Sample records for upper ocean circulation

  1. Recent changes in the summer monsoon circulation and their impact on dynamics and thermodynamics of the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Pratik, Kad; Parekh, Anant; Karmakar, Ananya; Chowdary, Jasti S.; Gnanaseelan, C.

    2018-05-01

    The present study examines changes in the low-level summer monsoon circulation over the Arabian Sea and their impact on the ocean dynamics using reanalysis data. The study confirms intensification and northward migration of low-level jet during 1979 to 2015. Further during the study period, an increase in the Arabian Sea upper ocean heat content is found in spite of a decreasing trend in the net surface heat flux, indicating the possible role of ocean dynamics in the upper ocean warming. Increase in the anti-cyclonic wind stress curl associated with the change in the monsoon circulation induces downwelling over the central Arabian Sea, favoring upper ocean warming. The decreasing trend of southward Ekman transport, a mechanism transporting heat from the land-locked north Indian Ocean to southern latitudes, also supports increasing trend of the upper ocean heat content. To reinstate and quantify the role of changing monsoon circulation in increasing the heat content over the Arabian Sea, sensitivity experiment is carried out using ocean general circulation model. In this experiment, the model is forced by inter-annual momentum forcing while rest of the forcing is climatological. Experiment reveals that the changing monsoon circulation increases the upper ocean heat content, effectively by enhancing downwelling processes and reducing southward heat transport, which strongly endorses our hypothesis that changing ocean dynamics associated with low-level monsoon circulation is causing the increasing trend in the heat content of the Arabian Sea.

  2. Understanding variability of the Southern Ocean overturning circulation in CORE-II models

    NASA Astrophysics Data System (ADS)

    Downes, S. M.; Spence, P.; Hogg, A. M.

    2018-03-01

    The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.

  3. The Gulf Stream Pathway and the Impacts of the Eddy-Driven Abyssal Circulation and the Deep Western Boundary Current

    DTIC Science & Technology

    2008-07-06

    bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The...small values below the sill depth in all of the simulations. e The upper ocean northward flow of the meridional overturning circulation (MOC) is...plus the northward upper ocean flow (14 Sv) of the meridional overturning circulation (MOC). The mean Gulf Stream IR northwall pathway ±lrr from

  4. The Pattern and Dynamics of the Meridional Overturning Circulation in the Upper Ocean

    DTIC Science & Technology

    2008-09-01

    Atlantic . Figure 4a shows that the center of meridional overturning circulation occurs at a level of about one kilometer. Circulation is weak at...maintenance of the meridional overturning circulation in the Atlantic Ocean. 5. Global Simulation The most exciting experiment would be to fully model the...mechanisms responsible for the strength and maintenance of the meridional overturning circulation in the Atlantic Ocean are not

  5. Evaluation and Sensitivity Analysis of an Ocean Model Response to Hurricane Ivan (PREPRINT)

    DTIC Science & Technology

    2009-05-18

    analysis of upper-limb meridional overturning circulation interior ocean pathways in the tropical/subtropical Atlantic . In: Interhemispheric Water...diminishing returns are encountered when either resolution is increased. 3 1. Introduction Coupled ocean-atmosphere general circulation models have become...northwest Caribbean Sea 4 and GOM. Evaluation is difficult because ocean general circulation models incorporate a large suite of numerical algorithms

  6. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  7. Tests of Parameterized Langmuir Circulation Mixing in the Oceans Surface Mixed Layer II

    DTIC Science & Technology

    2017-08-11

    inertial oscillations in the ocean are governed by three-dimensional processes that are not accounted for in a one-dimensional simulation , and it was...Unlimited 52 Paul Martin (228) 688-5447 Recent large-eddy simulations (LES) of Langmuir circulation (LC) within the surface mixed layer (SML) of...used in the Navy Coastal Ocean Model (NCOM) and tested for (a) a simple wind-mixing case, (b) simulations of the upper ocean thermal structure at Ocean

  8. Upper Ocean Measurements from Profiling Floats in the Arabian Sea During NASCar

    DTIC Science & Technology

    2015-09-30

    top-level goals] OBJECTIVES The work proposed here is designed to examine the seasonal evolution of the upper ocean in the northern Arabian...Sea over several seasonal cycles, with the specific objectives of (1) Documenting the spatial variations in the seasonal cycle of the upper ocean...circulation of the Arabian Sea and the seasonal and spatial evolution of the surface mixed layer, and would be used in conjunction with HYCOM model

  9. Dynamical Evaluation of Ocean Models using the Gulf Stream as an Example

    DTIC Science & Technology

    2010-01-01

    transport for the Atlantic meridional overturning circulation (AMOC) as the 3 nonlinear solutions discussed in Section 2. The model boundary is...Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ... overturning circulation (AMOC) streamfunction with a 5 Sv contour interval from (a) 1/12° Atlantic MICOM, (b) 1/12° Atlantic HYCOM, and (c) 1/12

  10. Dynamical Evaluation of Ocean Models Using the Gulf Stream as an Example

    DTIC Science & Technology

    2012-02-10

    Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ...30 35 55N 65N Fig. 21.14 Atlantic meridional overturning circulation (AMOC) streamfunction from the same four simulations as Fig. 21.11. An AMOC...typically develops a northern or southern bias. A shallow bias in the southward abyssal flow of the Atlan- tic Meridional Overturning Circulation (AMOC

  11. Atmosphere, ocean, and land: Critical gaps in Earth system models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Hartley, Dana

    1992-01-01

    We briefly review current knowledge and pinpoint some of the major areas of uncertainty for the following fundamental processes: (1) convection, condensation nuclei, and cloud formation; (2) oceanic circulation and its coupling to the atmosphere and cryosphere; (3) land surface hydrology and hydrology-vegetation coupling; (4) biogeochemistry of greenhouse gases; and (5) upper atmospheric chemistry and circulation.

  12. The Ocean's Abyssal Mass Flux Sustained Primarily By the Wind: Vector Correlation of Time Series in Upper and Abyssal Layers

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.

    2003-12-01

    As Wunsch has recently noted (2002), use of the term "thermohaline circulation" is muddled. The term is used with at least seven inconsistent meanings, among them abyssal circulation, the circulation driven by density and pressure differences in the deep ocean, the global conveyor, and at least four others. The use of a single term for all these concepts can create an impression that an understanding exists whereby in various combinations the seven meanings have been demonstrated to mean the same thing. But that is not the case. A particularly important consequence of the muddle is the way in which abyssal circulation is sometimes taken to be driven mostly or entirely by temperature and density differences, and equivalent to the global conveyor. But in fact the distinction between abyssal and upper-layer circulation has not been measured. To find out whether available data justifies a distinction between the upper-layer and abyssal circulations, this study surveyed velocity time series obtained by deep current meter moorings. Altogether, 114 moorings were identified, drawn from about three dozen experiments worldwide over the period 1973-1996, each of which deployed current meters in both the upper (2003750) layers. For each pair of current meters, the Kundu and Crosby measures of vector correlation were estimated, as well as coherences for periods from 10 to 60 days. In the North Atlantic, for example, Kundu vector correlation (50-day window): 0.48 +/- .03 Crosby vector correlation (absolute value, 50 day window): 0.46 +/- .07 Coherence at 60 days: .36 +/- .07 - at 30 days: 0.40 +/- .06 - at 10 days: 0.22 +/- .05 Most figures for the South Atlantic, Pacific and Southern Oceans are similar. Those obtained in the Indian Ocean or near the Equator are somewhat different. The statistics obtained here are consistent with the work of Wunsch (1997), and tend to confirm Wunsch's result that current velocities at depth are linked with those in the upper layers. Energetics of the circulation that do not take this into account are making an unjustifiable approximation of the physics. These results do not tell us whether time averaged flow on longer time scales might permit distinction of upper layer and abyssal flow components. Some intriguing corollaries do follow. First, the abyssal circulation is not identically the same thing as a global conveyor belt driven by temperature and density differences. Rather, as Wunsch noted (2002), the ocean's mass flux is sustained primarily by the wind. We may add that these wind patterns are about as robust as the temperature differences between equator and pole; this major driver of circulation is not a frail phenomenon. Second, the classical notion of a level of no motion that is also a constant-density surface, an LNM, is inconsistent with the results presented here. Such an LNM would wall off the upper layer circulation from the lower, and as they are not walled off, there can be no such LNM. Third, wind stress is being transmitted down column, presumably to the sea floor.

  13. Deep Ocean Warming Assessed from Altimeters, GRACE, 3 In-situ Measurements, and a Non-Boussinesq OGCM

    NASA Technical Reports Server (NTRS)

    Song, Y. Tony; Colberg, Frank

    2011-01-01

    Observational surveys have shown significant oceanic bottom water warming, but they are too spatially and temporally sporadic to quantify the deep ocean contribution to the present-day sea level rise (SLR). In this study, altimetry sea surface height (SSH), Gravity Recovery and Climate Experiment (GRACE) ocean mass, and in situ upper ocean (0-700 m) steric height have been assessed for their seasonal variability and trend maps. It is shown that neither the global mean nor the regional trends of altimetry SLR can be explained by the upper ocean steric height plus the GRACE ocean mass. A non-Boussinesq ocean general circulation model (OGCM), allowing the sea level to rise as a direct response to the heat added into the ocean, is then used to diagnose the deep ocean steric height. Constrained by sea surface temperature data and the top of atmosphere (TOA) radiation measurements, the model reproduces the observed upper ocean heat content well. Combining the modeled deep ocean steric height with observational upper ocean data gives the full depth steric height. Adding a GRACE-estimated mass trend, the data-model combination explains not only the altimetry global mean SLR but also its regional trends fairly well. The deep ocean warming is mostly prevalent in the Atlantic and Indian oceans, and along the Antarctic Circumpolar Current, suggesting a strong relation to the oceanic circulation and dynamics. Its comparison with available bottom water measurements shows reasonably good agreement, indicating that deep ocean warming below 700 m might have contributed 1.1 mm/yr to the global mean SLR or one-third of the altimeter-observed rate of 3.11 +/- 0.6 mm/yr over 1993-2008.

  14. The deep meridional overturning circulation in the Indian Ocean inferred from the GECCO synthesis

    NASA Astrophysics Data System (ADS)

    Wang, Weiqiang; Köhl, Armin; Stammer, Detlef

    2012-11-01

    The deep time-varying meridional overturning circulation (MOC) in the Indian Ocean in the German “Estimating the Circulation and Climate of the Ocean” consortium efforts (GECCO) ocean synthesis is being investigated. An analysis of the integrated circulation suggests that, on time average, 2.1 Sv enter the Indian Ocean in the bottom layer (>3200 m) from the south and that 12.3 Sv leave the Indian Ocean in the upper and intermediate layers (<1500 m), composed of the up-welled bottom layer inflow water, augmented by 9.6 Sv Indonesian Throughflow (ITF) water. The GECCO time-mean results differ substantially from those obtained by inverse box models, which being based on individual hydrographic sections and due to the strong seasonal cycle are susceptible to aliasing. The GECCO solution shows a large seasonal variation in its deep MOC caused by the seasonal reversal of monsoon-related wind stress forcing. The associated seasonal variations of the deep MOC range from -7 Sv in boreal winter to 3 Sv in summer. In addition, the upper and bottom transports across the 34°S section show pronounced interannual variability with roughly biennial variations superimposed by strong anomalies during each La Niña phase as well as the ITF, which mainly affect the upper layer transports. On decadal and longer timescale, the meridional overturning variability as well as long-term trends differs before and after 1980. GECCO shows a stable trend for the period 1960-1979 and substantial changes in the upper and bottom layer for the period 1980-2001. By means of an extended EOF analysis, the importance of Ekman dynamics as driving forces of the deep MOC of the Indian Ocean on the interannual timescale is highlighted. The leading modes of the zonal and meridional wind stress favour a basin-wide meridional overturning mode via Ekman upwelling or downwelling mostly in the central and eastern Indian Ocean. Moreover, tropical zonal wind stress along the equator and alongshore wind stress off the Sumatra-Java coast contribute to the evolution of the Indian Ocean dipole (IOD) events.

  15. Evaluation of Global Ocean Data Assimilation Experiment Products on South Florida Nested Simulations with the Hybrid Coordinate Ocean Model

    DTIC Science & Technology

    2009-01-01

    Ocean Model 7:285-322 Halliwell GR Jr, Weisberg RH, Mayer DA (2003) A synthetic float analysis of upper-limb meridional overturning circulation ...encompasses a variety of coastal regions (the broad Southwest Florida shelf, the narrow Atlantic Keys shelf, the shallow Florida Bay, and Biscayne...products. The results indicate that the successful hindcasting of circulation patterns in a coastal area that is characterized by complex topography and

  16. Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes

    NASA Astrophysics Data System (ADS)

    Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.

    2016-09-01

    The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (<1000 m) between 15° and ˜32°S, largely related to a weakening of the wind stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.

  17. Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content

    NASA Astrophysics Data System (ADS)

    Piecuch, Christopher G.; Ponte, Rui M.; Little, Christopher M.; Buckley, Martha W.; Fukumori, Ichiro

    2017-09-01

    The subpolar North Atlantic (SPNA) is subject to strong decadal variability, with implications for surface climate and its predictability. In 2004-2005, SPNA decadal upper ocean and sea-surface temperature trends reversed from warming during 1994-2004 to cooling over 2005-2015. This recent decadal trend reversal in SPNA ocean heat content (OHC) is studied using a physically consistent, observationally constrained global ocean state estimate covering 1992-2015. The estimate's physical consistency facilitates quantitative causal attribution of ocean variations. Closed heat budget diagnostics reveal that the SPNA OHC trend reversal is the result of heat advection by midlatitude ocean circulation. Kinematic decompositions reveal that changes in the deep and intermediate vertical overturning circulation cannot account for the trend reversal, but rather ocean heat transports by horizontal gyre circulations render the primary contributions. The shift in horizontal gyre advection reflects anomalous circulation acting on the mean temperature gradients. Maximum covariance analysis (MCA) reveals strong covariation between the anomalous horizontal gyre circulation and variations in the local wind stress curl, suggestive of a Sverdrup response. Results have implications for decadal predictability.

  18. Understanding the dimensional and mechanical properties of coastal Langmuir Circulations

    NASA Astrophysics Data System (ADS)

    Shrestha, Kalyan; Kuehl, Joseph; Anderson, William

    2017-11-01

    Non-linear interaction of surface waves and wind-driven shear instability in the upper ocean mixed layer form counter-rotating vortical structures called Langmuir Circulations. This oceanic microscale turbulence is one of the key contributors of mixing and vertical transport in the upper ocean mixed layer. Langmuir turbulence in the open (deep) ocean has already been the topic of a large research effort. However, coastal Langmuir cells are distinctly different from Langmuir cells in open-ocean regions, where additional bottom-boundary layer shear alters the kinematic properties of Langmuir cells. For this study, we have conducted a wide-ranging numerical study (solving the grid-filtered Craik-Leibovich equations) of coastal Langmuir turbulence, assessing which parameters affect Langmuir cells and defining the parametric hierarchy. The Stokes profile (aggregate velocity due to orbital wave motion) is functionally dependent on Stokes drift velocity and wavenumber of the surface waves. We explain that these parameters, which correspond to the environmental forcing variables, control the horizontal and vertical length scales of Langmuir cell respectively. This result is important in understanding the transport and dispersion of materials in the upper mixed layer of coastal ocean. We argue that wind stress is a parameter governing the strength of Langmuir cells.

  19. The Ocean-Atmosphere Hydrothermohaline Conveyor Belt

    NASA Astrophysics Data System (ADS)

    Döös, Kristofer; Kjellsson, Joakim; Zika, Jan; Laliberté, Frédéric; Brodeau, Laurent

    2015-04-01

    The ocean thermohaline circulation is linked to the hydrothermal circulation of the atmosphere. The ocean thermohaline circulation is expressed in potential temperature-salinity space and comprises a tropical upper-ocean circulation, a global conveyor belt cell and an Antarctic Bottom Water cell. The atmospheric hydrothermal circulation in a potential temperature-specific humidity space unifies the tropical Hadley and Walker cells as well as the midlatitude eddies into a single, global circulation. Superimposed, these thermohaline and hydrothermal stream functions reveal the possibility of a close connection between some parts of the water and air mass conversions. The exchange of heat and fresh water through the sea surface (precipiation-evaporation) and incoming solar radiation act to make near-surface air warm and moist while making surface water warmer and saltier as both air and water travel towards the Equator. In the tropics, air masses can undergo moist convection releasing latent heat by forming precipitation, thus acting to make warm surface water fresher. We propose that the Clausius-Clapeyron relationship for moist near-surface air acts like a lower bound for the atmospheric hydrothermal cell and an upper bound for the ocean thermohaline Conveyor-Belt cell. The analysis is made by combining and merging the overturning circulation of the ocean and atmosphere by relating the salinity of the ocean to the humidity of the atmosphere, where we set the heat and freshwater transports equal in the two stream functions By using simulations integrated with our Climate-Earth system model EC-Earth, we intend to produce the "hydrothermohaline" stream function of the coupled ocean-atmosphere overturning circulation in one single picture. We explore how the oceanic thermohaline Conveyor Belt can be linked to the global atmospheric hydrothermal circulation and if the water and air mass conversions in humidity-temperature-salinity space can be related and linked to each other along a "line" corresponding to the Clausius-Clapeyron relationship. A geographical description of how and where this occurs together with this new hydrothermohaline stream function will be searched for. The net heat and freshwater transport of the ocean and atmosphere can aslo be calculated from the thermohaline and hydrothermal stream functions. The heat transport across isohumes in the atmosphere and isohalines in the ocean as well as the freshwater transport across isotherms in both the atmosphere and ocean are computed. The maximum heat transport is about 16 PW in the atmosphere, while that of the ocean is just about 1 PW. The freshwater transport across isotherms in the atmosphere and ocean are shown to be tightly connected with a net maximum freshwater transport of 4 SV in the atmosphere and 2 Sv in the ocean.

  20. Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust

    NASA Astrophysics Data System (ADS)

    Farahat, Navah X.; Archer, David; Abbot, Dorian S.

    2017-08-01

    Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.

  1. Projected changes of the low-latitude north-western Pacific wind-driven circulation under global warming

    NASA Astrophysics Data System (ADS)

    Duan, Jing; Chen, Zhaohui; Wu, Lixin

    2017-05-01

    Based on the outputs of 25 models participating in the Coupled Model Intercomparison Project Phase 5, the projected changes of the wind-driven circulation in the low-latitude north-western Pacific are evaluated. Results demonstrate that there will be a decrease in the mean transport of the North Equatorial Current (NEC), Mindanao Current, and Kuroshio Current in the east of the Philippines, accompanied by a northward shift of the NEC bifurcation Latitude (NBL) off the Philippine coast with over 30% increase in its seasonal south-north migration amplitude. Numerical simulations using a 1.5-layer nonlinear reduced-gravity ocean model show that the projected changes of the upper ocean circulation are predominantly determined by the robust weakening of the north-easterly trade winds and the associated wind stress curl under the El Niño-like warming pattern. The changes in the wind forcing and intensified upper ocean stratification are found equally important in amplifying the seasonal migration of the NBL.

  2. The Deep Meridional Overturning Circulation in the Indian Ocean Inferred from the GECCO Synthesis

    NASA Astrophysics Data System (ADS)

    Wang, W.; Koehl, A.; Stammer, D.

    2012-04-01

    The meridional overturning circulation in the Indian Ocean and its temporal variability in the GECCO ocean synthesis are being investigated. An analysis of the integrated circulation in different layers suggests that, on time average, 2.1 Sv enter the Indian Ocean in the bottom layer (>3200m) from the south and that 12.3 Sv leave the Indian Ocean in the upper and intermediate layers (<1500m), composed of the up-welled bottom layer inflow water, augmented by 9.6 Sv Indonesian Throughflow (ITF) water. The GECCO time-mean results differ significantly from those obtained by box inverse models, which, being based on individual hydrographic sections, are susceptible to aliasing. The GECCO solution has a large seasonal variation in its meridional overturning caused by the seasonal reversal of monsoon-related wind stress forcing. Associated seasonal variations of the deep meridional overturning range from -7 Sv in boreal winter to 3 Sv in summer. In addition, the upper and bottom transports across 34°S section show pronounced interannual variability with roughly biennial variations superimposed by strong anomalies during each La Niña phase as well as the ITF, which mainly affect the upper layer transports. On decadal and longer timescale, the meridional overturning variability as well as long-term trends differ before and after 1980. Notably, our analysis shows a rather stable trend for the period 1960-1979 and significant changes in the upper and bottom layer for the period 1980-2001. By means of a multivariate EOF analysis, the importance of Ekman dynamics as driving forces of the deep meridional overturning of the Indian Ocean on the interannual timescale is highlighted. The leading modes of the zonal and meridional wind stress favour a basin-wide meridional overturning mode via Ekman upwelling or downwelling mostly in the central and eastern Indian Ocean. Moreover, tropical zonal wind stress along the equator and alongshore wind stress off the Sumatra-Java coast contributes to evolution of IOD events.

  3. Lagrangian Validation of Numerical Drifter Trajectories Using Drifting Buoys: Application to the Agulhas System

    DTIC Science & Technology

    2009-05-20

    in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. dim. 21. 6599-6615. Blanke, B., Raynaud. S„ 1997. Kinematics of...Indian to the Atlantic Ocean in the warm upper-branch return flow of the thermohaline circulation (Cordon, 1985). The three numerical data sets...35. L20602. Biastoch, A., Boning. C.W.. Lutjeharms, J.RE., 2008b. Agulhas leakage dynamics affects decadal variability in Atlantic overturning

  4. A Profiling Float System for the North Arabian Sea

    DTIC Science & Technology

    2017-11-29

    purpose of this Defense University Research Instrumentation Program grant was to purchase a set of profiling floats to form an upper ocean observing ...purchase a set of profiling floats to form an upper ocean observing system for the Northern Arabian Sea Circulation - autonomous research (NASCar...resolution numerical simulations. To achieve these goals the DRI will utilize new observational methods that do not rely on a traditional ship-based

  5. Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon

    NASA Astrophysics Data System (ADS)

    Chang, Ping; Zhang, Rong; Hazeleger, Wilco; Wen, Caihong; Wan, Xiuquan; Ji, Link; Haarsma, Reindert J.; Breugem, Wim-Paul; Seidel, Howard

    2008-07-01

    Abrupt changes in the African monsoon can have pronounced socioeconomic impacts on many West African countries. Evidence for both prolonged humid periods and monsoon failures have been identified throughout the late Pleistocene and early Holocene epochs. In particular, drought conditions in West Africa have occurred during periods of reduced North Atlantic thermohaline circulation, such as the Younger Dryas cold event. Here, we use an ocean-atmosphere general circulation model to examine the link between oceanographic changes in the North Atlantic Ocean and changes in the strength of the African monsoon. Our simulations show that when North Atlantic thermohaline circulation is substantially weakened, the flow of the subsurface North Brazil Current reverses. This leads to decreased upper tropical ocean stratification and warmer sea surface temperatures in the equatorial South Atlantic Ocean, and consequently reduces African summer monsoonal winds and rainfall over West Africa. This mechanism is in agreement with reconstructions of past climate. We therefore suggest that the interaction between thermohaline circulation in the North Atlantic Ocean and wind-driven currents in the tropical Atlantic Ocean contributes to the rapidity of African monsoon transitions during abrupt climate change events.

  6. Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model

    DTIC Science & Technology

    2012-06-01

    atmosphere and ocean (Yu and Weller, 2007 ). Salinities in the upper ocean are set by the difference between evaporation and precipitation at the ocean...surface (Yu, 2007 ; Schmitt, 2008). Because the buoyancy (density) of seawater at the ocean surface is con- trolled by temperature and salinity, the...days, these currents mean- der and generate highly energetic meso- scale eddies (Schmitz, 1996a,b; Stammer , 1997), the spinning oceanic dynamical

  7. Seaglider surveys at Ocean Station Papa: Circulation and water mass properties in a meander of the North Pacific Current

    NASA Astrophysics Data System (ADS)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2016-09-01

    A Seaglider autonomous underwater vehicle augmented the Ocean Station Papa (OSP; 50°N, 145°W) surface mooring, measuring spatial structure on scales relevant to the monthly evolution of the moored time series. During each of three missions from June 2008 to January 2010, a Seaglider made biweekly 50 km × 50 km surveys in a bowtie-shaped survey track. Horizontal temperature and salinity gradients measured by these surveys were an order of magnitude stronger than climatological values and sometimes of opposite sign. Geostrophically inferred circulation was corroborated by moored acoustic Doppler current profiler measurements and AVISO satellite altimetry estimates of surface currents, confirming that glider surveys accurately resolved monthly scale mesoscale spatial structure. In contrast to climatological North Pacific Current circulation, upper-ocean flow was modestly northward during the first half of the 18 month survey period, and weakly westward during its latter half, with Rossby number O>(0.01>). This change in circulation coincided with a shift from cool and fresh to warm, saline, oxygen-rich water in the upper-ocean halocline, and an increase in vertical fine structure there and in the lower pycnocline. The anomalous flow and abrupt water mass transition were due to the slow growth of an anticyclonic meander within the North Pacific Current with radius comparable to the scale of the survey pattern, originating to the southeast of OSP.

  8. Impacts of sea-surface salinity in an eddy-resolving semi-global OGCM

    NASA Astrophysics Data System (ADS)

    Furue, Ryo; Takatama, Kohei; Sasaki, Hideharu; Schneider, Niklas; Nonaka, Masami; Taguchi, Bunmei

    2018-02-01

    To explore the impacts of sea-surface salinity (SSS) on the interannual variability of upper-ocean state, we compare two 10-year runs of an eddy-resolving ocean general circulation model (OGCM): in one, SSS is strongly restored toward a monthly climatology (World Ocean Atlas '98) and in the other, toward the SSS of a monthly gridded Argo product. The inclusion of the Argo SSS generally improves the interannual variability of the mixed layer depth; particularly so in the western tropical Pacific, where so-called "barrier layers" are reproduced when the Argo SSS is included. The upper-ocean subsurface salinity variability is also improved in the tropics and subtropics even below the mixed layer. To understand the reason for the latter improvement, we separate the salinity difference between the two runs into its "dynamical" and "spiciness" components. The dynamical component is dominated by small-scale noise due to the chaotic nature of mesoscale eddies. The spiciness difference indicates that as expected from the upper-ocean general circulation, SSS variability in the mixed layer is subducted into the thermocline in subtropics; this signal is generally advected downward, equatorward, and westward in the equator-side of the subtropical gyre. The SSS signal subducted in the subtropical North Pacific appears to enter the Indian Ocean through the Indonesian Throughflow, although this signal is weak and probably insignificant in our model.

  9. Ocean Cooling Pattern at the Last Glacial Maximum

    DOE PAGES

    Zhuang, Kelin; Giardino, John R.

    2012-01-01

    Ocean temperature and ocean heat content change are analyzed based on four PMIP3 model results at the Last Glacial Maximum relative to the prehistorical run. Ocean cooling mostly occurs in the upper 1000 m depth and varies spatially in the tropical and temperate zones. The Atlantic Ocean experiences greater cooling than the rest of the ocean basins. Ocean cooling is closely related to the weakening of meridional overturning circulation and enhanced intrusion of Antarctic Bottom Water into the North Atlantic.

  10. Vertical Redistribution of Ocean Salt Content

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, C.; Ponte, R. M.; Piecuch, C. G.

    2017-12-01

    Ocean salinity is an important proxy for change and variability in the global water cycle. Multi-decadal trends have been observed in both surface and subsurface salinity in the past decades, and are usually attributed to the change in air-sea freshwater flux. Although air-sea freshwater flux, a major component of the global water cycle, certainly contributes to the change in surface and upper ocean salinity, the salt redistribution inside the ocean can affect the surface and upper ocean salinity as well. Also, the mechanisms controlling the surface and upper ocean salinity changes likely depend on timescales. Here we examined the ocean salinity changes as well as the contribution of the vertical redistribution of salt with a 20-year dynamically consistent and data-constrained ocean state estimate (ECCO: Estimating Circulation and Climate of the Ocean). A decrease in the spatial mean upper ocean salinity and an upward salt flux inside the ocean were observed. These findings indicate that over 1992-2011, surface freshwater fluxes contribute to the decrease in spatial mean upper ocean salinity and are partly compensated by the vertical redistribution of salt inside the ocean. Between advection and diffusion, the two major processes determining the vertical exchange of salt, the advective term at different depths shows a downward transport, while the diffusive term is the dominant upward transport contributor. These results suggest that the salt transport in the ocean interior should be considered in interpreting the observed surface and upper ocean salinity changes, as well as inferring information about the changes in the global water cycle.

  11. Multiyear prediction of monthly mean Atlantic Meridional Overturning Circulation at 26.5°N.

    PubMed

    Matei, Daniela; Baehr, Johanna; Jungclaus, Johann H; Haak, Helmuth; Müller, Wolfgang A; Marotzke, Jochem

    2012-01-06

    Attempts to predict changes in Atlantic Meridional Overturning Circulation (AMOC) have yielded little success to date. Here, we demonstrate predictability for monthly mean AMOC strength at 26.5°N for up to 4 years in advance. This AMOC predictive skill arises predominantly from the basin-wide upper-mid-ocean geostrophic transport, which in turn can be predicted because we have skill in predicting the upper-ocean zonal density difference. Ensemble forecasts initialized between January 2008 and January 2011 indicate a stable AMOC at 26.5°N until at least 2014, despite a brief wind-induced weakening in 2010. Because AMOC influences many aspects of climate, our results establish AMOC as an important potential carrier of climate predictability.

  12. The impacts of the atmospheric annular mode on the AMOC and its feedback in an idealized experiment

    NASA Astrophysics Data System (ADS)

    Santis, Wlademir; Aimola, Luis; Campos, Edmo J. D.; Castellanos, Paola

    2018-03-01

    The interdecadal variability of the atmospheric and oceanic meridional overturning circulation is studied, using a coupled model with two narrow meridional barriers representing the land and a flat bottomed Aquaplanet. Empirical orthogonal function (EOF) analysis are used in the atmospheric and oceanic meridional overturning cells, revealing the atmospheric interdecadal variability is dominated by an annular mode, in both hemispheres, which introduces in the ocean a set of patterns of variability. The most energetic EOFs in the ocean are the barotropic responses from the annular mode. The interaction between the heat anomalies, due to the barotropic response, and the thermohaline circulation of each basin leads to a resonance mechanism that feeds back to the atmospheric forcing, modulating the annular mode spectrum. Besides the barotropic response, the annular mode introduces anomalies of salinity and temperature in the subtropical Atlantic that affects its upper buoyancy. These anomalies are incorporated within the ocean circulation and advected until the areas of deep sinking in the northern Atlantic, impacting on its overturning circulation as well.

  13. Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model

    DTIC Science & Technology

    2012-05-31

    heat between the atmosphere and ocean (Yu and Weller, 2007 ). Salinities in the upper ocean are set by the difference between evaporation and...precipitation at the ocean surface (Yu, 2007 ; Schmitt, 2008). Because the buoyancy (density) of seawater at the ocean surface is con- trolled by...timescales of about 10–200 days, these currents mean- der and generate highly energetic meso- scale eddies (Schmitz, 1996a,b; Stammer , 1997), the spinning

  14. Quasi-Geostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field

    NASA Astrophysics Data System (ADS)

    Chavanne, C. P.; Klein, P.

    2016-02-01

    A new quasi-geostrophic model has been developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasi-geostrophic framework considered before since it takes into account the stratification within the surface mixed-layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant-stratification layers : a finite-thickness surface layer (or the mixed-layer) and an infinitely-deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal-wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive-equation numerical simulation. Correlation between simulated and diagnosed vertical velocities are significantly improved in the mixed-layer for the new model compared to the classical surface quasi-geostrophic model, reaching 0.9 near the surface.

  15. How potentially predictable are midlatitude ocean currents?

    PubMed Central

    Nonaka, Masami; Sasai, Yoshikazu; Sasaki, Hideharu; Taguchi, Bunmei; Nakamura, Hisashi

    2016-01-01

    Predictability of atmospheric variability is known to be limited owing to significant uncertainty that arises from intrinsic variability generated independently of external forcing and/or boundary conditions. Observed atmospheric variability is therefore regarded as just a single realization among different dynamical states that could occur. In contrast, subject to wind, thermal and fresh-water forcing at the surface, the ocean circulation has been considered to be rather deterministic under the prescribed atmospheric forcing, and it still remains unknown how uncertain the upper-ocean circulation variability is. This study evaluates how much uncertainty the oceanic interannual variability can potentially have, through multiple simulations with an eddy-resolving ocean general circulation model driven by the observed interannually-varying atmospheric forcing under slightly different conditions. These ensemble “hindcast” experiments have revealed substantial uncertainty due to intrinsic variability in the extratropical ocean circulation that limits potential predictability of its interannual variability, especially along the strong western boundary currents (WBCs) in mid-latitudes, including the Kuroshio and its eastward extention. The intrinsic variability also greatly limits potential predictability of meso-scale oceanic eddy activity. These findings suggest that multi-member ensemble simulations are essential for understanding and predicting variability in the WBCs, which are important for weather and climate variability and marine ecosystems. PMID:26831954

  16. Upper Ocean Circulation in the Glacial Northeast Atlantic during Heinrich Stadials Ice-Sheet Retreat

    NASA Astrophysics Data System (ADS)

    Toucanne, S.; Soulet, G.; Bosq, M.; Marjolaine, S.; Zaragosi, S.; Bourillet, J. F.; Bayon, G.

