model box representing a thermal anomaly of 300°C temperature excess. In all model runs, results show that the spatial distribution of surface deformation is indeed strongly controlled by crustal structure: within the southern part of the model box, a localized narrow zone stretched in NS direction (i.e. perpendicularly to applied far-field extension) is aligned along a structural boundary within the lower crust, whereas in the northern part of the model domain, deformation is more diffused and its eastern limit coincides with the eastern side of a weaker unit within the upper crustal layer. This northward transition from more localized to more distributed strain bears some general similarity to the distribution of major faults within the studied area (Chorowicz, 2005).
Water circulation and global mantle dynamics: Insight from numerical modeling
NASA Astrophysics Data System (ADS)
Nakagawa, Takashi; Nakakuki, Tomoeki; Iwamori, Hikaru
2015-05-01
We investigate water circulation and its dynamical effects on global-scale mantle dynamics in numerical thermochemical mantle convection simulations. Both dehydration-hydration processes and dehydration melting are included. We also assume the rheological properties of hydrous minerals and density reduction caused by hydrous minerals. Heat transfer due to mantle convection seems to be enhanced more effectively than water cycling in the mantle convection system when reasonable water dependence of viscosity is assumed, due to effective slab dehydration at shallow depths. Water still affects significantly the global dynamics by weakening the near-surface oceanic crust and lithosphere, enhancing the activity of surface plate motion compared to dry mantle case. As a result, including hydrous minerals, the more viscous mantle is expected with several orders of magnitude compared to the dry mantle. The average water content in the whole mantle is regulated by the dehydration-hydration process. The large-scale thermochemical anomalies, as is observed in the deep mantle, is found when a large density contrast between basaltic material and ambient mantle is assumed (4-5%), comparable to mineral physics measurements. Through this study, the effects of hydrous minerals in mantle dynamics are very important for interpreting the observational constraints on mantle convection.
The role of thermal effect on mantle seismic anomalies from observations of GIA
NASA Astrophysics Data System (ADS)
Wu, P.; Wang, H. S.; Steffen, H.
2012-04-01
Recent advance in seismic tomography reveals the structure inside the mantle. An outstanding issue is the role of thermal versus non-thermal (e.g. compositional, partial melting) contribution to seismic velocity anomalies. Here we use observations of Glacial Isostatic Adjustment (GIA), e.g. global relative sea level data, GRACE observations (with recent hydrology contributions removed) and GPS crustal uplift rates in combination with 3D GIA models to address this issue. Both ICE-4G and ICE-5G models are tested, but ICE-4G gives much better overall fit to these observations. Also, several 1-D background viscosity profiles, with different viscosity contrast at 670 km depth have also been tested and the one that gives consistent results is model RF3 which has a moderate viscosity increase across 670 km. Lateral mantle viscosity variation is inferred from Ekstrom & Dziewonski's S20A seismic tomography model using a scaling law that includes both the effect of anharmonicity and anelasticity. Thermal contribution to seismic tomography appears as the beta factor in the scaling law. The values of beta in the upper mantle, shallow part of the lower mantle and the deep part of the lower mantle are allowed to be different and the solution space of the beta values is searched to find the best combination that gives the best fit to the GIA observations simultaneously. The result of our best model (RF3 with lateral heterogeneity) shows that thermal effect increases from about 65% in the upper mantle to 80% in the shallow part of the lower mantle and to about 100% in the deep lower mantle above the D" layer. This is consistent with temperature excess in the lower mantle from high core heating. However, the uncertainty increases from < 1% in the upper mantle to 20% in the shallow lower mantle and is not very well constrained in the deep lower mantle.
Episodic large-scale overturn of two-layer mantles in terrestrial planets
NASA Astrophysics Data System (ADS)
Herrick, D. L.; Parmentier, E. M.
1994-01-01
It is usually assumed that the upper and lower mantles of a chemically stratified planet are arranged so that the upper mantle is chemically less dense and that these layers convect separately. Possible buoyant overturn of the two mantle layers has not previously been considered. Such overturn would initially occur when thermal expansion of a chemically denser lower mantle more than offsets the compositional density difference between the layers, reversing the relative sense of buoyancy. Once overturn has occurred, the chemically denser, but thermally less dense upper mantle cools more efficiently than the lower mantle and loses its relative thermal buoyancy. If mixing is slow, this leads to repeated overturns that result in thermal histories that differ radically from those obtained without this large-scale overturning. Thermal evolution calculations, for a two-layer mantle over a wide range of parameter space, show that large-scale overturn occurs cyclically with a well-defined period. This period depends most strongly on the viscosity of the lower mantle, to which it is approximately proportional. Geologically interesting overturn periods on the order of 107 to 109 years result for lower mantle viscosities of 1022 to 1024 Pa s for the Earth and Venus, and 1021 to 1023 Pa s for Mars. The mantles of Mercury and the Moon are too thin to permit two-layer convection, and therefore the model is not appropriate for them. Overturn cannot occur on Earth or Venus if the compositional density difference between the layers exceeds about 4%, or on Mars if it exceeds about 2%. Large-scale mantle overturn could have significant tectonic consequences such as the initiation of a new plate tectonic cycle on the Earth or a major resurfacing event on Mars or Venus. Such episodic events in the evolution of a planet are not easily explained by whole mantle thermal convection.
Episodic large-scale overturn of two-layer mantles in terrestrial planets
NASA Technical Reports Server (NTRS)
Herrick, David L.; Parmentier, E. M.
1994-01-01
It is usually assumed that the upper and lower mantles of a chemically stratified planet are arranged so that the upper mantle is chemically less dense and that these layers convect separately. Possible buoyant overturn of the two mantle layers has not previously been considered. Such overturn would initially occur when thermal expansion of a chemically denser lower mantle more than offsets the compositional density difference between the layers, reversing the relative sense of buoyancy. Once overturn has occurred, the chemically denser, but thermally less dense upper mantle cools more efficiently than the lower mantle and loses its relative thermal buoyancy. If mixing is slow, this leads to repeated overturns that result in thermal histories that differ radically from those obtained without this large-scale overturning. Thermal evolution calculations, for a two-layer mantle over a wide range of parameter space, show that large-scale overturn occurs cyclically with a well-defined period. This period depends most strongly on the viscosity of the lower mantle, to which it is approximately proportional. Geologically interesting overturn periods on the order of 10(exp 7) to 10(exp 9) years result for lower mantle viscosities of 10(exp 22) to 10(exp 24) Pa s for the Earth and Venus, and 10(exp 21) to 10(exp 23) Pa s for Mars. The mantles of Mercury and the Moon are too thin to permit two-layer convection, and therefore the model is not appropriate for them. Overturn cannot occur on Earth or Venus if the compositional density difference between the layers exceeds about 4%, or on Mars if it exceeds about 2%. Large-scale mantle overturn could have significant tectonic consequences such as the initiation of a new plate tectonic cycle on the Earth or a major resurfacing event on Mars or Venus. Such episodic events in the evolution of a planet are not easily explained by whole mantle thermal convection.
Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle.
Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua
2017-04-18
Earth's water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg 0.9 Fe 0.1 ) 2 SiO 4 (Fo90) up to 15 gigapascals using an ultrafast optical pump-probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine-wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone.
Lithosphere/Asthenosphere Boundary depth inferred from global surface wave tomography
NASA Astrophysics Data System (ADS)
Burgos, G.; Montagner, J.-P.; Beucler, E.; Trampert, J.; Ritzwoller, M. H.; Capdeville, Y.; Shapiro, N. M.
2012-04-01
The coupling between the rigid lithosphere and the weaker underlying asthenosphere is a key point of Plate Tectonics and Mantle dynamics. The characterization of the properties of the Lithosphere/Asthenosphere Boundary (LAB) is essential for understanding the Upper Mantle. Recent studies, using receiver functions for example, provide local constraints. In this study a global view by surface wave tomography is given. A large amount of data from different groups (Harvard, Boulder, Utrecht, Paris) has been collected. There are more than 100,000 phase and group velocities measurements on the fundamental mode of Rayleigh and Love waves. This global scale dataset in the period range 15s-200s, enables us to investigate the LAB with an approximative lateral resolution of 500km. The regionalization of the path-averaged velocities is performed to extract isotropic and azimuthally anisotropic terms of local velocities. We derive our own crustal model (taking account of topography-bathymetry, sediments and crustal thickness) by a MonteCarlo inversion with the shorter periods of the data. A forward estimation of the LAB properties on a global map is provided. We choose a low parametrization (isotropic Vs layers) of the Upper Mantle adjusted with the larger periods of the data by MonteCarlo inversion. Then we present a new tomographic model obtained by inverting the larger periods of phase velocities in the least square sense, including isotropic Vs velocity, radial anisotropy and azimuthal anisotropy. Different proxies for the LAB are builded from this 3D Upper Mantle model, such as the strongest negative Sv velocity gradient or the variation of azimuthal anisotropy fast axis. LAB determination seems consistent in oceanic regions in all of the proxies, presenting a good correlation with ocean floor ages. While the estimated depths beneath continents still unclear depending on the type of parametrizations compared to receiver functions or heat flux studies.
Proxies of Lithosphere/Asthenosphere Boundary from global surface wave tomography
NASA Astrophysics Data System (ADS)
Burgos, G.; Montagner, J.; Beucler, E.; Trampert, J.; Ritzwoller, M. H.; Capdeville, Y.; Shapiro, N. M.
2011-12-01
The coupling between rigid lithosphere and the weaker underlying asthenosphere is a key point of Plate Tectonics and Mantle dynamics. The characterization of the properties of the Lithosphere/Asthenosphere Boundary (LAB) is essential for understanding the Upper Mantle. Recent studies, using receiver functions for example, provide local constraints. In this study a global view by surface wave tomography is given. A large amount of data from different groups (Harvard, Boulder, Utrecht, Paris) has been collected. There are more than 100,000 phase and group velocities measurements on the fundamental mode of Rayleigh and Love waves. This global scale dataset in the period range 15s-200s, enables us to investigate the LAB with an approximative lateral resolution of 500km. The regionalization of the path-averaged velocities is performed to extract isotropic and azimuthally anisotropic terms of local velocities. We derive our own crustal model (taking account of topography-bathymetry, sediments and crustal thickness) by a MonteCarlo inversion with the shorter periods of the data. A forward estimation of the LAB properties on a global map is provided. We choose a low parametrization (isotropic Vs layers) of the Upper Mantle ajusted with the larger periods of the data by MonteCarlo inversion. Then we present a new tomographic model obtained by inverting the larger periods of phase velocities in the least square sense, including isotropic Vs velocity, radial anisotropy and azimuthal anisotropy. Different proxies for the LAB are builded from this 3D Upper Mantle model, such as the strongest negative Sv velocity gradient or the variation of azimuthal anisotropy fast axis. LAB determination seems consistent in oceanic regions in all of the proxies, presenting a good correlation with ocean floor ages. While the estimated depths beneath continents still unclear depending on the type of parametrizations compared to receiver functions or heat flux studies.
NASA Astrophysics Data System (ADS)
Malusa', Marco Giovanni; Salimbeni, Simone; Zhao, Liang; Guillot, Stéphane; Pondrelli, Silvia; Margheriti, Lucia; Paul, Anne; Solarino, Stefano; Aubert, Coralie; Dumont, Thierry; Schwartz, Stéphane; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang
2017-04-01
The role of surface and deep-seated processes in controlling the topography of complex plate-boundary areas is a highly debated issue. In the Western Alps, which include the highest summits in Europe, factors controlling topographic uplift still remain poorly understood. In the absence of active convergence, recent works have suggested a potential linkage between slab breakoff and fast uplift, but this hypothesis is ruled out by the down-dip continuity of the Alpine slab documented by recent tomographic images of the upper mantle beneath the Alpine region (Zhao et al. 2016). In order to shed light on this issue, we use a densely spaced array of temporary broadband seismic stations and previously published observations to analyze the seismic anisotropy pattern along the transition zone between the Alps and the Apennines, within the framework of the upper mantle structure unveiled by P wave tomography. Our results show a continuous trend of anisotropy fast axes near-parallel to the western alpine arc, possibly due to an asthenospheric counterflow triggered by the eastward retreat of the Apenninic slab. This trend is located in correspondence of a low velocity anomaly in the European upper mantle, and beneath the Western Alps region characterized by the highest uplift rates, which may suggest a potential impact of mantle dynamics on Alpine topography. We propose that the progressive rollback of the Apenninic slab induced a suction effect and an asthenospheric counterflow at the rear of the unbroken Alpine slab and around its southern tip, as well as an asthenospheric upwelling, mirrored by low P wave velocities, which may have favored the topographic uplift of the Alpine belt from the Mt Blanc to the Ligurian coast. Zhao L. et al., 2016. Continuity of the Alpine slab unraveled by high-resolution P wave tomography. J. Geophys. Res., doi:10.1002/2016JB013310.
Linking TERRA and DRex to relate mantle convection and seismic anisotropy
NASA Astrophysics Data System (ADS)
Walker, Andrew; Davies, Huw; Davies, Rhodri; Wookey, James
2015-04-01
Seismic anisotropy caused by flow induced alignment of the olivine crystals in Earth's upper mantle provides a powerful way to test our ideas of mantle convection. We have been working to directly combine computer simulations of mantle dynamics, using fluid mechanics at the continuum scale, with models of rock deformation to capture fabric evolution at the grain scale. By combining models of deformation at these two scales we hope to be able to rigorously test hypothesis linking mantle flow to seismic anisotropy in regions as diverse as subduction zones, the lithosphere-asthenosphere boundary, and the transition zone. We also intend to permit feedback, for example via geometrical softening, from the model of fabric development into the material properties used in the convection simulation. We are building a flexible framework for this approach which we call Theia. Our initial implementation uses the TERRA convection code (Baumgardner, J. Stat. Phys. 39:501-511, 1985; Davies et al. Geosci. Model Dev. 6:1095-1107, 2013) to drive DRex (Kaminski et al. Geophys. J. Int. 158:744-752, 2004), which is used to predict the evolution of crystallographic preferred orientation in the upper mantle. Here we describe our current implementation which makes use of the ability of TERRA to track markers, or particles, through the evolving flow field. These tracers have previously been used to track attributes such as the bulk chemical composition or trace element ratios. Our modification is to use this technology to track a description of the current state of the texture and microstructure (encompassing an orientation distribution function, grain size parameters and dislocation density) such that we can advance models of polycrystalline deformation for many simultaneous DRex instances alongside and in sync with models of mantle convection. We will also describe initial results from our first use of the Theia framework where we are investigating the effect of asthenospheric viscosity on seismic anisotropy beneath the oceans. Key to this work is the ability of TERRA to incorporate plate motion history which acts to correctly locate the predicted anisotropy such that it can be directly compared with the anisotropy measured for the Earth.
NASA Astrophysics Data System (ADS)
Putirka, K. D.
2006-05-01
The question as to whether any particular oceanic island is the result of a thermal mantle plume, is a question of whether volcanism is the result of passive upwelling, as at mid-ocean ridges, or active upwelling, driven by thermally buoyant material. When upwelling is passive, mantle temperatures reflect average or ambient upper mantle values. In contrast, sites of thermally driven active upwellings will have elevated (or excess) mantle temperatures, driven by some source of excess heat. Skeptics of the plume hypothesis suggest that the maximum temperatures at ocean islands are similar to maximum temperatures at mid-ocean ridges (Anderson, 2000; Green et al., 2001). Olivine-liquid thermometry, when applied to Hawaii, Iceland, and global MORB, belie this hypothesis. Olivine-liquid equilibria provide the most accurate means of estimating mantle temperatures, which are highly sensitive to the forsterite (Fo) contents of olivines, and the FeO content of coexisting liquids. Their application shows that mantle temperatures in the MORB source region are less than temperatures at both Hawaii and Iceland. The Siqueiros Transform may provide the most precise estimate of TpMORB because high MgO glass compositions there have been affected only by olivine fractionation, so primitive FeOliq is known; olivine thermometry yields TpSiqueiros = 1430 ±59°C. A global database of 22,000 MORB show that most MORB have slightly higher FeOliq than at Siqueiros, which translates to higher calculated mantle potential temperatures. If the values for Fomax (= 91.5) and KD (Fe-Mg)ol-liq (= 0.29) at Siqueiros apply globally, then upper mantle Tp is closer to 1485 ± 59°C. Averaging this global estimate with that recovered at Siqueiros yields TpMORB = 1458 ± 78°C, which is used to calculate plume excess temperatures, Te. The estimate for TpMORB defines the convective mantle geotherm, and is consistent with estimates from sea floor bathymetry and heat flow (Stein and Stein, 1992), and overlap within 1 sigma estimates from phase transitions at the 410 km (Jeanloz and Thompson, 1983) and 670 km (Hirose, 2002) seismic discontinuities. Variations in MORB FeOliq can be used to calculate the variance of TpMORB. FeOliq variations in global MORB show that 95% of the sub-MORB mantle has a T range of 165°C; 68% of MORB fall within temperature variations of ±30°C. In comparison, Te at Hawaii and Iceland are 1706°C and 1646°C respectively, and hence Te> is 248°C at Hawaii and 188°C at Iceland. Tp estimates at Hawaii and Iceland also exceed maximum Tp estimates at MORs (at 95% level) by 171 and 111°C respectively. These Te are in agreement with estimates derived from excess topography and dynamic models of mantle flow and melt generation (e.g., Sleep, 1990, Schilling, 1991, Ito et al., 1999). A clear result is that Hawaii and Iceland are hot relative to MORB. Rayleigh number calculations further show that for these Te, critical depths (i.e., the depths at which Ra > 1000) are < 130 km. Hawaii and Iceland are thus almost assuredly the result of thermally driven, active upwellings, or mantle plumes.
NASA Astrophysics Data System (ADS)
Kurat, G.; Palme, H.; Spettel, B.; Baddenhausen, Hildegard; Hofmeister, H.; Palme, Christl; Wänke, H.
1980-01-01
Major, minor, and trace element contents have been determined in seven ultramafic xenoliths, the host basanite, and some mineral separates from xenoliths from Kapfenstein, Austria. Most of the xenoliths represent residues after extraction of different amounts of basaltic liquid. Within the sequence Iherzolite to harzburgite contents of Al, Ca, Ti, Na, Sc, V, Cr and the HREE decrease systematically with increasing Mg/Fe and decreasing Yb/Sc. Although all samples are depleted in highly incompatible elements, the less depleted end of our suite very closely approaches the chondritic Yb/Sc ratio and consequently the primitive upper mantle composition. Chromium behaved as a non-refractory element. Consequently it should have higher abundances in basalts than observed, suggesting that most basalts experienced Cr fractionation by chromite separation during ascent. Several processes have been active in addition to partial melting within the upper mantle beneath Kapfenstein: (1) a hornblendite has been identified as wet alkali-basaltic mobilisate; (2) an amphibole Iherzolite is the product of alkali-basalt metasomatism of a common depleted Iherzolite; (3) two amphibole Iherzolites contain evidence for rather pure water metasomatism of normal depleted Iherzolites; (4) a garnet-spinel websterite was a tholeiitic liquid trapped within the upper mantle and which suffered a subsequent partial melting event (partial remobilization of a mobilisate). (5) Abundances of highly incompatible elements are generally very irregular, indicating contamination of upper mantle rocks by percolating liquids (in the mantle). Weathering is an important source of contamination: e.g. U mobilization by percolating groundwater. Contamination of the xenoliths by the host basanite liquid can only amount to approximately 5.5 × 10 -4 parts. Distributions of minor and trace elements between different minerals apparently reflect equilibrium and vary with equilibration temperature.
Vergnolle, M.; Pollitz, F.; Calais, E.
2003-01-01
We use GPS measurements and models of postseismic deformation caused by seven M6.8 to 8.4 earthquakes that occurred in the past 100 years in Mongolia to assess the viscosity of the lower crust and upper mantle. We find an upper mantle viscosity between 1 ?? 1018 and 4 ?? 1018 Pa s. The presence of such a weak mantle is consistent with results from independent seismological and petrological studies that show an abnormally hot upper mantle beneath Mongolia. The viscosity of the lower crust is less well constrained, but a weak lower crust (3 ?? 1016 to 2 ?? 1017 Pa s) is preferred by the data. Using our best fit upper mantle and lower crust viscosities, we find that the postseismic effects of viscoelastic relaxation on present-day horizontal GPS velocities are small (<2 mm yr-1) but still persist 100 years after the 1905, M8.4, Bolnay earthquake. This study shows that the GPS velocity field in the Baikal-Mongolia area can be modeled as the sum of (1) a rigid translation and rotation of the whole network, (2) a 3-5 mm yr-1 simple shear velocity gradient between the Siberian platform to the north and northern China to the south, and (3) the contribution of postseismic deformation, mostly caused by the 1905 Bolnay-Tsetserleg sequence and by the smaller, but more recent, 1957 Bogd earthquake. Copyright 2003 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Mulibo, G.; Tugume, F.; Julia, J.
2012-12-01
In this study, teleseismic earthquakes recorded on over 60 temporary AfricaArray seismic stations deployed in Uganda, Kenya, Tanzania and Zambia between 2007 and 2011 are used to invert P and S travel time residuals, together with travel time residuals from previous deployments, for a 3D image of mantle wave speeds and for examining relief on transition zone discontinuities using receiver function stacks. Tomographic images reveal a low wave speed anomaly (LWA) that dips to the SW beneath northern Zambia, extending to a depth of at least 900 km. The anomaly appears to be continuous across the transition zone, extending into the lower mantle. Receiver function stacks reveal an average transition zone thickness (TZT) across a wide region extending from central Zambia to the NE through Tanzania and into Kenya, which is ~30-40 km thinner than the global average. These results are not easily explained by models for the origin of the Cenozoic tectonism in eastern Africa that invoke a plume head or small scale convection either by edge flow or passive stretching of the lithosphere. However, the depth extent of the LWA coincident with a thin transition zone is consistent with a model invoking a through-going mantle anomaly beneath eastern Africa that links anomalous upper mantle to the African Superplume anomaly in the lower mantle beneath southern Africa. This finding indicates that geodynamic processes deep in the lower mantle are influencing surface dynamics across the Afro-Arabian rift system.
NASA Astrophysics Data System (ADS)
Leya, Ingo; Wieler, Rainer
1999-07-01
The production of nucleogenic Ne in terrestrial crust and upper mantle by alpha particles from the decay of U and Th was calculated. The calculations are based on stopping powers for the chemical compounds and thin-target cross sections. This approach is more rigorous than earlier studies using thick-target yields for pure elements, since our results are independent of limiting assumptions about stopping-power ratios. Alpha induced reactions account for >99% of the Ne production in the crust and for most of the 20,21Ne in the upper mantle. On the other hand, our 22Ne value for the upper mantle is a lower limit because the reaction 25Mg(n,α)22Ne is significant in mantle material. Production rates calculated here for hypothetical crustal and upper mantle material with average major element composition and homogeneously distributed F, U, and Th are up to 100 times higher than data presented by Kyser and Rison [1982] but agree within error limits with the results by Yatsevich and Honda [1997]. Production of nucleogenic Ne in "mean" crust and mantle is also given as a function of the weight fractions of O and F. The alpha dose is calculated by radiogenic 4He as well as by the more retentive fissiogenic 136Xe. U and Th is concentrated in certain accessory minerals. Since the ranges of alpha particles from the three decay chains are comparable to mineral dimensions, most nucleogenic Ne is produced in U- and Th-rich minerals. Therefore nucleogenic Ne production in such accessories was also calculated. The calculated correlation between nucleogenic 21Ne and radiogenic 4He agrees well with experimental data for Earth's crust and accessories. Also, the calculated 22Ne/4He ratios as function of the F concentration and the dependence of 21Ne/22Ne from O/F for zircon and apatite agree with measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ting; Liebermann, Robert C.; Zou, Yongtao
The compressional and shear wave velocities for coesite have been measured simultaneously up to 5.8 GPa and 1073 K by ultrasonic interferometry for the first time. The shear wave velocity decreases with pressure along all isotherms. The resulting contrasts between coesite and stishovite reach ~34% and ~45% for P and S wave velocities, respectively, and ~64% and ~75% for their impedance at mantle conditions. The large velocity and impedance contrasts across coesite-stishovite transition imply that to generate the velocity and impedance contrasts observed at the X-discontinuity, only a small amount of silica would be required. The velocity jump dependences onmore » silica, d(lnVP)/d(SiO2) = 0.38 (wt %)-1 and d(lnVS)/d(SiO2) = 0.52 (wt %)-1, are utilized to place constraints on the amount of silica in the upper mantle and provide a geophysical approach to track mantle eclogite materials and ancient subducted oceanic slabs.« less
NASA Astrophysics Data System (ADS)
Priestley, K.; Debayle, E.; McKenzie, D.; Pilidou, S.
2007-12-01
There have been a number of prior, large scale surface wave studies of Africa, the majority of which rely on fundamental mode observations. In this study we use a large data set of multi-mode surface waves recorded over epicentral distances most of which are shorter than 6000 km, to investigate the Sv wave speed heterogeneity of the upper mantle beneath Africa. The inclusion of the higher mode data allow us to build an upper mantle model for the African plate with a horizontal resolution of a few hundred kilometers and a vertical resolution of a few tens of kilometers extending to about 400 km depth. Our tomographic images of the upper mantle beneath Africa displays significant shear velocity features, much of which correlate with surface geology. High velocity mantle persists beneath the West African and Congo cratons to 225-250 km depth, but the high velocity root beneath Kalahari Craton extends to only about 175 km depth. Low velocity upper mantle underlies the Pan- African terranes of Africa with the exception of the Damara mobile belt separating the Congo and Kalahari Cratons. The Damara mobile belt is underlain by a thick high velocity upper mantle lid which is indistinguishable from that beneath the Congo Craton to the north and the Kalahari Craton to the south. Low velocity upper mantle underlie the Hoggar, Tebesti and Darfur volcanic areas of northern Africa, and very low velocities underlie the Afar region to at least 400 km depth. We use the relationship between shear velocity and temperature of Priestley & McKenzie (2006) to derive a model for the African thermal lithosphere. Two types of lithosphere underlie Africa. Thick lithosphere underlies most of western Africa and all of southern Africa; in the latter the extent of the thick lithosphere is significantly different from the distribution of Archean crust mapped at the surface. Thick lithosphere forms one continuous structure beneath the Congo and Kalahari Cratons. Other than the Pan-African Damara mobile belt, the only Pan-African terrane of Africa free of recent (<30 Ma) volcanism, all of the Pan- African is underlain by lithosphere whose thickness is too thin to be resolved by our current surface wave analysis.
NASA Technical Reports Server (NTRS)
Soloman, Sean C.
1991-01-01
The focus of the research was in two broad areas: (1) the nature and dynamics of time dependent deformation and stress along major seismic zones; and (2) the nature of long wavelength oceanic geoid anomalies in terms of lateral variations in upper mantle temperature and composition. The principle findings of the research are described in the accompanying appendices. The first two and the fourth appendices are reprints of papers recently submitted for publication, and the third is the abstract of a recently completed thesis supported by this project.
NASA Astrophysics Data System (ADS)
Köhler, A.; Balling, N.; Ebbing, J.; England, R.; Frassetto, A.; Gradmann, S.; Jacobsen, B. H.; Kvarven, T.; Maupin, V.; Medhus, A. Bondo; Mjelde, R.; Ritter, J.; Schweizer, J.; Stratford, W.; Thybo, H.; Wawerzinek, B.; Weidle, C.
2012-04-01
The origin of the Scandinavian mountains, located far away from any presently active plate margin, is still not well understood. In particular, it is not clear if the mountains are sustained isostatically either by crustal thickening or by light upper mantle material. Within the TopoScandiaDeep project (a collaborative research project within the ESF TOPO-EUROPE programme), we therefore analyse recently collected passive seismological and active seismic data in the southern Scandes and surrounding regions. We infer crustal and upper mantle (velocity) structures and relate them to results of gravity and temperature-composition modelling. The Moho under the high topography of southern Norway appears from controlled source seismic refraction and Receiver Functions as relatively shallow (<= 45 km) compared to the deeper conversion (>55 km) imaged beneath the low topography in Sweden and elsewhere in the Baltic Shield area outside Norway. The Receiver Function modeling as well as the active seismic results suggest that the differences in the observed Moho response may represent the transition between tectonically reworked Moho under southern Norway and an intact, cratonic crust-mantle boundary beneath the Baltic Shield. Furthermore, the 410km-discontinuity and the LAB is imaged, the latter one suggesting a lithospheric thickening in NE direction. Upper mantle P-wave and S-wave velocities in southern Sweden and southern Norway east of the Oslo Graben are correspondingly relatively high while lower velocities are observed in the southwestern part of Norway and northern Denmark. The lateral velocity gradient, interpreted as the southwestern boundary of thick Baltic Shield lithosphere, is remarkably sharp. Differences in upper mantle velocities are found at depths of 100-400 km and amount to ± 2-3%. S-to-P wave conversions, interpreted to originate from the lithosphere-asthenosphere boundary, are preliminary estimated to 90-120 km depth. Inversion of Rayleigh and Love surface wave phase velocity dispersion curves from observations of ambient noise and earthquakes yield another independent model of the crust and upper mantle structure below southern Norway. Inverted crustal velocities and Moho depths are consistent with the results of seismic refraction and receiver functions. Additionally, indications for radial crustal anisotropy of up to about 3% are found. The inferred upper mantle S-wave velocities show that the lithosphere under southern Norway has characteristics usually found under continental platforms and changes towards a cratonic-like velocity structure in the East, in agreement with the body wave tomography. All in all, these separate investigations give a very consistent and stable picture of the crust and upper mantle configuration. Integrated geophysical modeling of the results shows that a lateral transition from thinner, warmer lithosphere under southern Norway towards thicker, colder lithosphere under Sweden results in a density distribution that significantly adds to the isostatic support of Norway's high topography.
NASA Astrophysics Data System (ADS)
Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi; Vecsey, Ludek; Babuska, Vladislav
2017-04-01
Seismological investigations of the continental mantle lithosphere, particularly its anisotropic structure, advance our understanding of plate tectonics and formation of continents. Orientation of the anisotropic fabrics reflects stress fields during the lithosphere origin and its later deformations. To contribute to studies of the large-scale upper-mantle anisotropy, we have developed code AniTomo for regional anisotropic tomography. AniTomo allows a simultaneous inversion of relative travel time residuals of teleseismic P waves for 3D distribution of isotropic-velocity perturbations and anisotropy in the upper mantle. Weak hexagonal anisotropy with symmetry axis oriented generally in 3D is assumed. The code was successfully tested on a large series of synthetic datasets and synthetic structures. In this contribution we present results of the first application of novel code AniTomo to real data, i.e., relative travel-time residuals of teleseismic P waves recorded during passive seismic experiment LAPNET in the northern Fennoscandia between 2007 and 2009. The region of Fennoscandia is a suitable choice for the first application of the new code. This Precambrian region is tectonically stable and has a thick anisotropic mantle lithosphere (Plomerova and Babuska, Lithos 2010) without significant thermal heterogeneities. In the resulting anisotropic model of the upper mantle beneath the northern Fennoscandia, the strongest anisotropy and the largest velocity perturbations concentrate in the mantle lithosphere. We delimit regions of laterally and vertically consistent anisotropy in the mantle-lithospheric part of the model. In general, the identified anisotropic regions correspond to domains detected by joint interpretation of lateral variations of the P- and SKS-wave anisotropic parameters (Plomerova et al., Solid Earth 2011). Particularly, the mantle lithosphere in the western part of the volume studied exhibits a distinct and uniform fabric that is sharply separated from the surrounding regions. The eastern boundary of this region gradually shifts westward with increasing depth in the tomographic model. We connect the retrieved domain-like anisotropic structure of the mantle lithosphere in the northern Fennoscandia with preserved fossil fabrics of the Archean micro-plates, accreted during the Precambrian orogenic processes.
NASA Astrophysics Data System (ADS)
Muravyeva, N. S.; Senin, V. G.
2018-01-01
The mineral composition of mantle xenoliths from kamafugites of the Bunyaruguru volcanic field has been determined. The major and some trace elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, Cr, Ni, Ba, Sr, La, Ce, Nd, Nb) has been analyzed in olivine, clinopyroxene, phlogopite, Cr-spinel, titanomagnetite, perovskite and carbonates of xenoliths and their host lavas. Bunyaruguru is one of three (Katwe-Kikorongo, Fort Portal and Bunyaruguru) volcanic fields included in the Toro-Ankole province located on the North end of the West Branch of the East African Rift. The xenoliths from three craters within the Bunyaruguru volcanic field revealed the different character of metasomatic alteration, reflecting the heterogeneity of the mantle on the kilometer scale. The most unusual finding was composite glimmerite-wehrlite xenolith from the crater Kazimiro, which contains the fresh primary high-Mg olivine with inclusions of Cr-spinel that had not been previously identified in this area. The different composition of phenocryst and xenolith minerals indicates that the studied xenoliths are not cumulus of enclosing magma, but the composition of xenoliths characterizes the lithology of the upper mantle of the area. The carbonate melt inclusions in olivine Fo90 demonstrate the existence of primary carbonatitic magmas in Bunyaruguru upper mantle. The results of texture and chemical investigation of the xenolith minerals indicate the time sequence of metasomatic alteration of Bunyaruguru upper mantle: MARID metasomatism at the first stage followed by carbonate metasomatism. The abundances of REE in perovskites from kamafugite are 2-4 times higher than similar values for xenolith. Therefore the kamafugite magma was been generated from a more enriched mantle source than the source of the xenoliths. The evaluation of P-T conditions formation of clinopyroxene xenolith revealed the range of pressure 20-65 kbar and the temperatures range 830-1040 °C. The pressure of clinopyroxene phenocryst crystallization differs from pressure of formation the xenoliths clinopyroxene: it may be higher or lower of it. The results of our investigation have shown that olivine can play a noticeable role in the lithology of the upper mantle Bunyaruguru volcanic field.
NASA Astrophysics Data System (ADS)
Molnar, P.
1988-09-01
The Tibetan Plateau, the Himalaya and the Karakoram are the most spectacular consequences of the collision of the Indian subcontinent with the rest of Eurasia in Cainozoic time. Accordingly, the deep structures beneath them provide constraints on both the tectonic history of the region and on the dynamic processes that have created these structures. The dispersion of seismic surface waves requires that the crust beneath Tibet be thick: nowhere less than 50 km, at least 65 km, in most areas, but less than 80 km in all areas that have been studied. Wide-angle reflections of P-waves from explosive sources in southern Tibet corroborate the existence of a thick crust but also imply the existence of marked lateral variations in that thickness, or in the velocity structure of the crust. Thus isostatic compensation occurs largely by an Airy-type mechanism, unlike that, for instance, of the Basin and Range Province of western North America where a hot upper mantle buoys up a thin crust. The P-wave and S-wave velocities in the uppermost mantle of most of Tibet are relatively high and typical of those of Precambrian shields and stable platforms: Vp = 8.1 km s-1 or higher, and Vs≈ 4.7 km s-1. Travel times and waveforms of S-waves passing through the uppermost mantle of much of Tibet, however, require a much lower average velocity in the uppermost mantle than that of the Indian, or other, shields. They indicate a thick low-velocity zone in the upper mantle beneath Tibet, reminiscent of tectonically active regions. These data rule out a shield structure beneath northern Tibet and suggest that if such a structure does underlie part of the plateau, it does so only beneath the southern part. Lateral variations in the upper-mantle structure of Tibet are apparent from differences in travel times of S-waves from earthquakes in different parts of Tibet, in the attenuation of short-period phases, Pn and Sn, that propagate through the uppermost mantle of Tibet, and in surface-wave dispersion for different paths. The notably lower velocities and the greater attenuation in the mantle of north--central Tibet than elsewhere imply higher temperatures there and are consistent with the occurrence of active and young volcanism in roughly the same area. Surface-wave dispersion across north--central Tibet also requires a thinner crust in that area than in most of the plateau. Consequently the relatively uniform height of the plateau implies that isostatic compensation in the north--central part of Tibet occurs partly because the density of the relatively hot material in the upper mantle is lower than that elsewhere beneath Tibet, the mechanism envisioned by Pratt. Several seismological studies provide evidence consistent with a continuity of the Indian Shield, and its cold thick lithosphere, beneath the Himalaya. Fault-plane solutions and focal depths of the majority of moderate earthquakes in the Himalaya are consistent with their occurring on the top surface of the gently flexed, intact Indian plate that has underthrust the Lesser Himalaya roughly 80-100 km or more. P-waves from explosions in southern Tibet and recorded in Nepal can be interpreted as wide-angle reflections from this fault zone. P-wave delays across the Tarbela network in Pakistan from distant earthquakes indicate a gentle dip of the Moho beneath the array without pronounced later variations in upper-mantle structure. High Pn and Sn velocities beneath the Himalaya and normal to early S-wave arrival times from Himalayan earthquakes recorded at teleseismic distances are consistent with Himalaya being underlain by the same structure that underlies India. Results from explosion seismology indicate an increase in crustal thickness from the Indo--Gangetic Plain across the Himalaya to southern Tibet, but Hirn, Lepine, Sapin and their co-workers inferred that the depth of the Moho does not increase smoothly northward, as it would if the Indian Shield had been underthrust coherently beneath the Himalaya. They interpreted wide-angle reflections as evidence for steps in the Moho displaced from one another on southward-dipping faults. Although I cannot disprove this interpretation, I think that one can recognize a sequence of signals on their wide-angle reflection profiles that could be wide-angle reflections from a northward-dipping Moho. Gravity anomalies across the Himalaya show that both the Indo--Gangetic Plain and the Himalaya are not in local isostatic equilibrium. A mass deficit beneath the plain is apparently caused by the flexure of the Indian Shield and by the low density of the sedimentary rock in the basin formed by the flexure. The mass excess in the Himalaya seems to be partly supported by the strength of the Indian plate, for which the flexural rigidity is particularly large. An increase in the Bouguer gravity gradient from about 1 mGal km-1 (1 mGal = 10-3 cm s-2) over the Indo--Gangetic Plain to 2 mGal km-1 over the Himalaya implies a marked steepening of the Moho, and therefore a greater flexure of the Indian plate, beneath the Himalaya. This implies a northward decrease in the flexural rigidity of the part of the Indian plate underlying the range. Nevertheless, calculations of deflections of elastic plates with different flexural rigidities and flexed by the weight of the Himalaya show larger deflections and yield more negative gravity anomalies than are observed. Thus, some other force, besides the flexural strength of the plate, must contribute to the support of the range. A bending moment applied to the end of the Indian plate could flex the plate up beneath the range and provide the needed support. The source of this moment might be gravity acting on the mantle portion of the subducting Indian continental lithosphere with much or all of the crust detached from it. Seismological studies of the Karakoram are consistent with its being underlain by particularly cold material in the upper mantle. Intermediate-depth earthquakes occur between depths of 70 and 100 km but apparently do not define a zone of subducted oceanic lithosphere. Rayleigh-wave phase velocities are particularly high for paths across this area and imply high shear wave velocities in the upper mantle. Isostatic gravity anomalies indicate a marked low of 70 mGal over the Karakoram, which could result from a slightly thickened crust pulled down by the sinking of cold material beneath it. Geophysical constraints on the structure of Tibet, the Himalaya and the Karakoram are consistent with a dynamic uppermost mantle that includes first, the plunging of cold material into the asthenosphere beneath southern Tibet and the Karakoram, as the Indian plate slides beneath the Himalaya, and second, an upwelling of hot material beneath north--central Tibet. The structure is too poorly resolved to require such dynamic flow, but the existence for both a hot uppermost mantle beneath north--central Tibet and a relatively cold uppermost mantle beneath southern Tibet and the Karakoram seem to be required. Both group and phase velocities of Rayleigh waves and Love waves are delayed along paths crossing Tibet. The low velocities require a crustal thickness in excess of 50 km, and for most regions in excess of 60 km. Crustal thicknesses in excess of 80 km can be ruled out for all paths studied, and for most of Tibet, a crustal thickness of 65-70 km seems required. Clear evidence for lateral heterogeneity beneath Tibet is provided not only by body waves (discussed below) but also by surface waves (Brandon & Romanowicz 1986), which show an area of lower uppermost shear-wave velocity and thinner crust in north--central Tibet than elsewhere in the plateau. These variations might explain the differences in group velocities measured by different workers, and the different structures that they deduced, but if so, they also render the regionalization of surface-wave dispersion into arbitrary tectonic provinces risky. Although Rayleigh-wave phase velocities can resolve large differences in upper-mantle velocities for regions the size of Tibet, constraints on these velocities are best derived from body waves. Thus, with the exceptions of Brandon & Romanowicz's (1986) detailed investigation of north--central Tibet, the study of southernmost Tibet by Jobert et al. (1985) and that of Romanowicz (1982) for the northeasternmost part of the plateau, I do not think that surface waves have placed an important bound on the velocity in the upper mantle beneath Tibet. The seismic data are broadly consistent with partial melting of the uppermost mantle of north--central Tibet, where recent volcanism has been observed. Correspondingly, there is no suggestion of such low velocities, and such high temperatures, in the mantle elsewhere beneath Tibet, for which late-Cainozoic volcanism has not been reported. The results are also consistent with a slightly thinner crust in north--central Tibet than farther south, suggesting that both Airy and Pratt isostasy share compensation for north--central Tibet's great height. Finally, the average shear-wave velocity in the upper mantle of southern Tibet seems to be higher than that in northern Tibet, but neither is the degree of difference well determined, nor is the location of the transition from one to the other well mapped.
Electromagnetic exploration of the oceanic mantle
UTADA, Hisashi
2015-01-01
Electromagnetic exploration is a geophysical method for examining the Earth’s interior through observations of natural or artificial electromagnetic field fluctuations. The method has been in practice for more than 70 years, and 40 years ago it was first applied to ocean areas. During the past few decades, there has been noticeable progress in the methods of instrumentation, data acquisition (observation), data processing and inversion. Due to this progress, applications of this method to oceanic regions have revealed electrical features of the oceanic upper mantle down to depths of several hundred kilometers for different geologic and tectonic environments such as areas around mid-oceanic ridges, areas around hot-spot volcanoes, subduction zones, and normal ocean areas between mid-oceanic ridges and subduction zones. All these results estimate the distribution of the electrical conductivity in the oceanic mantle, which is key for understanding the dynamics and evolution of the Earth together with different physical properties obtained through other geophysical methods such as seismological techniques. PMID:26062736
Upper mantle seismic velocity structure beneath the Kenya Rift and the Arabian Shield
NASA Astrophysics Data System (ADS)
Park, Yongcheol
Upper mantle structure beneath the Kenya Rift and Arabian Shield has been investigated to advance our understanding of the origin of the Cenozoic hotspot tectonism found there. A new seismic tomographic model of the upper mantle beneath the Kenya Rift has been obtained by inverting teleseismic P-wave travel time residuals. The model shows a 0.5--1.5% low velocity anomaly below the Kenya Rift extending to about 150 km depth. Below ˜150 km depth, the anomaly broadens to the west toward the Tanzania Craton, suggesting a westward dip to the structure. The P- and S-wave velocity structure beneath the Arabian Shield has been investigated using travel-time tomography. Models for the seismic velocity structure of the upper mantle between 150 and 400 depths reveal a low velocity region (˜1.5% in the P model and ˜3% in the S model) trending NW-SE along the western side of the Arabian Shield and broadening to the northeast beneath the MMN volcanic line. The models have limited resolution above 150 km depth everywhere under the Shield, and in the middle part of the Shield the resolution is limited at all depths. Rayleigh wave phase velocity measurements have been inverted to image regions of the upper mantle under the Arabian Shield not well resolved by the body wave tomography. The shear wave velocity model obtained shows upper mantle structure above 200 km depth. A broad low velocity region in the lithospheric mantle (depths of ≤ ˜100 km) across the Shield is observed, and below ˜150 km depth a region of low shear velocity is imaged along the Red Sea coast and MMN volcanic line. A westward dipping low velocity zone beneath the Kenya Rift is consistent with an interpretation by Nyblade et al. [2000] suggesting that a plume head is located under the eastern margin of the Tanzania Craton, or alternatively a superplume rising from the lower mantle from the west and reaching the surface under Kenya [e.g., Debayle et al., 2001; Grand et al., 1997; Ritsema et al., 1999]. For the Arabian Shield, the models are not consistent with a two plume model [Camp and Roobol, 1992] because there is a continuous low velocity zone at depths ≥ 150 km along the western side of the Shield and not separate anomalies. The NW-SE trending low velocity anomaly beneath the western side of the Shield supports the Ebinger and Sleep [1998] model invoking plume flow channeled by thinner lithosphere along the Red Sea coast. The NW-SE low velocity structure beneath the western side of the Shield could also be the northern-most extent of the African Superplume. A low velocity anomaly beneath Ethiopia [Benoit et al., 2006a,b] dips to the west and may extend through the mantle transition zone. The observed low velocities in the upper mantle beneath the Arabian Shield could be caused by hot mantle rock rising beneath Ethiopia and flowing to the north under the Arabian Shield.
Seismic Imaging of Mantle Plumes
NASA Astrophysics Data System (ADS)
Nataf, Henri-Claude
The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.
Wet plume atop of the flattening slab: Insight into intraplate volcanism in East Asia
NASA Astrophysics Data System (ADS)
He, Lijuan
2017-08-01
Geophysical observations imply the intraplate volcanism in East Asia is related to dehydration of slab stagnating in the transition zone. To better understand the dynamics of such process, a thermochemical mantle convection model is constructed to simulate numerically the thermal evolution of slab and the transportation of water in the process of slab downgoing, flattening and stagnation. Equation of water transfer is included, and water effects on density and viscosity are considered. Model results indicate the warming of slab by surrounding mantle is rather slow. Water could be successfully dragged into the transition zone if the reference viscosity of the hydrous layer (with initial water of 2 wt%) is higher than 1017 Pa s and that of mantle is 1021 Pa s. Wet plumes could then originate in the flat-lying part of the slab, relatively far from the trench. Generally, the viscosity of the hydrous layer governs the initiation of wet plume, whereas the viscosity of the overlying mantle wedge controls the activity of the ascending wet plumes - they are more active in the weaker wedge. The complex fluid flow superposed by corner flow and free thermal convection influences greatly the water transport pattern in the upper mantle. Modeling results together with previous modeling infer three stages of water circulation in the big mantle wedge: 1) water is brought into the mantle transition zone by downward subducting slab under some specific thermo-rheological conditions, otherwise water is released at shallow depth near wedge tip; 2) wet plume generates from surface of the flattening slab warmed by surrounding mantle, and 3) water spreads over the big mantle wedge. Wet plume from the flattening Pacific Plate arrives at the lithospheric base and induces melting, which can explain the intraplate Cenozoic volcanoes in East Asia.
African hot spot volcanism: small-scale convection in the upper mantle beneath cratons.
King, S D; Ritsema, J
2000-11-10
Numerical models demonstrate that small-scale convection develops in the upper mantle beneath the transition of thick cratonic lithosphere and thin oceanic lithosphere. These models explain the location and geochemical characteristics of intraplate volcanos on the African and South American plates. They also explain the presence of relatively high seismic shear wave velocities (cold downwellings) in the mantle transition zone beneath the western margin of African cratons and the eastern margin of South American cratons. Small-scale, edge-driven convection is an alternative to plumes for explaining intraplate African and South American hot spot volcanism, and small-scale convection is consistent with mantle downwellings beneath the African and South American lithosphere.
Constraints on lateral variations in upper mantle viscosity from Lake Bonneville shorelines
NASA Astrophysics Data System (ADS)
Austermann, Jacqueline; Chen, Christine; Lau, Harriet C. P.
2017-04-01
Lake Bonneville is an extinct pluvial lake that formed and catastrophically drained at the onset of the last deglaciation (˜ 20 - 18ka). With a volume of just over 10 000 km3 this lake was comparable in size to present-day Lake Michigan. During its existence the excess load of water stored in Lake Bonneville depressed the crust and upper mantle. After the drainage of the lake this area rebounded by up to 75 m, which is recorded in the paleoshorelines around the lake periphery and on islands within the lake. The rebound pattern has been used to infer the lithospheric thickness and upper mantle viscosity structure of the area (e.g. Bill et al., 1994). In agreement with the tectonic history of the Basin and Range area, the deformed shorelines point to a thin lithosphere (< 30km) and low upper mantle viscosity (˜ 1019 Pa s). This differs from the upper mantle viscosity inferred from post-glacial data in cratonic regions (e.g., Hudson Bay, Fennoscandia), which is one to two orders of magnitude larger (˜ 5 × 1020 Pa s). Direct constraints on the lateral variability of mantle viscosity are invaluable but in order to utilize such constraints it is important to consider the sensitivity range of different observations before comparing the inferred viscosities. In this study we revisit the earlier inversions of shoreline elevations for mantle and lithospheric structure with an updated dataset of paleoshoreline elevations by Chen and Maloof (2017). We construct depth-dependent sensitivity kernels for the lake rebound and compare them to kernels associated with the rebound from glacial ice sheets over Canada and Scandinavia. This comparison along with the inferred viscosities allows us to evaluate the degree to which lateral viscosity variations are required. We additionally compare our results to estimates of lateral viscosity variations based on perturbations in seismic shear wave speed in the respective areas in order to assess the consistency of our results with independent data. The paleoshorelines of Lake Bonneville have been deflected by not only rebound post-drainage, but also the longer-term subsidence of the Laurentide peripheral bulge. The lake was located on the distal flank of the peripheral bulge of the Laurentide Ice Sheet and after its collapse the peripheral bulge subsided leading to an additional northeast trending tilt in shoreline elevations. We show that the degree of tilt is not only sensitive to shallow mantle structure but has also sensitivity in the upper half of the lower mantle, in contrast to the lake rebound pattern. We independently invert the degree of tilt for mantle viscosity and examine its trade-off with uncertainties in the ice history.
NASA Astrophysics Data System (ADS)
Zhang, Guo-Liang; Chen, Li-Hui; Li, Shi-Zhen
2013-12-01
A large-scale mantle compositional discontinuity was identified along the East Pacific Rise (EPR) and the Pacific-Antarctic Ridge (PAR) with an inferred transition located at the EPR 23°S-32°S. Because of the EPR-Easter hotspot interactions in this area, the nature of this geochemical discontinuity remains unclear. IODP Sites U1367 and U1368 drilled into the ocean crust that was accreted at ∼33.5 Ma and ∼13.5 Ma, respectively, between 28°S and 30°S on the EPR. We use lavas from Sites U1367 and U1368 to track this mantle discontinuity away from the EPR. The mantle sources for basalts at Sites U1367 and U1368 represent, respectively, northern and southern Pacific mantle sub-domains in terms of Sr-Nd-Pb-Hf isotopes. The significant isotopic differences between the two IODP sites are consistent with addition of ancient subduction-processed ocean crust to the south Pacific mantle sub-domain. Our modeling result shows that a trace element pattern similar to that of U1368 E-MORB can be formed by melting a subduction-processed typical N-MORB. The trace element and isotope compositions for Site U1368 MORBs can be formed by mixing a HIMU mantle end-member with Site U1367 MORBs. Comparison of our data with those from the EPR-PAR shows a geochemical mantle boundary near the Easter microplate that separates the Pacific upper mantle into northern and southern sub-domains. On the basis of reconstruction of initial locations of the ocean crust at the two sites, we find that the mantle boundary has moved northward to the Easter microplate since before 33.5 Ma. A model, in which along-axis asthenospheric flow to where asthenosphere consumption is strongest, explains the movement of the apparent mantle boundary.
NASA Astrophysics Data System (ADS)
Eguchi, T.; Matsubara, K.; Ishida, M.
2001-12-01
To unveil dynamic process associated with three-dimensional unsteady mantle convection, we carried out numerical simulation on passively exerted flows by simplified local hot sources just above the CMB and large-scale cool masses beneath smoothed subduction zones. During the study, we used our individual code developed with the finite difference method. The basic three equations are for the continuity, the motion with the Boussinesq (incompressible) approximation, and the (thermal) energy conservation. The viscosity of our model is sensitive to temperature. To get time integration with high precision, we used the Newton method. In detail, the size and thermal energy of the hot or cool sources are not uniform along the latitude, because we could not select uniform local volumes assigned for the sources within the finite difference grids throughout the mantle. Our results, thus, accompany some latitude dependence. First, we treated the case of the hotspots, neglecting the contribution of the subduction zones. The local hot sources below the currently active hotspots were settled as dynamic driving forces included in the initial condition. Before starting the calculation, we assumed that the mantle was statically layered with zero velocity component. The thermal anomalies inserted instantaneously in the initial condition do excite dynamically passive flows. The type of the initial hot sources was not 'plume' but 'thermal.' The simulation results represent that local upwelling flows which were directly excited over the initial heat sources reached the upper mantle by approximately 30 My during the calculation. Each of the direct upwellings above the hotspots has its own dynamic potential to exert concentric down- and up-welling flows, alternately, at large distances. Simultaneously, the direct upwellings interact mutually within the spherical mantle. As an interesting feature, we numerically observed secondary upwellings somewhere in a wide region covering east Eurasia to the Bering Sea where no hot sources were initially input. It seems that the detailed location of the secondary upwellings depends partly on the numerical parameters such as the radial profile of mantle viscosity especially at the D" layer, etc., because the secondary flows are provoked by dynamic interaction among the distributed direct upwellings just above the CMB. Our results suggest that if we assume not only non-zero time delays during the input of the local hot sources but also parameters related with the difference of their historical surface flux rates, the pattern of the passively excited flows will be different from that obtained with the simultaneously settled hot sources stated above. Second, we simultaneously incorporated simplified thermal anomaly models associated with both the distributed local hotspots and the global subduction zones, as dynamic origins in the initial condition for the static layered mantle. In this case, the simulation result represents that the pattern of secondary radial flows, being different from those in the earlier case, is sensitive to the relative strength between the positive dynamic buoyancy integrated over all of the local hot sources below the hotspots and the total negative buoyancy beneath the subduction zones.
High seismic attenuation at a mid-ocean ridge reveals the distribution of deep melt.