    2016-12-01

    Intermediate ocean water variability is involved in climate changes over geological timescales. As a prominent example, changes in North Atlantic subsurface water properties (including warming) during Heinrich Stadials may have triggered the so-called Heinrich events through ice-shelf loss and attendant ice-stream acceleration. While the origin of Heinrich Stadials and subsequent iceberg calving remains controversial, paleoceanographic research efforts mainly focus on the deep Atlantic overturning, leaving the upper ocean largely unexplored. To further evaluate variability in upper ocean circulation and its possible relationship with ice-sheet instabilities, a depth-transect of eight cores (BOBGEO and GITAN-TANDEM cruises) from the Northeast Atlantic (down to 2 km water depth) have been used to investigate kinematic and chemical changes in the upper ocean during the last glacial period. Our results reveal that near-bottom flow speeds (reconstructed by using sortable silt mean grain-size and X-ray fluorescence core-scanner Zr/Rb ratio) and water-masses chemistry (carbon and neodymium isotopes performed on foraminifera) substantially changed in phase with the millennial-scale climate changes recognized in the ice-core records. Our results are compared with paleoceanographic reconstructions of the 'Western Boundary Undercurrent' in order to discuss regional hydrographic differences at both sides of the North Atlantic, as well as with the fluctuations of both the marine- (through ice-rafted debris) and terrestrial-terminating ice-streams (through meltwater discharges) of the circum-Atlantic ice-sheets. Particular attention will be given to the Heinrich Stadials and concomitant Channel River meltwater discharges into the Northeast Atlantic in response to the melting of the European Ice-Sheet. This comparison helps to disentangle the cryosphere-ocean interactions throughout the last ice age, and the sequence of events occurring in the course of the Heinrich Stadials.

  17. Variability of sea surface height and circulation in the North Atlantic: Forcing mechanisms and linkages

    NASA Astrophysics Data System (ADS)

    Wang, Zeliang; Lu, Youyu; Dupont, Frederic; W. Loder, John; Hannah, Charles; G. Wright, Daniel

    2015-03-01

    Simulations with a coarse-resolution global ocean model during 1958-2004 are analyzed to understand the inter-annual and decadal variability of the North Atlantic. Analyses of Empirical Orthogonal Functions (EOFs) suggest relationships among basin-scale variations of sea surface height (SSH) and depth-integrated circulation, and the winter North Atlantic Oscillation (NAO) or the East Atlantic Pattern (EAP) indices. The linkages between the atmospheric indices and ocean variables are shown to be related to the different roles played by surface momentum and heat fluxes in driving ocean variability. In the subpolar region, variations of the gyre strength, SSH in the central Labrador Sea and the NAO index are highly correlated. Surface heat flux is important in driving variations of SSH and circulation in the upper ocean and decadal variations of the Atlantic Meridional Overturning Circulation (AMOC). Surface momentum flux drives a significant barotropic component of flow and makes a noticeable contribution to the AMOC. In the subtropical region, momentum flux plays a dominant role in driving variations of the gyre circulation and AMOC; there is a strong correlation between gyre strength and SSH at Bermuda.

  18. Intraseasonal variability of upper-ocean currents and photosynthetic primary production along the U.S. west coast associated with the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Barrett, B.; Davies, A. R.; Steppe, C. N.; Hackbarth, C.

    2017-12-01

    In the first part of this study, time-lagged composites of upper-ocean currents from February to May of 1993-2016 were binned by active phase of the leading atmospheric mode of intraseasonal variability, the Madden-Julian Oscillation (MJO). Seven days after the convectively active phase of the MJO enters the tropical Indian Ocean, anomalously strong south-southeastward upper-ocean currents are observed along the majority of U.S. west coast. Seven days after the convectively active phase enters the tropical western Pacific Ocean, upper-ocean current anomalies reverse along the U.S. west coast, with weaker southward flow. A physical pathway to the ocean was found for both of these: (a) tropical MJO convection modulates upper-tropospheric heights and circulation over the Pacific Ocean; (b) those anomalous atmospheric heights adjust the strength and position of the Aleutian Low and Hawaiian High; (c) surface winds change in response to the adjusted atmospheric pressure patterns; and (d) those surface winds project onto upper-ocean currents. In the second part of this study, we investigated if the MJO modulated intraseasonal variability of surface wind forcing and upper-ocean currents projected onto phytoplankton abundance along the U.S. west coast. Following a similar methodology, time-lagged, level 3 chlorophyll-a satellite products (a proxy for photosynthetic primary production) were binned by active MJO phase and analyzed for statistical significance using the Student's t test. Results suggest that intraseasonal variability of biological production along the U.S. west coast may be linked to the MJO, particularly since the time scale of the life cycle of phytoplankton is similar to the time scale of the MJO.

  19. Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation

    NASA Astrophysics Data System (ADS)

    Malecha, Ziemowit; Chini, Gregory; Julien, Keith

    2012-11-01

    Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.

  20. The Southern Ocean's role in ocean circulation and climate transients

    NASA Astrophysics Data System (ADS)

    Thompson, A. F.; Stewart, A.; Hines, S.; Adkins, J. F.

    2017-12-01

    The ventilation of deep and intermediate density classes at the surface of the Southern Ocean impacts water mass modification and the air-sea exchange of heat and trace gases, which in turn influences the global overturning circulation and Earth's climate. Zonal variability occurs along the Antarctic Circumpolar Current and the Antarctic margins related to flow-topography interactions, variations in surface boundary conditions, and exchange with northern basins. Information about these zonal variations, and their impact on mass and tracer transport, are suppressed when the overturning is depicted as a two-dimensional (depth-latitude) streamfunction. Here we present an idealized, multi-basin, time-dependent circulation model that applies residual circulation theory in the Southern Ocean and allows for zonal water mass transfer between different ocean basins. This model efficiently determines the temporal evolution of the ocean's stratification, ventilation and overturning strength in response to perturbations in the external forcing. With this model we explore the dynamics that lead to transitions in the circulation structure between multiple, isolated cells and a three-dimensional, "figure-of-eight," circulation in which traditional upper and lower cells are interleaved. The transient model is also used to support a mechanistic explanation of the hemispheric asymmetry and phase lag associated with Dansgaard-Oeschger (DO) events during the last glacial period. In particular, the 200 year lag in southern hemisphere temperatures, following a perturbation in North Atlantic deep water formation, depends critically on the migration of Southern Ocean isopycnal outcropping in response to low-latitude stratification changes. Our results provide a self-consistent dynamical framework to explain various ocean overturning transitions that have occurred over the Earth's last 100,000 years, and motivate an exploration of these mechanisms in more sophisticated climate models.

  1. Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean

    PubMed Central

    Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard

    2013-01-01

    [1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales. PMID:26074634

  2. Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean.

    PubMed

    Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard

    2013-12-16

    [1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales.

  3. Comparisons of observed seasonal climate features with a winter and summer numerical simulation produced with the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Halem, M.; Shukla, J.; Mintz, Y.; Wu, M. L.; Godbole, R.; Herman, G.; Sud, Y.

    1979-01-01

    Results are presented from numerical simulations performed with the general circulation model (GCM) for winter and summer. The monthly mean simulated fields for each integration are compared with observed geographical distributions and zonal averages. In general, the simulated sea level pressure and upper level geopotential height field agree well with the observations. Well simulated features are the winter Aleutian and Icelandic lows, the summer southwestern U.S. low, the summer and winter oceanic subtropical highs in both hemispheres, and the summer upper level Tibetan high and Atlantic ridge. The surface and upper air wind fields in the low latitudes are in good agreement with the observations. The geographical distirbutions of the Earth-atmosphere radiation balance and of the precipitation rates over the oceans are well simulated, but not all of the intensities of these features are correct. Other comparisons are shown for precipitation along the ITCZ, rediation balance, zonally averaged temperatures and zonal winds, and poleward transports of momentum and sensible heat.

  4. A Possible Cause for Recent Decadal Atlantic Meridional Overturning Circulation Decline

    NASA Astrophysics Data System (ADS)

    Latif, Mojib; Park, Taewook; Park, Wonsun

    2017-04-01

    The Atlantic Meridional Overturning Circulation (AMOC) is a major oceanic current system with widespread climate impacts. AMOC influences have been discussed among others with regard to Atlantic hurricane activity, regional sea level variability, and surface air temperature and precipitation changes on land areas adjacent to the North Atlantic Ocean. Most climate models project significant AMOC slowing during the 21st century, if atmospheric greenhouse gas concentrations continue to rise unabatedly. Recently, a marked decadal decline in AMOC strength has been observed, which was followed by strongly reduced oceanic poleward heat transport and record low sea surface temperature in parts of the North Atlantic. Here, we provide evidence from observations, re-analyses and climate models that the AMOC decline was due to the combined action of the North Atlantic Oscillation and East Atlantic Pattern, the two leading modes of North Atlantic atmospheric surface pressure variability, which prior to the decline both transitioned into their negative phases. This change in atmospheric circulation diminished oceanic heat loss over the Labrador Sea and forced ocean circulation changes lowering upper ocean salinity transport into that region. As a consequence, Labrador Sea deep convection weakened, which eventually slowed the AMOC. This study suggests a new mechanism for decadal AMOC variability, which is important to multiyear climate predictability and climate change detection in the North Atlantic sector.

  5. The global geochemistry of bomb-produced tritium - General circulation model compared to available observations and traditional interpretations

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Broecker, Wallace S.; Jouzel, Jean; Suozzo, Robert J.; Russell, Gary L.; Rind, David

    1989-01-01

    Observational evidence suggests that of the tritium produced during nuclear bomb tests that has already reached the ocean, more than twice as much arrived through vapor impact as through precipitation. In the present study, the Goddard Institute for Space Studies 8 x 10 deg atmospheric general circulation model is used to simulate tritium transport from the upper atmosphere to the ocean. The simulation indicates that tritium delivery to the ocean via vapor impact is about equal to that via precipitation. The model result is relatively insensitive to several imposed changes in tritium source location, in model parameterizations, and in model resolution. Possible reasons for the discrepancy are explored.

  6. Simulation of the global ocean thermohaline circulation with an eddy-resolving INMIO model configuration

    NASA Astrophysics Data System (ADS)

    Ushakov, K. V.; Ibrayev, R. A.

    2017-11-01

    In this paper, the first results of a simulation of the mean World Ocean thermohaline characteristics obtained by the INMIO ocean general circulation model configured with 0.1 degree resolution in a 5-year long numerical experiment following the CORE-II protocol are presented. The horizontal and zonal mean distributions of the solution bias against the WOA09 data are analyzed. The seasonal cycle of heat content at a specified site of the North Atlantic is also discussed. The simulation results demonstrate a clear improvement in the quality of representation of the upper ocean compared to the results of experiments with 0.5 and 0.25 degree model configurations. Some remaining biases of the model solution and possible ways of their overcoming are highlighted.

  7. Thoughts on Multi-sphere Study in the Indo-Pacific Convergent Zone

    NASA Astrophysics Data System (ADS)

    Wang, F.

    2016-12-01

    Interactions of the ocean with other components of the earth system, such as atmosphere, lithosphere, and biosphere are the front and hotspot of the ocean and earth sciences. In the Indonesian Archipelago and adjacent western Pacific and eastern Indian Oceans, both the upper oceanic circulation and lower atmospheric circulation convergent and consequently enhance the fresh water and heat fluxes, affecting the East Asian and global climate. This region is considered as the world's center of marine bio-diversity and sediment discharge, as well as the collision center of the Eurasian, Indian and Pacific plates. Why and how the energy and material of multiple spheres convergent toward the region are important scientific issues on the front of earth system science and marine sciences, and need to be investigated through international cooperation.

  8. A reanalysis dataset of the South China Sea.

    PubMed

    Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu

    2014-01-01

    Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992-2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability.

  9. A reanalysis dataset of the South China Sea

    PubMed Central

    Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu

    2014-01-01

    Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992–2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability. PMID:25977803

  10. Submesoscale Rossby waves on the Antarctic circumpolar current.

    PubMed

    Taylor, John R; Bachman, Scott; Stamper, Megan; Hosegood, Phil; Adams, Katherine; Sallee, Jean-Baptiste; Torres, Ricardo

    2018-03-01

    The eastward-flowing Antarctic circumpolar current (ACC) plays a central role in the global ocean overturning circulation and facilitates the exchange of water between the ocean surface and interior. Submesoscale eddies and fronts with scales between 1 and 10 km are regularly observed in the upper ocean and are associated with strong vertical circulations and enhanced stratification. Despite their importance in other locations, comparatively little is known about submesoscales in the Southern Ocean. We present results from new observations, models, and theories showing that submesoscales are qualitatively changed by the strong jet associated with the ACC in the Scotia Sea, east of Drake Passage. Growing submesoscale disturbances develop along a dense filament and are transformed into submesoscale Rossby waves, which propagate upstream relative to the eastward jet. Unlike their counterparts in slower currents, the submesoscale Rossby waves do not destroy the underlying frontal structure. The development of submesoscale instabilities leads to strong net subduction of water associated with a dense outcropping filament, and later, the submesoscale Rossby waves are associated with intense vertical circulations.

  11. Assessing Atmospheric Water Injection from Oceanic Impacts

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.

    2005-01-01

    Collisions of asteroids and comets with the Earth s surface are rare events that punctuate the geologic record. Due to the vastness of Earth s oceans, oceanic impacts of asteroids or comets are expected to be about 4 times more frequent than land impacts. The resulting injections of oceanic water into the upper atmosphere can have important repercussions on Earth s climate and atmospheric circulation. However, the duration and overall effect of these large injections are still unconstrained. This work addresses atmospheric injections of large amounts of water in oceanic impacts.

  12. Depth of origin of ocean-circulation-induced magnetic signals

    NASA Astrophysics Data System (ADS)

    Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik

    2018-01-01

    As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.

  13. Parameterized and resolved Southern Ocean eddy compensation

    NASA Astrophysics Data System (ADS)

    Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman

    2018-04-01

    The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.

  14. On the glacial and inter-glacial thermohaline circulation and the associated transports of heat and freshwater

    NASA Astrophysics Data System (ADS)

    Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.

    2014-03-01

    The change of the thermohaline circulation (THC) between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present day climate are explored using an Ocean General Circulation Model and stream functions projected in various coordinates. Compared to the present day period, the LGM circulation is reorganised in the Atlantic Ocean, in the Southern Ocean and particularly in the abyssal ocean, mainly due to the different haline stratification. Due to stronger wind stress, the LGM tropical circulation is more vigorous than under modern conditions. Consequently, the maximum tropical transport of heat is slightly larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes and reorganising the freshwater transport. The LGM circulation is represented as a large intrusion of saline Antarctic Bottom Water into the Northern Hemisphere basins. As a result, the North Atlantic Deep Water is shallower in the LGM simulation. The stream functions in latitude-salinity coordinates and thermohaline coordinates point out the different haline regimes between the glacial and interglacial period, as well as a LGM Conveyor Belt circulation largely driven by enhanced salinity contrast between the Atlantic and the Pacific basin. The thermohaline structure in the LGM simulation is the result of an abyssal circulation that lifts and deviates the Conveyor Belt cell from the area of maximum volumetric distribution, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimation of the turnover times reveal a deep circulation almost sluggish during the LGM, and a Conveyor Belt cell more vigorous due to the combination of stronger wind stress and shortened circulation route.

  15. Characterizing the chaotic nature of ocean ventilation

    NASA Astrophysics Data System (ADS)

    MacGilchrist, Graeme A.; Marshall, David P.; Johnson, Helen L.; Lique, Camille; Thomas, Matthew

    2017-09-01

    Ventilation of the upper ocean plays an important role in climate variability on interannual to decadal timescales by influencing the exchange of heat and carbon dioxide between the atmosphere and ocean. The turbulent nature of ocean circulation, manifest in a vigorous mesoscale eddy field, means that pathways of ventilation, once thought to be quasi-laminar, are in fact highly chaotic. We characterize the chaotic nature of ventilation pathways according to a nondimensional "filamentation number," which estimates the reduction in filament width of a ventilated fluid parcel due to mesoscale strain. In the subtropical North Atlantic of an eddy-permitting ocean model, the filamentation number is large everywhere across three upper ocean density surfaces—implying highly chaotic ventilation pathways—and increases with depth. By mapping surface ocean properties onto these density surfaces, we directly resolve the highly filamented structure and confirm that the filamentation number captures its spatial variability. These results have implications for the spreading of atmospherically-derived tracers into the ocean interior.

  16. Upper Ocean Mixing Processes and Circulation in the Arabian Sea during Monsoons using Remote Sensing, Hydrographic Observations and HYCOM Simulations

    DTIC Science & Technology

    2015-09-30

    effecting the salinity of the upper layer and the formation of the barrier layer (BL) within the isothermal layer. The BL in turn controls vertical mixing...daily values over a month with a 1° horizontal resolution [Reynolds et al., 2002]. Daily data (from Coriolis project) and Monthly gridded Argo

  17. Atmospheric Blocking and Atlantic Multi-Decadal Ocean Variability

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa; Rhines, Peter B.; Worthlen, Denise L.

    2011-01-01

    Based on the 20th century atmospheric reanalysis, winters with more frequent blocking, in a band of blocked latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean, in-phase with Atlantic multi-decadal ocean variability. Atmospheric blocking over the northern North Atlantic, which involves isolation of large regions of air from the westerly circulation for 5 days or more, influences fundamentally the ocean circulation and upper ocean properties by impacting wind patterns. Winters with clusters of more frequent blocking between Greenland and western Europe correspond to a warmer, more saline subpolar ocean. The correspondence between blocked westerly winds and warm ocean holds in recent decadal episodes (especially, 1996-2010). It also describes much longer-timescale Atlantic multidecadal ocean variability (AMV), including the extreme, pre-greenhouse-gas, northern warming of the 1930s-1960s. The space-time structure of the wind forcing associated with a blocked regime leads to weaker ocean gyres and weaker heat-exchange, both of which contribute to the warm phase of AMV.

  18. The Indian Ocean as a Connector

    NASA Astrophysics Data System (ADS)

    Durgadoo, J. V.; Biastoch, A.; Boning, C. W.

    2016-02-01

    The Indian Ocean is a conduit for the upper ocean flow of the global thermohaline circulation. It receives water from the Pacific Ocean through the Indonesian throughflow and the Tasman leakage, and exports water into the Atlantic by means of Agulhas leakage. A small contribution from the northern Indian Ocean is also detectable within Agulhas leakage. Changes on different timescales in the various components of the Pacific inflows and the Atlantic outflow have been reported. Little is known on the role of the Indian Ocean circulation in communicating changes from the Pacific into the Atlantic, let alone any eventual alterations in response to climate change. The precise routes and timescales of Indonesian throughflow, Tasman leakage, Red Sea and Persian Gulf Waters towards the Atlantic are examined in a Lagrangian framework within a high-resolution global ocean model. In this presentation, the following questions are addressed: How are Pacific waters modified in the Indian Ocean before reaching the Agulhas system? On what timescale is water that enters the Indian Ocean from the Pacific flushed out? How important are detours in the Bay of Bengal and Arabian Sea?

  19. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport

    NASA Astrophysics Data System (ADS)

    Letscher, Robert T.; Primeau, François; Moore, J. Keith

    2016-11-01

    Ocean circulation replenishes surface nutrients depleted by biological production and export. Vertical processes are thought to dominate, but estimated vertical nutrient fluxes are insufficient to explain observed net productivity in the subtropical ocean gyres. Lateral inputs help balance the North Atlantic nutrient budget, but their importance for other gyres has not been demonstrated. Here we use an ocean model that couples circulation and ecosystem dynamics to show that lateral transport and biological uptake of inorganic and organic forms of nitrogen and phosphorus from the gyre margins exceeds the vertical delivery of nutrients, supplying 24-36% of the nitrogen and 44-67% of the phosphorus required to close gyre nutrient budgets. At the Bermuda and Hawaii time-series sites, nearly half of the annual lateral supply by lateral transport occurs during the summer-to-fall stratified period, helping explain seasonal patterns of inorganic carbon drawdown and nitrogen fixation. Our study confirms the importance of upper-ocean lateral nutrient transport for understanding the biological cycles of carbon and nutrients in the ocean's largest biome.

  20. Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation.

    PubMed

    Schmittner, Andreas

    2005-03-31

    Reorganizations of the Atlantic meridional overturning circulation were associated with large and abrupt climatic changes in the North Atlantic region during the last glacial period. Projections with climate models suggest that similar reorganizations may also occur in response to anthropogenic global warming. Here I use ensemble simulations with a coupled climate-ecosystem model of intermediate complexity to investigate the possible consequences of such disturbances to the marine ecosystem. In the simulations, a disruption of the Atlantic meridional overturning circulation leads to a collapse of the North Atlantic plankton stocks to less than half of their initial biomass, owing to rapid shoaling of winter mixed layers and their associated separation from the deep ocean nutrient reservoir. Globally integrated export production declines by more than 20 per cent owing to reduced upwelling of nutrient-rich deep water and gradual depletion of upper ocean nutrient concentrations. These model results are consistent with the available high-resolution palaeorecord, and suggest that global ocean productivity is sensitive to changes in the Atlantic meridional overturning circulation.

  1. A neural network to retrieve the mesoscale instantaneous latent heat flux over oceans from SSM/I observations

    NASA Technical Reports Server (NTRS)

    Bourras, D.; Eymard, L.; Liu, W. T.

    2000-01-01

    The turbulent latent and sensible heat fluxes are necessary to study heat budget of the upper ocean or initialize ocean general circulation models. In order to retrieve the latent heat flux from satellite observations authors mostly use a bulk approximation of the flux whose parameters are derived from different instrument. In this paper, an approach based on artificial neural networks is proposed and compared to the bulk method on a global data set and 3 local data sets.

  2. Submesoscale Rossby waves on the Antarctic circumpolar current

    PubMed Central

    Bachman, Scott; Sallee, Jean-Baptiste

    2018-01-01

    The eastward-flowing Antarctic circumpolar current (ACC) plays a central role in the global ocean overturning circulation and facilitates the exchange of water between the ocean surface and interior. Submesoscale eddies and fronts with scales between 1 and 10 km are regularly observed in the upper ocean and are associated with strong vertical circulations and enhanced stratification. Despite their importance in other locations, comparatively little is known about submesoscales in the Southern Ocean. We present results from new observations, models, and theories showing that submesoscales are qualitatively changed by the strong jet associated with the ACC in the Scotia Sea, east of Drake Passage. Growing submesoscale disturbances develop along a dense filament and are transformed into submesoscale Rossby waves, which propagate upstream relative to the eastward jet. Unlike their counterparts in slower currents, the submesoscale Rossby waves do not destroy the underlying frontal structure. The development of submesoscale instabilities leads to strong net subduction of water associated with a dense outcropping filament, and later, the submesoscale Rossby waves are associated with intense vertical circulations. PMID:29670936

  3. Secretary of The Navy Professor

    DTIC Science & Technology

    1999-09-30

    goal of this research is to develop a predictive capability for the upper ocean circulation and atmospheric interactions using numerical models...assimilation techniques to be used in these models. In addition, we are continuing the task of preparing long-term global surface fluxes for use in ocean...NASA, NSF, and NOAA. APPROACH We are using a suite of models forced with estimates of real winds, with very fine horizontal resolution and realistic

  4. What is Required to Model the Global Ocean Circulation?

    DTIC Science & Technology

    2011-01-01

    eddy kinetic energy (EKE) in the upper-ocean, encompassed by mesoscale eddies, meanders and rings of the boundary currents [ Stammer , 1997; Ferrari...Resolution studies [Bryan, et al., 2007 ; Smith, et al., 2000; Hogan and Hurlburt, 2000; Oschlies, 2002] show that increasing the horizontal resolution...energy estimates from surface drifter observations [Lumpkin and Pazos, 2007 ], satellite altimetry (150 m) [Ducet, et al., 2000], ARGO floats at 1,000

  5. Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion

    NASA Astrophysics Data System (ADS)

    Yang, Haijun; Wang, Kun; Dai, Haijin; Wang, Yuxing; Li, Qing

    2016-06-01

    Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated using a fully coupled climate model. The AMOC can change significantly when perturbed by either wind stress or freshwater flux in the North Atlantic. This study focuses on wind stress effect. Our model results show that the wind forcing is crucial in maintaining the AMOC. Reducing wind forcing over the ocean can cause immediately weakening of the vertical salinity diffusion and convection in the mid-high latitudes Atlantic, resulting in an enhancement of vertical salinity stratification that restrains the deep water formation there, triggering a slowdown of the thermohaline circulation. As the thermohaline circulation weakens, the sea ice expands southward and melts, providing the upper ocean with fresh water that weakens the thermohaline circulation further. The wind perturbation experiments suggest a positive feedback between sea-ice and thermohaline circulation strength, which can eventually result in a complete shutdown of the AMOC. This study also suggests that sea-ice variability may be also important to the natural AMOC variability on decadal and longer timescales.

  6. Heat flow evidence for hydrothermal circulation in the volcanic basement of subducting plates

    NASA Astrophysics Data System (ADS)

    Harris, R. N.; Spinelli, G. A.; Fisher, A. T.

    2017-12-01

    We summarize and interpret evidence for hydrothermal circulation in subducting oceanic basement from the Nankai, Costa Rica, south central Chile, Haida Gwaii, and Cascadia margins and explore the influence of hydrothermal circulation on plate boundary temperatures in these settings. Heat flow evidence for hydrothermal circulation in the volcanic basement of incoming plates includes: (a) values that are well below conductive (lithospheric) predictions due to advective heat loss, and (b) variability about conductive predictions that cannot be explained by variations in seafloor relief or thermal conductivity. We construct thermal models of these systems that include an aquifer in the upper oceanic crust that enhances heat transport via a high Nusselt number proxy for hydrothermal circulation. At the subduction zones examined, patterns of seafloor heat flow are not well fit by purely conductive simulations, and are better explained by simulations that include the influence of hydrothermal circulation. This result is consistent with the young basement ages (8-35 Ma) of the incoming igneous crust at these sites as well as results from global heat flow analyses showing a significant conductive heat flow deficit for crustal ages less than 65 Ma. Hydrothermal circulation within subducting oceanic basement can have a profound influence on temperatures close to the plate boundary and, in general, leads to plate boundary temperatures that are cooler than those where fluid flow does not occur. The magnitude of cooling depends on the permeability structure of the incoming plate and the evolution of permeability with depth and time. Resolving complex relationships between subduction processes, the permeability structure in the ocean crust, and the dynamics of hydrothermal circulation remains an interdisciplinary frontier.

  7. The freshwater export from the Arctic Ocean and the circulation of liquid freshwater around Greenland - constraints, interactions & consequences

    NASA Astrophysics Data System (ADS)

    Rudels, Bert

    2010-05-01

    The freshwater added to the Arctic Ocean is stored as sea ice and as liquid freshwater residing primarily in the upper layers. This allows for simple zero order estimates of the liquid freshwater content and export based on rotationally controlled baroclinic flow. At present the freshwater outflow occurs on both sides of Greenland. In Fram Strait the sea ice export in the East Greenland Current is significantly larger than the liquid freshwater outflow, while the liquid freshwater export dominates in the Canadian Arctic Archipelago. Although the outflow in the upper layer and the freshwater export respond to short periodic wind events and longer periodic atmospheric circulation patterns, the long-term trend is controlled by the net freshwater supply - the freshwater input minus the ice export. As the ice formation and ice export are expected to diminish in a warmer climate the Canadian Arctic Archipelago, comprising several passages, should gradually carry more of the total Arctic Ocean freshwater outflow. However, the channels in the Canadian Arctic Archipelago discharge into the restricted Baffin, which also receives a part of the Fram Strait freshwater export via the West Greenland Current. In a situation with increased glacial melting and freshwater discharge from Greenland the density of the upper layer in Baffin Bay may decrease considerably. This would reduce the sea level difference between the Arctic Ocean and Baffin Bay and thus weaken the outflow through the Canadian Arctic Archipelago, in extreme cases perhaps even reverse the flow. This would shift the main Arctic Ocean liquid freshwater export from The Canadian Arctic Archipelago to Fram Strait. The zero order dynamics of the exchanges through the Canadian Arctic Archipelago and Baffin Bay are described and the possibility for a weakening of the outflow is examined.

  8. Sensitivity of the ocean overturning circulation to wind and mixing: theoretical scalings and global ocean models

    NASA Astrophysics Data System (ADS)

    Nikurashin, Maxim; Gunn, Andrew

    2017-04-01

    The meridional overturning circulation (MOC) is a planetary-scale oceanic flow which is of direct importance to the climate system: it transports heat meridionally and regulates the exchange of CO2 with the atmosphere. The MOC is forced by wind and heat and freshwater fluxes at the surface and turbulent mixing in the ocean interior. A number of conceptual theories for the sensitivity of the MOC to changes in forcing have recently been developed and tested with idealized numerical models. However, the skill of the simple conceptual theories to describe the MOC simulated with higher complexity global models remains largely unknown. In this study, we present a systematic comparison of theoretical and modelled sensitivity of the MOC and associated deep ocean stratification to vertical mixing and southern hemisphere westerlies. The results show that theories that simplify the ocean into a single-basin, zonally-symmetric box are generally in a good agreement with a realistic, global ocean circulation model. Some disagreement occurs in the abyssal ocean, where complex bottom topography is not taken into account by simple theories. Distinct regimes, where the MOC has a different sensitivity to wind or mixing, as predicted by simple theories, are also clearly shown by the global ocean model. The sensitivity of the Indo-Pacific, Atlantic, and global basins is analysed separately to validate the conceptual understanding of the upper and lower overturning cells in the theory.

  9. Monsoon Variability in the Arabian Sea from Global 0.08 deg HYCOM Simulations

    DTIC Science & Technology

    2015-09-30

    modes to help explain the series of events leading up to the anomalous behavior in the SC, the GW and upwelling strength . WORK COMPLETED...Number: N00014-15-1-2189 LONG-TERM GOALS The Arabian Sea upper ocean circulation switches direction seasonally due to the change in direction ...of the prevailing winds associated with the Indian Monsoon. Predictability of the monsoon circulation however is uncertain due to incomplete

  10. The Summer Monsoon of 1987.

    NASA Astrophysics Data System (ADS)

    Krishnamurti, T. N.; Bedi, H. S.; Subramaniam, M.

    1989-04-01

    In this paper we have examined the evolution of a number of parameters we believe were important for our understanding of the drought over India during the summer of 1987. The list of parameters includes monthly means or anomalies of the following fields: sea surface temperatures, divergent circulations, outgoing longwave radiation, streamfunction of the lower and upper troposphere, and monthly precipitation (expressed as a percentage departure from a long-term mean). The El Niño related warm sea surface temperature anomaly and a weaker warm sea surface temperature anomaly over the equatorial Indian Ocean provide sustained convection, as reflected by the negative values of the outgoing longwave radiation. With the seasonal heating, a pronounced planetary-scale divergent circulation evolved with a center along the western Pacific Ocean. The monsoonal divergent circulation merged with that related to the El Niño, maintaining most of the heavy rainfall activity between the equatorial Pacific Ocean and east Asia. Persistent convective activity continued south of India during the entire monsoon season. Strong Hadley type overturnings with rising motions over these warm SST anomaly regions and descent roughly near 20° to 25°S was evident as early as April 1987. The subtropical high pressure areas near 20° to 25°S showed stronger than normal circulations. This was revealed by the presence of a counterclockwise streamfunction anomaly at 850 mb during April 1987. With the seasonal heating, this anomaly moved northwards and was located over the Arabian Sea and India. This countermonsoon circulation anomaly at the low levels was associated with a weaker than normal Somali jet and Arabian Sea circulation throughout this summer. The monsoon remained active along northeast India, Bangladesh, northern lndochina, and central China during the summer monsoon season. This was related to the eastward shift of the divergent circulation. An eastward shift of the upper tropospheric anticyclone bell near 25° to 30°N resulted in the continued presence of a westerly wind anomaly north of India. The westerly winds brought in very dry air over the tropical upper troposphere. The dry air penetrated eastwards to central Uttar Pradesh and this seemed to have a major role in inhibiting organized deep convection over most of central, northern and western parts of the Indian subcontinent. The westward extension of the planetary-scale divergent circulation over North and South Africa and the continued drought over the regions are also briefly addressed.

  11. Equatorial dynamics in a 2 {1}/{2}- layer model

    NASA Astrophysics Data System (ADS)

    McCreary, Julian P.; Yu, Zuojun

    A nonlinear, 2 {1}/{2}- layer model is used to study the dynamics of wind-driven equatorial ocean circulation, including the generation of mean flows and instabilities. The model allows water to entrain into, and detrain from, the upper layer, and as a consequence the temperatures of the two active layers can vary. The model ocean basin is rectangular, extends 100° zonally, and for most solutions has open boundaries at 15°S and 15°N. All solutions are forced by a switched-on wind field that is an idealized version of the Pacific trades: the wind is westward, uniform in the meridional direction (so it has no curl), located primarily in the central and eastern oceans, and in most cases it has an amplitude of 0.5 dyn cm -2. For reasonable choices of parameters, solutions adjust to have a realistic equatorial circulation with a westward surface jet, an eastward undercurrent, and with upwelling and cool sea surface temperature in the eastern ocean. Most of the meridional circulation (81% of the transport) is part of a closed tropical circulation cell, in which water upwells in the eastern, equatorial ocean and downwells elsewhere in the basin; the rest participates in a mid-latitude circulation cell with lower-layer water entering the basin and upper-layer water leaving it through the open boundaries. Three basic types of unstable disturbances are generated in the eastern ocean: two of them are antisymmetric about the equator, one being surface-trapped with a period of about 21 days (f 1), and the other predominantly a lower-layer oscillation with periods ranging from 35 to 53 days (f 2) that causes the undercurrent to meander; the third is symmetric with a period of about 28 days (f 0) and a structure like that of a first-meridional-mode Rossby wave. The amplitudes of the disturbances are sensitive to model parameters, and as parameter values are varied systematically solutions appear to follow variations of the quasi-periodic route to turbulence, one of the common transitions to chaotic behavior. Realistic mean flows develop only when detrainment and lower-layer cooling are present in the model physics, processes that are necessary for the generation of a tropical circulation cell: without detrainment, water accumulutes in the upper layer until entrainment ceases and the model adjusts to Sverdrup balance, which is a state of rest for a wind without curl; without cooling, the temperature of the lower layer slowly rises until it approaches that of the upper layer. The mean-momentum budget for the upper layer shows that the model's Reynolds-stress terms are not a significant part of the momentum balance, having a maximum amplitude only about 19% of the wind stress. In contrast, the mean-heat budget demonstrates that eddy heating warms the cold tongue significantly, with an amplitude as large as the heating through the surface. Interestingly, the time-averaged continuity equations indicate that the instabilities tend to increase the upward tilt of the upper-layer interface toward the equator. When layer temperatures are kept fixed only a weak version of disturbance f 1 develops, indicating that the equatorial temperature front is an important aspect of instability dynamics. In fact, a frontal instability does exist in the model; it involves the conversion of mean to eddy potential energy, but it is the mean energy associated with the variable upper-layer temperature field, rather than with tilted layer interfaces, as is the case for traditional baroclinic instability. Perturbation-energy budgets suggest that frontal, barotropic and Kelvin-Helmholtz instabilities are energy sources for the disturbances, whereas traditional baroclinic instability is an energy sink. The two, fastest growing, antisymmetric, unstable-wave solutions to a linearized version of the model correspond closely to disturbances f 1 and f 2 from the nonlinear model, and perturbation-energy budgets for these waves indicate that their energy sources are primarily frontal instability and lower-layer barotropic instability, respectively.

  12. Effects of Wind and Freshwater on the Atlantic Meridional Overturning Circulation: Role of Sea Ice and Vertical Diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Yang, Haijun; Dai, Haijin; Wang, Yuxing; Li, Qing

    2015-04-01

    Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated in a fully coupled climate model (CESM1.0). The AMOC can change significantly when perturbing either the wind stress or fresh water flux in the northern North Atlantic. This work pays special attention on the wind stress effect. Our model results show that the wind forcing is a crucial element in maintaining the AMOC. When the wind-stress is reduced, the vertical convection and diffusion are weakened immediately, triggering a salt deficit in the northern North Atlantic that prevents the deep water formation there. The salinity advection from the south, however, plays a contrary role to salt the upper ocean. As the AMOC weakens, the sea ice expends southward and melts, freshening the upper ocean that weakens the AMOC further. There is a positive feedback between the sea ice melting and AMOC strength, which eventually determines the AMOC strength in the reduced wind world.

  13. Atmospheric forcing of the upper ocean transport in the Gulf of Mexico: From seasonal to diurnal scales

    NASA Astrophysics Data System (ADS)

    Judt, Falko; Chen, Shuyi S.; Curcic, Milan

    2016-06-01

    The 2010 Deepwater Horizon oil spill in the Gulf of Mexico (GoM) was an environmental disaster, which highlighted the urgent need to predict the transport and dispersion of hydrocarbon. Although the variability of the atmospheric forcing plays a major role in the upper ocean circulation and transport of the pollutants, the air-sea interaction on various time scales is not well understood. This study provides a comprehensive overview of the atmospheric forcing and upper ocean response in the GoM from seasonal to diurnal time scales, using climatologies derived from long-term observations, in situ observations from two field campaigns, and a coupled model. The atmospheric forcing in the GoM is characterized by striking seasonality. In the summer, the time-average large-scale forcing is weak, despite occasional extreme winds associated with hurricanes. In the winter, the atmospheric forcing is much stronger, and dominated by synoptic variability on time scales of 3-7 days associated with winter storms and cold air outbreaks. The diurnal cycle is more pronounced during the summer, when sea breeze circulations affect the coastal regions and nighttime wind maxima occur over the offshore waters. Realtime predictions from a high-resolution atmosphere-wave-ocean coupled model were evaluated for both summer and winter conditions during the Grand LAgrangian Deployment (GLAD) in July-August 2012 and the Surfzone Coastal Oil Pathways Experiment (SCOPE) in November-December 2013. The model generally captured the variability of atmospheric forcing on all scales, but suffered from some systematic errors.

  14. Inter comparison of Tropical Indian Ocean features in different ocean reanalysis products

    NASA Astrophysics Data System (ADS)

    Karmakar, Ananya; Parekh, Anant; Chowdary, J. S.; Gnanaseelan, C.

    2017-09-01

    This study makes an inter comparison of ocean state of the Tropical Indian Ocean (TIO) in different ocean reanalyses such as global ocean data assimilation system (GODAS), ensemble coupled data assimilation (ECDA), ocean reanalysis system 4 (ORAS4) and simple ocean data assimilation (SODA) with reference to the in-situ buoy observations, satellite observed sea surface temperature (SST), EN4 analysis and ocean surface current analysis real time (OSCAR). Analysis of mean state of SST and sea surface salinity (SSS) reveals that ORAS4 is better comparable with satellite observations as well as EN4 analysis, and is followed by SODA, ECDA and GODAS. The surface circulation in ORAS4 is closer to OSCAR compared to the other reanalyses. However mixed layer depth (MLD) is better simulated by SODA, followed by ECDA, ORAS4 and GODAS. Seasonal evolution of error indicates that the highest deviation in SST and MLD over the TIO exists during spring and summer in GODAS. Statistical analysis with concurrent data of EN4 for the period of 1980-2010 supports that the difference and standard deviation (variability strength) ratio for SSS and MLD is mostly greater than one. In general the strength of variability is overestimated by all the reanalyses. Further comparison with in-situ buoy observations supports that MLD errors over the equatorial Indian Ocean (EIO) and the Bay of Bengal are higher than with EN4 analysis. Overall ORAS4 displays higher correlation and lower error among all reanalyses with respect to both EN4 analysis and buoy observations. Major issues in the reanalyses are the underestimation of upper ocean stability in the TIO, underestimation of surface current in the EIO, overestimation of vertical shear of current and improper variability in different oceanic variables. To improve the skill of reanalyses over the TIO, salinity vertical structure and upper ocean circulation need to be better represented in reanalyses.

  15. Variability of the Arctic Basin Oceanographic Fields

    DTIC Science & Technology

    1996-02-01

    the model a very sophisticated turbulence closure scheme. 9. Imitation of the CO2 doubling We parameterized the " greenhouse " effect by changing the...of the Arctic Ocean. A more realistic model of the Arctic Ocean circulation was obtained, and an estimation of the impact of the greenhouse effect on... greenhouse effect is in freshening of the upper Arctic Basin. Although some shortcomings of the model still exist (an unrealistic high coefficient of

  16. Steering of Upper Ocean Currents and Fronts by the Topographically Constrained Abyssal Circulation

    DTIC Science & Technology

    2008-07-06

    a) Mean surface dynamic height relative to 1000 m from version 2.5 of the Generalized Digital Environmental Model ( GDEM ) oceanic climatology, an...NLOM simulations in comparison to the mean surface dynamic height with respect to 1000 m from the Generalized Digital Environmental Model ( GDEM ...the Kuroshio pathway east of Japan, giving much better agreement with the pathway in the GDEM climatology. Dynamics of the topographic impact on

  17. The thermodynamic balance of the Weddell Gyre

    NASA Astrophysics Data System (ADS)

    Naveira Garabato, Alberto C.; Zika, Jan D.; Jullion, Loïc.; Brown, Peter J.; Holland, Paul R.; Meredith, Michael P.; Bacon, Sheldon

    2016-01-01

    The thermodynamic balance of the Weddell Gyre is assessed from an inverse estimate of the circulation across the gyre's rim. The gyre experiences a weak net buoyancy gain that arises from a leading-order cancelation between two opposing contributions, linked to two cells of water mass transformation and diapycnal overturning. The lower cell involves a cooling-driven densification of 8.4 ± 2.0 Sv of Circumpolar Deep Water and Antarctic Bottom Water near the gyre's southern and western margins. The upper cell entails a freshening-driven conversion of 4.9 ± 2.0 Sv of Circumpolar Deep Water into lighter upper ocean waters within the gyre interior. The distinct role of salinity between the two cells stems from opposing salinity changes induced by sea ice production, meteoric sources, and admixture of fresh upper ocean waters in the lower cell, which contrasts with coherent reductions in salinity associated with sea ice melting and meteoric sources in the upper cell.

  18. Anticipated Improvements to Net Surface Freshwater Fluxes from GPM

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2005-01-01

    Evaporation and precipitation over the oceans play very important roles in the global water cycle, upper-ocean heat budget, ocean dynamics, and coupled ocean-atmosphere dynamics. In the conventional representation of the terrestrial water cycle, the assumed role of the oceans is to act as near-infinite reservoirs of water with the main drivers of the water cycle being land- atmosphere interactions in which excess precipitation (P) over evaporation (E) is returned to the oceans as surface runoff and baseflow. Whereas this perspective is valid for short space and time scales -- fundamental principles, available observed estimates, and results from models indicate that the oceans play a far more important role in the large-scale water cycle at seasonal and longer timescales. Approximately 70-80% of the total global evaporation and precipitation occurs over oceans. Moreover, latent heat release into the atmosphere over the oceans is the major heat source driving global atmospheric circulations, with the moisture transported by circulations from oceans to continents being the major source of water precipitating over land. Notably, the major impediment in understanding and modeling the oceans role in the global water cycle is the lack of reliable net surface freshwater flux estimates (E - P fluxes) at the salient spatial and temporal resolutions, i.e., consistent coupled weekly to monthly E - P gridded datasets.

  19. Upper ocean O2 trends: 1958-2015

    NASA Astrophysics Data System (ADS)

    Ito, Takamitsu; Minobe, Shoshiro; Long, Matthew C.; Deutsch, Curtis

    2017-05-01

    Historic observations of dissolved oxygen (O2) in the ocean are analyzed to quantify multidecadal trends and variability from 1958 to 2015. Additional quality control is applied, and the resultant oxygen anomaly field is used to quantify upper ocean O2 trends at global and hemispheric scales. A widespread negative O2 trend is beginning to emerge from the envelope of interannual variability. Ocean reanalysis data are used to evaluate relationships with changes in ocean heat content (OHC) and oxygen solubility (O2,sat). Global O2 decline is evident after the 1980s, accompanied by an increase in global OHC. The global upper ocean O2 inventory (0-1000 m) changed at the rate of -243 ± 124 T mol O2 per decade. Further, the O2 inventory is negatively correlated with the OHC (r = -0.86; 0-1000 m) and the regression coefficient of O2 to OHC is approximately -8.2 ± 0.66 nmol O2 J-1, on the same order of magnitude as the simulated O2-heat relationship typically found in ocean climate models. Variability and trends in the observed upper ocean O2 concentration are dominated by the apparent oxygen utilization component with relatively small contributions from O2,sat. This indicates that changing ocean circulation, mixing, and/or biochemical processes, rather than the direct thermally induced solubility effects, are the primary drivers for the observed O2 changes. The spatial patterns of the multidecadal trend include regions of enhanced ocean deoxygenation including the subpolar North Pacific, eastern boundary upwelling systems, and tropical oxygen minimum zones. Further studies are warranted to understand and attribute the global O2 trends and their regional expressions.

  20. The vertical distribution of nutrients and oxygen 18 in the upper Arctic Ocean

    NASA Astrophysics Data System (ADS)

    BjöRk, GöRan

    1990-09-01

    The observed vertical nutrient distribution including a maximum at about 100 m depth in the Arctic Ocean is investigated using a one-dimensional time-dependent circulation model together with a simple biological model. The circulation model includes a shelf-forced circulation. This is thought to take place in a box from which the outflow is specified regarding temperature and volume flux at different salinities. It has earlier been shown that the circulation model is able to reproduce the observed mean salinity and temperature stratification in the Arctic Ocean. Before introducing nutrients in the model a test is performed using the conservative tracer δ18 (18O/16O ratio) as one extra state variable in order to verify the circulation model. It is shown that the field measurements can be simulated. The result is, however, rather sensitive to the tracer concentration in the Bering Strait inflow. The nutrients nitrate, phosphate, and silicate are then treated by coupling a simple biological model to the circulation model. The biological model describes some overall effects of production, sinking, and decomposition of organic matter. First a standard case of the biological model is presented. This is followed by some modified cases. It is shown that the observed nutrient distribution including the maximum can be generated. The available nutrient data from the Arctic Ocean are not sufficient to decide which among the cases is the most likely to occur. One case is, however, chosen as the best case. A nutrient budget and estimates of the magnitudes of the new production are presented for this case.

  1. Upper-Ocean Heat Balance Processes and the Walker Circulation in CMIP5 Model Projections

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Roberts, J. B.; Funk, C.; Lyon, B.; Ricciardulli, L.

    2012-01-01

    Considerable uncertainty remains as to the importance of mechanisms governing decadal and longer variability of the Walker Circulation, its connection to the tropical climate system, and prospects for tropical climate change in the face of anthropogenic forcing. Most contemporary climate models suggest that in response to elevated CO2 and a warmer but more stratified atmosphere, the required upward mass flux in tropical convection will diminish along with the Walker component of the tropical mean circulation as well. Alternatively, there is also evidence to suggest that the shoaling and increased vertical stratification of the thermocline in the eastern Pacific will enable a muted SST increase there-- preserving or even enhancing some of the dynamical forcing for the Walker cell flow. Over the past decade there have been observational indications of an acceleration in near-surface easterlies, a strengthened Pacific zonal SST gradient, and globally-teleconnected dislocations in precipitation. But is this evidence in support of an ocean dynamical thermostat process posited to accompany anthropogenic forcing, or just residual decadal fluctuations associated with variations in warm and cold ENSO events and other stochastic forcing? From a modeling perspective we try to make headway on this question by examining zonal variations in surface energy fluxes and dynamics governing tropical upper ocean heat content evolution in the WCRP CMIP5 model projections. There is some diversity among model simulations; for example, the CCSM4 indicates net ocean warming over the IndoPacific region while the CSIRO model concentrates separate warming responses over the central Pacific and Indian Ocean regions. The models, as with observations, demonstrate strong local coupling between variations in column water vapor, downward surface longwave radiation and SST; but the spatial patterns of changes in the sign of this relationship differ among models and, for models as a whole, with observations. Our analysis focuses initially on probing the inter-model differences in energy fluxes / transports and Walker Circulation response to forcing. We then attempt to identify statistically the El Nino- / La Nina-related ocean heat content variability unique to each model and regress out the associated energy flux, ocean heat transport and Walker response on these shorter time scales for comparison to that of the anthropogenic signals.

  2. Modes of North Atlantic Decadal Variability in the ECHAM1/LSG Coupled Ocean-Atmosphere General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Zorita, Eduardo; Frankignoul, Claude

    1997-02-01

    The climate variability in the North Atlantic sector is investigated in a 325-yr integration of the ECHAM1/ LSG coupled ocean-atmosphere general circulation model. At the interannual timescale, the coupled model behaves realistically and sea surface temperature (SST) anomalies arise as a response of the oceanic surface layer to the stochastic forcing by the atmosphere, with the heat exchanges both generating and damping the SST anomalies. In the ocean interior, the temperature spectra are red up to a period of about 20 years, and substantial decadal fluctuations are found in the upper kilometer or so of the water column. Using extended empirical orthogonal function analysis, two distinct quasi-oscillatory modes of ocean-atmosphere variability are identified, with dominant periods of about 20 and 10 years, respectively. The oceanic changes in both modes reflect the direct forcing by the atmosphere through anomalous air-sea fluxes and Ekman pumping, which after some delay affects the intensity of the subtropical and subpolar gyres. The SST is also strongly modulated by the gyre currents. In the thermocline, the temperature and salinity fluctuations are in phase, as if caused by thermocline displacements, and they have no apparent connection with the thermohaline circulation. The 20-yr mode is the most energetic one; it is easily seen in the thermocline and can be found in SST data, but it is not detected in the atmosphere alone. As there is no evidence of positive ocean-atmosphere feedback, the 20-yr mode primarily reflects the passive response of the ocean to atmospheric fluctuations, which may be in part associated with climate anomalies appearing a few years earlier in the North Pacific. The 10-yr mode is more surface trapped in the ocean. Although the mode is most easily seen in the temperature variations of the upper few hundred meters of the ocean, it is also detected in the atmosphere alone and thus appears to be a coupled ocean-atmosphere mode. In both modes, the surface heat flux acts neutrally on the associated SST anomalies once they have been generated, so that their persistence appears to be due in part to an overall adjustment of the air-sea heat exchanges to the SST patterns.

  3. A Coupled Model of Langmuir Circulations and Ramp-like Structures in the Upper Ocean Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.; Lukas, R.; Donelan, M. A.; Terray, E. A.

    2016-12-01

    Surface-wave breaking is a powerful mechanism producing significant energy flux to small scale turbulence. Most of the turbulent energy produced by breaking waves dissipates within one significant wave height, while the turbulent diffusion layer extends to approximately ten significant wave heights. Notably, the near-surface shear may practically vanish within the wave-stirred layer due to small-scale turbulent mixing. The surface ocean temperature-salinity structure, circulation, and mass exchanges (including greenhouse gases and pollutants) substantially depend on turbulent mixing and non-local transport in the near-surface layer of the ocean. Spatially coherent organized motions have been recognized as an important part of non-local transport. Langmuir circulation (LC) and ramp-like structures are believed to vertically transfer an appreciable portion of the momentum, heat, gases, pollutants (e.g., oil), and other substances in the upper layer of the ocean. Free surface significantly complicates the analysis of turbulent exchanges at the air-sea interface and the coherent structures are not yet completely understood. In particular, there is growing observational evidence that in the case of developing seas when the wind direction may not coincide with the direction of the energy containing waves, the Langmuir lines are oriented in the wind rather than the wave direction. In addition, the vortex force due to Stokes drift in traditional models is altered in the breaking-wave-stirred layer. Another complication is that the ramp-like structures in the upper ocean turbulent boundary layer have axes perpendicular to the axes of LC. The ramp-like structures are not considered in the traditional model. We have developed a new model, which treats the LC and ramp-like structures in the near-surface layer of the ocean as a coupled system. Using computational fluid dynamics tools (LES), we have been able to reproduce both LC and ramp-like structures coexisting in space though intermittent in time. In the model, helicity isosurfaces appear to be tilted and, in general, coordinated with the tilted velocity isosurfaces produced by ramp-like structures. This is an indication of coupling between the LC and ramp-like structures. Remarkably, the new model is able to explain observations of LC under developing seas.

  4. The impact of sedimentary coatings on the diagenetic Nd flux

    NASA Astrophysics Data System (ADS)

    Abbott, April N.; Haley, Brian A.; McManus, James

    2016-09-01

    Because ocean circulation impacts global heat transport, understanding the relationship between deep ocean circulation and climate is important for predicting the ocean's role in climate change. A common approach to reconstruct ocean circulation patterns employs the neodymium isotope compositions of authigenic phases recovered from marine sediments. In this approach, mild chemical extractions of these phases is thought to yield information regarding the εNd of the bottom waters that are in contact with the underlying sediment package. However, recent pore fluid studies present evidence for neodymium cycling within the upper portions of the marine sediment package that drives a significant benthic flux of neodymium to the ocean. This internal sedimentary cycling has the potential to obfuscate any relationship between the neodymium signature recovered from the authigenic coating and the overlying neodymium signature of the seawater. For this manuscript, we present sedimentary leach results from three sites on the Oregon margin in the northeast Pacific Ocean. Our goal is to examine the potential mechanisms controlling the exchange of Nd between the sedimentary package and the overlying water column, as well as the relationship between the εNd composition of authigenic sedimentary coatings and that of the pore fluid. In our comparison of the neodymium concentrations and isotope compositions from the total sediment, sediment leachates, and pore fluid we find that the leachable components account for about half of the total solid-phase Nd, therefore representing a significant reservoir of reactive Nd within the sediment package. Based on these and other data, we propose that sediment diagenesis determines the εNd of the pore fluid, which in turn controls the εNd of the bottom water. Consistent with this notion, despite having 1 to 2 orders of magnitude greater Nd concentration than the bottom water, the pore fluid is still <0.001% of the total Nd reservoir in the upper sediment column. Therefore, the pore fluid reservoir is too small to maintain a unique signature, and instead must be controlled by the larger reservoir of Nd in the reactive coatings. In addition, to achieve mass balance, we find it necessary to invoke a cryptic radiogenic (εNd of +10) trace mineral source of neodymium within the upper sediment column at our sites. When present, this cryptic trace metal results in more radiogenic pore fluid.

  5. Seismic structure of oceanic crust at ODP borehole 504B: Investigating anisotropy and layer 2 characteristics

    NASA Astrophysics Data System (ADS)

    Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.

    2015-12-01

    Fracture and fault networks in the upper oceanic crust influence the circulation of hydrothermal fluids and heat transfer between crust and ocean. These fractures form by extensional stresses, with a predominant orientation parallel to the ridge axis, creating porosity- and permeability-derived anisotropy that can be measured in terms of seismic velocity. These properties change as the crust ages and evolves through cooling, alteration and sedimentation. The rate at which these changes occur and their effects on oceanic crustal structure and hydrothermal flow patterns are currently not well constrained. The NERC-funded OSCAR project aims to understand the development of upper oceanic crust, the extent and influence of hydrothermal circulation on the crust, and the behavior of fluids flowing in fractured rock. We show P-wave velocity models centered on DSDP/ODP Hole 504B, located ~200 km south of the Costa Rica Rift, derived from data acquired during a recent integrated geophysics and oceanography survey of the Panama Basin. The data were recorded by 25 four-component OBSs deployed in a grid, that recorded ~10,000 full azimuthal coverage shots fired by a combined high- and low-frequency seismic source. Both reflection and refraction data are integrated to reveal the seismic velocity structure of the crust within the 25 km by 25 km grid. The down-hole geological structure of 6 Ma crust at 504B comprises 571.5 m of extrusive basalts overlying a 209 m transition zone of mixed pillows and dikes containing a clear alteration boundary, which grades to >1050 m of sheeted dikes. Our model results are compared with this lithological structure and other previously published results to better understand the nature of velocity changes within seismic layer 2. The data provide a 3D framework, which together with analysis of the S-wave arrivals and particle motion studies, constrain estimates of the seismic anisotropy and permeability structure of the upper oceanic crust as it ages.

  6. Uncertainty in modeled upper ocean heat content change

    NASA Astrophysics Data System (ADS)

    Tokmakian, Robin; Challenor, Peter

    2014-02-01

    This paper examines the uncertainty in the change in the heat content in the ocean component of a general circulation model. We describe the design and implementation of our statistical methodology. Using an ensemble of model runs and an emulator, we produce an estimate of the full probability distribution function (PDF) for the change in upper ocean heat in an Atmosphere/Ocean General Circulation Model, the Community Climate System Model v. 3, across a multi-dimensional input space. We show how the emulator of the GCM's heat content change and hence, the PDF, can be validated and how implausible outcomes from the emulator can be identified when compared to observational estimates of the metric. In addition, the paper describes how the emulator outcomes and related uncertainty information might inform estimates of the same metric from a multi-model Coupled Model Intercomparison Project phase 3 ensemble. We illustrate how to (1) construct an ensemble based on experiment design methods, (2) construct and evaluate an emulator for a particular metric of a complex model, (3) validate the emulator using observational estimates and explore the input space with respect to implausible outcomes and (4) contribute to the understanding of uncertainties within a multi-model ensemble. Finally, we estimate the most likely value for heat content change and its uncertainty for the model, with respect to both observations and the uncertainty in the value for the input parameters.

  7. Diagnosing the leading mode of interdecadal covariability between the Indian Ocean sea surface temperature and summer precipitation in southern China

    NASA Astrophysics Data System (ADS)

    Liu, Jingpeng; Ren, Hong-Li; Li, Weijing; Zuo, Jinqing

    2018-03-01

    Precipitation in southern China during boreal summer (June to August) shows a substantial interdecadal variability on the timescale longer than 8 years. In this study, based on the analysis of singular value decomposition, we diagnose the leading mode of interdecadal covariability between the observational precipitation in southern China and the sea surface temperature (SST) in the Indian Ocean. Results indicate that there exist a remarkable southern China zonal dipole (SCZD) pattern of interdecadal variability of summer precipitation and an interdecadal Indian Ocean basin mode (ID-IOBM) of SST. It is found that the SCZD is evidently covaried with the ID-IOBM, which may induce anomalous inter-hemispheric vertical circulation and atmospheric Kelvin waves. During the warm phase of the ID-IOBM, an enhanced lower-level convergence and upper-level divergence exist over the tropical Indian Ocean, which is a typical Gill-Matsuno-type response to the SST warming. Meanwhile, the accompanied upper-level outflow anomalies further converge over the Indo-China peninsula, resulting in a lower-level anticyclone that contributes to reduction of the eastward moisture transport from the Bay of Bengal to the west part of southern China. In addition, the Kelvin wave-like pattern, as a response of the warm ID-IOBM phase, further induces the lower-level anticyclonic anomaly over the South China Sea-Philippines. Such an anticyclonic circulation is favorable for more water vapor transport from the East China Sea into the east part of southern China. Therefore, the joint effects of the anomalous inter-hemispheric vertical circulation and the Kelvin wave-like pattern associated with the ID-IOBM may eventually play a key role in generating the SCZD pattern.

  8. Tidal Impacts on Oceanographic and Sea-ice Processes in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Padman, L.; Muench, R. D.; Howard, S.; Mueller, R.

    2008-12-01

    We review recent field and modeling results that demonstrate the importance of tides in establishing the oceanographic and sea-ice conditions in the boundary regions of the Southern Ocean. The tidal component dominates the total oceanic kinetic energy throughout much of the circum-Antarctic seas. This domination is especially pronounced over the continental slope and shelf including the sub-ice-shelf cavities. Tides provide most of the energy that forces diapycnal mixing under ice shelves and thereby contributes to basal melting. The resulting Ice Shelf Water is a significant component of the Antarctic Bottom Water (AABW) filling much of the deep global ocean. Tides exert significant divergent forcing on sea ice along glacial ice fronts and coastal regions, contributing to creation and maintenance of the coastal polynyas where much of the High Salinity Shelf Water component of AABW is formed. Additional tidally forced ice divergence along the shelf break and upper slope significantly impacts area-averaged ice growth and upper-ocean salinity. Tidally forced cross- slope advection, and mixing by the benthic stress associated with tidal currents along the shelf break and upper slope, strongly influence the paths, volume fluxes and hydrographic properties of benthic outflows of dense water leaving the continental shelf. These outflows provide primary source waters for the AABW. These results confirm that general ocean circulation and coupled ocean/ice/atmosphere climate models must incorporate the impacts of tides.

  9. Mechanisms and detectability of oxygen depletion in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Tjiputra, J. F.; Goris, N.; Lauvset, S. K.; Schwinger, J.

    2016-12-01

    Dissolved oxygen is a key tracer in models used to represent the tight interaction between ocean biogeochemical cycle and circulation. Future ocean warming and stratification are projected, leading to a reduced oxygen concentration. Reduction in export production, in contrast, is projected to increase subsurface concentration by lowering the oxygen consumption during organic matter remineralization. In this exercise, we use a suite of CMIP5 models to study the oxygen evolution under the RCP8.5 scenario focusing on the North Atlantic, a region of rapid and steady circulation change. Most models agree with a large reduction in the deep North Atlantic (north of 40N), whereas an increase is projected in the upper subtropical ocean region. We attribute the former to weakening of the net primary production due to stronger stratification and the latter to less air-sea oxygen flux owing to less ventilation. The models also show that interior oxygen could provide earlier indicator of climate change than surface tracers. Sustained observation of oxygen is therefore crucial to reaffirm the ongoing circulation change due to global warming.

  10. Exploring the southern ocean response to climate change

    NASA Technical Reports Server (NTRS)

    Martinson, Douglas G.; Rind, David; Parkinson, Claire

    1993-01-01

    The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.

  11. Atlantic Induced Pan-tropical Climate Variability in the Upper-ocean and Atmosphere

    NASA Astrophysics Data System (ADS)

    Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.

    2016-02-01

    During the last three decades, tropical sea surface temperature (SST) exhibited dipole-like trends, with warming over the tropical Atlantic and Indo-Western Pacific but cooling over the Eastern Pacific. The Eastern Pacific cooling has recently been identified as a driver of the global warming hiatus. Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean, which could potentially contribute to this zonally asymmetric SST pattern. However, the mechanisms and the interactions between these teleconnections remain unclear. To investigate these questions, we performed a `pacemaker' simulation by restoring the tropical Atlantic SST changes in a state-of-the-art climate model - the CESM1. Results show that the Atlantic plays a key role in initiating the tropical-wide teleconnections, and the Atlantic-induced anomalies contribute 55%-75% of the total tropical SST and circulation changes during the satellite era. A hierarchy of oceanic and atmospheric models are then used to investigate the physical mechanisms of these teleconnections: the Atlantic warming enhances atmospheric deep convection, drives easterly wind anomalies over the Indo-Western Pacific through the Kelvin wave, and westerly anomalies over the eastern Pacific as Rossby waves, in line with Gill's solution (Fig1a). These wind changes induce an Indo-Western Pacific warming via the wind-evaporation-SST effect, and this warming intensifies the La Niña-type response in the upper Pacific Ocean by enhancing the easterly trade winds and through the Bjerknes ocean-dynamical processes (Fig1b). The teleconnection finally develops into a tropical-wide SST dipole pattern with an enhanced trade wind and Walker circulation, similar as the observed changes during the satellite era. This mechanism reveals that the tropical ocean basins are more tightly connected than previously thought, and the Atlantic plays a key role in the tropical climate pattern formation and further the global warming hiatus. The tropical Atlantic warming is likely due to radiative forcing and Atlantic meridional overturning circulation (AMOC). Our study suggests that the AMOC may force the decadal variability of the tropical ocean and atmosphere, and thus contributes to the decadal predictability of the global climate.

  12. Upper Atmospheric Response to the April 2010 Storm as Observed by GOCE, CHAMP, and GRACE and Modeled by TIME-GCM

    NASA Astrophysics Data System (ADS)

    Hagan, Maura; Häusler, Kathrin; Lu, Gang; Forbes, Jeffrey; Zhang, Xiaoli; Doornbos, Eelco; Bruinsma, Sean

    2014-05-01

    We present the results of an investigation of the upper atmosphere during April 2010 when it was disturbed by a fast-moving coronal mass ejection. Our study is based on comparative analysis of observations made by the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP), and Gravity Recovery And Climate Experiment (GRACE) satellites and a set of simulations with the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). We compare and contrast the satellite observations with TIME-GCM results from a realistic simulation based on prevailing meteorological and solar geomagnetic conditions. We diagnose the comparative importance of the upper atmospheric signatures attributable to meteorological forcing with those attributable to storm effects by diagnosing a series of complementary control TIME-GCM simulations. These results also quantify the extent to which lower and middle atmospheric sources of upper atmospheric variability precondition its response to the solar geomagnetic storm.

  13. Adaptive scaling model of the main pycnocline and the associated overturning circulation

    NASA Astrophysics Data System (ADS)

    Fuckar, Neven-Stjepan

    This thesis examines a number of crucial factors and processes that control the structure of the main pycnocline and the associated overturning circulation that maintains the ocean stratification. We construct an adaptive scaling model: a semi-empirical low-order theory based on the total transformation balance that linearly superimposes parameterized transformation rate terms of various mechanisms that participate in the water-mass conversion between the warm water sphere and the cold water sphere. The depth of the main pycnocline separates the light-water domain from the dense-water domain beneath the surface, hence we introduce a new definition in an integral form that is dynamically based on the large-scale potential vorticity (i.e., vertical density gradient is selected for the kernel function of the normalized vertical integral). We exclude the abyssal pycnocline from our consideration and limit our domain of interest to the top 2 km of water column. The goal is to understand the controlling mechanisms, and analytically predict and describe a wide spectrum of ocean steady states in terms of key large-scale indices relevant for understanding the ocean's role in climate. A devised polynomial equation uses the average depth of the main pycnocline as a single unknown (the key vertical scale of the upper ocean stratification) and gives us an estimate for the northern hemisphere deep water production and export across the equator from the parts of this equation. The adaptive scaling model aims to elucidate the roles of a limited number of dominant processes that determine some key upper ocean circulation and stratification properties. Additionally, we use a general circulation model in a series of simplified single-basin ocean configurations and surface forcing fields to confirm the usefulness of our analytical model and further clarify several aspects of the upper ocean structure. An idealized numerical setup, containing all the relevant physical and dynamical properties, is key to obtaining a clear understanding, uncomplicated by the effect of the real world geometry or intricacy of realistic surface radiative and turbulent fluxes. We show that wind-driven transformation processes can be decomposed into two terms separately driven by the mid-latitude westerlies and the low-latitude easterlies. Our analytical model smoothly connects all the classical limits describing different ocean regimes in a single-basin single-hemisphere geometry. The adjective "adaptive" refers to a simple and quantitatively successful adjustment to the description of a single-basin two-hemisphere ocean, with and without a circumpolar channel under the hemispherically symmetric surface buoyancy. For example, our water-mass conversion framework, unifying wind-driven and thermohaline processes, provides us with further insight into the "Drake Passage effect without Drake Passage". The modification of different transformation pathways in the Southern Hemisphere results in the equivalent net conversion changes. The introduction of hemispheric asymmetry in the surface density can lead to significant hemispheric differences in the main pycnocline structure. This demonstrates the limitations of our analytical model based on only one key vertical scale. Also, we show a strong influence of the northern hemisphere surface density change in high latitudes on the southern hemisphere stratification and circumpolar transport.