Eilon, Zachary C; Abers, Geoffrey A
2017-05-01
At most mid-ocean ridges, a wide region of decompression melting must be reconciled with a narrow neovolcanic zone and the establishment of full oceanic crustal thickness close to the rift axis. Two competing paradigms have been proposed to explain melt focusing: narrow mantle upwelling due to dynamic effects related to in situ melt or wide mantle upwelling with lateral melt transport in inclined channels. Measurements of seismic attenuation provide a tool for identifying and characterizing the presence of melt and thermal heterogeneity in the upper mantle. We use a unique data set of teleseismic body waves recorded on the Cascadia Initiative's Amphibious Array to simultaneously measure seismic attenuation and velocity across an entire oceanic microplate. We observe maximal differential attenuation and the largest delays ([Formula: see text] s and δ T S ~ 2 s) in a narrow zone <50 km from the Juan de Fuca and Gorda ridge axes, with values that are not consistent with laboratory estimates of temperature or water effects. The implied seismic quality factor ( Q s ≤ 25) is among the lowest observed worldwide. Models harnessing experimentally derived anelastic scaling relationships require a 150-km-deep subridge region containing up to 2% in situ melt. The low viscosity and low density associated with this deep, narrow melt column provide the conditions for dynamic mantle upwelling, explaining a suite of geophysical observations at ridges, including electrical conductivity and shear velocity anomalies.
Complex Anisotropic Structure of the Mantle Wedge Beneath Kamchatka Volcanoes
NASA Astrophysics Data System (ADS)
Levin, V.; Park, J.; Gordeev, E.; Droznin, D.
2002-12-01
A wedge of mantle material above the subducting lithospheric plate at a convergent margin is among the most dynamic environments of the Earth's interior. Deformation and transport of solid and volatile phases within this region control the fundamental process of elemental exchange between the surficial layers and the interior of the planet. A helpful property in the study of material deformation and transport within the upper mantle is seismic anisotropy, which may reflect both microscopic effects of preferentialy aligned crystals of olivine and orthopyroxene and macroscopic effects of systematic cracks, melt lenses, layering etc. Through the mapping of anisotropic properties within the mantle wedge we can establish patterns of deformation. Volatile content affects olivine alignment, so regions of anomalous volatile content may be evident. Indicators of seismic anisotropy commonly employed in upper mantle studies include shear wave birefringence and mode-conversion between compressional and shear body waves. When combined together, these techniques offer complementary constraints on the location and intensity of anisotropic properties. The eastern coast of southern Kamchatka overlies a vigorous convergent margin where the Pacific plate descends at a rate of almost 80 mm/yr towards the northwest. We extracted seismic anisotropy indicators from two data sets sensitive to the anisotropic properties of the uppermost mantle. Firstly, we evaluated teleseismic receiver functions for a number of sites, and found ample evidence for anisotropicaly-influenced P-to-S mode conversion. Secondly, we measured splitting in S waves of earthquakes with sources within the downgoing slab. The first set of observations provides constraints on the depth ranges where strong changes in anisotropic properties take place. The local splitting data provides constraints on the cumulative strength of anisotropic properties along specific pathways through the mantle wedge and possibly parts of the slab. To explain the vertical stratification of anisotropy implied from receiver functions, and the strong lateral dependence of shear-wave splitting observations, we cannot rely on simple models of mantle wedge behaviour e.g., olivine-crystal alignment through subduction-driven corner flow. Diverse mechanisms can contribute to the observed pattern of anisotropic properties, with volatiles likely being a key influence. For instance, we find evidence in favor of a slow-symmetry-axis anisotropy within the uppermost 10-20 km of the mantle wedge, implying either excessive hydration of the mantle or else a presence of systematically aligned volatile-filled cracks or lenses. Also, shear-wave splitting is weak beneath the Avachinsky-Koryaksky volcanic center, suggesting either vertical flow or the influence of volatiles and/or thermally-enhanced diffusion creep.
Melting and Reactive Flow of Carbonated Peridotite Beneath Mid-Ocean Ridges
NASA Astrophysics Data System (ADS)
Keller, T.; Katz, R. F.
2015-12-01
The mantle carbon reservoir is four orders of magnitude more massive than that of the atmosphere and ocean combined. The behaviour of carbon in the mantle, especially its transport and extraction, is thus of crucial importance to understanding the coupling between the deep interior and the surface environment of Earth. Laboratory experiments indicate that even small concentrations of carbon dioxide (and other volatiles like H2O) in the upper mantle significantly affect silicate melting [HK96,DH06] by stabilising carbon-rich melt at high pressure. The presence of carbon in the mantle substantially extends the region where partial melt is stable and has important consequences for the dynamics of magma transport and chemical differentiation [H10,DH10]. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+carbonated MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84]. The thermo-chemical formulation of the system is represented by a novel, disequilibrium, multi-component melting model based on thermodynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. First results show that carbon and other volatiles cause a qualitative difference to the style of melt transport, potentially enhancing its extraction efficiency - measured in the carbon mass flux arriving at the mid-ocean ridge axis - by at least an order of magnitude. The process that controls magma transport in our models is a volatile flux-induced reactive infiltration instability, causing carbonated melt to rise from depth in localized channels. These results add to our understanding of melt formation and transport at mid-ocean ridges (the most important magmatic system in the mantle) and may have important implications for subduction zones. REFERENCESHK96 Hirth & Kohlstedt (1996), EPSLDH06 Dasgupta & Hirschmann (2006), NatureH10 Hirschmann (2010), PEPI DH10 Dasgupta & Hirschmann (2010), EPSLMcK84 McKenzie (1984), J PetKW12 Katz & Weatherley (2012), EPSLRBS11 Rudge, Bercovici & Spiegelman (2011), GJI
Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle
Foulger, G.R.; Pritchard, M.J.; Julian, B.R.; Evans, J.R.; Allen, R.M.; Nolet, G.; Morgan, W.J.; Bergsson, B.H.; Erlendsson, P.; Jakobsdottir, S.; Ragnarsson, S.; Stefansson, R.; Vogfjord, K.
2001-01-01
We report the results of the highest-resolution teleseismic tomography study yet performed of the upper mantle beneath Iceland. The experiment used data gathered by the Iceland Hotspot Project, which operated a 35-station network of continuously recording, digital, broad-band seismometers over all of Iceland 1996-1998. The structure of the upper mantle was determined using the ACH damped least-squares method and involved 42 stations, 3159 P-wave, and 1338 S-wave arrival times, including the phases P, pP, sP, PP, SP, PcP, PKIKP, pPKIKP, S, sS, SS, SKS and Sdiff. Artefacts, both perceptual and parametric, were minimized by well-tested smoothing techniques involving layer thinning and offset-and-averaging. Resolution is good beneath most of Iceland from ??? 60 km depth to a maximum of ??? 450 km depth and beneath the Tjornes Fracture Zone and near-shore parts of the Reykjanes ridge. The results reveal a coherent, negative wave-speed anomaly with a diameter of 200-250 km and anomalies in P-wave speed, Vp, as strong as -2.7 per cent and in S-wave speed, Vs, as strong as -4.9 per cent. The anomaly extends from the surface to the limit of good resolution at ??? 450 km depth. In the upper ??? 250 km it is centred beneath the eastern part of the Middle Volcanic Zone, coincident with the centre of the ??? 100 mGal Bouguer gravity low over Iceland, and a lower crustal low-velocity zone identified by receiver functions. This is probably the true centre of the Iceland hotspot. In the upper ??? 200 km, the low-wave-speed body extends along the Reykjanes ridge but is sharply truncated beneath the Tjornes Fracture Zone. This suggests that material may flow unimpeded along the Reykjanes ridge from beneath Iceland but is blocked beneath the Tjornes Fracture Zone. The magnitudes of the Vp, Vs and Vp/Vs anomalies cannot be explained by elevated temperature alone, but favour a model of maximum temperature anomalies <200 K, along with up to ??? 2 per cent of partial melt in the depth range ??? 100-300 km beneath east-central Iceland. The anomalous body is approximately cylindrical in the top 250 km but tabular in shape at greater depth, elongated north-south and generally underlying the spreading plate boundary. Such a morphological change and its relationship to surface rift zones are predicted to occur in convective upwellings driven by basal heating, passive upwelling in response to plate separation and lateral temperature gradients. Although we cannot resolve structure deeper than ??? 450 km, and do not detect a bottom to the anomaly, these models suggest that it extends no deeper than the mantle transition zone. Such models thus suggest a shallow origin for the Iceland hotspot rather than a deep mantle plume, and imply that the hotspot has been located on the spreading ridge in the centre of the north Atlantic for its entire history, and is not fixed relative to other Atlantic hotspots. The results are consistent with recent, regional full-thickness mantle tomography and whole-mantle tomography images that show a strong, low-wave-speed anomaly beneath the Iceland region that is confined to the upper mantle and thus do not require a plume in the lower mantle. Seismic and geochemical observations that are interpreted as indicating a lower mantle, or core-mantle boundary origin for the North Atlantic Igneous Province and the Iceland hotspot should be re-examined to consider whether they are consistent with upper mantle processes.
New Estimates of Rhenium in the Crust: Implications for Mantle Re-Os Budgets
NASA Astrophysics Data System (ADS)
Bennett, V. C.; Sun, W.
2002-12-01
The 187Re-187Os isotopic system has provided a new probe of mantle chemical structure with, for example, now numerous studies balancing estimates of the Os isotopic compositions of the upper modern mantle with sizes and ages of proposed conjugate reservoirs stored within the deep mantle. This style of modeling is dependent upon estimates of the parent Re in the various reservoirs including total crust, upper mantle, MORB and ocean island basalts. New laser ICP-MS in situ and ID whole rock results from OIB, arc and back-arc basalts suggest Re concentrations in oceanic and crustal domains may have been greatly underestimated. For example Hawaiian OIBs show a clear distinction between subaerial and submarine erupted samples with the latter having Re much closer to the higher MORB estimates (1) than to previous OIB estimates. This difference has been attributed to Re volatility and loss during syn- and post-eruption degassing of subaerial samples. Recent work has produced similar results for submarine arc samples using both dredged glasses and melt inclusions in olivines from primitive basalts. Both have much higher average Re (ca. 1.5 and 3.4 ppb; 2,3) than literature values for arcs (ca. 0.30ppb) determined largely from sub-aerial samples, or for average crust estimated from loess (0.2 ppb; 4). If the undegassed arc samples are representative, then the total crust may have more than 5 times the Re previously estimated. Re lost during arc eruptions may ultimately be concentrated in anoxic seafloor sediments. Prior under-estimates may be linked to the extremely heterogeneous concentration (> 5 orders of magnitude) of the chalcophile, redox sensitive Re in crustal environments. If the residence time of high Re in the crust is long (>1 Ga) then, 1) much smaller reservoirs of stored Re in the deep mantle are required to balance Re depletions in the upper mantle, and 2) significant portions of the upper mantle are likely Re depleted. Alternatively Re may be rapidly recycled in oceanic sediments (short residence time) resulting in a smaller affect on Re-Os budgets, but creating areas of extreme Re heterogeneity in the upper mantle. Refs: 1. Bennett, Norman and Garcia, EPSL 2000. 2. Sun et al. (in press, Chemical Geology) 3. Sun et al. (submitted). 4. Peucker-Ehrenbrink and Jahn, G3, 2001.
NASA Technical Reports Server (NTRS)
Latourrette, T. Z.; Kennedy, A. K.; Wasserburg, G. J.
1993-01-01
Mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) are derived by partial melting of the upper mantle and are marked by systematic excesses of thorium-230 activity relative to the activity of its parent, uranium-238. Experimental measurements of the distribution of thorium and uranium between the melt and solid residue show that, of the major phases in the upper mantle, only garnet will retain uranium over thorium. This sense of fractionation, which is opposite to that caused by clinopyroxene-melt partitioning, is consistent with the thorium-230 excesses observed in young oceanic basalts. Thus, both MORBs and OIBs must begin partial melting in the garnet stability field or below about 70 kilometers. A calculation shows that the thorium-230-uranium-238 disequilibrium in MORBs can be attributed to dynamic partial melting beginning at 80 kilometers with a melt porosity of 0.2 percent or more. This result requires that melting beneath ridges occurs in a wide region and that the magma rises to the surface at a velocity of at least 0.9 meter per year.
NASA Astrophysics Data System (ADS)
Osmaston, Miles
2010-05-01
If horizontal plate motions were driven by thermal convection of the mantle, they would display the action of slow-to-change body forces. Yet rapid changes of spreading rate and direction, and ridge jumps, are well-documented for the past 130Ma. Also convection cannot readily cause rotations of a plate (e.g. Africa) about a pole within the plate or near it. And plate motions, especially that of India, scarcely fit a convective pattern. To address these problems we look first at mantle motivation at both ends of earth history, beginning with core formation. I then introduce 3 important properties of mantle materials, whose neglect by mantle modellers has surely impaired the value of their work, but whose recognition illuminates the present plate dynamical situation and provides the Earth with a heat engine that is not thermal convection. Finally I sketch the intervening changes in behaviour over time, the sharpest of which brought about the rise of atmospheric oxygen at ~2.25Ga. Core formation. As the very high specific angular momentum of mean planetary material (>105-fold relative to solar) can only be achieved if the planets were wholly accreted in presence of the nebula [1], the iron percolation model is ruled out, because it takes too long. This validates the A.E.Ringwood model (1960-1978) involving nebular H reaction with erupting FeO. The iron then loads the downgoing limb of what is then not a truly thermal convection system. Huge volumes of reaction water were produced, giving the early Earth a wet mantle, a (diminishing) feature that we'll see has constrained mantle behaviour ever since. Plate dynamics since 150Ma. Multiple plate dynamical evidence [2], which will be rapidly re-presented here, shows that currently (a) the Earth has a 2-layer mantle system with a boundary at ~660km and (b) that most cratons have tectospheric keels that reach right to that boundary, or nearly so. The argument is the simple and persuasive one (even to seismologists) of mantle volume disposal if two such cratons approach one another (e.g. Caucasus), and of the provision of mantle volume to put under the growing ocean if they separate, e.g. S Atlantic, Arctic opening. In the latter case, W Siberia offers a major gap between the Russian and Angara keels and it is through this gap that Arctic-bound upper mantle flow is seen to have acted on India's cratonic keel and caused its powerful collision with Asia, rejuvenating many intervening ranges. This has 'put Asia in a crusher' and is contrary to the plate tectonics dictum of plate boundary interaction. Manifesting this 'suction' upon the Indian keel there is around S India by far the deepest dent in the geoid. The 3 neglected mantle properties we need for understanding this behaviour are:- (1) The garnet-to-spinel peridotite phase change, typically occurring at 70-90km depth, converts one joule into ~50 times more volume increase than simple expansion and does so with the big force of solid-state recrystallization. The density drop across the phase change can approximate that of simply heating the rock through ~1000K so it should never have been neglected by modellers. (2) Interstitial melt has much lower thermal conductivity than its parent solid, so overall thermal conductivity is reduced by >10% per 1% of non-migrating melt, i.e. by ~30% for typical oceanic LVZ conditions. (3) If the water-weakening of the mantle mineral structure (in the form of dislocations by H atoms) is not too high, that weakening will be stripped out by partitioning into any interstitial melt that is present, stiffening the rock by up to 2 orders of magnitude [3]. This contradicts the precept of seismologists and mantle modellers that lowered seismic Vs automatically signifies asthenospheric mobility. Since Vp-Vs relationships in the oceanic LVZ and at >180km under cratons are closely similar, the recognition of (3) explains both the dynamically evident strength of cratonic deep keels and offers a new basis for modelling the MOR process. Instead of convectively driven divergent mantle flow, this has a deeply extending laterally accreting narrow (20cm?) mantle crack below the axis and the gt-sp peridotite phase change (1) is present in the walls at some level. Heat from an eruption up the crack causes a lot of extra volume increase in the walls at that level, which closes the crack and wedges the plates apart with great force. This push-apart is responsible both for MOR rift valleys above and for inducing more mantle into the crack from below. It is this 'suction' which appears responsible for the above-mentioned plate dynamical behaviour and for the geoid dent around India. This MOR mechanism is a powerful heat engine but it is not convection. That cratonic keels may 'rub' on the highly viscous lower mantle at the 660 offers a means of coupling polar core-to-mantle electromagnetic coupling torque to the plate system and thereby to provide rotations. Probable examples are the clockwise rotation of Antarctica since Tierra del Fuego was extracted (150Ma?) from the Weddell Sea, the linked CCW rotation of Africa, and other geomag-related changes of plate motion [4]. From an Earth history perspective, it appears that during the Archaean the mantle was wet enough for vigorous whole-mantle convection to remove the early radiogenic heating. But, as this waned and the evolution of ocean water reduced the water-weakening, the lock-up condition prescribed in (3) was reached soon after 2.5Ga, and plate tectonics halted for ~230Ma, before restarting in the present 2-layer mode. The collapse of MORs during this hiatus correlates with major geological and atmospheric changes including the primary rise in oxygen to which we owe our existence [2]. [1] Osmaston MF (2009) A two-stage scenario for forming the Sun's planetary system, with good links to exoplanet findings, arising from new physical insight on the gravitational process. EPSC Abstracts 4, EPSC2009-264, European Planetary Science Congress, Potsdam 2009. [2] Osmaston MF (2009) Deep cratonic keels and a 2-layer mantle? Tectonic basis for some far-reaching new insights on the dynamical properties of the Earth's mantle: example motions from Mediterranean, Atlantic-Arctic and India. Geophys.Res.Abstr. 11, EGU2009-6359-6, EGU Gen. Assy 2009. [3] Hirth, G & Kohlstedt, DL (1996) Water in the oceanic upper mantle: implication for rheology, melt extraction, and the evolution of the lithosphere, EPSL 144, 93-108. [4] Osmaston, M. F. (2003) What drives plate tectonics? Slab pull, ridge push or geomagnetic torque from the CMB? A new look at the old players vis-a-vis an exciting new one. XXIII IUGG 2003, Sapporo, Japan. Abstracts CD, p. B129, Abstr #016795-2.
NASA Astrophysics Data System (ADS)
Hoke, L.; Poreda, R.; Reay, A.; Weaver, S. D.
2000-07-01
New helium isotope data measured in Cenozoic intraplate basalts and their mantle xenoliths are compared with present-day mantle helium emission on a regional scale from thermal and nonthermal gas discharges on the South Island of New Zealand and the offshore Chatham Islands. Cenozoic intraplate basaltic volcanism in southern New Zealand has ocean island basalt affinities but is restricted to continental areas and absent from adjacent Pacific oceanic crust. Its distribution is diffuse and widespread, it is of intermittent timing and characterised by low magma volumes. Most of the 3He/ 4He ratios measured in fluid inclusions in mantle xenocrysts and basalt phenocrysts such as olivine, garnet, and amphibole fall within the narrow range of 8.5 ± 1.5 Ra (Ra is the atmospheric 3He/ 4He ratio) with a maximum value of 11.5 Ra. This range is characteristic of the relatively homogeneous and degassed upper MORB-mantle helium reservoir. No helium isotope ratios typical of the lower less degassed mantle (>12 Ra), such as exemplified by the modern hot-spot region of Hawaii (with up to 32 Ra) were measured. Helium isotope ratios of less than 8 Ra are interpreted in terms of dilution of upper mantle helium with a radiogenic component, due to either age of crystallisation or small-scale mantle heterogeneities caused by mixing of crustal material into the upper mantle. The crude correlation between age of samples and helium isotopes with generally lower R/Ra values in mantle xenoliths compared with host rock phenocrysts and the in general depleted Nd and Sr isotope ratios and the light rare earth element enrichment of the basalts supports derivation of melts as small melt fractions from a depleted upper mantle, with posteruptive ingrowth of radiogenic helium as a function of lithospheric age. In comparison, the regional helium isotope survey of thermal and nonthermal gas discharges of the South Island of New Zealand shows that mantle 3He anomalies in general do not show an obvious relationship with either age or proximity to the Cenozoic intraplate volcanic centres or with major faults. In general, areas characterised by mantle 3He emission are interpreted to define those regions beneath which mantle melting and basalt magma addition to the crust are recent. The strongest mantle 3He anomaly (equivalent to >80% mantle helium component) is centred over southern Dunedin, measured in magmatic CO 2-rich mineral water springs issuing from crystalline basement rocks which outcrop at the southern extent of Miocene intraplate basaltic volcanism which ceased 9 Ma ago. This mantle helium anomaly overlaps with an area characterised by elevated surface high heat flow, compatible with a long-lived mantle melt/heat input into the crust. In comparison Banks Peninsula, another Miocene intraplate basaltic centre, is characterised by relatively low surface heat flow and a small mantle helium contribution measured in a nitrogen-rich spring. Here the thermal transient induced by the magmatic event has either dissipated or has not reached the surface. In the former case one might be dealing with storage and mixing of magmatic and crustal gases at shallow crustal levels and in the latter with active to recent mantle-melt degassing at depth. Along the most actively deforming part of the plate boundary zone, the transpressional Alpine Fault and Marlborough fault systems, mantle helium is present in gas-rich springs in all those areas underlain by actively subducting oceanic crust (the Australian plate in the south and Pacific plate in the north), whereas the central part of the Alpine transpressional fault is characterised by pure crustal radiogenic helium. Areas where the mantle helium component is negligible are restricted to the centre part of the South Island, extending along its length from Southland to northern Canterbury and Murchison. These areas are interpreted to delineate the extent of thicker and colder lithosphere compared to all other areas where mantle helium release from partial mantle melts at depth is recent to active being added to the lower lithosphere and/or lower crust. Areas characterised by mantle helium anomalies are equated with areas of thermal mantle anomalies, i.e., localised mantle heterogeneities such as upwelling less dense silicate melts in the upper asthenospheric mantle.
NASA Astrophysics Data System (ADS)
Matsuno, T.; Seama, N.; Shindo, H.; Nogi, Y.; Okino, K.
2017-12-01
Back-arc spreading ridges in the southern Mariana Trough are slow-spreading ridges but have features suggesting enhanced melting beneath the ridges and influences on seafloor spreading processes by fluid derived from the subducted Pacific slab underlying the ridges. To reveal melting and dehydration processes and dynamics in the upper mantle in the southern Mariana Trough, we conducted a marine magnetotelluric (MT) experiment along a 120 km-length transect across a ridge segment at 13°N. We obtained electromagnetic field data at 9 stations along the transect, and analyzed them for estimating MT responses, striping seafloor topographic distortion from the responses, and imaging a 2-D electrical resistivity structure by 2-D inversion of TM-mode responses. A resultant 2-D inversion model showed 1) a conductive area at 10-20 km depth beneath the ridge center, the center of which slightly offsets to the trench side, 2) a moderately conductive area expanding asymmetrically around and under the conductor of 1), 3) a resistive area thickening from the ridge center up to about 40 km on the remnant arc side, and 4) a resistive area with a constant thickness of about 150 km on the trench side. These model features suggest 1) a melt body beneath the ridge center, possibly containing slab-derived water 2) water- and melt-retained mantle area produced by hydration of the back-arc mantle wedge and asymmetric passive decompression melting in the hydrous mantle wedge, 3) cooled and residual lithospheric mantle off the ridge center, and 4) mantle wedge and subducted Pacific lithospheric mantle that are both cold and depleted. The electrical resistivity structure obtained in the southern Mariana Trough, which clearly contrasts with the structure of the central Mariana Trough at 18°N in that this lacks a conductor beneath the ridge center, provides insights on the mantle dynamics and its relation to the characteristic tectonics and many kinds of observational results in the southern Mariana Trough.
From the Exoplanetary Bestiary to the Exoplanetary Zoo
NASA Astrophysics Data System (ADS)
Unterborn, C. T.; Panero, W. R.; Stixrude, L. P.; Kellogg, L. H.; Lithgow-Bertelloni, C. R.; Diamond, M. R.
2014-12-01
While much attention has been focused on the exoplanetary "bestiary" of super-Earths, lava worlds, and diamond planets, habitable planets are more likely to be found in a more similar exoplanetary "zoo." Many planet-hosting stars are similar in composition to the Sun, with moderate variations in metal abundances. Even for those stars with O and Fe abundances similar to the Sun, many have 100% variations in the refractory, rock-forming elements such as Si, Mg, Al and Ca. For an Earth sized planet, this variation creates planets with drastically different mantle mineral assemblages and variable melting, elastic, and viscous properties, leading to variable dynamical behavior. This dynamical behavior dictates the dominant mode of heat extraction, be it through a conducting rigid lid or via plate tectonics. Without tectonics, there is no mechanism known with which to create a deep water and carbon cycle, thus creating a long-lived habitable surface. We present the results of integrated modeling in which we consider the effects of variations in bulk mantle composition on Earth-mass planets. To explore the variations expected in this planetary zoo, we present condensation sequence calculations for stars of varying refractory element abundances. These calculations constrain the potential refractory mineral reservoir from which Earth-mass terrestrial planets will form. As planets of this size inevitably will convect, the thermal structure of the mantle is controlled by surface melting temperature and the first crust can be estimated from decompression melting of a convecting mantle. The thermodynamic code HeFESTo determines the mineralogy and resulting thermoelastic properties of both the mantle and potential foundering of crustal material. Finally, with parameterized convection modeling and 2- and 3-D convection modeling, we determine terrestrial mantle's convective regime as a function of bulk composition. We therefore consider a planet's potential for Earth-like plate tectonics by applying compositional perturbations from the Earth. Aspects affecting this potential include the location of the basalt-eclogite transition in the upper mantle and the density contrast, and thus negative buoyancy, between the foundering crust and mantle. Portions of this work were initiated at the CIDER 2014 program.
Osmium isotopes and mantle convection.
Hauri, Erik H
2002-11-15
The decay of (187)Re to (187)Os (with a half-life of 42 billion years) provides a unique isotopic fingerprint for tracing the evolution of crustal materials and mantle residues in the convecting mantle. Ancient subcontinental mantle lithosphere has uniquely low Re/Os and (187)Os/(188)Os ratios due to large-degree melt extraction, recording ancient melt-depletion events as old as 3.2 billion years. Partial melts have Re/Os ratios that are orders of magnitude higher than their sources, and the subduction of oceanic or continental crust introduces into the mantle materials that rapidly accumulate radiogenic (187)Os. Eclogites from the subcontinental lithosphere have extremely high (187)Os/(188)Os ratios, and record ages as old as the oldest peridotites. The data show a near-perfect partitioning of Re/Os and (187)Os/(188)Os ratios between peridotites (low) and eclogites (high). The convecting mantle retains a degree of Os-isotopic heterogeneity similar to the lithospheric mantle, although its amplitude is modulated by convective mixing. Abyssal peridotites from the ocean ridges have low Os isotope ratios, indicating that the upper mantle had undergone episodes of melt depletion prior to the most recent melting events to produce mid-ocean-ridge basalt. The amount of rhenium estimated to be depleted from the upper mantle is 10 times greater than the rhenium budget of the continental crust, requiring a separate reservoir to close the mass balance. A reservoir consisting of 5-10% of the mantle with a rhenium concentration similar to mid-ocean-ridge basalt would balance the rhenium depletion of the upper mantle. This reservoir most likely consists of mafic oceanic crust recycled into the mantle over Earth's history and provides the material that melts at oceanic hotspots to produce ocean-island basalts (OIBs). The ubiquity of high Os isotope ratios in OIB, coupled with other geochemical tracers, indicates that the mantle sources of hotspots contain significant quantities (greater than 10%) of lithologically distinct mafic material which represents ancient oceanic lithosphere cycled through the convecting mantle on a time-scale of 800 million years or more.
Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M
2017-05-12
The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.
Rheological structure of the lithosphere in plate boundary strike-slip fault zones
NASA Astrophysics Data System (ADS)
Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.
2016-04-01
How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault systems support the prediction for constant shear strength (˜10 MPa) throughout the lithosphere; the stress magnitude is controlled by the shear strength of the upper crustal faults. Fault rupture in the upper crust induces displacement rate loading of the upper mantle, which in turn, causes strain localization in the mantle shear zone beneath the strike-slip fault. Such forced localization leads to higher stresses and strain rates in the shear zone compared to the surrounding rocks. Low mantle viscosity within the shear zone is critical for facilitating mantle flow, which induces widespread crustal deformation and displacement loading. The lithospheric feedback model suggests that strike-slip fault zones are not mechanically stratified in terms of shear stress, and that it is the time-dependent interaction of the different lithospheric layers - rather than their relative strengths - that governs the rheological behavior of the plate boundary, strike-slip fault zones.
Craton destruction and related resources
NASA Astrophysics Data System (ADS)
Zhu, Rixiang; Zhang, Hongfu; Zhu, Guang; Meng, Qingren; Fan, Hongrui; Yang, Jinhui; Wu, Fuyuan; Zhang, Zhiyong; Zheng, Tianyu
2017-10-01
Craton destruction is a dynamic event that plays an important role in Earth's evolution. Based on comprehensive observations of many studies on the North China Craton (NCC) and correlations with the evolution histories of other cratons around the world, craton destruction has be defined as a geological process that results in the total loss of craton stability due to changes in the physical and chemical properties of the involved craton. The mechanisms responsible for craton destruction would be as the follows: (1) oceanic plate subduction; (2) rollback and retreat of a subducting oceanic plate; (3) stagnation and dehydration of a subducting plate in the mantle transition zone; (4) melting of the mantle above the mantle transition zone caused by dehydration of a stagnant slab; (5) non-steady flow in the upper mantle induced by melting, and/or (6) changes in the nature of the lithospheric mantle and consequent craton destruction caused by non-steady flow. Oceanic plate subduction itself does not result in craton destruction. For the NCC, it is documented that westward subduction of the paleo-Pacific plate should have initiated at the transition from the Middle-to-Late Jurassic, and resulted in the change of tectonic regime of eastern China. We propose that subduction, rollback and retreat of oceanic plates and dehydration of stagnant slabs are the main dynamic factors responsible for both craton destruction and concentration of mineral deposits, such as gold, in the overriding continental plate. Based on global distribution of gold deposits, we suggest that convergent plate margins are the most important setting for large gold concentrations. Therefore, decratonic gold deposits appear to occur preferentially in regions with oceanic subduction and overlying continental lithospheric destruction/modification/growth.
Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone
NASA Astrophysics Data System (ADS)
Pusok, A. E.; Kaus, B.; Popov, A.
2013-12-01
The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and/or indented into Asia. We investigate the way deep processes affect continental tectonics at convergent margins, addressing the role the continent subduction and indentation plays on the development of continental tectonics during convergence and we discuss the implications these offer for the Asian tectonics. Acknowledgements: Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on MOGON (ZDV Mainz computing center) and JUQUEEN (Jülich high-performance computing center).
P-wave Velocity Structure Across the Mariana Trench and Implications for Hydration
NASA Astrophysics Data System (ADS)
Eimer, M. O.; Wiens, D.; Lizarralde, D.; Cai, C.
2017-12-01
Estimates of the water flux at subduction zones remain uncertain, particularly the amount of water brought into the trench by the subducting plate. Normal faulting related to the bending of the incoming plate has been proposed to provide pathways for water to hydrate the crust and upper mantle. A passive and active source seismic experiment spanning both the incoming plate and forearc was conducted in 2012 in central Mariana to examine the role of hydration at subduction zones. The active-source component of the survey used the R/V M.G. Langsethairgun array and 68 short period sensors, including suspended hydrophones, deployed on 4 transects. This study at the Mariana trench offers a comparison to related studies of incoming plate hydration in Middle America, where differing thermal structures related to plate age predict different stability fields for hydrous minerals. The forearc structure is also of interest, since Mariana is characterized by large serpentine seamounts and may have a serpentinized mantle wedge. The velocity structure will also be important for the relocation of earthquakes in the incoming plate, since the seismicity can offer a constraint for the depth extent of these bending faults. We examine the P-wave velocity structure along a 400-km long wide-angle refraction transect perpendicular to the trench and spanning both the forearc and incoming plate. Preliminary results indicate a velocity reduction in the crust and uppermost mantle at the bending region of the incoming plate, relative to the plate's structure away from the trench. This reduction suggests that outer-rise faults extend into the upper mantle and may have promoted serpentinization of that material. Mantle Pn refraction phases are not observed in the forearc, consistent with the ambient noise tomography results that show upper-mantle velocities similar to that of the lower crust. The lack of contrast between the upper mantle and crustal velocities from the ambient noise has been interpreted to indicate extensive serpentinization of the shallow mantle wedge.
Albanian ophiolites as probes of a mantle heterogeneity study
NASA Astrophysics Data System (ADS)
Meisel, Thomas; Ginley, Stephen; Koller, Friedrich; Walker, Richard J.
2013-04-01
Most ophiolites are believed to be tectonically obducted slivers of oceanic lithosphere. As such they can provide information not only about the history of crust formation, but also about the composition of the chemical composition of the recent and ancient mantle composition. The occurrence of the well preserved Albanian Ophiolite Complex covers the length of Albania (ca. 150 km) is an ideal object not only for the study of the history of Jurassic tectonic event, but also for the study of the heterogeneity of the upper oceanic mantle from a millimeter to a 100 km scale. The occurrence of two almost parallel ophiolite chains, which have been described to be of different petrography presenting different parts of the upper mantle (MOR vs. SSZ type), allows the investigation of additional aspects of mantle heterogeneity. In this study we want to take advantage of the geochemical characteristics of platinum group elements (PGE) and of lithophile elements to estimate the extant of mantle melting, metasomatic and mixing events of a large portion of mantle obducted contemporaneously. In a first step only peridotites from the mantle sections of the ophiolite complexes are studied for the PGE content and the osmium isotopic composition. Together with major and trace element compositional data, following tasks will be addressed: development of a strategy for field and lab sampling, identification of processes that happened before and after obduction such as melt depletion, metasomatism, serpentinisation etc. and the determination of the size of modified and "pristine" domains. Samples from the western Albanian Ophiolite belt have been studied so far. Although the locations spread over the entire belt a remarkable similarity of PGE abundances is observed. In detail deviations from a correlation of Lu and TiO2 concentration data are also reflected in aberrant mantle normalized PGE patterns. Interestingly enough, this behavior is not manifested in a trend in the 187Os/188Os distribution. As a result the Os isotopic compositions of the entire belt represent the range to be expected from a post Archean upper mantle. The observed heterogeneous distribution of osmium isotopic compositions is most likely an image of the long depletion and incomplete remixing history of the upper Earth's mantle which was not significantly modified through event leading to the formation of ophiolite belts.
The melting curve of iron to 250 gigapascals - A constraint on the temperature at earth's center
NASA Technical Reports Server (NTRS)
Williams, Quentin; Jeanloz, Raymond; Bass, Jay; Svendsen, Bob; Ahrens, Thomas J.
1987-01-01
The melting curve of iron, the primary constituent of earth's core, has been measured to pressures of 250 gigapascals with a combination of static and dynamic techniques. The melting temperature of iron at the pressure of the core-mantle boundary (136 GPa) is 4800 + or - 200 K, whereas at the inner core-outer core boundary (330 GPa), it is 7600 + or - 500 K. A melting temperature for iron-rich alloy of 6600 K at the inner core-outer core boundary and a maximum temperature of 6900 K at earth's center are inferred. This latter value is the first experimental upper bound on the temperature at earth's center, and these results imply that the temperature of the lower mantle is significantly less than that of the outer core.
A Hybrid Approach to Data Assimilation for Reconstructing the Evolution of Mantle Dynamics
NASA Astrophysics Data System (ADS)
Zhou, Quan; Liu, Lijun
2017-11-01
Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation approach that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics the best.
NASA Astrophysics Data System (ADS)
Zhou, Q.; Liu, L.
2017-12-01
Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation method that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics to the best.
NASA Astrophysics Data System (ADS)
Basu Sarbadhikari, A.; Babu, E. V. S. S. K.; Vijaya Kumar, T.
2017-02-01
Melting of Martian mantle, formation, and evolution of primary magma from the depleted mantle were previously modeled from experimental petrology and geochemical studies of Martian meteorites. Based on in situ major and trace element study of a range of olivine-hosted melt inclusions in various stages of crystallization of Tissint, a depleted olivine-phyric shergottite, we further constrain different stages of depletion and enrichment in the depleted mantle source of the shergottite suite. Two types of melt inclusions were petrographically recognized. Type I melt inclusions occur in the megacrystic olivine core (Fo76-70), while type II melt inclusions are hosted by the outer mantle of the olivine (Fo66-55). REE-plot indicates type I melt inclusions, which are unique because they represent the most depleted trace element data from the parent magmas of all the depleted shergottites, are an order of magnitude depleted compared to the type II melt inclusions. The absolute REE content of type II displays parallel trend but somewhat lower value than the Tissint whole-rock. Model calculations indicate two-stage mantle melting events followed by enrichment through mixing with a hypothetical residual melt from solidifying magma ocean. This resulted in 10 times enrichment of incompatible trace elements from parent magma stage to the remaining melt after 45% crystallization, simulating the whole-rock of Tissint. We rule out any assimilation due to crustal recycling into the upper mantle, as proposed by a recent study. Rather, we propose the presence of Al, Ca, Na, P, and REE-rich layer at the shallower upper mantle above the depleted mantle source region during the geologic evolution of Mars.
Crust and Mantle Deformation Revealed from High-Resolution Radially Anisotropic Velocity Models
NASA Astrophysics Data System (ADS)
Li, A.; Dave, R.; Yao, Y.
2017-12-01
Love wave tomography, which can achieve a similar model resolution as Rayleigh wave, so far has limited applications to the USArray data. Recently, we have developed high-resolution Love wave phase velocity maps in the Wyoming craton and Texas using data at the Transportable Array stations. 3-D, radially anisotropic velocity models are obtained by jointly inverting Love and Rayleigh wave phase velocities. A high-velocity anomaly extending to about 200 km depth beneath central Wyoming correlates with negative radial anisotropy (Vsv>Vsh), suggesting that mantle downwelling develops under the cratonic lithosphere. Surprisingly, the significantly low velocity beneath the Yellowstone hotspot, which has been interpreted as partial melting and asthenospheric upwelling, is associated with the largest radial anisotropy (Vsh>Vsv) in the area. This observation does not support mantle upwelling. Instead, it indicates that the upper mantle beneath the hotspot has experienced strong shear deformation probably by the plate motion and large-scale mantle flow. In Texas, positive radial anisotropy in the lower crust extends from the coast to the Ouachita belt, which is characterized by high velocity and negative radial anisotropy. In the upper mantle, large variations of velocity and anisotropy exit under the coastal plain. A common feature in these anisotropic models is that high-velocity anomalies in the upper mantle often correlate with negative anisotropy (Vsv>Vsh) while low-velocity anomalies are associated with positive anisotropy (Vsh>Vsv). The manifestation of mantle downweling as negative radial anisotropy is largely due to the relatively high viscosity of the high-velocity mantle block, which is less affected by the surrounding large-scale horizontal flow. However, mantle upwelling, which is often associated with low-velocity anomalies, presumably low-viscosity mantle blocks, is invisible in radial anisotropy models. Such upwelling may happen too quickly to make last effects or too slow to alter the dominant shear deformation in the asthenosphere.
NASA Astrophysics Data System (ADS)
Zhang, Yanfei; Wu, Yao; Wang, Chao; Zhu, Lüyun; Jin, Zhenmin
2016-08-01
The subducted continental crust material will be gravitationally trapped in the deep mantle after having been transported to depths of greater than ∼250-300 km (the "depth of no return"). However, little is known about the status of this trapped continental material as well as its contribution to the mantle heterogeneity after achieving thermal equilibrium with the surrounding mantle. Here, we conduct an experimental study over pressure and temperature ranges of 9-16 GPa and 1300-1800 °C to constrain the fate of these trapped upper continental crust (UCC). The experimental results show that partial melting will occur in the subducted UCC along normal mantle geotherm to produce K-rich melt. The residual phases composed of coesite/stishovite + clinopyroxene + kyanite in the upper mantle, and stishovite + clinopyroxene + K-hollandite + garnet + CAS-phase in the mantle transition zone (MTZ), respectively. The residual phases achieve densities greater than the surrounding mantle, which provides a driving force for descent across the 410-km seismic discontinuity into the MTZ. However, this density relationship is reversed at the base of the MTZ, leaving the descended residues to be accumulated above the 660-km seismic discontinuity and may contribute to the "second continent". The melt is ∼0.6-0.7 g/cm3 less dense than the surrounding mantle, which provides a buoyancy force for ascent of melt to shallow depths. The ascending melt, which preserves a significant portion of the bulk-rock rare earth elements (REEs), large ion lithophile elements (LILEs), and high-filed strength elements (HFSEs), may react with the surrounding mantle. Re-melting of the metasomatized mantle may contribute to the origin of the "enriched mantle sources" (EM-sources). Therefore, the deep subducted continental crust may create geochemical/geophysical heterogeneity in Earth's interior through subduction, stagnation, partial melting and melt segregation.
Effects of grain size evolution on mantle dynamics
NASA Astrophysics Data System (ADS)
Schulz, Falko; Tosi, Nicola; Plesa, Ana-Catalina; Breuer, Doris
2016-04-01
The rheology of planetary mantle materials is strongly dependent on temperature, pressure, strain-rate, and grain size. In particular, the rheology of olivine, the most abundant mineral of the Earth's upper mantle, has been extensively studied in the laboratory (e.g., Karato and Wu, 1993; Hirth and Kohlstedt, 2003). Two main mechanisms control olivine's deformation: dislocation and diffusion creep. While the former implies a power-law dependence of the viscosity on the strain-rate that leads to a non-Newtonian behaviour, the latter is sensitively dependent on the grain size. The dynamics of planetary interiors is locally controlled by the deformation mechanism that delivers the lowest viscosity. Models of the dynamics and evolution of planetary mantles should thus be capable to self-consistently distinguish which of the two mechanisms dominates at given conditions of temperature, pressure, strain-rate and grain size. As the grain size can affect the viscosity associated with diffusion creep by several orders of magnitude, it can strongly influence the dominant deformation mechanism. The vast majority of numerical, global-scale models of mantle convection, however, are based on the use of a linear diffusion-creep rheology with constant grain-size. Nevertheless, in recent studies, a new equation has been proposed to properly model the time-dependent evolution of the grain size (Austin and Evens, 2007; Rozel et al., 2010). We implemented this equation in our mantle convection code Gaia (Hüttig et al., 2013). In the framework of simple models of stagnant lid convection, we compared simulations based on the fully time-dependent equation of grain-size evolution with simulations based on its steady-state version. In addition, we tested a number of different parameters in order to identify those that affects the grain size to the first order and, in turn, control the conditions at which mantle deformation is dominated by diffusion or dislocation creep. References Austin, N. J. and Evans, B. (2007). Geology, 35(4):343. Hirth, G. and Kohlstedt, D. (2003). Geophysical Monograph Series, page 83105. Hüttig, C., Tosi, N., and Moore, W. B. (2013). Physics of the Earth and Planetary Interiors, 220:11-18. Karato, S.-i. and Wu, P. (1993). Science, 260(5109):771778. Rozel, A., Ricard, Y., and Bercovici, D. (2010). Geophysical Journal International, 184(2):719728.
NASA Astrophysics Data System (ADS)
Osmaston, Miles
2013-04-01
Since the seismic anisotropy (SA) in the uppermost oceanic mantle was discovered [1] and attributed to the shearing of olivine by an MOR-divergent flow velocity gradient, rheological mobility interpretations of this type have dominated studies of SA there and elsewhere in the Earth. Here I describe two other SA-generating mechanisms. I will reason that one of these, the anisotropic crystallization from melt, bids fair largely to replace the shearing one and be present in even larger volumes of the Earth, both within its outer 100km and in the Inner Core. The other, the layered deposition of disparate substances, offers to explain the ULVZs and SA in D''. We start with the Upper Mantle. New constraints on its rheological properties and dynamical behaviour have come from two directions. Firstly, contrary to the seismologists' rule-book, the oceanic LVZ is no longer to be thought of as mobile because the presence of interstitial melt strips out the water-weakening of the mineral structure [2, 3]. So we require a substitute for the divergent-flow model for MORs. In fact it also has three other, apparently unrecognized, dynamical inconsistencies. One of these [4] is that there are in the record many rapid changes of spreading rate and direction, and ridge jumps. This cannot happen with a process driven by slow-to-change body forces. Secondly, during the past decade, my work on the global dynamics for the past 150Ma (I will show examples) has shown [4 - 7] that the tectospheres of cratons must extend to very close to the bottom of the upper mantle. And that East Antarctica's 'keel' must actually reach it, because its CW rotation [7] suggests it has been picking up an electromagnetic torque from the CMB via the lower mantle. Xenoliths suggest that the reason for this downwards extent of 'keels' is the same as [3]. To meet these two sets of constraints I will demonstrate my now not-so-new MOR model, which has a narrow, wall-accreting subaxial crack. Among its many features, including generating internally a very strong push-apart force, the straightness of MOR segments is the automatic result of accretion controlled by lateral cooling [8]. Olivine crystal has grossly anisotropic thermal conductivity, high on the a-axis [9] so, contrasting with the much lower conductivity of melt, suitably oriented ones on the crack walls grow the fastest and build in the seismic anisotropy from the start. For ophiolites, I will illustrate a close relative of this thick-plate model, but geared to their specific near-continent genesis and emplacement, which provides for their very real shearing and anisotropy at the crust-tectonite junction and for the 25 - 50 km metamorphic pressures in their soles [10]. A remarkably fertile model for the genesis of intraplate volcanism, without plumes, is also provided by this thick-plate perspective of plate dynamics [11]. We now move to deeper in the mantle. Attachment of the LVZ material to the ocean plate and the low conductivity of its interstial melt renders it still buoyant when the bigger ridge push makes it subduct [12]. Seismological transects of subduction zones show that this heat re-emerges at depth to partially melt the interface former oceanic crust, the result (on experimental evidence) being stishovitic residue plus (because of its compressibility) very dense ultramafic melt [12]. Both will shower into the lower mantle and eventually form layers on D'', the melt being prevented from freezing because that would need the energy to increase its volume. Hence the seismic anisotropy of D''. Moving still deeper, to the outer-core flows from which the Inner Core has grown. I attribute its cigar shape to preferential addition to its polar regions, from a downwelling flow, not to deformation of the IC, except perhaps as weak isostatic adjustment to that polar addition. I speculate that polar-aligned columnar growth of iron crystals, although themselves not strongly anisotropic, would impound 'less pure' alloy between them, with lower seismic property, thus giving the anisotropy. A.m. conservation in the poleward outer-core flow just below the CMB, needed to provide that cooler polar downwelling flow to the IC, would accelerate it clockwise. This seems likely to be the ultimate agent of Antarctica's CW rotation. Finally we come right back to the surface, to the nominally continental crust. Important thermal epeirogenic sensitivity resides in its deep constitution [13]. But much of the crust of continental shelves and beneath deep sedimentary basins appears to lack this sensitivity. So I have reasoned [13] that this 'intermediate crust' (IC) is the product, not of stretching, but of a sedimentation-dominated pre-oceanic stage of continental splitting that has modified crustal genesis by the MOR process but retained the accreting-deep-narrow-crack aspect and resulting seismic anisotropy. If, as geometrical reconstructions lead me to believe, this is the origin of the widespread block-and-basin structures in continents, then it offers also a fascinating explanation of the seismic anisotropy, and its direction, increasingly reported beneath the epeirogenically identifiable IC areas of crust. In that case, as noted at the beginning, crystallization from melt would indeed emerge as the principal agent of seismic anisotropy in the Earth. [1] Raitt RW et al. (1969) Anisotropy of the Pacific upper mantle. JGR 74, 3095-3109. [2] Karato S (1986) Does partial melting reduce the creep strength of the upper mantle? Nature 319, 309. [3] Hirth G & Kohlstedt DL (1996) Water in the oceanic upper mantle: implication for rheology, melt extraction, and the evolution of the lithosphere. EPSL 144, 93-108. [4] Osmaston MF (2010) On the actual variety of plate dynamical mechanisms and how mantle evolution affected them through time, from core formation to the Indian collision. Geophys. Res. Abstr. 12, EGU2010-6101. [5] Osmaston MF (2006) Global tectonic actions emanating from Arctic opening in the circumstances of a two-layer mantle and a thick-plate paradigm involving deep cratonic tectospheres: the Eurekan (Eocene) compressive motion of Greenland and other examples. In Proc. ICAM IV 2003 (ed. R Scott & D Thurston). OCS Study MMS 2006-003, p.105-124: Also published on: http://www.mms.gov/alaska/icam. [6] Osmaston MF (2009) Deep cratonic keels and a 2-layer mantle? Tectonic basis for some far-reaching new insights on the dynamical properties of the Earth's mantle: example motions from Mediterranean, Atlantic-Arctic and India. Geophys. Res. Abstr. 11, EGU2009-6359. Session SM 6.2 (Solicited). [7] Osmaston MF (2012) Did clockwise rotation of Antarctica cause the break-up of Gondwanaland? An investigation in the 'deep-keeled cratons' frame for global dynamics. Geophys. Res. Abstr. 14, EGU2012-2170. [8] Osmaston MF (1995) A straightness mechanism for MORs: a new view of ocean plate genesis and evolution. In IUGG XXI Gen. Assy. Abstr. p. A472. {N.B. Typing error as published: 'c-axes' should read 'a-axes'} [9] Chai M, Brown JM & Slutsky LJ (1996) Thermal diffusivity of mantle minerals. Phys. and Chem. of Minerals 23, 470-475. [10] Osmaston MF (2001) Two breeds of ophiolite; their different origins and contrasting plate tectonic significance, Archaean to Cenozoic. Gondwana Res. 4(2), 184-186. Osmaston MF (2001) Two breeds of ophiolite: their differing origins and contrasting plate tectonic significance, Archaean to Cenozoic. GSA Ann. Mtg, Boston. (Invited). GSA Abstr. With Programs 33(6), A-173. [11] Osmaston MF (2008) Extra-thick plates: basis for a single model of mantle magmagenesis, all the way from MORB to kimberlite. GCA 72(12S), A711. [12] Osmaston MF (2012) Is subduction really in the plate tectonics driving seat, or do two other global mechanisms do the driving? A review in the 'deep-keeled cratons' frame for global dynamics. Geophys. Res. Abstr. 14, EGU2012-2529, 2012. [13] Osmaston MF (2008) Basal subduction tectonic erosion (STE), butter mélanges and the construction and exhumation of HP-UHP belts: the Alps example and some comparisons. International Geology Review 50(8), 685-754 DOI: 10.2747/00206814.50.8.685.
The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)
NASA Astrophysics Data System (ADS)
Morgan, Jason P.
2016-04-01
The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for discrepancies between idealized plume/hotspot models and geochronological observations will also be briefly discussed. A further consequence of the existence of strong deep mantle plumes is that hot plume material should preferentially pond at the base of the lithosphere, draining towards and concentrating beneath the regions where the lithosphere is thinnest, and asthenosphere is being actively consumed to make new tectonic plates - mid-ocean ridges. This plume-fed asthenosphere hypothesis makes predictions for the structure of asthenosphere flow and anisotropy, patterns of continental edge-volcanism linked to lateral plume drainage at continental margins, patterns of cratonic uplift and subsidence linked to passage from hotter plume-influenced to cooler non-plume-influenced regions of the upper mantle, and variable non-volcanic versus volcanic modes of continental extension linked to rifting above '~1425K cool normal mantle' versus 'warm plume-fed asthenosphere' regions of upper mantle. These will be briefly discussed. My take-home message is that "Mantle Plumes are almost certainly real". You can safely bet they will be part of any successful paradigm for the structure of mantle convection. While more risky, I would also recommend betting on the potential reality of the paradigm of a plume-fed asthenosphere. This is still a largely unexplored subfield of mantle convection. Current observations remain very imperfect, but seem more consistent with a plume-fed asthenosphere than with alternatives, and computational and geochemical advances are making good, falsifiable tests increasingly feasible. Make one!
Tottori earthquakes and Daisen volcano: Effects of fluids, slab melting and hot mantle upwelling
NASA Astrophysics Data System (ADS)
Zhao, Dapeng; Liu, Xin; Hua, Yuanyuan
2018-03-01
We investigate the 3-D seismic structure of source areas of the 6 October 2000 Western Tottori earthquake (M 7.3) and the 21 October 2016 Central Tottori earthquake (M 6.6) which occurred near the Daisen volcano in SW Japan. The two large events took place in a high-velocity zone in the upper crust, whereas low-velocity (low-V) and high Poisson's ratio (high-σ) anomalies are revealed in the lower crust and upper mantle. Low-frequency micro-earthquakes (M 0.0-2.1) occur in or around the low-V and high-σ zones, which reflect upward migration of magmatic fluids from the upper mantle to the crust under the Daisen volcano. The nucleation of the Tottori earthquakes may be affected by the ascending fluids. The flat subducting Philippine Sea (PHS) slab has a younger lithosphere age and so a higher temperature beneath the Daisen and Tottori area, facilitating the PHS slab melting. It is also possible that a PHS slab window has formed along the extinct Shikoku Basin spreading ridge beneath SW Japan, and mantle materials below the PHS slab may ascend to the shallow area through the slab window. These results suggest that the Daisen adakite magma was affected by the PHS slab melting and upwelling flow in the upper mantle above the subducting Pacific slab.
The shear-wave splitting in the crust and the upper mantle around the Bohai Sea, North China
NASA Astrophysics Data System (ADS)
Yutao, Shi; Yuan, Gao; Lingxue, Tai; Yuanyuan, Fu
2015-11-01
In order to infer the distribution of local stress and the deep geodynamic process in North China, this study detects seismic anisotropy in the crust and upper mantle beneath the Bohai Sea area. A total of 535 local shear-wave and 721 XKS (including SKS, PKS and SKKS phases) splitting measurements were obtained from stations in permanent regional seismograph networks and a temporary seismic network called ZBnet-E. The dominant fast polarization orientation of local shear-waves in the crust is nearly East-West, suggesting an East-West direction of local maximum compressive stress in the area. Nearly North-South fast orientation was obtained at some stations in the Tan-Lu fault belt and the Zhang-Bo seismic belt. The average fast orientation from XKS splitting analysis is 87.4° measured clockwise from the North. The average time-delays of XKS splitting are range from 0.54 s to 1.92 s, corresponding to a 60-210 km thick layer of anisotropy. The measured results indicate that upper mantle anisotropy beneath Bohai Sea area, even the eastern part of North China, is mainly from asthenospheric mantle flow from the subduction of the Pacific plate. From the complicated anisotropic characteristics in this study, we infer that there might be multiple mechanisms in the crust and upper mantle around the Bohai Sea area that led to the observed anisotropy.
NASA Astrophysics Data System (ADS)
Hu, S.
2013-12-01
The Emeishan basalt province located in the southwest of China is widely accepted to be a result of the eruption of a mantle plume at the time of middle-late Permian. If it was a mantle plume, the ambient sedimentary rocks must be heated up during the development of the mantle plume and this thermal effect must be recorded by some geothermometers in the country rocks. The vitrinite reflectance (Ro) data as a maximum paleotemperature recorder from boreholes in Sichuan basin was employed to expose the thermal regime related to the proposed Emeishan mantle plume. The Ro profiles from boreholes which drilled close to the Emeishan basalts shows a ';dog-leg' (break) style at the unconformity between the middle and the upper Permian, and the Ro profiles in the lower subsection (pre-middle Permian) shows a significantly higher slopes (gradients) than those in the upper subsection. In contrast, those Ro profiles from boreholes far away from the center of the basalt province have no break at the uncomformity. Based on the chemical kinetic model of Ro, the paleo-temperature gradients for the upper and the lower subsections in different boreholes, as well as the erosion at the unconformity between the middle and the upper Permian, were reconstructed to reveal the variations of the temperature gradients and erosion thickness with geological time and space. Both the thermal regime and the erosion thickness together with their spatial variation (structure) provide strong geothermal evidence for the existence of the Emeishan mantle plume in the middle-late Permian.