  14. The Equatorial Pacific Cold Tongue Simulated by IPCC AR4 Coupled GCMs: Upper Ocean Heat Budget and Feedback Analysis

    DTIC Science & Technology

    2012-05-15

    ET AL .: THE PACIFIC COLD TONGUE BIAS ANALYSIS C05024 circulation, which intensifies the surface easterly winds over the Pacific Basin, further...productivity, and in carbon cycling since it is the major oceanic source of C02 for the atmosphere [Field et al , 1998; Calvo et al , 2011]. Large SST anomalies...used for climate predictions and projec- tions [Neelin et al , 1992; Mechoso et al , 1995; Delecluse et al , 1998; Laufet al , 2001; Davey

  15. Rita Roars Through a Warm Gulf September 22, 2005

    NASA Image and Video Library

    2005-09-22

    This sea surface height map of the Gulf of Mexico, with the Florida peninsula on the right and the Texas-Mexico Gulf Coast on the left, is based on altimeter data from four satellites including NASA’s Topex/Poseidon and Jason. Red indicates a strong circulation of much warmer waters, which can feed energy to a hurricane. This area stands 35 to 60 centimeters (about 13 to 23 inches) higher than the surrounding waters of the Gulf. The actual track of a hurricane is primarily dependent upon steering winds, which are forecasted through the use of atmospheric models. However, the interaction of the hurricane with the upper ocean is the primary source of energy for the storm. Hurricane intensity is therefore greatly affected by the upper ocean temperature structure and can exhibit explosive growth over warm ocean currents and eddies. Eddies are currents of water that run contrary to the direction of the main current. According to the forecasted track through the Gulf of Mexico, Hurricane Rita will continue crossing the warm waters of a Gulf of Mexico circulation feature called the Loop Current and then pass near a warm-water eddy called the Eddy Vortex, located in the north central Gulf, south of Louisiana. http://photojournal.jpl.nasa.gov/catalog/PIA06427

  16. Did Irving Langmuir Observe Langmuir Circulations?

    NASA Astrophysics Data System (ADS)

    D'Asaro, E. A.; Harcourt, R. R.; Shcherbina, A.; Thomson, J. M.; Fox-Kemper, B.

    2012-12-01

    Although surface waves are known to play an important role in mixing the upper ocean, the current generation of upper ocean boundary layer parameterizations does not include the explicit effects of surface waves. Detailed simulations using LES models which include the Craik-Leibovich wave-current interactions, now provide quantitative predictions of the enhancement of boundary layer mixing by waves. Here, using parallel experiments in Lake Washington and at Ocean Station Papa, we show a clear enhancement of vertical kinetic energy across the entire upper ocean boundary layer which can be attributed to surface wave effects. The magnitude of this effect is close to that predicted by LES models, but is not large, less than a factor of 2 on average, and increased by large Stokes drift and shallow mixed layers. Global estimates show the largest wave enhancements occur on the equatorial side of the westerlies in late Spring, due to the combination of large waves, shallow mixed layers and weak winds. In Lakes, however, the waves and the Craik-Leibovich interactions are weak, making it likely that the counter-rotating vortices famously observed by Irving Langmuir in Lake George were not driven by wave-current interactions.

  17. Identifying and Investigating the Late-1960s Interhemispheric SST Shift

    NASA Astrophysics Data System (ADS)

    Friedman, A. R.; Lee, S. Y.; Liu, Y.; Chiang, J. C. H.

    2014-12-01

    The global north-south interhemispheric sea surface temperature (SST) difference experienced a pronounced and rapid decrease in the late 1960s, which has been linked to drying in the Sahel, South Asia, and East Asia. However, some basic questions about the interhemispheric SST shift remain unresolved, including its scale and whether the constituent changes in different basins were coordinated. In this study, we systematically investigate the spatial and temporal behavior of the late-1960s interhemispheric SST shift using ocean surface and subsurface observations. We also evaluate potential mechanisms using control and specific-forcing CMIP5 simulations. Using a regime shift detection technique, we identify the late-1960s shift as the most prominent in the historical observational SST record. We additionally examine the corresponding changes in upper-ocean heat content and salinity associated with the shift. We find that there were coordinated upper-ocean cooling and freshening in the subpolar North Atlantic, the region of the largest-magnitude SST decrease during the interhemispheric shift. These upper-ocean changes correspond to a weakened North Atlantic thermohaline circulation (THC). However, the THC decrease does not fully account for the rapid global interhemispheric SST shift, particularly the warming in the extratropical Southern Hemisphere.

  18. Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing

    NASA Astrophysics Data System (ADS)

    Morrison, A.; Hogg, A.; Ward, M.

    2011-12-01

    The southern limb of the ocean's meridional overturning circulation plays a key role in the Earth's response to climate change. The rise in atmospheric CO2 during glacial-interglacial transitions has been attributed to outgassing of enhanced upwelling water masses in the Southern Ocean. However a dynamical understanding of the physical mechanisms driving the change in overturning is lacking. Previous modelling studies of the Southern Ocean have focused on the effect of wind stress forcing on the overturning, while largely neglecting the response of the upper overturning cell to changes in surface buoyancy forcing. Using a series of eddy-permitting, idealised simulations of the Southern Ocean, we show that surface buoyancy forcing in the mid-latitudes is likely to play a significant role in setting the strength of the overturning circulation. Air-sea fluxes of heat and precipitation over the Antarctic Circumpolar Current region act to convert dense upwelled water masses into lighter waters at the surface. Additional fluxes of heat or freshwater thereby facilitate the meridional overturning up to a theoretical limit derived from Ekman transport. The sensitivity of the overturning to surface buoyancy forcing is strongly dependent on the relative locations of the wind stress profile, buoyancy forcing and upwelling region. The idealised model results provide support for the hypothesis that changes in upwelling during deglaciations may have been driven by changes in heat and freshwater fluxes, instead of, or in addition to, changes in wind stress. Morrison, A. K., A. M. Hogg, and M. L. Ward (2011), Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing, Geophys. Res. Lett., 38, L14602, doi:10.1029/2011GL048031.

  19. Arctic Ocean Pathways in the 21st century

    NASA Astrophysics Data System (ADS)

    Aksenov, Yevgeny; van Gennip, Simon J.; Kelly, Stephen J.; Popova, Ekaterina E.; Yool, Andrew

    2017-04-01

    In the last three decades, changes in the Arctic environment have been occurring at an increasing rate. The opening up of large areas of previously sea ice-covered ocean affects the marine environment with potential impacts on Arctic ecosystems, including through changes in Arctic access, industries and societies. Changes to sea ice and surface winds result in large-scale shifts in ocean circulation and oceanic pathways. This study presents a high-resolution analysis of the projected ocean circulation and pathways of the Arctic water masses across the 21st century. The analysis is based on an eddy-permitting high-resolution global simulation of the ocean general circulation model NEMO (Nucleus for European Modelling of the Ocean) at the 1/4-degree horizontal resolution. The atmospheric forcing is from HadGEM2-ES model output from IPCC Assessment Report 5 (AR5) simulations performed for Coupled Model Intercomparison Project 5 (CMIP5), and follow the Representative Concentration Pathway 8.5 (RCP8.5) scenario. During the 21st century the AO experiences a significant warming, with sea surface temperature increased by in excess of 4 deg. C. Annual mean Arctic sea ice thickness drops to less than 0.5m, and the Arctic Ocean is ice-free in summer from the mid-century. We use an off-line tracer technique to investigate Arctic pathways of the Atlantic and Pacific waters (AW and PW respectively) under this future climate. The AW tracers have been released in the eastern Fram Strait and in the western Barents Sea, whereas the PW tracer has been seeded in the Bering Strait. In the second half of the century the upper 1000 m ocean circulation shows a reduction in the eastward AW flow along the continental slopes towards the Makarov and Canada basins and a deviation of the PW flow away from the Beaufort Sea towards the Siberian coast. Strengthening of Arctic boundary current and intensification of the cyclonic gyre in the Nansen basin of the Arctic Ocean is accompanied by weakening of the current and an anti-cyclonic gyre spin-up in the Makarov Basin. This presents a shift of the Arctic circulation "dipole" and of the Transpolar Drift, with the consequence that the PW flow towards Fram Strait is significantly reduced by the end of the century, weakening the Pacific-Atlantic connection via the Arctic Ocean, and reducing the Arctic freshwater outflow into the North Atlantic. Examination of the simulations suggests that these circulation changes are primarily due to the shift in the wind.

  20. Pb sbnd Sr sbnd Nd isotopic data of Indian Ocean ridges: new evidence of large-scale mapping of mantle heterogeneities

    NASA Astrophysics Data System (ADS)

    Hamelin, Bruno; Dupré, Bernard; Allègre, Claude J.

    1986-01-01

    A Pb sbnd Sr sbnd Nd isotope study of South West and East Indian Ridges confirms that the Indian Ocean belongs to a specific regional isotopic domain, as previously suggested by the results from islands of this ocean. The isotopic domain defined by the Indian MORB is indeed different from that of the North Atlantic and East Pacific Oceans. This demonstrates that the convective circulation of the upper mantle does not allow a rapid homogenization from one region to the other. The isotopic data of the Indian ridges can be interpreted by a contamination model, in which the depleted upper mantle (identical to that under the North Atlantic) is contaminated by two different types of contaminant, one corresponding to the source of the "central Indian Ocean" islands (Amsterdam, St. Paul, Marion, Prince Edward, Réunion, Rodriguez, Mauritius), and the other to a source similar to that of Walvis or Ninety East aseismic ridges. These two contaminants would have contributed to the ridge volcanism in different proportions over time.

  1. Maintenance of Summer Monsoon Circulations: A Planetary-Scale Perspective.

    NASA Astrophysics Data System (ADS)

    Chen, Tsing-Chang

    2003-06-01

    The monsoon circulation, which is generally considered to be driven by the landmass-ocean thermal contrast, like a gigantic land-sea breeze circulation, exhibits a phase reversal in its vertical structure; a monsoon high aloft over a continental thermal low is juxtaposed with a midoceanic trough underlaid by an oceanic anticyclone. This classic monsoon circulation model is well matched by the monsoon circulation depicted with the observational data prior to the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE). However, synthesizing findings of the global circulation portrayed with the post-FGGE data, it was found that some basic features of major monsoon circulations in Asia, North America, South America, and Australia differ from those of the classic monsoon circulation model. Therefore, a revision of the classic monsoon theory is suggested. With four different wave regimes selected to fit the horizontal dimensions of these monsoon circulations, basic features common to all four major monsoons are illustrated in terms of diagnostic analyses of the velocity potential maintenance equation (which relates diabatic heating and velocity potential) and the streamfunction budget (which links velocity potential and streamfunction) in these wave regimes. It is shown that a monsoon circulation is actually driven by the east-west differential heating and maintained dynamically by a balance between a vorticity source and advection. This dynamic balance is reflected by a spatial quadrature relationship between the monsoon divergent circulation and the monsoon high (low) at upper (lower) levels.

  2. Decadal Prediction Skill in the GEOS-5 Forecast System

    NASA Technical Reports Server (NTRS)

    Ham, Yoo-Geun; Rienecker, Michele M.; Suarez, Max J.; Vikhliaev, Yury; Zhao, Bin; Marshak, Jelena; Vernieres, Guillaume; Schubert, Siegfried D.

    2013-01-01

    A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office's (GMAO's) GEOS-5 Atmosphere-Ocean general circulation model. The hind casts are initialized every December 1st from 1959 to 2010, following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multivariate ensemble optimal interpolation ocean and sea-ice reanalysis, and from GMAO's atmospheric reanalysis, the modern-era retrospective analysis for research and applications. The mean forecast skill of a three-member-ensemble is compared to that of an experiment without initialization but also forced with observed greenhouse gases. The results show that initialization increases the forecast skill of North Atlantic sea surface temperature compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. On the other hand, the initialization reduces the skill in predicting the warming trend over some regions outside the Atlantic. The annual-mean Atlantic meridional overturning circulation index, which is defined here as the maximum of the zonally-integrated overturning stream function at mid-latitude, is predictable up to a 4-year lead time, consistent with the predictable signal in upper ocean heat content over the North Atlantic. While the 6- to 9-year forecast skill measured by mean squared skill score shows 50 percent improvement in the upper ocean heat content over the subtropical and mid-latitude Atlantic, prediction skill is relatively low in the sub-polar gyre. This low skill is due in part to features in the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region that differ from observations. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.

  3. Long-term variations of SST and heat content in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Huonsou-gbo, Aubains; Servain, Jacques; Caniaux, Guy; Araujo, Moacyr; Bourlès, Bernard; Veleda, Doris

    2015-04-01

    Recent studies (eg. Wen et al. 2010; Servain et al. 2014) suggest that subsurface processes influence the interannual variability of sea surface temperature (SST) in the tropical Atlantic through the Meridional Overturning Circulation (MOC) with time lags of several months. In this study, we used observed SST and Ocean heat content to test such hypothesis during the period 1964-2013. First results indicate great similarities in the positive linear trends of monthly standardized anomalies of SST, upper ocean heat content (0-500m) and deeper ocean heat content (500-2000m) averaged over the whole Atlantic Ocean. Strong positive trends of SST and deeper heat content occurred in the equatorial Atlantic, while a strong positive trend of the upper heat content was observed in the northeast Atlantic. These positive trends were the highest during the last two decades. The lagged positive correlation patterns between upper heat content anomalies over the whole gridded Atlantic Ocean and SST anomalies averaged over the equatorial region (60°W-15°E; 10°N-10°S) show a slow temporal evolution, which is roughly in agreement with the upper MOC. More detailed works about the mechanism, as well as about the origin of the highest positive trend of the deeper heat content in the equatorial region, are presently under investigation. References Servain J., G. Caniaux, Y. K. Kouadio, M. J. McPhaden, M. Araujo (2014). Recent climatic trends in the tropical Atlantic. Climate Dynamics, Vol. 43, 3071-3089, DOI 10.1007/s00382-014-2168-7.

  4. Understanding Fracturing and Alteration at ODP Borehole 504B: 3D Seismic Structure and Anisotropy of 5.9 Ma Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.; Zhang, L.

    2016-12-01

    Faults and fracture networks within the oceanic crust influence the pattern of hydrothermal circulation. This circulation changes the primary composition and structure of the crust as it evolves, particularly the upper crust (layer 2), through the secondary alteration of minerals and the infilling and 'sealing' of cracks. Processes influencing the extent and the depth within the crust of these changes are currently not well known. Alteration can be quantified by observing changes in the seismic velocity structure of the crust, and analysis of seismic anisotropy within the upper crust reveals the nature of ridge-parallel aligned faults and fractures. Here we show a 3D P-wave velocity model and anisotropy maps for 5.9 Ma crust at ODP borehole 504B, situated 200 km south of the Costa Rica Rift, derived from an active-source wide-angle seismic survey in the Panama Basin conducted in 2015. The seismic structure reveals relatively homogeneous, 5 km thick oceanic crust with upper crustal velocity boundaries occurring coincident with alteration fronts observed in 504B. Correlations between basement topography, velocity anomaly and anisotropy indicate that a distinct relationship between hydrothermal alteration, basement ridges, fractures, and the velocity structure of layer 2 exists in this location. A significant difference is seen in the velocity and anisotropic structure between regions to the east and west of the borehole, that correlates with patterns in heat flow observations and indicates that: 1) these two regions of crust have inherited differences in crustal fabric during accretion; and/or 2) different regimes of hydrothermal circulation have been active in each part of the crust as they have aged. This research is part of a major, interdisciplinary NERC-funded research collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).

  5. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the Goddard Institute for Space Studies (GISS) 8 deg x lO deg atmospheric General Circulation Model (GCM) to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  6. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation.

    PubMed

    Fontela, Marcos; García-Ibáñez, Maribel I; Hansell, Dennis A; Mercier, Herlé; Pérez, Fiz F

    2016-05-31

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr(-1)). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr(-1)) is considerable and represents almost a third of the atmospheric CO2 uptake in the region.

  7. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation

    PubMed Central

    Fontela, Marcos; García-Ibáñez, Maribel I.; Hansell, Dennis A.; Mercier, Herlé; Pérez, Fiz F.

    2016-01-01

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr−1). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr−1) is considerable and represents almost a third of the atmospheric CO2 uptake in the region. PMID:27240625

  8. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction

    NASA Astrophysics Data System (ADS)

    Schmittner, Andreas; Galbraith, Eric D.; Hostetler, Steven W.; Pedersen, Thomas F.; Zhang, Rong

    2007-09-01

    Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas.

  9. Anomalous intraseasonal events in the thermocline ridge region of Southern Tropical Indian Ocean and their regional impacts

    NASA Astrophysics Data System (ADS)

    Jayakumar, A.; Gnanaseelan, C.

    2012-03-01

    The present study explores the mechanisms responsible for the strong intraseasonal cooling events in the Thermocline Ridge region of the southwestern Indian Ocean. Air sea interface and oceanic processes associated with Madden Julian Oscillation are studied using an Ocean General Circulation Model and satellite observations. Sensitivity experiments are designed to understand the ocean response to intraseasonal forcing with a special emphasis on 2002 cooling events, which recorded the strongest intraseasonal perturbations during the last well-observed decade. This event is characterized by anomalous Walker circulation over the tropical Indian Ocean and persistent intraseasonal heat flux anomaly for a longer duration than is typical for similar events (but without any favorable preconditioning of ocean basic state at the interannual timescale). The model heat budget analysis during 1996 to 2007 revealed an in-phase relationship between atmospheric fluxes associated with Madden Julian Oscillation and the subsurface oceanic processes during the intense cooling events of 2002. The strong convection, reduced shortwave radiation and increased evaporation have contributed to the upper ocean heat loss in addition to the slower propagation of active phase of convection, which supported the integration of longer duration of forcing. The sensitivity experiments revealed that dynamic response of ocean through entrainment at the intraseasonal timescale primarily controls the biological response during the event, with oceanic interannual variability playing a secondary role. This study further speculates the role of oceanic intraseasonal variability in the 2002 droughts over Indian subcontinent.

  10. Garnet Signatures in Geophysical and Geochemical Observations: Insights into the Thermo-Petrological Structure of Oceanic Upper Mantle

    NASA Astrophysics Data System (ADS)

    Grose, C. J.; Afonso, J. C.

    2013-12-01

    We have developed new physically comprehensive thermal plate models of the oceanic lithosphere which incorporate temperature- and pressure-dependent heat transport properties and thermal expansivity, melting beneath ridges, hydrothermal circulation near ridge axes, and insulating oceanic crust. These models provide good fits to global databases of seafloor topography and heat flow, and seismic evidence of thermal structure near ridge axes. We couple these thermal plate models with thermodynamic models to predict the petrology of oceanic lithosphere. Geoid height predictions from our models suggest that there is a strong anomaly in geoid slope (over age) above ~25 Ma lithosphere due to the topography of garnet-field mantle. A similar anomaly is also present in geoid data over fracture zones. In addition, we show that a new assessment of a large database of ocean island basalt Sm/Yb systematics indicates that there is an unmistakable step-like increase in Sm/Yb values around 15-20 Ma, indicating the presence of garnet. To explain this feature, we have attempted to couple our thermo-petrological models of oceanic upper mantle with an open system, non-modal, dynamic melting model with diffusion kinetics to investigate trace element partitioning in an ascending mantle column.

  11. Mindanao Dome variability over the last 160 kyr: Episodic glacial cooling of the West Pacific Warm Pool

    NASA Astrophysics Data System (ADS)

    Bolliet, Timothé; Holbourn, Ann; Kuhnt, Wolfgang; Laj, Carlo; Kissel, Catherine; Beaufort, Luc; Kienast, Markus; Andersen, Nils; Garbe-Schönberg, Dieter

    2011-02-01

    We present sea surface, upper thermocline, and benthic δ18O data, as well as temperature and paleoproductivity proxy data, from the International Marine Global Change Study Program (IMAGES) Core MD06-3067 (6°31‧N, 126°30‧E, 1575 m water depth), located in the western equatorial Pacific Ocean within the flow path of the Mindanao Current. Our records reveal considerable glacial-interglacial and suborbital variability in the Mindanao Dome upwelling over the last 160 kyr. Dome activity generally intensified during glacial intervals resulting in cooler thermocline waters, whereas it substantially declined during interglacials, in particular in the early Holocene and early marine oxygen isotope stage (MIS) 5e, when upwelling waters did not reach the thermocline. During MIS 3 and MIS 2, enhanced surface productivity together with remarkably low SST and low upper ocean thermal contrast provide evidence for episodic glacial upwelling to the surface, whereas transient surface warming marks periodic collapses of the Mindanao Dome upwelling during Heinrich events. We attribute the high variability during MIS 3 and MIS 2 to changes in the El Niño Southern Oscillation state that affected boreal winter monsoonal winds and upper ocean circulation. Glacial upwelling intensified when a strong cyclonic gyre became established, whereas El Niño-like conditions during Heinrich events tended to suppress the cyclonic circulation, reducing Ekman transport. Thus, our findings demonstrate that variations in the Mindanao Dome upwelling are closely linked to the position and intensity of the tropical convection and also reflect far-field influences from the high latitudes.

  12. The Response of the South Asian Summer Monsoon Circulation to Intensified Irrigation in Global Climate Model Simulations

    NASA Technical Reports Server (NTRS)

    Shukla, Sonali P.; Puma, Michael J.; Cook, Benjamin I.

    2013-01-01

    Agricultural intensification in South Asia has resulted in the expansion and intensification of surface irrigation over the twentieth century. The resulting changes to the surface energy balance could affect the temperature contrasts between the South Asian land surface and the equatorial Indian Ocean, potentially altering the South Asian Summer Monsoon (SASM) circulation. Prior studies have noted apparent declines in the monsoon intensity over the twentieth century and have focused on how altered surface energy balances impact the SASM rainfall distribution. Here, we use the coupled Goddard Institute for Space Studies ModelE-R general circulation model to investigate the impact of intensifying irrigation on the large-scale SASM circulation over the twentieth century, including how the effect of irrigation compares to the impact of increasing greenhouse gas (GHG) forcing. We force our simulations with time-varying, historical estimates of irrigation, both alone and with twentieth century GHGs and other forcings. In the irrigation only experiment, irrigation rates correlate strongly with lower and upper level temperature contrasts between the Indian sub-continent and the Indian Ocean (Pearson's r = -0.66 and r = -0.46, respectively), important quantities that control the strength of the SASM circulation. When GHG forcing is included, these correlations strengthen: r = -0.72 and r = -0.47 for lower and upper level temperature contrasts, respectively. Under irrigated conditions, the mean SASM intensity in the model decreases only slightly and insignificantly. However, in the simulation with irrigation and GHG forcing, inter-annual variability of the SASM circulation decreases by *40 %, consistent with trends in the reanalysis products. This suggests that the inclusion of irrigation may be necessary to accurately simulate the historical trends and variability of the SASM system over the last 50 years. These findings suggest that intensifying irrigation, in concert with increased GHG forcing, is capable of reducing the variability of the simulated SASM circulation and altering the regional moisture transport by limiting the surface warming and reducing land-sea temperature gradients.

  13. El Niño–Southern Oscillation diversity and Southern Africa teleconnections during Austral Summer

    USGS Publications Warehouse

    Hoell, Andrew; Funk, Christopher C.; Magadzire, Tamuka; Zinke, Jens; Husak, Gregory J.

    2014-01-01

    A wide range of sea surface temperature (SST) expressions have been observed during the El Niño–Southern Oscillation events of 1950–2010, which have occurred simultaneously with different global atmospheric circulations. This study examines the atmospheric circulation and precipitation during December–March 1950–2010 over the African Continent south of 15∘S, a region hereafter known as Southern Africa, associated with eight tropical Pacific SST expressions characteristic of El Niño and La Niña events. The self-organizing map method along with a statistical distinguishability test was used to isolate the SST expressions of El Niño and La Niña. The seasonal precipitation forcing over Southern Africa associated with the eight SST expressions was investigated in terms of the horizontal winds, moisture budget and vertical motion. El Niño events, with warm SST across the east and central Pacific Ocean and warmer than average SST over the Indian Ocean, are associated with precipitation reductions over Southern Africa. The regional precipitation reductions are forced primarily by large-scale mid-tropospheric subsidence associated with anticyclonic circulation in the upper troposphere. El Niño events with cooler than average SST over the Indian Ocean are associated with precipitation increases over Southern Africa associated with lower tropospheric cyclonic circulation and mid-tropospheric ascent. La Niña events, with cool SST anomalies over the central Pacific and warm SST over the west Pacific and Indian Ocean, are associated with precipitation increases over Southern Africa. The regional precipitation increases are forced primarily by lower tropospheric cyclonic circulation, resulting in mid-tropospheric ascent and an increased flux of moisture into the region.

  14. Large-scale circulation departures related to wet episodes in north-east Brazil

    NASA Technical Reports Server (NTRS)

    Sikdar, Dhirendra N.; Elsner, James B.

    1987-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season is divided into dry and wet periods; the FGGE and geostationary satellite data was averaged; and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLPs have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  15. Large-scale circulation departures related to wet episodes in northeast Brazil

    NASA Technical Reports Server (NTRS)

    Sikdar, D. N.; Elsner, J. B.

    1985-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season season is devided into dry and wet periods, the FGGE and geostationary satellite data was averaged and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLP's have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  16. Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode.

    PubMed

    Hauck, J; Völker, C; Wang, T; Hoppema, M; Losch, M; Wolf-Gladrow, D A

    2013-12-01

    Stratospheric ozone depletion and emission of greenhouse gases lead to a trend of the southern annular mode (SAM) toward its high-index polarity. The positive phase of the SAM is characterized by stronger than usual westerly winds that induce changes in the physical carbon transport. Changes in the natural carbon budget of the upper 100 m of the Southern Ocean in response to a positive SAM phase are explored with a coupled ecosystem-general circulation model and regression analysis. Previously overlooked processes that are important for the upper ocean carbon budget during a positive SAM period are identified, namely, export production and downward transport of carbon north of the polar front (PF) as large as the upwelling in the south. The limiting micronutrient iron is brought into the surface layer by upwelling and stimulates phytoplankton growth and export production but only in summer. This leads to a drawdown of carbon and less summertime outgassing (or more uptake) of natural CO 2 . In winter, biological mechanisms are inactive, and the surface ocean equilibrates with the atmosphere by releasing CO 2 . In the annual mean, the upper ocean region south of the PF loses more carbon by additional export production than by the release of CO 2 into the atmosphere, highlighting the role of the biological carbon pump in response to a positive SAM event.

  17. The oceanic influence on the rainy season of Peninsular Florida

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu; Mishra, Akhilesh

    2016-07-01

    In this study we show that the robust surface ocean currents around Peninsular Florida, namely, the Loop and the Florida Currents, affect the terrestrial wet season of Peninsular Florida. We show this through two novel regional coupled ocean-atmosphere models with different bathymetries that dislocate and modulate the strength of these currents and thereby affect the overlying sea surface temperature (SST) and upper ocean heat content. This study show that a weaker current system produces colder coastal SSTs along the Atlantic coast of Florida that reduces the length of the wet season and the total seasonal accumulation of precipitation over Peninsular Florida relative to the regional climate model simulation, in which these currents are stronger. The moisture budget reveals that as a result of these forced changes to the temperature of the upper coastal Atlantic Ocean, overlying surface evaporation and atmospheric convection is modulated. This consequently changes the moisture flux convergence leading to the modulation of the terrestrial wet season rainfall over Peninsular Florida that manifests in changes in the length and distribution of daily rain rate of the wet season. The results of this study have implications on interpreting future changes to hydroclimate of Peninsular Florida owing to climate change and low-frequency changes to the Atlantic meridional overturning circulation that comprises the Loop and the Florida Currents as part of its upper branch.

  18. Two different regimes of anomalous walker circulation over the Indian and Pacific Oceans before and after the late 1970s

    NASA Astrophysics Data System (ADS)

    Kawamura, Ryuichi; Aruga, Hiromitsu; Matsuura, Tomonori; Iizuka, Satoshi

    Using the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data aided by a coupled ocean-atmosphere model, we investigated two different regimes of anomalous Walker circulation system over the Pacific and Indian Oceans before and after a climate shift, which occurred in the late 1970s. During the period before the climate shift, an upper-level velocity potential anomaly systematically moves eastward from the tropical Indian Ocean to the warm pool region of the western Pacific during the growth phase of El Niño-Southern Oscillation (ENSO). In the meantime, the activities of South Asian and Australian summer monsoon systems are directly affected by the evolution of the anomalous Walker circulation. During the period after the climate shift, in contrast, an upperlevel velocity potential anomaly in the vicinity of the Philippine Sea and maritime continent is observed to expand westward into the northern Indian Ocean and South Asia during the decay phase of ENSO. This feature is identified with a major precursory signal of an anomalous South Asian summer monsoon in the preceding spring. The model captures a systematic eastward propagation similar to that observed prior to the late 1970s, but fails to reproduce the westward extension of the velocity potential anomaly observed to prevail after the late 1970s. The model results suggest that the cross-basin connection between the two oceans is a prerequisite for the turnabout of ENSO prior to the climate shift, in terms of the occurrence of westerly wind bursts.

  19. Tropical Ocean Global Atmosphere (TOGA) Meteorological and Oceanographic Data Sets for 1985 and 1986

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Ashby, H.; Finch, C.; Smith, E.; Robles, J.

    1990-01-01

    The Tropical Ocean Global Atmosphere (TOGA) Program is a component of the World Meteorological Organization (WMO)/International Council of Scientific Unions (ICSU) World Climate Research Program (WCRP). One of the objectives of TOGA, which began in 1985, is to determine the limits of predictability of monthly mean sea surface temperature variations in tropical regions. The TOGA program created a raison d'etre for an explosive growth of the tropical ocean observing system and a substantial improvement in numerical simulations from atmospheric and oceanic general circulation models. Institutions located throughout the world are involved in the TOGA-distributed active data archive system. The diverse TOGA data sets for 1985 and 1986, including results from general circulation models, are included on a CD-ROM. Variables on the CD-ROM are barometric pressure, surface air temperature, dewpoint temperature Cartesian components of surface wind, surface sensible and latent heat fluxes,Cartesian components of surface wind stress and of an index of surface wind stress, sea level, sea surface temperature, and depth profiles of temperature and current in the upper ocean. Some data sets are global in extent, some are regional and cover portions of an ocean basin. Data on the CD-ROM can be extracted with an Apple Macintosh or an IBM PC.

  20. On the glacial and interglacial thermohaline circulation and the associated transports of heat and freshwater

    NASA Astrophysics Data System (ADS)

    Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.

    2014-11-01

    The thermohaline circulation (THC) and the oceanic heat and freshwater transports are essential for understanding the global climate system. Streamfunctions are widely used in oceanography to represent the THC and estimate the transport of heat and freshwater. In the present study, the regional and global changes of the THC, the transports of heat and freshwater and the timescale of the circulation between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present-day climate are explored using an Ocean General Circulation Model and streamfunctions projected in various coordinate systems. We found that the LGM tropical circulation is about 10% stronger than under modern conditions due to stronger wind stress. Consequently, the maximum tropical transport of heat is about 20% larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes by almost 50% and reorganising the freshwater transport. The strength of the Atlantic Meridional Overturning Circulation depends strongly on the coordinate system. It varies between 9 and 16 Sv during the LGM, and between 12 to 19 Sv for the present day. Similar to paleo-proxy reconstructions, a large intrusion of saline Antarctic Bottom Water takes place into the Northern Hemisphere basins and squeezes most of the Conveyor Belt circulation into a shallower part of the ocean. These different haline regimes between the glacial and interglacial period are illustrated by the streamfunctions in latitude-salinity coordinates and thermohaline coordinates. From these diagnostics, we found that the LGM Conveyor Belt circulation is driven by an enhanced salinity contrast between the Atlantic and the Pacific basin. The LGM abyssal circulation lifts and makes the Conveyor Belt cell deviate from the abyssal region, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimate of the timescale of the circulation reveals a sluggish abyssal circulation during the LGM, and a Conveyor Belt circulation that is more vigorous due to the combination of a stronger wind stress and a shortened circulation route.

  1. Deglacial Ocean Circulation Scheme at Intermediate Depths in the Tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Xie, R. C.; Marcantonio, F.; Schmidt, M. W.

    2014-12-01

    In the modern Atlantic Ocean, intermediate water circulation is largely governed by the southward flowing upper North Atlantic Deep Water (NADW) and the northward return flow Antarctic Intermediate Water (AAIW). During the last deglaciation, it is commonly accepted that the southward flow Glacial North Atlantic Intermediate Water, the glacial analogue of NADW, contributed significantly to past variations in intermediate water circulation. However, to date, there is no common consensus of the role AAIW played during the last deglaciation, especially across abrupt climate events such as the Heinrich 1 and the Younger Dryas. This study aims to reconstruct intermediate northern- and southern-sourced water circulation in the tropical North Atlantic during the past 22 kyr and attempts to confine the boundary between AAIW and northern-sourced intermediate waters in the past. High-resolution Nd isotopic compositions (ɛNd thereafter) of fish debris and bulk sediment acid-reductive leachate from the Southern Caribbean (VM12-107; 1079 m) are inconsistent, again casting concerns, as already raised by recent studies, on the reliability of the leachate method in extracting seawater ɛNd signature. This urges the need to carefully verify the seawater ɛNd integrity in sediment acid-reductive leachate in various oceanic settings. Fish debris Nd isotope record in our study displays a two-step decreasing trend from the early deglaciation to early Holocene. We interpret this as recording a two-step deglacial recovery of the upper NADW, given the assumption on a more radiogenic glacial northern-sourced water is valid. Comparing with authigenic ɛNd records in the Florida Straits [1] and the Demarara Rise [2], our new fish debris ɛNd results suggest that, in the tropical western North Atlantic, glacial and deglacial AAIW never penetrated beyond the lower depth limit of modern AAIW. [1] Xie et al., GCA (140) 2014; [2] Huang et al., EPSL (389) 2014

  2. On the seasonal variability of the Canary Current and the Atlantic Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Vélez-Belchí, Pedro; Pérez-Hernández, M. Dolores; Casanova-Masjoan, María.; Cana, Luis; Hernández-Guerra, Alonso

    2017-06-01

    The Atlantic Meridional Overturning Circulation (AMOC) is continually monitored along 26°N by the RAPID-MOCHA array. Measurements from this array show a 6.7 Sv seasonal cycle for the AMOC, with a 5.9 Sv contribution from the upper mid-ocean. Recent studies argue that the dynamics of the eastern Atlantic is the main driver for this seasonal cycle; specifically, Rossby waves excited south of the Canary Islands. Using inverse modeling, hydrographic, mooring, and altimetry data, we describe the seasonal cycle of the ocean mass transport around the Canary Islands and at the eastern boundary, under the influence of the African slope, where eastern component of the RAPID-MOCHA array is situated. We find a seasonal cycle of -4.1 ± 0.5 Sv for the oceanic region of the Canary Current, and +3.7 ± 0.4 Sv at the eastern boundary. This seasonal cycle along the eastern boundary is in agreement with the seasonal cycle of the AMOC that requires the lowest contribution to the transport in the upper mid-ocean to occur in fall. However, we demonstrate that the linear Rossby wave model used previously to explain the seasonal cycle of the AMOC is not robust, since it is extremely sensitive to the choice of the zonal range of the wind stress curl and produces the same results with a Rossby wave speed of zero. We demonstrate that the seasonal cycle of the eastern boundary is due to the recirculation of the Canary Current and to the seasonal cycle of the poleward flow that characterizes the eastern boundaries of the oceans.

  3. Seaglider surveys at Ocean Station Papa: Diagnosis of upper-ocean heat and salt balances using least squares with inequality constraints

    NASA Astrophysics Data System (ADS)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2017-06-01

    Heat and salt balances in the upper 200 m are examined using data from Seaglider spatial surveys June 2008 to January 2010 surrounding a NOAA surface mooring at Ocean Station Papa (OSP; 50°N, 145°W). A least-squares approach is applied to repeat Seaglider survey and moored measurements to solve for unknown or uncertain monthly three-dimensional circulation and vertical diffusivity. Within the surface boundary layer, the estimated heat and salt balances are dominated throughout the surveys by turbulent flux, vertical advection, and for heat, radiative absorption. When vertically integrated balances are considered, an estimated upwelling of cool water balances the net surface input of heat, while the corresponding large import of salt across the halocline due to upwelling and diffusion is balanced by surface moisture input and horizontal import of fresh water. Measurement of horizontal gradients allows the estimation of unresolved vertical terms over more than one annual cycle; diffusivity in the upper-ocean transition layer decreases rapidly to the depth of the maximum near-surface stratification in all months, with weak seasonal modulation in the rate of decrease and profile amplitude. Vertical velocity is estimated to be on average upward but with important monthly variations. Results support and expand existing evidence concerning the importance of horizontal advection in the balances of heat and salt in the Gulf of Alaska, highlight time and depth variability in difficult-to-measure vertical transports in the upper ocean, and suggest avenues of further study in future observational work at OSP.

  4. Southern Ocean Circulation: a High Resolution Examination of the Last Deglaciation from Deep-Sea Corals

    NASA Astrophysics Data System (ADS)

    Robinson, L. F.; Li, T.; Chen, T.; Burke, A.; Pegrum Haram, A.; Stewart, J.; Rae, J. W. B.; van de Flierdt, T.; Struve, T.; Wilson, D. J.

    2017-12-01

    Two decades ago it was first noted that the skeletal remains of deep-sea corals had the potential to provide absolutely dated archives of past ocean conditions. In the intervening twenty years this field has developed to the point where strategic collections and high throughput dating techniques now allow high resolution, well dated records of past deep sea behaviour to be produced. Likewise, efforts to improve understanding of biomineralisation and growth rates are leading to refinements in proxy tools useful for examining circulation, nutrient and carbon cycling, temperature and weathering processes. Deep-sea corals are particularly valuable archives in high latitude regions where radiocarbon-based age models are susceptible to large changes in surface reservoir ages. In this presentation we show new high resolution multiproxy records of the Southern Ocean (Drake Passage) made on U-Th dated corals spanning the last glacial cycle. With more than seventeen hundred reconnaissance ages, and around 200 precise isotope dilution U-Th ages, subtle changes in ocean behaviour can be identified during times of abrupt climate change. The geochemical signature of corals from the deepest sites, closest to modern day Lower Circumpolar Deep Waters, typically show a gradual shift from glacial to Holocene values during deglaciation, likely related to ventilation of the deep ocean. By contrast for the samples collected shallower in the water column (within sites currently bathed by Upper Circumpolar Deep Waters and Antarctic Intermediate and Mode Waters) the evidence points to a more complicated picture. Vertical zonation in the geochemical data suggests that periods of stratification are interspersed with mixing events within the upper 1500m of the water column. At the same time comparison to U-Th dated records from the low latitude Pacific and Atlantic points to an important role for the Southern Ocean in feeding the intermediate waters of both ocean basins throughout the deglaciation.

  5. The Potential for Predicting Precipitation on Seasonal-to-Interannual Timescales

    NASA Technical Reports Server (NTRS)

    Koster, R. D.

    1999-01-01

    The ability to predict precipitation several months in advance would have a significant impact on water resource management. This talk provides an overview of a project aimed at developing this prediction capability. NASA's Seasonal-to-Interannual Prediction Project (NSIPP) will generate seasonal-to-interannual sea surface temperature predictions through detailed ocean circulation modeling and will then translate these SST forecasts into forecasts of continental precipitation through the application of an atmospheric general circulation model and a "SVAT"-type land surface model. As part of the process, ocean variables (e.g., height) and land variables (e.g., soil moisture) will be updated regularly via data assimilation. The overview will include a discussion of the variability inherent in such a modeling system and will provide some quantitative estimates of the absolute upper limits of seasonal-to-interannual precipitation predictability.

  6. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction

    USGS Publications Warehouse

    Schmittner, A.; Galbraith, E.D.; Hostetler, S.W.; Pedersen, Thomas F.; Zhang, R.

    2007-01-01

    Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones, throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas. Copyright 2007 by the American Geophysical Union.

  7. Tracer constraints on organic particle transfer efficiency to the deep ocean

    NASA Astrophysics Data System (ADS)

    Weber, T. S.; Cram, J. A.; Deutsch, C. A.

    2016-02-01

    The "transfer efficiency" of sinking organic particles through the mesopelagic zone is a critical determinant of ocean carbon sequestration timescales, and the atmosphere-ocean partition of CO2. Our ability to detect large-scale variations in transfer efficiency is limited by the paucity of particle flux data from the deep ocean, and the potential biases of bottom-moored sediment traps used to collect it. Here we show that deep-ocean particle fluxes can be reconstructed by diagnosing the rate of phosphate accumulation and oxygen disappearance along deep circulation pathways in an observationally constrained Ocean General Circulation Model (OGCM). Combined with satellite and model estimates of carbon export from the surface ocean, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1000m and 2000m that is high ( 20%) at high latitudes and negligible (<5%) throughout subtropical gyres, with intermediate values in the tropics. This pattern is at odds with previous estimates of deep transfer efficiency derived from bottom-moored sediment traps, but is consistent with upper-ocean flux profiles measured by neutrally buoyant sediment traps, which show strong attenuation of low latitude particle fluxes over the top 500m. Mechanistically, the pattern can be explained by spatial variations in particle size distributions, and the temperature-dependence of remineralization. We demonstrate the biogeochemical significance of our findings by comparing estimates of deep-ocean carbon sequestration in a scenario with spatially varying transfer efficiency to one with a globally uniform "Martin-curve" particle flux profile.

  8. NASA Tropical Rainfall Measurement Mission (TRMM): Effects of tropical rainfall on upper ocean dynamics, air-sea coupling and hydrologic cycle

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary; Busalacchi, Antonio J.; Liu, W. Timothy; Lukas, Roger B.; Niiler, Pern P.; Swift, Calvin T.

    1995-01-01

    This was a Tropical Rainfall Measurement Mission (TRMM) modeling, analysis and applications research project. Our broad scientific goals addressed three of the seven TRMM Priority Science Questions, specifically: What is the monthly average rainfall over the tropical ocean areas of about 10(exp 5) sq km, and how does this rain and its variability affect the structure and circulation of the tropical oceans? What is the relationship between precipitation and changes in the boundary conditions at the Earth's surface (e.g., sea surface temperature, soil properties, vegetation)? How can improved documentation of rainfall improve understanding of the hydrological cycle in the tropics?

  9. The response of an ocean general circulation model to surface wind stress produced by an atmospheric general circulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, B.; Schneider, E.K.

    1995-10-01

    Two surface wind stress datasets for 1979-91, one based on observations and the other from an investigation of the COLA atmospheric general circulation model (AGCM) with prescribed SST, are used to drive the GFDL ocean general circulation model. These two runs are referred to as the control and COLA experiments, respectively. Simulated SST and upper-ocean heat contents (HC) in the tropical Pacific Ocean are compared with observations and between experiments. Both simulation reproduced the observed mean SST and HC fields as well as their annual cycles realistically. Major errors common to both runs are colder than observed SST in themore » eastern equatorial ocean and HC in the western Pacific south of the equator, with errors generally larger in the COLA experiment. New errors arising from the AGCM wind forcing include higher SST near the South American coast throughout the year and weaker HC gradients along the equator in boreal spring. The former is associated with suppressed coastal upwelling by weak along shore AGCM winds, and the latter is caused by weaker equatorial easterlies in boreal spring. The low-frequency ENSO fluctuations are also realistic for both runs. Correlations between the observed and simulated SST anomalies from the COLA simulation are as high as those from the control run in the central equatorial Pacific. A major problem in the COLA simulation is the appearance of unrealistic tropical cold anomalies during the boreal spring of mature El Nino years. These anomalies propagate along the equator from the western Pacific to the eastern coast in about three months, and temporarily eliminate the warm SST and HC anomalies in the eastern Pacific. This erroneous oceanic response in the COLA simulation is caused by a reversal of the westerly wind anomalies on the equator, associated with an unrealistic southward shift of the ITCZ in boreal spring during El Nino events. 66 refs., 16 figs.« less

  10. An investigation of anticyclonic circulation in the southern Gulf of Riga during the spring period

    NASA Astrophysics Data System (ADS)

    Soosaar, Edith; Maljutenko, Ilja; Raudsepp, Urmas; Elken, Jüri

    2014-04-01

    Previous studies of the gulf-type Region of Freshwater Influence (ROFI) have shown that circulation near the area of freshwater inflow sometimes becomes anticyclonic. Such a circulation is different from basic coastal ocean buoyancy-driven circulation where an anticyclonic bulge develops near the source and a coastal current is established along the right hand coast (in the northern hemisphere), resulting in the general cyclonic circulation. The spring (from March to June) circulation and spreading of river discharge water in the southern Gulf of Riga (GoR) in the Baltic Sea was analyzed based on the results of a 10-year simulation (1997-2006) using the General Estuarine Transport Model (GETM). Monthly mean currents in the upper layer of the GoR revealed a double gyre structure dominated either by an anticyclonic or cyclonic gyre in the near-head southeastern part and corresponding cyclonic/anticyclonic gyre in the near-mouth northwestern part of the gulf. Time series analysis of PCA and vorticity, calculated from velocity data and model sensitivity tests, showed that in spring the anticyclonic circulation in the upper layer of the southern GoR is driven primarily by the estuarine type density field. This anticyclonic circulation is enhanced by easterly winds but blocked or even reversed by westerly winds. The estuarine type density field is maintained by salt flux in the northwestern connection to the Baltic Proper and river discharge in the southern GoR.

  11. An investigation of anticyclonic circulation in the southern Gulf of Riga during the spring period

    NASA Astrophysics Data System (ADS)

    Soosaar, Edith; Maljutenko, Ilja; Raudsepp, Urmas; Elken, Jüri

    2015-04-01

    Previous studies of the gulf-type Region of Freshwater Influence (ROFI) have shown that circulation near the area of freshwater inflow sometimes becomes anticyclonic. Such a circulation is different from basic coastal ocean buoyancy-driven circulation where an anticyclonic bulge develops near the source and a coastal current is established along the right hand coast (in the northern hemisphere), resulting in the general cyclonic circulation. The spring (from March to June) circulation and spreading of river discharge water in the southern Gulf of Riga (GoR) in the Baltic Sea was analyzed based on the results of a 10-year simulation (1997-2006) using the General Estuarine Transport Model (GETM). Monthly mean currents in the upper layer of the GoR revealed a double gyre structure dominated either by an anticyclonic or cyclonic gyre in the near-head southeastern part and corresponding cyclonic/anticyclonic gyre in the near-mouth northwestern part of the gulf. Time series analysis of PCA and vorticity, calculated from velocity data and model sensitivity tests, showed that in spring the anticyclonic circulation in the upper layer of the southern GoR is driven primarily by the estuarine type density field. This anticyclonic circulation is enhanced by easterly winds but blocked or even reversed by westerly winds. The estuarine type density field is maintained by salt flux in the northwestern connection to the Baltic Proper and river discharge in the southern GoR.

  12. Seasonal variation of the South Indian tropical gyre

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; van Aken, Hendrik M.; de Ruijter, Will P. M.; Maas, Leo R. M.

    2016-04-01

    The South Indian tropical gyre receives and redistributes water masses from the Indonesian Throughflow (ITF), a source of Pacific Ocean water which represents the only low-latitude connector between the world oceans and, therefore, a key component in the global ocean circulation and climate system. We investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles-Chagos Thermocline Ridge (SCTR), based on satellite altimeter data (AVISO) and global atlases of temperature and salinity (CARS09), wind stress (SCOW) and wind-driven circulation. Two novel large-scale features governing the upper geostrophic circulation of the South Indian tropical gyre are revealed. First, the seasonal shrinkage of the ocean gyre. This occurs when the South Equatorial Countercurrent (SECC) recirculates before arrival to Sumatra from winter to spring, in apparent synchronization with the annual cycle of the ITF. Second, the open-ocean upwelling is found to vary following seasonality of the overlying geostrophic ocean gyre, a relationship that has not been previously shown for this region. An analysis of major forcing mechanisms suggests that the thermocline ridge results from the constructive interaction of basin-scale wind stress curl, local-scale wind stress forcing and remote forcing driven by Rossby waves of different periodicity: semiannual in the west, under the strong influence of monsoonal winds; and, annual in the east, where the southeasterlies prevail. One exception occurs during winter, when the well-known westward intensification of the upwelling core, the Seychelles Dome, is shown to be largely a response of the wind-driven circulation. Broadly speaking, the seasonal shrinkage of the ocean gyre (and the SCTR) is the one feature that differs most when the geostrophic circulation is compared to the wind-driven Sverdrup circulation. From late autumn to spring, the eastward SECC recirculates early in the east on feeding the westward South Equatorial Current, therefore closing the gyre before arrival to Sumatra. We find this recirculation longitude migrates over 20° and collocates with the westward advance of a zonal thermohaline front emerging from the encounter between (upwelled) Indian Equatorial Water and relatively warmer and fresher Indonesian Throughflow Water. We suggest this front, which we call the Indonesian Throughflow Front, plays an important role as forcing to the tropical gyre, generating southward geostrophic flows that contribute to the early recirculation of the SECC at longitudes more westward than predicted from the barotropic wind-driven circulation. Because our findings are based on time-averaged seasonal fields from 22 years of satellite altimeter data and from about 60 years of non-systematic sampling of ocean temperature and salinity data (CARS09), we stress the importance of further study on the possibility that interanual variability in the seasonal ITF may cause changes in the seasonal resizing of the ocean gyre and its associated upwelling ridge.

  13. A next generation altimeter for mapping the sea surface height variability: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Fu, Lee-Lueng; Morrow, Rosemary

    2016-07-01

    The global observations of the sea surface height (SSH) have revolutionized oceanography since the beginning of precision radar altimetry in the early 1990s. For the first time we have continuous records of SSH with spatial and temporal sampling for detecting the global mean sea level rise, the waxing and waning of El Niño, and the ocean circulation from gyres to ocean eddies. The limit of spatial resolution of the present constellation of radar altimeters in mapping SSH variability is approaching 100 km (in wavelength) with 3 or more simultaneous altimetric satellites in orbit. At scales shorter than 100 km, the circulation contains substantial amount of kinetic energy in currents, eddies and fronts that are responsible for the stirring and mixing of the ocean, especially from the vertical exchange of the upper ocean with the deep. A mission currently in development will use the technique of radar interferometry for making high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT promises the detection of SSH at scales approaching 15 km, depending on the sea state. SWOT will make SSH measurement over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. A conventional radar altimeter will provide measurement along the nadir. This is an exploratory mission with applications in oceanography and hydrology. The increased spatial resolution offers an opportunity to study ocean surface processes to address important questions about the ocean circulation. However, the limited temporal sampling poses challenges to map the evolution of the ocean variability that changes rapidly at the small scales. The measurement technique and the development of the mission will be presented with emphasis on its science program with outlook on the opportunities and challenges.

  14. Transport of Riverine Material From Multiple Rivers in the Chesapeake Bay: Important Control of Estuarine Circulation on the Material Distribution

    NASA Astrophysics Data System (ADS)

    Du, Jiabi; Shen, Jian

    2017-11-01

    Driven by estuarine circulation, material released from lower Chesapeake Bay tributaries has the potential to be transported to the upper Bay. How far and what fraction of the material from tributaries can be carried to the upper estuary have not been quantitatively investigated. For an estuary system with multiple tributaries, the relative contribution from each tributary can provide valuable information for source assessment and fate prediction for riverine materials and passive moving organisms. We conducted long-term numerical simulations using multiple passive tracers that are independently released in the headwater of five main rivers (i.e., Susquehanna, Potomac, Rappahannock, York, and James Rivers) and calculated the relative contribution of each river to the total material in the mainstem. The results show that discharge from Susquehanna River exerts the dominant control on the riverine material throughout the entire mainstem. Despite the smaller contribution from the lower-middle Bay tributaries to the total materials in the mainstem, materials released from these rivers have a high potential to be transported to the middle-upper Bay through the bottom inflow by the persistent estuarine circulation. The fraction of the tributary material transported to the upper Bay depends on the location of the tributary. Materials released near the mouth are subject to a rapid flushing process, small retention time, and strong shelf current. Our results reveal three distinct spatial patterns for materials released from the main river, tributary, and coastal oceans. This study highlights the important control of estuarine circulation over horizontal and vertical distributions of materials in the mainstem.

  15. Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Putrasahan, D. A.; Kamenkovich, I.; Le Hénaff, M.; Kirtman, B. P.

    2017-06-01

    Mesoscale variability of currents in the Gulf of Mexico (GoM) can affect oceanic heat advection and air-sea heat exchanges, which can influence climate extremes over North America. This study is aimed at understanding the influence of the oceanic mesoscale variability on the lower atmosphere and air-sea heat exchanges. The study contrasts global climate model (GCM) with 0.1° ocean resolution (high resolution; HR) with its low-resolution counterpart (1° ocean resolution with the same 0.5° atmosphere resolution; LR). The LR simulation is relevant to current generation of GCMs that are still unable to resolve the oceanic mesoscale. Similar to observations, HR exhibits positive correlation between sea surface temperature (SST) and surface turbulent heat flux anomalies, while LR has negative correlation. For HR, we decompose lateral advective heat fluxes in the upper ocean into mean (slowly varying) and mesoscale-eddy (fast fluctuations) components. We find that the eddy flux divergence/convergence dominates the lateral advection and correlates well with the SST anomalies and air-sea latent heat exchanges. This result suggests that oceanic mesoscale advection supports warm SST anomalies that in turn feed surface heat flux. We identify anticyclonic warm-core circulation patterns (associated Loop Current and rings) which have an average diameter of 350 km. These warm anomalies are sustained by eddy heat flux convergence at submonthly time scales and have an identifiable imprint on surface turbulent heat flux, atmospheric circulation, and convective precipitation in the northwest portion of an averaged anticyclone.

  16. Enhancement of the southward return flow of the Atlantic Meridional Overturning Circulation by data assimilation and its influence in an assimilative ocean simulation forced by CORE-II atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Fujii, Yosuke; Tsujino, Hiroyuki; Toyoda, Takahiro; Nakano, Hideyuki

    2017-08-01

    This paper examines the difference in the Atlantic Meridional Overturning Circulation (AMOC) mean state between free and assimilative simulations of a common ocean model using a common interannual atmospheric forcing. In the assimilative simulation, the reproduction of cold cores in the Nordic Seas, which is absent in the free simulation, enhances the overflow to the North Atlantic and improves AMOC with enhanced transport of the deeper part of the southward return flow. This improvement also induces an enhanced supply of North Atlantic Deep Water (NADW) and causes better representation of the Atlantic deep layer despite the fact that correction by the data assimilation is applied only to temperature and salinity above a depth of 1750 m. It also affects Circumpolar Deep Water in the Southern Ocean. Although the earliest influence of the improvement propagated by coastal waves reaches the Southern Ocean in 10-15 years, substantial influence associated with the arrival of the renewed NADW propagates across the Atlantic Basin in several decades. Although the result demonstrates that data assimilation is able to improve the deep ocean state even if there is no data there, it also indicates that long-term integration is required to reproduce variability in the deep ocean originating from variations in the upper ocean. This study thus provides insights on the reliability of AMOC and the ocean state in the Atlantic deep layer reproduced by data assimilation systems.

  17. The Southern Ocean in the Coupled Model Intercomparison Project phase 5

    PubMed Central

    Meijers, A. J. S.

    2014-01-01

    The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear. PMID:24891395

  18. How ocean color can steer Pacific tropical cyclones

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, Anand; Emanuel, Kerry; Vecchi, Gabriel A.; Anderson, Whit G.; Hallberg, Robert

    2010-09-01

    Because ocean color alters the absorption of sunlight, it can produce changes in sea surface temperatures with further impacts on atmospheric circulation. These changes can project onto fields previously recognized to alter the distribution of tropical cyclones. If the North Pacific subtropical gyre contained no absorbing and scattering materials, the result would be to reduce subtropical cyclone activity in the subtropical Northwest Pacific by 2/3, while concentrating cyclone tracks along the equator. Predicting tropical cyclone activity using coupled models may thus require consideration of the details of how heat moves into the upper thermocline as well as biogeochemical cycling.

  19. Ocean Thermal and Color Evolution During the 1997/1998 ENSO Event

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele

    1998-01-01

    A reduced gravity primitive equation modeling and assimilation system is used to study the evolution of the tropical Pacific during the 1997/1998 ENSO cycle. The modeling/assimilation scheme ingests satellite altimeter data and TAO temperature profiles and uses SSM/I satellite derived winds as surface boundary forcing. The four-dimensional structure of the upper ocean circulation structure will be compared against available in situ observations across the Pacific basin. In particular, variability near the Galapagos Islands will be highlighted during the spring of 1998 when phytoplankton concentrations were observed to increase a hundred-fold over a two week period.

  20. Neodymium isotope evolution of NW Tethyan upper ocean waters throughout the Cretaceous

    NASA Astrophysics Data System (ADS)

    Pucéat, Emmanuelle; Lécuyer, Christophe; Reisberg, Laurie

    2005-08-01

    Neodymium isotope compositions of twenty-four fish teeth, nineteen from the NW Tethys and five from different locations within the Tethys, are interpreted to reflect the evolution of Tethyan upper ocean water composition during the Cretaceous and used to track changes in erosional inputs to the NW Tethys and in oceanic circulation throughout the Cretaceous. The rather high ɛNd (up to - 7.6) of the NW Tethyan upper ocean waters recorded from the Late Berriasian to the Early Aptian and the absence of negative excursions during this interval support the presence of a permanent westward flowing Tethys Circumglobal Current (TCC). This implies that temperature variations during this time period, inferred from the oxygen isotope analysis of fish tooth enamel, were not driven by changes in surface oceanic currents, but rather by global climatic changes. The results presented here represent a significant advance over previously published Cretaceous seawater Nd isotope records. Our newly acquired data now allow the identification of two stages of low ɛNd values in the NW Tethys, during the Early Albian-Middle Albian interval (down to - 10) and the Santonian-Early Campanian (down to - 11.4), which alternate with two stages of higher ɛNd values (up to - 9) during the Late Albian-Turonian interval and the Maastrichtian. Used in conjunction with the oxygen isotope record, the fluctuations of ɛNd values can be related to major climatic, oceanographic, and tectonic events that appeared in the western Tethyan domain.

  1. South Atlantic circulation in a world ocean model

    NASA Astrophysics Data System (ADS)

    England, Matthew H.; Garçon, Véronique C.

    1994-09-01

    The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW) at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC) through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current) and fresher Subantarctic surface water (originating in the ACC). The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor). Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW) equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean exchange of thermocline, intermediate and deep waters are constructed from an analysis of flows bound between isothermal and isobaric surfaces. This analysis shows how the return path of NADW is partitioned between a cold water route through the Drake Passage (6.5 Sv), a warm water route involving the Agulhas Current sheeding thermocline water westward (2.5 Sv), and a recirculation of intermediate water originating in the Indian Ocean (1.6 Sv).

  2. Elemental mercury concentrations and fluxes in the tropical atmosphere and ocean.

    PubMed

    Soerensen, Anne L; Mason, Robert P; Balcom, Prentiss H; Jacob, Daniel J; Zhang, Yanxu; Kuss, Joachim; Sunderland, Elsie M

    2014-10-07

    Air-sea exchange of elemental mercury (Hg(0)) is a critical component of the global biogeochemical Hg cycle. To better understand variability in atmospheric and oceanic Hg(0), we collected high-resolution measurements across large gradients in seawater temperature, salinity, and productivity in the Pacific Ocean (20°N-15°S). We modeled surface ocean Hg inputs and losses using an ocean general circulation model (MITgcm) and an atmospheric chemical transport model (GEOS-Chem). Observed surface seawater Hg(0) was much more variable than atmospheric concentrations. Peak seawater Hg(0) concentrations (∼ 130 fM) observed in the Pacific intertropical convergence zone (ITCZ) were ∼ 3-fold greater than surrounding areas (∼ 50 fM). This is similar to observations from the Atlantic Ocean. Peak evasion in the northern Pacific ITCZ was four times higher than surrounding regions and located at the intersection of high wind speeds and elevated seawater Hg(0). Modeling results show that high Hg inputs from enhanced precipitation in the ITCZ combined with the shallow ocean mixed layer in this region drive elevated seawater Hg(0) concentrations. Modeled seawater Hg(0) concentrations reproduce observed peaks in the ITCZ of both the Atlantic and Pacific Oceans but underestimate its magnitude, likely due to insufficient deep convective scavenging of oxidized Hg from the upper troposphere. Our results demonstrate the importance of scavenging of reactive mercury in the upper atmosphere driving variability in seawater Hg(0) and net Hg inputs to biologically productive regions of the tropical ocean.

  3. Indian summer monsoon rainfall variability during 2014 and 2015 and associated Indo-Pacific upper ocean temperature patterns

    NASA Astrophysics Data System (ADS)

    Kakatkar, Rashmi; Gnanaseelan, C.; Chowdary, J. S.; Parekh, Anant; Deepa, J. S.

    2018-02-01

    In this study, factors responsible for the deficit Indian Summer Monsoon (ISM) rainfall in 2014 and 2015 and the ability of Indian Institute of Tropical Meteorology-Global Ocean Data Assimilation System (IITM-GODAS) in representing the oceanic features are examined. IITM-GODAS has been used to provide initial conditions for seasonal forecast in India during 2014 and 2015. The years 2014 and 2015 witnessed deficit ISM rainfall but were evolved from two entirely different preconditions over Pacific. This raises concern over the present understanding of the role of Pacific Ocean on ISM variability. Analysis reveals that the mechanisms associated with the rainfall deficit over the Indian Subcontinent are different in the two years. It is found that remote forcing in summer of 2015 due to El Niño is mostly responsible for the deficit monsoon rainfall through changes in Walker circulation and large-scale subsidence. In the case of the summer of 2014, both local circulation with anomalous anticyclone over central India and intrusion of mid-latitude dry winds from north have contributed for the deficit rainfall. In addition to the above, Tropical Indian Ocean (TIO) sea surface temperature (SST) and remote forcing from Pacific Ocean also modulated the ISM rainfall. It is observed that Pacific SST warming has extended westward in 2014, making it a basin scale warming unlike the strong El Niño year 2015. The eastern equatorial Indian Ocean is anomalously warmer than west in summer of 2014, and vice versa in 2015. These differences in SST in both tropical Pacific and TIO have considerable impact on ISM rainfall in 2014 and 2015. The study reveals that initializing coupled forecast models with proper upper ocean temperature over the Indo-Pacific is therefore essential for improved model forecast. It is important to note that the IITM-GODAS which assimilates only array for real-time geostrophic oceanography (ARGO) temperature and salinity profiles could capture most of the observed surface and subsurface temperature variations from early spring to summer during the years 2014 and 2015 over the Indo-Pacific region. This study highlights the importance of maintaining observing systems such as ARGO for accurate monsoon forecast.

  4. Climate-driven trends in contemporary ocean productivity.

    PubMed

    Behrenfeld, Michael J; O'Malley, Robert T; Siegel, David A; McClain, Charles R; Sarmiento, Jorge L; Feldman, Gene C; Milligan, Allen J; Falkowski, Paul G; Letelier, Ricardo M; Boss, Emmanuel S

    2006-12-07

    Contributing roughly half of the biosphere's net primary production (NPP), photosynthesis by oceanic phytoplankton is a vital link in the cycling of carbon between living and inorganic stocks. Each day, more than a hundred million tons of carbon in the form of CO2 are fixed into organic material by these ubiquitous, microscopic plants of the upper ocean, and each day a similar amount of organic carbon is transferred into marine ecosystems by sinking and grazing. The distribution of phytoplankton biomass and NPP is defined by the availability of light and nutrients (nitrogen, phosphate, iron). These growth-limiting factors are in turn regulated by physical processes of ocean circulation, mixed-layer dynamics, upwelling, atmospheric dust deposition, and the solar cycle. Satellite measurements of ocean colour provide a means of quantifying ocean productivity on a global scale and linking its variability to environmental factors. Here we describe global ocean NPP changes detected from space over the past decade. The period is dominated by an initial increase in NPP of 1,930 teragrams of carbon a year (Tg C yr(-1)), followed by a prolonged decrease averaging 190 Tg C yr(-1). These trends are driven by changes occurring in the expansive stratified low-latitude oceans and are tightly coupled to coincident climate variability. This link between the physical environment and ocean biology functions through changes in upper-ocean temperature and stratification, which influence the availability of nutrients for phytoplankton growth. The observed reductions in ocean productivity during the recent post-1999 warming period provide insight on how future climate change can alter marine food webs.

  5. The Response of Tropical Tropospheric Ozone to ENSO

    NASA Technical Reports Server (NTRS)

    Oman, L. D.; Ziemke, J. R.; Douglass, A. R.; Waugh, D. W.; Lang, C.; Rodriguez, J. M.; Nielsen, J. E.

    2011-01-01

    We have successfully reproduced the Ozone ENSO Index (OEI) in the Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) forced by observed sea surface temperatures over a 25-year period. The vertical ozone response to ENSO is consistent with changes in the Walker circulation. We derive the sensitivity of simulated ozone to ENSO variations using linear regression analysis. The western Pacific and Indian Ocean region shows similar positive ozone sensitivities from the surface to the upper troposphere, in response to positive anomalies in the Nino 3.4 Index. The eastern and central Pacific region shows negative sensitivities with the largest sensitivity in the upper troposphere. This vertical response compares well with that derived from SHADOZ ozonesondes in each region. The OEI reveals a response of tropospheric ozone to circulation change that is nearly independent of changes in emissions and thus it is potentially useful in chemistry-climate model evaluation.

  6. Arctic Contribution to Upper-Ocean Variability in the North Atlantic.

    NASA Astrophysics Data System (ADS)

    Walsh, John E.; Chapman, William L.

    1990-12-01

    Because much of the deep water of the world's oceans forms in the high-latitude North Atlantic, the potential climatic leverage of salinity and temperature anomalies in this region is large. Substantial variations of sea ice have accompanied North Atlantic salinity and temperature anomalies, especially the extreme and long-lived `Great Salinity Anomaly' of the late 1960s and early 1970s. Atmospheric pressure data are used hem to show that the local forcing of high-latitude North Atlantic Ocean fluctuations is augmented by antecedent atmospheric circulation anomalies over the central Arctic. These circulation anomalies are consistent with enhanced wind-forcing of thicker, older ice into the Transpolar Drift Stream and an enhanced export of sea ice (fresh water) from the Arctic into the Greenland Sea prior to major episodes of ice severity in the Greenland and Iceland seas. An index of the pressure difference between southern Greenland and the Arctic-Asian coast reached its highest value of the twentieth century during the middle-to-late 1960s, the approximate time of the earliest observation documentation of the Great Salinity Anomaly.

  7. The interaction between sea ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea-ice cover

    NASA Astrophysics Data System (ADS)

    Jensen, M. F.; Nilsson, J.; Nisancioglu, K. H.

    2016-02-01

    In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea-ice covered and salinity stratified ocean, and consists of a sea-ice component and a two-layer ocean; a cold, fresh surface layer above a warmer, more saline layer. The sea-ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea-ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the vertical mixing. In a system where the vertical diffusivity is constant, the sea ice acts as a positive feedback on a freshwater perturbation. If the vertical diffusivity is derived from a constant mixing energy constraint, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and small changes in temperature and freshwater inputs can provoke abrupt changes in sea ice.

  8. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    NASA Astrophysics Data System (ADS)

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-10-01

    Ocean currents play a key role in Earth's climate - they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.

  9. Decadal Prediction Skill in the GEOS-5 Forecast System

    NASA Technical Reports Server (NTRS)

    Ham, Yoo-Geun; Rienecker, Michael M.; Suarez, M.; Vikhliaev, Yury V.; Zhao, Bin; Marshak, Jelena; Vernieres, Guillaume; Schubert, Siegfried D.

    2012-01-01

    A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office?s GEOS-5 Atmosphere-Ocean General Circulation Model (AOGCM). The hindcasts are initialized every December from 1959 to 2010 following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multi-variate ensemble optimal interpolation ocean and sea-ice reanalysis, and from the atmospheric reanalysis (MERRA, the Modern-Era Retrospective Analysis for Research and Applications) generated using the GEOS-5 atmospheric model. The forecast skill of a three-member-ensemble mean is compared to that of an experiment without initialization but forced with observed CO2. The results show that initialization acts to increase the forecast skill of Northern Atlantic SST compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. The annual-mean Atlantic Meridional Overturning Circulation (AMOC) index is predictable up to a 5-year lead time, consistent with the predictable signal in upper ocean heat content over the Northern Atlantic. While the skill measured by Mean Squared Skill Score (MSSS) shows 50% improvement up to 10-year lead forecast over the subtropical and mid-latitude Atlantic, however, prediction skill is relatively low in the subpolar gyre, due in part to the fact that the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region appears to be unrealistic. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.