Upper-mantle water stratification inferred from observations of the 2012 Indian Ocean earthquake.
Masuti, Sagar; Barbot, Sylvain D; Karato, Shun-Ichiro; Feng, Lujia; Banerjee, Paramesh
2016-10-20
Water, the most abundant volatile in Earth's interior, preserves the young surface of our planet by catalysing mantle convection, lubricating plate tectonics and feeding arc volcanism. Since planetary accretion, water has been exchanged between the hydrosphere and the geosphere, but its depth distribution in the mantle remains elusive. Water drastically reduces the strength of olivine and this effect can be exploited to estimate the water content of olivine from the mechanical response of the asthenosphere to stress perturbations such as the ones following large earthquakes. Here, we exploit the sensitivity to water of the strength of olivine, the weakest and most abundant mineral in the upper mantle, and observations of the exceptionally large (moment magnitude 8.6) 2012 Indian Ocean earthquake to constrain the stratification of water content in the upper mantle. Taking into account a wide range of temperature conditions and the transient creep of olivine, we explain the transient deformation in the aftermath of the earthquake that was recorded by continuous geodetic stations along Sumatra as the result of water- and stress-activated creep of olivine. This implies a minimum water content of about 0.01 per cent by weight-or 1,600 H atoms per million Si atoms-in the asthenosphere (the part of the upper mantle below the lithosphere). The earthquake ruptured conjugate faults down to great depths, compatible with dry olivine in the oceanic lithosphere. We attribute the steep rheological contrast to dehydration across the lithosphere-asthenosphere boundary, presumably by buoyant melt migration to form the oceanic crust.
NASA Astrophysics Data System (ADS)
He, L.
2016-12-01
Geophysical observations imply the intraplate volcanism in East Asia is related to dehydration of slab stagnating in the transition zone. To better understand the dynamics of such process, a thermochemical mantle convection model is constructed to simulate numerically the thermal evolution of slab and the transportation of water in the process of subduction. Equation of water transfer is explicitly included, and water effects on density and viscosity are considered. Modeling results indicate that behavior of water transport relates closely to the transient thermal state and viscosities both of the slab and the surrounding mantle. Generally, initiation of wet plume is mainly influenced by the viscosity of the wet layer in the uppermost slab, whereas the horizontal distance of water transport and its ascending rate is affected strongly by the viscosity of the big mantle wedge. Whether water can be carried successfully by slab into the mantle transition zone and trigger wet plume at the surface of flattening slab depends on the viscosity contrast between wet layer and surrounding mantle. The complex fluid flow superposed by corner flow and free thermal convection controls the water transport pattern in the upper mantle. Modeling results together with previous modeling infer three stages of water circulation in the big mantle wedge: 1) water is brought into the mantle transition zone by downward subducting slab when water layer viscosity is much higher than the wedge viscosity, otherwise water is released at shallow depth near wedge tip; 2) wet plume generates from surface of warm flattening slab if containing water, which arrives at the lithospheric base and induces melting; and 3) water spreads all over the big mantle wedge, mantle convection within the big mantle wedge becomes more active, leading to upwelling of asthenosphere and erosion of the overriding continental lithosphere. Wet plume from the flattening Pacific Plate can explain the intraplate Cenozoic volcanoes in East Asia.
NASA Technical Reports Server (NTRS)
Zhang, Shuxia; Yuen, David A.
1988-01-01
A common assumption in modeling dynamical processes in the lower mantle is that both the thermal expansivity and thermal conductivity are reasonably constant. Recent work from seismic equation of state leads to substantially higher values for the thermal conductivity and much lower thermal expansivity values in the deep mantle. The dynamical consequences of incorporating depth-dependent thermodynamic properties on the thermal-mechanical state of the lower mantle are examined with the spherical-shell mean-field equations. It is found that the thermal structure of the seismically resolved anomalous zone at the base of the mantle is strongly influenced by these variable properties and, in particular, that the convective distortion of the core-mantle boundary (CMB) is reduced with the decreasing thermal expansivity. Such a reduction of the dynamically induced topography from pure thermal convection would suggest that some other dynamical mechanism must be operating at the CMB.
Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients.
Fei, Hongzhan; Wiedenbeck, Michael; Yamazaki, Daisuke; Katsura, Tomoo
2013-06-13
Water has been thought to affect the dynamical processes in the Earth's interior to a great extent. In particular, experimental deformation results suggest that even only a few tens of parts per million of water by weight enhances the creep rates in olivine by orders of magnitude. However, those deformation studies have limitations, such as considering only a limited range of water concentrations and very high stresses, which might affect the results. Rock deformation can also be understood as an effect of silicon self-diffusion, because the creep rates of minerals at temperatures as high as those in the Earth's interior are limited by self-diffusion of the slowest species. Here we experimentally determine the silicon self-diffusion coefficient DSi in forsterite at 8 GPa and 1,600 K to 1,800 K as a function of water content CH2O from less than 1 to about 800 parts per million of water by weight, yielding the relationship, DSi ≈ (CH2O)(1/3). This exponent is strikingly lower than that obtained by deformation experiments (1.2; ref. 7). The high nominal creep rates in the deformation studies under wet conditions may be caused by excess grain boundary water. We conclude that the effect of water on upper-mantle rheology is very small. Hence, the smooth motion of the Earth's tectonic plates cannot be caused by mineral hydration in the asthenosphere. Also, water cannot cause the viscosity minimum zone in the upper mantle. And finally, the dominant mechanism responsible for hotspot immobility cannot be water content differences between their source and surrounding regions.
Mantle thermal history during supercontinent assembly and breakup
NASA Astrophysics Data System (ADS)
Rudolph, M. L.; Zhong, S.
2013-12-01
We use mantle convection simulations driven by plate motion boundary conditions to investigate changes in mantle temperature through time. It has been suggested that circum-Pangean subduction prevented convective thermal mixing between sub-continental and sub-oceanic regions. We performed thermo-chemical simulations of mantle convection with velocity boundary conditions based on plate motions for the past 450 Myr using Earth-like Rayleigh number and ~60% internal heating using three different plate motion models for the last 200 Myr [Lithgow-Bertelloni and Richards 1998; Gurnis et al. 2012; Seton et al. 2012; Zhang et al. 2010]. We quantified changes in upper-mantle temperature between 200-1000 km depth beneath continents (defined as the oldest 30% of Earth's surface) and beneath oceans. Sub-continental upper mantle temperature was relatively stable and high between 330 and 220 Ma, coincident with the existence of the supercontinent Pangea. The average sub-continental temperature during this period was, however, only ~10 K greater than during the preceding 100 Myr. In the ~200 Myr since the breakup of Pangea, sub-continental temperatures have decreased only ~15 K in excess of the 0.02 K/Myr secular cooling present in our models. Sub-oceanic upper mantle temperatures did not vary more than 5 K between 400 and 200 Ma and the cooling trend following Pangea breakup is less pronounced. Recent geochemical observations imply rapid upper mantle cooling of O(10^2) K during continental breakup; our models do not produce warming of this magnitude beneath Pangea or cooling of similar magnitude associated with the breakup of Pangea. Our models differ from those that produce strong sub-continental heating in that the circum-Pangean subduction curtain does not completely inhibit mixing between the sub-continental and sub-oceanic regions and we include significant internal heating, which limits the rate of temperature increase. Heat transport in our simulations is controlled to first order by plate motions. Most of the temporal variability in surface heat flow is driven by variations in seafloor spreading rate and the accompanying changes in slab velocities dominate variations in buoyancy flux at all mantle depths. Variations in plume buoyancy flux are small but are correlated with the slab buoyancy flux variations.
NASA Astrophysics Data System (ADS)
Saxena, A.; Choi, E.; Powell, C. A.
2017-12-01
The mechanism behind the seismicity of the New Madrid Seismic Zone (NMSZ), the major intraplate earthquake source in the Central and Eastern US (CEUS), is still debated but new insights are being provided by recent tomographic studies involving USArray. A high-resolution tomography study by Nyamwandha et al. (2016) in the NMSZ indicates the presence of low (3 % - 5 %) upper mantle Vp and Vs anomalies in the depth range 100 to 250 km. The elevated anomaly magnitudes are difficult to explain by temperature alone. As the low-velocity anomalies beneath the northeast China are attributed to fluids released from the stagnant Pacific slab, water released from the stagnant Laramide Slab, presently located at transition zone depths beneath the CEUS might be contributing to the low velocity features in this region's upper mantle. Here, we investigate the potential impact of the slab-released fluids on the stresses at seismogenic depths using numerical modeling. We convert the tomographic results into temperature field under various assumed values of spatially uniform water content. In more realistic cases, water content is added only when the converted temperature exceeds the melting temperature of olivine. Viscosities are then computed based on the temperature and water content and given to our geodynamic models created by Pylith, an open source software for crustal dynamics. The model results show that increasing water content weakens the upper mantle more than temperature alone and thus elevates the differential stress in the upper crust. These results can better explain the tomography results and seismicity without invoking melting. We also invert the tomography results for volume fraction of orthopyroxene and temperature and compare the resultant stresses with those for pure olivine. To enhance the reproducibility, selected models in this study will be made available in the form of sharable and reproducible packages enabled by EarthCube Building block project, GeoTrust.
Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle
Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua
2017-01-01
Earth’s water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg0.9Fe0.1)2SiO4 (Fo90) up to 15 gigapascals using an ultrafast optical pump−probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine−wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone. PMID:28377520
Density structure of the lithosphere in the southwestern United States and its tectonic significance
Kaban, M.K.; Mooney, W.D.
2001-01-01
We calculate a density model of the lithosphere of the southwestern United States through an integrated analysis of gravity, seismic refraction, drill hole, and geological data. Deviations from the average upper mantle density are as much as ?? 3%. A comparison with tomographic images of seismic velocities indicates that a substantial part (>50%) of these density variations is due to changes in composition rather than temperature. Pronounced mass deficits are found in the upper mantle under the Basin and Range Province and the northern part of the California Coast Ranges and adjacent ocean. The density structure of the northern and central/southern Sierra Nevada is remarkably different. The central/southern part is anomalous and is characterized by a relatively light crust underlain by a higher-density upper mantle that may be associated with a cold, stalled subducted plate. High densities are also determined within the uppermost mantle beneath the central Transverse Ranges and adjoining continental slope. The average density of the crystalline crust under the Great Valley and western Sierra Nevada is estimated to be up to 200 kg m~3 higher than the regional average, consistent with tectonic models for the obduction of oceanic crust and uppermost mantle in this region.
Bending-related faulting and mantle serpentinization at the Middle America trench.
Ranero, C R; Morgan, J Phipps; McIntosh, K; Reichert, C
2003-09-25
The dehydration of subducting oceanic crust and upper mantle has been inferred both to promote the partial melting leading to arc magmatism and to induce intraslab intermediate-depth earthquakes, at depths of 50-300 km. Yet there is still no consensus about how slab hydration occurs or where and how much chemically bound water is stored within the crust and mantle of the incoming plate. Here we document that bending-related faulting of the incoming plate at the Middle America trench creates a pervasive tectonic fabric that cuts across the crust, penetrating deep into the mantle. Faulting is active across the entire ocean trench slope, promoting hydration of the cold crust and upper mantle surrounding these deep active faults. The along-strike length and depth of penetration of these faults are also similar to the dimensions of the rupture area of intermediate-depth earthquakes.
Catchings, R.D.
1999-01-01
Models of P- and S-wave velocity, Vp/Vs ratios, Poisson's ratios, and density for the crust and upper mantle are presented along a 400-km-long profile trending from Memphis, Tennessee, to St. Louis, Missouri. The profile crosses the New Madrid seismic zone and reveals distinct regional variations in the crustal velocity structure north and south of the latitude of New Madrid. In the south near Memphis, the upper few kilometers of the crust are dominated by upper crustal sedimentary basins or graben with P-wave velocities less than 5 km/sec and S-wave velocities of about 2 km/sec. P-wave velocities of the upper and middle crust range from 6.0 to 6.5 km/sec at depths above 25 km, and corresponding S-wave velocities range from 3.5 to 3.7 km/sec. The lower crust consists of a high-velocity layer (Vp = 7.4 km/sec; Vs ~4.2 km/sec) that is up to 20-km thick at the latitude of New Madrid but thins to about 15 km near Memphis. To the north, beneath the western-most Illinois basin, low-velocity (Vp < 5 km/sec; Vs < 2.3 km/sec) sedimentary basins are less than 1-km deep. The average velocities (Vp = 6.0 km/sec; Vs = 3.5 km/sec) of the underlying, near-surface rocks argue against large thickness of unconsolidated noncarbonate sediments within 50 km of the western edge of the Illinois basin. Most of the crust beneath the Illinois basin is modeled as one layer, with velocities up to 6.8 km/sec (Vs = 3.7 km/sec) at 37-km depth. The thick, high-velocity (Vp = 7.4 km/sec; Vs ~4.2 km/sec) lower crustal layer thins from about 20 km near New Madrid to about 6 km beneath the western Illinois basin. Refractions from the Moho and upper mantle occur as first arrivals over distances as a great as 160 km and reveal upper mantle layering to 60 km depth. Upper mantle layers with P-wave velocities of 8.2 km/sec (Vs = 4.5 km/sec) and 8.4 km/sec (Vs = 4.7 km/sec) are modeled at 43 and 60 km depth, respectively. Crustal Vp/Vs ratios range between 1.74 and 1.83, and upper mantle Vp/V s ratios range from 1.78 to 1.84. Poisson's ratios range from about 0.26 to 0.33 in the crust and from about 0.27 to 0.29 in the upper mantle. Modeled average densities range from about 2.55 in the sedimentary basins to 3.43 in the upper mantle. Geophysical characteristics of the crust and upper mantle within the New Madrid seismic zone are consistent with other continental rifts, but the crustal structure of the Illinois basin is not characteristics of most continental rift settings. Seismic and gravity data suggest a buried horst near the middle of Reelfoot rift, beneath which is a vertical zone of seismicity and velocity anomalies. The relative depth of the Reelfoot rift north and south of the Reelfoot graben suggests that the rift and its bounding faults may extend eastward beneath the city of Memphis.
Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes
NASA Technical Reports Server (NTRS)
Lenardic, A.; Kaula, W. M.
1994-01-01
It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.
NASA Astrophysics Data System (ADS)
Barantseva, Olga; Artemieva, Irina; Thybo, Hans; Herceg, Matija
2015-04-01
We present the results from modelling the gravity and density structure of the upper mantle for the off-shore area of the North Atlantic region. The crust and upper mantle of the region is expected to be anomalous: Part of the region affected by the Icelandic plume has an anomalously shallow bathymetry, whereas the northern part of the region is characterized by ultraslow spreading. In order to understand the links between deep geodynamical processes that control the spreading rate, on one hand, and their manifestations such as oceanic floor bathymetry and heat flow, on the other hand, we model the gravity and density structure of the upper mantle from satellite gravity data. The calculations are based on interpretation of GOCE gravity satellite data for the North Atlantics. To separate the gravity signal responsible for density anomalies within the crust and upper mantle, we subtract the lower harmonics caused by deep density structure of the Earth (the core and the lower mantle). The gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crust for two crustal models. We use a recent regional seismic model for the crustal structure (Artemieva and Thybo, 2013) based om seismic data together with borehole data for sediments. For comparison, similar results are presented for the global CRUST 1.0 model as well (Laske, 2013). The conversion of seismic velocity data for the crustal structure to crustal density structure is crucial for the final results. We use a combination of Vp-to-density conversion based on published laboratory measurements for the crystalline basement (Ludwig, Nafe, Drake, 1970; Christensen and Mooney, 1995) and for oceanic sediments and oceanic crust based on laboratory measurements for serpentinites and gabbros from the Mid-Atlantic Ridge (Kelemen et al., 2004). Also, to overcome the high degree of uncertainty in Vp-to-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007). The results demonstrate the presence of strong gravity and density heterogeneity of the upper mantle in the North Atlantic region. In particular, there is a sharp contrast at the continent-ocean transition, which also allows for recognising mantle gravity anomalies associated with continental fragments and with anomalous oceanic lithosphere.
Numerical modeling of continental lithospheric weak zone over plume
NASA Astrophysics Data System (ADS)
Perepechko, Y. V.; Sorokin, K. E.
2011-12-01
The work is devoted to the development of magmatic systems in the continental lithosphere over diffluent mantle plumes. The areas of tension originating over them are accompanied by appearance of fault zones, and the formation of permeable channels, which are distributed magmatic melts. The numerical simulation of the dynamics of deformation fields in the lithosphere due to convection currents in the upper mantle, and the formation of weakened zones that extend up to the upper crust and create the necessary conditions for the formation of intermediate magma chambers has been carried out. Thermodynamically consistent non-isothermal model simulates the processes of heat and mass transfer of a wide class of magmatic systems, as well as the process of strain localization in the lithosphere and their influence on the formation of high permeability zones in the lower crust. The substance of the lithosphere is a rheologic heterophase medium, which is described by a two-velocity hydrodynamics. This makes it possible to take into account the process of penetration of the melt from the asthenosphere into the weakened zone. The energy dissipation occurs mainly due to interfacial friction and inelastic relaxation of shear stresses. The results of calculation reveal a nonlinear process of the formation of porous channels and demonstrate the diversity of emerging dissipative structures which are determined by properties of both heterogeneous lithosphere and overlying crust. Mutual effect of a permeable channel and the corresponding filtration process of the melt on the mantle convection and the dynamics of the asthenosphere have been studied. The formation of dissipative structures in heterogeneous lithosphere above mantle plumes occurs in accordance with the following scenario: initially, the elastic behavior of heterophase lithosphere leads to the formation of the narrow weakened zone, though sufficiently extensive, with higher porosity. Further, the increase in the width of the weakened area with a small decrease in porosity occurs due to the increase of inelastic stresses. The longitudinal scale of the structure remain unchanged. The evolution of intraplate magmatic systems associated with weakened zones is accompanied by the formation of intermediate intracrustal magma chambers. This work was financially supported by the project #24.1.2, the program of RAS #24.
NASA Astrophysics Data System (ADS)
van Driel, J.; Reiss, A. S.; Thomas, C.
2016-12-01
The topography of upper mantle seismic discontinuities can be used to constrain regional variations in composition and temperature of the Earths mantle. The 410 km discontinuity is caused by the solid-solid phase transition from olivine to wadsleyite. Due to its positive Clapeyron slope, the discontinuity is depressed in hot regimes. The phase transition from ringwoodite to bridgemanite and magnesiowüstite in contrast has a negative Clapeyron slope and therefore is elevated when hot material is present. Cold material is expected to yield an opposing topographic signature, culminating in an elevated 410 km and a depressed 660 km discontinuity. As part of the RHUM-RUM project (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) we extract relevant geophysical parameters, by investigating the properties of upper mantle seismic discontinuities beneath the Indian Ocean. The topography of the 410 and 660 km discontinuities, which define the upper and lower bounds of the mantle transition zone, have been mapped using PP and SS underside reflections. This study has utilised over 8500 events with Mw ≥ 5.8, distributed over the entire Indian Ocean. Our robust data set yields a dense coverage of points, which are defined by consistently crossing ray paths. Array seismology methods, such as vespagrams and slowness-backazimuth analysis, are used to enhance the signal-to-noise-ratio and detect and identify weak precursor signals. The differential travel times are corrected for crustal features and converted into depth values of the discontinuities by comparing the measured travel times with theoretical ones derived from ray tracing through the 1D reference Earth model ak135. A `travel-time' stacking method has also been applied for 4° radius bins around each of the bounce points. The addition of a secondary method derives greater stability of our results and allows an enhanced error analysis procedure. In order to better constrain the mineralogical processes taking place within the mantle transition zone, amplitude ratios, polarities and velocity gradients have also been investigated.
NASA Astrophysics Data System (ADS)
Tesauro, M.; Kaban, M. K.; Aitken, A.
2017-12-01
The Australian plate has a long and complex tectonic history and its crust and upper mantle have been deeply investigated in the last two decades using a variety of geophysical methods. To discern temperature and compositional variations of the Australian upper mantle, we apply an iterative technique, which jointly interprets seismic tomography and gravity data. This technique consists in removing the effect of the crust from the observed gravity field and topography. In the second step, the residual mantle gravity field and residual topography are inverted to obtain a 3-D density model of the upper mantle. The inversion technique accounts for the notion that these fields are controlled by the same factors but in a different way (e.g., depending on depth and horizontal dimension of the heterogeneity.) This enables us to locate the position of principal density anomalies in the upper mantle. Afterwards, the thermal contribution to the density structure is estimated by inverting the seismic tomography model AusREM (http://rses.anu.edu.au/seismology/AuSREM/index.php). In this way, we improve the initial thermal and compositional models iteratively. The final thermal model compared to the initial one shows temperatures higher by 100-150 °C in the Archean and Proterozoic upper mantle. Furthermore, we observe larger iron depletion in the Western Australian craton than in the Proterozoic terranes. At the depths larger than 150 km, the depletion becomes negligible beneath the Proterozoic regions, while persists in the Western Australian craton also below the depth of the lithosphere. We interpret this feature as a result of the leakage of the depleted mantle, possibly caused by the erosion of the thermal boundary layer, which was thicker before than in present-days. Using the final thermo-compositional model, we estimated the strength and effective elastic distribution within the Australian lithosphere. For this purpose, we assumed a stiff rheology, on account of the mafic composition of the Australian crust. The results show large variability of the rigidity of the plate within the cratonic areas, reflecting the long tectonic history of the Australian plate. On the other hand, the younger eastern terranes are uniformly weak, due to the higher temperatures.
Sensitivity analysis of seismic waveforms to upper-mantle discontinuities using the adjoint method
NASA Astrophysics Data System (ADS)
Koroni, Maria; Bozdağ, Ebru; Paulssen, Hanneke; Trampert, Jeannot
2017-09-01
Using spectral-element simulations of wave propagation, we investigated the sensitivity of seismic waveforms, recorded on transverse components, to upper-mantle discontinuities in 1-D and 3-D background models. These sensitivity kernels, or Fréchet derivatives, illustrate the spatial sensitivity to model parameters, of which those for shear wave speed and the surface topography of internal boundaries are discussed in this paper. We focus on the boundaries at 400 and 670 km depth of the mantle transition zone. SS precursors have frequently been used to infer the topography of upper-mantle discontinuities. These seismic phases are underside reflections off these boundaries and are usually analysed in the distance range of 110°-160°. This distance range is chosen to minimize the interference from other waves. We show sensitivity kernels for consecutive time windows at three characteristic epicentral distances within the 110°-160° range. The sensitivity kernels are computed with the adjoint method using synthetic data. From our simulations we can draw three main conclusions: (i) The exact Fréchet derivatives show that in all time windows, and also in those centred on the SS precursors, there is interference from other waves. This explains the difficulty reported in the literature to correct for 3-D shear wave speed perturbations, even if the 3-D structure is perfectly known. (ii) All studies attempting to map the topography of the 400 and 670 km discontinuities to date assume that the traveltimes of SS precursors can be linearly decomposed into a 3-D elastic structure and a topography part. We recently showed that such a linear decomposition is not possible for SS precursors, and the sensitivity kernels presented in this paper explain why. (iii) In agreement with previous work, we show that other parts of the seismograms have greater sensitivity to upper-mantle discontinuities than SS precursors, especially multiply bouncing S waves exploiting the S-wave triplications due to the mantle transition zone. These phases can potentially improve the inference of global topographic variations of the upper-mantle discontinuities in the context of full waveform inversion in a joint inversion for (an)elastic parameters and topography.
Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia
NASA Astrophysics Data System (ADS)
Chen, Chuanxu; Zhao, Dapeng; Tian, You; Wu, Shiguo; Hasegawa, Akira; Lei, Jianshe; Park, Jung-Ho; Kang, Ik-Bum
2017-04-01
3-D P- and S-wave velocity structures of the mantle down to a depth of 800 km beneath NE Asia are investigated using ∼981 000 high-quality arrival-time data of local earthquakes and teleseismic events recorded at 2388 stations of permanent and portable seismic networks deployed in NE China, Japan and South Korea. Our results do not support the existence of a gap (or a hole) in the stagnant slab under the Changbai volcano, which was proposed by a previous study of teleseismic tomography. In this work we conducted joint inversions of both local-earthquake arrival times and teleseismic relative traveltime residuals, leading to a robust tomography of the upper mantle and the mantle transition zone (MTZ) beneath NE Asia. Our joint inversion results reveal clearly the subducting Pacific slab beneath the Japan Islands and the Japan Sea, as well as the stagnant slab in the MTZ beneath the Korean Peninsula and NE China. A big mantle wedge (BMW) has formed in the upper mantle and the upper part of the MTZ above the stagnant slab. Localized low-velocity anomalies are revealed clearly in the crust and the BMW directly beneath the active Changbai and Ulleung volcanoes, indicating that the intraplate volcanism is caused by hot and wet upwelling in the BMW associated with corner flows in the BMW and deep slab dehydration as well.
NASA Astrophysics Data System (ADS)
Falus, György; Szabó, Csaba; Kovács, István; Zajacz, Zoltán; Halter, Werner
2007-03-01
Two spinel lherzolite xenoliths from Hungary that contain pyroxene-spinel symplectites have been studied using EPMA, Laser ablation ICP-MS and universal stage. Based on their geochemical and structural characteristics, the xenoliths represent two different domains of the shallow subcontinental lithospheric mantle beneath the Pannonian Basin. The occurrence of symplectites is attributed to the former presence and subsequent breakdown of garnets due to significant pressure decrease related to lithospheric thinning. This implies that both mantle domains were once part of the garnet lherzolitic upper mantle and had a similar history during the major extension that formed the Pannonian Basin. Garnet breakdown resulted in distinct geochemical characteristics in the adjacent clinopyroxene crystals in both xenoliths. This is manifested by enrichment in HREE, Y, Zr and Hf towards the clinopyroxene porphyroclast rims and also in the neoblasts with respect to porphyroclast core compositions. This geochemical feature, together with the development and preservation of the texturally very sensitive symplectites, enables us to determine the relative timing of mantle processes. Our results indicate that garnets had been metastable in the spinel lherzolite environment and their breakdown to pyroxene and spinel is one of the latest processes that took place within the upper mantle before the xenoliths were brought to the surface.
Xenon isotopic composition of the Mid Ocean Ridge Basalt (MORB) source
NASA Astrophysics Data System (ADS)
Peto, M. K.; Mukhopadhyay, S.
2012-12-01
Although convection models do not preclude preservation of smaller mantle regions with more pristine composition throughout Earth's history, it has been widely assumed that the moon forming giant impact likely homogenizes the whole mantle following a magma ocean that extended all the way to the bottom of the mantle. Recent findings of tungsten and xenon heterogeneities in the mantle [1,2,3,4], however, imply that i) the moon forming giant impact may not have homogenized the whole mantle and ii) plate tectonics was inefficient in erasing early formed compositional differences, particularly for the xenon isotopes. Therefore, the xenon isotope composition in the present day mantle still preserves a memory of early Earth processes. However, determination of the xenon isotopic composition of the mantle source is still scarce, since the mantle composition is overprinted by post-eruptive atmospheric contamination in basalts erupted at ocean islands and mid ocean ridges. The xenon composition of the depleted upper mantle has been defined by the gas rich sample, 2πD43 (also known as "popping rock"), from the North Atlantic (13° 469`N). However, the composition of a single sample is not likely to define the composition of the upper mantle, especially since popping rock has an "enriched" trace element composition. We will present Ne, Ar and Xe isotope data on MORB glass samples with "normal" helium isotope composition (8±1 Ra) from the Southeast Indian Ridge, the South Atlantic Ridge, the Sojourn Ridge, the Juan de Fuca, the East Pacific Rise, and the Gakkel Ridge. Following the approach of [1], we correct for syn- and post-eruptive atmosphere contamination, and determine the variation of Ar and Xe isotope composition of the "normal" MORB source. We investigate the effect of atmospheric recycling in the variation of MORB mantle 40Ar/36Ar and 129Xe/130Xe ratios, and attempt to constrain the average upper mantle argon and xenon isotopic compositions. [1] Mukhopadhyay, Nature 2012; [2] Tucker et al., EPSL (in review); [3] Moreira et al., Nature 1998 [4] Touboul et al., Science 2012.
Evolution of the Archean Mohorovičić discontinuity from a synaccretionary 4.5 Ga protocrust
NASA Astrophysics Data System (ADS)
Hamilton, Warren B.
2013-12-01
This review evaluates and rejects the currently dominant dogmas of geodynamics and geochemistry, which are based on 1950s-1970s assumptions of a slowly differentiating Earth. Evidence is presented for evolution of mantle, crust, and early Moho that began with fractionation of most crustal components, synchronously with planetary accretion, into mafic protocrust by ~ 4.5 Ga. We know little about Hadean crustal geology (> 3.9 Ga) except that felsic rocks were then forming, but analogy with Venus, and dating from the Moon, indicate great shallow disruption by large and small impact structures, including huge fractionated impact-melt constructs, throughout that era. The mantle sample and Archean (< 3.9 Ga) crustal geology integrate well. The shallow mantle was extremely depleted by early removal of thick mafic protocrust, which was the primary source of the tonalite, trondhjemite, and granodiorite (TTG) that dominate preserved Archean crust to its base, and of the thick mafic volcanic rocks erupted on that crust. Lower TTG crust, kept mobile by its high radioactivity and by insulating upper crust, rose diapirically into the upper crust as dense volcanic rocks sagged synformally. The mobile lower crust simultaneously flowed laterally to maintain subhorizontal base and surface, and dragged overlying brittler granite-and-greenstone upper crust. Petrologically required garnet-rich residual protocrust incrementally delaminated, sank through low-density high-mantle magnesian dunite, and progressively re-enriched upper mantle, mostly metasomatically. Archean and earliest Proterozoic craton stabilization and development of final Mohos followed regionally complete early delamination of residual protocrust, variously between ~ 2.9 and 2.2 Ga. Where some protocrust remained, Proterozoic basins, filled thickly by sedimentary and volcanic rocks, developed on Archean crust, beneath which delamination of later residual protocrust continued top-down enrichment of upper mantle. That reenrichment enabled modern-style plate tectonics after ~ 600 Ma, with a transition regime beginning ~ 850 Ma.
Predicting and testing continental vertical motion histories since the Paleozoic
NASA Astrophysics Data System (ADS)
Zhang, Nan; Zhong, Shijie; Flowers, Rebecca M.
2012-02-01
Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on cratonic regions. We propose that burial-unroofing histories of cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests of and constraints on our mantle dynamic models.
Predicting and testing continental vertical motion histories since the Paleozoic
NASA Astrophysics Data System (ADS)
Zhang, N.; Zhong, S.; Flowers, R. M.
2011-12-01
Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on continental cratonic regions. We propose that burial-unroofing histories of continental cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests and constraints on our mantle dynamic models.
Crustal and Upper Mantle Velocity and Q Structures of Mainland China
1979-11-01
CLASIFICATION OFTHIS PAGE(117..t- [).(t ntred) with identical source-receiver geometry. The generalized surface wave inversion technique was applied...in the recent past. A particularly unusual crustal and upper mantle structure is found underlying the Tibet Dlateau. AOceSIon For DDC TAB Ubazmnounced...the AIR FORCE OFFICE OF SCIENTIFIC RESEARCH by the GEOPHYSICAL LABORATORY UNIVERSITY OF SOUTHERN CALIFORNIA Contractor: University of Southern
NASA Astrophysics Data System (ADS)
Lloyd, A. J.; Wiens, D.; Zhu, H.; Tromp, J.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.; Dalziel, I. W. D.; Hansen, S. E.; Shore, P.
2017-12-01
The upper mantle and transition zone beneath Antarctica and the surrounding ocean are among the poorest seismically imaged regions of the Earth's interior. Over the last 1.5 decades researchers have deployed several large temporary broadband seismic arrays focusing on major tectonic features in the Antarctic. The broader international community has also facilitated further instrumentation of the continent, often operating stations in additional regions. As of 2016, waveforms are available from almost 300 unique station locations. Using these stations along with 26 southern mid-latitude seismic stations we have imaged the seismic structure of the upper mantle and transition zone using full waveform adjoint techniques. The full waveform adjoint inversion assimilates phase observations from 3-component seismograms containing P, S, Rayleigh, and Love waves, including reflections and overtones, from 270 earthquakes (5.5 ≤ Mw ≤ 7.0) that occurred between 2001-2003 and 2007-2016. We present the major results of the full waveform adjoint inversion following 20 iterations, resulting in a continental-scale seismic model (ANT_20) with regional-scale resolution. Within East Antarctica, ANT_20 reveals internal seismic heterogeneity and differences in lithospheric thickness. For example, fast seismic velocities extending to 200-300 km depth are imaged beneath both Wilkes Land and the Gamburtsev Subglacial Mountains, whereas fast velocities only extend to 100-200 km depth beneath the Lambert Graben and Enderby Land. Furthermore, fast velocities are not found beneath portions of Dronning Maud Land, suggesting old cratonic lithosphere may be absent. Beneath West Antarctica slow upper mantle seismic velocities are imaged extending from the Balleny Island southward along the Transantarctic Mountains front, and broaden beneath the southern and northern portion of the mountain range. In addition, slow upper mantle velocities are imaged beneath the West Antarctic coast extending from Marie Byrd Land to the Antarctic Peninsula. This region of slow velocity only extends to 150-200 km depth beneath the Antarctic Peninsula, while elsewhere it extends to deeper upper mantle depths and possibly into the transition zone as well as offshore, suggesting two different geodynamic processes are at play.
NASA Astrophysics Data System (ADS)
Klemperer, S. L.; Barak, S.
2016-12-01
We present a new 2D shear-wave velocity model of the crust and upper-mantle across the Salton Trough, southern California, obtained by jointly inverting our new dataset of receiver functions and our previously published Rayleigh-wave group-velocity model (Barak et al., G-cubed, 2015), obtained from ambient-noise tomography. Our results show an upper-mantle low-velocity zone (LVZ) with Vs ≤4.2 km/s extending from the Elsinore Fault to the Sand Hills Fault, that together bracket the full width of major San Andreas dextral motion since its inception 6 Ma b.p., and underlying the full width of low topography of the Imperial Valley and Salton Trough. The lateral extent of the LVZ is coincident with the lateral extent of an upper-mantle anisotropic region interpreted as a zone of SAF-parallel melt pockets (Barak & Klemperer, Geology, 2016). The shallowest part of the LVZ is 40 km depth, coincident with S-receiver function images. The western part of the LVZ, between the Elsinore and San Jacinto faults (the region of greatest modern dextral slip), appears to continue to significantly greater depth; but a puzzling feature of our preliminary models is that the eastern part of the LVZ, from the San Jacinto Fault to the Sand Hills Fault, appears to be underlain by more-normalvelocity upper mantle (Vs ≥ 4.5 km/s) below 75 km depth. We compare our model to the current SCEC community models CVM-H and CVM-S, and to P-wave velocity models obtained by the active-source Salton Sea Imaging Project (SSIP). The hypothesized lower-crustal low-velocity zone beneath the Salton Trough in our previous model (Barak et al., G-cubed, 2015), there interpreted as a region of partial melt, is not supported by our new modeling. Melt may be largely absent from the lower crust of the Salton trough; but appears required in the upper mantle at depths as shallow as 40 km.
Upper mantle Q and thermal structure beneath Tanzania, East Africa from teleseismic P wave spectra
NASA Astrophysics Data System (ADS)
Venkataraman, Anupama; Nyblade, Andrew A.; Ritsema, Jeroen
2004-08-01
We measure P wave spectral amplitude ratios from deep-focus earthquakes recorded at broadband seismic stations of the Tanzania network to estimate regional variation of sublithospheric mantle attenuation beneath the Tanzania craton and the eastern branch of the East African Rift. One-dimensional profiles of QP adequately explain the systematic variation of P wave attenuation in the sublithospheric upper mantle: QP ~ 175 beneath the cratonic lithosphere, while it is ~ 80 beneath the rifted lithosphere. By combining the QP values and a model of P wave velocity perturbations, we estimate that the temperature beneath the rifted lithosphere (100-400 km depth) is 140-280 K higher than ambient mantle temperatures, consistent with the observation that the 410 km discontinuity in this region is depressed by 30-40 km.
Shear velocity structure of central Eurasia from inversion of surface wave velocities
NASA Astrophysics Data System (ADS)
Villaseñor, A.; Ritzwoller, M. H.; Levshin, A. L.; Barmin, M. P.; Engdahl, E. R.; Spakman, W.; Trampert, J.
2001-04-01
We present a shear velocity model of the crust and upper mantle beneath central Eurasia by simultaneous inversion of broadband group and phase velocity maps of fundamental-mode Love and Rayleigh waves. The model is parameterized in terms of velocity depth profiles on a discrete 2°×2° grid. The model is isotropic for the crust and for the upper mantle below 220 km but, to fit simultaneously long period Love and Rayleigh waves, the model is transversely isotropic in the uppermost mantle, from the Moho discontinuity to 220 km depth. We have used newly available a priori models for the crust and sedimentary cover as starting models for the inversion. Therefore, the crustal part of the estimated model shows good correlation with known surface features such as sedimentary basins and mountain ranges. The velocity anomalies in the upper mantle are related to differences between tectonic and stable regions. Old, stable regions such as the East European, Siberian, and Indian cratons are characterized by high upper-mantle shear velocities. Other large high velocity anomalies occur beneath the Persian Gulf and the Tarim block. Slow shear velocity anomalies are related to regions of current extension (Red Sea and Andaman ridges) and are also found beneath the Tibetan and Turkish-Iranian Plateaus, structures originated by continent-continent collision. A large low velocity anomaly beneath western Mongolia corresponds to the location of a hypothesized mantle plume. A clear low velocity zone in vSH between Moho and 220 km exists across most of Eurasia, but is absent for vSV. The character and magnitude of anisotropy in the model is on average similar to PREM, with the most prominent anisotropic region occurring beneath the Tibetan Plateau.
The Evolution of Eastern Himalayan Syntaxis of Tibetan Plateau
NASA Astrophysics Data System (ADS)
Zhang, S.; Wu, T.; Li, M.; Zhang, Y.; Hua, Y.; Zhang, B.
2017-12-01
Indian plate has been colliding with Eurasian plate since 50Ma years ago, resulting in the Tethys extinction, crust shortening and Tibetan plateau uplift. But it is still a debate how the Tibetan Plateau material escaped. This study tries to invert the distributions of dispersion phase velocity and anisotropy in Eastern Himalayan Syntaxis (EHS) based on the seismic data. We focused on the seven sub-blocks around EHS region. Sub-block "EHS" represents EHS corner with high velocity anomalies, significantly compressed in the axle and strike directions. Sub-blocks "LSD", "QTB" and "SP-GZB" are located at its northern areas with compressions also, and connected with low-velocity anomalies in both crustal and upper mantle rocks. Sub-block "ICB" is located at its southern area with low velocity anomaly, and connected with Tengchong volcano. Sub-blocks "SYDB" and "YZB" are located at its eastern areas with high velocity anomalies in both crustal and upper mantle rocks. Our results demonstrated that significant azimuthal anisotropy of crust (t£30s) and upper mantle (30s£t£60s). Crustal anisotropy indicates the orogenic belt matched well with the direction of fast propagation, and upper mantle anisotropy represents the lattic-preferred orientation (LPO) of mantle minerals (e.g. olivine and basalt), indicating the features of subducting Indian plate. Besides, Red River fault is a dextral strike fault, controlling the crustal and mantle migration. There is a narrow zone to be the channel flow of Tibetan crustal materials escaping toward Yunnan area. The evolution of EHS seems constrained by gravity isostatic mechanism. Keywords: Tibetan Plateau; Eastern Himalayan Syntaxis; Red River fault; crustal flow; surface wave; anisotropy
NASA Astrophysics Data System (ADS)
Russell, J. B.; Gaherty, J. B.; Lin, P. P.; Lizarralde, D.; Collins, J. A.; Hirth, G.; Evans, R. L.
2017-12-01
Observations of seismic anisotropy in the ocean basins are important for constraining deformation and melting processes in the upper mantle. The NoMelt OBS array was deployed on relatively pristine, 70 Ma seafloor in the central Pacific with the aim of constraining upper mantle circulation and the evolution of the lithosphere-asthenosphere system. Surface-waves traversing the array provide a unique opportunity to estimate a comprehensive set of anisotropic parameters. Azimuthal variations in Rayleigh-wave velocity over a period band of 15-180 s suggest strong anisotropic fabric both in the lithosphere and deep in the asthenosphere. High-frequency ambient noise (4-10 s) provides constraints on average VSV and VSH as well as azimuthal variations in both VS and VP in the upper ˜10 km of the mantle. Our best fitting models require radial anisotropy in the uppermost mantle with VSH > VSV by 3 - 7% and as much as 2% radial anisotropy in the crust. Additionally, we find a strong azimuthal dependence for Rayleigh- and Love-wave velocities, with Rayleigh 2θ fast direction parallel to the fossil spreading direction (FSD) and Love 2θ and 4θ fast directions shifted 90º and 45º from the FSD, respectively. These are some of the first direct observations of the Love 2θ and 4θ azimuthal signal, which allows us to directly invert for anisotropic terms G, B, and E in the uppermost Pacific lithosphere, for the first time. Together, these observations of radial and azimuthal anisotropy provide a comprehensive picture of oceanic mantle fabric and are consistent with horizontal alignment of olivine with the a-axis parallel to fossil spreading and having an orthorhombic or hexagonal symmetry.
Forward Modelling of Long-wavelength Magnetic Anomaly Contributions from the Upper Mantle
NASA Astrophysics Data System (ADS)
Idoko, C. M.; Conder, J. A.; Ferre, E. C.; Friedman, S. A.
2016-12-01
Towards the interpretation of the upcoming results from SWARM satellite survey, we develop a MATLAB-based geophysical forward-modeling of magnetic anomalies from tectonic regions with different upper mantle geotherms including subduction zones (Kamchaka island arcs), cratons (Siberian craton), and hotspots (Hawaii hotspots and Massif-central plumes). We constrain the modeling - using magnetic data measured from xenoliths collected across these regions. Over the years, the potency of the upper mantle in contributing to long-wavelength magnetic anomalies has been a topic of debate among geoscientists. However, recent works show that some low geotherm tectonic environments such as forearcs and cratons contain mantle xenoliths which are below the Curie-Temperature of magnetite and could potentially contribute to long-wavelength magnetic anomalies. The modeling pursued here holds the prospect of better understanding the magnetism of the upper mantle, and the resolution of the mismatch between observed long-wavelength anomalies and surface field anomaly upward continued to satellite altitude. The SWARM satellite survey provides a unique opportunity due to its capacity to detect more accurately the depth of magnetic sources. A preliminary model of a hypothetical craton of size 2000km by 1000km by 500km discretized into 32 equal and uniformly distributed prism blocks, using magnetic data from Siberian craton with average natural remanent magnetization value of 0.0829 A/m (randomnly oriented) for a magnetized mantle thickness of 75km, and induced magnetization, varying according to the Curie-Weiss law from surface to 500km depth with an average magnetization of 0.02 A/m, shows that the contributions of the induced and remanent phases of magnetizations- with a total-field anomaly amplitude of 3 nT may impart a measurable signal to the observed long-wavelength magnetic anomalies in low geotherm tectonic environments.
NASA Astrophysics Data System (ADS)
Brenn, G.; Hansen, S. E.; Park, Y.
2016-12-01
Stretching 3500 km across Antarctica, the Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth. It has been suggested that the TAMs may have served as a nucleation point for the large-scale glaciation of Antarctica, and understanding their tectonic history has important implications for ice sheet modeling. However, the origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAM's subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw ≥ 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; δVP= -2.0%; δVS=-1.5% to -4.0%) and Terra Nova Bay (TNB; δVP=-1.5% to -2.0%; δVS= -1.0% to -4.0%) that extend to depths of 200 and 150 km, respectively. The RI and TNB slow anomalies also extend 50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (δVP=0.5% to 2%; δVS=1.5% to 4.0%). A low velocity region (δVP= -1.5%), centered at 150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range.
NASA Astrophysics Data System (ADS)
Aragon, J. C.; Long, M. D.; Benoit, M. H.; Servali, A.
2016-12-01
North America's eastern passive continental margin has been modified by several cycles of supercontinent assembly. Its complex surface geology and distinct topography provide evidence of these events, while also raising questions about the extent of deformation in the continental crust, lithosphere, and mantle during past episodes of rifting and mountain building. The Mid-Atlantic Geophysical Integrative Collaboration (MAGIC) is an EarthScope and GeoPRISMS-funded project that involves a collaborative effort among seismologists, geodynamicists, and geomorphologists. One component of the project is a broadband seismic array consisting of 28 instruments in a linear path from coastal Virginia to western Ohio, which operated between October 2013 and October 2016. A key science question addressed by the MAGIC project is the geometry of past lithospheric deformation and present-day mantle flow beneath the Appalachians, which can be probed using observations of seismic anisotropy Here we present observations of SKS splitting and quasi-Love wave arrivals from stations of the MAGIC array, which together constrain seismic anisotropy in the upper mantle. SKS splitting along the array reveals distinct regions of upper mantle anisotropy, with stations in and to the west of the range exhibiting fast directions parallel to the strike of the mountains. In contrast, weak splitting and null SKS arrivals dominate eastern stations in the coastal plain. Documented Love-to-Rayleigh wave scattering for surface waves originating the magnitude 8.3 Illapel, Chile earthquakes in September 2015 provides complementary constraints on anisotropy. These quasi-Love wave arrivals suggest a pronounced change in upper mantle anisotropy at the eastern edge of present-day Appalachian topography. Together, these observations increase our understanding of the extent of lithospheric deformation beneath North America associated with Appalachian orogenesis, as well as the pattern of present-day mantle flow beneath the passive margin.
NASA Astrophysics Data System (ADS)
Chaves, Carlos Alberto Moreno; Ussami, Naomi
2013-12-01
developed a three-dimensional scheme to invert geoid anomalies aiming to map density variations in the mantle. Using an ellipsoidal-Earth approximation, the model space is represented by tesseroids. To assess the quality of the density models, the resolution and covariance matrices were computed. From a synthetic geoid anomaly caused by a plume tail with Gaussian noise added, the inversion code was able to recover a plausible solution about the density contrast and geometry when it is compared to the synthetic model. To test the inversion algorithm in a natural case study, geoid anomalies from the Yellowstone Province (YP) were inverted. From the Earth Gravitational Model 2008 expanded up to degree 2160, lower crust- and mantle-related negative geoid anomalies with amplitude of approximately 70 m were obtained after removing long-wavelength components (>5400 km) and crustal effects. We estimated three density models for the YP. The first model, the EDM-1 (estimated density model), uses a starting model with density contrast equal to 0. The other two models, the EDM-2 and EDM-3, use an initial density derived from two S-velocity models for the western United States, the Dynamic North America Models of S Waves by Obrebsky et al. (2011) and the Northwestern United States Teleseismic Tomography of S Waves (NWUS11-S) by James et al. (2011). In these three models, a lower and an upper bound for the density solution was also imposed as a priori information. Regardless of the initial constraints, the inversion of the residual geoid indicates that the lower crust and the upper mantle of the YP have a predominantly negative density contrast ( -50 kg/m3) relative to the surrounding mantle. This solution reveals that the density contrast extends at least to 660 km depth. Regional correlation analysis between the EDM-1 and NWUS11-S indicates an anticorrelation (coefficient of -0.7) at 400 km depth. Our study suggests that the mantle density derived from the inversion of geoid could be integrated with seismic velocity models to image mantle anomalous features beyond the depth limit of investigation achieved combining gravity and seismic tomography. ©2013. American Geophysical Union. All Rights Reserved.
The record of mantle heterogeneity preserved in Earth's oceanic crust
NASA Astrophysics Data System (ADS)
Burton, K. W.; Parkinson, I. J.; Schiano, P.; Gannoun, A.; Laubier, M.
2017-12-01
Earth's oceanic crust is produced by melting of the upper mantle where it upwells beneath mid-ocean ridges, and provides a geographically widespread elemental and isotopic `sample' of Earth's mantle. The chemistry of mid-ocean ridge basalts (MORB), therefore, holds key information on the compositional diversity of the upper mantle, but the problem remains that mixing and reaction during melt ascent acts to homogenise the chemical variations they acquire. Nearly all isotope and elemental data obtained thus far are for measurements of MORB glass, and this represents the final melt to crystallise, evolving in an open system. However, the crystals that are present are often not in equilibrium with their glass host. Melts trapped in these minerals indicate that they crystallised from primitive magmas that possess diverse compositions compared to the glass. Therefore, these melt inclusions preserve information on the true extent of the mantle that sources MORB, but are rarely amenable to precise isotope measurement. An alternative approach is to measure the isotope composition of the primitive minerals themselves. Our new isotope data indicates that these minerals crystallised from melts with significantly different isotope compositions to their glass host, pointing to a mantle source that has experienced extreme melt depletion. These primitive minerals largely crystallised in the lower oceanic crust, and our preliminary data for lower crustal rocks and minerals shows that they preserve a remarkable range of isotope compositions. Taken together, these results indicate that the upper mantle sampled by MORB is extremely heterogeneous, reflecting depletion and enrichment over much of Earth's geological history.
Mapping the subducted Nazca plate in the lower mantle beneath South America
NASA Astrophysics Data System (ADS)
Contenti, S. M.; Gu, Y. J.; Okeler, A.
2009-12-01
Recent improvements in data coverage have enabled high-resolution imaging of the morphology of subduction zones and mantle plumes. In this study, we migrate the SS precursors from over 5000 seismograms to obtain a detailed map of mid- and upper-mantle reflectors beneath the northern portion of the South American subduction zone, where the oceanic Nazca plate is descending below the South American plate. In addition to an elevated 410 and depressed 660 (as expected for a subduction zone), strong mid-mantle reflectors at 800-1100 km depth are also apparent. The amplitudes of these steeply dipping reflectors are comparable to that of the 660-kilometer discontinuity. This anomaly outlines a high-velocity (therefore presumably cold) region present in recent finite-frequency based mantle velocity models, suggesting the extension of slab material into the lower mantle. The strength of the reflection is interpreted to be caused by a relatively sharp velocity change, likely due to a strong temperature gradient in combination with mineral phase transitions, the presence of water, or other chemical heterogeneities. Significant mass and heat exchange is therefore expected between the upper- and lower-mantle beneath the study region.
East African upper mantle shear wave velocity structure derived from Rayleigh wave tomography
NASA Astrophysics Data System (ADS)
O'Donnell, J.; Nyblade, A.; Adams, A. N.; Mulibo, G.; Tugume, F.
2011-12-01
An expanded model of the three-dimensional shear wave velocity structure of the upper mantle beneath East Africa is being developed using data from the latest phases of the AfricaArray East African Seismic Experiment in conjunction with data from preceding studies. The combined dataset encompasses seismic stations which span Tanzania, Uganda and Zambia. From the new data, fundamental mode Rayleigh wave phase velocities are being measured at periods ranging from 20 to 180 seconds using the two-plane-wave method. These measurements will be combined with similarly processed measurements from previous studies and inverted for an upper mantle three-dimensional shear wave velocity model. In particular, the model will further constrain the morphology of the low velocity anomaly which underlies the East African Plateau extending to the southwest beneath Zambia.
Orogenic, Ophiolitic, and Abyssal Peridotites
NASA Astrophysics Data System (ADS)
Bodinier, J.-L.; Godard, M.
2003-12-01
"Tectonically emplaced" mantle rocks include subcontinental, suboceanic, and subarc mantle rocks that were tectonically exhumed from the upper mantle and occur:(i) as dispersed ultramafic bodies, a few meters to kilometers in size, in suture zones and mountain belts (i.e., the "alpine," or "orogenic" peridotite massifs - De Roever (1957), Thayer (1960), Den Tex (1969));(ii) as the lower ultramafic section of large (tens of kilometers) ophiolite or island arc complexes, obducted on continental margins (e.g., the Oman Ophiolite and the Kohistan Arc Complex - Coleman (1971), Boudier and Coleman (1981), Burg et al. (1998));(iii) exhumed above the sea level in ocean basins (e.g., Zabargad Island in the Red Sea, St. Paul's islets in the Atlantic and Macquarie Island in the southwestern Pacific - Tilley (1947), Melson et al. (1967), Varne and Rubenach (1972), Bonatti et al. (1981)).The "abyssal peridotites" are samples from the oceanic mantle that were dredged on the ocean floor, or recovered from drill cores (e.g., Bonatti et al., 1974; Prinz et al., 1976; Hamlyn and Bonatti, 1980).Altogether, tectonically emplaced and abyssal mantle rocks provide insights into upper mantle compositions and processes that are complementary to the information conveyed by mantle xenoliths (See Chapter 2.05). They provide coverage to vast regions of the Earth's upper mantle that are sparsely sampled by mantle xenoliths, particularly in the ocean basins and beneath passive continental margins, back-arc basins, and oceanic island arcs.Compared with mantle xenoliths, a disadvantage of some tectonically emplaced mantle rocks for representing mantle compositions is that their original geodynamic setting is not exactly known and their significance is sometimes a subject of speculation. For instance, the provenance of orogenic lherzolite massifs (subcontinental lithosphere versus upwelling asthenosphere) is still debated (Menzies and Dupuy, 1991, and references herein), as is the original setting of ophiolites (mid-ocean ridges versus supra-subduction settings - e.g., Nicolas, 1989). In addition, the mantle structures and mineralogical compositions of tectonically emplaced mantle rocks may be obscured by deformation and metamorphic recrystallization during shallow upwelling, exhumation, and tectonic emplacement. Metamorphic processes range from high-temperature recrystallization in the stability field of plagioclase peridotites ( Rampone et al., 1993) to complete serpentinization (e.g., Burkhard and O'Neill, 1988). Some garnet peridotites record even more complex evolutions. They were first buried to, at least, the stability field of garnet peridotites, and, in some cases to greater than 150 km depths ( Dobrzhinetskaya et al., 1996; Green et al., 1997; Liou, 1999). Then, they were exhumed to the surface, dragged by buoyant crustal rocks ( Brueckner and Medaris, 2000).Alternatively, several peridotite massifs are sufficiently well preserved to allow the observation of structural relationships between mantle lithologies that are larger than the sampling scale of mantle xenoliths. It is possible in these massifs to evaluate the scale of mantle heterogeneities and the relative timing of mantle processes such as vein injection, melt-rock reaction, deformation, etc… Detailed studies of orogenic and ophiolitic peridotites on centimeter- to kilometer-scale provide invaluable insights into melt transfer mechanisms, such as melt flow in lithospheric vein conduits and wall-rock reactions (Bodinier et al., 1990), melt extraction from mantle sources via channeled porous flow ( Kelemen et al., 1995) or propagation of kilometer-scale melting fronts associated with thermalerosion of lithospheric mantle ( Lenoir et al., 2001). In contrast, mantle xenoliths may be used to infer either much smaller- or much larger-scale mantle heterogeneities, such as micro-inclusions in minerals ( Schiano and Clocchiatti, 1994) or lateral variations between lithospheric provinces ( O'Reilly et al., 2001).The abyssal peridotites are generally strongly affected by oceanic hydrothermal alteration. Most often, their whole-rock compositions are strongly modified and cannot be used straightforwardly to assess mantle compositions (e.g., Baker and Beckett, 1999). However, even in the worst cases the samples generally contain fresh, relic minerals (mainly clinopyroxene) that represent the only available direct information on the oceanic upper mantle in large ocean basins, away from hot-spot volcanic centers. In situ trace-element data on clinopyroxenes from abyssal peridotites provide constraints on melting processes at mid-ocean ridges (Johnson et al., 1990).In this chapter, we review the main inferences on upper mantle composition and heterogeneity that may be drawn from geochemical analyses of the major elements, lithophile trace elements, and Nd-Sr isotopes in tectonically emplaced and abyssal mantle rocks. In addition we emphasize important insights into the mechanisms of melt/fluid transfer that can be deduced from detailed studies of these mantle materials.
Lithospheric structure of the Rio Grande rift.
Wilson, David; Aster, Richard; West, Michael; Ni, James; Grand, Steve; Gao, Wei; Baldridge, W Scott; Semken, Steve; Patel, Paresh
2005-02-24
A high-resolution, regional passive seismic experiment in the Rio Grande rift region of the southwestern United States has produced new images of upper-mantle velocity structure and crust-mantle topography. Synthesizing these results with geochemical and other geophysical evidence reveals highly symmetric lower-crustal and upper-mantle lithosphere extensional deformation, suggesting a pure-shear rifting mechanism for the Rio Grande rift. Extension in the lower crust is distributed over a region four times the width of the rift's surface expression. Here we propose that the laterally distributed, pure shear extension is a combined effect of low strain rate and a regionally elevated geotherm, possibly abetted by pre-existing lithospheric structures, at the time of rift initiation. Distributed extension in the lower crust and mantle has induced less concentrated vertical mantle upwelling and less vigorous small-scale convection than would have arisen from more localized deformation. This lack of highly focused mantle upwelling may explain a deficit of rift-related volcanics in the Rio Grande rift compared to other major rift systems such as the Kenya rift.
NASA Astrophysics Data System (ADS)
Hofmeister, A.; Criss, R. E.
2013-12-01
Because magmatism conveys radioactive isotopes plus latent heat rapidly upwards while advecting heat, this process links and controls the thermal and chemical evolution of Earth. We present evidence that the lower mantle-upper mantle boundary is a profound chemical discontinuity, leading to observed heterogeneities in the outermost layers that can be directly sampled, and construct an alternative view of Earth's internal workings. Earth's beginning involved cooling via explosive outgassing of substantial ice (mainly CO) buried with dust during accretion. High carbon content is expected from Solar abundances and ice in comets. Reaction of CO with metal provided a carbide-rich core while converting MgSiO3 to olivine via oxidizing reactions. Because thermodynamic law (and buoyancy of hot particles) indicates that primordial heat from gravitational segregation is neither large nor carried downwards, whereas differentiation forced radioactive elements upwards, formation of the core and lower mantle greatly cooled the Earth. Reference conductive geotherms, calculated using accurate and new thermal diffusivity data, require that heat-producing elements are sequestered above 670 km which limits convection to the upper mantle. These irreversible beginnings limit secular cooling to radioactive wind-down, permiting deduction of Earth's inventory of heat-producing elements from today's heat flux. Coupling our estimate for heat producing elements with meteoritic data indicates that Earth's oxide content has been underestimated. Density sorting segregated a Si-rich, peridotitic upper mantle from a refractory, oxide lower mantle with high Ca, Al and Ti contents, consistent with diamond inclusion mineralogy. Early and rapid differentiation means that internal temperatures have long been buffered by freezing of the inner core, allowing survival of crust as old as ca.4 Ga. Magmatism remains important. Melt escaping though stress-induced fractures in the rigid lithosphere imparts a lateral component and preferred direction to upper mantle circulation. Mid-ocean magma production over ca. 4 Ga has deposited a slab volume at 670 km that is equivalent to the transition zone, thereby continuing differentiation by creating a late-stage chemical discontinuity near 400 km. This ongoing process has generated the observed lateral and vertical heterogeneity above 670 km.
Seismic evidence for water transport out of the mantle transition zone beneath the European Alps
NASA Astrophysics Data System (ADS)
Liu, Zhen; Park, Jeffrey; Karato, Shun-ichiro
2018-01-01
The mantle transition zone has been considered a major water reservoir in the deep Earth. Mass transfer across the transition-zone boundaries may transport water-rich minerals from the transition zone into the water-poor upper or lower mantle. Water release in the mantle surrounding the transition zone could cause dehydration melting and produce seismic low-velocity anomalies if some conditions are met. Therefore, seismic observations of low-velocity layers surrounding the transition zone could provide clues of water circulation at mid-mantle depths. Below the Alpine orogen, a depressed 660-km discontinuity has been imaged clearly using seismic tomography and receiver functions, suggesting downwellings of materials from the transition zone. Multitaper-correlation receiver functions show prominent ∼0.5-1.5% velocity reductions at ∼750-800-km depths, possibly caused by partial melting in the upper part of lower mantle. The gap between the depressed 660-km discontinuity and the low-velocity layers is consistent with metallic iron as a minor phase in the topmost lower mantle reported by laboratory studies. Velocity drops atop the 410-km discontinuity are observed surrounding the Alpine orogeny, suggesting upwelling of water-rich rock from the transition zone in response to the downwelled materials below the orogeny. Our results provide evidence that convective penetration of the mantle transition zone pushes hydrated minerals both upward and downward to add hydrogen to the surrounding mantle.
NASA Astrophysics Data System (ADS)
Barantsrva, O.; Artemieva, I. M.; Thybo, H.
2015-12-01
We present the results of gravity modeling for the North Atlantic region based on interpretation of GOCE gravity satellite data. First, to separate the gravity signal caused by density anomalies within the crust and the upper mantle, we subtract the lower harmonics in the gravity field, which are presumably caused by deep density structure of the Earth (the core and the lower mantle). Next, the gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crustal model. Our "basic model" is constrained by a recent regional seismic model EUNAseis for the crustal structure (Artemieva and Thybo, 2013); for bathymetry and topography we use a global ETOPO1 model by NOAA. We test sensitivity of the results to different input parameters, such as bathymetry, crustal structure, and gravity field. For bathymetry, we additionally use GEBCO data; for crustal correction - a global model CRUST 1.0 (Laske, 2013); for gravity - EGM2008 (Pavlis, 2012). Sensitivity analysis shows that uncertainty in the crustal structure produces the largest deviation from "the basic model". Use of different bathymetry data has little effect on the final results, comparable to the interpolation error. The difference in mantle residual gravity models based on GOCE and EMG2008 gravity data is 5-10 mGal. The results based on two crustal models have a similar pattern, but differ significantly in amplitude (ca. 250 mGal) for the Greenland-Faroe Ridge. The results demonstrate the presence of a strong gravity and density heterogeneity in the upper mantle in the North Atlantic region. A number of mantle residual gravity anomalies are robust features, independent of the choice of model parameters. This include (i) a sharp contrast at the continent-ocean transition, (ii) positive mantle gravity anomalies associated with continental fragments (microcontinents) in the North Atlantic ocean; (iii) negative mantle gravity anomalies which mark regions with anomalous oceanic mantle and the Mid-Atlantic Ridge. To understand better a complex geodynamics mosaic in the region, we compare our results with regional geochemical data (Korenaga and Klemen, 2000), and find that residual mantle gravity anomalies are well correlated with anomalies in epsilon-Nd and iron-depletion.
An isostatic model for the Tharsis province, Mars
NASA Technical Reports Server (NTRS)
Sleep, N. H.; Phillips, R. J.
1979-01-01
A crust-upper mantle configuration is proposed for the Tharsis province of Mars which is isostatic and satisfies the observed gravity data. The model is that of a low density upper mantle compensating loads at both the surface and crust-mantle boundary. Solutions are found for lithospheric thickness greater than about 300 km, for which the stress differences are less than 750 bars. This model for Tharsis is similar to the compensation mechanism under the Basin and Range province of the western United States. These provinces also compare favorably in the sense that they are both elevated regions of extensional tectonics and extensive volcanism.
NASA Astrophysics Data System (ADS)
Morschhauser, A.; Grayver, A.; Kuvshinov, A. V.; Samrock, F.; Matzka, J.
2017-12-01
The electric conductivity of the oceanic lithosphere and upper mantle is not well constrained, mainly due to logistical challenges in oceanic surveys. However, electric field measurements can easily be added to geomagnetic observatories on islands.Currently, such measurements are available for Tristan da Cunha in the Atlantic Ocean and Gan on the Maldives in the Indian Ocean, and we derive tippers, impedances, and phase tensors for those observatories. The main challenge is that these transfer functions are severely affected by the conductivity contrast between seawater and land, which results in a three-dimensional (3-D) behaviour of the responses. We use an adaptive finite-element MT forward solver in order to properly account for this 3-D effect by including the available bathymetry and topography data into the model. Then, different transfer functions are individually inverted for upper mantle conductivities using a stochastic approach. We observe that tippers are mostly sensitive down to depths of approx. 100 km, and that additional electric field measurements improve the resolution for 100 to 200 km depth. The obtained 1-D conductivity profiles indicate a normal oceanic mantle below GAN and an anomalously conductive mantle below TDC, which may be related to the presence of melt below the island.
Mantle Mineral/Silicate Melt Partitioning
NASA Astrophysics Data System (ADS)
McFarlane, E. A.; Drake, M. J.
1992-07-01
Introduction: The partitioning of elements among mantle phases and silicate melts is of interest in unraveling the early thermal history of the Earth. It has been proposed that the elevated Mg/Si ratio of the upper mantle of the Earth is a consequence of the flotation of olivine into the upper mantle (Agee and Walker, 1988). Agee and Walker (1988) have generated a model via mass balance by assuming average mineral compositions to generate upper mantle peridotite. This model determines that upper mantle peridotite could result from the addition of 32.7% olivine and 0.9% majorite garnet into the upper mantle, and subtraction of 27.6% perovskite from the upper mantle (Agee and Walker, 1988). The present contribution uses experimental data to examine the consequences of such multiple phase fractionations enabling an independent evaluation of the above mentioned model. Here we use Mg-perovskite/melt partition coefficients from both a synthetic and a natural system (KLB-1) obtained from this laboratory. Also used are partition coefficient values for majorite garnet/melt, beta spinel/melt and olivine/melt partitioning (McFarlane et al., 1991b; McFarlane et al., 1992). Multiple phase fractionations are examined using the equilibrium crystallization equation and partition coefficient values. The mineral proportions determined by Agee and Walker (1988) are converted into weight fractions and used to compute a bulk partition coefficient value. Discussion: There has been a significant debate concerning whether measured values of trace element partition coefficients permit large-scale fractionation of liquidus phases from an early terrestrial magma ocean (Kato et al., 1988a,b; Walker and Agee, 1989; Drake, 1989; Drake et al., 1991; McFarlane et al., 1990, 1991). It should be noted that it is unclear which, if any, numerical values of partition coefficients are appropriate for examining this question, and certainly the assumptions for the current model must be more fully examined. However, our preliminary calculations do not appear to be consistent with large scale fractionation of phases in the proportions postulated from an early ocean, because approximately chondritic ratios and abundances of refractory lithophile elements inferred for the primitive upper mantle of the Earth would not be preserved. References: Agee, C.B. and Walker, D. (1988) Earth. Planet. Sci. Lett. 90, 144-156. Drake, M.J. (1989) Z. Naturforsch., 44a, 883-890. Drake, M.J. et al. (1991) Magma Oceans Workshop. Drake, M.J. et al. (1989) Geochim. Cosmochim. Acta, 53, 2101-2111. Kato, T. et al. (1988a) Earth. Planet. Sci. Lett. 89, 123-145. Kato, T. et al. (1988b) Earth. Planet. Sci. Lett. 90, 65-68. McFarlane, E.A. et al. (1990) Lunar and Planetary Science 21, 759-760. McFarlane, E.A. et al. (199la) Magma Oceans Workshop. McFarlane, E.A. et al. (199lb) Lunar and Planetary Science 22, 875-876. McFarlane, E.A. et al. (1992) Lunar and Planetary Science 23, 883-884. Walker, D. and Agee, C.B. (1989) Earth. Planet. Sci. Lett. 96, 49-60.
NASA Astrophysics Data System (ADS)
Campbell, Ian H.
2002-05-01
The Nb/U and Th/U of the primitive mantle are 34 and 4.04 respectively, which compare with 9.7 and 3.96 for the continental crust. Extraction of continental crust from the mantle therefore has a profound influence on its Nb/U but little influence on its Th/U. Conversely, extraction of midocean ridge-type basalts lowers the Th/U of the mantle residue but has little influence on its Nb/U. As a consequence, variations in Th/U and Nb/U with Sm/Nd can be used to evaluate the relative importance of continental and basaltic crust extraction in the formation of the depleted (Sm/Nd enriched) mantle reservoir. This study evaluates Nb/U, Th/U, and Sm/Nd variations in suites of komatiites, picrites, and their associated basalts, of various ages, to determine whether basalt and/or continental crust have been extracted from their source region. Emphasis is placed on komatiites and picrites because they formed at high degrees of partial melting and are expected to have Nb/U, Th/U, and Sm/Nd that are essentially the same as the mantle that melted to produce them. The results show that all of the studied suites, with the exception of the Barberton, have had both continental crust and basaltic crust extracted from their mantle source region. The high Sm/Nd of the Gorgona and Munro komatiites require the elevated ratios seen in these suites to be due primarily to extraction of basaltic crust from their source regions, whereas basaltic and continental crust extraction are of subequal importance in the source regions of the Yilgarn and Belingwe komatiites. The Sm/Nd of modern midocean ridge basalts lies above the crustal extraction curve on a plot of Sm/Nd against Nb/U, which requires the upper mantle to have had both basaltic and continental crust extracted from it. It is suggested that the extraction of the basaltic reservoir from the mantle occurs at midocean ridges and that the basaltic crust, together with its complementary depleted mantle residue, is subducted to the core-mantle boundary. When the two components reach thermal equilibrium with their surroundings, the lighter depleted component separates from the denser basaltic component. Both are eventually returned to the upper mantle, but the lighter depleted component has a shorter residence time in the lower mantle than the denser basaltic component. If the difference in the recycling times for the basaltic and depleted components is ˜1.0 to 1.5 Ga, a basaltic reservoir is created in the lower mantle, equivalent to the amount of basalt that is subducted in 1.0 to 1.5 Ga, and that reservoir is isolated from the upper mantle. It is this reservoir that is responsible for the Sm/Nd ratio of the upper mantle lying above the trend predicted by extraction of continental crust on the plot of Sm/Nd against Nb/U.
Present-day stress field in subduction zones: Insights from 3D viscoelastic models and data
NASA Astrophysics Data System (ADS)
Petricca, Patrizio; Carminati, Eugenio
2016-01-01
3D viscoelastic FE models were performed to investigate the impact of geometry and kinematics on the lithospheric stress in convergent margins. Generic geometries were designed in order to resemble natural subduction. Our model predictions mirror the results of previous 2D models concerning the effects of lithosphere-mantle relative flow on stress regimes, and allow a better understanding of the lateral variability of the stress field. In particular, in both upper and lower plates, stress axes orientations depend on the adopted geometry and axes rotations occur following the trench shape. Generally stress axes are oriented perpendicular or parallel to the trench, with the exception of the slab lateral tips where rotations occur. Overall compression results in the upper plate when convergence rate is faster than mantle flow rate, suggesting a major role for convergence. In the slab, along-strike tension occurs at intermediate and deeper depths (> 100 km) in case of mantle flow sustaining the sinking lithosphere and slab convex geometry facing mantle flow or in case of opposing mantle flow and slab concave geometry facing mantle flow. Along-strike compression is predicted in case of sustaining mantle flow and concave slabs or in case of opposing mantle flow and convex slabs. The slab stress field is thus controlled by the direction of impact of mantle flow onto the slab and by slab longitudinal curvature. Slab pull produces not only tension in the bending region of subducted plate but also compression where upper and lower plates are coupled. A qualitative comparison between results and data in selected subductions indicates good match for South America, Mariana and Tonga-Kermadec subductions. Discrepancies, as for Sumatra-Java, emerge due to missing geometric (e.g., occurrence of fault systems and local changes in the orientation of plate boundaries) and rheological (e.g., plasticity associated with slab bending, anisotropy) complexities in the models.
NASA Astrophysics Data System (ADS)
Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.
2016-06-01
The Afar Depression and its adjacent areas are underlain by an upper mantle marked by some of the world's largest negative velocity anomalies, which are frequently attributed to the thermal influences of a lower-mantle plume. In spite of numerous studies, however, the existence of a plume beneath the area remains enigmatic, partially due to inadequate quantities of broad-band seismic data and the limited vertical resolution at the mantle transition zone (MTZ) depth of the techniques employed by previous investigations. In this study, we use an unprecedented quantity (over 14 500) of P-to-S receiver functions (RFs) recorded by 139 stations from 12 networks to image the 410 and 660 km discontinuities and map the spatial variation of the thickness of the MTZ. Non-linear stacking of the RFs under a 1-D velocity model shows robust P-to-S conversions from both discontinuities, and their apparent depths indicate the presence of an upper-mantle low-velocity zone beneath the entire study area. The Afar Depression and the northern Main Ethiopian Rift are characterized by an apparent 40-60 km depression of both MTZ discontinuities and a normal MTZ thickness. The simplest and most probable interpretation of these observations is that the apparent depressions are solely caused by velocity perturbations in the upper mantle and not by deeper processes causing temperature or hydration anomalies within the MTZ. Thickening of the MTZ on the order of 15 km beneath the southern Arabian Plate, southern Red Sea and western Gulf of Aden, which comprise the southward extension of the Afro-Arabian Dome, could reflect long-term hydration of the MTZ. A 20 km thinning of the MTZ beneath the western Ethiopian Plateau is observed and interpreted as evidence for a possible mantle plume stem originating from the lower mantle.
Upper mantle fluids evolution, diamond formation, and mantle metasomatism
NASA Astrophysics Data System (ADS)
Huang, F.; Sverjensky, D. A.
2017-12-01
During mantle metasomatism, fluid-rock interactions in the mantle modify wall-rock compositions. Previous studies usually either investigated mineral compositions in xenoliths and xenocrysts brought up by magmas, or examined fluid compositions preserved in fluid inclusions in diamonds. However, a key study of Panda diamonds analysed both mineral and fluid inclusions in the diamonds [1] which we used to develop a quantitative characterization of mantle metasomatic processes. In the present study, we used an extended Deep Earth Water model [2] to simulate fluid-rock interactions at upper mantle conditions, and examine the fluids and mineral assemblages together simultaneously. Three types of end-member fluids in the Panda diamond fluid inclusions include saline, rich in Na+K+Cl; silicic, rich in Si+Al; and carbonatitic, rich in Ca+Mg+Fe [1, 3]. We used the carbonatitic end-member to represent fluid from a subducting slab reacting with an excess of peridotite + some saline fluid in the host environment. During simultaneous fluid mixing and reaction with the host rock, the logfO2 increased by about 1.6 units, and the pH increased by 0.7 units. The final minerals were olivine, garnet and diamond. The Mg# of olivine decreased from 0.92 to 0.85. Garnet precipitated at an early stage, and its Mg# also decreased with reaction progress, in agreement with the solid inclusions in the Panda diamonds. Phlogopite precipitated as an intermediate mineral and then disappeared. The aqueous Ca, Mg, Fe, Si and Al concentrations all increased, while Na, K, and Cl concentrations decreased during the reaction, consistent with trends in the fluid inclusion compositions. Our study demonstrates that fluids coming from subducting slabs could trigger mantle metasomatism, influence the compositions of sub-lithospherc cratonic mantle, precipitate diamonds, and change the oxygen fugacity and pH of the upper mantle fluids. [1] Tomlinson et al. EPSL (2006); [2] Sverjensky, DA et al., GCA (2014), Huang, F, Ph. D. thesis, Johns Hopkins University, (2017); [3] Shirey et al., Rev. Mineral. Geochem. (2013)
NASA Astrophysics Data System (ADS)
Ward, K. M.; Zandt, G.; Beck, S. L.; Wagner, L. S.
2015-12-01
Extending over 1,800 km along the active South American Cordilleran margin, the Central Andean Plateau (CAP) as defined by the 3 km elevation contour is second only to the Tibetan Plateau in geographic extent. The uplift history of the 4 km high Plateau remains uncertain with paleoelevation studies along the CAP suggesting a complex, non-uniform uplift history. As part of the Central Andean Uplift and the Geodynamics of High Topography (CAUGHT) project, we use surface waves measured from ambient noise and two-plane wave tomography to image the S-wave velocity structure of the crust and upper mantle to investigate the upper mantle component of plateau uplift. We observe three main features in our S-wave velocity model including (1), a high velocity slab (2), a low velocity anomaly above the slab where the slab changes dip from near horizontal to a normal dip, and (3), a high-velocity feature in the mantle above the slab that extends along the length of the Altiplano from the base of the Moho to a depth of ~120 km with the highest velocities observed under Lake Titicaca. A strong spatial correlation exists between the lateral extent of this high-velocity feature beneath the Altiplano and the lower elevations of the Altiplano basin suggesting a potential relationship. Non-uniqueness in our seismic models preclude uniquely constraining this feature as an uppermost mantle feature bellow the Moho or as a connected eastward dipping feature extending up to 300 km in the mantle as seen in deeper mantle tomography studies. Determining if the high velocity feature represents a small lithospheric root or a delaminating lithospheric root extending ~300 km into the mantle requires more integration of observations, but either interpretation shows a strong geodynamic connection with the uppermost mantle and the current topography of the northern CAP.
The fate of carbon dioxide in water-rich fluids under extreme conditions
Pan, Ding; Galli, Giulia
2016-01-01
Investigating the fate of dissolved carbon dioxide under extreme conditions is critical to understanding the deep carbon cycle in Earth, a process that ultimately influences global climate change. We used first-principles molecular dynamics simulations to study carbonates and carbon dioxide dissolved in water at pressures (P) and temperatures (T) approximating the conditions of Earth’s upper mantle. Contrary to popular geochemical models assuming that molecular CO2(aq) is the major carbon species present in water under deep Earth conditions, we found that at 11 GPa and 1000 K, carbon exists almost entirely in the forms of solvated carbonate (CO32−) and bicarbonate (HCO3−) ions and that even carbonic acid [H2CO3(aq)] is more abundant than CO2(aq). Furthermore, our simulations revealed that ion pairing between Na+ and CO32−/HCO3− is greatly affected by P-T conditions, decreasing with increasing pressure at 800 to 1000 K. Our results suggest that in Earth’s upper mantle, water-rich geofluids transport a majority of carbon in the form of rapidly interconverting CO32− and HCO3− ions, not solvated CO2(aq) molecules. PMID:27757424
The fate of carbon dioxide in water-rich fluids under extreme conditions.
Pan, Ding; Galli, Giulia
2016-10-01
Investigating the fate of dissolved carbon dioxide under extreme conditions is critical to understanding the deep carbon cycle in Earth, a process that ultimately influences global climate change. We used first-principles molecular dynamics simulations to study carbonates and carbon dioxide dissolved in water at pressures ( P ) and temperatures ( T ) approximating the conditions of Earth's upper mantle. Contrary to popular geochemical models assuming that molecular CO 2 (aq) is the major carbon species present in water under deep Earth conditions, we found that at 11 GPa and 1000 K, carbon exists almost entirely in the forms of solvated carbonate ([Formula: see text]) and bicarbonate ([Formula: see text]) ions and that even carbonic acid [H 2 CO 3 (aq)] is more abundant than CO 2 (aq). Furthermore, our simulations revealed that ion pairing between Na + and [Formula: see text]/[Formula: see text] is greatly affected by P - T conditions, decreasing with increasing pressure at 800 to 1000 K. Our results suggest that in Earth's upper mantle, water-rich geofluids transport a majority of carbon in the form of rapidly interconverting [Formula: see text] and [Formula: see text] ions, not solvated CO 2 (aq) molecules.
Confirmation of a change in the global shear velocity pattern at around 1000 km depth
NASA Astrophysics Data System (ADS)
Durand, S.; Debayle, E.; Ricard, Y.; Zaroli, C.; Lambotte, S.
2017-12-01
In this study, we confirm the existence of a change in the shear velocity spectrum around 1000 km depth based on a new shear velocity tomographic model of the Earth's mantle, SEISGLOB2. This model is based on Rayleigh surface wave phase velocities, self- and cross-coupling structure coefficients of spheroidal normal modes and body wave traveltimes which are, for the first time, combined in a tomographic inversion. SEISGLOB2 is developed up to spherical harmonic degree 40 and in 21 radial spline functions. The spectrum of SEISGLOB2 is the flattest (i.e. richest in 'short' wavelengths corresponding to spherical harmonic degrees greater than 10) around 1000 km depth and this flattening occurs between 670 and 1500 km depth. We also confirm various changes in the continuity of slabs and mantle plumes all around 1000 km depth where we also observed the upper boundary of Large Low Shear Velocity Provinces. The existence of a flatter spectrum, richer in short-wavelength heterogeneities, in a region of the mid-mantle can have great impacts on our understanding of the mantle dynamics and should thus be better understood in the future. Although a viscosity increase, a phase change or a compositional change can all concur to induce this change of pattern, its precise origin is still very uncertain.
Primordial domains in the depleted upper mantle identified by noble gases in MORBs
NASA Astrophysics Data System (ADS)
Tucker, J.; Mukhopadhyay, S.; Langmuir, C. H.; Hamelin, C.; Fuentes, J.
2017-12-01
The distribution of noble gas isotopic compositions in the mantle provides important constraints on the large-scale mantle evolution, as noble gases can trace the interaction between degassed, or processed, mantle domains and undegassed, or primitive, mantle domains. Data from the radiogenic He, Ne, Ar and Xe isotopic systems have shown that plume-related lavas sample relatively undegassed mantle domains, and the recent identification of isotopic anomalies in the short-lived I-Xe and Hf-W isotopic systems in plume-related lavas further suggests that these domains may be ancient, dating back to Earth's accretion. However, little is known about the potential variability of the heavy noble gas systems and the distribution of undegassed domains in the ambient upper mantle not influenced by plumes. Here, we present new high-precision He, Ne, Ar, and Xe isotopic data for a series of MORBs from a depleted section of the subtropical north Mid-Atlantic Ridge, distant from any known plume influence. Some samples have extremely low (unradiogenic) 4He/3He, 21Ne/22Ne, 40Ar/36Ar, and 129Xe/130Xe ratios, including some of the lowest values ever determined for MORBs. Such unradiogenic compositions are reminiscent of OIBs and plume-influenced E-MORBs, suggesting the presence of a relatively undegassed or primitive reservoir in the source of these depleted MORBs. The He, Ne, and Ar isotopic systems are sensitive to the long-term degassing history, suggesting that this domain in the MORB source is ancient. The 129Xe/130Xe ratio is sensitive to degassing only during the first 100 Ma of Earth history, suggesting that some of the isotopic character of these samples has been preserved since Earth's accretion. Together, these observations suggest that primordial or undegassed material is not only sampled in plumes-related lavas, but also normal, depleted MORBs. Along with data from E-MORBs in the southern EPR (Kurz et al., 2005), southern MAR (Sarda et al., 2000), and equatorial MAR (Tucker et al., 2012), our new data suggest that primordial material may be present throughout the MORB source. Such material could either have been stored for a long term in the upper mantle, or recently mixed into the upper mantle from a deeper reservoir.
Geochemical Diversity of the Mantle: 50 Years of Acronyms
NASA Astrophysics Data System (ADS)
Hart, S. R.
2014-12-01
50 years ago, Gast, Tilton and Hedge demonstrated that the oceanic mantle is isotopically heterogeneous. 28 years ago, Zindler and Hart formalized the concept of geochemical mantle components, with an attendant, to some, odious, acronym soup. Work on a marriage of mantle geochemistry and dynamics continues unabated. We know unequivocally that the mantle is chemically heterogeneous; we do not know the scale lengths of these heterogeneities. We know unequivocally that these heterogeneities have persisted for eons (Gy); we do not know where they were formed or where they are stored. Through the kind auspices of the Plume Model, we plausibly have access to the whole mantle. The most accessible and well understood mantle reservoir is the upper depleted MORB mantle (DMM). Classically, this mantle was depleted by extraction of oceanic and continental crust from a "chondritic" bulk silicate Earth. In this post-Boyet and Carlson world, the complementary enriched reservoir may instead be hidden in the deepest mantle. In this case, DMM will become an endangered acronym. Hofmann and White (1982) argued that radiogenic Pb mantle (HIMU) is re-cycled ocean crust, and this is a comfortably viable model. It does require some ad hoc chemical manipulations during subduction. Given 2 Gy of aggregate mantle strains, the mafic component in HIMU may be of small length scale (< 50 m), possibly subsumed into the dominant peridotitic lithology. This mantle species is globally widespread. Enriched mantles (EM1 and EM2) almost certainly reflect recycling of enriched continental material. This was splendidly verified by Jackson et al (2007), with 87Sr/86Sr in Samoan EM2 lavas up to 0.721. The lithology and length scale of EM1 and EM2 is unconstrained. EM1 is globally present; EM2 is confined to the SW Pacific hotspots. FOZO is a work in progress; many would like to see it become extinct! The trace element signatures of HIMU and FOZO mantles have been constrained using melting models; in both cases the spidergrams are "enriched" with peaks at Nb-Ta of 2x and 4x bulk silicate earth, respectively, but with quite different shapes. As is typical with OIB, the derived source compositions are incompatible with the isotopic signatures, requiring a fairly recent "enrichment" event (possibly auto-metasomatism).
NASA Astrophysics Data System (ADS)
Liang, X.; Tian, X.; Wang, M.
2017-12-01
Indian plate collided with Eurasian plate at 60 Ma and there are about 3000 km crustal shortening since the continental-continental collision. At least one third of the total amount of crustal shortening between Indian and Eurasian plates could not be accounted by thickened Tibetan crust and surface erosion. It will need a combination of possible transfer of lower crust to the mantle by eclogitization and lateral extrusion. Based on the lithosphere-asthenosphere boundary images beneath the Tibetan plateau, there is also at least the same amount deficit for lithospheric mantle subducted into upper/lower mantle or lateral extrusion with the crust. We have to recover a detailed Indian continental lithosphere image beneath the plateau in order to explain this deficit of mass budget. Combining the new teleseismic body waves recorded by SANDWICH passive seismic array with waveforms from several previous temporary seismic arrays, we carried out finite-frequency tomographic inversions to image three-dimensional velocity structures beneath southern and central Tibetan plateau to examine the possible image of subducted Indian lithosphere in the Tibetan upper mantle. We have recovered a continuous high velocity body in upper mantle and piece-wised high velocity anomalies in the mantle transition zone. Based on their geometry and relative locations, we interpreted these high velocity anomalies as the subducted and detached Indian lithosphere at different episodes of the plateau evolution. Detachments of the subducted Indian lithosphere should have a crucial impact on the volcanism activities and uplift history of the plateau.
Mantle Flow and Melting Processes Beneath Back-Arc Basins
NASA Astrophysics Data System (ADS)
Hall, P. S.
2007-12-01
The chemical systematics of back-arc basin basalts suggest that multiple mechanisms of melt generation and transport operate simultaneously beneath the back-arc, resulting in a continuum of melts ranging from a relatively dry, MORB-like end-member to a wet, slab-influenced end-member [e.g., Kelley et al., 2006; Langmuir et al., 2006]. Potential melting processes at work include adiabatic decompression melting akin to that at mid-ocean ridges, diapiric upwelling of hydrous and/or partially molten mantle from above the subducting lithospheric slab [e.g., Marsh, 1979; Hall and Kincaid, 2001; Gerya and Yuen, 2003], and melting of back-arc mantle due to a continuous flux of slab-derived hydrous fluid [Kelley et al., 2006]. In this study, we examine the potential for each of these melting mechanisms to contribute to the observed distribution of melts in back-arc basins within the context of upper mantle flow (driven by plate motions) beneath back-arcs, which ultimately controls temperatures within the melting region. Mantle velocities and temperatures are derived from numerical geodynamic models of subduction with back-arc spreading that explicitly include adiabatic decompression melting through a Lagrangian particle scheme and a parameterization of hydrous melting. Dynamical feedback from the melting process occurs through latent heating and viscosity increases related to dehydration. A range of parameters, including subduction rate and trench-back-arc separation distances, is explored. The thermal evolution of individual diapirs is modeled numerically as they traverse the mantle, from nucleation above the subducting slab to melting beneath the back-arc spreading center, and a range of diapir sizes and densities and considered.
NASA Astrophysics Data System (ADS)
Liu, X.; Currie, C. A.
2017-12-01
The subducted Farallon plate is believed to have evolved to a flat geometry underneath North America plate during Late Cretaceous, triggering Laramide deformation within the continental interior. However, the mechanism that caused the oceanic slab to flatten and the factors that control the flat-slab depth remain uncertain. In this work, we use 2D thermal-mechanical models using the SOPALE code to study the subduction dynamics from 90 Ma to 50 Ma. During this period, an oceanic plateau (Shatsky Conjugate) is inferred to have subducted beneath western North America and interacted with the continental lithosphere, including areas of thicker lithosphere such as the Colorado Plateau and Wyoming Craton. Based on seismic tomography and plate reconstruction data sets, we built a set of models to examine the influence of the structure and rheology of the oceanic and continental plates on slab dynamics. Models include a 600 km wide oceanic plateau consisting of 18 km thick crust and a 36 km thick underlying harzburgite layer, and we ran a series of model experiments to test different continental thicknesses (80 km, 120 km, & 180 km) and continental mantle lithosphere strengths (approximating conditions from wet olivine to dry olivine). Consistent with earlier studies, we find that creation of a long flat slab requires a buoyant oceanic plateau (i.e., non-eclogitized crust) and trenchward motion of the continent. In addition, our models demonstrate the upper plate has an important control on slab dynamics. A flat slab requires either a thin continent or, if the continent is thick, its mantle lithosphere must be relatively weak so that it can be displaced by the flattening slab. The depth of the flat slab is mainly controlled by two factors: (1) the continental thickness and (2) the strength of the continental mantle lithosphere. For the same initial lithosphere thickness (120 km), a shallower flat slab ( 90 km depth) occurs for the weakest mantle lithosphere ( wet olivine) compared to 120 km depth for strong ( dry) mantle lithosphere because the flat slab removes the lowermost weak lithosphere. Moreover, an even deeper slab ( 130 km) can be found underneath the weakest but thicker continental lithosphere (180 km). Future models will focus on how the flat slab may induce hydration and deformation for the overriding continental plate.
Forest habitat associations of the golden-mantled ground squirrel: Implications for fuels management
Katharine R. Shick; Dean E. Pearson; Leonard F. Ruggiero
2006-01-01
Golden-mantled ground squirrels are commonly associated with high-elevation habitats near or above upper timberline. This species also occurs in fire-adapted, low-elevation forests that are targeted for forest health restoration (FHR) treatments intended to remove encroaching understory trees and thin overstory trees. Hence, the golden-mantled ground squirrel...
Seismic and GPS constraints on the dynamics and kinematics of the Yellowstone volcanic field
NASA Astrophysics Data System (ADS)
Smith, R. B.; Farrell, J.; Jordan, M.; Puskas, C.; Waite, G. P.
2007-12-01
The seismically and volcanically Yellowstone hotspot resulted from interaction of a mantle plume with the overriding North America plate. This feature and related processes have modified continental lithosphere producing the Yellowstone-Snake River Plain-Newberry silicic volcanic field (YSRPN) system, with its NE volcanically active Yellowstone volcanic field. The size and accessibility of the Yellowstone area has allowed a range of geophysical experiments including earthquake monitoring and seismic and GPS imaging of this system. Seismicity is dominated by small-magnitude normal- to oblique-slip faulting earthquake swarms with shallow focal depths, maximum of ~5 km, restricted by high temperatures and a weak elastic layer. There is developing evidence of non-double couple events. Outside the caldera, earthquakes are deeper, ~20 km, and capable of M 7+ earthquakes. We integrate the results from a multi-institution experiment that recorded data from 110 seismic stations and 180 GPS stations for 1999-2004. The tomographic images confirm the existence of a low Vp-body beneath the Yellowstone caldera at depths greater than 8 km, possibly representing hot, crystallizing magma. A key result of our study is a volume of anomalously low Vp and Vp/Vs in the northwestern part of the volcanic field at shallow depths of <2.0 km. Theoretical calculations of changes in P- to S-wave velocity ratios indicate that these anomalies can be interpreted as porous, gas-filled rock. GPS-measured episodes of caldera kinematics reveals uplift and subsidence of the caldera at decadal scales with average rates of ~20 mm/yr but much higher short-term rates of up to 70 mm/yr of accelerated uplift, 2004-2007. The stress field inverted from seismic and GPS data is dominated by regional SW extension with superimposed volumetric expansion and uplift from local volcanic sources. Mantle tomography derived from integrated inversion of teleseismic and local earthquake data constrained by geoid, crustal structure, discontinuity structure reveals an upper-mantle low P and S velocity body extends from 80 km to ~250 km directly beneath Yellowstone and then continues to 650 km with unexpected westward tilt to the west at ~60° with a 1% to 2% melt. This geometry is consistent with the ascent of the buoyant magma entrained in eastward return-flow of the upper mantle. Some remaining issues to be discussed are: 1) the interaction dynamics and magma path from the tilted plume to the lithosphere, 2) the transfer mechanism of mantle magma through the lithosphere into the upper crust, 3) how the high potential energy of the large 12 m+ geoid high drives the dominant extensional strain and concomitant crustal magma emplacement, 4) how the crustal magma interacts with the surface hydrothermal features, and 5) how stress interaction of faults and volcanic features behave at short- to decadal time scales.
Seismic Tomography of the Arabian-Eurasian Collision Zone and Surrounding Areas
2010-05-20
zone. The crustal models correlate well with geologic and tectonic features. The upper mantle tomograms show the images of the subducted Neotethys...We first obtain Pn and Sn velocities using local and regional arrival time data. Second, we obtain the 3-D crustal P and S velocity models...teleseismic tomography provides a high-resolution, 3-D P-wave velocity model for the crust, upper mantle, and the transition zone. The crustal models
Plate-Tectonic Circulation is Driven by Cooling From the Top and is Closed Within the Upper Mantle
NASA Astrophysics Data System (ADS)
Hamilton, W. B.
2001-12-01
Subduction drives plate tectonics and is due to cooling from the top: circulation is self-organized, and likely is closed above the discontinuity near 660 km. The contrary consensus that plate tectonics is driven by bottom heating and involves the entire mantle combines misunderstood kinematics with flawed concepts of through-the-mantle plumes and subduction. Plume conjecture came from the Emperor-Hawaii progression, the 45 Ma inflection in which was assumed to mark a 60-degree change in direction of that part of the Pacific plate over a fixed plume. Smooth spreading patterns around the east and south margin of the Pacific plate, and paleomagnetic data, disprove such a change. Speculations that plumes move, jump, etc. do not revive falsified conjecture. Geochemical distinctions between enriched island and depleted ridge basalts (which overlap) are expected products of normal upper-mantle processes, not plumes. MORB traverses solidus-T asthenosphere, whereas OIB zone-refines through subsolidus lithosphere and crust, crystallizing refractories to retain T of diminishing melt while assimilating and retaining fusibles. Tomographic inference of deep-mantle subduction is presented misleadingly and may reflect methodological and sampling artifacts (downward smearing, and concentration of recorded body waves in bundles within broad anomalies otherwise poorly sampled). Planetological and other data require hot Earth accretion, and thorough early fractionation, from material much more refractory than primitive meteorites, and are incompatible with the little-fractionated lower mantle postulated to permit whole-mantle circulation. The profound seismic discontinuity near 660 km is a thermodynamic and physical barrier to easy mass transfer in either direction. Refractory lower mantle convects slowly, perhaps in layers, and loses primarily original heat, whereas upper mantle churns rapidly, and the 660 decoupling boundary must have evolved into a compositional barrier also. Plate motions are driven by subduction, the passive falling away of oceanic lithosphere which is negatively buoyant because of top-down cooling. Slabs have top and bottom rolling hinges and sink subvertically (inclinations of slabs mark their positions, not trajectories) into the transition zone, where they are laid down on, and depress, the 660-km discontinuity. Rollback of upper hinges into subducting plates is required by plate behavior at all scales. That fronts of overriding plates advance at rollback velocity is required by common preservation atop their thin leading edges of little-deformed fore-arc basins. Convergence velocity also commonly equals rollback but is faster in some arcs. Steeply-sinking inclined slabs push sublithospheric upper mantle forward into the shrinking ocean from which they came, forcing seafloor spreading therein, and pull overriding plates behind them. Continental plates pass over sunken slabs like tanks above their basal treads, and material from, and displaced rearward by, sunken slabs is cycled into pull-apart oceans opening behind the continents, thus transferring mantle from shrinking to enlarging oceans. Hot mantle displaced above slabs enables backarc spreading. Spreading ridges, in both shrinking and enlarging oceans, are passive byproducts of subduction, and migrate because it is more energy efficient to process new asthenosphere than to get partial melt from increasingly distant sources. A plate-motion framework wherein hinges roll back, ridges migrate, Antarctica is approximately fixed, and intraplate deformation is integrated may approximate an absolute reference to sluggish lower mantle, whereas the hotspot frame is invalid, and the no-net-rotation frame minimizes trench and ridge motions.
Benz, H.M.; McCarthy, J.
1994-01-01
A 370-km-long seismic refraction/wide-angle reflection profile recorded during the Pacific to Arizona Crustal Experiment (PACE) detected an upper mantle P-wave low-velocity zone (LVZ) in the depth range 40 to 55 km beneath the Basin and Range in southern Arizona. Interpretation of seismic data places constraints on the sub-crustal lithosphere of the southern Basin and Range Province, which is important in light of the active tectonics of the region and the unknown role of the sub-crustal lithosphere in the development of the western United States. Forward travel time and synthetic seismogram techniques are used to model this shallow upper mantle LVZ. Modeling results show that the LVZ is defined by a 5% velocity decrease relative to a Pn velocity of 7.95 km s−1, suggesting either a ∼3–5% mafic partial melt or high-temperature, sub-solidus peridotite.
NASA Technical Reports Server (NTRS)
Ihnen, S. M.; Whitcomb, J. H.
1983-01-01
The broad gravity low in the equatorial Indian Ocean south of Sri Lanka is the largest and most striking feature in the gravitational field of the earth. The most negative long-wavelength free-air gravity anomalies are found there and the sea surface (geoid) lies more than 100 meters below the best fitting ellipsoid. A model of the lithosphere and upper mantle is proposed which accurately predicts the observed free-air gravity and geoid elevation. This model is consistent with bathymetry and sediment thickness data and suggests that the crust south of India currently floats as much as 600 meters lower than would be expected if the region were isostatically compensated. This residual depression of the crust is apparently confirmed by observations of ocean depth. An uncompensated depression is consistent with the presence of a mechanical wake left in the upper mantle behind India as it traveled toward Asia.
NASA Astrophysics Data System (ADS)
Zhang, Jin S.; Bass, Jay D.
2016-09-01
We present the elastic properties of San Carlos olivine up to P = 12.8(8) GPa and T = 1300(200) K using Brillouin spectroscopy with CO2 laser heating. A comparison of our results with the global seismic model AK135 yields average olivine content near 410 km depth of about 37% and 43% in a dry and wet (1.9 wt % H2O) upper mantle, respectively. These olivine contents are far less than in the pyrolite model. However, comparisons of our results with regional seismic models lead to very different conclusions. High olivine contents of up to 87% are implied by seismic models of the western U.S. and eastern Pacific regions. In contrast, we infer less than 35% olivine under the central Pacific. Strong variations of olivine content and upper mantle lithologies near the 410 km discontinuity are suggested by regional seismic models.
NASA Astrophysics Data System (ADS)
Chappell, A. R.; Kusznir, N. J.
2005-12-01
The southern Rockall Trough, located to the west of Ireland and the UK in the NE Atlantic, has been interpreted as both a Mesozoic intra-continental rift basin (O'Reilly 1995) and a mid Cretaceous ocean basin (e.g. Roberts et al. 1980). The continental rift hypothesis (O'Reilly 1995) requires differential stretching of the upper and lower crust and syn-tectonic cooling to mechanically explain the formation of 5-6km thick continental crust and allow serpentinisation of the upper mantle. In this model serpentinisation of the upper mantle is needed to explain low upper mantle seismic velocities. The serpentinisation has also been required to fit gravity modelling of seismic transects to the observed gravity (e.g. Shannon 1999). We use satellite gravity inversion to map Moho depth and crustal thickness (Chappell & Kusznir 2005) for the Rockall Trough area. The satellite gravity inversion is a 3D spectral method incorporating a correction for the residual lithosphere thermal gravity anomaly present in continental rifted margin lithosphere and oceanic lithosphere. The gravity inversion predicts Moho depth and geometry in agreement with wide-angle seismic estimates without invoking the extensive serpentinisation of the upper-mantle needed by the intra-continental rift hypothesis (O'Reilly 1995). Recent seismic modelling (Morewood 2005) suggests that the thin crust in the southern Rockall Trough does not have the seismic layering associated with oceanic crust formed at intermediate or fast spreading rates. Also, wide-angle seismic data shows low upper mantle seismic velocities are present and spatially associated with the thin 5-6km crust (Shannon 1999). These observations are consistent with models and observations of oceanic crust formed at slow spreading ocean ridges (Cannat 1996, Jokat 2003). Such models are based on a proportion of melt being retained in the upper mantle, producing low seismic velocities, and a reduced supply of melt to the crust, resulting in thin seismic crust with some serpentinised mantle material included. We propose that the southern Rockall Trough was formed by continental break-up and a period of slow mid Cretaceous sea floor spreading rather than as an intra- continental rift basin. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco-Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, AR Chappell, J Eccles, RJ Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, VJ Tymms & R Spitzer.
Dynamic compensation in the central Pacific Ocean
NASA Technical Reports Server (NTRS)
Hinojosa, Juan Homero; Marsh, Bruce D.
1988-01-01
The intermediate-wavelength geoid (lambda similar to 2000 km) and sea-floor topography fields in the central Pacific Ocean were studied in terms of static and dynamic compensation models. Topographic features on the sea-floor with lambda less than 1000 km were found to be compensated both regionally, by the elastic strength of the lithosphere, and locally, by displacing mantle material to reach isostatic adjustment. The larger-scale sea-floor topography and the corresponding geoid anomalies with lambda similar to 2000 km cannot be explained by either local or regional compensation. The topography and the resulting geoid anomaly at this wavelength were modeled by considering the dynamic effects arising from viscous stresses in a layer of fluid with a highly temperature-dependent viscosity for the cases of: (1) surface cooling, and (2) basal heating. In this model, the mechanical properties of the elastic part of the lithosphere were taken into account by considering an activation energy of about 520 kJ/mol in the Arrhenius law for the viscosity. Numerical predictions of the topography, total geoid anomaly, and admittance were obtained, and the results show that the thermal perturbation in the layer, which accounts for the mass deficit, must be located close to the surface to compensate the gravitational effect of the surface deformation. For the case of basal heating, the temperature dependence of viscosity results in a separation of the upper, quasi-rigid lid from the lower mobile fluid, hence inhibiting the development of a compensating thermal perturbation at shallow depths. The results clearly rule out small-scale, upper-mantle convection as the source of these anomalies. Instead, the geophysical observables can be well explained by a shallow, transient thermal perturbation.
NASA Astrophysics Data System (ADS)
Eddy, C. L.; Ekstrom, G.; Nettles, M.; Gaherty, J. B.
2017-12-01
We present a three-dimensional model of the anisotropic velocity structure of the Pacific lithosphere and asthenosphere. The presence of seismic anisotropy in the oceanic upper mantle provides information about the geometry of flow in the mantle, the nature of the lithosphere-asthenosphere boundary, and the possible presence of partial melt in the asthenosphere. Our dataset consists of fundamental-mode dispersion for Rayleigh and Love waves measured between 25-250 s with paths crossing the Pacific Ocean. We invert the phase anomaly measurements directly for three-dimensional anisotropic velocity structure. Our models are radially anisotropic and include the full set of elastic parameters that describe azimuthal variations in velocity (e.g. Gc, Gs). We investigate the age dependence of seismic velocity and radial anisotropy and find that there are significant deviations from the velocities predicted by a simple oceanic plate cooling model. We observe strong radial anisotropy with vsh > vsv in the asthenosphere of the central Pacific. We investigate the radial anisotropy in the shallow lithosphere, where previous models have reported conflicting results. There is a contrast in both upper-mantle isotropic velocities and radial anisotropy between the Pacific and Nazca plates, across the East Pacific Rise. We also investigate lateral variations in azimuthal anisotropy throughout the Pacific upper mantle and find that there are large areas over which the anisotropy fast axis does not align with absolute plate motion, suggesting the presence of small-scale convection or pressure-driven flow beneath the base of the oceanic plate.
The temporal evolution of a subducting plate in the lower mantle
NASA Astrophysics Data System (ADS)
Loiselet, C.; Grujic, D.; Braun, J.; Fullsack, P.; Thieulot, C.; Yamato, P.
2009-04-01
It is now widely accepted that some subducting slabs may cross the lower/upper mantle boundary to ground below the 660 km discontinuity. Indeed, geophysical data underline long and narrow traces of fast materials, associated with subducting slabs, from the upper mantle transition zone to mid-mantle depths that are visible beneath North and South America and southern Asia (Li et al, 2008). Furthermore, seismic tomography data (Van der Hilst et al., 1997; Karason and van der Hilst, 2000, 2001) show a large variety of slab geometries and of mantle flow patterns around subducting plate boundaries (e.g. the slab geometry in the lower mantle in the Tonga subduction zone). However, seismic tomography does not elucidate the temporal evolution of the slab behaviour and geometry during its descent through the upper and lower mantle. In this work, we therefore propose to study the deformation of a thin plate (slab) falling in a viscous fluid (mantle) by means of both analogue and numerical modelling. The combination of both analogue and numerical experiments provides important insights into the shape and attitude evolution of subducting slabs. Models bring information into the controls exerted by the rheology of the slab and the mantle and other physical parameters such as the density contrast between the slab and the surrounding mantle, on the rate at which this deformation takes place. We show that in function of a viscosity ratios between the plate and the surrounding fluid, the plate will acquire a characteristic shape. For the isoviscous case, the plate shape tends toward a bubble with long tails: a "jellyfish" form. The time necessary for the plate to acquire this shape is a function of the viscosity and density contrast between the slab and the mantle. To complete our approach, we have developed a semi-analytical model based on the solution of the Hadamar-Rybinski equations for the problem of a dense, yet isoviscous and thus deforming sphere. This model helps to better describe flow processes around the downgoing plate and, simultaneously, to characterize its deformation. In this way, we were able to calculate the velocities in the mantle, the forces exerted by the fluid on the plate, and the dissipated energy in the surrounding fluid. Experimental results will be correlated with geophysical data.
The Temporal Evolution Of A Subducting Plate In The Lower Mantle
NASA Astrophysics Data System (ADS)
Loiselet, C.; Grujic, D.; Fullsack, P.; Thieulot, C.; Yamato, P.; Braun, J.
2008-12-01
It is now widely accepted that some subducting slabs may cross the lower/upper mantle boundary to ground below the 660 km discontinuity. Indeed, geophysical data underline long and narrow traces of fast materials, associated with subducting slabs, from the upper mantle transition zone to mid-mantle depths that are visible beneath North and South America and southern Asia (Li et al, 2008). Furthermore, seismic tomography data (Van der Hilst et al., 1997; Karason and van der Hilst, 2000, 2001)) show a large variety of slab geometries and of mantle flow patterns around subducting plate boundaries (e.g. the slab geometry in the lower mantle in the Tonga subduction zone). However, seismic tomography does not elucidate the temporal evolution of the slab behaviour and geometry during its descent through the upper and lower mantle. In this work, we therefore propose to study the deformation of a thin plate (slab) falling in a viscous fluid (mantle). The combination of both analogue and numerical experiments provides important insights into the shape and attitude evolution of subducting slabs. Models bring information into the controls exerted by the rheology of the slab and the mantle and other physical parameters such as the density contrast between the slab and the surrounding mantle, on the rate at which this deformation takes place. We show that in function of a viscosity ratios between the plate and the surrounding fluid, the plate will acquire a characteristic shape. For the isoviscous case, the plate shape tends toward a bubble with long tails: a jellyfish form. The time necessary for the plate to acquire this shape is a function of the viscosity and density contrast between the slab and the mantle. To complete our approach, we have developed a semi-analytical model based on the solution of the Hadamar-Rybinski equations for the problem of a dense, yet isoviscous and thus deforming sphere. This model helps to better describe flow processes around the downgoing plate and, simultaneously, to characterize its deformation. In this way, we were able to calculate the velocities in the mantle, the forces exerted by the fluid on the plate, and the dissipated energy in the surrounding fluid. Experimental results will be correlated with geophysical data.
NASA Astrophysics Data System (ADS)
Osmaston, M. F.