  10. An abrupt slowdown of Atlantic Meridional Overturning Circulation during 1915-1935 induced by solar forcing in a coupled GCM

    NASA Astrophysics Data System (ADS)

    Lin, P.; Song, Y.; Yu, Y.; Liu, H.

    2014-06-01

    In this study, we explore an abrupt change of Atlantic Meridional Overturning Circulation (AMOC) apparent in the historical run simulated by the second version of the Flexible Global Ocean-Atmosphere-Land System model - Spectral Version 2 (FGOALS-s2). The abrupt change is noted during the period from 1915 to 1935, in which the maximal AMOC value is weakened beyond 6 Sv (1 Sv = 106 m3 s-1). The abrupt signal first occurs at high latitudes (north of 46° N), then shifts gradually to middle latitudes (∼35° N) three to seven years later. The weakened AMOC can be explained in the following. The weak total solar irradiance (TIS) during early twentieth century decreases pole-to-equator temperature gradient in the upper stratosphere. The North polar vortex is weakened, which forces a negative North Atlantic Oscillation (NAO) phase during 1905-1914. The negative phase of NAO induces anomalous easterly winds in 50-70° N belts, which decrease the release of heat fluxes from ocean to atmosphere and induce surface warming over these regions. Through the surface ice-albedo feedback, the warming may lead to continuously melting sea ice in Baffin Bay and Davis Strait, which results in freshwater accumulation. This can lead to salinity and density reductions and then an abrupt slowdown of AMOC. Moreover, due to increased TIS after 1914, the enhanced Atlantic northward ocean heat transport from low to high latitudes induces an abrupt warming of sea surface temperature or upper ocean temperature in mid-high latitudes, which can also weaken the AMOC. The abrupt change of AMOC also appears in the PiControl run, which is associated with the lasting negative NAO phases due to natural variability.

  11. Circulation, eddies, oxygen and nutrient changes in the eastern tropical South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Czeschel, R.; Stramma, L.; Weller, R. A.; Fischer, T.

    2014-09-01

    A large, subsurface oxygen deficiency zone is located in the eastern tropical South Pacific Ocean (ETSP). The large-scale circulation in the eastern equatorial Pacific and off Peru in November/December 2012 shows the influence of the equatorial current system, the eastern boundary currents, and the northern reaches of the subtropical gyre. In November 2012 the Equatorial Undercurrent is centered at 250 m depth, deeper than in earlier observations. In December 2012 the equatorial water is transported southeastward near the shelf in the Peru-Chile Undercurrent with a mean transport of 1.6 Sv. In the oxygen minimum zone (OMZ) the flow is overlaid with strong eddy activity on the poleward side of the OMZ. Floats with parking depth at 400 m show fast westward flow in the mid-depth equatorial channel and sluggish flow in the OMZ. Floats with oxygen sensors clearly show the passage of eddies with oxygen anomalies. The long-term float observations in the upper ocean lead to a net community production estimate at about 18° S of up to 16.7 mmol C m-3 yr1 extrapolated to an annual rate and 7.7 mmol C m-3 yr-1 for the time period below the mixed layer. Oxygen differences between repeated ship sections are influenced by the Interdecadal Pacific Oscillation, by the phase of El Niño, by seasonal changes, and by eddies and hence have to be interpreted with care. At and south of the equator the decrease in oxygen in the upper ocean since 1976 is related to an increase in nitrate, phosphate, and in part in silicate.

  12. Circulation, eddies, oxygen, and nutrient changes in the eastern tropical South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Czeschel, R.; Stramma, L.; Weller, R. A.; Fischer, T.

    2015-06-01

    A large subsurface oxygen deficiency zone is located in the eastern tropical South Pacific Ocean (ETSP). The large-scale circulation in the eastern equatorial Pacific and off the coast of Peru in November/December 2012 shows the influence of the equatorial current system, the eastern boundary currents, and the northern reaches of the subtropical gyre. In November 2012 the equatorial undercurrent (EUC) is centered at 250 m depth, deeper than in earlier observations. In December 2012, the equatorial water is transported southeastward near the shelf in the Peru-Chile undercurrent (PCUC) with a mean transport of 1.4 Sv. In the oxygen minimum zone (OMZ), the flow is overlaid with strong eddy activity on the poleward side of the OMZ. Floats with parking depth at 400 m show fast westward flow in the mid-depth equatorial channel and sluggish flow in the OMZ. Floats with oxygen sensors clearly show the passage of eddies with oxygen anomalies. The long-term float observations in the upper ocean lead to a net community production estimate at about 18° S of up to 16.7 mmol C m-3 yr-1 extrapolated to an annual rate and 7.7 mmol C m-3 yr-1 for the time period below the mixed layer. Oxygen differences between repeated ship sections are influenced by the Interdecadal Pacific Oscillation (IPO), by the phase of El Niño, by seasonal changes, and by eddies, and hence have to be interpreted with care. At and south of the Equator the decrease in oxygen in the upper ocean since 1976 is related to an increase in nitrate, phosphate, and in part silicate.

  13. Major paleoceanographic changes recorded in Upper Albian-Lower Cenomanian sediments in the Western Tethys and in the North Atlantic: possible response to intense tectonic activity

    NASA Astrophysics Data System (ADS)

    Giorgioni, Martino; Weissert, Helmut; Keller, Christina; Bernasconi, Stefano; Hochuli, Peter; Garcia, Therese; Coccioni, Rodolfo; Petrizzo, Maria Rose

    2010-05-01

    During the mid-Cretaceous intense and widespread volcanism induced a high atmospheric CO2 concentration and, consequently, a very strong greenhouse effect (Bice & Norris, 2002). Opening and closing of oceanic gateways had an impact on paleoceanography (Poulsen et al, 1998; Poulsen et al, 2001). Global temperature and sea level reached the highest levels in the last 120 million years. (e.g. Pucéat et al, 2003; Hay, 2008). In this study we test if tectonically driven changes in oceanic circulation had an impact on Tethyan oceanography as predicted by models (Poulsen et al, 1998; Poulsen et al., 2001). We trace sedimentological changes during the Albian-Cenomanian across the Western Tethys and into the North Atlantic, integrating litho-, bio-, and isotope stratigraphy to obtain a robust correlation between studied sections, from pelagic to coastal settings. Albian sediments display very different facies from one site to the other. Pelagic marls with several black shales alternated to green, white, or red beds (Marne a Fucoidi/Scaglia Variegata Formation) are observed in the southern Tethys. Silty/sandy nodular limestone and marly limestones, with hiatuses and condensed intervals, (Garschella Formation) were deposited along the northern Tethyan shelf. Black shales and bioturbated marls are present in cycles, with several hiatuses, in the North Atlantic. These heterogeneous sediments became gradually replaced by more homogeneous and carbonate-rich facies between the Late Albian and the Early Cenomanian. These new facies consist of white, sometimes reddish, micritic limestones, rich in planktonic foraminifera. This sedimentation pattern is dominant in Upper Cretaceous successions, both in deep basins and on shelves. This change in sedimentation happened gradually in an East-West extending trend. It is first observed in the southern Tethys, then along the northern Tethys, and finally in the North Atlantic. We interpret the described change in sedimentation as due to a gradual turn of the oceanic circulation happening on the million of year time frame, which is probably related to one or more of the opening and closing of oceanic gateways during the mid-Cretaceous. References: Bice K. L. & Norris R. D. - Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian-Turonian) - Paleoceanography, vol. 17, n. 4, 2002 Hay W. - Evolving ideas about the Cretaceous climate and ocean circulation - Cretaceous Research, vol. 29, pp. 725-753, 2008 Poulsen C. J., Barron E., Arthur M. A., Peterson W. H. - Response of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings - Paleoceanography, vol 16, n. 6, pp. 576-592, December 2001 Poulsen C. J., Seidov D., Barron E. J., Peterson W. H. - The impact of paleogeographic evolution on the surface oceanic circulation and the marine environment within the mid-Cretaceous Tethys - Paleoceanography, vol. 13, n. 5, pp. 546-559, 1998 Pucéat E., Lecuyer C., Sheppard S. M. F., Dromart G., Reboulet S., Grandjean P. - Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels - Paleoceanography, vol. 18, n. 2, 2003

  14. Uganda rainfall variability and prediction

    NASA Astrophysics Data System (ADS)

    Jury, Mark R.

    2018-05-01

    This study analyzes large-scale controls on Uganda's rainfall. Unlike past work, here, a May-October season is used because of the year-round nature of agricultural production, vegetation sensitivity to rainfall, and disease transmission. The Uganda rainfall record exhibits steady oscillations of ˜3 and 6 years over 1950-2013. Correlation maps at two-season lead time resolve the subtropical ridge over global oceans as an important feature. Multi-variate environmental predictors include Dec-May south Indian Ocean sea surface temperature, east African upper zonal wind, and South Atlantic wind streamfunction, providing a 33% fit to May-Oct rainfall time series. Composite analysis indicates that cool-phase El Niño Southern Oscillation supports increased May-Oct Uganda rainfall via a zonal overturning lower westerly/upper easterly atmospheric circulation. Sea temperature anomalies are positive in the east Atlantic and negative in the west Indian Ocean in respect of wet seasons. The northern Hadley Cell plays a role in limiting the northward march of the equatorial trough from May to October. An analysis of early season floods found that moist inflow from the west Indian Ocean converges over Uganda, generating diurnal thunderstorm clusters that drift southwestward producing high runoff.

  15. Assessing uncertainty in the turbulent upper-ocean mixed layer using an unstructured finite-element solver

    NASA Astrophysics Data System (ADS)

    Pacheco, Luz; Smith, Katherine; Hamlington, Peter; Niemeyer, Kyle

    2017-11-01

    Vertical transport flux in the ocean upper mixed layer has recently been attributed to submesoscale currents, which occur at scales on the order of kilometers in the horizontal direction. These phenomena, which include fronts and mixed-layer instabilities, have been of particular interest due to the effect of turbulent mixing on nutrient transport, facilitating phytoplankton blooms. We study these phenomena using a non-hydrostatic, large eddy simulation for submesoscale currents in the ocean, developed using the extensible, open-source finite element platform FEniCs. Our model solves the standard Boussinesq Euler equations in variational form using the finite element method. FEniCs enables the use of parallel computing on modern systems for efficient computing time, and is suitable for unstructured grids where irregular topography can be considered in the future. The solver will be verified against the well-established NCAR-LES model and validated against observational data. For the verification with NCAR-LES, the velocity, pressure, and buoyancy fields are compared through a surface-wind-driven, open-ocean case. We use this model to study the impacts of uncertainties in the model parameters, such as near-surface buoyancy flux and secondary circulation, and discuss implications.

  16. Observations of Equatorial Kelvin Waves and their Convective Coupling with the Atmosphere/Ocean Surface Layer

    NASA Astrophysics Data System (ADS)

    Conry, Patrick; Fernando, H. J. S.; Leo, Laura; Blomquist, Byron; Amelie, Vincent; Lalande, Nelson; Creegan, Ed; Hocut, Chris; MacCall, Ben; Wang, Yansen; Jinadasa, S. U. P.; Wang, Chien; Yeo, Lik-Khian

    2016-11-01

    Intraseasonal disturbances with their genesis in the equatorial Indian Ocean (IO) are an important component of global climate. The disturbances, which include Madden-Julian Oscillation and equatorial Kelvin and Rossby waves in the atmosphere and ocean, carry energy which affects El Niño, cyclogenesis, and monsoons. A recent field experiment in IO (ASIRI-RAWI) observed disturbances at three sites across IO with arrays of instruments probing from surface layer to lower stratosphere. During the field campaign the most pronounced planetary-scale disturbances were Kelvin waves in tropical tropopause layer. In Seychelles, quasi-biweekly westerly wind bursts were documented and linked to the Kelvin waves aloft, which breakdown in the upper troposphere due to internal shear instabilities. Convective coupling between waves' phase in upper troposphere and surface initiates rapid (turbulent) vertical transport and resultant wind bursts at surface. Such phenomena reveal linkages between planetary-scale waves and small-scale turbulence in the surface layer that can affect air-sea property exchanges and should be parameterized in atmosphere-ocean general circulation models. Funded by ONR Grants N00014-14-1-0279 and N00014-13-1-0199.

  17. Warm ocean processes and carbon cycling in the Eocene.

    PubMed

    John, Eleanor H; Pearson, Paul N; Coxall, Helen K; Birch, Heather; Wade, Bridget S; Foster, Gavin L

    2013-10-28

    Sea surface and subsurface temperatures over large parts of the ocean during the Eocene epoch (55.5-33.7 Ma) exceeded modern values by several degrees, which must have affected a number of oceanic processes. Here, we focus on the effect of elevated water column temperatures on the efficiency of the biological pump, particularly in relation to carbon and nutrient cycling. We use stable isotope values from exceptionally well-preserved planktonic foraminiferal calcite from Tanzania and Mexico to reconstruct vertical carbon isotope gradients in the upper water column, exploiting the fact that individual species lived and calcified at different depths. The oxygen isotope ratios of different species' tests are used to estimate the temperature of calcification, which we converted to absolute depths using Eocene temperature profiles generated by general circulation models. This approach, along with potential pitfalls, is illustrated using data from modern core-top assemblages from the same area. Our results indicate that, during the Early and Middle Eocene, carbon isotope gradients were steeper (and larger) through the upper thermocline than in the modern ocean. This is consistent with a shallower average depth of organic matter remineralization and supports previously proposed hypotheses that invoke high metabolic rates in a warm Eocene ocean, leading to more efficient recycling of organic matter and reduced burial rates of organic carbon.

  18. Unstable behaviour of an upper ocean-atmosphere coupled model: role of atmospheric radiative processes and oceanic heat transport

    NASA Astrophysics Data System (ADS)

    Cohen-Solal, E.; Le Treut, H.

    We describe the initial bias of the climate simulated by a coupled ocean-atmosphere model. The atmospheric component is a state-of-the-art atmospheric general circulation model, whereas the ocean component is limited to the upper ocean and includes a mixed layer whose depth is computed by the model. As the full ocean general circulation is not computed by the model, the heat transport within the ocean is prescribed. When modifying the prescribed heat transport we also affect the initial drift of the model. We analyze here one of the experiments where this drift is very strong, in order to study the key processes relating the changes in the ocean transport and the evolution of the model's climate. In this simulation, the ocean surface temperature cools by 1.5°C in 20 y. We can distinguish two different phases. During the first period of 5 y, the sea surface temperatures become cooler, particularly in the intertropical area, but the outgoing longwave radiation at the top-of-the-atmosphere increases very quickly, in particular at the end of the period. An off-line version of the model radiative code enables us to decompose this behaviour into different contributions (cloudiness, specific humidity, air and surface temperatures, surface albedo). This partitioning shows that the longwave radiation evolution is due to a decrease of high level cirrus clouds in the intertropical troposphere. The decrease of the cloud cover also leads to a decrease of the planetary albedo and therefore an increase of the net short wave radiation absorbed by the system. But the dominant factor is the strong destabilization by the longwave cooling, which is able to throw the system out of equilibrium. During the remaining of the simulation (second phase), the cooling induced by the destabilization at the top-of-the-atmosphere is transmitted to the surface by various processes of the climate system. Hence, we show that small variations of ocean heat transport can force the model from a stable to an unstable state via atmospheric processes which arise wen the tropics are cooling. Even if possibly overestimated by our GCM, this mechanism may be pertinent to the maintenance of present climatic conditions in the tropics. The simplifications inherent in our model's design allow us to investigate the mechanism in some detail.

  19. The accuracy of estimates of the overturning circulation from basin-wide mooring arrays

    NASA Astrophysics Data System (ADS)

    Sinha, B.; Smeed, D. A.; McCarthy, G.; Moat, B. I.; Josey, S. A.; Hirschi, J. J.-M.; Frajka-Williams, E.; Blaker, A. T.; Rayner, D.; Madec, G.

    2018-01-01

    Previous modeling and observational studies have established that it is possible to accurately monitor the Atlantic Meridional Overturning Circulation (AMOC) at 26.5°N using a coast-to-coast array of instrumented moorings supplemented by direct transport measurements in key boundary regions (the RAPID/MOCHA/WBTS Array). The main sources of observational and structural errors have been identified in a variety of individual studies. Here a unified framework for identifying and quantifying structural errors associated with the RAPID array-based AMOC estimates is established using a high-resolution (eddy resolving at low-mid latitudes, eddy permitting elsewhere) ocean general circulation model, which simulates the ocean state between 1978 and 2010. We define a virtual RAPID array in the model in close analogy to the real RAPID array and compare the AMOC estimate from the virtual array with the true model AMOC. The model analysis suggests that the RAPID method underestimates the mean AMOC by ∼1.5 Sv (1 Sv = 106 m3 s-1) at ∼900 m depth, however it captures the variability to high accuracy. We examine three major contributions to the streamfunction bias: (i) due to the assumption of a single fixed reference level for calculation of geostrophic transports, (ii) due to regions not sampled by the array and (iii) due to ageostrophic transport. A key element in (i) and (iii) is use of the model sea surface height to establish the true (or absolute) geostrophic transport. In the upper 2000 m, we find that the reference level bias is strongest and most variable in time, whereas the bias due to unsampled regions is largest below 3000 m. The ageostrophic transport is significant in the upper 1000 m but shows very little variability. The results establish, for the first time, the uncertainty of the AMOC estimate due to the combined structural errors in the measurement design and suggest ways in which the error could be reduced. Our work has applications to basin-wide circulation measurement arrays at other latitudes and in other basins as well as quantifying systematic errors in ocean model estimates of the AMOC at 26.5°N.

  20. Mercury Biogeochemical Cycling in the Ocean and Policy Implications

    PubMed Central

    Mason, Robert P.; Choi, Anna L.; Fitzgerald, William F.; Hammerschmidt, Chad R.; Lamborg, Carl H.; Soerensen, Anne L.; Sunderland, Elsie M.

    2012-01-01

    Anthropogenic activities have enriched mercury in the biosphere by at least a factor of three, leading to increases in total mercury (Hg) in the surface ocean. However, the impacts on ocean fish and associated trends in human exposure as a result of such changes are less clear. Here we review our understanding of global mass budgets for both inorganic and methylated Hg species in ocean seawater. We consider external inputs from atmospheric deposition and rivers as well as internal production of monomethylmercury (CH3Hg) and dimethylmercury ((CH3)2Hg). Impacts of large-scale ocean circulation and vertical transport processes on Hg distribution throughout the water column and how this influences bioaccumulation into ocean food chains are also discussed. Our analysis suggests that while atmospheric deposition is the main source of inorganic Hg to open ocean systems, most of the CH3Hg accumulating in ocean fish is derived from in situ production within the upper waters (<1000 m). An analysis of the available data suggests that concentrations in the various ocean basins are changing at different rates due to differences in atmospheric loading and that the deeper waters of the oceans are responding slowly to changes in atmospheric Hg inputs. Most biological exposures occur in the upper ocean and therefore should respond over years to decades to changes in atmospheric mercury inputs achieved by regulatory control strategies. Migratory pelagic fish such as tuna and swordfish are an important component of CH3Hg exposure for many human populations and therefore any reduction in anthropogenic releases of Hg and associated deposition to the ocean will result in a decline in human exposure and risk. PMID:22559948

  1. Mercury biogeochemical cycling in the ocean and policy implications.

    PubMed

    Mason, Robert P; Choi, Anna L; Fitzgerald, William F; Hammerschmidt, Chad R; Lamborg, Carl H; Soerensen, Anne L; Sunderland, Elsie M

    2012-11-01

    Anthropogenic activities have enriched mercury in the biosphere by at least a factor of three, leading to increases in total mercury (Hg) in the surface ocean. However, the impacts on ocean fish and associated trends in human exposure as a result of such changes are less clear. Here we review our understanding of global mass budgets for both inorganic and methylated Hg species in ocean seawater. We consider external inputs from atmospheric deposition and rivers as well as internal production of monomethylmercury (CH₃Hg) and dimethylmercury ((CH₃)₂Hg). Impacts of large-scale ocean circulation and vertical transport processes on Hg distribution throughout the water column and how this influences bioaccumulation into ocean food chains are also discussed. Our analysis suggests that while atmospheric deposition is the main source of inorganic Hg to open ocean systems, most of the CH₃Hg accumulating in ocean fish is derived from in situ production within the upper waters (<1000 m). An analysis of the available data suggests that concentrations in the various ocean basins are changing at different rates due to differences in atmospheric loading and that the deeper waters of the oceans are responding slowly to changes in atmospheric Hg inputs. Most biological exposures occur in the upper ocean and therefore should respond over years to decades to changes in atmospheric mercury inputs achieved by regulatory control strategies. Migratory pelagic fish such as tuna and swordfish are an important component of CH₃Hg exposure for many human populations and therefore any reduction in anthropogenic releases of Hg and associated deposition to the ocean will result in a decline in human exposure and risk. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The role of vertical shear on the horizontal oceanic dispersion

    NASA Astrophysics Data System (ADS)

    Lanotte, A. S.; Corrado, R.; Lacorata, G.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.

    2015-09-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of South Mediterranean is investigated by means of observative and model data. In-situ current measurements reveal that vertical velocity gradients in the upper mixed layer decorrelate quite fast (∼ 1 day), whereas basin-scale ocean circulation models tend to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion simulated by an eddy-permitting ocean model, like, e.g., the Mediterranean Forecasting System, is mosty affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out; (2) poorly resolved time variability of vertical velocity profiles in the upper layer. For the case study we have analysed, we show that a suitable use of kinematic parameterisations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.

  3. Ice-Shelf Melt Response to Changing Winds and Glacier Dynamics in the Amundsen Sea Sector, Antarctica

    NASA Astrophysics Data System (ADS)

    Donat-Magnin, Marion; Jourdain, Nicolas C.; Spence, Paul; Le Sommer, Julien; Gallée, Hubert; Durand, Gaël.

    2017-12-01

    It has been suggested that the coastal Southern Ocean subsurface may warm over the 21st century in response to strengthening and poleward shifting winds, with potential adverse effects on West Antarctic glaciers. However, using a 1/12° ocean regional model that includes ice-shelf cavities, we find a more complex response to changing winds in the Amundsen Sea. Simulated offshore subsurface waters get colder under strengthened and poleward shifted winds representative of the SAM projected trend. The buoyancy-driven circulation induced by ice-shelf melt transports this cold offshore anomaly onto the continental shelf, leading to cooling and decreased melt below 450 m. In the vicinity of ice-shelf fronts, Ekman pumping contributes to raise the isotherms in response to changing winds. This effect overwhelms the horizontal transport of colder offshore waters at intermediate depths (between 200 and 450 m), and therefore increases melt rates in the upper part of the ice-shelf cavities, which reinforces the buoyancy-driven circulation and further contributes to raise the isotherms. Then, prescribing an extreme grounding line retreat projected for 2100, the total melt rates simulated underneath Thwaites and Pine Island are multiplied by 2.5. Such increase is explained by a larger ocean/ice interface exposed to CDW, which is then amplified by a stronger melt-induced circulation along the ice draft. Our main conclusions are that (1) outputs from ocean models that do not represent ice shelf cavities (e.g., CMIP5 models) should not be directly used to predict the thermal forcing of future ice shelf cavities; (2) coupled ocean/ice sheet models with a velocity-dependent melt formulation are needed for future projections of glaciers experiencing a significant grounding line retreat.

  4. An ocean data assimilation system and reanalysis of the World Ocean hydrophysical fields

    NASA Astrophysics Data System (ADS)

    Zelenko, A. A.; Vil'fand, R. M.; Resnyanskii, Yu. D.; Strukov, B. S.; Tsyrulnikov, M. D.; Svirenko, P. I.

    2016-07-01

    A new version of the ocean data assimilation system (ODAS) developed at the Hydrometcentre of Russia is presented. The assimilation is performed following the sequential scheme analysis-forecast-analysis. The main components of the ODAS are procedures for operational observation data processing, a variational analysis scheme, and an ocean general circulation model used to estimate the first guess fields involved in the analysis. In situ observations of temperature and salinity in the upper 1400-m ocean layer obtained from various observational platforms are used as input data. In the new ODAS version, the horizontal resolution of the assimilating model and of the output products is increased, the previous 2D-Var analysis scheme is replaced by a more general 3D-Var scheme, and a more flexible incremental analysis updating procedure is introduced to correct the model calculations. A reanalysis of the main World Ocean hydrophysical fields over the 2005-2015 period has been performed using the updated ODAS. The reanalysis results are compared with data from independent sources.

  5. Mixing parametrizations for ocean climate modelling

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir

    2016-04-01

    The algorithm is presented of splitting the total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF), which is used to parameterize the viscosity and diffusion coefficients in ocean circulation models. The turbulence model equations are split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage, the following schemes are implemented: the explicit-implicit numerical scheme, analytical solution and the asymptotic behavior of the analytical solutions. The experiments were performed with different mixing parameterizations for the modelling of Arctic and the Atlantic climate decadal variability with the eddy-permitting circulation model INMOM (Institute of Numerical Mathematics Ocean Model) using vertical grid refinement in the zone of fully developed turbulence. The proposed model with the split equations for turbulence characteristics is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. Parameterizations with using the split turbulence model make it possible to obtain more adequate structure of temperature and salinity at decadal timescales, compared to the simpler Pacanowski-Philander (PP) turbulence parameterization. Parameterizations with using analytical solution or numerical scheme at the generation-dissipation step of the turbulence model leads to better representation of ocean climate than the faster parameterization using the asymptotic behavior of the analytical solution. At the same time, the computational efficiency left almost unchanged relative to the simple PP parameterization. Usage of PP parametrization in the circulation model leads to realistic simulation of density and circulation with violation of T,S-relationships. This error is majorly avoided with using the proposed parameterizations containing the split turbulence model. The high sensitivity of the eddy-permitting circulation model to the definition of mixing is revealed, which is associated with significant changes of density fields in the upper baroclinic ocean layer over the total considered area. For instance, usage of the turbulence parameterization instead of PP algorithm leads to increasing circulation velocity in the Gulf Stream and North Atlantic Current, as well as the subpolar cyclonic gyre in the North Atlantic and Beaufort Gyre in the Arctic basin are reproduced more realistically. Consideration of the Prandtl number as a function of the Richardson number significantly increases the modelling quality. The research was supported by the Russian Foundation for Basic Research (grant № 16-05-00534) and the Council on the Russian Federation President Grants (grant № MK-3241.2015.5)

  6. Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol A.

    2012-01-01

    The Eastern tropical ocean basins are regions of significant atmosphere-ocean interaction and are important to variability across subseasonal to decadal time scales. The numerous physical processes at play in these areas strain the abilities of coupled general circulation models to accurately reproduce observed upper ocean variability. Furthermore, limitations in the observing system of important terms in the surface temperature balance (e.g., turbulent and radiative heat fluxes, advection) introduce uncertainty into the analyses of processes controlling sea surface temperature variability. This study presents recent efforts to close the surface temperature balance through estimation of the terms in the mixed layer temperature budget using state-of-the-art remotely sensed and model-reanalysis derived products. A set of twelve net heat flux estimates constructed using combinations of radiative and turbulent heat flux products - including GEWEX-SRB, ISCCP-SRF, OAFlux, SeaFlux, among several others - are used with estimates of oceanic advection, entrainment, and mixed layer depth variability to investigate the seasonal variability of ocean surface temperatures. Particular emphasis is placed on how well the upper ocean temperature balance is, or is not, closed on these scales using the current generation of observational and model reanalysis products. That is, the magnitudes and spatial variability of residual imbalances are addressed. These residuals are placed into context within the current uncertainties of the surface net heat fluxes and the role of the mixed layer depth variability in scaling the impact of those uncertainties, particularly in the shallow mixed layers of the Eastern tropical ocean basins.

  7. Ocean Transport Pathways to a World Heritage Fringing Coral Reef: Ningaloo Reef, Western Australia.

    PubMed

    Xu, Jiangtao; Lowe, Ryan J; Ivey, Gregory N; Jones, Nicole L; Zhang, Zhenlin

    2016-01-01

    A Lagrangian particle tracking model driven by a regional ocean circulation model was used to investigate the seasonally varying connectivity patterns within the shelf circulation surrounding the 300 km long Ningaloo Reef in Western Australia (WA) during 2009-2010. Forward-in-time simulations revealed that surface water was transported equatorward and offshore in summer due to the upwelling-favorable winds. In winter, however, water was transported polewards down the WA coast due to the seasonally strong Leeuwin Current. Using backward-in-time simulations, the subsurface transport pathways revealed two main source regions of shelf water reaching Ningaloo Reef: (1) a year-round source to the northeast in the upper 100 m of water column; and (2) during the summer, an additional source offshore and to the west of Ningaloo in depths between ~30 and ~150 m. Transient wind-driven coastal upwelling, onshore geostrophic transport and stirring by offshore eddies were identified as the important mechanisms influencing the source water origins. The identification of these highly time-dependent transport pathways and source water locations is an essential step towards quantifying how key material (e.g., nutrients, larvae, contaminants, etc.) is exchanged between Ningaloo Reef and the surrounding shelf ocean, and how this is mechanistically coupled to the complex ocean dynamics in this region.

  8. Ocean Transport Pathways to a World Heritage Fringing Coral Reef: Ningaloo Reef, Western Australia

    PubMed Central

    Xu, Jiangtao; Lowe, Ryan J.; Ivey, Gregory N.; Jones, Nicole L.; Zhang, Zhenlin

    2016-01-01

    A Lagrangian particle tracking model driven by a regional ocean circulation model was used to investigate the seasonally varying connectivity patterns within the shelf circulation surrounding the 300 km long Ningaloo Reef in Western Australia (WA) during 2009–2010. Forward-in-time simulations revealed that surface water was transported equatorward and offshore in summer due to the upwelling-favorable winds. In winter, however, water was transported polewards down the WA coast due to the seasonally strong Leeuwin Current. Using backward-in-time simulations, the subsurface transport pathways revealed two main source regions of shelf water reaching Ningaloo Reef: (1) a year-round source to the northeast in the upper 100 m of water column; and (2) during the summer, an additional source offshore and to the west of Ningaloo in depths between ~30 and ~150 m. Transient wind-driven coastal upwelling, onshore geostrophic transport and stirring by offshore eddies were identified as the important mechanisms influencing the source water origins. The identification of these highly time-dependent transport pathways and source water locations is an essential step towards quantifying how key material (e.g., nutrients, larvae, contaminants, etc.) is exchanged between Ningaloo Reef and the surrounding shelf ocean, and how this is mechanistically coupled to the complex ocean dynamics in this region. PMID:26790154

  9. Passive, off-axis convection through the southern flank of the Costa Rica rift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, A.T.; Becker, K.; Narasimhan, T.N.

    1990-06-10

    Pore fluids are passively convecting through young oceanic sediments and crust around Deep Sea Drilling Project (DSDP) site 504 on the southern flank of the Costa Rica Rift, as inferred from a variety of geological, geochemical, and geothermal observations. The presence of a fluid circulation system is supported by new data collected on Ocean Drilling Program (ODP) leg 111 and a predrilling survey cruise over the heavily sedimented, 5.9 Ma site; during the latter, elongated heat flow anomalies were mapped subparallel to structural strike, with individual measurements of twice the regional mean value, and strong lateral and vertical geochemical gradientsmore » were detected in pore waters squeezed from sediment cores. Also, there is a strong correlation between heat flow, bathymetry, sediment thickness, and inferred fluid velocities up through the sediments. Although the forces which drive passive circulation are not well understood, it has generally been thought that the length scale of heat flow variations provides a good indication of the depth of hydrothermal circulation within the oceanic crust. The widely varied geothermal and hydrogeological observations near site 504 are readily explained by a model which combines (1) basement relief, (2) irregular sediment drape, (3) largely conductive heat transfer through the sediments overlying the crust, and (4) thermal and geochemical homogenization of pore fluids at the sediment/basement interface, which results from (5) topographically induced, passive hydrothermal circulation with large aspect ratio, convection cells. This convection involves mainly the permeable, upper 200-300 m of crust; the deeper crust is not involved.« less

  10. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    NASA Technical Reports Server (NTRS)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  11. Barium isotopes reveal role of ocean circulation on barium cycling in the Atlantic

    NASA Astrophysics Data System (ADS)

    Bates, Stephanie L.; Hendry, Katharine R.; Pryer, Helena V.; Kinsley, Christopher W.; Pyle, Kimberley M.; Woodward, E. Malcolm S.; Horner, Tristan J.

    2017-05-01

    We diagnose the relative influences of local-scale biogeochemical cycling and regional-scale ocean circulation on Atlantic barium cycling by analysing four new depth profiles of dissolved Ba concentrations and isotope compositions from the South and tropical North Atlantic. These new profiles exhibit systematic vertical, zonal and meridional variations that reflect the influence of both local-scale barite cycling and large-scale ocean circulation. Epipelagic decoupling of dissolved Ba and Si reported previously in the tropics is also found to be associated with significant Ba isotope heterogeneity. As such, we contend that this decoupling originates from the depth segregation of opal and barite formation but is exacerbated by weak vertical mixing. Zonal influence from isotopically-'heavy' water masses in the western North Atlantic evidence the advective inflow of Ba-depleted Upper Labrador Sea Water, which is not seen in the eastern basin or the South Atlantic. Meridional variations in Atlantic Ba isotope systematics below 2000 m appear entirely controlled by conservative mixing. Using an inverse isotopic mixing model, we calculate the Ba isotope composition of the Ba-poor northern end-member as +0.45 ‰ and the Ba-rich southern end-member +0.26 ‰, relative to NIST SRM 3104a. The near-conservative behaviour of Ba below 2000 m indicates that Ba isotopes can serve as an independent tracer of the provenance of northern- versus southern-sourced water masses in the deep Atlantic Ocean. This finding may prove useful in palaeoceanographic studies, should appropriate sedimentary archives be identified, and offers new insights into the processes that cycle Ba in seawater.

  12. Fluid and chemical fluxes along a buried-basement ridge in the eastern Juan de Fuca Ridge flank

    NASA Astrophysics Data System (ADS)

    Hulme, S.; Wheat, C. G.