2012-04-01
Introduction. The title poses a question very like that of my talk in 2003 [1], concluding then that, as a driver, subduction comes 'a doubtful third'. My purpose here is to show that subsequent developments now cause even that limited status to be denied it with great assurance, except in a rare situation, of which there is no current example. The key point is that studies of subduction have been importantly mistaken as to the nature of the plate arriving for subduction. Deep-keeled cratons? The 'deep-keeled cratons' frame for global dynamics [2 - 5] is the result of seeking Earth-behaviour guidance on the following outside-the-box proposition:- "If cratons have tectospheric keels that reach or approach the 660 km discontinuity, AND the 660 level is an effective barrier to mantle circulation, then obviously (i) when two cratons separate, the upper mantle to put under the nascent ocean must arrive by a circuitous route and, conversely, (ii) if they approach one another, the mantle volume that was in between them must get extruded sideways." Remarkably it has turned out [2 - 5] that Earth dynamical behaviour for at least the past 150 Ma provides persuasive affirmation of both these expectations and that the explanation for the otherwise-unexpected immobility of subcratonic material to such depths is a petrological one which is also applicable to the behaviour of LVZ mantle below MORs [6 - 8]. Straight away this result has major consequences for the character of the plate arriving for subduction. First, to construct them, we need a 'thick-plate' (>100km?) model of the MOR process which recognizes that this LVZ immobility renders invalid the existing concept of divergent mantle flow below MORs. I show that my now not-so-new model [1, 8 - 10], based on a deep, narrrow, wall-accreting sub-axis crack, possesses outstandingly relevant properties, even appropriately dependent on spreading rate. Second, the oceanic plate arriving for subduction is no longer just the cooled mantle boundary layer habitually assumed, but its LVZ content gives it (i) residual heat content, (ii) corresponding buoyancy, and (iii) a flexural strength which demands a reconsideration of its mode of downbend, hitherto widely regarded as flexural, but still be able to explain outer rises and their differences. Solutions for (ii) and (iii) are convincingly supported by widespread exposure of the resulting rocks in the Alps, telling us how they and other UHP metamorphic mountain belts have been built [11]. I will illustrate the essential points. In particular, the buoyancy (ii) provides the upward mechanical contact essential for the shallow basal subduction tectonic erosion of the upper plate as preparation of thin imbricate crustal slices to subduct to UHP. And a seismologically supported through-plate step-faulting mode of downbend copes with the flexure problem (iii) and provides the tectonic erosion mechanism. In tackling these matters, important intrinsic properties of the materials are, notably:- (1) the thermal conductivity of non-migrating interstitial melt is >20 times less than its parent rock, so the LVZ heat is effectively trapped during the plate's journey across the ocean, only to be released when subduction raises the pressure and the melt freezes; (2) the garnet-to-spinel peridotite phase change, typically at 50 to 90 km depth, gives some 50 times more volume change per joule than pure expansivity, and it does so with the big force of solid-state recrystallization. This force is the crack-wall push-apart force provided by our thick-plate MOR model, which thereby develops at least an order more ridge push than the divergent flow model. We now consider the post-downbend evolution of the subducting plate, recognizing both the heat content of its ex-LVZ material and that, within the 2-layer mantle picture established by the plate dynamics of 'deep-keeled cratons' [2 - 5], there is no substantial mantle transport across the 660 km level. Examination of tomographic transects shows at once that in by far the majority of cases, the 'slab' signature begins to fade at some depth in the 180 - 350 km interval, but that a second high-Vp signature begins near 400 km and may continue far into the lower mantle. The fading, whose onset depth varies both with the age of the plate and with the subduction rate, is clearly due, not to slab drop-off, but to reheating of the slab component by its underlying ex-LVZ heat. In either case, reheating or drop-off, this invalidates slab pull as a reliable item in the tectonics toolkit. Instead, there is a thick-plate mechanism to provide back-arc opening in the presence of ridge-push [3, 11]. Slab-reheating may proceed to the stage of partially melting the interface oceanic crust. On experimental evidence, this will, at TZ depth, produce high-density, high-Vp stishovitic residues, lumps of which I see as causing the second high-Vp signature, as they shower through the 660 into the lower mantle. This interpretation escapes the slab-view paradox that the world's longest-lived young-plate subduction zone also has the world's biggest high-Vp signature in the lower mantle, whereas Izu-Bonin, subducting very old plate, has one of the smallest. Young-plate heat would surely melt more of the interface crust and generate more of the high-density residue. The early Proterozoic date at which this mantle layout replaced whole-mantle overturn is well shown by the behaviour of the mantle depletion index, epsilon Nd. At this point I conclude unhesitatingly that subduction is neither the, nor even one of the drivers of current plate motions, but is primarily driven by the powerful ridge-push from the thick-plate version of the MOR process. That push is what compresses the ocean plate if step-faulting at the downbend has temporarily locked subduction ('seismic coupling'), with the potential to release the energy for an M9 earthquake. But our system is dynamically incomplete. Ridge push cannot split a continent, so how does that occur? My original proposal [1] for that function was the long-term clockwise rotation of Antarctica and its coupling to the other plates. In another contribution at this meeting [12] the observational basis for its reality is now shown to be very strong. So the conclusion is that plate tectonics has only two primary drivers - this rotation and ridge push - subduction being a wholly passive consequence. [1] Osmaston M. F. (2003) What drives plate tectonics? Slab pull, ridge push or geomagnetic torque from the CMB? A new look at the old players vis-a-vis an exciting new one. XXIII IUGG, B129, Abstr. 016795-2. [2] Osmaston M. (2005) Interrelationships between large-scale plate motions as indicators of mantle structure: new constraints on mantle modelling and compositional layout. In 3rd Workshop on "Earth's mantle composition, structure and phase transitions". http://deep.earth.free.fr/participants.php. [3] Osmaston M. F. (2006) Global tectonic actions emanating from Arctic opening in the circumstances of a two-layer mantle and a thick-plate paradigm involving deep cratonic tectospheres: the Eurekan (Eocene) compressive motion of Greenland and other examples. In Proc. ICAM IV, 2003 (ed. R. Scott & D. Thurston). OCS Study MMS 2006-003, pp.105-124: Also at ; http://www.mms.gov/alaska/icam. [4] Osmaston M. F. (2007) Cratonic keels and a two-layer mantle tested: mantle expulsion during Arabia-Russia closure linked to westward enlargement of the Black Sea, formation of the Western Alps and subduction of the Tyrrhenian (not the Ionian) Sea. XXIV IUGG, Session JSS 011 Abstr #2105, http://www.iugg2007perugia.it/webbook/. [5] Osmaston M. F. (2009) Deep cratonic keels and a 2-layer mantle? Tectonic basis for some far-reaching new insights on the dynamical properties of the Earth's mantle: example motions from Mediterranean, Atlantic-Arctic and India. Geophys. Res.Abstr 11, EGU2009-6359 (Solicited). [6] Karato S. (1986) Does partial melting reduce the creep strength of the upper mantle? Nature 319, 309-310. [7] Hirth G. & Kohlstedt D. L. (1996) Water in the oceanic upper mantle: implication for rheology, melt extraction, and the evolution of the lithosphere. EPSL 144, 93-108. [8] Osmaston M. F. (2010) On the actual variety of plate dynamical mechanisms and how mantle evolution affected them through time, from core formation to the Indian collision. Geophys. Res. Abstr. 12, EGU2010-6101. [9] Osmaston M. F. (1995) A straightness mechanism for MORs: a new view of ocean plate genesis and evolution XXI IUGG, Abstracts p. A472. [10] Osmaston M. (2005) The ridge push mechanism of MORs as the agent of seismic coupling, tsunami, convergence partitioning and landward thrusting at subduction zones; insights on an interactive family of mostly-jerky mechanisms. IASPEI 2005 Gen. Assy, Santiago, Chile, Abstr. No 303. [11] Osmaston M. F. (2008) Basal subduction tectonic erosion (STE), butter mélanges and the construction and exhumation of HP-UHP belts: the Alps example and some comparisons. Internat. Geol. Rev. 50(8), 685-754 DOI: 10.2747/00206814.50.8.685. [12] Osmaston M. F. (2012) Did clockwise rotation of Antarctica cause the break-up of Gondwanaland? An investigation in the 'deep-keeled cratons' frame for global dynamics. GD6.1. Geophys. Res. Abstr. 14, EGU2012-2170.
NASA Astrophysics Data System (ADS)
Portner, D. E.; Kiraly, A.; Makushkina, A.; Parks, B. H.; Ghosh, T.; Haynie, K. L.; Metcalf, K.; Manga, M.; O'Farrell, K. A.; Moresi, L. N.; Jadamec, M. A.; Stern, R. J.
2017-12-01
Large-scale detachment of subducting slabs can have a significant geologic footprint by altering the slab-driven mantle flow field as hot subslab mantle can flow upward through the newly developed opening in the slab. The resulting increase in heat and vertical motion in the mantle wedge may contribute to volcanism and broad surface uplift. Recent geodynamic modeling results show that smaller tears and holes are similarly likely to form in many settings, such as where oceanic ridges or continental fragments subduct. High-resolution seismic tomography models are imaging an increasing number of these gaps and tears ranging in size from tens to hundreds of km in size, many of which occur proximal to alkali volcanism. Here we investigate the role of such gaps on the subduction-induced mantle flow field and related surface response. In particular, we address the relationships between slab hole size, depth, and distance from the slab edge and the magnitude of dynamic response of the mantle using analog experiments and numerical simulations. In the laboratory models, the subduction system is simplified to a two-layered Newtonian viscous sheet model. Our setup consists of a tank filled with glucose syrup and a plate made from silicon putty to model the upper mantle and subducting lithosphere, respectively. In each experiment, we pre-cut a rectangular hole with variable width into the silicon putty plate. Additionally, we perform a series of complementary numerical models using the Underworld geophysical modeling code to calculate the more detailed instantaneous mantle flow perturbation induced by the slab hole. Together, these results imply a strong effect of hole size on mantle flow. Similarly, the depth of the slab hole influences near-surface flow, with significant surface flow alteration when the hole is near the trench and diminishing surface deformation as the hole is dragged deeper into the mantle. The inferred consequence of the dependence of vertical mantle flux on slab hole position and size is that the induced surface response can vary based on slab hole parameters.
NASA Astrophysics Data System (ADS)
Biryol, C. B.; Wagner, L. S.; Fischer, K. M.; Hawman, R. B.
2016-12-01
The present tectonic configuration of the southeastern United States is a product of earlier episodes of arc accretion, continental collision and breakup. This region is located in the interior of the North American Plate, some 1500 km away from closest active plate margin. However, there is ongoing tectonism across the area with multiple zones of seismicity, rejuvenation of the Appalachians of North Carolina, Virginia, and Pennsylvania, and Cenozoic intraplate volcanism. The mechanisms controlling this activity and the modern-day state of stress remain enigmatic. Two factors often regarded as major contributors are plate strength and preexisting inherited structures. Recent improvements in broadband seismic data coverage in the region associated with the South Eastern Suture of the Appalachian Margin Experiment (SESAME) and EarthScope Transportable Array make it possible to obtain detailed information on the structure of the lithosphere in the region. Here we present new tomographic images of the upper mantle beneath the Southeastern United States, revealing large-scale structural variations in the upper mantle. Our results indicate fast seismic velocity patterns that can be interpreted as ongoing lithospheric foundering. We observe an agreement between the locations of these upper mantle anomalies and the location of major zones of tectonism, volcanism and seismicity, providing a viable explanation for modern-day activity in this plate interior setting long after it became a passive margin. Based on distinct variations in the geometry and thickness of the lithospheric mantle and foundered lithosphere, we propose that piecemeal delamination has occurred beneath the region throughout the Cenozoic, removing a significant amount of reworked/deformed mantle lithosphere. Ongoing lithospheric foundering beneath the eastern margin of stable North America explains significant variations in thickness of lithospheric mantle across the former Grenville deformation front.
Waite, Gregory P.; Smith, Robert B.; Allen, Richard M.
2006-01-01
The movement of the lithosphere over a stationary mantle magmatic source, often thought to be a mantle plume, explains key features of the 16 Ma Yellowstone–Snake River Plain volcanic system. However, the seismic signature of a Yellowstone plume has remained elusive because of the lack of adequate data. We employ new teleseismic P and S wave traveltime data to develop tomographic images of the Yellowstone hot spot upper mantle. The teleseismic data were recorded with two temporary seismograph arrays deployed in a 500 km by 600 km area centered on Yellowstone. Additional data from nearby regional seismic networks were incorporated into the data set. The VP and VS models reveal a strong low-velocity anomaly from ∼50 to 200 km directly beneath the Yellowstone caldera and eastern Snake River Plain, as has been imaged in previous studies. Peak anomalies are −2.3% for VP and −5.5% for VS. A weaker, anomaly with a velocity perturbation of up to −1.0% VP and −2.5% VS continues to at least 400 km depth. This anomaly dips 30° from vertical, west-northwest to a location beneath the northern Rocky Mountains. We interpret the low-velocity body as a plume of upwelling hot, and possibly wet rock, from the mantle transition zone that promotes small-scale convection in the upper ∼200 km of the mantle and long-lived volcanism. A high-velocity anomaly, 1.2%VP and 1.9% VS, is located at ∼100 to 250 km depth southeast of Yellowstone and may represent a downwelling of colder, denser mantle material.
NASA Astrophysics Data System (ADS)
Bunge, H.; Schuberth, B. S.; Shephard, G. E.; Müller, D.
2010-12-01
Plate and plume flow are dominant modes of mantle convection, as pointed out by Geoff Davies early on. Driven, respectively, from a cold upper and a hot lower thermal boundary layer these modes are now sufficiently well imaged by seismic tomographers to exploit the thermal boundary layer concept as an effective tool in exploring two long standing geodynamic problems. One relates to the choice of an absolute reference frame in plate tectonic reconstructions. Several absolute reference frames have been proposed over the last decade, including those based on hotspot tracks displaying age progression and assuming either fixity or motion, as well as palaeomagnetically-based reference frames, a subduction reference frame and hybrid versions. Each reference frame implies a particular history of the location of subduction zones through time and thus the evolution of mantle heterogeneity via mixing of subducted slab material in the mantle. Here we compare five alternative absolute plate motion models in terms of their consequences for deep mantle structure. Taking global paleo-plate boundaries and plate velocities back to 140 Ma derived from the new plate tectonic reconstruction software GPlates and assimilating them into vigorous 3-D spherical mantle circulation models, we infer geodynamic mantle heterogeneity and compare it to seismic tomography for each absolute rotation model. We also focus on the challenging problem of interpreting deep mantle seismic heterogeneity in terms of thermal and compositional variations. Using published thermodynamically self-consistent mantle mineralogy models in the pyrolite composition, we find strong plume flux from the CMB, with a high temperature contrast (on the order of 1000 K) across the lower thermal boundary layer is entirely sufficient to explain elastic heterogeneity in the deep mantle for a number of quantitative measures. A high excess temperatures of +1000--1500 K for plumes in the lowermost mantle is particularly important in understanding the strong seismic velocity reduction mapped by tomography in low-velocity bodies of the deep mantle, as this produces significant negative anomalies of shear wave velocity of up to -4%. We note, however, that our results do not account for the curious observation of seismic anti-correlation, which appears difficult to explain in any case. Our results provide important constraints for the integration of plate tectonics and mantle dynamics and their use in forward and inverse geodynamic mantle models.
NASA Astrophysics Data System (ADS)
van der Hilst, R. D.; Li, C.; Yao, H.; Sun, R.; Meltzer, A. S.
2007-12-01
We will present a summary of the results of our seismological studies of crust and upper mantle heterogeneity and anisotropy beneath Tibet and SW China with data from temporary (PASSCAL) arrays as well as other regional, national, and global networks. In 2003 and 2004 MIT and CIGMR (Chengdu Institute of Geology and Mineral Resources) operated a 25 station array (3-component, broad band seismometers) in Sichuan and Yunnan provinces, SW China; during the same period Lehigh University (also in collaboration with CIGMR) operated a 75 station array in east Tibet. Data from these arrays allow delineation of mantle structure in unprecedented detail. We focus our presentation on results of two lines of seismological study. Travel time tomography (Li et al., PEPI, 2006; EPSL, 2007) with hand-picked phase arrivals from recordings at regional arrays, and combined with data from over 1,000 stations in China and with the global data base due to Engdahl et al. (BSSA, 1998), reveals substantial the structural complexity of the upper mantle beneath SE Asia. In particular, structures associated with subduction of the Indian plate beneath the Himalayas vary significantly from west Tibet (where the plate seems to have underthrusted the entire plateau) to east Tibet (where P-wave tomography provides no evidence for the presence of fast lithosphere beneath the Plateau proper). Further east, fast structures appear in the upper mantle transition zone, presumably related to stagnation of slab fragments associated with subduction of the Pacific plate. (2) Surface wave array tomography (Yao et al., GJI, 2006, 2007), using ambient noise interferometry and traditional (inter station) dispersion analysis, is used to delineate the 3-D structure of the crust and lithospheric mantle at length scales as small as 100 km beneath the MIT and Lehigh arrays. This analysis reveals a complex spatial distribution of intra-crustal low velocity zones (which may imply that crustal-scale faults influence the pattern of middle/lower crustal flow). We will also show preliminary results of surface wave inversion for azimuthal anisotropy, which - combined with previous results from shear wave splitting (Lev et al., EPSL, 2006) - give insight into the deformation of the upper mantle beneath the area under study.
P wave velocity of Proterozoic upper mantle beneath central and southern Asia
NASA Astrophysics Data System (ADS)
Nyblade, Andrew A.; Vogfjord, Kristin S.; Langston, Charles A.
1996-05-01
P wave velocity structure of Proterozoic upper mantle beneath central and southern Africa was investigated by forward modeling of Pnl waveforms from four moderate size earthquakes. The source-receiver path of one event crosses central Africa and lies outside the African superswell while the source-receiver paths for the other events cross Proterozoic lithosphere within southern Africa, inside the African superswell. Three observables (Pn waveshape, PL-Pn time, and Pn/PL amplitude ratio) from the Pnl waveform were used to constrain upper mantle velocity models in a grid search procedure. For central Africa, synthetic seismograms were computed for 5880 upper mantle models using the generalized ray method and wavenumber integration; synthetic seismograms for 216 models were computed for southern Africa. Successful models were taken as those whose synthetic seismograms had similar waveshapes to the observed waveforms, as well as PL-Pn times within 3 s of the observed times and Pn/PL amplitude ratios within 30% of the observed ratio. Successful models for central Africa yield a range of uppermost mantle velocity between 7.9 and 8.3 km s-1, velocities between 8.3 and 8.5 km s-1 at a depth of 200 km, and velocity gradients that are constant or slightly positive. For southern Africa, successful models yield uppermost mantle velocities between 8.1 and 8.3 km s-1, velocities between 7.9 and 8.4 km s-1 at a depth of 130 km, and velocity gradients between -0.001 and 0.001 s-1. Because velocity gradients are controlled strongly by structure at the bottoming depths for Pn waves, it is not easy to compare the velocity gradients obtained for central and southern Africa. For central Africa, Pn waves turn at depths of about 150-200 km, whereas for southern Africa they bottom at ˜100-150 km depth. With regard to the origin of the African superswell, our results do not have sufficient resolution to test hypotheses that invoke simple lithospheric reheating. However, our models are not consistent with explanations for the African superswell invoking extensive amounts of lithospheric thinning. If extensive lithospheric thinning had occurred beneath southern Africa, as suggested previously, then upper mantle P wave velocities beneath southern Africa would likely be lower than those in our models.
An IODP proposal to drill the Godzilla Megamullion as a step to Mohole
NASA Astrophysics Data System (ADS)
Ohara, Y.; Michibayashi, K.; Dick, H. J. B.; Snow, J. E.; Ono, S.
2017-12-01
The year 2017 represents the 60th anniversary of the "original" project Mohole, which was coined by Walter Munk in 1957. Although the project Mohole has not yet been realized, the hard-rock community is now striving hard to understand the upper mantle in a variety of ways. Firstly, the present-day project Mohole, M2M (Moho-to-Mantle) project, will move forward in this September, conducting multi-channel seismic profiling off Hawaii as a site survey. Oman Drilling Project has started last December, and the drilled cores are being described aboard D/V Chikyu from July, this year. Furthermore, the forearc M2M proposal to drill the Bonin Trench forearc mantle was submitted to IODP in April 2016. Being a part of these efforts, we are preparing an IODP proposal to drill the Godzilla Megamullion, the largest known oceanic core complex on the Earth, located in the Parece Vela Basin in the Philippine Sea. A significant fraction of the ocean floor is created in backarc basins, while there have been no single long core of backarc basin lower ocean crust, from which to understand the likely differences in magmatic evolution and crustal structure in this key setting. The opportunity to explore the formation of the backarc basin lower crust and upper mantle is, therefore, an important contribution to understanding the ocean basins. At the same time, a better understanding of the architecture of backarc basin lower crust and upper mantle will greatly aid in the interpretation of the results of ophiolite study, since much of our understanding of the architecture of oceanic lower crust and upper mantle comes from ophiolites, most of which are thought to have at least some arc and/or backarc component. The Godzilla Megamullion is unique in its huge size as well as its development in a backarc basin, a rare tectonic window to study backarc basin lithosphere. The Godzilla Megamullion is prepared for full drilling proposal, with complete bathymetric data, multiple bottom samplings, and multi-channel seismic profilings as well as P-wave velocity structures. We will propose substantial riserless drilling at Godzilla Megamullion that will provide an excellent opportunity to understand backarc basin lower crust and upper mantle. In this contribution, we will make use of this opportunity to share the general scheme of the proposal with the community.
187Os-186Os and He Isotope Systematics of Iceland Picrites
NASA Astrophysics Data System (ADS)
Brandon, A. D.; Brandon, A. D.; Graham, D.; Gautason, B.
2001-12-01
Iceland is one of the longest-lived modern plumes, and seismic imaging supports a model where the roots of this plume are at the base of the lower mantle. Hence, Os isotopic data for lavas from this plume are ideal for further testing the role of core-mantle chemical exchange at the site of plume generation in the lower mantle, and for addressing the origin of Os-He isotopic variation in plumes. Recent work has shown that lavas from some plume systems (Hawaii, Noril'sk-Siberia, Gorgona) show coupled enrichments in 186Os/188Os and 187Os/188Os, not observed in upper mantle materials including abyssal peridotites. Picrites from Hawaii display a positive correlation between 186Os/188Os and He isotopes (R/Ra), where range in 186Os/188Os of 0.119834+/-28 to 0.1198475+/-29 and corresponding R/Ra from +7 to +25. These systematics are consistent with a lower mantle source for the radiogenic 186Os signal in the Hawaiian plume. The coupled Os enrichments in these plumes has been attributed to core-mantle chemical exchange, consistent with generation of the Hawaiian plume at the base of the lower mantle in D". Other potentially viable models await additional scrutiny. New He isotope and high precision 186Os/188Os and 187Os/188Os measurements for Iceland picrites show unique systematics compared to Hawaii. These picrites have 187Os/188Os ranging from 0.1297 to 0.1381 and R/Ra of +9 to +18, with generally higher R/Ra correlating with higher 187Os/188Os. Unlike the Hawaiian picrites from Hualalai and Loihi, which have coupled enrichments in 186Os/188Os and 187Os/188Os, the Iceland picrites show no enrichment 186Os/188Os - 0.1198363+/-28 (2s, n=14). Such Os-He isotopic variations require one end-member source that has high R/Ra, coupled with a long term elevated Re/Os and Pt/Os similar to that of the upper mantle. These systematics are inconsistent with either known upper mantle materials or those purported for ancient recycled slabs and may be a previously unidentified component in the lower mantle.
NASA Astrophysics Data System (ADS)
Nagel, Thorsten; Düsterhöft, Erik; Schiffer, Christian
2017-04-01
We investigate the signature relevant mantle lithologies leave in the receiver function record for different adiabatic thermal gradients down to 800 kilometers depth. The parameter space is chosen to target the visibility of upwelling mantle (a plume). Seismic velocities for depleted mantle, primitive mantle, and three pyroxenites are extracted from thermodynamically calculated phases diagrams, which also provide the adiabatic decompression paths. Results suggest that compositional variations, i.e. the presence or absence of considerable amounts of pyroxenites in primitive mantle should produce a clear footprint while horizontal differences in thermal gradients for similar compositions might be more subtle. Peridotites best record the classic discontinuities at around 410 and 650 kilometers depth, which are associated with the olivin-wadsleyite and ringwoodite-perovskite transitions, respectively. Pyroxenites, instead, show the garnet-perovskite transition below 700 kilometers depth and SiO2-supersaturated compositions like MORB display the coesite-stishovite transition between 300 and 340 kilometers depth. The latter shows the strongest temperature-depth dependency of all significant transitions potentially allowing to infer information about the thermal state if the mantle contains a sufficient fraction of MORB-like compositions. For primitive and depleted mantle compositions, the olivin-wadsleyite transition shows a certain temperature-depth dependency reflected in slightly larger delay times for higher thermal gradients. The lower-upper-mantle discontinuity, however, is predicted to display larger delay times for higher thermal gradients although the associated assemblage transition occurs at shallower depths thus requiring a very careful depth migration if a thermal anomaly should be recognized. This counterintuitive behavior results from the downward replacement of the assemblage wadsleyite+garnet with the assemblage garnet+periclase at high temperatures. This transition causes even lower seismic velocities with greater depth (following an adiabatic gradient), the highly continuous nature of the reaction, however, should produce only a smooth negative conversion. In contrast, a small positive conversion is expected at normal thermal gradients in the same depth range between 500 and 550 kilometers because of the wadsleyite-ringwoodite-transition. Hence, the polarity of the 520 discontinuity also offers a possibility to recognize the thermal state of the upper mantle.
NASA Astrophysics Data System (ADS)
Kaban, M. K.; Petrunin, A.; Mooney, W. D.
2013-12-01
The impact of basal drag on the long-lived cratonic roots has been debated since the discovering of plate tectonics. Previously, evidence for a shifted mantle structure under North America was postulated from a comparison of the surface expression of the Great Meteor hotspot track versus its location at 200 km depth as inferred from seismic tomography (Eaton and Frederiksen, 2007). We present new results that are based on the integrative modeling of gravity and seismic data. The starting point is the residual gravity anomaly and residual topography, which are computed by removing of the crustal effect and of the effect of temperature variations in the upper mantle from the observed fields (Mooney and Kaban, 2010). After the temperature correction both residual fields chiefly reflect compositional density heterogeneity of the upper mantle. The residual gravity and topography are jointly inverted to determine the 3D density structure of the upper mantle. The inversion technique accounts for the fact that although these parameters are controlled by the same factors, the effect depends on depth and wavelength. Therefore, we can resolve the vertical distribution of density more reliable than by interpreting only one parameter. We found a strong negative anomaly under the North American craton, as expected for a depleted mantle. However, starting from a depth of about 200 km the depleted root is shifted west-southwest. The maximal shift reaches about 1000 km at a depth of 300 km. The direction agrees with the North American plate movement and with the anisotropy pattern in the upper mantle (e.g. Bokelmann, 2002). The results of the gravity modeling are confirmed by geodynamic modeling. The mantle flow is estimated from the density and temperature distribution derived from seismic tomography models. A 3D viscosity model is supplemented with weak boundaries based on an integrated model of plate boundary deformations. The calculated plate velocities are in a good agreement with the GPS-based models. We found a vertical gradient of the horizontal mantle flow velocity under the North American craton that relates to shear stresses deforming the cratonic root. The lateral velocity within the lowermost part of the lithosphere is about 2 mm/y faster than the overlying plate velocity. If we extrapolate this value to the past, the observed shift of the cratonic root could be achieved in about 500 Ma. Bokelmann GHR, (2002) Convection-driven motion of the North American craton: Evidence from P-wave anisotropy, Geoph. J. Int., 148, 278-287. Eaton DW and Frederiksen A, (2007) Seismic evidence for convection-driven motion of the North American plate, Nature 446, 428-431. Mooney WD, Kaban, MK., (2010). The North American Upper Mantle: Density, Composition, and Evolution, J. Geophys. Res., 115, B12424.
the P-wave upper mantle structure beneath an active spreading center: The Gulf of California
NASA Technical Reports Server (NTRS)
Walck, M. C.
1983-01-01
Detailed analysis of short period travel time, and waveform data reveals the upper mantle structure beneath an oceanic ridge to depths of 900 km. More than 1400 digital seismograms from earthquakes in Mexico and central America recorded at SCARLET yield 1753 travel times and 58 direct measurements of short period travel time as well as high quality, stable waveforms. The 29 events combine to form a continuous record section from 9 deg to 40 deg with an average station spacing of less than 5 km. First the travel times are inverted. Further constraints arise from the observed relative amplitudes of mantle phases, which are modeled by trial and error.
Upper mantle heterogeneity: Comparisons of regions south of Australia with Philippine Basin
NASA Technical Reports Server (NTRS)
1982-01-01
The nature of mass anomalies that occur beneath the regions of negative residual depth anomalies were identified. Residual geoid anomalies with negative residual depth anomalies are identified in the Philippine Basin (negative) and in the region south of Australia (positive and negative). In the latter region the geoid anomalies are eastward and the depth anomaly is northeast. It is suggested that the negative depth anomaly and the compensating mass excess in the uppermost mantle developed in the Eocene as the lithosphere of the west Philippine basin formed. Heating of the deeper upper mantle which causes slow surface wave velocities and negative gravity and geoid anomalies may be a younger phenomenon which is still in progress.
Effects of basin-forming impacts on the thermal evolution and magnetic field of Mars
NASA Astrophysics Data System (ADS)
Roberts, J. H.; Arkani-Hamed, J.
2017-11-01
The youngest of the giant impact basins on Mars are either weakly magnetized or completely demagnetized, indicating that a global magnetic field was not present at the time those basins formed. Eight basins are sufficiently large that the impact heating associated with their formation could have penetrated below the core-mantle boundary (CMB). Here we investigate the thermal evolution of the martian interior and the fate of the global magnetic field using 3D mantle convection models coupled to a parameterized 1D core thermal evolution model. We find that the survival of the impact-induced temperature anomalies in the upper mantle is strongly controlled by the mantle viscosity. Impact heating from subsequent impacts can accumulate in stiffer mantles faster than it can be advected away, resulting in a thermal blanket that insulates an entire hemisphere. The impact heating in the core will halt dynamo activity, at least temporarily. If the mantle is initially cold, and the core initially superheated, dynamo activity may resume as quickly as a few Myr after each impact. However unless the lower mantle has either a low viscosity or a high thermal conductivity, this restored dynamo will last for only a few hundred Myr after the end of the sequence of impacts. Thus, we find that the longevity of the magnetic field is more strongly controlled by the lower mantle properties and relatively insensitive to the impact-induced temperature anomalies in the upper mantle.
Oceanic crust recycling and the formation of lower mantle heterogeneity
NASA Astrophysics Data System (ADS)
van Keken, Peter E.; Ritsema, Jeroen; Haugland, Sam; Goes, Saskia; Kaneshima, Satoshi
2016-04-01
The Earth's lower mantle is heterogeneous at multiple scales as demonstrated for example by the degree-2 distribution of LLSVPs seen in global tomography and widespread distribution of small scale heterogeneity as seen in seismic scattering. The origin of this heterogeneity is generally attributed to leftovers from Earth's formation, the recycling of oceanic crust, or a combination thereof. Here we will explore the consequences of long-term oceanic crust extraction and recycling by plate tectonics. We use geodynamical models of mantle convection that simulate plates in an energetically consistent manner. The recycling of oceanic crust over the age of the Earth produces persistent lower mantle heterogeneity while the upper mantle tends to be significantly more homogeneous. We quantitatively compare the predicted heterogeneity to that of the present day Earth by tomographic filtering of the geodynamical models and comparison with S40RTS. We also predict the scattering characteristics from S-P conversions and compare these to global scattering observations. The geophysical comparison shows that lower mantle heterogeneity is likely dominated by long-term oceanic crust recycling. The models also demonstrate reasonable agreement with the geochemically observed spread between HIMU-EM1-DMM in ocean island basalts as well as the long-term gradual depletion of the upper mantle as observed in Lu-Hf systematics.
Constraints on radial anisotropy in the central Pacific upper mantle from the NoMelt OBS array
NASA Astrophysics Data System (ADS)
Russell, J. B.; Gaherty, J. B.; Lin, P. P.; Zebker, M.
2016-12-01
Observations of seismic anisotropy in ocean basins are important for constraining deformation and melting processes in the upper mantle. The NoMelt OBS array was deployed on relatively pristine, 70-Ma seafloor in the central Pacific with the aim of constraining upper-mantle circulation and the evolution of the lithosphere-asthenosphere system. Azimuthal variations in Rayleigh-wave velocity suggest strong anisotropic fabric both in the lithosphere and deep in the asthenosphere, and we aim to evaluate whether radial anisotropy shows a similar pattern. We use a combination of Love waves from earthquakes (20-100 s) as well as high-frequency ambient noise (5-10 s) to estimate VSH in the upper 300 km beneath the NoMelt array. Waveform fitting of the ambient-noise cross spectra provide phase-velocity estimates that are sensitive to the upper 50 km of the mantle. To constrain structure beneath the lid, we employ an array-based approach to measure Love-wave phase velocities across the array using seven shallow-focus events (< 25 km) with high signal-to-noise ratio and diverse azimuthal coverage. The Love wave phase-velocity measurements suggest strong interference of the first overtone for intermediate periods (20-50 s), while longer periods (>60 s) are mostly dominated by fundamental mode energy. Through forward modeling of Love wave Fréchet kernels, we find an extremely strong nonlinearity in individual mode-branch sensitivity that is dependent on the relative velocity difference between the low-velocity zone (LVZ) and the overlying Pacific lid. For the fundamental mode in the presence of a strong LVZ, intermediate periods (20-50 s) have little sensitivity within the lithospheric mantle with peak sensitivity pushed to the base of the low-velocity zone. This peak sensitivity migrates to much shallower depth as the lid/LVZ contrast is reduced. Therefore, we use a Monte Carlo approach to systematically explore the model space and identify the most robust model features required to minimize phase-velocity misfit of the full multimode Love wave arrivals. The resulting VSH model is combined with the NoMelt VSV model to obtain estimates of radial anisotropy for the top 300km of the central Pacific upper-mantle.
Upper Mantle of the Central Part of the Russian Platform by Receiver Function Data.
NASA Astrophysics Data System (ADS)
Goev, Andrey; Kosarev, Grigoriy; Sanina, Irina; Riznichenko, Oksana
2017-04-01
The study of the upper mantle of the Russian Platform (RP) with seismic methods remains limited due to the lack of broadband seismic stations. Existing velocity models have been obtained by using the P-wave travel-times from seismic events interpreted as explosions recorded at the NORSAR array in 1974-75 years. Another source of information is deep seismic sounding data from long-range profiles (exceeding 3000 km) such as QUARTZ, RUBIN-1 and GLOBUS and peaceful nuclear explosions (PNE) as sources. However, the data with the maximum distances larger than 1500 km have been acquired on the RP and only in the northern part. Being useful, these velocity models have low spatial resolution. This study analyzes and integrates all the existing RP upper mantle velocity models with the main focus on the central region. We discuss the completeness of the RP area of the LITHO 1.0 model. Based on results of our analysis, we conclude that it is necessary to get up-to-date velocity models of the upper mantle using broadband stations located at the central part of the RP using Vp/Vs ratio data and anisotropy parameters for robust estimation of the mantle boundaries. By applying the joint inversion of receiver-function (RF) data, travel-time residuals and dispersion curves of surface waves we get new models reaching 300 km depth at the locations of broadband seismic stations at the central part of the RP. We used IRIS stations OBN, ARU along with MHV and mobile array NOV. For each station we attempt to determine thickness of the lithosphere and to locate LVL, LAB, Lehman and Hales boundaries as well as the discontinuities in the transition zones at the depth of 410 and 660 km. Also we investigate the necessity of using short-period and broadband RF separately for more robust estimation of the velocity model of the upper mantle. This publication is based on work supported by the Russian Foundation for Basic Research (RFBR), project 15-05-04938 and by the leading scientific school NS-3345.2014.5
Lithospheric Thickness on Venus from Magellan Gravity and Topography
NASA Technical Reports Server (NTRS)
Johnson, C. L.
2005-01-01
This final report summarizes work carried out during my PGG funding for the period 3/1/02-2/28/05. Research under this award has focused on the areas described below and is represented in the publications list, invited departmental lectures and presentations at professional meetings. The grant has provided partial support for 1 graduate student, Renee Bulow, and provided 1 month per year of my summer salary. The linking theme of the research performed under this award is the manifestation of the thermal history of terrestrial planetary bodies through the existence and evolution of internally-generated magnetic fields (martian magnetism research, and beginnings of lunar magnetism research), mantle dynamical processes and their resulting surface expression (studies of Venusian coronae task) and the crust and upper mantle structure of a planetary body (lunar seismic structure task). The investigations build upon and extend my previous work supported by the PGG program.
Chapman Conference on Generation of the Oceanic Lithosphere
NASA Astrophysics Data System (ADS)
Presnall, D. C.; Hales, A. L.; Frey, F. A.
On April 6-10, 1981, the Chapman conference on Generation of the Oceanic Lithosphere was held at Airlie House, Warrenton, Virginia. It was convened by D.C. Presnall, A.L. Hales (both at the University of Texas at Dallas), and F.A. Frey (Massachusetts Institute of Technology). The purpose of the conference was to bring together scientists with diverse specialties to develop a better understanding of the constraints imposed by geophysics, geochemistry, petrology, and tectonics on processes of oceanic lithosphere generation. Sessions were held on the nature of the crust and upper mantle at spreading centers; trace elements and isotopes; experimental petrology; magma chamber dynamics, melt migration, and mantle flow; slow versus fast spreading ridges; Atlantic spreading centers; Pacific spreading centers; and hydrothermal activity, metasomatism, and metamorphism. Fifty-four oral papers and 47 poster papers were presented. One hundred twenty-eight scientists attended from Australia, Canada, Cyprus, Denmark, France, Iceland, Japan, Mexico, United Kingdom, United States, and the USSR.
NASA Astrophysics Data System (ADS)
Raterron, P.; Chen, J.; Geenen, T.; Girard, J.
2009-04-01
Recent developments in high-pressure deformation devices coupled with synchrotron radiation allow investigating the rheology of mantle minerals and aggregates at the extreme pressure (P) and temperature (T) of their natural occurrence in the Earth. This is particularly true in the case of olivine, which rheology has been recently investigated in the Deformation-DIA apparatus (D-DIA, see Wang et al., 2003, Rev. Scientific Instr., 74, 3002) at upper-mantle P and T conditions. Olivine deforms by dislocation creep in the shallow upper-mantle, as revealed by the seismic velocity anisotropy observed in this region. The attenuation of seismic anisotropy at depth greater than 200 km is interpreted as a pressure-induced change in olivine main deformation mechanism. It was first attributed to a transition from dislocation creep to diffusion creep (Karato and Wu, 1993, Science, 260, 771). This interpretation has been challenged by deformation data obtained at high pressure (P > 3 GPa) in the dislocation creep regime (Couvy et al., 2004, EJM, 16, 877; Raterron et al., 2007, Am. Miner., 92, 1436; Raterron et al., 2009, PEPI, 72, 74), which support a second interpretation: a transition in olivine dominant dislocation slip, from [100] slip at low P to [001] slip at high P (e.g., Mainprice et al., 2005, Nature, 433, 731). Such a P -induced [100]/[001] slip transition is also supported by recent theoretical studies based on first-principle calculations of olivine dislocation slips (Durinck et al., 2005, PCM, 32, 646; Durinck et al., 2007, Eur. J. Mineral., 19, 631). In order to further constrain the effect of pressure on olivine slip system activities, deformation experiments were carried out in poor water condition at P > 5 GPa and T =1400Ë C, on pure forsterite (Fo100) and San Carlos olivine crystals, using the D-DIA at the X17B2 beamline of the NSLS (Upton, NY, USA). Crystals were oriented in order to active either [100] slip alone or [001] slip alone in (010) plane, or both [100](001) and [001](100) systems together. Constant applied stress < 300 MPa and specimen strain rates were monitored in situ using time-resolved X-ray diffraction and radiography, respectively. Run products were investigated by transmission electron microscopy (TEM) in order to verify the actual activation of the tested dislocation slip systems. The obtained data were compared with rheological data previously obtained at comparable T and conditions, but at room P (Darot and Gueguen, 1981, JGR, 86, 6219; Bai et al., 1991, JGR, 96, 2441), resulting in creep power laws which quantify the effect of P on olivine rheology. The new data confirm the occurrence of a P -induced [100]/[001] slip transition, and suggest that [001](010) system dominates olivine deformation in the deep upper mantle. Extrapolation of the obtained rheological laws to natural condition along upper-mantle geotherms, shows that the [100] / [001] slip transition should occur in the Earth at ~ 200 km depth, thus can explain the attenuation of seismic anisotropy in the deep upper mantle. The obtained rheological laws were also integrated into a straightforward olivine aggregate model, then extrapolated to mantle condition using a 2-D geodynamic modeling application (Van den Berg et al., 1993, Geophys. J. International, 115, 62), which is the simplest approach to investigate upper-mantle steady-state deformation. In the application, the velocity of the lower boundary (the transition-zone boundary at 410-km depth) was set to 0, while that at the Earth's surface was set to 2 cm/year. Results from this modeling suggest that the combine activity of [100] and [001] slips in olivine aggregates may significantly decrease mantle viscosity below the oceanic lithosphere, thus, may contribute to the low viscosity zone (LVZ) required in plate tectonics to decouple rigid plates from the more ductile asthenophere underneath.
NASA Astrophysics Data System (ADS)
Vozar, J.; Fullea, J.; Jones, A. G.
2013-12-01
Investigations of the lithosphere and sub-lithospheric upper mantle by integrated petrological-geophysical modeling of magnetotelluric (MT) and seismic surface-wave data, which are differently sensitive to temperature and composition, allows us to reduce the uncertainties associated with modeling these two data sets independently, as commonly undertaken. We use selected INDEPTH MT data, which have appropriate dimensionality and large penetration depths, across central Tibet for 1D modeling. Our deep resistivity models from the data can be classified into two different and distinct groups: (i) the Lhasa Terrane and (ii) the Qiangtang Terrane. For the Lhasa Terrane group, the models show the existence of upper mantle conductive layer localized at depths of 200 km, whereas for the Qiangtang Terrane, this conductive layer is shallower at depths of 120 km. We perform the integrated geophysical-petrological modeling of the MT and surface-wave data using the software package LitMod. The program facilitates definition of realistic temperature and pressure distributions within the upper mantle for given thermal structure and oxide chemistry in the CFMAS system. This allows us to define a bulk geoelectric and seismic model of the upper mantle based on laboratory and xenolith data for the most relevant mantle minerals, and to compute synthetic geophysical observables. Our results suggest an 80-120 km-thick, dry lithosphere in the central part of the Qiangtang Terrane. In contrast, in the central Lhasa Terrane the predicted MT responses are too resistive for a dry lithosphere regardless its thickness; according to seismic and topography data the expected lithospheric thickness is about 200 km. The presence of small amounts of water significantly decreases the electrical resistivity of mantle rocks and is required to fit the MT responses. We test the hypothesis of small amounts of water (ppm scale) in the nominally anhydrous minerals of the lithospheric mantle. Such a small amount of water dramatically affects the resistivity but has no influence on the seismic velocities (and therefore, the calculated surface wave's dispersion curves are unaffected too). Three different proton conduction models for olivine conductivity (1 - Wang et al., 2006; 2 - Yoshino et al., 2009; 3 -Jones et al., 2012) and two water partition coefficients are tested. The presence of water in lithospheric mantle is decreased from 170 km to the LAB depth at 200 km. If we move this water-presentbottom boundary to shallower depth, the lithospheric mantle becomes too resistive. Our results favour a moderately wet (<0.01 wt%) mantle above the underthrusted Indian lithosphere, probably as a result of the dehydration processes. The presence of percolating water-rich fluids has the additional effect of lowering the solidus, and therefore facilitating partial melting in the warm lower crust of Lhasa.
NASA Astrophysics Data System (ADS)
Gao, Y.; Wang, Q.; SHI, Y.
2017-12-01
There are orogenic belts and strong deformation in northeastern zone of Tibetan Plateau. The media in crust and in the upper mantle are seismic anisotropic there. This study uses seismic records by permanent seismic stations and portable seismic arrays, and adopts analysis techniques on body waves to obtain spatial anisotropic distribution in northeastern front zone of Tibetan Plateau. With seismic records of small local earthquakes, we study shear-wave splitting in the upper crust. The polarization of fast shear wave (PFS) can be obtained, and PFS is considered parallel to the strike of the cracks, as well as the direction of maximum horizontal compressive stress. However, the result shows the strong influence from tectonics, such as faults. It suggests multiple-influence including stress and fault. Spatial distribution of seismic anisotropy in study zone presents the effect in short range. PFS at the station on the strike-slip fault is quite different to PFS at station just hundreds of meters away from the fault. With seismic records of teleseismic waveforms, we obtained seismic anisotropy in the whole crust by receiver functions. The PFS directions from Pms receiver functions show consistency, generally in WNW. The time-delay of slow S phases is significant. With seismic records of SKS, PKS and SKKS phases, we can detect seismic anisotropy in the upper mantle by splitting analysis. The fast directions of these phases also show consistency, generally in WNW, similar to those of receiver functions, but larger time-delays. It suggests significant seismic anisotropy in the crust and crustal deformation is coherent to that in the upper mantle.Seismic anisotropy in the upper crust, in the whole crust and in the upper mantle are discussed both in difference and tectonic implications [Grateful to the support by NSFC Project 41474032].
Experimental constraints on the damp peridotite solidus and oceanic mantle potential temperature
NASA Astrophysics Data System (ADS)
Sarafian, Emily; Gaetani, Glenn A.; Hauri, Erik H.; Sarafian, Adam R.
2017-03-01
Decompression of hot mantle rock upwelling beneath oceanic spreading centers causes it to exceed the melting point (solidus), producing magmas that ascend to form basaltic crust ~6 to 7 kilometers thick. The oceanic upper mantle contains ~50 to 200 micrograms per gram of water (H2O) dissolved in nominally anhydrous minerals, which—relative to its low concentration—has a disproportionate effect on the solidus that has not been quantified experimentally. Here, we present results from an experimental determination of the peridotite solidus containing known amounts of dissolved hydrogen. Our data reveal that the H2O-undersaturated peridotite solidus is hotter than previously thought. Reconciling geophysical observations of the melting regime beneath the East Pacific Rise with our experimental results requires that existing estimates for the oceanic upper mantle potential temperature be adjusted upward by about 60°C.
Seismic properties of the crust and uppermost mantle of North America
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B.; Keller, G. R.
1983-01-01
Seismic refraction profiles for the North American continent were compiled. The crustal models compiled data on the upper mantle seismic velocity (P sub n), the crustal thickness (H sub c) and the average seismic velocity of the crystalline crust (V sub p). Compressional wave parameters were compared with shear wave data derived from surface wave dispersion models and indicate an average value for Poisson's ratio of 0.252 for the crust and of 0.273 for the uppermost mantle. Contour maps illustrate lateral variations in crustal thickness, upper mantle velocity and average seismic velocity of the crystalline crust. The distribution of seismic parameters are compared with a smoothed free air anomaly map of North America and indicate that a complidated mechanism of isostatic compensation exists for the North American continent. Several features on the seismic contour maps also correlate with regional magnetic anomalies.
NASA Astrophysics Data System (ADS)
de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.
1999-09-01
Incorporating upper mantle differentiation through decompression melting in a numerical mantle convection model, we demonstrate that a compositionally distinct root consisting of depleted peridotite can grow and remain stable during a long period of secular cooling. Our modeling results show that in a hot convecting mantle partial melting will produce a compositional layering in a relatively short time of about 50 Ma. Due to secular cooling mantle differentiation finally stops before 1 Ga. The resulting continental root remains stable on a billion year time scale due to the combined effects of its intrinsically lower density and temperature-dependent rheology. Two different parameterizations of the melting phase-diagram are used in the models. The results indicate that during the Archaean melting occurred on a significant scale in the deep regions of the upper mantle, at pressures in excess of 15 GPa. The compositional depths of continental roots extend to 400 km depending on the potential temperature and the type of phase-diagram parameterization used in the model. The results reveal a strong correlation between lateral variations of temperature and the thickness of the continental root. This shows that cold regions in cratons are stabilized by a thick depleted root.
NASA Astrophysics Data System (ADS)
Lee, S.; Park, Y.; Kim, K.; Rhie, J.
2010-12-01
The study on the topography of the upper mantle discontinuities helps us to understand the complex interactions between the subducting slabs and upper mantle discontinuities. To investigate the depth variation of the upper mantle discontinuities beneath the Korean Peninsula and surrounding regions, we applied the common conversion point stacking of the P-to-s receiver functions. The broadband seismic networks in South Korea and Japan were used to produce the high-resolution receiver function images of the region. The 410- and 660-km discontinuities (hereafter referred to as the 410 and the 660) are clearly imaged and their depth variations show interesting features, especially for the 660. In this region, the subducting Pacific slab bends to flatten over the 660 and several tomographic images indicate that the stagnant slab is extending to the west under China. If the depth of the 660 is affected by the temperature, the broad depression of the 660 is expected and several SS precursor studies support this idea. However, our observation shows that the 660 is locally depressed and its pattern is spatially changing. While the depressed 660 due to the Pacific slab is clearly imaged at lower latitudes (< 37°N), there is no evidence of the depressed 660 to the north. It indicates that the effect of the Pacific slab on the depth variation of the 660 is changing significantly in our study area.
Deep structure of Medicine Lake volcano, California
Ritter, J.R.R.; Evans, J.R.
1997-01-01
Medicine Lake volcano (MLV) in northeastern California is the largest-volume volcano in the Cascade Range. The upper-crustal structure of this Quaternary shield volcano is well known from previous geological and geophysical investigations. In 1981, the U.S. Geological Survey conducted a teleseismic tomography experiment on MLV to explore its deeper structure. The images we present, calculated using a modern form of the ACH-inversion method, reveal that there is presently no hint of a large (> 100 km3), hot magma reservoir in the crust. The compressional-wave velocity perturbations show that directly beneath MLV's caldera there is a zone of increased seismic velocity. The perturbation amplitude is +10% in the upper crust, +5% in the lower crust, and +3% in the lithospheric mantle. This positive seismic velocity anomaly presumably is caused by mostly subsolidus gabbroic intrusive rocks in the crust. Heat and melt removal are suggested as the cause in the upper mantle beneath MLV, inferred from petro-physical modeling. The increased seismic velocity appears to be nearly continuous to 120 km depth and is a hint that the original melts come at least partly from the lower lithospheric mantle. Our second major finding is that the upper mantle southeast of MLV is characterized by relatively slow seismic velocities (-1%) compared to the northwest side. This anomaly is interpreted to result from the elevated temperatures under the northwest Basin and Range Province.
NASA Astrophysics Data System (ADS)
Bressers, C. A.; Nyblade, A.; Tugume, F.
2017-12-01
Data from a newly installed temporary seismic array in northeastern Uganda are incorporated into an existing body wave tomography model of eastern Africa to improve imaging of the upper mantle beneath the northern part of the East African Plateau. Nine temporary broadband stations were installed in January 2017 and will be operated through 2018 to obtain data for resolving structure under the northern part of the plateau as well as the East African rift in northern Kenya. Preliminary tomography models incorporate several months of data from stations in NE Uganda, plus many years of data from over 200 seismic stations throughout eastern Africa used in previously published body wave tomography models. The data come from teleseismic earthquakes with mb ≥ 5.5 at a distance from each station of 30° to 90°. P and S wave travel time residuals have been obtained using a multichannel cross correlation method and inverted using VanDecar's method to produce 3D tomographic images of the upper mantle. The preliminary results exhibit better resolved structure under the northern part of the East African Plateau than pervious models and suggest that the fast-wave speed anomaly in the upper mantle associated with the Tanzanian Craton—which is bounded by the Western and Eastern branches of the rift system—extends across most of northern Uganda.
Redox-influenced seismic properties of upper-mantle olivine
NASA Astrophysics Data System (ADS)
Cline, C. J., II; Faul, U. H.; David, E. C.; Berry, A. J.; Jackson, I.
2018-03-01
Lateral variations of seismic wave speeds and attenuation (dissipation of strain energy) in the Earth’s upper mantle have the potential to map key characteristics such as temperature, major-element composition, melt fraction and water content. The inversion of these data into meaningful representations of physical properties requires a robust understanding of the micromechanical processes that affect the propagation of seismic waves. Structurally bound water (hydroxyl) is believed to affect seismic properties but this has yet to be experimentally quantified. Here we present a comprehensive low-frequency forced-oscillation assessment of the seismic properties of olivine as a function of water content within the under-saturated regime that is relevant to the Earth’s interior. Our results demonstrate that wave speeds and attenuation are in fact strikingly insensitive to water content. Rather, the redox conditions imposed by the choice of metal sleeving, and the associated defect chemistry, appear to have a substantial influence on the seismic properties. These findings suggest that elevated water contents are not responsible for low-velocity or high-attenuation structures in the upper mantle. Instead, the high attenuation observed in hydrous and oxidized regions of the upper mantle (such as above subduction zones) may reflect the prevailing oxygen fugacity. In addition, these data provide no support for the hypothesis whereby a sharp lithosphere–asthenosphere boundary is explained by enhanced grain boundary sliding in the presence of water.
NASA Astrophysics Data System (ADS)
Bianchi, M. B. D.; Assumpcao, M.; Julià, J.
2017-12-01
The fate of the deep Nazca subducted plate is poorly mapped under stable South America. Transition zone thickness and position is greatly dependent on mantle temperature and so is influenced by the colder Nazca plate position. We use a database of 35,000 LQT deconvolved receiver function traces to image the mantle transition zone and other upper mantle discontinuities under different terranes of stable South American continent. Data from the entire Brazilian Seismographic Network database, consisting of more than 80 broadband stations supplemented by 35 temporary stations deployed in west Brazil, Argentina, Paraguay, Bolivia and Uruguay were processed. Our results indicates that upper mantle velocities are faster than average under stable cratons and that most of the discontinuities are positioned with small variations in respect to nominal depths, except in places were the Nazca plate interacts with the transition zone. Under the Chaco-Pantanal basin the Nazca plate appears to be trapped in the transition zone for more than 1000 km with variations of up to 30 km in 660 km discontinuity topography under this region consistent with global tomographic models. Additional results obtained from SS precursor analysis of South Sandwich Islands teleseismic events recorded at USArray stations indicates that variations of transition zones thickness occur where the Nazca plate interacts with the upper mantle discontinuities in the northern part of Stable South American continent.
Mantle transition zone structure beneath the Canadian Shield
NASA Astrophysics Data System (ADS)
Thompson, D. A.; Helffrich, G. R.; Bastow, I. D.; Kendall, J. M.; Wookey, J.; Eaton, D. W.; Snyder, D. B.
2010-12-01
The Canadian Shield is underlain by one of the deepest and most laterally extensive continental roots on the planet. Seismological constraints on the mantle structure beneath the region are presently lacking due to the paucity of stations in this remote area. Presented here is a receiver function study on transition zone structure using data from recently deployed seismic networks from the Hudson Bay region. High resolution images based on high signal-to-noise ratio data show clear arrivals from the 410 km and 660 km discontinuities, revealing remarkably little variation in transition zone structure. Transition zone thickness is close to the global average (averaging 245 km across the study area), and any deviations in Pds arrival time from reference Earth models can be readily explained by upper-mantle velocity structure. The 520 km discontinuity is not a ubiquitous feature, and is only weakly observed in localised areas. These results imply that the Laurentian root is likely confined to the upper-mantle and if any mantle downwelling exists, possibly explaining the existence of Hudson Bay, it is also confined to the upper 400 km. Any thermal perturbations at transition zone depths associated with the existence of the root, whether they be cold downwellings or elevated temperatures due to the insulating effect of the root, are thus either non-existent or below the resolution of the study.
NASA Astrophysics Data System (ADS)
Agius, Matthew R.; Lebedev, Sergei
2013-04-01
Seismic deployments over the last two decades have produced dense broadband data coverage across the Tibetan Plateau. Yet, the lithospheric dynamics of Tibet remains enigmatic, with even its basic features debated and with very different end-member models still advocated today. Most body-wave tomographic models do not resolve any high-velocity anomalies in the upper mantle beneath central and northern Tibet, which motivated the inference that the Indian lithosphere may sink into deep mantle beneath the Himalayas in the south, with parts of it possibly extruded laterally eastward. In contrast, surface-wave tomographic models all show pronounced high-velocity anomalies beneath much of Tibet at depths around 200 km. Uncertainties over the shapes and amplitudes of the anomalies, however, contribute to the uncertainty of their interpretations, ranging from the subduction of India or Asia to the extreme viscous thickening of the Tibetan lithosphere. Within the lithosphere itself, a low-viscosity layer in the mid-lower crust is evidenced by many observations. It is still unclear, however, whether this layer accommodates a large-scale channel flow (which may have uplifted eastern Tibet, according to one model) or if, instead, deformation within it is similar to that observed at the surface. Broad-band surface waves provide resolving power from the upper crust down to the asthenosphere, for both the isotropic-average shear-wave speeds (characterising the composition and thermal state of the lithosphere) and the radial and azimuthal shear-wave anisotropy (indicative, in an actively deforming region, of the current and recent flow). We measured highly accurate Love- and Rayleigh-wave phase-velocity curves in broad period ranges (up to 5-200 s) for a few tens of pairs and groups of stations across Tibet, combining, in each case, hundreds to thousands of inter-station measurements made with cross-correlation and waveform-inversion methods. Robust shear-velocity profiles were then determined by extensive series of non-linear inversions, designed to constrain the depth-dependent ranges of isotropic-average shear speeds and radial anisotropy consistent with the data. Temperature anomalies in the upper mantle were estimated from shear-velocity using pre-computed petro-physical relationships. Azimuthal anisotropy in the crust and upper mantle was determined by surface-wave tomography and, also, by sub-array analysis targeting the anisotropy amplitude. Our results show that the prominent high-velocity anomalies in the upper mantle are most consistent with the presence of subducted Indian lithosphere beneath much of Tibet. The large estimated thermal anomalies within the high-velocity features match those to be expected within subducted India. The morphology of India's subduction beneath Tibet is complex and shows pronounced west-east variations. Beneath eastern and northeastern Tibet, in particular, the subducted Indian lithosphere appears to have subducted, at a shallow angle, hundreds of km NNE-wards. Azimuthal anisotropy beneath Tibet is distributed in multiple layers with different fast-propagations directions, which accounts for the complexity of published shear-wave splitting observations. The fast directions within the mid-lower crust are parallel to the extensional components of the current strain rate field at the surface, consistent with similar deformation through the entire crust, rather than channel flow. Anisotropy within the asthenosphere beneath northeastern Tibet (sandwiched between the Tibetan lithosphere above and the subducted Indian lithosphere below) indicates SSW-NNE flow, parallel to the direction of motion of the Indian Plate, including its subducted leading edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, P.J.
1988-02-01
Mid-ocean ridge basalt glasses from the Pacific-Nazca Ridge and the northern Juan de Fuca Ridge were analyzed for H/sub 2/O by gas chromatography. Incompatible element enriched (IEE) glasses have higher H/sub 2/O contents than depleted (IED) glasses. H/sub 2/O increases systematically with decreasing Mg/Mg + Fe/sup 2 +/ within each group. Near-primary IED MORBs have an average of about 800 ppm H/sub 2/O, while near-primary IEE MORBs (with chondrite normalized Nb/Zr or La/Sm approx. 2) have about 2100 ppm H/sub 2/O. If these basalts formed by 10-20% partial melting then the IED mantle source had 100-180 ppm H/sub 2/O, whilemore » the IEE source had 250-450 ppm H/sub 2/O. The ratio H/sub 2/O/(Ce + Nd) is fairly constant at 95 +/- 30 for all oceanic basalts from the Pacific. During trace element fractionation in the suboceanic upper mantle, H/sub 2/O behaves more compatibly than K, Rb, Nb, and Cl, but less compatibly than Sm, Zr and Ti. H/sub 2/O is contained mostly in amphibole in the shallow upper mantle. At pressures greater than the amphibole stability limit, it is likely that a significant proportion of H/sub 2/O is contained in a mantle phase which is more refractory than phlogopite at these pressures. The role of H/sub 2/O in mantle enrichment processes is examined by assuming that an enriched component was added. The modeled concentrations of K, Na, Ti and incompatible trace elements in this component are high relative to H/sub 2/O, indicating that suboceanic mantle enrichment is caused by silicate melts such as basanites and not by aqueous fluids.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, W.
1982-08-10
Tectonic features at the earth's surface can be used to test models for mantle return flow and to determine the geographic pattern of this flow. A model with shallow return and deep continental roots places the strongest constraints on the geographical pattern of return flow and predicts recognizable surface manifestations. Because of the progressive shrinkage of the Pacific (averaging 0.5 km/sup 2//yr over the last 180 m.y.) this model predicts upper mantle outflow through the three gaps in the chain of continents rimming the Pacific (Carribbean, Drake Passage, Australian-Antartic gap). In this model, upper mantle return flow streams originating atmore » the western Pacific trenches and at the Java Trench meet south of Australia, filling in behind this rapidly northward-moving continent and provding an explanation for the negative bathymetric and gravity anomalies of the 'Australian-Antarctic-Discordance'. The long-continued tectonic movements toward the east that characterize the Caribbean and the eastenmost Scotia Sea may be produced by viscous coupling to the predicted Pacific outflow through the gaps, and the Caribbean floor slopes in the predicted direction. If mantle outflow does not pass through the gaps in the Pacific perimeter, it must pass beneath three seismic zones (Central America, Lesser Antiles, Scotia Sea); none of these seismic zones shows foci below 200 km. Mantle material flowing through the Caribbean and Drake Passage gaps would supply the Mid-Atlantic Ridge, while the Java Trench supplies the Indian Ocean ridges, so that deep-mantle upwellings need not be centered under spreading ridges and therefore are not required to move laterally to follow ridge migrations. The analysis up to this point suggests that upper mantle return flow is a response to the motion of the continents. The second part of the paper suggest driving mechanism for the plate tectonic process which may explain why the continents move.« less
NASA Astrophysics Data System (ADS)
Rooks, E. E.; Gibson, S. A.; Leat, P. T.; Petrone, C. M.
2015-12-01
H2O and F contents affect many physical and chemical properties of the upper mantle, including melting temperature and viscosity. These elements are hosted by hydrous and F-rich phases, and by modally abundant, nominally-anhydrous/halogen-free mantle minerals, which can potentially accommodate the entire volatile budget of the upper mantle. We present high-precision SIMS analyses of H2O, and F in mantle xenoliths hosted by recently-erupted (5-10 Ka) alkali basalts from south Patagonia (Pali Aike) and older (c. 25 Ma) alkali basalts from localities along the Antarctic Peninsula. Samples are well characterised peridotites and pyroxenites, from a range of depths in the off-craton lithospheric mantle. Minerals are relatively dry: H2O contents of olivine span 0-49 ppm, orthopyroxene 150-235 ppm and clinopyroxene 100-395 ppm, with highest concentrations found in spinel-garnet lherzolites from Pali Aike. These H2O concentrations fall within the global measured range for off-craton mantle minerals. H2O and F are correlated, and the relative compatibility of F in mantle phases is clinopyroxene>orthopyroxene>olivine. However, elevated F concentrations of 100-210 ppm are found in pyroxenites from two Antarctic localities. This elevated F content is not correlated with high H2O, suggesting that these rocks interacted with a F-rich melt. In clinopyroxenes, F concentration is correlated with Ti, and the ratio of M1Ti to M1Al + M1Cr, suggesting a charge balanced substitution. Consistency between samples (excepting high-F pyroxenites) suggests a constant F-budget, and that concentrations in clinopyroxenes are controlled by mineral chemistry. In orthopyroxene, F correlates with CaO, but no other major or minor elements. Large variability of H2O concentrations within samples is attributed to diffusive loss during ascent. Cl is negligible in all samples, indicating little or no influence of slab fluids from this long-lived subduction zone.
Regional magnetic anomaly constraints on continental breakup
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Frese, R.R.B.; Hinze, W.J.; Olivier, R.
1986-01-01
Continental lithosphere magnetic anomalies mapped by the Magsat satellite are related to tectonic features associated with regional compositional variations of the crust and upper mantle and crustal thickness and thermal perturbations. These continental-scale anomaly patterns when corrected for varying observation elevation and the global change in the direction and intensity of the geomagnetic field show remarkable correlation of regional lithospheric magnetic sources across rifted continental margins when plotted on a reconstruction of Pangea. Accordingly, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans.
Origin and Evolution of the Yellowstone Hotspot from Seismic-GPS Imaging and Geodynamic Modeling
NASA Astrophysics Data System (ADS)
Smith, R. B.; Jordan, M.; Puskas, C. M.; Farrell, J.; Waite, G. P.
2006-12-01
The Yellowstone hotspot resulted from interaction of a mantle plume with the overriding North America plate. This feature and related processes have influenced a large part of the western U.S., producing the 16 Ma Yellowstone-Snake River Plain-Newberry silicic-basalt volcanic field (YSRPN). We integrate results from a multi-institution experiment that deployed 80 seismic stations and 160 campaign and 21 permanent GPS stations for 1999-2003. Crust and mantle velocity models were derived from inversion of teleseismic and local earthquake data. Kinematic and dynamic models were derived from inversion of GPS velocities constrained by stresses associated the topography and the +15 m geoid anomaly. Tomography revealed a P- and S-wave low-velocity body at depths of 8-16 km beneath the caldera that is interpreted as partial melt of 8-15% that feeds the youthful Yellowstone volcanic field. Volume changes in the magma chamber are responsible for GPS-measured episodes of uplift and subsidence of the caldera at decadal scales with average rates of ~20 mm/yr but much higher short-term rates of up to 80 mm/yr. An upper-mantle low-velocity body was imaged by inverting teleseismic data constrained by the geoid structure, crustal structure, and the upper mantle discontinuities. This low P and S velocity body extends from 80 km to ~250 km directly beneath Yellowstone and then continues to 650 km with unexpected tilt to the west at ~60°. The tilt is consistent with the ascent of the buoyant magma entrained in eastward return-flow of the upper mantle. We estimate this body has an excess temperature from 85K to 120K, depending on the water content and with up to 1.5% melt. Using the inclined plume-geometry and plate motion history, we extrapolate the Yellowstone mantle source southwestward ~800 km as a plume-head in oceanic lithosphere centered beneath the Columbia Plateau basalt field at 16 Ma. Magma ascent was truncated there by the passage of thicker continental lithosphere over the plume beginning at 12 Ma, reducing the rate of large-scale volcanic eruptions in the YSRP. The decapitated plume head beneath Oregon underwent mantle return flow above the subducting Juan de Fuca plate and was responsible for the NW transgressive magmatism of the Newberry system. We then model the overall kinematics of the western U.S. from GPS data as SW motion for the YSRP, ~2 mm/yr, rotating into E-W motion in the Basin-Range, with a cumulative rate of ~4 mm/yr, and rotating to the northwest at rates of up to ~5 mm/yr in the Pacific Northwest, totaling ~10 mm/yr. Geodynamic models employing the GPS data and geometry of the crust-mantle structure suggests that southwest motion of the YSRP is dominated by stresses produced by the high potential energy of the Yellowstone hotspot while westward motion of the Basin-Range is driven by stress differences associated with the high topography of the Rocky Mountains.
NASA Astrophysics Data System (ADS)
Uysal, Ibrahim; Ersoy, E. Yalçın; Dilek, Yildirim; Kapsiotis, Argyrios; Sarıfakıoğlu, Ender
2016-03-01
The Eldivan ophiolite along the Izmir-Ankara-Erzincan suture zone in north-central Anatolia represents a remnant of the Neotethyan oceanic lithosphere. Its upper mantle peridotites include three lithologically and compositionally distinct units: clinopyroxene (cpx)-harzburgite and lherzolite (Group-1), depleted harzburgite (Group-2), and dunite (Group-3). Relics of primary olivine and pyroxene occur in the less refractory harzburgites, and fresh chromian spinel (Cr-spinel) is ubiquitous in all peridotites. The Eldivan peridotites reflect a petrogenetic history evolving from relatively fertile (lherzolite and cpx-harzburgite) toward more depleted (dunite) compositions through time, as indicated by (i) a progressive decrease in the modal cpx distribution, (ii) a progressive increase in the Cr#s [Cr / (Cr + Al)] of Cr-spinel (0.15-0.78), and (iii) an increased depletion in the whole-rock abundances of some magmaphile major oxides (Al2O3, CaO, SiO2 and TiO2) and incompatible trace elements (Zn, Sc, V and Y). The primitive mantle-normalized REE patterns of the Group-1 and some of the Group-2 peridotites display LREE depletions. Higher YbN and lower SmN/YbN ratios of these rocks are compatible with their formation after relatively low degrees (9-25%) of open-system dynamic melting (OSDM) of a Depleted Mid-ocean ridge Mantle (DMM) source, which was then fluxed with small volumes of oceanic mantle-derived melt [fluxing ratio (β): 0.7-1.2%]. Accessory Cr-spinel compositions (Cr# = 015-0.53) of these rocks are consistent with their origin as residual peridotites beneath a mid-ocean ridge axis. Part of the Group-2 harzburgites exhibit lower YbN and higher SmN/YbN ratios, LREE-enriched REE patterns, and higher Cr-spinel Cr#s ranging between 0.54 and 0.61. Trace element compositions of these peridotites can be modeled by approximately 15% OSDM of a previously 17% depleted DMM, which was then fluxed (β: 0.4%) with subduction-influenced melt. The Group-3 dunite samples contain Cr-spinel with elevated Cr#s (0.73-0.78) and low-TiO2 contents (< 0.13 wt.%), implying higher degrees of melting (21-24%) of an already depleted DMM that was triggered by infiltration of low-Ti boninite melt with fluxing rates of 0.4-4.0%. The existence of interstitial, idiomorphic Cr-spinel (high Cr# and low Ti) in the Group-3 dunites is consistent with this interpretation. The occurrence of both MOR- and SSZ-type peridotites in the Eldivan ophiolite suggests that its heterogeneous upper mantle was produced as a result of different partial melting and melt-rock reaction processes in different tectonic settings within the Neotethyan realm.
An 1-2-1 Cyclic Model for the Evolution of Mantle Structure
NASA Astrophysics Data System (ADS)
Zhong, S.; Zhang, N.
2006-12-01
The present-day Earth`s mantle is predominated by long-wavelength structures including circum-Pacific subducted slabs and Africa and Pacific super-plumes. These long-wavelength structures are largely controlled by the history of plate tectonic motion. Although it dictates the evolution of mantle structure, global plate tectonic history prior to 120 Ma is poorly constrained except for continental motions that can be reliably traced back to >1 Ga. An important observation of continental motions in the last 1 Ga is the two episodes of formation and breakup of super-continents Pangea and Rodinia. We formulated 3D global models of mantle convection with temperature- and depth-dependent viscosity to study the formation of mantle structure. We found that for the upper mantle with 30 times smaller viscosity than the lower mantle, in the absence of continents, mantle convection is characterized by a hemispherically asymmetric structure in which one hemisphere is largely upwellings, while the other hemisphere contains downwellings (i.e., degree-1 convection). This is the first study in which degree-1 mantle convection is observed in mobile-lid/plate-tectonic convection regime at high Rayleigh number. This result suggests that degree-1 convection is a dynamically preferred state for the Earth`s mantle. We suggest that the evolution of mantle structure is controlled by a cyclic process of formation and breakdown of degree-1 convection modulated strongly by continents. The formation and breakup of supercontinents are surface manifestation of this cyclic process. During the degree-1 convection state, the upwellings in one hemisphere push all continents into the other hemisphere with the downwellings to form a supercontinent. The non-subducting nature of continents dictates that subduction in the downwelling hemisphere occurs along the edge of the supercontinent upon its formation. The insulating effect of a supercontinent and return flow from the circum-supercontinent subduction should heat up sub-continental mantle and lead to formation of another upwelling system below the supercontinent and eventually to breakup of the supercontinent. After the breakup of a supercontinent, the mantle with two large upwellings, similar to that for the present-day Earth, is then evolved back to degree-1 convection state. We will also discuss the geological and geophysical consequences of our proposed model.
Intraplate mafic magmatism: New insights from Africa and N. America
NASA Astrophysics Data System (ADS)
Ebinger, C. J.; van der Lee, S.; Tepp, G.; Pierre, S.
2017-12-01
Plate tectonic concepts consider that continental interiors are stable, with magmatism and strain localized to plate boundaries. We re-evaluate the role of pre-existing and evolving lithospheric heterogeneities in light of perspectives afforded by surface to mantle results from active and ancient rift zones in Africa and N. America. Our process-oriented approach addresses the localization of strain and magmatism and stability of continental plate interiors. In both Africa and N. America, geophysical imaging and xenolith studies reveal that thick, buoyant, and chemically distinct Archaean cratons with deep roots may deflect mantle flow, and localize magmatism and strain over many tectonic cycles. Studies of the Colorado Plateau and East African rift reveal widespread mantle metasomatism, and high levels of magma degassing along faults and at active volcanoes. The volcanoes and magmatic systems show a strong dependence on pre-existing heterogeneities in plate structure. Syntheses of the EarthScope program ishow that lateral density contrasts and migration of volatiles that accumulated during subduction can refertilize mantle lithosphere, and enable volatile-rich magmatism beneath relatively thick continental lithosphere. For example, the passive margin of eastern N. America shows uplift and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of coupling between the lithosphere, asthenosphere, and deeper mantle. As demonstrated by the East African Rift, the Mid-Continent Rift, and other active and ancient rift zones, the interiors of continents, including thick, cold Archaean cratons are not immune to mafic magmatism and tectonism. Recent studies in N. America and Africa reveal ca. 1000 km-wide zones of dynamic uplift, low upper mantle velocities, and broadly distributed strain. The distribution of magmatism and volatile release, in combination with geophysical signals, indicates a potentially convective origin for widespread intraplate earthquakes and magmatism, across areas broader than the surface expression of rifting. Integrated geophysical, geological and geochemical studies reveal large volumes and rates of magmatism at rift zones, provoking re-evaluation of crustal accretion and carbon and water cycles, as well as earthquake and volcanic hazards.
The fate of water within Earth and super-Earths and implications for plate tectonics
2017-01-01
The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416729
The fate of water within Earth and super-Earths and implications for plate tectonics.
Tikoo, Sonia M; Elkins-Tanton, Linda T
2017-05-28
The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Authors.
Magma-assisted rifting in Ethiopia.
Kendall, J-M; Stuart, G W; Ebinger, C J; Bastow, I D; Keir, D
2005-01-13
The rifting of continents and evolution of ocean basins is a fundamental component of plate tectonics, yet the process of continental break-up remains controversial. Plate driving forces have been estimated to be as much as an order of magnitude smaller than those required to rupture thick continental lithosphere. However, Buck has proposed that lithospheric heating by mantle upwelling and related magma production could promote lithospheric rupture at much lower stresses. Such models of mechanical versus magma-assisted extension can be tested, because they predict different temporal and spatial patterns of crustal and upper-mantle structure. Changes in plate deformation produce strain-enhanced crystal alignment and increased melt production within the upper mantle, both of which can cause seismic anisotropy. The Northern Ethiopian Rift is an ideal place to test break-up models because it formed in cratonic lithosphere with minor far-field plate stresses. Here we present evidence of seismic anisotropy in the upper mantle of this rift zone using observations of shear-wave splitting. Our observations, together with recent geological data, indicate a strong component of melt-induced anisotropy with only minor crustal stretching, supporting the magma-assisted rifting model in this area of initially cold, thick continental lithosphere.
NASA Technical Reports Server (NTRS)
Spada, Giorgio; Sabadini, Roberto; Yuen, David A.
1991-01-01
A five-layer viscoelastic spherical model is used to calculate the transient displacements of postglacial rebound, the induced polar motions, and the temporal variations of the geopotential up to degree 8 of the zonal coefficients. Two models - one with two viscoelastic layers separated at 670 km, and the other with three layers in which a hard garnet layer lies between the upper and lower mantle - are compared. Forward modeling shows that it may be possible to discern the presence of a hard garnet layer with a viscosity of at least ten times greater than the upper mantle, on the basis of uplift data near the center of the former Laurentide ice-sheet and from polar wander and j2 data. Temporal variations of higher gravity harmonics, such as j6 and j8, can potentially place even tighter constraints on the rheological properties of the hard transition zone. A lower mantle viscosity between 2 and 4 x 10 to the 22nd Pa is generally preferred in models with a garnet layer which may be as large as 50 times more viscous than the upper mantle.
NASA Astrophysics Data System (ADS)
Cui, Z.; Meltzer, A.; Fischer, K. M.; Stachnik, J. C.; Munkhuu, U.; Tsagaan, B.; Russo, R. M.
2017-12-01
The origin and preservation of high-elevation low-relief surfaces in continental interiors remains an open questions. Central Mongolia constitutes a major portion of the Mongolian Plateau and is an excellent place to link deep earth and surface processes. The lithosphere of Mongolia was constructed through accretionary orogenesis associated with the Central Asian Orogenic Belt (CAOB) from the late Paleozoic to the early Triassic. Alkaline volcanic basalt derived from sublithospheric sources has erupted sporadically in Mongolia since 30 Ma. Constraining the depth variation of lithospheric and upper mantle discontinuities is crucial for understanding the interaction between upper mantle structure and surface topography. We conducted receiver functions (RF) analyses suitable data recorded at112 seismic broadband stations in central Mongolia to image the LAB and mantle transition zone beneath Central Mongolia. A modified H-κ stacking was performed to determine crustal average thickness (H) and Vp/Vs ratio (κ). Central Mongolia is characterized by thick crust (43-57 km) enabling use of both P wave RF and to S wave RF to image the LAB. The PRF traces in the depth domain are stacked based on piercing point locations for the 410 and 660 discontinuities using 0.6 ° × 0.6 ° bins in a grid. From south to north, the average lithospheric thickness is 85km in Gobi Altai gradually thinning northeastward to 78km in the southern Hangay Dome, 72 km in the northern Hangay Dome then increases to 75km in Hovsgol area. While there is overall thinning of the lithosphere from SW to NE, beneath the Hangay, there is a slight increase beneath the highest topography. The thickness of the mantle transition zone (MTZ) beneath central Mongolia is similar to global averages. This evidence argues against the hypothesis that a mantle plume exists beneath Central Mongolia causing low velocity anomalies in the upper mantle. To the east of the Hovsgol area in northern Mongolia, the MTZ thickens 10-15 km mainly due to depression in the 660-km discontinuity, perhaps representing a relict of subducted plate during CAOB.
NASA Astrophysics Data System (ADS)
Steffen, Holger; Wu, Patrick
2015-04-01
This poster will present the results of Steffen & Wu (2014). The sensitivity of GNSS measurements in Fennoscandia to nearby viscosity variations in the upper mantle is investigated using a three-dimensional finite element model of glacial isostatic adjustment (GIA). Based on the lateral viscosity structure inferred from seismic tomography and the location of the ice margin at the last glacial maximum (LGM), the GIA earth model is subdivided into four layers, where each of them contains an amalgamation of about 20 blocks of different shapes in the central area. The sensitivity kernels of the three velocity components at 10 selected GNSS stations are then computed for all the blocks. We find that GNSS stations within the formerly glaciated area are most sensitive to mantle viscosities below and in its near proximity, i.e., within about 250 km in general. However, this can be as large as 1000 km if the stations lie near the center of uplift. The sensitivity of all stations to regions outside the ice margin during the LGM is generally negligible. In addition, it is shown that prominent structures in the second (250-450 km depth) and third layers (450-550 km depth) of the upper mantle may be readily detected by GNSS measurements, while the viscosity in the first mantle layer below the lithosphere (70-250 km depth) along the Norwegian coast, which is related to lateral lithospheric thickness variation there, can also be detected but with limited sensitivity. For future investigations on the lateral viscosity structure, preference should be on GNSS stations within the LGM ice margin. But these stations can be grouped into clusters to improve the inference of viscosity in a specific area. However, the GNSS measurements used in such inversion should be weighted according to their sensitivity. Such weighting should also be applied when they are used in combination with other GIA data (e.g., relative sea-level and gravity data) for the inference of mantle viscosity. Reference: Steffen, H. and Wu, P.: The sensitivity of GNSS measurements in Fennoscandia to distinct three-dimensional upper-mantle structures, Solid Earth, 5, 557-567, doi:10.5194/se-5-557-2014, 2014.
Melt migration modeling in partially molten upper mantle
NASA Astrophysics Data System (ADS)
Ghods, Abdolreza
The objective of this thesis is to investigate the importance of melt migration in shaping major characteristics of geological features associated with the partial melting of the upper mantle, such as sea-floor spreading, continental flood basalts and rifting. The partial melting produces permeable partially molten rocks and a buoyant low viscosity melt. Melt migrates through the partially molten rocks, and transfers mass and heat. Due to its much faster velocity and appreciable buoyancy, melt migration has the potential to modify dynamics of the upwelling partially molten plumes. I develop a 2-D, two-phase flow model and apply it to investigate effects of melt migration on the dynamics and melt generation of upwelling mantle plumes and focusing of melt migration beneath mid-ocean ridges. Melt migration changes distribution of the melt-retention buoyancy force and therefore affects the dynamics of the upwelling plume. This is investigated by modeling a plume with a constant initial melt of 10% where no further melting is considered. Melt migration polarizes melt-retention buoyancy force into high and low melt fraction regions at the top and bottom portions of the plume and therefore results in formation of a more slender and faster upwelling plume. Allowing the plume to melt as it ascends through the upper mantle also produces a slender and faster plume. It is shown that melt produced by decompressional melting of the plume migrates to the upper horizons of the plume, increases the upwelling velocity and thus, the volume of melt generated by the plume. Melt migration produces a plume which lacks the mushroom shape observed for the plume models without melt migration. Melt migration forms a high melt fraction layer beneath the sloping base of the impermeable oceanic lithosphere. Using realistic conditions of melting, freezing and melt extraction, I examine whether the high melt fraction layer is able to focus melt from a wide partial melting zone to a narrow region beneath the observed neo-volcanic zone. My models consist of three parts; lithosphere, asthenosphere and a melt extraction region. It is shown that melt migrates vertically within the asthenosphere, and forms a high melt fraction layer beneath the sloping base of the impermeable lithosphere. Within the sloping high melt fraction layer, melt migrates laterally towards the ridge. In order to simulate melt migration via crustal fractures and cracks, melt is extracted from a melt extraction region extending to the base of the crust. Performance of the melt focusing mechanism is not significantly sensitive to the size of melt extraction region, melt extraction threshold and spreading rate. In all of the models, about half of the total melt production freezes beneath the cooling base of the lithosphere, and the rest is effectively focused towards the ridge and forms the crust. To meet the computational demand for a precise tracing of the deforming upwelling plume and including the chemical buoyancy of the partially molten zone in my models, a new numerical method is developed to solve the related pure advection equations. The numerical method is based on Second Moment numerical method of Egan and Mahoney [1972] which is improved to maintain a high numerical accuracy in shear and rotational flow fields. In comparison with previous numerical methods, my numerical method is a cost-effective, non-diffusive and shape preserving method, and it can also be used to trace a deforming body in compressible flow fields.
Geochemical Evidence for a Terrestrial Magma Ocean
NASA Technical Reports Server (NTRS)
Agee, Carl B.
1999-01-01
The aftermath of phase separation and crystal-liquid fractionation in a magma ocean should leave a planet geochemically differentiated. Subsequent convective and other mixing processes may operate over time to obscure geochemical evidence of magma ocean differentiation. On the other hand, core formation is probably the most permanent, irreversible part of planetary differentiation. Hence the geochemical traces of core separation should be the most distinct remnants left behind in the mantle and crust, In the case of the Earth, core formation apparently coincided with a magma ocean that extended to a depth of approximately 1000 km. Evidence for this is found in high pressure element partitioning behavior of Ni and Co between liquid silicate and liquid iron alloy, and with the Ni-Co ratio and the abundance of Ni and Co in the Earth's upper mantle. A terrestrial magma ocean with a depth of 1000 km will solidify from the bottom up and first crystallize in the perovskite stability field. The largest effect of perovskite fractionation on major element distribution is to decrease the Si-Mg ratio in the silicate liquid and increase the Si-Mg ratio in the crystalline cumulate. Therefore, if a magma ocean with perovskite fractionation existed, then one could expect to observe an upper mantle with a lower than chondritic Si-Mg ratio. This is indeed observed in modern upper mantle peridotites. Although more experimental work is needed to fully understand the high-pressure behavior of trace element partitioning, it is likely that Hf is more compatible than Lu in perovskite-silicate liquid pairs. Thus, perovskite fractionation produces a molten mantle with a higher than chondritic Lu-Hf ratio. Arndt and Blichert-Toft measured Hf isotope compositions of Barberton komatiites that seem to require a source region with a long-lived, high Lu-Hf ratio. It is plausible that that these Barberton komatiites were generated within the majorite stability field by remelting a perovskite-depleted part of the upper mantle transition zone.
Applications of the 190Pt-186Os isotope system to geochemistry and cosmochemistry
Walker, R.J.; Morgan, J.W.; Beary, E.S.; Smoliar, M.I.; Czamanske, G.K.; Horan, M.F.
1997-01-01
Platinum is fractionated from osmium primarily as a consequence of processes involving sulfide and metal crystallization. Consequently, the 190Pt-186Os isotope system (190Pt ??? 186Os + ??) shows promise for dating some types of magmatic sulfide ores and evolved iron meteorites. The first 190Pt-186Os isochrons are presented here for ores from the ca. 251 Ma Noril'sk, Siberia plume, and for group IIAB magmatic iron meteorites. Given the known age of the Noril'sk system, a decay constant for 190Pt is determined to be 1.542 ?? 10-12a-1, with ??1% uncertainty. The isochron generated for the IIAB irons is consistent with this decay constant and the known age of the group. The 186Os/188Os ratios of presumably young, mantle-derived osmiridiums and also the carbonaceous chondrite Allende were measured to high-precision to constrain the composition of the modern upper mantle. These compositions overlap, indicating that the upper mantle is chondritic within the level of resolution now available. Our best estimate for this 186Os/188Os ratio is 0.119834 ?? 2 (2??M). The 190Pt/186Os ratios determined for six enstatite chondrites average 0.001659 ?? 75, which is very similar to published values for carbonaceous chondrites. Using this ratio and the presumed composition of the modern upper mantle and chondrites, a solar system initial 186Os/188Os ratio of 0.119820 is calculated. In comparison to the modern upper mantle composition, the 186Os/188Os ratio of the Noril'sk plume was approximately 0.012% enriched in 186Os. Possible reasons for this heterogeneity include the recycling of Pt-rich crust into the mantle source of the plume and derivation of the osmium from the outer core. Derivation of the osmium from the outer core is our favored model. Copyright ?? 1997 Elsevier Science Ltd.
The crustal and mantle velocity structure in central Asia from 3D traveltime tomography
NASA Astrophysics Data System (ADS)
Sun, Y.; Martin, R. V.; Toksoz, M. N.; Pei, S.
2010-12-01
The lithospheric structure in central Asia features large blocks such as the Indian plate, the Afghan block, the Turan plate, and the Tarim block. This geologically and tectonically complicated area is also one of the most seismically active regions in the world. We developed P- and S- wave velocity structures of the central Asia in the crust using the traveltime data from Kyrgyzstan, Tajikistan, Kazakhstan, and Uzbek. We chose the events and stations between 32N65E and 45N85E and focused on the areas of Pamir and western Tianshan. In this data set, there are more than 6000 P and S arrivals received at 80 stations from about 300 events. The double difference tomography is applied to relocate events and to invert for seismic structures simultaneously. Our results provide accurate locations of earthquakes and high resolution crustal structure in this region. To extend the model deeper into the mantle through the upper mantle transition zone, ISC/EHB data for P and PP phases are combined with the ABCE data. To counteract the “smearing effect,” the crust and upper mantle velocity structure, derived from regional travel-times, is used. An adaptive grid method based on ray density is used in the inversion. A P-wave velocity model extending down to a depth of 2000 km is obtained. regional-teleseismic tomography provides a high-resolution, 3-D P-wave velocity model for the crust, upper mantle, and the transition zone. The crustal models correlate well with geologic and tectonic features. The upper mantle tomograms show the images of Tian Shan. The slab geometry is quite complex, reflecting the history of the changes in the plate motions and collision processes. Vp/Vs tomography was also determined in the study region, and an attenuation tomography was obtained as well.
Slab Penetration vs. Slab Stagnation: Mantle Reflectors as an Indicator
NASA Astrophysics Data System (ADS)
Okeler, A.; Gu, Y. J.; Schultz, R.; Contenti, S. M.
2011-12-01
Subducting oceanic lithosphere along convergent margins may stagnate near the base of the upper mantle or penetrate into the lower mantle. These dynamic processes cause extensive thermal and compositional variations, which can be observed in terms of impedance contrast (reflectivity) and topography of mantle transition zone (MTZ) discontinuities, i.e., 410- and 660-km discontinuities. In this study, we utilize ~ 15000 surface-reflected shear waves (SS) and their precursory arrivals (S410S and S660S) to analyze subduction related deformations on mantle reflectivity structure. We apply pre-stack, time-to-depth migration technique to SS precursors, and move weak underside reflections using PREM-predicted travel-time curves. Common Mid-point gathers are formed to investigate structure under the western Pacific, south America, and Mediterranean convergent boundaries. In general, mantle reflectivity structures are consistent with previous seismic tomography models. In regions of slab penetration (e.g., southern Kurile arc, Aegean Sea), our results show 1) a substantial decrease in S660S amplitude, and 2) strong lower mantle reflector(s) at ~ 900 km depth. These reflective structures are supported by zones of high P and S velocities extending into the lower mantle. Our 1-D synthetic simulations suggest that the decreasing S660S amplitudes are, at least partially, associated with shear wave defocusing due to changes in reflector depth (by ±20 km) within averaging bin. Assuming a ~500 km wide averaging area, a dipping reflector with 6-8 % slope can reduce the amplitude of a SS precursor by ~50%. On the other hand, broad depressions with strong impedance contrast at the base of the MTZ characterize the regions of slab stagnation, such as beneath the Tyrrhenian Sea and northeastern China. For the latter region, substantial topography on the 660-km discontinuity west of the Wadati-Benioff zone suggests that the stagnant part of the Pacific plate across Honshu arc is not nearly as flat as previously suggested.
35. SECOND FLOOR, SOUTHEAST ROOM, NORTH WALL: BLACK MARBLE MANTLE. ...
35. SECOND FLOOR, SOUTHEAST ROOM, NORTH WALL: BLACK MARBLE MANTLE. Grape clusters above columns repeat in upper part of cornice and probably in destroyed ceiling centerpiece - Governor Thomas Bennett House, 1 Lucas Street, Charleston, Charleston County, SC
The dynamics of double slab subduction
NASA Astrophysics Data System (ADS)
Holt, A. F.; Royden, L. H.; Becker, T. W.
2017-04-01
We use numerical models to investigate the dynamics of two interacting slabs with parallel trenches. Cases considered are: a single slab reference, outward dipping slabs (out-dip), inward dipping slabs (in-dip) and slabs dipping in the same direction (same-dip). Where trenches converge over time (same-dip and out-dip systems), large positive dynamic pressures in the asthenosphere are generated beneath the middle plate and large trench-normal extensional forces are transmitted through the middle plate. This results in slabs that dip away from the middle plate at depth, independent of trench geometry. The single slab, the front slab in the same-dip case and both out-dip slabs undergo trench retreat and exhibit stable subduction. However, slabs within the other double subduction systems tend to completely overturn at the base of the upper mantle, and exhibit either trench advance (rear slab in same-dip), or near-stationary trenches (in-dip). For all slabs, the net slab-normal dynamic pressure at 330 km depth is nearly equal to the slab-normal force induced by slab buoyancy. For double subduction, the net outward force on the slabs due to dynamic pressure from the asthenosphere is effectively counterbalanced by the net extensional force transmitted through the middle plate. Thus, dynamic pressure at depth, interplate coupling and lithospheric stresses are closely linked and their effects cannot be isolated. Our results provide insights into both the temporal evolution of double slab systems on Earth and, more generally, how the various components of subduction systems, from mantle flow/pressure to interplate coupling, are dynamically linked.
Rayleigh Wave Phase Velocity in the Upper Mantle Beneath the Indian Ocean
NASA Astrophysics Data System (ADS)
Godfrey, K. E.; Dalton, C. A.; Ritsema, J.
2016-12-01
Most of what is currently understood about the seismic properties of oceanic upper mantle is based on either global studies or regional studies of the upper mantle beneath the Pacific Ocean. However, global seismic models and geochemical studies of mid-ocean ridge basalts indicate differences in the properties of the upper mantle beneath the Pacific, Atlantic, and Indian oceans. Though the Indian Ocean is not as well studied seismically, it is host to a number of geologically interesting features including 16,000 km of mid-ocean ridge with a range of spreading rates from 14 mm/yr along the Southwest Indian Ridge to 55-75 mm/yr along the Southeast Indian Ridge. The Indian Ocean also contains multiple volcanic hotspots, the Australian-Antarctic Discordance, and a low geoid anomaly south of India, and it overlies a portion of a large low-shear-velocity province. We are using Rayleigh waves to construct a high-resolution seismic velocity model of the Indian Ocean upper mantle. We utilize a global dataset of phase delays measured at 20 periods, between 37 and 375 seconds; the dataset includes between 700 and 20,000 that traverse our study region exclusively, with a larger number of paths at shorter periods. We explore variations in phase velocity using two separate approaches. One, we allow phase velocity to vary only as a function of seafloor age. Two, we perform a damped least-squares inversion to solve for 2-D phase velocity maps at each period. Preliminary results indicate low velocities along the Southeast Indian Ridge and Central Indian Ridge, but the expected low velocities are less apparent along the slow-spreading Southwest Indian Ridge. We observe a region of fast velocities extending from Antarctica northward between the Kerguelen and Crozet hotspots, and lower than expected velocities beneath the Reunion hotspot. Additionally, we find low velocities associated with a region of extinct seafloor spreading in the Wharton basin.
Upper Mantle Seismic Structure for NE Tibet From Multiscale Tomography Method
NASA Astrophysics Data System (ADS)
Guo, B.; Liu, Q.; Chen, J.
2013-12-01
In the real seismic experiments, the spatial sampling of rays inside the studied volume is basically nonuniform because of the unequispaced distribution of the seismic stations as well as the earthquake events. The conventional seismic tomography schemes adopt fixed size of cells or grid spacing while the actual resolution varies. As a result, either the phantom velocity anomalies may be aroused in regions that are poorly illuminated by the seismic rays, or the best detailed velocity model is unable to be extracted from those with fine ray coverage. We present an adaptive wavelet parameterization solution for three-dimensional traveltime seismic tomography problem and apply it to the study of the tectonics in the Northeast Tibet region. Different from the traditional parameterization schemes, we discretize the velocity model in terms of the Haar wavelets and the parameters are adjusted adaptively based on both the density and the azimuthal coverage of rays. Therefore, the fine grids are used in regions with the good data coverage, whereas the poorly resolved areas are represented by the coarse grids. Using the traveltime data recorded by the portable seismic array and the regional seismic network in the northeastern Tibet area, we investigate the P wave velocity structure of the crust and upper mantle. Our results show that the structure of the crust and upper mantle in the northeastern Tibet region manifests a strong laterally inhomogeneity, which appears not only in the adjacent areas between the different blocks, but also within each block. The velocity of the crust and upper mantle is highly different between the northeastern Tibet and the Ordos plateau. Of these two regions, the former possesses a low-velocity feature while the latter is referred to a high-velocity pattern. Between the northeastern Tibet and the Ordos plateau, there is a transition zone of about 200km wide, which is associated with an extremely complex velocity structure in crust and upper mantle.
NASA Astrophysics Data System (ADS)
Nowack, R. L.; Bakir, A. C.; Griffin, J.; Chen, W.; Tseng, T.
2010-12-01
Using data from regional earthquakes recorded by the Hi-CLIMB array in Tibet, we utilize seismic attributes from crustal and Pn arrivals to constrain the velocity and attenuation structure in the crust and the upper mantle in central and western Tibet. The seismic attributes considered include arrival times, Hilbert envelope amplitudes, and instantaneous as well as spectral frequencies. We have constructed more than 30 high-quality regional seismic profiles, and of these, 10 events have been selected with excellent crustal and Pn arrivals for further analysis. Travel-times recorded by the Hi-CLIMB array are used to estimate the large-scale velocity structure in the region, with four near regional events to the array used to constrain the crustal structure. The travel times from the far regional events indicate that the Moho beneath the southern Lhasa terrane is up to 75 km thick, with Pn velocities greater than 8 km/s. In contrast, the data sampling the Qiangtang terrane north of the Bangong-Nujiang (BNS) suture shows thinner crust with Pn velocities less than 8 km/s. Seismic amplitude and frequency attributes have been extracted from the crustal and Pn wave trains, and these data are compared with numerical results for models with upper-mantle velocity gradients and attenuation, which can strongly affect Pn amplitudes and pulse frequencies. The numerical modeling is performed using the complete spectral element method (SEM), where the results from the SEM method are in good agreement with analytical and reflectivity results for different models with upper-mantle velocity gradients. The results for the attenuation modeling in Tibet imply lower upper mantle Q values in the Qiangtang terrane to the north of the BNS compared to the less attenuative upper mantle beneath the Lhasa terrane to the south of the BNS.
Abnormal high surface heat flow caused by the Emeishan mantle plume
NASA Astrophysics Data System (ADS)
Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing
2016-04-01
It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.
NASA Astrophysics Data System (ADS)
Mazzotti, Stephane; Baratin, Laura-May; Chéry, Jean; Vernant, Philippe; Gueydan, Frédéric; Tahayt, Abdelilah; Mourabit, Taoufik
2017-04-01
In Western Mediterranean, the Betic-Alboran-Rif orocline accommodates the WNW-ESE convergence between the Nubia and Eurasia plates. Recent geodetic data show that present-day tectonics in northern Morocco and southernmost Spain are not compatible with this simple two-plate-convergence model: GPS observations indicate significant (2-4 mm/a) deviations from the expected plate motion, and gravity data define two major negative Bouguer anomalies beneath the Betic and south of the Rif, interpreted as a thickened crust in a state of non-isostatic equilibrium. These anomalous geodetic patterns are likely related to the recent impact of the sub-vertical Alboran slab on crustal tectonics. Using 2-D finite-element models, we study the first-order behavior of a lithosphere affected by a downward normal traction, representing the pull of a high-density body in the upper mantle (slab pull or mantle delamination). We show that a specific range of lower crust and upper mantle viscosities allow a strong coupling between the mantle and the base of the brittle crust, thus enabling (1) the efficient conversion of vertical movement (resulting from the downward traction) to horizontal movement and (2) shortening and thickening on the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to the Alboran slab pull, can explain the present-day abnormal tectonics and non-isostatic equilibrium in northern Morocco. Similar processes may be at play in the whole Betic-Alboran-Rif region, although the fast temporal evolution of the slab - upper plate interactions needs to be taken into account to better understand this complex system.
NASA Technical Reports Server (NTRS)
Anderson, D. L.; Kovach, R. L.
1972-01-01
The compressional velocities are estimated for materials in the lunar interior and compared with lunar seismic results. The lower crust has velocities appropriate for basalts or anorthosites. The high velocities associated with the uppermost mantle imply high densities and a change in composition to a lighter assemblage at depths of the order of 120 km. Calcium and aluminum are probably important components of the upper mantle and are deficient in the lower mantle. Much of the moon may have accreted from material similar in composition to eucrites. The important mineral of the upper mantle is garnet; possible accessory minerals are kyanite, spinel, and rutile. If the seismic results stand up, the high velocity layer in the moon is more likely to be a high pressure form of anorthosite than eclogite, pyroxenite, or dunite. The thickness of the layer is of the order of 50 km. Cosmic abundances can be maintained if the lower mantle is ferromagnesium silicate with minimal amounts of calcium and aluminum. Achondrites such as eucrites and howardites have more of the required characteristics of the lunar interior than carbonaceous chondrites. A density inversion in the moon is a strong possibility.
Variation of the subsidence parameters, effective thermal conductivity, and mantle dynamics
NASA Astrophysics Data System (ADS)
Adam, C.; King, S. D.; Vidal, V.; Rabinowicz, M.; Jalobeanu, A.; Yoshida, M.
2015-09-01
The subsidence of young seafloor is generally considered to be a passive phenomenon related to the conductive cooling of the lithosphere after its creation at mid-oceanic ridges. Recent alternative theories suggest that the mantle dynamics plays an important role in the structure and depth of the oceanic lithosphere. However, the link between mantle dynamics and seafloor subsidence has still to be quantitatively assessed. Here we provide a statistical study of the subsidence parameters (subsidence rate and ridge depth) for all the oceans. These parameters are retrieved through two independent methods, the positive outliers method, a classical method used in signal processing, and through the MiFil method. From the subsidence rate, we compute the effective thermal conductivity, keff, which ranges between 1 and 7 W m-1 K-1. We also model the mantle flow pattern from the S40RTS tomography model. The density anomalies derived from S40RTS are used to compute the instantaneous flow in a global 3D spherical geometry. We show that departures from the keff = 3 Wm-1K-1 standard value are systematically related to mantle processes and not to lithospheric structure. Regions characterized by keff > 3 Wm-1K-1 are associated with mantle uplifts (mantle plumes or other local anomalies). Regions characterized by keff < 3 Wm-1K-1 are related to large-scale mantle downwellings such as the Australia-Antarctic Discordance (AAD) or the return flow from the South Pacific Superswell to the East Pacific Rise. This demonstrates that mantle dynamics plays a major role in the shaping of the oceanic seafloor. In particular, the parameters generally considered to quantify the lithosphere structure, such as the thermal conductivity, are not only representative of this structure but also incorporate signals from the mantle convection occurring beneath the lithosphere. The dynamic topography computed from the S40RTS tomography model reproduces the subsidence pattern observed in the bathymetry. Overall we find a good correlation between the subsidence parameters derived from the bathymetry and the dynamic topography. This demonstrates that these parameters are strongly dependent on mantle dynamics.
NASA Astrophysics Data System (ADS)
Hofmeister, A. M.; Criss, R. E.
2015-12-01
We quantitatively investigate the time-dependence of heat conduction for a post-core, spherical Earth that is not convecting, due to compositional layering, based on hundreds of measurements of thermal diffusivity (D) for insulators and metals. Consistency of our solutions for widely ranging input parameters indicates how additional heat transfer mechanisms (mantle magmatism and convection) affect thermal evolution of the core. We consider 1) interior starting temperatures (T) of 273-5000 K, which represent variations in primordial heat, 2) different distributions and decay of long-lived radioactive isotopes, 3) additional heat sources in the core (primordial or latent heat), and 4) variable depth-T dependence of D. Our new analytical solution for cooling of a constant D sphere validates our numerical results. The bottom line is that the thermally insulating nature of minerals, combined with constraints of spherical geometry, limits steep thermal gradients to the upper mantle, consistent with the short length scale (x ~700 km) of cooling over t = 4.5 Ga indicated by dimensional analysis [x2 ~ 4Dt], and with plate tectonics. Consequently, interior temperatures vary little so the core has remained hot and is possibly warming. Findings include: 1) Constant vs. variable D affects thermal profiles only in detail, with D for the metallic core being inconsequential. 2) The hottest zone in Earth may lie in the uppermost lower mantle; 3) Most radiogenic heat is released in Earth's outermost 1000 km thereby driving an active outer shell; 4) Earth's core is essentially isothermal and is thus best described by the liquid-solid phase boundary; 5) Deeply sequestered radioactivity or other heat will melt the core rather than by run the dynamo (note that the heat needed to have melted the outer core is 10% of radiogenic heat generated over Earth's history); 6) Inefficient cooling of an Earth-sized mass means that heat essentially remains where it is generated, until it is removed by magmatism; 7) Importantly, the observed plate velocities are consistent with a Nusselt number of 1, i.e. the present day cooling is essentially conductive. Conductive cooling plus magmatism largely governs Earth's thermal structure and dynamics, below a unicellular upper mantle. Core dynamics and magnetism are likely driven by rotational effects.
Upper mantle oxygen fugacity recorded by peridotite xenoliths from oceanic islands
NASA Astrophysics Data System (ADS)
Davis, F. A.; Wall, K. T.; Cottrell, E.
2017-12-01
Oxygen fugacity (fO2) in Earth's mantle is a key variable influencing mineral and fluid stability, the onset of melting, and mantle rheology; but fO2 is not uniform across mantle spatial domains. Peridotite xenoliths erupted in oceanic island basalts (OIB) potentially record fO2 of their lithospheric source - the convecting upper mantle. Many of these xenoliths have reacted with OIB as they transited the lithosphere. These xenoliths may record fO2 of the OIB source, potentially recording fO2 heterogeneity within the upper mantle. We investigate fO2heterogeneity by analyzing coexisting olivine, opx, and spinel in 41 peridotite xenoliths from islands associated with four different hotspots: Oahu (Hawaii), Savai'i (Samoa), Tubuai (Austral), and Tahiti (Society). Elevated spinel TiO2 concentrations (TiO2 >0.2 wt.%) in xenoliths from Oahu, Tubuai, and Tahiti may indicate interaction with OIB magmas [1]. Such assemblages record higher fO2 on average (QFM+0.4 to QFM+1.0) than peridotites and lavas from mid-ocean ridges (QFM-2 to QFM) [2,3,4]. This suggests that Hawaiian, Society, and Austral basalts with fO2 ≥ QFM+0.4 are more oxidized than MORB. (None of the Samoan xenoliths have spinel TiO2 >0.05 wt.%). Xenoliths with TiO2 <0.2 wt.% that have not reacted with OIB show a great degree of fO2 heterogeneity (QFM-1.5 to QFM+1.0) reflective of heterogeneity in lithospheric fO2. Although some heterogeneity may indicate spatial variability in bulk mantle chemistry, it is likely that it is partly driven by metamorphic reactions as lithosphere cools or is reheated by a mantle plume. Increased temperature causes the (Mg,Fe)Al2O4 component of spinel to dissolve into pyroxene; this concentrates the magnetite component in spinel and increases fO2 [5]. We observed evidence of this reaction at the grain-scale. Spinels in spinel-cpx symplectites and rims of equant spinels are >1 log unit more oxidized and have lower Al2O3 concentrations than interiors of the equant spinels. These results indicate that fO2 of the oceanic lithosphere is affected by subsolidus metamorphic reactions, which must be considered when relating fO2 of peridotites to fO2 of the convecting upper mantle. [1] Pearce et al. 2000, CMP; [2] Bryndzia and Wood 1990, AJS; [3] Bézos and Humler 2005, GCA; [4] Cottrell and Kelley 2011, EPSL; [5] Canil and O'Neill 1996, JPet
Crustal and Upper Mantle Structure from Joint Inversion of Body Wave and Gravity Data
2012-09-01
CRUSTAL AND UPPER MANTLE STRUCTURE FROM JOINT INVERSION OF BODY WAVE AND GRAVITY DATA Eric A. Bergman1, Charlotte Rowe2, and Monica Maceira2...for these events include many readings of direct crustal P and S phases, as well as regional (Pn and Sn) and teleseismic phases. These data have been...the usefulness of the gravity data, we apply high-pass filtering, yielding gravity anomalies that possess higher resolving power for crustal and
Seismic Constraints on the Mantle Viscosity Structure beneath Antarctica
NASA Astrophysics Data System (ADS)
Wiens, Douglas; Heeszel, David; Aster, Richard; Nyblade, Andrew; Wilson, Terry
2015-04-01
Lateral variations in upper mantle viscosity structure can have first order effects on glacial isostatic adjustment. These variations are expected to be particularly large for the Antarctic continent because of the stark geological contrast between ancient cratonic and recent tectonically active terrains in East and West Antarctica, respectively. A large misfit between observed and predicted GPS rates for West Antarctica probably results in part from the use of a laterally uniform viscosity structure. Although not linked by a simple relationship, mantle seismic velocities can provide important constraints on mantle viscosity structure, as they are both largely controlled by temperature and water content. Recent higher resolution seismic models for the Antarctic mantle, derived from data acquired by new seismic stations deployed in the AGAP/GAMSEIS and ANET/POLENET projects, offer the opportunity to use the seismic velocity structure to place new constraints on the viscosity of the Antarctic upper mantle. We use an Antarctic shear wave velocity model derived from array analysis of Rayleigh wave phase velocities [Heeszel et al, in prep] and examine a variety of methodologies for relating seismic, thermal and rheological parameters to compute a suite of viscosity models for the Antarctic mantle. A wide variety of viscosity structures can be derived using various assumptions, but they share several robust common elements. There is a viscosity contrast of at least two orders of magnitude between East and West Antarctica at depths of 80-250 km, reflecting the boundary between cold cratonic lithosphere in East Antarctica and warm upper mantle in West Antarctica. The region beneath the Ellsworth-Whitmore Mtns and extending to the Pensacola Mtns. shows intermediate viscosity between the extremes of East and West Antarctica. There are also significant variations between different parts of West Antarctica, with the lowest viscosity occurring beneath the Marie Byrd Land (MBL). The MBL Dome and adjacent coastal areas show extremely low viscosity (~1018Pa-s) for most parameterizations, suggesting that low mantle viscosity may produce a very rapid response to ice mass loss in this region.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Wu, Y.; WANG, C.; Jin, Z.