    2010-12-01

    Hydrothermal fluid circulation within oceanic crust at low temperatures affects global biogeochemical cycles, with the volume of fluid circulation rivaling that of the world’s water flux to the oceans from rivers. Our work focuses on the best studied low temperature hydrothermal system on the eastern flank of the Juan de Fuca Ridge where a buried basement ridge 100 km from the active spreading axis has been sampled with a variety of mediums. We use data from deep sea drilling, gravity coring, and submersible operations from five sites along-strike of the buried ridge to better constrain the chemical and fluid fluxes along this transect. A transport (advection-diffusion) model is applied to the data, constraining the volumetric fluid flux per unit length within the oceanic crust from 0.05 and 0.2 m3 y-1 cm-1 and identifying conservative elements within this system. Using an average fluid flux, reactive fluxes are determined for non-conservative elements within basaltic crust for twenty-four chemical species. Conservative species include K, Cl, SO4, Ba, Sr, Cs, Mo, and Y. Only Ca and the rare earth elements Ce and Gd are produced by basaltic basement. The remaining chemical species Mg, Na, ammonium, Li, Rb, Mn, Fe, Co, Zn, Cd, U, La and Yb are all consumed within upper basaltic basement. Fluxes of potentially-bioavailable redox species ammonium, Fe, and Mn into the upper basaltic basement are 3 to 20 nmol y-1cm-2. Possible mechanisms of removal are suggested, placing constraints on microbial metabolic activity and biomineralization.

  13. Decadal variations of Pacific North Equatorial Current bifurcation from multiple ocean products

    NASA Astrophysics Data System (ADS)

    Zhai, Fangguo; Wang, Qingye; Wang, Fujun; Hu, Dunxin

    2014-02-01

    In this study, we examine the decadal variations of the Pacific North Equatorial Current (NEC) bifurcation latitude (NBL) averaged over upper 100 m and underlying dynamics over the past six decades using 11 ocean products, including seven kinds of ocean reanalyzes based on ocean data assimilation systems, two kinds of numerical simulations without assimilating observations and two kinds of objective analyzes based on in situ observations only. During the period of 1954-2007, the multiproduct mean of decadal NBL anomalies shows maxima around 1965/1966, 1980/1981, 1995/1996, and 2003/2004, and minima around 1958, 1971/1972, 1986/1987, and 2000/2001, respectively. The NBL decadal variations are related to the first Empirical Orthogonal Function mode of decadal anomalies of sea surface height (SSH) in the northwestern tropical Pacific Ocean, which shows spatially coherent variation over the whole region and explains most of the total variance. Further regression and composite analyzes indicate that northerly/southerly NBL corresponds to negative/positive SSH anomalies and cyclonic/anticyclonic gyre anomalies in the northwestern tropical Pacific Ocean. These decadal circulation variations and thus the decadal NBL variations are governed mostly by the first two vertical modes and attribute the most to the first baroclinic mode. The NBL decadal variation is highly positively correlated with the tropical Pacific decadal variability (TPDV) around the zero time lag. With a lead of about half the decadal cycle the NBL displays closer but negative relationship to TPDV in four ocean products, possibly manifesting the dynamical role of the circulation in the northwestern tropical Pacific in the phase-shifting of TPDV.

  14. Plate-Tectonic Circulation is Driven by Cooling From the Top and is Closed Within the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2001-12-01

    Subduction drives plate tectonics and is due to cooling from the top: circulation is self-organized, and likely is closed above the discontinuity near 660 km. The contrary consensus that plate tectonics is driven by bottom heating and involves the entire mantle combines misunderstood kinematics with flawed concepts of through-the-mantle plumes and subduction. Plume conjecture came from the Emperor-Hawaii progression, the 45 Ma inflection in which was assumed to mark a 60-degree change in direction of that part of the Pacific plate over a fixed plume. Smooth spreading patterns around the east and south margin of the Pacific plate, and paleomagnetic data, disprove such a change. Speculations that plumes move, jump, etc. do not revive falsified conjecture. Geochemical distinctions between enriched island and depleted ridge basalts (which overlap) are expected products of normal upper-mantle processes, not plumes. MORB traverses solidus-T asthenosphere, whereas OIB zone-refines through subsolidus lithosphere and crust, crystallizing refractories to retain T of diminishing melt while assimilating and retaining fusibles. Tomographic inference of deep-mantle subduction is presented misleadingly and may reflect methodological and sampling artifacts (downward smearing, and concentration of recorded body waves in bundles within broad anomalies otherwise poorly sampled). Planetological and other data require hot Earth accretion, and thorough early fractionation, from material much more refractory than primitive meteorites, and are incompatible with the little-fractionated lower mantle postulated to permit whole-mantle circulation. The profound seismic discontinuity near 660 km is a thermodynamic and physical barrier to easy mass transfer in either direction. Refractory lower mantle convects slowly, perhaps in layers, and loses primarily original heat, whereas upper mantle churns rapidly, and the 660 decoupling boundary must have evolved into a compositional barrier also. Plate motions are driven by subduction, the passive falling away of oceanic lithosphere which is negatively buoyant because of top-down cooling. Slabs have top and bottom rolling hinges and sink subvertically (inclinations of slabs mark their positions, not trajectories) into the transition zone, where they are laid down on, and depress, the 660-km discontinuity. Rollback of upper hinges into subducting plates is required by plate behavior at all scales. That fronts of overriding plates advance at rollback velocity is required by common preservation atop their thin leading edges of little-deformed fore-arc basins. Convergence velocity also commonly equals rollback but is faster in some arcs. Steeply-sinking inclined slabs push sublithospheric upper mantle forward into the shrinking ocean from which they came, forcing seafloor spreading therein, and pull overriding plates behind them. Continental plates pass over sunken slabs like tanks above their basal treads, and material from, and displaced rearward by, sunken slabs is cycled into pull-apart oceans opening behind the continents, thus transferring mantle from shrinking to enlarging oceans. Hot mantle displaced above slabs enables backarc spreading. Spreading ridges, in both shrinking and enlarging oceans, are passive byproducts of subduction, and migrate because it is more energy efficient to process new asthenosphere than to get partial melt from increasingly distant sources. A plate-motion framework wherein hinges roll back, ridges migrate, Antarctica is approximately fixed, and intraplate deformation is integrated may approximate an absolute reference to sluggish lower mantle, whereas the hotspot frame is invalid, and the no-net-rotation frame minimizes trench and ridge motions.

  15. Effect of Gravity Waves from Small Islands in the Southern Ocean on the Southern Hemisphere Atmospheric Circulation

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Oman, L. D.

    2018-01-01

    The effect of small islands in the Southern Ocean on the atmospheric circulation in the Southern Hemisphere is considered with a series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model in which the gravity wave stress generated by these islands is increased to resemble observed values. The enhanced gravity wave drag leads to a 2 K warming of the springtime polar stratosphere, partially ameliorating biases in this region. Resolved wave drag declines in the stratospheric region in which the added orographic gravity waves deposit their momentum, such that changes in gravity waves are partially compensated by changes in resolved waves, though resolved wave drag increases further poleward. The orographic drag from these islands has impacts for surface climate, as biases in tropospheric jet position are also partially ameliorated. These results suggest that these small islands are likely contributing to the missing drag near 60 degrees S in the upper stratosphere evident in many data assimilation products.

  16. Salinity Boundary Conditions and the Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate Global Ocean Models

    DTIC Science & Technology

    2009-06-30

    Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate Global Ocean...2009 4. TITLE AND SUBTITLE Salinity Boundary Conditions and the Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate... Atlantic Meridional Overturning Circulation (AMOC) in global simulations performed with the depth coordinate Parallel Ocean Program (POP) ocean

  17. Ocean Fertilization for Sequestration of Carbon Dioxide from the Atmosphere

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.

    The ocean is a major sink for both preindustrial and anthropogenic carbon dioxide. Both physically and biogeochemically driven pumps, termed the solubility and biological pump, respectively Fig.5.1) are responsible for the majority of carbon sequestration in the ocean's interior [1]. The solubility pump relies on ocean circulation - specifically the impact of cooling of the upper ocean at high latitudes both enhances the solubility of carbon dioxide and the density of the waters which sink to great depth (the so-called deepwater formation) and thereby sequester carbon in the form of dissolved inorganic carbon (Fig.5.1). The biological pump is driven by the availability of preformed plant macronutrients such as nitrate or phosphate which are taken up by phytoplankton during photosynthetic carbon fixation. A small but significant proportion of this fixed carbon sinks into the ocean's interior in the form of settling particles, and in order to maintain equilibrium carbon dioxide from the atmosphere is transferred across the air-sea interface into the ocean (the so-called carbon drawdown) thereby decreasing atmospheric carbon dioxide (Fig.5.1).Fig.5.1

  18. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    NASA Astrophysics Data System (ADS)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  19. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere.

    PubMed

    Schlindwein, Vera; Schmid, Florian

    2016-07-14

    Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere-asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation.

  20. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate.

    PubMed

    van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B

    2017-07-01

    Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.

  1. Physical Mechanisms for the Maintenance of GCM-Simulated Madden-Julian Oscillation over the Indian Ocean and Pacific

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liping; Wu, Xiaoqing

    2011-05-05

    The kinetic energy budget is conducted to analyze the physical processes responsible for the improved Madden-Julian Oscillation (MJO) simulated by the Iowa State University general circulation models (ISUGCM). The modified deep convection scheme that includes the revised convection closure, convection trigger condition and convective momentum transport (CMT) enhances the equatorial (10oS-10oN) MJO-related perturbation kinetic energy (PKE) in the upper troposphere and leads to more robust and coherent eastward propagating MJO signal. In the MJO source region-the Indian Ocean (45oE-120oE), the upper-tropospheric MJO PKE is maintained by the vertical convergence of wave energy flux and the barotropic conversion through the horizontalmore » shear of mean flow. In the convectively active region-the western Pacific (120oE-180o), the upper-tropospheric MJO PKE is supported by the convergence of horizontal and vertical wave energy fluxes. Over the central-eastern Pacific (180o-120oW), where convection is suppressed, the upper-tropospheric MJO PKE is mainly due to the horizontal convergence of wave energy flux. The deep convection trigger condition produces stronger convective heating which enhances the perturbation available potential energy (PAPE) production and the upward wave energy fluxes, and leads to the increased MJO PKE over the Indian Ocean and western Pacific. The trigger condition also enhances the MJO PKE over the central-eastern Pacific through the increased convergence of meridional wave energy flux from the subtropical latitudes of both hemispheres. The revised convection closure affects the response of mean zonal wind shear to the convective heating over the Indian Ocean and leads to the enhanced upper-tropospheric MJO PKE through the barotropic conversion. The stronger eastward wave energy flux due to the increase of convective heating over the Indian Ocean and western Pacific by the revised closure is favorable to the eastward propagation of MJO and the convergence of horizontal wave energy flux over the central-eastern Pacific. The convection-induced momentum tendency tends to decelerate the upper-tropospheric wind which results in a negative work to the PKE budget in the upper troposphere. However, the convection momentum tendency accelerates the westerly wind below 800 hPa over the western Pacific, which is partially responsible for the improved MJO simulation.« less

  2. Are Surface Waters Around Greenland Getting Saltier in a Warming Climate?

    NASA Astrophysics Data System (ADS)

    Vinogradova, N. T.; Ponte, R. M.; Piecuch, C. G.; Little, C. M.

    2016-02-01

    During the past two decades, most surface waters around Greenland ice sheet and in the Nordic Seas became significantly saltier. Given the fact that these waters feed the North Atlantic thermohaline circulation, an increase in surface salinity, which can exceed 0.2 psu in places, might have an important impact on the global ocean circulation and on future projections of the climate state. Surface salinification may seem counter-intuitive to the reported long-term increase in freshwater supply to the region from river discharge and ice melting, sparking debates about whether the freshening of the subpolar gyre has ceased, and whether the recent salinification, if continued, will be able to forestall the projected slowdown of the overturning circulation. Here we assess what controls contemporary salinity changes by examining various terms of the salinity budget, including the dilution effect due to air-sea fluxes of freshwater, fluxes of salt due to sea ice formation/melting, and ocean fluxes of salinity associated with advective and diffusive processes. We use an ocean state estimate produced by the ECCO consortium to consider the budgets over the period 1992-2011. ECCO estimates produce salinity fields close to the observations and, crucial for our purposes, permit closed budget diagnostics of salinity and respective fluxes. The budgets are formulated within the entire water column in order to examine three-dimensional structure of freshwater storage and establish a link between the surface and upper-ocean change in near-Greenland waters. Over the past two decades, patterns of change are evident in all budget terms, with ocean fluxes either offsetting or enhancing surface forcing, including the effects of sea ice dynamics. Interpretation is provided within the context of a changing climate, including intensification of the hydrological cycle and weakening of ocean transports and overturning, as well as natural decadal-to-interdacadal variability present in the system.

  3. The specific features of pollution spread in the northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Dianskii, N. A.; Gusev, A. V.; Fomin, V. V.

    2012-04-01

    We present two calculations of pollutant dispersal in the Pacific Ocean: (1) during possible ship-wrecks in the process of spent nuclear fuel transportation from Petropavlovsk-Kamchatsky and (2) pollutant spread from the Japanese coast after the Fukushima-1 nuclear disaster on March 11, 2011. The circulation was calculated using a σ model of ocean hydrothermodynamics developed at the Institute of Numerical Mathematics (INM), Russian Academy of Sciences (RAS); it is adapted to cover the Pacific Ocean basin from the equator to the Bering Strait with a high (1/8)° spatial resolution and it is capable of reproducing the mesoscale ocean variations. The pollutant dispersal in the case of possible shipwrecks was estimated for currents characteristic for a statistically average year with atmospheric forcing in accordance with the so-called normal CORE year data. The pollution spread from the Fukushima-1 nuclear power plant (NPP) was estimated by calculating the circulation with the real atmospheric forcing in accordance with the NCEP analysis data obtained from the Hydrometeorological Centre of Russia. It is noteworthy that a simplified assimilation of the observed sea surface temperature (SST) was performed. In both cases the currents were calculated simultaneously with the transport calculation of the pollutant as a passive admixture, which corresponds to a real-time calculation of pollutant transport. A map analysis of pollution dispersal shows that the horizontal transport is substantially more intense in the upper ocean layers than in deep ones. Therefore, like in the North branch of Kuroshio, pollutants can be delivered to the deep layers not through deep-water horizontal transport, but rather as a result of vertical downwelling from the already contaminated upper layers. However, the complex three-dimensional structure of the horizontal and vertical transport may lead to reverse situations. A calculation of pollution transport from the Fukushima-1 NPP showed that radioactive pollution would propagate eastward and not present the danger for Russian territory. Moreover, even for an exaggerated scenario of pollution emission, the background pollution level will be exceeded only in a narrow region within 50 km of the Japanese coast.

  4. Slow and Steady: Ocean Circulation. The Influence of Sea Surface Height on Ocean Currents

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa

    2000-01-01

    The study of ocean circulation is vital to understanding how our climate works. The movement of the ocean is closely linked to the progression of atmospheric motion. Winds close to sea level add momentum to ocean surface currents. At the same time, heat that is stored and transported by the ocean warms the atmosphere above and alters air pressure distribution. Therefore, any attempt to model climate variation accurately must include reliable calculations of ocean circulation. Unlike movement of the atmosphere, movement of the ocean's waters takes place mostly near the surface. The major patterns of surface circulation form gigantic circular cells known as gyres. They are categorized according to their general location-equatorial, subtropical, subpolar, and polar-and may run across an entire ocean. The smaller-scale cell of ocean circulation is known' as an eddy. Eddies are much more common than gyres and much more difficult to track in computer simulations of ocean currents.

  5. On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal variability

    NASA Astrophysics Data System (ADS)

    Zhang, Rong

    2017-08-01

    This study identifies key features associated with the Atlantic multidecadal variability (AMV) in both observations and a fully coupled climate model, e.g., decadal persistence of monthly mean subpolar North Atlantic (NA) sea surface temperature (SST) and salinity (SSS) anomalies, and high coherence at low frequency among subpolar NA SST/SSS, upper ocean heat/salt content, and the Atlantic Meridional Overturning Circulation (AMOC) fingerprint. These key AMV features, which can be used to distinguish the AMV mechanism, cannot be explained by the slab ocean model results or the red noise process but are consistent with the ocean dynamics mechanism. This study also shows that at low frequency, the correlation and regression between net surface heat flux and SST anomalies are key indicators of the relative roles of oceanic versus atmospheric forcing in SST anomalies. The oceanic forcing plays a dominant role in the subpolar NA SST anomalies associated with the AMV.

  6. Hurricane-induced ocean waves and stokes drift and their impacts on surface transport and dispersion in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Curcic, Milan; Chen, Shuyi S.; Özgökmen, Tamay M.

    2016-03-01

    Hurricane Isaac induced large surface waves and a significant change in upper ocean circulation in the Gulf of Mexico before making landfall at the Louisiana coast on 29 August 2012. Isaac was observed by 194 surface drifters during the Grand Lagrangian Deployment (GLAD). A coupled atmosphere-wave-ocean model was used to forecast hurricane impacts during GLAD. The coupled model and drifter observations provide an unprecedented opportunity to study the impacts of hurricane-induced Stokes drift on ocean surface currents. The Stokes drift induced a cyclonic (anticyclonic) rotational flow on the left (right) side of the hurricane and accounted for up to 20% of the average Lagrangian velocity. In a significant deviation from drifter measurements prior to Isaac, the scale-dependent relative diffusivity is estimated to be 6 times larger during the hurricane, which represents a deviation from Okubo's (1971) canonical results for lateral dispersion in nonhurricane conditions at the ocean surface.

  7. Increasing Climate Literacy in Introductory Oceanography Classes Using Ocean Observation Data from Project Dynamo

    NASA Astrophysics Data System (ADS)

    Hams, J. E.

    2015-12-01

    This session will present educational activities developed for an introductory Oceanography lecture and laboratory class by NOAA Teacher-at-Sea Jacquelyn Hams following participation in Leg 3 of Project DYNAMO (Dynamics of the Madden-Julian Oscillation) in November-December 2011. The Madden-Julian Oscillation (MJO) is an important tropical weather phenomenon with origins in the Indian Ocean that impacts many other global climate patterns such as the El Nino Southern Oscillation (ENSO), Northern Hemisphere monsoons, tropical storm development, and pineapple express events. The educational activities presented include a series of lessons based on the observational data collected during Project DYNAMO which include atmospheric conditions, wind speeds and direction, surface energy flux, and upper ocean turbulence and mixing. The lessons can be incorporated into any introductory Oceanography class discussion on ocean properties such as conductivity, temperature, and density, ocean circulation, and layers of the atmosphere. A variety of hands-on lessons will be presented ranging from short activities used to complement a lecture to complete laboratory exercises.

  8. Paleoclimate of Quaternary Costa Rica: Analysis of Sediment from ODP Site 1242 in the Eastern Tropical Pacific to Explore the Behavior of the Intertropical Convergence Zone (ITCZ) and Oceanic Circulation

    NASA Astrophysics Data System (ADS)

    Buczek, C. R.; Joseph, L. H.

    2017-12-01

    Studies of grain size, magnetic fabric, and terrigenous mass accumulation rates (MAR) on oceanic sediment can provide insights into climatic conditions present at or near the time of deposition by helping to delineate changes in rainfall and oceanic circulation intensities. The fairly homogenous hemipelagic nannofossil clays and clayey nannofossil oozes collected in the upper portion of Ocean Drilling Program (ODP) Site 1242 provide a 1.4 million year sediment record from the Cocos Ridge, in relatively shallow waters of the eastern tropical Pacific Ocean, off the coast of present day Central and South America. Information about shifts in rainfall and oceanic circulation provided by this study may be helpful in understanding changes in the location and behavior of the Intertropical Convergence Zone (ITCZ), and/or other climatic factors, in this area during the Pleistocene and Holocene Epochs. Approximately 130 paired side-by-side samples were selected at approximately evenly spaced intervals throughout the uppermost 190 mcd of the core. To obtain terrigenous grain size and MARs, one set of sediment samples was subject to a five-step chemical extraction process to dissolve any oxy-hydroxy coatings, remove the biogenic carbonate and silicate components, and sieve out grains larger than 63 µm. The pre- and post-extraction weights were compared to calculate a terrigenous weight percent (%) from which the terrigenous MAR values were then calculated, with the use of linear sediment rates and dry bulk density measurements determined from shipboard ODP 1242 analyses. Magnetic fabric, or anisotropy of magnetic susceptibility (AMS), was analyzed on a KLY4S-Kappabridge using the second set of samples taken in pmag cubes. Terrigenous MAR values range between 3.1 and 10.9 g/cm2/kyr, while P' (AMS) values range between 1.004 and 1.04 SI. A distinctive trend is noted in both factors, with both exhibiting relatively high initial values that then decrease from the beginning of the record until 1.0-0.8 Ma, and then remain fairly constant (and relatively low) up-core. The initial decline potentially represents a drying of continental climates and a slowing of oceanic currents during the early Pleistocene, possibly due to shifts in the ITCZ or other factors affecting circulation.

  9. On the role of ozone feedback in the ENSO amplitude response under global warming.

    PubMed

    Nowack, Peer J; Braesicke, Peter; Luke Abraham, N; Pyle, John A

    2017-04-28

    The El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean is of key importance to global climate and weather. However, state-of-the-art climate models still disagree on the ENSO's response under climate change. The potential role of atmospheric ozone changes in this context has not been explored before. Here we show that differences between typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations. The vertical temperature gradient of the tropical middle-to-upper troposphere adjusts to ozone changes in the upper troposphere and lower stratosphere, modifying the Walker circulation and consequently tropical Pacific surface temperature gradients. We show that neglecting ozone changes thus results in a significant increase in the number of extreme ENSO events in our model. Climate modeling studies of the ENSO often neglect changes in ozone. We therefore highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability.

  10. Crustal accretion along the global mid-ocean ridge system based on basaltic glass and olivine-hosted melt inclusion compositions

    NASA Astrophysics Data System (ADS)

    Wanless, V. D.; Behn, M. D.

    2015-12-01

    The depth and distribution of crystallization at mid-ocean ridges controls the overall architecture of the oceanic crust, influences hydrothermal circulation, and determines geothermal gradients in the crust and uppermost mantle. Despite this, there is no overall consensus on how crystallization is distributed within the crust/upper mantle or how this varies with spreading rate. Here, we examine crustal accretion at mid-ocean ridges by combining crystallization pressures calculated from major element barometers on mid-ocean ridge basalt (MORB) glasses with vapor-saturation pressures from melt inclusions to produce a detailed map of crystallization depths and distributions along the global ridge system. We calculate pressures of crystallization from >11,500 MORB glasses from the global ridge system using two established major element barometers (1,2). Additionally, we use vapor-saturation pressures from >400 olivine-hosted melt inclusions from five ridges with variable spreading rates to constrain pressures and distributions of crystallization along the global ridge system. We show that (i) crystallization depths from MORB glasses increase and become less focused with decreasing spreading rate, (ii) maximum glass pressures are greater than the maximum melt inclusion pressure, which indicates that the melt inclusions do not record the deepest crystallization at mid-ocean ridges, and (iii) crystallization occurs in the lower crust/upper mantle at all ridges, indicating accretion is distributed throughout the crust at all spreading rates, including those with a steady-state magma lens. Finally, we suggest that the remarkably similar maximum vapor-saturation pressures (~ 3000 bars) in melt inclusion from all spreading rates reflects the CO2 content of the depleted upper mantle feeding the global mid-ocean ridge system. (1) Michael, P. & W. Cornell (1998), Journal of Geophysical Research, 103(B8), 18325-18356; (2) Herzberg, C. (2004), Journal of Petrology, 45(12), 2389.

  11. Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography.

    PubMed

    Talley, L D; Feely, R A; Sloyan, B M; Wanninkhof, R; Baringer, M O; Bullister, J L; Carlson, C A; Doney, S C; Fine, R A; Firing, E; Gruber, N; Hansell, D A; Ishii, M; Johnson, G C; Katsumata, K; Key, R M; Kramp, M; Langdon, C; Macdonald, A M; Mathis, J T; McDonagh, E L; Mecking, S; Millero, F J; Mordy, C W; Nakano, T; Sabine, C L; Smethie, W M; Swift, J H; Tanhua, T; Thurnherr, A M; Warner, M J; Zhang, J-Z

    2016-01-01

    Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean's overturning circulation.

  12. Wind-driven Circulation and Freshwater Fluxes off Sri Lanka: 4D-Sampling with Autonomous Gliders

    DTIC Science & Technology

    2015-09-30

    riverine freshwater input, precipitation and atmospheric forcing act to govern Bay of Bengal upper ocean variability, water mass formation and...fraction of the water moving through the section is going south, carrying freshwater out of the Bay of Bengal. Currents near the coast have the same...transport of freshwater from the Northern Bay of Bengal, as well of the import of salty Arabian Sea Water , are being investigated are using all the

  13. Upper Ocean Measurements of Water Masses and Circulation in the Japan Sea

    DTIC Science & Technology

    2003-09-30

    Japan Sea via Tsugaru Strait into the N. Pacific and through Soya Strait into the Okhotsk Sea. On float entered the Okhotsk Sea through Soya Strait and...Riser (2003) Connections between the Japan Sea and Okhotsk Sea through Soya Strait. Submitted to Journal of Geophysical Research. Riser, S., M...PUBLICATIONS Danchenkov, M. and S. Riser (2003) Connections between the Japan Sea and Okhotsk Sea through Soya Strait. Submitted to Journal of Geophysical

  14. Role of Ocean Initial Conditions to Diminish Dry Bias in the Seasonal Prediction of Indian Summer Monsoon Rainfall: A Case Study Using Climate Forecast System

    NASA Astrophysics Data System (ADS)

    Koul, Vimal; Parekh, Anant; Srinivas, G.; Kakatkar, Rashmi; Chowdary, Jasti S.; Gnanaseelan, C.

    2018-03-01

    Coupled models tend to underestimate Indian summer monsoon (ISM) rainfall over most of the Indian subcontinent. Present study demonstrates that a part of dry bias is arising from the discrepancies in Oceanic Initial Conditions (OICs). Two hindcast experiments are carried out using Climate Forecast System (CFSv2) for summer monsoons of 2012-2014 in which two different OICs are utilized. With respect to first experiment (CTRL), second experiment (AcSAL) differs by two aspects: usage of high-resolution atmospheric forcing and assimilation of only ARGO observed temperature and salinity profiles for OICs. Assessment of OICs indicates that the quality of OICs is enhanced due to assimilation of actual salinity profiles. Analysis reveals that AcSAL experiment showed 10% reduction in the dry bias over the Indian land region during the ISM compared to CTRL. This improvement is consistently apparent in each month and is highest for June. The better representation of upper ocean thermal structure of tropical oceans at initial stage supports realistic upper ocean stability and mixing. Which in fact reduced the dominant cold bias over the ocean, feedback to air-sea interactions and land sea thermal contrast resulting better representation of monsoon circulation and moisture transport. This reduced bias of tropospheric moisture and temperature over the Indian land mass and also produced better tropospheric temperature gradient over land as well as ocean. These feedback processes reduced the dry bias in the ISM rainfall. Study concludes that initializing the coupled models with realistic OICs can reduce the underestimation of ISM rainfall prediction.

  15. Variability of upper-ocean characteristics and tropical cyclones in the South West Indian Ocean

    NASA Astrophysics Data System (ADS)

    Mawren, D.; Reason, C. J. C.

    2017-03-01

    Track and intensity are key aspects of tropical cyclone behavior. Intensity may be impacted by the upper-ocean heat content relevant for TC intensification (known as Tdy) and barrier layer thickness (BLT). Here the variability of Tdy and BLT in the South West Indian Ocean and their relationships with tropical cyclones are investigated. It is shown that rapid cyclone intensification is influenced by large Tdy values, thick barrier layers and the presence of anticyclonic eddies. For TC generation in the South West Indian Ocean, the parameter Tdy was found to be important. Large BLT values overlay with large Tdy values during summer. Both fields are modulated by the westward propagation of Rossby waves, which are often associated with ENSO. For example, the 1997-1998 El Niño shows a strong signal in Tdy, SST, and BLT over the South West Indian Ocean. After this event, an increasing trend in Tdy occurred over most of the basin which may be associated with changes in atmospheric circulation. Increasing SST, Power Dissipation Index and frequency of Category 5 tropical cyclones also occurred from 1980 to 2010. To further examine the links between tropical cyclones, Tdy, and BLT, the ocean response to Category 5 Tropical Cyclone Bansi that developed near Madagascar during January 2015 was analyzed. Its unusual track was found to be linked with the strengthening of the monsoonal north westerlies while its rapid intensification from Category 2 to Category 4 was linked to a high-Tdy region, associated with a warm core eddy and large BLT.

  16. Investigating the impact of diurnal cycle of SST on the intraseasonal and climate variability

    NASA Astrophysics Data System (ADS)

    Tseng, W. L.; Hsu, H. H.; Chang, C. W. J.; Keenlyside, N. S.; Lan, Y. Y.; Tsuang, B. J.; Tu, C. Y.

    2016-12-01

    The diurnal cycle is a prominent feature of our climate system and the most familiar example of externally forced variability. Despite this it remains poorly simulated in state-of-the-art climate models. A particular problem is the diurnal cycle in sea surface temperature (SST), which is a key variable in air-sea heat flux exchange. In most models the diurnal cycle in SST is not well resolved, due to insufficient vertical resolution in the upper ocean mixed-layer and insufficiently frequent ocean-atmosphere coupling. Here, we coupled a 1-dimensional ocean model (SIT) to two atmospheric general circulation model (ECHAM5 and CAM5). In particular, we focus on improving the representations of the diurnal cycle in SST in a climate model, and investigate the role of the diurnal cycle in climate and intraseasonal variability.

  17. Biscayne aquifer, southeast Florida

    USGS Publications Warehouse

    Klein, Howard; Hull, John E.

    1978-01-01

    Peak daily pumpage from the highly permeable, unconfined Biscayne aquifer for public water-supply systems in southeast Florida in 1975 was about 500 million gallons. Another 165 million gallons was withdrawn daily for irrigation. Recharge to the aquifer is primarily by local rainfall. Discharge is by evapotranspiration, canal drainage, coastal seepage, and pumping. Pollutants can enter the aquifer by direct infiltration from land surface or controlled canals, septic-tank and other drainfields, drainage wells, and solid-waste dumps. Most of the pollutants are concentrated in the upper 20 to 30 feet of the aquifer; public supply wells generally range in depth from about 75 to 150 feet. Dilution, dispersion, and adsorption tend to reduce the concentrations. Seasonal heavy rainfall and canal discharge accelerate ground-water circulation, thereby tending to dilute and flush upper zones of the aquifer. The ultimate fate of pollutants in the aquifer is the ocean, although some may be adsorbed by the aquifer materials en route to the ocean, and some are diverted to pumping wells. (Woodard-USGS)

  18. Reconstruction of intermediate water circulation in the tropical North Atlantic during the past 22,000 years

    NASA Astrophysics Data System (ADS)

    Xie, Ruifang C.; Marcantonio, Franco; Schmidt, Matthew W.

    2014-09-01

    Decades of paleoceanographic studies have reconstructed a well-resolved water mass structure for the deep Atlantic Ocean during the Last Glacial Maximum (LGM). However, the variability of intermediate water circulation in the tropics over the LGM and deglacial abrupt climate events is still largely debated. This study aims to reconstruct intermediate northern- and southern-sourced water circulation in the tropical North Atlantic during the past 22 kyr and attempts to confine the boundary between Antarctic Intermediate Water (AAIW) and northern-sourced intermediate water (i.e., upper North Atlantic Deep Water (NADW) or Glacial North Atlantic Intermediate Water) in the past. High-resolution Nd isotopic compositions of fish debris and acid-reductive leachate of bulk sediment in core VM12-107 (1079 m depth) from the Southern Caribbean are not in agreement. We suggest that the leachate method does not reliably extract the Nd isotopic compositions of seawater at this location, and that it needs to be tested in more detail in various oceanic settings. The fish debris εNd values display a general decrease from the early deglaciation to the end of the Younger Dryas, followed by a greater drop toward less radiogenic values into the early Holocene. We propose a potentially more radiogenic glacial northern endmember water mass and interpret this pattern as recording a recovery of the upper NADW during the last deglaciation. Comparing our new fish debris Nd isotope data to authigenic Nd isotope studies in the Florida Straits (546 and 751 m depth), we propose that both glacial and deglacial AAIW do not penetrate beyond the lower depth limit of modern AAIW in the tropical Atlantic.

  19. Langmuir cells and mixing in the upper ocean

    NASA Astrophysics Data System (ADS)

    Carniel, S.; Sclavo, M.; Kantha, L. H.; Clayson, C. A.

    2005-01-01

    The presence of surface gravity waves at the ocean surface has two important effects on turbulence in the oceanic mixed layer (ML): the wave breaking and the Langmuir cells (LC). Both these effects act as additional sources of turbulent kinetic energy (TKE) in the oceanic ML, and hence are important to mixing in the upper ocean. The breaking of high wave-number components of the wind wave spectrum provides an intense but sporadic source of turbulence in the upper surface; turbulence thus injected diffuses downward, while decaying rapidly, modifying oceanic near-surface properties which in turn could affect the air-sea transfer of heat and dissolved gases. LC provide another source of additional turbulence in the water column; they are counter-rotating cells inside the ML, with their axes roughly aligned in the direction of the wind (Langmuir I., Science871938119). These structures are usually made evident by the presence of debris and foam in the convergence area of the cells, and are generated by the interaction of the wave-field-induced Stokes drift with the wind-induced shear stress. LC have long been thought to have a substantial influence on mixing in the upper ocean, but the difficulty in their parameterization have made ML modelers consistently ignore them in the past. However, recent Large Eddy Simulations (LES) studies suggest that it is possible to include their effect on mixing by simply adding additional production terms in the turbulence equations, thus enabling even 1D models to incorporate LC-driven turbulence. Since LC also modify the Coriolis terms in the mean momentum equations by the addition of a term involving the Stokes drift, their effect on the velocity structure in the ML is also quite significant and could have a major impact on the drift of objects and spilled oil in the upper ocean. In this paper we examine the effect of surface gravity waves on mixing in the upper ocean, focusing on Langmuir circulations, which is by far the dominant part of the surface wave contribution to mixing. Oceanic ML models incorporating these effects are applied to an observation station in the Northern Adriatic Sea to see what the extent of these effects might be. It is shown that the surface wave effects can indeed be significant; in particular, the modification of the velocity profile due to LC-generated turbulence can be large under certain conditions. However, the surface wave effects on the bulk properties of the ML, such as the associated temperature, while significant, are generally speaking well within the errors introduced by uncertainties in the external forcing of the models. This seems to be the reason why ML models, though pretty much ignoring surface wave effects until recently, have been reasonably successful in depicting the evolution of the mixed layer temperature (MLT) at various timescales.