2015-12-01
Large-scale oceanic/continental subduction introduces a range of crustal materials into the Earth's mantle. These subducted material will be gravitationally trapped in the deep mantle when they have been transported to a depth of greater than ~250-300 km ("depth of no return"). However, little is known about the fate of these trapped continental material. Here, we conduct experimental study on a natural continental rock which compositionally similar to the average upper continental crust (UCC) over a pressure and temperature range of 9-16 GPa and 1300-1800 oC to constraint the fate of these trapped continental materials. The experimental results demonstrate that subducted UCC produces ~20-30 wt% K-rich melt (>55 wt% SiO2) in the upper mantle (9-13 GPa). The melting residue is mainly composed of coesite/stishovite + clinopyroxene + kyanite. In contrast, partial melting of subducted UCC in the MTZ produces ~10 wt% K-rich melt (<50 wt% SiO2), together with stishovite, clinopyroxene, K-Hollandite, garnet and CAS-phase as the residue phases. The melting residue phases achieve densities greater than the surrounding mantle, which provides a driving force for descending across the 410 km seismic discontinuity into the MTZ. However, this density relationship is reversed at the base of MTZ, leaving the descended residues being accumulated above the 660 km seismic discontinuity and may contribute to the stagnated "second continent". On the other hand, the melt is ~0.3-0.7 g/cm3 less dense than the surrounding mantle and provides a buoyancy force for the ascending of melt to shallow depth. The ascending melt preserves a significant portion of the bulk-rock REEs and LILEs. Thus, chemical reaction between the melt and the surrounding mantle would leads to a variably metasomatised mantle. Re-melting of the metasomatised mantle may contribute to the origin of the "enriched mantle sources" (EM-sources). Therefore, through subduction, stagnation, partial melting and melt segregation of continental crust may create EM-sources and"second continent" at shallow depth and the base of the MTZ respectively, which may contribute to the observed geochemical/geophysical heterogeneity in Earth's interior.
Geophysical Investigation of Upper Mantle Anomalies of the Australian-Antarctic Ridge
NASA Astrophysics Data System (ADS)
Park, S. H.; Choi, H.; Kim, S. S.; Lin, J.
2017-12-01
Australian-Antarctic Ridge (AAR) is situated between the Pacific-Antarctic Ridge (PAR) and Southeast Indian Ridge (SEIR), extending eastward from the Australian-Antarctic Discordance (AAD). Much of the AAR has been remained uncharted until 2011 because of its remoteness and harsh weather conditions. Since 2011, four multidisciplinary expeditions initiated by the Korea Polar Research Institute (KOPRI) have surveyed the little-explored eastern ends of the AAR and investigated the tectonics, geochemistry, and hydrothermal activity of this intermediate spreading system. Recent isotope studies using the new basalt samples from the AAR have led to the new hypothesis of the Southern Ocean mantle domain (SOM), which may have originated from the super-plume activity associated with the Gondwana break-up. In this study, we characterize the geophysics of the Southern Ocean mantle using the newly acquired shipboard bathymetry and available geophysical datasets. First, we computed residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography along the AAR in order to obtain a geological proxy for regional variations in magma supply. The results of these analyses revealed that the southern flank of the AAR is associated with shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle in comparison to the conjugate northern flank. Furthermore, this north-south asymmetry becomes more prominent toward the central ridge segments of the AAR. Interestingly, the along-axis depths of the entire AAR are significantly shallower than the neighboring ridge systems and the global ridges of intermediate spreading rates. Such shallow depths are also correlated with regional negative geoid anomalies. Furthermore, recent mantle tomography models consistently showed that the upper mantle (< 250 km) below the AAR has low S-wave velocities, suggesting that it may be hotter than the nearby ridges. Such regional-scale anomalies of the upper mantle beneath the AAR may thus be manifested as shallow axial depths and prominent negative gravity anomalies. Here we present exploratory geophysical data analyses of the AAR to estimate the spatial variation of the Southern Ocean mantle.
Upper mantle P velocity structure beneath the Baikal Rift from modeling regional seismic data
NASA Astrophysics Data System (ADS)
Brazier, Richard A.; Nyblade, Andrew A.
2003-02-01
Uppermost mantle P wave velocity structure beneath the Baikal rift and southern margin of the Siberian Platform has been investigated by using a grid search method to model Pnl waveforms from two moderate earthquakes recorded by station TLY at the southwestern end of Lake Baikal. The results yielded a limited number of successful models which indicate the presence of upper mantle P wave velocities beneath the rift axis and the margin of the platform that are 2-5% lower than expected. The magnitude of the velocity anomalies and their location support the presence of a thermal anomaly that extends laterally beyond the rift proper, possibly created by small-scale convection or a plume-like, thermal upwelling.
Un-Earth-like interiors of the Earth-like planets
NASA Astrophysics Data System (ADS)
Shim, S. H. D.; Nisr, C.; Pagano, M.; Chen, H.; Ko, B.; Noble, S.; Leinenweber, K. D.; Young, P.; Desch, S. J.
2015-12-01
A number of exoplanets have been described as "Earth-like" planets (or even exo-earths) based on the mass-radius relations. Yet, significant variations have been documented in elemental abundances of planet-hosting stars, which will result in very different structures and processes in the interiors of rocky exoplanets. Recent data suggest that the Mg/Si ratio can be as small as less than 1 and as large as more than 2, opening the possibilities for the upper mantles to be dominated by pyroxene and olivine, respectively, and the lower mantles to be dominated by bridgmanite and ferropericlase, respectively. The changes in mineralogy will alter key properties, such as discontinuity structures (and therefore scale of mantle mixing), viscosity, and volatiles storage, of the mantle. Partial melting of such mantles would result in different compositions of the crusts, affecting the tectonics. However, the prediction should be made carefully because oxygen fugacity and contents of volatiles can change the mineralogy even for the same bulk composition. In extremely reducing proto-planetary disks, carbides will form instead of oxides and silicates, and become main constituents of planets in the system. Because carbides have high thermal conductivity and low thermal expansivity, internal heat transport of such planets may be dominated by conduction and mantle mixing would be much more limited than that of the Earth. However, the behaviors and properties of carbides need to be understood better at high pressure and high temperature. Some rocky exoplanets may have very thick layers of water and other icy materials. Interactions between ice (or fluid) and rock at extreme conditions would be the key to understand dynamics and habitability of such exoplanets.
NASA Astrophysics Data System (ADS)
Brenn, Gregory Randall
Stretching 3,500 km across Antarctica, with peak elevations up to 4,500 m, the Transantarctic Mountains (TAMs) are the largest non-compressional continental mountain range on Earth and represent a tectonic boundary between the East Antarctica (EA) craton and the West Antarctic Rift System. The origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAM's subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused only on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw ≥ 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; deltaVP ≈ -2.0%; deltaV S ≈ -1.5% to -4.0%) and Terra Nova Bay (TNB; deltaVP ≈ -1.5% to -2.0%; deltaVS ≈ -1.0% to -4.0%) that extend to depths of 200 and 150 km, respectively. The RI and TNB slow anomalies also extend 50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (deltaVP ≈ 0.5% to 2%; deltaV S ≈ 1.5% to 4.0%). A low velocity region (deltaVP ≈ -1.5%), centered at 150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range.
NASA Astrophysics Data System (ADS)
Wang, Ze-Zhou; Liu, Sheng-Ao; Liu, Jingao; Huang, Jian; Xiao, Yan; Chu, Zhu-Yin; Zhao, Xin-Miao; Tang, Limei
2017-02-01
The zinc (Zn) stable isotope system has great potential for tracing planetary formation and differentiation processes due to its chalcophile, lithophile and moderately volatile character. As an initial approach, the terrestrial mantle, and by inference, the bulk silicate Earth (BSE), have previously been suggested to have an average δ66Zn value of ∼+0.28‰ (relative to JMC 3-0749L) primarily based on oceanic basalts. Nevertheless, data for mantle peridotites are relatively scarce and it remains unclear whether Zn isotopes are fractionated during mantle melting. To address this issue, we report high-precision (±0.04‰; 2SD) Zn isotope data for well-characterized peridotites (n = 47) from cratonic and orogenic settings, as well as their mineral separates. Basalts including mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) were also measured to avoid inter-laboratory bias. The MORB analyzed have homogeneous δ66Zn values of +0.28 ± 0.03‰ (here and throughout the text, errors are given as 2SD), similar to those of OIB obtained in this study and in the literature (+0.31 ± 0.09‰). Excluding the metasomatized peridotites that exhibit a wide δ66Zn range of -0.44‰ to +0.42‰, the non-metasomatized peridotites have relatively uniform δ66Zn value of +0.18 ± 0.06‰, which is lighter than both MORB and OIB. This difference suggests a small but detectable Zn isotope fractionation (∼0.1‰) during mantle partial melting. The magnitude of inter-mineral fractionation between olivine and pyroxene is, on average, close to zero, but spinels are always isotopically heavier than coexisting olivines (Δ66ZnSpl-Ol = +0.12 ± 0.07‰) due to the stiffer Zn-O bonds in spinel than silicate minerals (Ol, Opx and Cpx). Zinc concentrations in spinels are 11-88 times higher than those in silicate minerals, and our modelling suggests that spinel consumption during mantle melting plays a key role in generating high Zn concentrations and heavy Zn isotopic compositions of MORB. Therefore, preferential melting of spinel in the peridotites may account for the Zn isotopic difference between spinel peridotites and basalts. By contrast, the absence of Zn isotope fractionation between silicate minerals suggests that Zn isotopes are not significantly fractionated during partial melting of spinel-free garnet-facies mantle. If the studied non-metasomatized peridotites represent the refractory upper mantle, mass balance calculation shows that the depleted MORB mantle (DMM) has a δ66Zn value of +0.20 ± 0.05‰ (2SD), which is lighter than the primitive upper mantle (PUM) estimated in previous studies (+0.28 ± 0.05‰, 2SD, Chen et al., 2013b; +0.30 ± 0.07‰, 2SD, Doucet et al., 2016). This indicates that the Earth's upper mantle has a heterogeneous Zn isotopic composition vertically, which is probably due to shallow mantle melting processes.
Mantle redox evolution and the oxidation state of the Archean atmosphere
NASA Technical Reports Server (NTRS)
Kasting, J. F.; Eggler, D. H.; Raeburn, S. P.
1993-01-01
Current models predict that the early atmosphere consisted mostly of CO2, N2, and H2O, along with traces of H2 and CO. Such models are based on the assumption that the redox state of the upper mantle has not changed, so that volcanic gas composition has remained approximately constant with time. We argue here that this assumption is probably incorrect: the upper mantle was originally more reduced than today, although not as reduced as the metal arrest level, and has become progressively more oxidized as a consequence of the release of reduced volcanic gases and the subduction of hydrated, oxidized seafloor. Data on the redox state of sulfide and chromite inclusions in diamonds imply that the process of mantle oxidation was slow, so that reduced conditions could have prevailed for as much as half of the earth's history. To be sure, other oxybarometers of ancient rocks give different results, so the question of when the mantle redox state has changed remains unresolved. Mantle redox evolution is intimately linked to the oxidation state of the primitive atmosphere: A reduced Archean atmosphere would have had a high hydrogen escape rate and should correspond to a changing mantle redox state; an oxidized Archean atmosphere should be associated with a constant mantle redox state. The converses of these statements are also true. Finally, our theory of mantle redox evolution may explain why the Archean atmosphere remained oxygen-deficient until approximately 2.0 billion years ago (Ga) despite a probable early origin for photosynthesis.
NASA Astrophysics Data System (ADS)
Wilde-Piórko, Monika; Świeczak, Marzena; Grad, Marek; Majdański, Mariusz
2010-01-01
The structure and evolution of the Trans-European Suture zone (TESZ), contact between Precambrian Europe to the northeast and Phanerozoic terranes to the southwest is one of the main tectonic questions in Europe. The knowledge of the crustal structure, lithosphere-asthenosphere boundary and mantle transition zone between two seismic discontinuities at depths "410" and "660" km, is one of the most important issues to understand the Earth's dynamics. To create a mantle model of the TESZ and surroundings we used different seismic data collected along the 950 km long POLONAISE'97 profile P4. Previous results of 2-D ray-tracing and P-wave travel time modelling and new results of P-wave travel time residuals methods and receiver function sections provide facts about the seismic structure from the surface down to 900 km depth. In the TESZ a large basin, about 125 km wide, is filled with sedimentary strata (Vp < 6.0 km s - 1 ) to about 20 km depth. This basin is asymmetric with its northeast margin being most abrupt. The crystalline crust under this basin is only about 20 km thick today indicating that the lithosphere of Baltica was either thinned drastically or terminated along the northeast margin of the basin. The East European craton (EEC) has a ~ 45 km thick three-layered crust. The crust of the accreted terranes to the southwest is relatively thin (~ 30 km) and similar to that found in other non-cratonal areas of Western Europe. The lower crust is relatively fast (Vp > 7.0 km s - 1 ) along most of the P4 profile. However, lower values to the southwest may indicate the termination of Baltica. High velocity (~ 8.35 km s - 1 ) uppermost mantle lies beneath the Avalonia/Variscan terranes, and may be due to rifting and/or subduction. The seismic lithosphere thickness for the EEC is about 200 km, while it is only 90 km in the Palaeozoic platform (PP). The mantle transition zone is shallower and about 30 km thicker under the EEC, which could be due to thermal conditions (lower temperature) and/or the presence of water and FeO. The result of this paper is a new compiled and integrated seismic velocity model, available in digital form down to 900 km depth ( http://www.igf.fuw.edu.pl/p4-mantle), which can be used as a preliminary model of the crust and upper mantle in the TESZ area in Central Europe.
Tracking Crust-Mantle Recycling through Superdeep Diamonds and their Mineral Inclusions
NASA Astrophysics Data System (ADS)
Walter, Michael; Bulanova, Galina; Smith, Chris; Thomson, Andrew; Kohn, Simon; Burnham, Antony
2013-04-01
Sublithospheric, or 'superdeep' diamonds, originate in the deep upper mantle, transition zone, and at least as deep as the shallow lower mantle. When diamonds crystallize in the mantle from fluids or melts they occasionally entrap coexisting mineral phases. Because of their great physical resiliency, diamonds can potentially preserve information over long distance- and time-scales, revealing important information about the petrologic, tectonic and geodynamic environment in which the diamonds grew and were transported. Superdeep diamonds and their inclusions have proven especially powerful for probing processes related to subduction of slabs into the deep mantle [1-3]. In contrast to lithospheric diamonds that are effectively frozen-in geodynamically, mineral inclusions in superdeep diamonds often record hundreds of kilometers of uplift in the convecting mantle from their original depth of origin [3-5]. The phase equilibria of unmixing of original deep mantle phases such as Ca- and Mg-perovskite, NAL-phase, CF-phase, CAS-phase, and majorite provide a means to establish amounts of uplift. The few available age constraints indicate superdeep diamond growth from the Proterozoic to the Cretaceous, and further dating can potentially lead to constraining mantle upwelling rates [4]. Here we will provide several examples showing how superdeep diamonds and their inclusions record processes of subduction and slab foundering, and ultimately recycling of slab material from the transition zone and lower mantle into the shallow upper mantle. 1. Harte, B., Mineralogical Magazine, 2010. 74: p. 189-215. 2. Tappert, R., et al., Geology, 2005. 33: p. 565-568. 3. Walter, M.J., et al., Science, 2011. 333: p. 54-57. 4. Bulanova, G.P., et al., Contributions to Mineralogy and Petrology, 2010. 160: p. 489-510. 5. Harte, B. and N. Cayzer, Physics and Chemistry of Minerals, 2007.
NASA Technical Reports Server (NTRS)
Erickson, Stephanie Gwen; Nelson, Wendy R.; Peslier, Anne H.; Snow, Jonathan E.
2014-01-01
The East African Rift System was initiated by the impingement of the Afar mantle plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 kmof continental flood basalts approx.30 Ma ago. The contribution of the subcontinental lithospheric mantle (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric mantle affects its stability. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in mantle xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The mantle xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven mantle xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic mantle except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper mantle.
Thermal and chemical convection in planetary mantles
NASA Technical Reports Server (NTRS)
Dupeyrat, L.; Sotin, C.; Parmentier, E. M.
1995-01-01
Melting of the upper mantle and extraction of melt result in the formation of a less dense depleted mantle. This paper describes series of two-dimensional models that investigate the effects of chemical buoyancy induced by these density variations. A tracer particles method has been set up to follow as closely as possible the chemical state of the mantle and to model the chemical buoyant force at each grid point. Each series of models provides the evolution with time of magma production, crustal thickness, surface heat flux, and thermal and chemical state of the mantle. First, models that do not take into account the displacement of plates at the surface of Earth demonstrate that chemical buoyancy has an important effect on the geometry of convection. Then models include horizontal motion of plates 5000 km wide. Recycling of crust is taken into account. For a sufficiently high plate velocity which depends on the thermal Rayleigh number, the cell's size is strongly coupled with the plate's size. Plate motion forces chemically buoyant material to sink into the mantle. Then the positive chemical buoyancy yields upwelling as depleted mantle reaches the interface between the upper and the lower mantle. This process is very efficient in mixing the depleted and undepleted mantle at the scale of the grid spacing since these zones of upwelling disrupt the large convective flow. At low spreading rates, zones of upwelling develop quickly, melting occurs, and the model predicts intraplate volcanism by melting of subducted crust. At fast spreading rates, depleted mantle also favors the formation of these zones of upwelling, but they are not strong enough to yield partial melting. Their rapid displacement toward the ridge contributes to faster large-scale homogenization.
NASA Astrophysics Data System (ADS)
Brown, Eric; Petersen, Kenni; Lesher, Charles
2017-04-01
Basalts are formed by adiabatic decompression melting of the asthenosphere, and thus provide records of the thermal, chemical and dynamical state of the upper mantle. However, uniquely constraining the importance of these factors through the lens of melting is challenging given the inevitability that primary basalts are the product of variable mixing of melts derived from distinct lithologies having different melting behaviors (e.g. peridotite vs. pyroxenite). Forward mantle melting models, such as REEBOX PRO [1], are useful tools in this regard, because they can account for differences in melting behavior and melt pooling processes, and provide estimates of bulk crust composition and volume that can be compared with geochemical and geophysical constraints, respectively. Nevertheless, these models require critical assumptions regarding mantle temperature, and lithologic abundance(s)/composition(s), all of which are poorly constrained. To provide better constraints on these parameters and their uncertainties, we have coupled a Markov Chain Monte Carlo (MCMC) sampling technique with the REEBOX PRO melting model. The MCMC method systematically samples distributions of key REEBOX PRO input parameters (mantle potential temperature, and initial abundances and compositions of the source lithologies) based on a likelihood function that describes the 'fit' of the model outputs (bulk crust composition and volume and end-member peridotite and pyroxenite melts) relative to geochemical and geophysical constraints and their associated uncertainties. As a case study, we have tested and applied the model to magmatism along Reykjanes Peninsula in Iceland, where pyroxenite has been inferred to be present in the mantle source. This locale is ideal because there exist sufficient geochemical and geophysical data to estimate bulk crust compositions and volumes, as well as the range of near-parental melts derived from the mantle. We find that for the case of passive upwelling, the models that best fit the geochemical and geophysical observables require elevated mantle potential temperatures ( 120 °C above ambient mantle), and 5% pyroxenite. The modeled peridotite source has a trace element composition similar to depleted MORB mantle, whereas the trace element composition of the pyroxenite is similar to enriched mid-ocean ridge basalt. These results highlight the promise of this method for efficiently exploring the range of mantle temperatures, lithologic abundances, and mantle source compositions that are most consistent with available observational constraints in individual volcanic systems. 1 Brown and Lesher (2016), G-cubed, 17, 3929-3968
Whole-mantle P-wave velocity structure and azimuthal anisotropy
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Zhao, D.
2009-12-01
There are some hotspot volcanoes on Earth, such as Hawaii and Iceland. The mantle plume hypothesis was proposed forty years ago to explain hotspot volcanoes (e.g., Wilson, 1963; Morgan, 1971). Seismic tomography is a powerful technique to detect mantle plumes and determine their detailed structures. We determined a new whole-mantle 3-D P-wave velocity model (Tohoku model) using a global tomography method (Zhao, 2004, 2009). A flexible-grid approach with a grid interval of ~200 km is adopted to conduct the tomographic inversion. Our model shows that low-velocity (low-V) anomalies with diameters of several hundreds of kilometers are visible from the core-mantle boundary (CMB) to the surface under the major hotspot regions. Under South Pacific where several hotspots including Tahiti exist, there is a huge low-V anomaly from the CMB to the surface. This feature is consistent with the previous models. We conducted extensive resolution tests in order to understand whether this low-V anomaly shows a single superplume or a plume cluster. Unfortunately this problem is still not resolved because the ray path coverage in the mantle under South Pacific is not good enough. A network of ocean bottom seismometers is necessary to solve this problem. To better understand the whole-mantle structure and dynamics, we also conducted P-wave tomographic inversions for the 3-D velocity structure and azimuthal anisotropy. At each grid node there are three unknown parameters: one represents the isotropic velocity, the other two represent the azimuthal anisotropy. Our results show that in the shallow part of the mantle (< ~200 km depth) the fast velocity direction (FVD) is almost the same as the plate motion direction. For example, the FVD in the western Pacific is NWW-SEE, which is normal to the Japan trench axis. In the Tonga subduction zone, the FVD is also perpendicular to the trench axis. Under the Tibetan region the FVD is NE-SW, which is parallel to the direction of the India-Asia collision. In the deeper part of the upper mantle and in the lower mantle, the amplitude of anisotropy is reduced. One interesting feature is that the FVD aligns in a radiated fashion centered in the South-Central Pacific at the bottom of the mantle, which may reflect the mantle upwelling of the Pacific superplume as well as the Hawaiian plume.
NASA Astrophysics Data System (ADS)
Dec, M.; Sroda, P.; Tesauro, M.; Kaban, M. K.; Perchuc, E.
2013-12-01
Nowadays, United States is an area extensively studied by seismic research due to the fact that the EarthScope USArray project provides an unique opportunity to verify previous seismological models and improve our understanding of the upper mantle structure. The data from this experiment are fundamental to study the upper mantle structure because they allow us to present much more detailed analysis. In this study we use the data recorded by the Transportable Array of the USArray and data from the ISC bulletin. We refer also to data from longitudinal Early Rise project while analysing New Madrid Seismic Zone. We use the travel time data from the earthquakes recorded at a distance up to 3500 km in order to image the upper mantle down to about 600 km depth. We present P- and S-wave velocity models for the tectonically stable central part of US and for the active western part. The 1D models are constructed based on the forward modelling of traveltimes from the events located along the California - Virginia profile, for e.g. in California, Colorado or Virginia. This provides a possibility to update the previous MP-1 model (Malinowski et al., 2010). The models were corrected for the crustal effect using the crustal model of Tesauro et al. (2013). All the models have been verified by synthetic seismograms calculated using the reflectivity method. The models show significant differences in the first-arrivals observed at the 800-1800 km epicentral distance range. In the Western, tectonically active region, the 300-km discontinuity is observed. It is interpreted based on the refracted phases with the apparent velocity of 8.9-9.0 km/s and clearly observed reflections. In this area, a low-velocity zone at the bottom of the upper mantle significantly deepens the 410-km discontinuity. The stable North American Craton is characterized by blurred arrivals from the 300-km discontinuity. These 1D models of the upper mantle structure in North America served as a starting point for calculation of a 2D model along the profile using forward and inversion approach. We distinguish three parts in our profile: western - tectonically active, central cratonic - stable one and eastern - tectonically active. The New Madrid Seismic Zone is characterized by an anomalous structure in the lower lithosphere at the offset ~2500km. Very interesting part of the studied area is the marginal part of North American Craton, which separates two tectonically different areas. The seismic P- and S-wave velocity models were inverted for temperature using different mantle composition and anelasticity models. The modelling results are in agreement with those obtained for the strength and the elastic thickness of the lithosphere.
Confirmation of a change in the global shear velocity pattern at around 1,000 km depth
NASA Astrophysics Data System (ADS)
Debayle, E.; Durand, S.; Ricard, Y. R.; Zaroli, C.; Lambotte, S.
2017-12-01
In this study, we confirm the existence of a change in the shear velocity spectrum around 1,000 km depth based on a new shear velocity tomographic model of the Earth's mantle, SEISGLOB2. This model is based on Rayleigh surface wave phase velocities, self- and cross- coupling structure coefficients of spheroidal normal modes and body wave travel times which are, for the first time, combined in a tomographic inversion. SEISGLOB2 is developed up to spherical harmonic degree 40 and in 21 radial spline functions. The spectrum of SEISGLOB2 is the flattest (i.e., richest in "short" wavelengths corresponding to spherical harmonic degrees greater than 10) around 1,000 km depth and this flattening occurs between 670 and 1,500 km depth. We also confirm various changes in the continuity of slabs and mantle plumes all around 1,000 km depth where we also observed the upper boundary of LLSVPs. The existence of a flatter spectrum, richer in short wavelength heterogeneities, in a region of the mid-mantle can have great impacts on our understanding of the mantle dynamics and should thus be better understood in the future. Although a viscosity increase, a phase change or a compositional change can all concur to induce this change of pattern, its precise origin is still very uncertain.
Dynamics of Mantle Plume Controlled by both Post-spinel and Post-garnet Phase Transitions
NASA Astrophysics Data System (ADS)
Liu, H.; Leng, W.
2017-12-01
Mineralogical studies indicate that two major phase transitions occur near 660 km depth in the Earth's pyrolitic mantle: the ringwoodite (Rw) to perovskite (Pv) + magnesiowüstite (Mw) and majorite (Mj) to perovskite (Pv) phase transitions. Seismological results also show a complicated phase boundary structure for plume regions at this depth, including broad pulse, double reflections and depressed 660 km discontinuity beneath hot regions etc… These observations have been attributed to the co-existence of these two phase transformations. However, previous geodynamical modeling mainly focused on the effects of Rw-Pv+Mw phase transition on the plume dynamics and largely neglected the effects of Mj-Pv phase transition. Here we develop a 3-D regional spherical geodynamic model to study the influence of the combination of Rw - Pv+Mw and Mj - Pv phase transitions on plume dynamics, including the topography fluctuation of 660 km discontinuity, plume shape and penetration capability of plume. Our results show that (1) a double phase boundary occurs at the hot center area of plume while for other regions with relatively lower temperature the phase boundary is single and flat, which respectively corresponds to the double reflections in the seismic observations and a high velocity prism-like structure at the top of 660 km discontinuity; (2) a large amount of low temperature plume materials could be trapped to form a complex trapezoid overlying the 660 km depth; (3) Mj - Pv phase change strongly enhances the plume penetration capability at 660 km depth, which significantly increases the plume mass flux due to the increased plume radius, but significantly reduces plume heat flux due to the decreased plume temperature in the upper mantle. Our model results provide new enlightenments for better constraining seismic structure and mineral reactions at 660 km phase boundaries.
NASA Technical Reports Server (NTRS)
Brandon, Alan D.; Graham, David W.; Waight, Tod; Gautason, Bjarni
2007-01-01
Picrites from the neovolcanic zones in Iceland display a range in Os-187/Os-188O from 0.1297 to 0.1381 ((gamma)Os = 0.0 to 6.5) and uniform Os-186/Os-188 of 0.1198375+/-32 (2 (sigma)). The value for Os-186/Os-188 is within uncertainty of the present-day value for the primitive upper mantle of 0.1198398+/-16. These Os isotope systematics are best explained by ancient recycled crust or melt enrichment in the mantle source region. If so, then the coupled enrichments displayed in Os-186/Os-188 and Os-187/Os-188 from lavas of other plume systems must result from an independent process, the most viable candidate at present remains core-mantle interaction. While some plumes with high He-3/He-4, such as Hawaii, appear to have been subjected to detectable addition of Os (and possibly He) from the outer core, others such as Iceland do not. A positive correlation between Os-187/Os-188 and He-3/He-4 from 9.6 to 19 RA in Iceland picrites is best modeled as mixtures of 500 Ma or older ancient recycled crust mixed with primitive mantle, creating a hybrid source region that subsequently mixes with the convecting MORB mantle during ascent and melting. This multistage mechanism to explain these isotope systematics is consistent with ancient recycled crust juxtaposed with more primitive, relatively He-rich mantle, in convective isolation from the upper mantle, most likely in the lowermost mantle. This is inconsistent with models that propose random mixing between heterogeneities in the convecting upper mantle as a mechanism to explain the observed isotopic variation in oceanic lavas or models that produce a high He-3/He-4 signature in melt depleted and strongly outgassed, He-poor mantle. Instead these systematics require a deep mantle source to explain the 3He/4He signature in Iceland lavas. The He-3/He-4 of lavas derived from the Iceland plume changed over time, from a maximum of 50 RA at 60 Ma, to approximately 25-27 RA at present. The changes are coupled with distinct compositional gaps between the different aged lavas when H-3/He-4 is plotted versus various geochemical parameters such as Nd-143/Nd-144 and La/Sm. These relationships can be interpreted as an increase in the proportion of ancient recycled crust in the upwelling plume over this time period.
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.
1999-01-01
"Knowledge about the dynamics of the D double prime region is a key to unlock some fundamental mysteries of the Earth heat engine which governs a wide range of global geophysical processes from tectonics to geodynamo." This benign sentence makes complete sense to many geophysicists. But for many others, it makes sense all except the odd nomenclature "D double prime". One knows about the crust, upper and lower mantle, outer and inner core, but where is the D double prime region? What meaning does it try to convey? Where is D prime region, or D, or A, B, C regions for that matter, and are there higher-order primes? How does such an odd name come about anyway? D double prime, or more "simply" D", is a generic designation given to the thin shell, about 200 km thick, of the lowermost mantle just above the core-mantle boundary inside the Earth. Incidentally, whether D" is "simpler" than "D double prime" depends on whether you are pronouncing it or writing/typing it; and D" can be confusing to readers in distinguishing quotation marks (such as in the above sentences) and second derivatives, and to word processors in spelling check and indexing.
Local Upper Mantle Upwelling beneath New England: Evidence from Seismic Anisotropy.
NASA Astrophysics Data System (ADS)
Levin, V. L.; Long, M. D.; Lopez, I.; Li, Y.; Skryzalin, P. A.
2017-12-01
The upper mantle beneath eastern North America contains regions where seismic wave speed is significantly reduced. As they cut across the trend of the Appalachian terranes, these anomalies likely post-date the Paleozoic assembly of Pangea. Most prominent of them, the North Appalachian Anomaly (NAA), has been alternatively explained by the localized disruption of lithospheric fabric, the passage of the Great Meteor Hot Spot, and the current local upwelling of the asthenosphere. Comprehensive mapping of shear wave splitting identified a local perturbation of an otherwise uniform regional pattern, with no apparent splitting occurring at a site within the NAA. To evaluate the reality of this apparent localized disruption in the anisotropic fabric of the upper mantle beneath northeastern North America we used observations of shear wave splitting from a set of long-running observatories not included in previous studies. Three methods of evaluating shear wave splitting (rotation-correlation, minimization of the transverse component, and the splitting intensity) yield complementary results. We show that splitting of core-refracted shear waves within the outline of the NAA is significantly weaker than towards its edges and beyond them (Figure 1). Average fast orientations are close to the absolute plate motion in the hot-spot reference frame, thus we can attribute a large fraction of this signal to the coherently sheared sub-lithospheric upper mantle. A decrease in average delay we observe, from 1 s outside the NAA to under 0.2 s within it, translates into a reduction of the vertical extent of the sheared layer from 130 km to 16 km (assuming 4% anisotropy), or alternatively into a weakening of the azimuthal anisotropy from 5% to 0.6% (assuming a 100 km thick layer). The splitting reduction within the NAA is consistent with a localized change in anisotropic fabric that would be expected in case of geologically recent sub-vertical flow overprinting the broadly uniform upper mantle fabric detected throughout the region. Figure 1. Splitting intensity (red circles) plotted over best-fitting sinusoidal functions (blue, parameters in upper right) and predictions based on average delays and fast polarizations (green, parameters in upper left). Outlines of the NAA at 200 km depth from tomographic studies using Earthscope data.
NASA Astrophysics Data System (ADS)
Karaoǧlu, Haydar; Romanowicz, Barbara
2018-06-01
We present a global upper-mantle shear wave attenuation model that is built through a hybrid full-waveform inversion algorithm applied to long-period waveforms, using the spectral element method for wavefield computations. Our inversion strategy is based on an iterative approach that involves the inversion for successive updates in the attenuation parameter (δ Q^{-1}_μ) and elastic parameters (isotropic velocity VS, and radial anisotropy parameter ξ) through a Gauss-Newton-type optimization scheme that employs envelope- and waveform-type misfit functionals for the two steps, respectively. We also include source and receiver terms in the inversion steps for attenuation structure. We conducted a total of eight iterations (six for attenuation and two for elastic structure), and one inversion for updates to source parameters. The starting model included the elastic part of the relatively high-resolution 3-D whole mantle seismic velocity model, SEMUCB-WM1, which served to account for elastic focusing effects. The data set is a subset of the three-component surface waveform data set, filtered between 400 and 60 s, that contributed to the construction of the whole-mantle tomographic model SEMUCB-WM1. We applied strict selection criteria to this data set for the attenuation iteration steps, and investigated the effect of attenuation crustal structure on the retrieved mantle attenuation structure. While a constant 1-D Qμ model with a constant value of 165 throughout the upper mantle was used as starting model for attenuation inversion, we were able to recover, in depth extent and strength, the high-attenuation zone present in the depth range 80-200 km. The final 3-D model, SEMUCB-UMQ, shows strong correlation with tectonic features down to 200-250 km depth, with low attenuation beneath the cratons, stable parts of continents and regions of old oceanic crust, and high attenuation along mid-ocean ridges and backarcs. Below 250 km, we observe strong attenuation in the southwestern Pacific and eastern Africa, while low attenuation zones fade beneath most of the cratons. The strong negative correlation of Q^{-1}_μ and VS anomalies at shallow upper-mantle depths points to a common dominant origin for the two, likely due to variations in thermal structure. A comparison with two other global upper-mantle attenuation models shows promising consistency. As we updated the elastic 3-D model in alternate iterations, we found that the VS part of the model was stable, while the ξ structure evolution was more pronounced, indicating that it may be important to include 3-D attenuation effects when inverting for ξ, possibly due to the influence of dispersion corrections on this less well-constrained parameter.
NASA Astrophysics Data System (ADS)
Peucat, J. J.; Vidal, Ph.; Godard, G.; Postaire, B.
1982-08-01
U-Pb zircon ages have been determined for two eclogites from the Vendée and for two garnet pyroxenites from the Baie d'Audierne. In an episodic Pb loss model, the two discordia would give upper intercept ages around 1300-1250 Ma and lower intercepts ages of 436-384 Ma. Two interpretations are proposed: (1) The 1250-1300 Ma ages may reflect an unspecified upper mantle event or process; the Paleozoic ages correspond to the tectonic emplacement of an eclogitic mantle fragment into the continental crust. (2) The protolith may have been extracted from the upper mantle 1250-1300 Ma ago and stored in a crustal environment until it was metamorphosed under high-pressure conditions around 400 Ma ago. This latter model is favoured by available geologic and isotopic data. Consequently, we propose that a 1300 Ma old oceanic crust was tectonicly incorporated into a sialic basement during the Proterozoic. This mixture was subsequently subducted during the Paleozoic.
The upper mantle shear wave velocity structure of East Africa derived from Rayleigh wave tomography
NASA Astrophysics Data System (ADS)
O'Donnell, J.; Nyblade, A.; Adams, A. N.; Weeraratne, D. S.; Mulibo, G.; Tugume, F.
2012-12-01
An expanded model of the three-dimensional shear wave velocity structure of the upper mantle beneath East Africa has been developed using data from the latest phases of the AfricaArray East African Seismic Experiment in conjunction with data from preceding studies. The combined dataset consists of 331 events recorded on a total of 95 seismic stations spanning Kenya, Uganda, Tanzania, Zambia and Malawi. In this latest study, 149 events were used to determine fundamental mode Rayleigh wave phase velocities at periods ranging from 20 to 182 seconds using the two-plane-wave method. These were subsequently combined with the similarly processed published measurements and inverted for an updated upper mantle three-dimensional shear wave velocity model. Newly imaged features include a substantial fast anomaly in eastern Zambia that may have exerted a controlling influence on the evolution of the Western Rift Branch. Furthermore, there is a suggestion that the Eastern Rift Branch trends southeastward offshore eastern Tanzania.
Spectral-element global waveform tomography: A second-generation upper-mantle model
NASA Astrophysics Data System (ADS)
French, S. W.; Lekic, V.; Romanowicz, B. A.
2012-12-01
The SEMum model of Lekic and Romanowicz (2011a) was the first global upper-mantle VS model obtained using whole-waveform inversion with spectral element (SEM: Komatitsch and Vilotte, 1998) forward modeling of time domain three component waveforms. SEMum exhibits stronger amplitudes of heterogeneity in the upper 200km of the mantle compared to previous global models - particularly with respect to low-velocity anomalies. To make SEM-based waveform inversion tractable at global scales, SEMum was developed using: (1) a version of SEM coupled to 1D mode computation in the earth's core (C-SEM, Capdeville et al., 2003); (2) asymptotic normal-mode sensitivity kernels, incorporating multiple forward scattering and finite-frequency effects in the great-circle plane (NACT: Li and Romanowicz, 1995); and (3) a smooth anisotropic crustal layer of uniform 60km thickness, designed to match global surface-wave dispersion while reducing the cost of time integration in the SEM. The use of asymptotic kernels reduced the number of SEM computations considerably (≥ 3x) relative to purely numerical approaches (e.g. Tarantola, 1984), while remaining sufficiently accurate at the periods of interest (down to 60s). However, while the choice of a 60km crustal-layer thickness is justifiable in the continents, it can complicate interpretation of shallow oceanic upper-mantle structure. We here present an update to the SEMum model, designed primarily to address these concerns. The resulting model, SEMum2, was derived using a crustal layer that again fits global surface-wave dispersion, but with a more geologically consistent laterally varying thickness: approximately honoring Crust2.0 (Bassin, et al., 2000) Moho depth in the continents, while saturating at 30km in the oceans. We demonstrate that this approach does not bias our upper mantle model, which is constrained not only by fundamental mode surface waves, but also by overtone waveforms. We have also improved our data-selection and assimilation scheme, more readily allowing for additional and higher-quality data to be incorporated into our inversion as the model improves. Further, we have been able to refine the parameterization of the isotropic component of our model, previously limited by our ability to solve the large dense linear system that governs model updates (Tarantola and Valette, 1982). The construction of SEMum2 involved 3 additional inversion iterations away from SEMum. Overall, the combined effect of these improvements confirms and validates the general structure of the original SEMum. Model amplitudes remain an impressive feature in SEMum2, wherein peak-to-peak variation in VS can exceed 15% in close lateral juxtaposition. Further, many intriguing structures present in SEMum are now imaged with improved resolution in the updated model. In particular, the geographic extents of the anomalous oceanic cluster identified by Lekic and Romanowicz (2011b) are consistent with our findings and now allow us to further identify alternating bands of lower and higher velocities in the 200-300km depth range beneath the Pacific basin, with a characteristic spacing of ˜2000km normal to absolute plate motion. Possible dynamic interpretation of these and other features in the ocean basins is explored in a companion presentation (Romanowicz et al., this meeting).
Global Transition Zone Anisotropy and Consequences for Mantle Flow and Earth's Deep Water Cycle
NASA Astrophysics Data System (ADS)
Beghein, C.; Yuan, K.
2011-12-01
The transition zone has long been at the center of the debate between multi- and single-layered convection models that directly relate to heat transport and chemical mixing throughout the mantle. It has also been suggested that the transition zone is a reservoir that collects water transported by subduction of the lithosphere into the mantle. Since water lowers mantle minerals density and viscosity, thereby modifying their rheology and melting behavior, it likely affects global mantle dynamics and the history of plate tectonics. Constraining mantle flow is therefore important for our understanding of Earth's thermochemical evolution and deep water cycle. Because it can result from deformation by dislocation creep during convection, seismic anisotropy can help us model mantle flow. It is relatively well constrained in the uppermost mantle, but its presence in the transition zone is still debated. Its detection below 250 km depth has been challenging to date because of the poor vertical resolution of commonly used datasets. In this study, we used global Love wave overtone phase velocity maps, which are sensitive to structure down to much larger depths than fundamental modes alone, and have greater depth resolution than shear wave-splitting data. This enabled us to obtain a first 3-D model of azimuthal anisotropy for the upper 800km of the mantle. We inverted the 2Ψ terms of anisotropic phase velocity maps [Visser, et al., 2008] for the first five Love wave overtones between 35s and 174s period. The resulting model shows that the average anisotropy amplitude for vertically polarized shear waves displays two main stable peaks: one in the uppermost mantle and, most remarkably, one in the lower transition zone. F-tests showed that the presence of 2Ψ anisotropy in the transition zone is required to improve the third, fourth, and fifth overtones fit. Because of parameter trade-offs, however, we cannot exclude that the anisotropy is located in the upper transition zone as well. Azimuthal anisotropy in the transition zone could result from tilted laminated structures, or from the LPO of wadsleyite and hydrous ringwoodite. Anhydrous ringwoodite is mostly isotropic, but it becomes more anisotropic in the presence of water [Kavner, 2003]. The presence of significant seismic anisotropy in the lower transition zone may thus indicate the presence of OH--bearing minerals. This would be consistent with the observed high solubility of water in ringwoodite and wadsleyite, and the hypothesis that the transition zone is a water reservoir. In addition, at most locations the fast azimuth of propagation for Vsv forms approximately a 90° angle in the transition zone with the fast direction found at shallower depths. Assuming that LPO causes the anisotropy and that seismic fast directions are a proxy for flow direction in the transition zone, this angle change combined with mineral physics data could help us infer mantle convective pattern. The robustness of this feature is, however, currently difficult to assess as Love wave overtones are unable to reliably constrain 2Ψ anisotropy at shallow depths. The inclusion of Rayleigh wave fundamental mode data in future work will help resolve that issue.
New insight into the Upper Mantle Structure Beneath the Pacific Ocean Using PP and SS Precursors
NASA Astrophysics Data System (ADS)
Gurrola, H.; Rogers, K. D.
2013-12-01
The passing of the EarthScope Transportable array has provided a dense data set that enabled beam forming of SS and PP data that resultes in improved frequency content to as much a 1 Hz in the imaging of upper mantle structure. This combined with the application of simultaneous iterative deconvolution has resulted in images to as much as 4 Hz. The processing however results in structure being averaged over regions of 60 to 100 km in radius. This is becomes a powerful new tool to image the upper mantle beneath Oceanic regions where locating stations is expensive and difficult. This presentation will summarize work from a number of regions as to new observations of the upper mantle beneath the Pacific and Arctic Oceans. Images from a region of the Pacific Ocean furthest from hot spots or subduction zones (we will refer to this as the 'reference region'). show considerable layering in the upper mantle. The 410 km discontinuity is always imaged using these tools and appears to be a very sharp boundary. It does usually appear as an isolated positive phase. There appears to be a LAB at ~100 km as expected but there is a strong negative phase at ~ 200 km with a positive phase 15 km deeper. This is best explained as a lens of partial melt as expected for this depth based on the geothermal gradient. If so this should be a low friction point and so we would expect it to accommodate plate motion. Imaging of the Aleutian subduction zone does show the 100 km deep LAB as it descends but this 200 km deep horizon appears as a week descending positive anomaly without the shallower negative pulse. In addition to the 410, 100 and 200 km discontinuities there are a number of paired anomalies, between the 200 and 400 km depths, with a negative pulse 15 to 20 km shallower then the positive pulse. We do not believe these are side lobes or we would see side lobes on the 100 km and 410 km discontinuities. We believe these to be the result of friction induced partial melt along zones of critical failure to accommodate differential mantle flow with depth. The paired layers disappear beneath the Hawaiian Island chain. We believe heat from the hot spot warms the mantle beneath the Hawaiian island chain so flow is more easily accommodated. As a result the lenses of melt disappear in the region near hot spots.
NASA Astrophysics Data System (ADS)
Legendre, C.; Meier, T.; Lebedev, S.; Friederich, W.; Viereck-Götte, L.
2012-04-01
Broadband waveforms recorded at stations in Europe and surrounding regions were inverted for shear-wave velocity of the European upper mantle. For events between 1995 and 2007 seismograms were collected from all permanent stations for which data are available via the data centers ORFEUS, GEOFON, ReNaSs and IRIS. In addition, we incorporated data from temporary experiments, including SVEKALAPKO, TOR, Eifel Plume, EGELADOS and other projects. Automated Multimode Inversion of surface and S-wave forms was applied to extract structural information from the seismograms, in the form of linear equations with uncorrelated uncertainties. Successful waveform fits for about 70,000 seismograms yielded over 300,000 independent linear equations that were solved together for a three-dimensional tomographic model. Resolution of the imaging is particularly high in the mantle lithosphere and asthenosphere. The highest velocities in the mantle lithosphere of the East European Craton are found at about 150 km depth. There are no indications for a large scale deep cratonic root below about 330 km depth. Lateral variations within the cratonic mantle lithosphere are resolved by our model as well. The locations of diamond bearing kimberlites correlate with reduced S-wave velocities in the cratonic mantle lithosphere. This anomaly is present in regions of both Proterozoic and Archean crust, pointing to an alteration of the mantle lithosphere after the formation of the craton. Strong lateral changes in S-wave velocity are found at the western margin of the East European Craton and hint to erosion of cratonic mantle lithosphere beneath the Scandes by hot asthenosphere. The mantle lithosphere beneath Western Europe and between the Tornquist-Teyissere Zone and the Elbe Line shows moderately high velocities and is of an intermediate character, between cratonic lithosphere and the thin lithosphere of central Europe. In central Europe, Caledonian and Variscian sutures are not associated with strong lateral changes in the lithosphere-asthenosphere system. Cenozoic anorogenic intraplate volcanism in central Europe and the Circum Mediterranean is found in regions of shallow asthenosphere and close to sharp gradients in the depth of the lithosphere-asthenosphere boundary. Low-velocity anomalies extending vertically from shallow upper mantle down to the transition zone are found beneath the Massive Central, Sinai, Canary Islands and Iceland.
NASA Astrophysics Data System (ADS)
Bonnin, Mickaël; Chevrot, Sébastien; Gaudot, Ianis; Haugmard, Méric
2017-08-01
We performed shear wave splitting analysis on 203 permanent (French RLPB, CEA and Catalonian networks) and temporary (PyrOPE and IberArray experiments) broad-band stations around the Pyrenees. These measurements considerably enhance the spatial resolution and coverage of seismic anisotropy in that region. In particular, we characterize with different shear wave splitting analysis methods the small-scale variations of splitting parameters ϕ and δt along three dense transects crossing the western and central Pyrenees with an interstation spacing of about 7 km. While we find a relatively coherent seismic anisotropy pattern in the Pyrenean domain, we observe abrupt changes of splitting parameters in the Aquitaine Basin and delay times along the Pyrenees. We moreover observe coherent fast directions despite complex lithospheric structures in Iberia and the Massif Central. This suggests that two main sources of anisotropy are required to interpret seismic anisotropy in this region: (i) lithospheric fabrics in the Aquitaine Basin (probably frozen-in Hercynian anisotropy) and in the Pyrenees (early and late Pyrenean dynamics); (ii) asthenospheric mantle flow beneath the entire region (imprint of the western Mediterranean dynamics since the Oligocene).
NASA Astrophysics Data System (ADS)
Bonnin, M. J. A.; Chevrot, S.; Gaudot, I.; Haugmard, M.
2017-12-01
We performed shear wave splitting analysis on 203 permanent (French RLPB, CEA and Catalonian networks) and temporary (PYROPE and IberArray experiments) broad-band stations around the Pyrenees. These measurements considerably enhance the spatial resolution and coverage of seismic anisotropy in that region. In particular, we characterize with different shear wave splitting analysis methods the small-scale variations of splitting parameters φ and δt along three dense transects crossing the western and central Pyrenees with an interstation spacing of about 7 km. While we find a relatively coherent seismic anisotropy pattern in the Pyrenean domain, we observe abrupt changes of splitting parameters in the Aquitaine Basin and delay times along the Pyrenees. We moreover observe coherent fast directions despite complex lithospheric structures in Iberia and the Massif Central. This suggests that two main sources of anisotropy are required to interpret seismic anisotropy in this region: (i) lithospheric fabrics in the Aquitaine Basin (probably frozen-in Hercynian anisotropy) and in the Pyrenees (early and late Pyrenean dynamics); (ii) asthenospheric mantle flow beneath the entire region (imprint of the western Mediterranean dynamics since the Oligocene).
NASA Astrophysics Data System (ADS)
Wu, P.; Wang, H.; van der Wal, W.; Shum, C.; Lee, H.; Braun, A.
2009-05-01
Lateral heterogeneities in the mantle can be caused by thermal, chemical and non-isotropic pre-stress effects. Here, observations of the glacial isostatic adjustment (GIA) process are used to constrain the thermal contribution to lateral variations in upper and lower mantle viscosities. The Coupled Laplace-Finite Element method is used to predict the GIA response on a spherical, self-gravitating, compressible, viscoelastic earth with self-gravitating oceans, induced by either the ICE-5G or ICE-4G deglaciation models. GIA observations include global historic relative sea level data, GPS uplift rates in Laurentide and Fennoscandia, altimetry together with tide-gauge data in the Great Lakes area, and GRACE data in Laurentide. The lateral viscosity perturbations are inferred from the high resolution seismic tomography model of Grand (2002) by using a conversion relation that takes into account both anelastic and anharmonic effects (Karato 2008). To determine the contribution of thermal effects in the upper and lower mantle, the scaling factor b is also inserted into the conversion relation: For b = 1, lateral velocity variations are caused by thermal effects alone; while b < 1 indicates a decreasing contribution of thermal effects; eventually when b = 0, there is no lateral viscosity variations exist and the Earth is laterally homogeneous. The value of b in the upper mantle is b1 while that in the lower mantle is b2. The lateral viscosity variations computed this way are superposed on a reference model that is able to give a reasonably good fit to the GIA observations. The parameter space for (b1, b2) is then searched to find the combination that yields the best improvement in fitting the GIA data in Laurentide, Fennoscandia or globally.
Evaluating the Sensitivity of Glacial Isostatic Adjustment to a Hydrous Melt at 410 km Depth
NASA Astrophysics Data System (ADS)
Hill, A. M.; Milne, G. A.; Ranalli, G.
2017-12-01
We present a sensitivity analysis aimed at testing whether observables related to GIA can support or refute the existence of a low viscosity partial melt layer located above the mantle transition zone, as required by the so-called "Transition Zone Water Filter" model (Bercovici and Karato 2003). In total, 400 model runs were performed sampling a range of melt layer thicknesses (1, 10 & 20 km) and viscosities (1015 - 1019 Pas) as well as plausible viscosity values in the upper and lower mantle. Comparing model output of postglacial decay times and j2, 18 of the considered viscosity models were found to be compatible with all of the observational constraints. Amongst these, only three `background' upper and lower mantle viscosities are permitted regardless of the properties of the melt layer: an upper mantle value of 3×1020 Pas and lower mantle values of 1022, 3×1022 and 5×1022 Pas. Concerning the properties of the melt layer itself, a thin (1 km) layer may have any of the investigated viscosities (1015 to 1019 Pas). For thicker melt layers, the viscosity must be ≥1018 Pas (20 km) or ≥1017 Pas (10 km). Our results indicate clear parameter trade-offs between the properties of the melt layer and the background viscosity structure. Given that the observations permit several values of lower mantle viscosity, we conclude that tightening constraints on this parameter would be valuable for future investigation of the type presented here. Furthermore, while decay times from both locations considered in this investigation (Ångerman River, Sweden; Richmond Gulf, Canada) offer meaningful constraints on viscosity structure, the value for Richmond Gulf is significantly more uncertain and so increasing its precision would likely result in improved viscosity constraints.
Upper mantle anisotropy from long-period P polarization
NASA Astrophysics Data System (ADS)
Schulte-Pelkum, Vera; Masters, Guy; Shearer, Peter M.
2001-10-01
We introduce a method to infer upper mantle azimuthal anisotropy from the polarization, i.e., the direction of particle motion, of teleseismic long-period P onsets. The horizontal polarization of the initial P particle motion can deviate by >10° from the great circle azimuth from station to source despite a high degree of linearity of motion. Recent global isotropic three-dimensional mantle models predict effects that are an order of magnitude smaller than our observations. Stations within regional distances of each other show consistent azimuthal deviation patterns, while the deviations seem to be independent of source depth and near-source structure. We demonstrate that despite this receiver-side spatial coherence, our polarization data cannot be fit by a large-scale joint inversion for whole mantle structure. However, they can be reproduced by azimuthal anisotropy in the upper mantle and crust. Modeling with an anisotropic reflectivity code provides bounds on the magnitude and depth range of the anisotropy manifested in our data. Our method senses anisotropy within one wavelength (250 km) under the receiver. We compare our inferred fast directions of anisotropy to those obtained from Pn travel times and SKS splitting. The results of the comparison are consistent with azimuthal anisotropy situated in the uppermost mantle, with SKS results deviating from Pn and Ppol in some regions with probable additional deeper anisotropy. Generally, our fast directions are consistent with anisotropic alignment due to lithospheric deformation in tectonically active regions and to absolute plate motion in shield areas. Our data provide valuable additional constraints in regions where discrepancies between results from different methods exist since the effect we observe is local rather than cumulative as in the case of travel time anisotropy and shear wave splitting. Additionally, our measurements allow us to identify stations with incorrectly oriented horizontal components.
NASA Astrophysics Data System (ADS)
Baba, Kiyoshi; Chen, Jin; Sommer, Malte; Utada, Hisashi; Geissler, Wolfram H.; Jokat, Wilfried; Jegen, Marion
2017-10-01
The Tristan da Cunha (TDC) is a volcanic island located above a prominent hotspot in the Atlantic Ocean. Many geological and geochemical evidences support a deep origin of the mantle material feeding the hotspot. However, the existence of a plume has not been confirmed as an anomalous structure in the mantle resolved by geophysical data because of lack of the observations in the area. Marine magnetotelluric and seismological observations were conducted in 2012-2013 to examine the upper mantle structure adjacent to TDC. The electrical conductivity structure of the upper mantle beneath the area was investigated in this study. Three-dimensional inversion analysis depicted a high conductive layer at 120 km depth but no distinct plume-like vertical structure. The conductive layer is mostly flat independently on seafloor age and bulges upward beneath the lithospheric segment where the TDC islands are located compared to younger segment south of the TDC Fracture Zone, while the bathymetry is rather deeper than prediction for the northern segment. The apparent inconsistency between the absence of vertical structure in this study and geochemical evidences on deep origin materials suggests that either the upwelling is too small and/or weak to be resolved by the current data set or that the upwelling takes place elsewhere outside of the study area. Other observations suggest that 1) the conductivity of the upper mantle can be explained by the fact that the mantle above the high conductivity layer is depleted in volatiles as the result of partial melting beneath the spreading ridge, 2) the potential temperature of the segments north of the TDC Fracture Zone is lower than that of the southern segment at least during the past 30 Myr.
NASA Astrophysics Data System (ADS)
Chen, Y.; Gu, Y. J.; Hung, S. H.
2014-12-01
Based on finite-frequency theory and cross-correlation teleseismic relative traveltime data from the USArray, Canadian National Seismograph Network (CNSN) and Canadian Rockies and Alberta Network (CRANE), we present a new tomographic model of P-wave velocity perturbations for the lithosphere and upper mantle beneath the Cordillera-cration transition region in southwestern Canada. The inversion procedure properly accounts for the finite-volume sensitivities of measured travel time residuals, and the resulting model shows a greater resolution of upper mantle velocity heterogeneity beneath the study area than earlier approaches based on the classical ray-theoretical approach. Our model reveals a lateral change of P velocities from -0.5% to 0.5% down to ~200-km depth in a 50-km wide zone between the Alberta Basin and the foothills of the Rocky Mountains, which suggests a sharp structural gradient along the Cordillera deformation front. The stable cratonic lithosphere, delineated by positive P-velocity perturbations of 0.5% and greater, extends down to a maximum depth of ~180 km beneath the Archean Loverna Block (LB). In comparison, the mantle beneath the controversial Medicine Hat Block (MHB) exhibits significantly higher velocities in the uppermost mantle and a shallower (130-150 km depth) root, generally consistent with the average depth of the lithosphere-asthenosphere boundary beneath Southwest Western Canada Sedimentary Basin (WCSB). The complex shape of the lithospheric velocities under the MHB may be evidence of extensive erosion or a partial detachment of the Precambrian lithospheric root. Furthermore, distinct high velocity anomalies in LB and MHB, which are separated by 'normal' mantle block beneath the Vulcan structure (VS), suggest different Archean assembly and collision histories between these two tectonic blocks.
Three-dimensional instabilities of mantle convection with multiple phase transitions
NASA Technical Reports Server (NTRS)
Honda, S.; Yuen, D. A.; Balachandar, S.; Reuteler, D.
1993-01-01
The effects of multiple phase transitions on mantle convection are investigated by numerical simulations that are based on three-dimensional models. These simulations show that cold sheets of mantle material collide at junctions, merge, and form a strong downflow that is stopped temporarily by the transition zone. The accumulated cold material gives rise to a strong gravitational instability that causes the cold mass to sink rapidly into the lower mantle. This process promotes a massive exchange between the lower and upper mantles and triggers a global instability in the adjacent plume system. This mechanism may be cyclic in nature and may be linked to the generation of superplumes.
Water and hydrogen are immiscible in Earth's mantle.
Bali, Enikő; Audétat, Andreas; Keppler, Hans
2013-03-14
In the deep, chemically reducing parts of Earth's mantle, hydrous fluids contain significant amounts of molecular hydrogen (H2). Thermodynamic models of fluids in Earth's mantle so far have always assumed that molecular hydrogen and water are completely miscible. Here we show experimental evidence that water and hydrogen can coexist as two separate, immiscible phases. Immiscibility between water and hydrogen may be the cause of the formation of enigmatic, ultra-reducing domains in the mantle that contain moissanite (SiC) and other phases indicative of extremely reducing conditions. Moreover, the immiscibility between water and hydrogen may provide a mechanism for the rapid oxidation of Earth's upper mantle immediately following core formation.
Modeling Earth's surface topography: decomposition of the static and dynamic components
NASA Astrophysics Data System (ADS)
Guerri, M.; Cammarano, F.; Tackley, P. J.
2017-12-01
Isolating the portion of topography supported by mantle convection, the so-called dynamic topography, would give us precious information on vigor and style of the convection itself. Contrasting results on the estimate of dynamic topography motivate us to analyse the sources of uncertainties affecting its modeling. We obtain models of mantle and crust density, leveraging on seismic and mineral physics constraints. We use the models to compute isostatic topography and residual topography maps. Estimates of dynamic topography and associated synthetic geoid are obtained by instantaneous mantle flow modeling. We test various viscosity profiles and 3D viscosity distributions accounting for inferred lateral variations in temperature. We find that the patterns of residual and dynamic topography are robust, with an average correlation coefficient of 0.74 and 0.71, respectively. The amplitudes are however poorly constrained. For the static component, the considered lithospheric mantle density models result in topographies that differ, on average, 720 m, with peaks reaching 1.7 km. The crustal density models produce variations in isostatic topography averaging 350 m, with peaks of 1 km. For the dynamic component, we obtain peak-to-peak topography amplitude exceeding 3 km for all the tested mantle density and viscosity models. Such values of dynamic topography produce geoid undulations that are not in agreement with observations. Assuming chemical heterogeneities in the lower mantle, in correspondence with the LLSVPs (Large Low Shear wave Velocity Provinces), helps to decrease the amplitudes of dynamic topography and geoid, but reduces the correlation between synthetic and observed geoid. The correlation coefficients between the residual and dynamic topography maps is always less than 0.55. In general, our results indicate that, i) current knowledge of crust density, mantle density and mantle viscosity is still limited, ii) it is important to account for all the various sources of uncertainties when computing static and dynamic topography. In conclusion, a multidisciplinary approach, which involves multiple geophysics observations and constraints from mineral physics, is necessary for obtaining robust density models and, consequently, for properly estimating the dynamic topography.
Coldspots and hotspots - Global tectonics and mantle dynamics of Venus
NASA Technical Reports Server (NTRS)
Bindschadler, Duane L.; Schubert, Gerald; Kaula, William M.
1992-01-01
Based on geologic observations provided by Magellan's first cycle of data collection and recent models of mantle convection in spherical shells and crustal deformation, the major topographic and geologic features of Venus are incorporated into a model of global mantle dynamics. Consideration is given to volcanic rises, such as Beta Regio and Atla Regio, plateau-shaped highlands dominated by complex ridged terrain (e.g., Ovda Regio and Alpha Regio), and circular lowland regions, such as Atalanta Planitia. Each of these features is related to either mantle plumes (hotspots) or mantle downwellings (coldspots).
NASA Astrophysics Data System (ADS)
Doherty, C.; Class, C.; Goldstein, S. L.; Shirey, S. B.; Martin, A. P.; Cooper, A. F.; Berg, J. H.; Gamble, J. A.
2012-12-01
In order to understand the dynamic response of the subcontinental lithospheric mantle (SCLM) to rifting, it is important to be able to distinguish the geochemical signatures of SCLM vs. asthenosphere. Recent work demonstrates that unradiogenic Os isotope ratios can indicate old depletion events in the convecting upper mantle (e.g. Rudnick & Walker, 2009), and allow us to make these distinctions. Thus, if SCLM can be traced across a rifted margin, its fate during rifting can be established. The Western Ross Sea provides favorable conditions to test the dynamic response of SCLM to rifting. Re-Os measurements from 8 locations extending from the rift shoulder to 200 km into the rift basin reveal 187Os/188Os ranging from 0.1056 at Foster Crater on the shoulder, to 0.1265 on Ross Island within the rift. While individual sample model ages vary widely throughout the margin, 'aluminochron' ages (Reisberg & Lorand, 1995) reveal a narrower range of lithospheric stabilization ages. Franklin Island and Sulfur Cones show a range of Re-depletion ages (603-1522 Ma and 436-1497 Ma) but aluminochrons yield Paleoproterozoic stabilization ages of 1680 Ma and 1789 Ma, respectively. These ages coincide with U-Pb zircon ages from Transantarctic Mountain (TAM) crustal rocks, in support of SCLM stabilization at the time of crust formation along the central TAM. The Paleoproterozoic stabilization age recorded at Franklin Island is especially significant, since it lies 200km off of the rift shoulder. The similar ages beneath the rift shoulder and within the rift suggests stretched SCLM reaches into the rift and thus precludes replacement by asthenospheric mantle. The persistence of thinned Paleoproterozoic SCLM into the rifted zone in WARS suggests that it represents a 'type I' margin of Huismans and Beaumont (2011), which is characterized by crustal breakup before loss of lithospheric mantle. The Archean Re-depletion age of 3.2 Ga observed on the rift shoulder suggests that cratonic lithosphere extends beneath the TAM. With further analyses we hope to determine if there is lateral flow of cratonic lithosphere into the rift. Huismans, R., Beaumount, C., 2011. Depth-dependent extension, two stage breakup and cratonic underplating at rifted margins. Nature 473, 74-78. Reisberg, L.C., Lorand, J.P., 1995. Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature 376, 159-162. Rudnick, R.L., Walker, R.J., 2009. Interpreting ages from Re-Os isotopes in peridotites. Lithos 1125, 1083-1095.
Viscoelastic-coupling model for the earthquake cycle driven from below
Savage, J.C.
2000-01-01
In a linear system the earthquake cycle can be represented as the sum of a solution which reproduces the earthquake cycle itself (viscoelastic-coupling model) and a solution that provides the driving force. We consider two cases, one in which the earthquake cycle is driven by stresses transmitted along the schizosphere and a second in which the cycle is driven from below by stresses transmitted along the upper mantle (i.e., the schizosphere and upper mantle, respectively, act as stress guides in the lithosphere). In both cases the driving stress is attributed to steady motion of the stress guide, and the upper crust is assumed to be elastic. The surface deformation that accumulates during the interseismic interval depends solely upon the earthquake-cycle solution (viscoelastic-coupling model) not upon the driving source solution. Thus geodetic observations of interseismic deformation are insensitive to the source of the driving forces in a linear system. In particular, the suggestion of Bourne et al. [1998] that the deformation that accumulates across a transform fault system in the interseismic interval is a replica of the deformation that accumulates in the upper mantle during the same interval does not appear to be correct for linear systems.
A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California
Becken, M.; Ritter, O.; Park, S.K.; Bedrosian, P.A.; Weckmann, U.; Weber, M.
2008-01-01
Magnetotelluric (MT) data from 66 sites along a 45-km-long profile across the San Andreas Fault (SAF) were inverted to obtain the 2-D electrical resistivity structure of the crust near the San Andreas Fault Observatory at Depth (SAFOD). The most intriguing feature of the resistivity model is a steeply dipping upper crustal high-conductivity zone flanking the seismically defined SAF to the NE, that widens into the lower crust and appears to be connected to a broad conductivity anomaly in the upper mantle. Hypothesis tests of the inversion model suggest that upper and lower crustal and upper-mantle anomalies may be interconnected. We speculate that the high conductivities are caused by fluids and may represent a deep-rooted channel for crustal and/or mantle fluid ascent. Based on the chemical analysis of well waters, it was previously suggested that fluids can enter the brittle regime of the SAF system from the lower crust and mantle. At high pressures, these fluids can contribute to fault-weakening at seismogenic depths. These geochemical studies predicted the existence of a deep fluid source and a permeable pathway through the crust. Our resistivity model images a conductive pathway, which penetrates the entire crust, in agreement with the geochemical interpretation. However, the resistivity model also shows that the upper crustal branch of the high-conductivity zone is located NE of the seismically defined SAF, suggesting that the SAF does not itself act as a major fluid pathway. This interpretation is supported by both, the location of the upper crustal high-conductivity zone and recent studies within the SAFOD main hole, which indicate that pore pressures within the core of the SAF zone are not anomalously high, that mantle-derived fluids are minor constituents to the fault-zone fluid composition and that both the volume of mantle fluids and the fluid pressure increase to the NE of the SAF. We further infer from the MT model that the resistive Salinian block basement to the SW of the SAFOD represents an isolated body, being 5-8km wide and reaching to depths >7km, in agreement with aeromagnetic data. This body is separated from a massive block of Salinian crust farther to the SW. The NE terminus of resistive Salinian crust has a spatial relationship with a near-vertical zone of increased seismic reflectivity ???15km SW of the SAF and likely represents a deep-reaching fault zone. ?? 2008 The Authors Journal compilation ?? 2008 RAS.
Mapping seismic azimuthal anisotropy of the Japan subduction zone
NASA Astrophysics Data System (ADS)
Zhao, D.; Liu, X.
2016-12-01
We present 3-D images of azimuthal anisotropy tomography of the crust and upper mantle of the Japan subduction zone, which are determined using a large number of high-quality P- and S-wave arrival-time data of local earthquakes and teleseismic events recorded by the dense seismic networks on the Japan Islands. A tomographic method for P-wave velocity azimuthal anisotropy is modified and extended to invert S-wave travel times for 3-D S-wave velocity azimuthal anisotropy. A joint inversion of the P and S wave data is conducted to constrain the 3-D azimuthal anisotropy of the Japan subduction zone. Main findings of this work are summarized as follows. (1) The high-velocity subducting Pacific and Philippine Sea (PHS) slabs exhibit trench-parallel fast-velocity directions (FVDs), which may reflect frozen-in lattice-preferred orientation of aligned anisotropic minerals formed at the mid-ocean ridge as well as shape-preferred orientation such as normal faults produced at the outer-rise area near the trench axis. (2) Significant trench-normal FVDs are revealed in the mantle wedge, which reflects corner flow in the mantle wedge due to the active subduction and dehydration of the oceanic plates. (3) Obvious toroidal FVDs and low-velocity anomalies exist in and around a window (hole) in the aseismic PHS slab beneath Southwest Japan, which may reflect a toroidal mantle flow pattern resulting from hot and wet mantle upwelling caused by the joint effects of deep dehydration of the Pacific slab and the convective circulation process in the mantle wedge above the Pacific slab. (4) Significant low-velocity anomalies with trench-normal FVDs exist in the mantle below the Pacific slab beneath Northeast Japan, which may reflect a subducting oceanic asthenosphere affected by hot mantle upwelling from the deeper mantle. ReferencesLiu, X., D. Zhao (2016) Seismic velocity azimuthal anisotropy of the Japan subduction zone: Constraints from P and S wave traveltimes. J. Geophys. Res. 121, doi:10.1002/2016JB013116. Zhao, D., S. Yu, X. Liu (2016) Seismic anisotropy tomography: New insight into subduction dynamics. Gondwana Res. 33, 24-43.
Origin of the lithospheric stress field
NASA Astrophysics Data System (ADS)
Lithgow-Bertelloni, Carolina; Guynn, Jerome H.
2004-01-01
An understanding of the tectonic stress field is geologically important because it is the agent that preserves in the crust a memory of dynamical processes. In an effort to elucidate the origin of the present state of stress of the lithosphere we use a finite element model of the Earth's lithosphere to calculate stresses induced by mantle flow, crustal heterogeneity, and topography and compare these to observations of intraplate stresses as given by the World Stress Map. We explore two models of lithospheric heterogeneity, one based directly on seismic and other observational constraints (Crust 2.0), and another that assumes isostatic compensation. Mantle tractions are computed from two models of mantle density heterogeneity: a model based on the history of subduction of the last 180 Myr, which has proved successful at accurately reproducing the present-day geoid and Cenozoic plate velocities, and a model inferred from seismic tomography. We explore the effects of varying assumptions for the viscosity structure of the mantle, and the effects of lateral variations in viscosity in the form of weak plate boundaries. We find that a combined model that includes both mantle and lithospheric sources of stress yields the best match to the observed stress field (˜60% variance reduction), although there are many regions where agreement between observed and predicted stresses is poor. The stress field produced by mantle tractions alone shows a greater degree of long-wavelength structure than is apparent in the stress observations but agrees very well with observations in some areas where radial mantle tractions are particularly strong such as in southeast Asia and the western Pacific. The stress field produced by lithospheric heterogeneity alone depends strongly on the assumed crustal model: Whereas the isostatically compensated model yields very poor agreement with observations, the model based on Crust 2.0 matches the observations about as well as mantle tractions alone and matches very well in certain areas where the influence of high topography is very important (e.g., Andes, East Africa). A possible interpretation of our results is that the stress field is significantly influenced by lateral variations in the viscosity of the mantle, which leads to variable amounts of decoupling between lithosphere and mantle, allowing the mantle signature to dominate in some areas and the crustal signature to dominate in others. The poor fit between the isostatically compensated crustal model and observations and the large differences between the two crustal models point toward the importance of dynamic topography and remaining uncertainties in crustal structure and rheology. We also consider the possibility that observations of stress from the shallow crust may not reflect the state of stress of the entire plate; stresses in the upper plate may be at least partially decoupled from broader-scale plate driving forces by lateral and vertical variations in lithospheric rheology.
A Receiver Function Study of Mantle Transition Zone Discontinuities beneath Egypt and Saudi Arabia
NASA Astrophysics Data System (ADS)
Liu, K. H.; Mohamed, A. A.; Gao, S. S.; Elsheikh, A. A.; Yu, Y.; Fat-Helbary, R. E.
2014-12-01
The dramatic asymmetry in terms of surface elevation, Cenozoic volcanisms, and earthquake activity across the Red Sea is an enigmatic issue in global tectonics, partially due to the unavailability of broadband seismic data on the African plate adjacent to the Red Sea. Here we report the first results from a receiver function study of the mantle transition zone (MTZ) discontinuities using data from the Egyptian National Seismic Network, and compare the resulting depths of the 410 and 660 km discontinuities (d410 and d660) with those observed on the Arabian side. Results using more than 6000 P-to-S receiver functions recorded at 49 broadband seismic stations in Egypt, Saudi Arabia and adjacent areas show that when the IASP91 Earth model is used for time-to-depth conversion, the resulting depth of the discontinuities increases systematically toward the axis of the Afro-Arabian Dome (AAD) from both the west and east. Relative to the westernmost area, the maximum depression of the 410-km discontinuity is about 30 km, and that of the 660-km discontinuity is about 45 km. Highly correlated d410 and d660 depths suggest that the observed apparent depth variations are mostly caused by lateral velocity anomalies in the upper mantle, while the 15 km additional depression of the d660 relative to the d410 requires either a colder-than-normal MTZ or the presence of water in the MTZ. We tested several models involving upper mantle and MTZ velocity anomalies and undulations of the MTZ discontinuities due to temperature anomalies and water content, and found that the observed systematic variations can best be explained by a model involving a hydrated MTZ and an upper-mantle low-velocity zone beneath the AAD (Mohamed et al., 2014, doi: 10.1093/gji/ggu284). Models invoking one or more mantle plumes originated from the MTZ or the lower-mantle beneath the study area are not consistent with the observations.
Experimental evidence supporting a global melt layer at the base of the Earth's upper mantle.
Freitas, D; Manthilake, G; Schiavi, F; Chantel, J; Bolfan-Casanova, N; Bouhifd, M A; Andrault, D
2017-12-19
The low-velocity layer (LVL) atop the 410-km discontinuity has been widely attributed to dehydration melting. In this study, we experimentally reproduced the wadsleyite-to-olivine phase transformation in the upwelling mantle across the 410-km discontinuity and investigated in situ the sound wave velocity during partial melting of hydrous peridotite. Our seismic velocity model indicates that the globally observed negative Vs anomaly (-4%) can be explained by a 0.7% melt fraction in peridotite at the base of the upper mantle. The produced melt is richer in FeO (~33 wt.%) and H 2 O (~16.5 wt.%) and its density is determined to be 3.56-3.74 g cm -3 . The water content of this gravitationally stable melt in the LVL corresponds to a total water content in the mantle transition zone of 0.22 ± 0.02 wt.%. Such values agree with estimations based on magneto-telluric observations.
NASA Astrophysics Data System (ADS)
Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.
2018-07-01
We present a methodology for 1-D imaging of upper-mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parametrization based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.
Genetic relations of oceanic basalts as indicated by lead isotopes
Tatsumoto, M.
1966-01-01
The isotopic compositions of lead and the concentrations of lead, uranium, and thorium in samples of oceanic tholeiite and alkali suites are determined, and the genetic relations of the oceanic basalts are discussed. Lead of the oceanic tholeiites has a varying lead-206 : lead-204 ratio between 17.8 and 18.8, while leads of the alkali basalt suites from Easter Island and Guadalupe Island are very radiogenic with lead-206 : lead-204 ratios between 19.3 and 20.4. It is concluded that (i) the isotopic composition of lead in oceanic tholeiite suggests that the upper mantle source region of the tholeiite was differentiated from an original mantle material more than 1 billion years ago and that the upper mantle is not homogeneous at the present time, (ii) less than 20 million years was required for the crystal differentiation within the alkali suite from Easter Island, (iii) no crustal contamination was involved in the course of differentiation of rocks from Easter Island; however, some crustal contamination may have affected Guadalupe Island rocks, and (iv) alkali basalt may be produced from the tholeiite in the oceanic region by crystal differentiation. Alternatively the difference in the isotopic composition of lead in oceanic basalts may be produced by partial melting at different depths of a differentiated upper mantle.
Structure of the European upper mantle revealed by adjoint tomography
NASA Astrophysics Data System (ADS)
Zhu, Hejun; Bozdağ, Ebru; Peter, Daniel; Tromp, Jeroen
2012-07-01
Images of the European crust and upper mantle, created using seismic tomography, identify the Cenozoic Rift System and related volcanism in central and western Europe. They also reveal subduction and slab roll back in the Mediterranean-Carpathian region. However, existing tomographic models are either high in resolution, but cover only a limited area, or low in resolution, and thus miss the finer-scale details of mantle structure. Here we simultaneously fit frequency-dependent phase anomalies of body and surface waveforms in complete three-component seismograms with an iterative inversion strategy involving adjoint methods, to create a tomographic model of the European upper mantle. We find that many of the smaller-scale structures such as slabs, upwellings and delaminations that emerge naturally in our model are consistent with existing images. However, we also derive some hitherto unidentified structures. Specifically, we interpret fast seismic-wave speeds beneath the Dinarides Mountains, southern Europe, as a signature of northeastward subduction of the Adria plate; slow seismic-wave speeds beneath the northern part of the Rhine Graben as a reservoir connected to the Eifel hotspot; and fast wave-speed anomalies beneath Scandinavia as a lithospheric drip, where the lithosphere is delaminating and breaking away. Our model sheds new light on the enigmatic palaeotectonic history of Europe.
NASA Astrophysics Data System (ADS)
Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.
2018-04-01
We present a methodology for 1-D imaging of upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterisation based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.
Noble gas systematics of the Skaergaard intrusion
NASA Astrophysics Data System (ADS)
Horton, F.; Farley, K. A.; Taylor, H. P.
2017-12-01
The noble gas isotopic compositions of olivines from the Skaergaard layered mafic intrusion in Greenland reveal that magmas readily exchange noble gases with their environment after emplacement. Although Skaergaard magmas are thought to have derived from the upper mantle, all of the olivine separates we analyzed have 3He/4He ratios less than that of the upper mantle ( 8 Ra, where Ra = 3He/4He of the atmosphere, 1.39 x 10-6). This suggests that crustal and/or atmospheric noble gases have contaminated all Skaergaard magmas to some extent. We obtained the highest 3He/4He ratios ( 2 Ra) from olivines found in the lowermost exposed layers of the intrusion away from the margins. Excess radiogenic 4He (indicated by Ra<1) along the margin of the intrusion indicates that noble gases from the Archean host-rock were incorporated into the cooling magma chamber, probably via magmatic assimilation. Noble gases in olivines from the upper portions of the intrusion have atmospheric isotopic compositions, but higher relative helium abundances than the atmosphere. We suggest that post-crystallization hydrothermal circulation introduced atmosphere-derived noble gases into uppermost layers of the intrusion. Such high temperature exchanges of volatiles between plutons and their immediate surroundings may help explain why so few mantle-derived rocks retain mantle-like noble gas signatures.
NASA Astrophysics Data System (ADS)
Mulibo, Gabriel D.; Nyblade, Andrew A.
2013-07-01
to S conversions from the 410 and 660 km discontinuities observed in receiver function stacks reveal a mantle transition zone that is ~30-40 km thinner than the global average in a region ~200-400 km wide extending in a SW-NE direction from central Zambia, across Tanzania and into Kenya. The thinning of the transition zone indicates a ~190-300 K thermal anomaly in the same location where seismic tomography models suggest that the lower mantle African superplume structure connects to thermally perturbed upper mantle beneath eastern Africa. This finding provides compelling evidence for the existence of a continuous thermal structure extending from the core-mantle boundary to the surface associated with the African superplume.
Mooney, W.D.; Gettings, M.E.; Blank, H.R.; Healy, J.H.
1985-01-01
The crustal and upper mantle compressional-wave velocity structure across the southwestern Arabian Shield has been investigated by a 1000-km-long seismic refraction profile. The profile begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, trends southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan, and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, and six shot points were used, including one in the Red Sea. Two-dimensional ray-tracing techniques, used to analyze amplitude-normalized record sections indicate that the Arabian Shield is composed, to first order, of two layers, each about 20 km thick, with average velocities of about 6.3 km/s and 7.0 km/s, respectively. West of the Shield-Red Sea margin, the crust thins to a total thickness of less than 20 km, beyond which the Red Sea shelf and coastal plain are interpreted to be underlain by oceanic crust. A major crustal inhomogeneity at the northeast end of the profile probably represents the suture zone between two crustal blocks of different composition. Elsewhere along the profile, several high-velocity anomalies in the upper crust correlate with mapped gneiss domes, the most prominent of which is the Khamis Mushayt gneiss. Based on their velocities, these domes may constitute areas where lower crustal rocks have been raised some 20 km. Two intracrustal reflectors in the center of the Shield at 13 km depth probably represent the tops of mafic intrusives. The Mohorovic??ic?? discontinuity beneath the Shield varies from a depth of 43 km and mantle velocity of 8.2 km/s in the northeast to a depth of 38 km and mantle velocity of 8.0 km/s depth in the southwest near the Shield-Red Sea transition. Two velocity discontinuities occur in the upper mantle, at 59 and 70 km depth. The crustal and upper mantle velocity structure of the Arabian Shield is interpreted as revealing a complex crust derived from the suturing of island arcs in the Precarnbrian. The Shield is currently flanked by the active spreading boundary in the Red Sea. ?? 1985.
NASA Astrophysics Data System (ADS)
Tsuno, Kyusei; Dasgupta, Rajdeep
2015-02-01
Constraining the stable form of carbon in the deep mantle is important because carbon has key influence on mantle processes such as partial melting and element mobility, thereby affecting the efficiency of carbon exchange between the endogenic and exogenic reservoirs. In the reduced, mid- to deep-upper mantle, the chief host of deep carbon is expected to be graphite/diamond but in the presence of Fe-Ni alloy melt in the reduced mantle and owing to high solubility of carbon in such alloy phase, diamond may become unstable. To investigate the nature of stable, C-bearing phases in the reduced, mid- to deep-upper mantle, here we have performed experiments to examine the effect of sulfur on the phase relations of the Ni-rich portion of Fe-Ni ± Cu-C-S system, and carbon solubility in the Fe-Ni solid and Fe-Ni-S liquid alloys at 6-8 GPa and 800-1400 °C using a multianvil press. Low-temperature experiments for six starting mixes (Ni/(Fe + Ni) ∼ 0.61, 8-16 wt.% S) contain C-bearing, solid Fe-Ni alloy + Fe-Ni-C-S alloy melt + metastable graphite, and the solid alloy-out boundary is constrained, at 1150-1200 °C at 6 GPa and 900-1000 °C at 8 GPa for S-poor starting mix, and at 1000-1050 °C at 6 GPa and 900-1000 °C at 8 GPa for the S-rich starting mix. The carbon solubility in the liquid alloy significantly diminishes from 2.1 to 0.8 wt.% with sulfur in the melt increasing from 8 to 24 wt.%, irrespective of temperature. We also observed a slight decrease of carbon solubility in the liquid alloy with increasing pressure when alloy liquid contains >∼18 wt.% S, and with decreasing Ni/(Fe + Ni) ratio from 0.65 to ∼0.53. Based on our results, diamond, coexisting with Ni-rich sulfide liquid alloy is expected to be stable in the reduced, alloy-bearing oceanic mantle with C content as low as 20 to 5 ppm for mantle S varying between 100 and 200 ppm. Deep, reduced root of cratonic mantle, on the other hand, is expected to have C distributed among solid alloy, liquid alloy, and diamond for low-S (≤100 ppm S) domains and between liquid alloy and diamond in high-S (≥150 ppm S) domains. Our findings can explain the observation of Ni-rich sulfide and/or Fe-Ni alloy inclusions in diamond and suggest that diamond stability in the alloy-bearing, reduced mantle does not necessarily require excess C supply from recycled, crustal lithologies. Our prediction of diamond stability in the background, depleted upper mantle, owing to the interaction with mantle sulfides, is also consistent with the carbon isotopic composition of peridotitic diamond (δ13C of - 5 ± 1 ‰), which suggests no significant input from recycled carbon.
NASA Astrophysics Data System (ADS)
Panza, G. F.; Peccerillo, A.; Aoudia, A.; Farina, B.
2007-01-01
Information on the physical and chemical properties of the lithosphere-asthenosphere system (LAS) can be obtained by geophysical investigation and by studies of petrology-geochemistry of magmatic rocks and entrained xenoliths. Integration of petrological and geophysical studies is particularly useful in geodynamically complex areas characterised by abundant and compositionally variable young magmatism, such as in the Tyrrhenian Sea and surroundings. A thin crust, less than 10 km, overlying a soft mantle (where partial melting can reach about 10%) is observed for Magnaghi, Vavilov and Marsili, which belong to the Central Tyrrhenian Sea backarc volcanism where subalkaline rocks dominate. Similar characteristics are seen for the uppermost crust of Ischia. A crust about 20 km thick is observed for the majority of the continental volcanoes, including Amiata-Vulsini, Roccamonfina, Phlegraean Fields-Vesuvius, Vulture, Stromboli, Vulcano-Lipari, Etna and Ustica. A thicker crust is present at Albani - about 25 km - and at Cimino-Vico-Sabatini — about 30 km. The structure of the upper mantle, in contrast, shows striking differences among various volcanic provinces. Volcanoes of the Roman region (Vulsini-Sabatini-Alban Hills) sit over an upper mantle characterised by Vs mostly ranging from about 4.2 to 4.4 km/s. At the Alban Hills, however, slightly lower Vs values of about 4.1 km/s are detected between 60 and 120 km of depth. This parallels the similar and rather homogeneous compositional features of the Roman volcanoes, whereas the lower Vs values detected at the Alban Hills may reflect the occurrence of small amounts of melts within the mantle, in agreement with the younger age of this volcano. The axial zone of the Apennines, where ultrapotassic kamafugitic volcanoes are present, has a mantle structure with high-velocity lid ( Vs ˜ 4.5 km/s) occurring at the base of a 40-km-thick crust. Beneath the Campanian volcanoes of Vesuvius and Phlegraean Fields, the mantle structure shows a rigid body dipping westward, a feature that continues southward, up to the eastern Aeolian arc. In contrast, at Ischia the upper mantle contains a shallow low-velocity layer ( Vs = 3.5-4.0 km/s) just beneath a thin but complex crust. The western Aeolian arc and Ustica sit over an upper mantle with Vs ˜ 4.2-4.4 km/s, although a rigid layer ( Vs = 4.55 km/s) from about 80 to 150 km occurs beneath the western Aeolian arc. In Sardinia, no significant differences in the LAS structure are detected from north to south. The petrological-geochemical signatures of Italian volcanoes show strong variations that allow us to distinguish several magmatic provinces. These often coincide with mantle sectors identified by Vs tomography. For instance, the Roman volcanoes show remarkable similar petrological and geochemical characteristics, mirroring similar structure of the LAS. The structure and geochemical-isotopic composition of the upper mantle change significantly when we move to the Stromboli-Campanian volcanoes. The geochemical signatures of Ischia and Procida volcanoes are similar to other Campanian centres, but Sr-Pb isotopic ratios are lower marking a transition to the backarc mantle of the Central Tyrrhenian Sea. The structural variations from Stromboli to the central (Vulcano and Lipari) and western Aeolian arc are accompanied by strong variations of geochemical signatures, such as a decrease of Sr-isotope ratios and an increase of Nd-, Pb-isotope and LILE/HFSE ratios. The dominance of mafic subalkaline magmatism in the Tyrrhenian Sea basin denotes large degrees of partial melting, well in agreement with the soft characteristics of the uppermost mantle in this area. In contrast, striking isotopic differences of Plio-Quaternary volcanic rocks from southern to northern Sardinia does not find a match in the LAS geophysical characteristics. The combination of petrological and geophysical constraints allows us to propose a 3D schematic geodynamic model of the Tyrrhenian basin and bordering volcanic areas, including the subduction of the Ionian-Adria lithosphere in the southern Tyrrhenian Sea, and to place constraints on the geodynamic evolution of the whole region.
Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations
NASA Astrophysics Data System (ADS)
Lund, D. C.; Asimow, P. D.; Farley, K. A.; Rooney, T. O.; Seeley, E.; Jackson, E. W.; Durham, Z. M.
2016-01-01
Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.
NASA Astrophysics Data System (ADS)
Portner, D. E.; Biryol, C. B.; Delph, J. R.; Beck, S. L.; Zandt, G.; Özacar, A.; Sandvol, E. A.; Turkelli, N.
2016-12-01
The eastern Mediterranean region is characterized by active subduction of Tethyan lithosphere beneath the Anatolian sub-continent at the Aegean and Cyprean trenches. The subduction system is historically characterized by slab roll-back, detachment, and slab settling in the mantle transition zone. Prior mantle tomography studies reveal segmentation of the subducted Tethyan lithosphere, which is thought to have a strong control on surface volcanism and uplift across Anatolia. However, tomographic resolution, particularly in central Anatolia, has been limited, thus making detailed delineations of the subducted slab segments difficult. To improve resolution, we combine two years of seismic data from the recent Continental Dynamics - Central Anatolia Tectonics (CD-CAT) seismic deployment and Turkey's national seismic network ( 33,000 residuals) to 33,000 travel time residuals from Biryol et al. (2011, GJI) in a new finite-frequency teleseismic P-wave tomographic inversion. Our new images reveal with detail a complicated geometry of fast velocity anomalies associated with subducted Tethyan lithosphere. At shallow depths, slow velocities separate the fast anomalies connected to the Aegean and Cyprean trenches. The fast anomaly connected to the Cyprean trench has an arcuate shape in map view, following the trace of the Central Taurus Mountains. This anomaly is separated from a high-amplitude block to the north that appears to dip sub-vertically throughout the upper mantle (200-660 km depth). Other blocks of fast material that may represent subducted Tethyan lithosphere appear down-dip of the vertical block. Additionally, our images indicate that some of the fast velocity anomalies previously seen to flatten in the mantle transition zone may continue into the lower mantle. Thus, our new images provide a more detailed picture of the fate of the Cyprean slab and suggest that some of the fast anomalies associated with the slab continue into the lower mantle, bringing to question the traditional view of a slab graveyard in the mantle transition zone in this region.
Silicate garnet studies at high pressures: A view into the Earth's mantle
NASA Astrophysics Data System (ADS)
Conrad, Pamela Gales
Silicate garnets are an abundant component in the Earth's upper mantle and transition zone. Therefore, an understanding of garnet behavior under the pressure and temperature conditions of the mantle is critical to the development of models for mantle mineralogy and dynamics. Work from three projects is presented in this report. Each investigation explores an aspect of silicate garnet behavior under high pressures. Moreover, each investigation was made possible by state-of-the-art methods that have previously been unavailable. Brillouin scattering was used to determine the elastic constants and aggregate elastic moduli of three end-member garnets at high pressures in a diamond anvil cell. These are the first high-pressure measurements of the elastic constants of end-member silicate garnets by direct measurement of acoustic velocities. The results indicate that the pressure dependence of silicate garnet elastic constants varies with composition. Therefore, extrapolation from measurements on mixed composition garnets is not possible. A new method of laser heating minerals in a diamond anvil cell has made possible the determination of the high-pressure and high-temperature stability of almandine garnet. This garnet does not transform to a silicate perovskite phase as does pyrope garnet, but it decomposes to its constituent oxides: FeO, Alsb2Osb3, and SiOsb2. These results disprove an earlier prediction that ferrous iron may expand the stability field of garnet to the lower mantle. The present results demonstrate that this is not the case. The third topic is a presentation of the results of a new technique for studying inclusions in mantle xenoliths with synchrotron X-ray microdiffraction. The results demonstrate the importance of obtaining structural as well as chemical information on inclusions within diamonds and other high-pressure minerals. An unusual phase with garnet composition is investigated and several other phases are identified from a suite of natural diamonds that are thought to have a lower mantle origin.
Mars Geological Province Designations for the Interpretation of GRS Data
NASA Technical Reports Server (NTRS)
Dohm, J. M.; Kerry, K.; Baker, V. R.; Boynton, W.; Maruyama, Shige; Anderson, R. C.
2005-01-01
Introduction: An overarching geologic theory, GEOMARS, coherently explains many otherwise anomalous aspects of the geological history of Mars. Premises for a theory of martian geologic evolution include: (1) Mars is a water-rich terrestrial planet, (2) terrestrial planets should evolve through progressive stages of dynamical history (accretion, differentiation, tectonism) and mantle convection (magma ocean, plate tectonism, stagnant lid), and (3) the early history of Earth affords an analogue to the evolution of Mars. The theory describes the following major stages of evolution for Mars (from oldest to youngest): Stage 1 - shortly after accretion, Mars differentiates to a liquid metallic core, a mantle boundary (MBL) of high-pressure silicate mineral phases, upper mantle, magma ocean, thin komatiic crust, and convecting steam atmosphere; Stage 2- Mars cools to condense its steam atmosphere and transform its mode of mantle convection to plate tectonism; subduction of waterrich oceanic crust initiates arc volcanism and transfers water, carbonates and sulfates to the mantle; Stage 3 - the core dynamo initiates, and the associated magnetosphere leads to conditions conducive to the development of near-surface life and photosynthetic production of oxygen; Stage 4 - accretion of thickened, continental crust and subduction of hydrated oceanic crust to the mantle boundary layer and lower mantle of Mars occurs; Stage 5 - the core dynamo stops during Noachian heavy bombardment while plate tectonism continues; Stage 6 - initiation of the Tharsis superplume (approx. between 4.0 and 3.8Ga) occurs, and Stage 7 - the superlume phase (stagnant-lid regime) of martian planetary evolution with episodic phases of volcanism and water outflows continues into the present. The GEOMARS Theory is testable through a multidisciplinary approach, including utilizing GRS-based information. Based on a synthesis of published geologic, paleohydrologic, topographic, geophysical, spectral, and elemental information, we have defined geologic provinces that represent significant windows into the geological evolution of Mars, unfolding the GEOMARS Theory and forming the basis for interpreting GRS data.
Evolution of a Subduction Zone
NASA Astrophysics Data System (ADS)
Noack, Lena; Van Hoolst, Tim; Dehant, Veronique
2014-05-01
The purpose of this study is to understand how Earth's surface might have evolved with time and to examine in a more general way the initiation and continuance of subduction zones and the possible formation of continents on an Earth-like planet. Plate tectonics and continents seem to influence the likelihood of a planet to harbour life, and both are strongly influenced by the planetary interior (e.g. mantle temperature and rheology) and surface conditions (e.g. stabilizing effect of continents, atmospheric temperature), but may also depend on the biosphere. Employing the Fortran convection code CHIC (developed at the Royal Observatory of Belgium), we simulate a subduction zone with a pre-defined weak zone (between oceanic and continental crust) and a fixed plate velocity for the subducting oceanic plate (Quinquis et al. in preparation). In our study we first investigate the main factors that influence the subduction process. We simulate the subduction of an oceanic plate beneath a continental plate (Noack et al., 2013). The crust is separated into an upper crust and a lower crust. We apply mixed Newtonian/non-Newtonian rheology and vary the parameters that are most likely to influence the subduction of the ocanic plate, as for example density of the crust/mantle, surface temperature, plate velocity and subduction angle. The second part of our study concentrates on the long-term evolution of a subduction zone. Even though we model only the upper mantle (until a depth of 670km), the subducted crust is allowed to flow into the lower mantle, where it is no longer subject to our investigation. This way we can model the subduction zone over long time spans, for which we assume a continuous inflow of the oceanic plate into the investigated domain. We include variations in mantle temperatures (via secular cooling and decay of radioactive heat sources) and dehydration of silicates (leading to stiffening of the material). We investigate how the mantle environment influences the subduction of the oceanic crust in terms of subduction velocity and subduction angle over time. We develop scaling laws combining the subduction velocity and angle depending on the mantle environment (and thus time). These laws can then be applied to continental growth simulations with 1D parameterized models (Höning et al., in press) or 2D/3D subduction zone simulations at specific geological times (using the correct subduction zone setting). References: Quinquis, M. et al. (in preparation). A comparison of thermo-mechanical subduction models. In preparation for G3. Noack, L., Van Hoolst, T., Dehant, V., and Breuer, D. (2013). Relevance of continents for habitability and self-consistent formation of continents on early Earth. XIII International Workshop on Modelling of Mantle and Lithosphere Dynamics, Hønefoss, Norway, 31. Aug. - 5. Sept. 2013. Höning, D., Hansen-Goos, H., Airo, A., and Spohn, T. (in press). Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science.
RHUM-RUM investigates La Réunion mantle plume from crust to core
NASA Astrophysics Data System (ADS)
Sigloch, Karin; Barruol, Guilhem
2013-04-01
RHUM-RUM (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) is a French-German passive seismic experiment designed to image an oceanic mantle plume - or lack of plume - from crust to core beneath La Réunion Island, and to understand these results in terms of material, heat flow and plume dynamics. La Réunion hotspot is one of the most active volcanoes in the world, and its hotspot track leads unambiguously to the Deccan Traps of India, one of the largest flood basalt provinces on Earth, which erupted 65 Ma ago. The genesis and the origin at depth of the mantle upwelling and of the hotspot are still very controversial. In the RHUM-RUM project, 57 German and French ocean-bottom seismometers (OBS) are deployed over an area of 2000 km x 2000 km2 centered on La Réunion Island, using the "Marion Dufresne" and "Meteor" vessels. The one-year OBS deployment (Oct. 2012 - Oct. 2013) will be augmented by terrestrial deployments in the Iles Eparses in the Mozambique Channel, in Madagascar, Seychelles, Mauritius, Rodrigues and La Réunion islands. A significant number of OBS will be also distributed along the Central and South West Indian Ridges to image the lower-mantle beneath the hotspot, but also to provide independent opportunity for the study of these slow to ultra-slow ridges and of possible plume-ridge interactions. RHUM-RUM aims to characterize the vertically ascending flow in the plume conduit, as well as any lateral flow spreading into the asthenosphere beneath the western Indian Ocean. We want to establish the origin of the heat source that has been fueling this powerful hotspot, by answering the following questions: Is there a direct, isolated conduit into the deepest mantle, which sources its heat and material from the core-mantle boundary? Is there a plume connection to the African superswell at mid-mantle depths? Might the volcanism reflect merely an upper mantle instability? RHUM-RUM also aims at studying the hotspot's interaction with the neighboring ridges of the Indian Ocean. There is in particular a long-standing hypothesis, not yet examined seismically, that channelized plume flow beneath the aseismic Rodrigues Ridge could feed the Central Indian Ridge at 1000 km distance. The RHUM-RUM group (www.rhum-rum.net): * IPG Paris & Géosciences Réunion: G. Barruol, J.P. Montagner, E. Stutzmann, F.R. Fontaine, C. Deplus, M. Cannat, G. Roult, J. Dyment, S. Singh, W. Crawford, C. Farnetani, N. Villeneuve, L. Michon. V. Ferrazzini, Y. Capdeville. * Univ. Munich (LMU): K. Sigloch, H. Igel. AWI Bremerhaven: V. Schlindwein. Univ. Frankfurt: G. Rümpker. Univ. Münster: C. Thomas. Univ. Bonn: S. Miller. * Géosciences Montpellier: C. Tiberi, A. Tommasi, D. Arcay, C. Thoraval. * Mauritius Oceanography Institute: D. Bissessur. Univ. Antananarivo: G. Rambolamanana. SEYPEC Seychelles Petroleum: P. Samson, P. Joseph. * Other institutes: A. Davaille, M. Jegen, M. Maia, G. Nolet, D. Sauter, B. Steinberger.
RHUM-RUM investigates La Réunion mantle plume from crust to core
NASA Astrophysics Data System (ADS)
Sigloch, K.; Barruol, G.
2012-12-01
RHUM-RUM (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) is a French-German passive seismic experiment designed to image an oceanic mantle plume - or lack of plume - from crust to core beneath La Réunion Island, and to understand these results in terms of material, heat flow and plume dynamics. La Réunion hotspot is one of the most active volcanoes in the world, and its hotspot track leads unambiguously to the Deccan Traps of India, one of the largest flood basalt provinces on Earth, which erupted 65 Ma ago. The genesis and the origin at depth of the mantle upwelling and of the hotspot are still very controversial. In the RHUM-RUM project, 57 German and French ocean-bottom seismometers (OBS) are deployed over an area of 2000 km x 2000 km2 centered on La Réunion Island, using the "Marion Dufresne" and "Meteor" vessels. The one-year OBS deployment (Oct. 2012 - Oct. 2013) will be augmented by terrestrial deployments in the Iles Eparses in the Mozambique Channel, in Madagascar, Seychelles, Mauritius, Rodrigues and La Réunion islands. A significant number of OBS will be also distributed along the Central and South West Indian Ridges to image the lower-mantle beneath the hotspot, but also to provide independent opportunity for the study of these slow to ultra-slow ridges and of possible plume-ridge interactions. RHUM-RUM aims to characterize the vertically ascending flow in the plume conduit, as well as any lateral flow spreading into the asthenosphere beneath the western Indian Ocean. We want to establish the origin of the heat source that has been fueling this powerful hotspot, by answering the following questions: Is there a direct, isolated conduit into the deepest mantle, which sources its heat and material from the core-mantle boundary? Is there a plume connection to the African superswell at mid-mantle depths? Might the volcanism reflect merely an upper mantle instability? RHUM-RUM also aims at studying the hotspot's interaction with the neighboring ridges of the Indian Ocean. There is in particular a long-standing hypothesis, not yet examined seismically, that channelized plume flow beneath the aseismic Rodrigues Ridge could feed the Central Indian Ridge at 1000 km distance. The RHUM-RUM group (www.rhum-rum.net): * IPG Paris & Géosciences Réunion: G. Barruol, J.P. Montagner, E. Stutzmann, F.R. Fontaine, C. Deplus, M. Cannat, G. Roult, J. Dyment, S. Singh, W. Crawford, C. Farnetani, N. Villeneuve, L. Michon. V. Ferrazzini, Y. Capdeville. * Univ. Munich (LMU): K. Sigloch, H. Igel. AWI Bremerhaven: V. Schlindwein. Univ. Frankfurt: G. Rümpker. Univ. Münster: C. Thomas. Univ. Bonn: S. Miller. * Géosciences Montpellier: C. Tiberi, A. Tommasi, D. Arcay, C. Thoraval. * Mauritius Oceanography Institute: D. Bissessur. Univ. Antananarivo: G. Rambolamanana. SEYPEC Seychelles Petroleum: P. Samson, P. Joseph. * Other institutes: A. Davaille, M. Jegen, M. Maia, G. Nolet, D. Sauter, B. Steinberger.
Upper mantle structure of the Tonga-Lau-Fiji region from Rayleigh wave tomography
NASA Astrophysics Data System (ADS)
Wei, S. Shawn; Zha, Yang; Shen, Weisen; Wiens, Douglas A.; Conder, James A.; Webb, Spahr C.
2016-11-01
We investigate the upper mantle seismic structure in the Tonga-Lau-Fiji region by jointly fitting the phase velocities of Rayleigh waves from ambient-noise and two-plane-wave tomography. The results suggest a wide low-velocity zone beneath the Lau Basin, with a minimum SV-velocity of about 3.7 ± 0.1 km/s, indicating upwelling hot asthenosphere with extensive partial melting. The variations of velocity anomalies along the Central and Eastern Lau Spreading Centers suggest varying mantle porosity filled with melt. In the north where the spreading centers are distant from the Tonga slab, the inferred melting commences at about 70 km depth, and forms an inclined zone in the mantle, dipping to the west away from the arc. This pattern suggests a passive decompression melting process supplied by the Australian plate mantle from the west. In the south, as the supply from the Australian mantle is impeded by the Lau Ridge lithosphere, flux melting controlled by water from the nearby slab dominates in the back-arc. This source change results in the rapid transition in geochemistry and axial morphology along the spreading centers. The remnant Lau Ridge and the Fiji Plateau are characterized by a 60-80 km thick lithosphere underlain by a low-velocity asthenosphere. Our results suggest the removal of the lithosphere of the northeastern Fiji Plateau-Lau Ridge beneath the active Taveuni Volcano. Azimuthal anisotropy shows that the mantle flow direction rotates from trench-perpendicular beneath Fiji to spreading-perpendicular beneath the Lau Basin, which provides evidence for the southward flow of the mantle wedge and the Samoan plume.
Crustal and mantle velocity models of southern Tibet from finite frequency tomography
NASA Astrophysics Data System (ADS)
Liang, Xiaofeng; Shen, Yang; Chen, Yongshun John; Ren, Yong
2011-02-01
Using traveltimes of teleseismic body waves recorded by several temporary local seismic arrays, we carried out finite-frequency tomographic inversions to image the three-dimensional velocity structure beneath southern Tibet to examine the roles of the upper mantle in the formation of the Tibetan Plateau. The results reveal a region of relatively high P and S wave velocity anomalies extending from the uppermost mantle to at least 200 km depth beneath the Higher Himalaya. We interpret this high-velocity anomaly as the underthrusting Indian mantle lithosphere. There is a strong low P and S wave velocity anomaly that extends from the lower crust to at least 200 km depth beneath the Yadong-Gulu rift, suggesting that rifting in southern Tibet is probably a process that involves the entire lithosphere. Intermediate-depth earthquakes in southern Tibet are located at the top of an anomalous feature in the mantle with a low Vp, a high Vs, and a low Vp/Vs ratio. One possible explanation for this unusual velocity anomaly is the ongoing granulite-eclogite transformation. Together with the compressional stress from the collision, eclogitization and the associated negative buoyancy force offer a plausible mechanism that causes the subduction of the Indian mantle lithosphere beneath the Higher Himalaya. Our tomographic model and the observation of north-dipping lineations in the upper mantle suggest that the Indian mantle lithosphere has been broken laterally in the direction perpendicular to the convergence beneath the north-south trending rifts and subducted in a progressive, piecewise and subparallel fashion with the current one beneath the Higher Himalaya.
NASA Astrophysics Data System (ADS)
Deng, Jie; Long, Maureen D.; Creasy, Neala; Wagner, Lara; Beck, Susan; Zandt, George; Tavera, Hernando; Minaya, Estela
2017-08-01
Seismic anisotropy has been documented in many portions of the lowermost mantle, with particularly strong anisotropy thought to be present along the edges of large low shear velocity provinces (LLSVPs). The region surrounding the Pacific LLSVP, however, has not yet been studied extensively in terms of its anisotropic structure. In this study, we use seismic data from southern Peru, northern Bolivia and Easter Island to probe lowermost mantle anisotropy beneath the eastern Pacific Ocean, mostly relying on data from the Peru Lithosphere and Slab Experiment and Central Andean Uplift and Geodynamics of High Topography experiments. Differential shear wave splitting measurements from phases that have similar ray paths in the upper mantle but different ray paths in the lowermost mantle, such as SKS and SKKS, are used to constrain anisotropy in D″. We measured splitting for 215 same station-event SKS-SKKS pairs that sample the eastern Pacific LLSVP at the base of the mantle. We used measurements of splitting intensity(SI), a measure of the amount of energy on the transverse component, to objectively and quantitatively analyse any discrepancies between SKS and SKKS phases. While the overall splitting signal is dominated by the upper-mantle anisotropy, a minority of SKS-SKKS pairs (∼10 per cent) exhibit strongly discrepant splitting between the phases (i.e. the waveforms require a difference in SI of at least 0.4), indicating a likely contribution from lowermost mantle anisotropy. In order to enhance lower mantle signals, we also stacked waveforms within individual subregions and applied a waveform differencing technique to isolate the signal from the lowermost mantle. Our stacking procedure yields evidence for substantial splitting due to lowermost mantle anisotropy only for a specific region that likely straddles the edge of Pacific LLSVP. Our observations are consistent with the localization of deformation and anisotropy near the eastern boundary of the Pacific LLSVP, similar to previous observations for the African LLSVP.
NASA Astrophysics Data System (ADS)
Basu, A. R.; Das, S.
2017-12-01
Estimation of Earth's lower mantle mineralogy and oxygen fugacity are principally based on indirect geophysical and experimental studies. According to these studies, the mantle becomes increasingly reducing from upper to lower mantle due to the distribution of ferric (Fe3+) and ferrous (Fe2+) iron in perovskite, the dominant mineral phase in the lower mantle. However, the natural occurrence of low oxygen fugacity (fO2), lower mantle mineral and fluid phases are rare, except some for discrete inclusions in superdeep diamonds. In this study, we document that some rocks associated with plume volcanism, such as the Deccan flood basalt volcanic province, preserve the lower mantle mineral phases. We document here unusual primary texture - bearing minerals in olivine-clinopyroxene bearing picrite intrusives associated with the Deccan Traps. The olivine and clinopyroxene of these rocks have high 3He/4He ratio (R/RA 14) as well as Nd, Sr and Pb isotopes identical to those of the Réunion plume, clearly indicating their lower mantle - derivation. These rocks are the initial pulse at 68Ma of the Deccan Trap eruption [1]. Presence of unusual exsolved lamella and rectangular, vermicular intergrowths of diopside and magnetite in olivine indicate a precursory phase with higher Fe3+. The diopside part in rectangular intergrowth show presence of hydrocarbon. Trails of small graphitic carbon crystals are also present both in the cores of these olivine and diopside. We suggest that the hydrocarbons are derived from the lower mantle having much lesser fO2 than the upper mantle. This study unequivocally indicates that direct lower mantle mineralogical signature, including their fo2 can be obtained from early pulse of plume volcanism. References: [1] Basu A R, Renne P R, Dasgupta D K, Teichmann F, Poreda R J, Science 261, 902 - 906; 1993.