  20. Role of sea surface wind stress forcing on transport between Tropical Pacific and Indian Ocean

    NASA Astrophysics Data System (ADS)

    Zhao, Q.

    Using an Indian-Pacific Ocean Circulation Model (IPOM) a simulation study on the Transports of between Tropical Pacific and Indian Ocean such as Indonesian Through flow (ITF) has been done. IPOM covered the area 25°E-70°W, 35°S-60°N. There are 31 levels in the vertical with 22 levels upper 400m in it. The horizontal resolution is 1/3° lat x 1.5° lon between 10°S and 10°N. The coastline and ocean topography of IPOM is prepared from Scripps topography data on 1x1°grid. Forcing IPOM with monthly observational wind stress in 1990-1999 the interannual variation of sea temperature has been reproduced well, not only on El Nino in the Pacific but also on Indian Ocean Dipole (IOD). Therefore, the oceanic circulations in the tropical ocean are reasonable. The analyses of the oceanic circulations from the simulations suggest that the transport southward through Makassar Strait is the primary route of thermocline water masses from the North Pacific to the Indonesian sea. The transport westward through Bali-Western Australian Transect (BWAT, at 117.5E) can be thought as the final output of ITF through the archipelago to Indian Ocean. The transport westward through BWAT is in 8-12S above 150m, its core centered near surface 10S, which looks like a jet. The westward velocity is more than 50 cm/s. The transport shows significant seasonal and interannual variations. The maximum is in Jul-Oct, minimum in Jan-Mar. These results are consistent with some observation basically. The correlation analyses indict that the variations of transport westward is related with the southeasterly anomaly in the east tropical Indian ocean. The transport variation lags wind anomaly about 3 months. The correlation coefficient is more than 0.6. The transport is strong during IOD, for example in 1994 and 1997. The variations are also related with the northwesterly anomaly in the center equatorial Pacific and the easterly in the eastern equatorial Pacific. The transport is strong in most ENSO events. The above results suggest the sea surface wind stress from satellite is widely useful.

  1. North Pacific barium isotope distributions illustrate importance of ocean mixing in controlling barium distributions despite weak regional circulation

    NASA Astrophysics Data System (ADS)

    Geyman, B.; Auro, M. E. E.; LaVigne, M.; Ptacek, J. L.; Horner, T. J.

    2016-12-01

    The dissolved behavior of barium in the ocean exhibits a `refractory' nutrient-type profile similar to that of silicon, which has led to the use of Ba as a proxy for paleo-productivity and carbon cycling. Marine barium cycling appears to be controlled by the precipitation of micron-scale barite crystals in the mesopelagic and their subsequent dissolution throughout the water column, which has been shown to impart an isotopic signature that may itself harbor information about ocean circulation and export production. However, the utility of Ba-based proxies in chemical and paleoceanography relies on a sound understanding of the processes governing marine barium distributions, which remain unresolved. Here, we report the first full oceanographic depth profile of barium isotopes from the North Pacific Ocean (30 N, 140 W), which offers the ability to resolve biogeochemical cycling from mixing processes in a given water mass. Our data confirm findings from other oceanographic regions showing a close coupling between increasing [Ba] and decreasing Ba-isotope compositions with depth. Unlike other profiles however, this coupling is restricted to the upper 1,000 m of the North Pacific water column, with samples from between 1,000 m and 4,500 m showing a roughly 60 % increase in [Ba] but essentially no changes in their Ba-isotope compositions (within measurement uncertainty of 15 ppm/AMU). As with Atlantic data, samples spanning the entire profile define a linear trend (R2 > 0.9) when plotted as Ba-isotope compositions against 1/[Ba], indicating that conservative mixing can account for much of the Ba-isotope variation in the North Pacific water column. Overall, these findings highlight the utility of stable isotope measurements to illuminate the processes governing nutrient cycling, and support the critical role of large-scale ocean circulation in setting `refractory' nutrient distributions. These results have particular relevance to regions with relatively weak overturning circulation, such as the North Pacific, because they elucidate the mechanistic basis that underpins Ba/Ca and other Ba-based tracers of the marine carbon cycle in paleoceanography.

  2. Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom.

    PubMed

    Oka, Akira; Niwa, Yoshihiro

    2013-01-01

    Vertical mixing in the ocean is a key driver of the global ocean thermohaline circulation, one of the most important factors controlling past and future climate change. Prior observational and theoretical studies have focused on intense tidal mixing near the sea bottom (near-field mixing). However, ocean general circulation models that employ a parameterization of near-field mixing significantly underestimate the strength of the Pacific thermohaline circulation. Here we demonstrate that tidally induced mixing away from the sea bottom (far-field mixing) is essential in controlling the Pacific thermohaline circulation. Via the addition of far-field mixing to a widely used tidal parameterization, we successfully simulate the Pacific thermohaline circulation. We also propose that far-field mixing is indispensable for explaining the presence of the world ocean's oldest water in the eastern North Pacific Ocean. Our findings suggest that far-field mixing controls ventilation of the deep Pacific Ocean, a process important for ocean carbon and biogeochemical cycles.

  3. Tracking ocean heat uptake during the surface warming hiatus

    DOE PAGES

    Liu, Wei; Xie, Shang -Ping; Lu, Jian

    2016-03-30

    Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less

  4. Role of subsurface ocean in decadal climate predictability over the South Atlantic.

    PubMed

    Morioka, Yushi; Doi, Takeshi; Storto, Andrea; Masina, Simona; Behera, Swadhin K

    2018-06-04

    Decadal climate predictability in the South Atlantic is explored by performing reforecast experiments using a coupled general circulation model with two initialization schemes; one is assimilated with observed sea surface temperature (SST) only, and the other is additionally assimilated with observed subsurface ocean temperature and salinity. The South Atlantic is known to undergo decadal variability exhibiting a meridional dipole of SST anomalies through variations in the subtropical high and ocean heat transport. Decadal reforecast experiments in which only the model SST is initialized with the observation do not predict well the observed decadal SST variability in the South Atlantic, while the other experiments in which the model SST and subsurface ocean are initialized with the observation skillfully predict the observed decadal SST variability, particularly in the Southeast Atlantic. In-depth analysis of upper-ocean heat content reveals that a significant improvement of zonal heat transport in the Southeast Atlantic leads to skillful prediction of decadal SST variability there. These results demonstrate potential roles of subsurface ocean assimilation in the skillful prediction of decadal climate variability over the South Atlantic.

  5. Tracking ocean heat uptake during the surface warming hiatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Xie, Shang -Ping; Lu, Jian

    Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less

  6. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures

    PubMed Central

    Schmidt, Matthew W.; Chang, Ping; Hertzberg, Jennifer E.; Them, Theodore R.; Ji, Link; Otto-Bliesner, Bette L.

    2012-01-01

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256

  7. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.

    PubMed

    Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L

    2012-09-04

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition.

  8. Ocean circulation and climate during the past 120,000 years

    NASA Astrophysics Data System (ADS)

    Rahmstorf, Stefan

    2002-09-01

    Oceans cover more than two-thirds of our blue planet. The waters move in a global circulation system, driven by subtle density differences and transporting huge amounts of heat. Ocean circulation is thus an active and highly nonlinear player in the global climate game. Increasingly clear evidence implicates ocean circulation in abrupt and dramatic climate shifts, such as sudden temperature changes in Greenland on the order of 5-10 °C and massive surges of icebergs into the North Atlantic Ocean - events that have occurred repeatedly during the last glacial cycle.

  9. Impact of Targeted Ocean Observations for Improving Ocean Model Initialization for Coupled Hurricane Forecasting

    NASA Astrophysics Data System (ADS)

    Halliwell, G. R.; Srinivasan, A.; Kourafalou, V. H.; Yang, H.; Le Henaff, M.; Atlas, R. M.

    2012-12-01

    The accuracy of hurricane intensity forecasts produced by coupled forecast models is influenced by errors and biases in SST forecasts produced by the ocean model component and the resulting impact on the enthalpy flux from ocean to atmosphere that powers the storm. Errors and biases in fields used to initialize the ocean model seriously degrade SST forecast accuracy. One strategy for improving ocean model initialization is to design a targeted observing program using airplanes and in-situ devices such as floats and drifters so that assimilation of the additional data substantially reduces errors in the ocean analysis system that provides the initial fields. Given the complexity and expense of obtaining these additional observations, observing system design methods such as OSSEs are attractive for designing efficient observing strategies. A new fraternal-twin ocean OSSE system based on the HYbrid Coordinate Ocean Model (HYCOM) is used to assess the impact of targeted ocean profiles observed by hurricane research aircraft, and also by in-situ float and drifter deployments, on reducing errors in initial ocean fields. A 0.04-degree HYCOM simulation of the Gulf of Mexico is evaluated as the nature run by determining that important ocean circulation features such as the Loop Current and synoptic cyclones and anticyclones are realistically simulated. The data-assimilation system is run on a 0.08-degree HYCOM mesh with substantially different model configuration than the nature run, and it uses a new ENsemble Kalman Filter (ENKF) algorithm optimized for the ocean model's hybrid vertical coordinates. The OSSE system is evaluated and calibrated by first running Observing System Experiments (OSEs) to evaluate existing observing systems, specifically quantifying the impact of assimilating more than one satellite altimeter, and also the impact of assimilating targeted ocean profiles taken by the NOAA WP-3D hurricane research aircraft in the Gulf of Mexico during the Deepwater Horizon oil spill. OSSE evaluation and calibration is then performed by repeating these two OSEs with synthetic observations and comparing the resulting observing system impact to determine if it differs from the OSE results. OSSEs are first run to evaluate different airborne sampling strategies with respect to temporal frequency of flights and the horizontal separation of upper-ocean profiles during each flight. They are then run to assess the impact of releasing multiple floats and gliders. Evaluation strategy focuses on error reduction in fields important for hurricane forecasting such as the structure of ocean currents and eddies, upper ocean heat content distribution, and upper-ocean stratification.

  10. The interaction between sea ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea ice cover

    NASA Astrophysics Data System (ADS)

    Jensen, Mari F.; Nilsson, Johan; Nisancioglu, Kerim H.

    2016-11-01

    Changes in the sea ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea ice covered and salinity stratified Nordic Seas, and consists of a sea ice component and a two-layer ocean. The sea ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the diapycnal flow. In a system where the diapycnal flow increases with density differences, the sea ice acts as a positive feedback on a freshwater perturbation. If the diapycnal flow decreases with density differences, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and the temperature of the deep ocean do not need to increase as much as previously thought to provoke abrupt changes in sea ice.

  11. Impact of intra-seasonal oscillations of Indian summer monsoon on biogeochemical constituents of North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Das, D.; Chakrabarty, M.; Goswami, S.; Basu, D.; Chaudhuri, S.

    2018-05-01

    The intra-seasonal perturbations in the atmospheric weather are closely related to the variability in the ocean circulation. NASA Ocean Biogeochemical Model (NOBM) couples the oceanic general circulation and the radiative forcing. The NOBM model products of nitrate, total chlorophyll, and mixed layer depth (MLD) collected during the period from 1998 to 2007 as well as the sea surface temperature (SST), precipitation, outgoing long wave radiation (OLR), and wind are considered in this study to identify the influence of intra-seasonal oscillation (ISO) of Indian summer monsoon (ISM) on the biogeochemical constituents of Bay of Bengal (BOB) (6°-22° N; 80°-100° E) and Arabian Sea (AS) (3°-17° N; 55°-73.5° E) of North Indian Ocean (NIO). The active and break phases are the most significant components of ISO during ISM. The result of the study reveals that the upper ocean biology and chemistry significantly vary during the said phases of ISM. The nitrate, total chlorophyll, and MLD are observed to be strongly correlated with the ISO of ISM. The result shows that, during ISO of ISM, the concentration of nitrate and chlorophyll is strongly and positively correlated both in BOB and AS. However, the correlation is more in AS, endorsing that the Arabian Sea is more nutrient reach than Bay of Bengal. Nitrate and MLD, on the other hand, are strongly but negatively correlated in the said basins of North Indian Ocean (NIO). The forcing behind the variability of the biogeochemical constituents of BOB and AS during active and break phases of ISM is identified through the analyses of SST, precipitation, OLR, and wind.

  12. Uppermost oceanic crust structure and properties from multichannel seismic data at the Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Becel, A.; Carton, H. D.; Shillington, D. J.

    2017-12-01

    The most heterogeneous, porous and permeable layer within a subducting oceanic crust is the uppermost layer called Layer 2A. This layer, made of extrusive basalts, forms at the ridge axis and persists as a thin ( 600 m) low-velocity cap in old crust. Nearing the trench axis, when oceanic plate bends, normal faults can be formed or reactivated at the outer-rise allowing a more vigorous hydrothermal circulation to resume within this layer. Porosity and heterogeneity within this layer are important to assess because these parameters might have a profound impact on subduction zone processes. However, conventional refraction data quality is rarely good enough to look into detail into the properties of the uppermost oceanic layer. Here we use 2D marine long-offset multi-channel seismic (MCS) reflection data collected offshore of the Alaska Peninsula during the ALEUT Program. The dataset was acquired aboard the R/V Marcus Langseth with a 636-channels, 8-km long streamer. We present initial results from three 140 km long profiles across the 52-56Myr old incoming Pacific oceanic crust formed at fast spreading rate: two perpendicular margin and one parallel margin profiles. Those profiles are located outboard of the Shumagin gaps. Outboard of this subduction zone segment, abundant bending related normal faults are imaged and concentrated within 50-60 km of the trench. Long-offset MCS data exhibit a prominent triplication that includes postcritical reflections and turning waves within the upper crust at offsets larger than 3 km. The triplication suggests the presence of a velocity discontinuity within the upper oceanic crust. We follow a systematic and uniform approach to extract upper crustal post-critical reflections and add them to them to the vertical incidence MCS images. Images reveal small-scale variations in the thickness of the Layer 2A and the strength of its base along the profiles. The second step consists of the downward continuation followed by travel-time modeling of the long streamer data. The downward continuation of the shots and receivers appears to be essential to unravel the refracted energy in the upper crust and is used to determine the detailed velocity-depth structure.

  13. The hydrogeology of the Costa Rica Rift as constrained by results of ocean drilling program downhole experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, A.T.; Becker, K.; Narasimhan, T.

    1990-06-01

    Pore fluids are passively convecting through young oceanic sediments and crust around Deep Sea Drilling Project (DSDP) site 504 on the southern flank of the Costa Rica Rift, as inferred from a variety of geological, geochemical, and geothermal observations. The presence of a fluid circulation system is supported by new data collected on Ocean Drilling Program (ODP) Leg 111 and a predrilling survey cruise over the heavily sedimented, 5.9 Ma site; during the latter, elongated heat flow anomalies were mapped subparallel to structural strike, with individual measurements of twice the regional mean value, and large lateral and vertical geochemical gradientsmore » were detected in pore waters squeezed from sediment cores. Also, there is a strong correlation between heat flow, bathymetry, sediment thickness, and inferred fluid velocities up through the sediments. On an earlier DSDP leg, an 8-bar underpressure was measured in the upper 200 m of basement beneath thick sediment cover. The widely varied geothermal and hydrogeological observations near site 504 are readily explained by a model that combines (1) basement relief, (2) irregular sediment drape, (3) largely conductive heat transfer through the sediments overlying the crust, and (4) thermal and geochemical homogenization of pore fluids at the sediment/basement interface, which results from (5) topographically induced, passive hydrothermal circulation with large aspect ratio, convection cells. This convection involves mainly the permeable, upper 200-300 m of crust; the deeper crust is not involved. This convection is induced through a combination of buoyancy fluxes, owing to heating from below, and topographic variations on the seafloor and at the basement-sediment interface.« less

  14. Improved short-term variability in the thermosphere-ionosphere-mesosphere-electrodynamics general circulation model

    NASA Astrophysics Data System (ADS)

    Häusler, K.; Hagan, M. E.; Baumgaertner, A. J. G.; Maute, A.; Lu, G.; Doornbos, E.; Bruinsma, S.; Forbes, J. M.; Gasperini, F.

    2014-08-01

    We report on a new source of tidal variability in the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). Lower boundary forcing of the TIME-GCM for a simulation of November-December 2009 based on 3-hourly Modern-Era Retrospective Analysis for Research and Application (MERRA) reanalysis data includes day-to-day variations in both diurnal and semidiurnal tides of tropospheric origin. Comparison with TIME-GCM results from a heretofore standard simulation that includes climatological tropospheric tides from the global-scale wave model reveal evidence of the impacts of MERRA forcing throughout the model domain, including measurable tidal variability in the TIME-GCM upper thermosphere. Additional comparisons with measurements made by the Gravity field and steady-state Ocean Circulation Explorer satellite show improved TIME-GCM capability to capture day-to-day variations in thermospheric density for the November-December 2009 period with the new MERRA lower boundary forcing.

  15. Oceanic sources of predictability for MJO propagation across the Maritime Continent in a subset of S2S forecast models

    NASA Astrophysics Data System (ADS)

    DeMott, C. A.; Klingaman, N. P.

    2017-12-01

    Skillful prediction of the Madden-Julian oscillation (MJO) passage across the Maritime Continent (MC) has important implications for global forecasts of high-impact weather events, such as atmospheric rivers and heat waves. The North American teleconnection response to the MJO is strongest when MJO convection is located in the western Pacific Ocean, but many climate and forecast models are deficient in their simulation of MC-crossing MJO events. Compared to atmosphere-only general circulation models (AGCMs), MJO simulation skill generally improves with the addition of ocean feedbacks in coupled GCMs (CGCMs). Using observations, previous studies have noted that the degree of ocean coupling may vary considerably from one MJO event to the next. The coupling mechanisms may be linked to the presence of ocean Equatorial Rossby waves, the sign and amplitude of Equatorial surface currents, and the upper ocean temperature and salinity profiles. In this study, we assess the role of ocean feedbacks to MJO prediction skill using a subset of CGCMs participating in the Subseasonal-to-Seasonal (S2S) Project database. Oceanic observational and reanalysis datasets are used to characterize the upper ocean background state for observed MJO events that do and do not propagate beyond the MC. The ability of forecast models to capture the oceanic influence on the MJO is first assessed by quantifying SST forecast skill. Next, a set of previously developed air-sea interaction diagnostics is applied to model output to measure the role of SST perturbations on the forecast MJO. The "SST effect" in forecast MJO events is compared to that obtained from reanalysis data. Leveraging all ensemble members of a given forecast helps disentangle oceanic model biases from atmospheric model biases, both of which can influence the expression of ocean feedbacks in coupled forecast systems. Results of this study will help identify areas of needed model improvement for improved MJO forecasts.

  16. Toward a multivariate reanalysis of the North Atlantic ocean biogeochemistry during 1998-2006 based on the assimilation of SeaWiFS chlorophyll data

    NASA Astrophysics Data System (ADS)

    Fontana, C.; Brasseur, P.; Brankart, J.-M.

    2012-04-01

    Today, the routine assimilation of satellite data into operational models of the ocean circulation is mature enough to enable the production of global reanalyses describing the ocean circulation variability during the past decades. The expansion of the "reanalysis" concept from ocean physics to biogeochemistry is a timely challenge that motivates the present study. The objective of this paper is to investigate the potential benefits of assimilating satellite-estimated chlorophyll data into a basin-scale three-dimensional coupled physical-biogeochemical model of the North-Atlantic. The aim is on one hand to improve forecasts of ocean biogeochemical properties and on the other hand to define a methodology for producing data-driven climatologies based on coupled physical-biogeochemical modelling. A simplified variant of the Kalman filter is used to assimilate ocean color data during a 9 year-long period. In this frame, two experiences are carried out, with and without anamorphic transformations of the state vector variables. Data assimilation efficiency is assessed with respect to the assimilated data set, the nitrate World Ocean Atlas database and a derived climatology. Along the simulation period, the non-linear assimilation scheme clearly improves the surface chlorophyll concentrations analysis and forecast, especially in the North Atlantic bloom region. Nitrate concentration forecasts are also improved thanks to the assimilation of ocean color data while this improvement is limited to the upper layer of the water column, in agreement with recent related litterature. This feature is explained by the weak correlation taken into account by the assimilation between surface phytoplankton and nitrate concentration deeper than 50 m. The assessement of the non-linear assimilation experiments indicates that the proposed methodology provides the skeleton of an assimilative system suitable for reanalysing the ocean biogeochemistry based on ocean color data.

  17. Toward a multivariate reanalysis of the North Atlantic Ocean biogeochemistry during 1998-2006 based on the assimilation of SeaWiFS chlorophyll data

    NASA Astrophysics Data System (ADS)

    Fontana, C.; Brasseur, P.; Brankart, J.-M.

    2013-01-01

    Today, the routine assimilation of satellite data into operational models of ocean circulation is mature enough to enable the production of global reanalyses describing the ocean circulation variability during the past decades. The expansion of the "reanalysis" concept from ocean physics to biogeochemistry is a timely challenge that motivates the present study. The objective of this paper is to investigate the potential benefits of assimilating satellite-estimated chlorophyll data into a basin-scale three-dimensional coupled physical-biogeochemical model of the North Atlantic. The aim is on the one hand to improve forecasts of ocean biogeochemical properties and on the other hand to define a methodology for producing data-driven climatologies based on coupled physical-biogeochemical modeling. A simplified variant of the Kalman filter is used to assimilate ocean color data during a 9-year period. In this frame, two experiments are carried out, with and without anamorphic transformations of the state vector variables. Data assimilation efficiency is assessed with respect to the assimilated data set, nitrate of the World Ocean Atlas database and a derived climatology. Along the simulation period, the non-linear assimilation scheme clearly improves the surface analysis and forecast chlorophyll concentrations, especially in the North Atlantic bloom region. Nitrate concentration forecasts are also improved thanks to the assimilation of ocean color data while this improvement is limited to the upper layer of the water column, in agreement with recent related literature. This feature is explained by the weak correlation taken into account by the assimilation between surface phytoplankton and nitrate concentrations deeper than 50 meters. The assessment of the non-linear assimilation experiments indicates that the proposed methodology provides the skeleton of an assimilative system suitable for reanalyzing the ocean biogeochemistry based on ocean color data.

  18. Thermosphere-Ionosphere-Mesosphere Modeling Using the TIE-GCM, TIME-GCM, and WACCM That Will Lead to the Development of a Seamless Model of the Whole Atmosphere

    DTIC Science & Technology

    2006-09-30

    disturbances from the lower atmosphere and ocean affect the upper atmosphere and how this variability interacts with the variability generated by solar and...represents “ general circulation model.” Both models include self-consistent ionospheric electrodynamics, that is, a calculation of the electric fields...and currents generated by the ionospheric dynamo, and consideration of their effects on the neutral dynamics. The TIE-GCM is used for studies that

  19. Methods of testing parameterizations: Vertical ocean mixing

    NASA Technical Reports Server (NTRS)

    Tziperman, Eli

    1992-01-01

    The ocean's velocity field is characterized by an exceptional variety of scales. While the small-scale oceanic turbulence responsible for the vertical mixing in the ocean is of scales a few centimeters and smaller, the oceanic general circulation is characterized by horizontal scales of thousands of kilometers. In oceanic general circulation models that are typically run today, the vertical structure of the ocean is represented by a few tens of discrete grid points. Such models cannot explicitly model the small-scale mixing processes, and must, therefore, find ways to parameterize them in terms of the larger-scale fields. Finding a parameterization that is both reliable and plausible to use in ocean models is not a simple task. Vertical mixing in the ocean is the combined result of many complex processes, and, in fact, mixing is one of the less known and less understood aspects of the oceanic circulation. In present models of the oceanic circulation, the many complex processes responsible for vertical mixing are often parameterized in an oversimplified manner. Yet, finding an adequate parameterization of vertical ocean mixing is crucial to the successful application of ocean models to climate studies. The results of general circulation models for quantities that are of particular interest to climate studies, such as the meridional heat flux carried by the ocean, are quite sensitive to the strength of the vertical mixing. We try to examine the difficulties in choosing an appropriate vertical mixing parameterization, and the methods that are available for validating different parameterizations by comparing model results to oceanographic data. First, some of the physical processes responsible for vertically mixing the ocean are briefly mentioned, and some possible approaches to the parameterization of these processes in oceanographic general circulation models are described in the following section. We then discuss the role of the vertical mixing in the physics of the large-scale ocean circulation, and examine methods of validating mixing parameterizations using large-scale ocean models.

  20. Diversity in the representation of large-scale circulation associated with ENSO-Indian summer monsoon teleconnections in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.

    2018-04-01

    Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are underestimated. On the other hand, many G2 models are able to represent most of large-scale circulation over Indo-Pacific region associated with El Niño and hence provide more realistic ENSO-ISM teleconnections. Therefore, this study advocates the importance of representation/simulation of large-scale circulation patterns during El Niño years in coupled models in order to capture El Niño-monsoon teleconnections well.

  1. New insights on the propagation of the Near Inertial Waves (NIW) governing the bottom dynamic of the Western Ionian Sea (Eastern Mediterranean Sea).

    NASA Astrophysics Data System (ADS)

    Lo Bue, N.; Artale, V.; Marullo, S.; Marinaro, G.; Embriaco, D.; Favali, P.; Beranzoli, L.

    2017-12-01

    The past general idea that the ocean-deep circulation is in quasi-stationary motion, has conditioned the observations of deep layers for a long time, excluding them from the majority of the surveys around the ocean world and influencing studies on the deep ocean processes. After the pioneering work of Munk (1966) highlighting the importance of bottom mixing processes, an underestimation of these issue has continued to persist for decades, due also to the difficulty to make reliable observations in the abyssal layers. The real awareness about the unsteady state of the abyssal layers has only risen recently and encourages us to wonder how the deep mechanisms can induce an internal instability and, consequently, affect the ocean circulation. The NIWs are characterized by a frequency near the inertial frequency f and can be generated by a variety of mechanisms, including wind, nonlinear interactions wave-shear flow and wave-topography, and geostrophic adjustments. NIWs represent one of the main high-frequency variabilities in the ocean, and they contain around half the kinetic energy observed in the oceans (Simmons et al. 2012) appearing as a prominent peak rising well above the Garrett & Munk (1975) continuum internal wave spectrum. As such, they upset the mixing processes in the upper ocean and they can interact strongly with mesoscale and sub-mesoscale motions. Likewise, NIWs likely affect the mixing of the deep ocean in ways that are just beginning to be understood. The analysis carried out on yearly time series collected by the bottom observatory SN1, the Western Ionian node of EMSO (European Multidisciplinary Seafloor and water column Observatory) Research Infrastructure, provides new important understanding on the role of the NIWs in the abyssal ocean. Also, this analysis is very useful to shed light on the possible mechanism that can trigger deep processes such as the abyssal vortex chains found by Rubino et al. (2012) in the Ionian abyssal plain of the Eastern Mediterranean (EM) basin. Finally, spectral analysis, including the Singular Spectrum Analysis (SSA) and Wavelet, allow us to explain how the NIWs can contributes to activate and increase the mixing in the bottom layers with significant impact on overall abyssal and deep circulation at local and regional scale (Mediterranean Sea).

  2. South Atlantic meridional transports from NEMO-based simulations and reanalyses

    NASA Astrophysics Data System (ADS)

    Mignac, Davi; Ferreira, David; Haines, Keith

    2018-02-01

    The meridional heat transport (MHT) of the South Atlantic plays a key role in the global heat budget: it is the only equatorward basin-scale ocean heat transport and it sets the northward direction of the global cross-equatorial transport. Its strength and variability, however, are not well known. The South Atlantic transports are evaluated for four state-of-the-art global ocean reanalyses (ORAs) and two free-running models (FRMs) in the period 1997-2010. All products employ the Nucleus for European Modelling of the Oceans (NEMO) model, and the ORAs share very similar configurations. Very few previous works have looked at ocean circulation patterns in reanalysis products, but here we show that the ORA basin interior transports are consistently improved by the assimilated in situ and satellite observations relative to the FRMs, especially in the Argo period. The ORAs also exhibit systematically higher meridional transports than the FRMs, which is in closer agreement with observational estimates at 35 and 11° S. However, the data assimilation impact on the meridional transports still greatly varies among the ORAs, leading to differences up to ˜ 8 Sv and 0.4 PW in the South Atlantic Meridional Overturning Circulation and the MHTs, respectively. We narrow this down to large inter-product discrepancies in the western boundary currents (WBCs) at both upper and deep levels explaining up to ˜ 85 % of the inter-product differences in MHT. We show that meridional velocity differences, rather than temperature differences, in the WBCs drive ˜ 83 % of this MHT spread. These findings show that the present ocean observation network and data assimilation schemes can be used to consistently constrain the South Atlantic interior circulation but not the overturning component, which is dominated by the narrow western boundary currents. This will likely limit the effectiveness of ORA products for climate or decadal prediction studies.

  3. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing.

    PubMed

    Dufois, François; Hardman-Mountford, Nick J; Greenwood, Jim; Richardson, Anthony J; Feng, Ming; Matear, Richard J

    2016-05-01

    Mesoscale eddies are ubiquitous features of ocean circulation that modulate the supply of nutrients to the upper sunlit ocean, influencing the rates of carbon fixation and export. The popular eddy-pumping paradigm implies that nutrient fluxes are enhanced in cyclonic eddies because of upwelling inside the eddy, leading to higher phytoplankton production. We show that this view does not hold for a substantial portion of eddies within oceanic subtropical gyres, the largest ecosystems in the ocean. Using space-based measurements and a global biogeochemical model, we demonstrate that during winter when subtropical eddies are most productive, there is increased chlorophyll in anticyclones compared with cyclones in all subtropical gyres (by 3.6 to 16.7% for the five basins). The model suggests that this is a consequence of the modulation of winter mixing by eddies. These results establish a new paradigm for anticyclonic eddies in subtropical gyres and could have important implications for the biological carbon pump and the global carbon cycle.

  4. Atmospheric and oceanographic research review, 1979

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Papers generated by atmospheric, oceanographic, and climatological research performed during 1979 at the Goddard Laboratory for Atmospheric Sciences are presented. The GARP/global weather research is aimed at developing techniques for the utilization and analysis of the FGGE data sets. Observing system studies were aimed at developing a GLAS TIROS N sounding retrieval system and preparing for the joint NOAA/NASA AMTS simulation study. The climate research objective is to support the development and effective utilization of space acquired data systems by developing the GLAS GCM for short range climate predictions, studies of the sensitivity of climate to boundary conditions, and predictability studies. Ocean/air interaction studies concentrated on the development of models for the prediction of upper ocean currents, temperatures, sea state, mixed layer depths, and upwelling zones, and on studies of the interactions of the atmospheric and oceanic circulation systems on time scales of a month or more.

  5. On the relationship between satellite-estimated bio-optical and thermal properties in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Jolliff, Jason K.; Kindle, John C.; Penta, Bradley; Helber, Robert; Lee, Zhongping; Shulman, Igor; Arnone, Robert; Rowley, Clark D.

    2008-03-01

    Three years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data were combined with three-dimensional thermal fields generated by the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) in order to examine the interdependencies between bio-optical fields and their relationship to seasonal and mesoscale changes in upper ocean thermal structure. The combined data set suggests that the oceanic boundary layer within the Gulf of Mexico may be broadly defined by two seasonally occurring bio-thermal periods. A winter mixing period, characterized by net heat losses to the atmosphere, deepening of the isothermal layer depth, and annual maxima of satellite-estimated colored detrital matter (CDM) absorption coefficients and surface pigment concentration, was followed by a thermally stratified period characterized by net surface ocean heating, reduced isothermal layer depths, and annual minima in surface bio-optical fields. Variability in the interdependencies of ocean color products was used to diagnose an attendant shift in the size-structure of surface phytoplankton communities as well as identify CDM as the constituent responsible for the majority of blue-light absorption in Gulf of Mexico surface waters. The mesoscale circulation, as resolved by MODAS thermal fields into cold and warm-core eddies, appears to significantly modulate the seasonal bio-optical cycle of CDM absorption and surface pigment concentration. An empirical model was developed to describe CDM absorption as a function of upper ocean thermal energy. The model accounted for nearly half the variance in the satellite-estimate of this bio-optical variable. Large mismatches between the model and satellite data implied episodes of shelf water export to the deep Gulf of Mexico.

  6. Reduced-Order Biogeochemical Flux Model for High-Resolution Multi-Scale Biophysical Simulations

    NASA Astrophysics Data System (ADS)

    Smith, Katherine; Hamlington, Peter; Pinardi, Nadia; Zavatarelli, Marco

    2017-04-01

    Biogeochemical tracers and their interactions with upper ocean physical processes such as submesoscale circulations and small-scale turbulence are critical for understanding the role of the ocean in the global carbon cycle. These interactions can cause small-scale spatial and temporal heterogeneity in tracer distributions that can, in turn, greatly affect carbon exchange rates between the atmosphere and interior ocean. For this reason, it is important to take into account small-scale biophysical interactions when modeling the global carbon cycle. However, explicitly resolving these interactions in an earth system model (ESM) is currently infeasible due to the enormous associated computational cost. As a result, understanding and subsequently parameterizing how these small-scale heterogeneous distributions develop and how they relate to larger resolved scales is critical for obtaining improved predictions of carbon exchange rates in ESMs. In order to address this need, we have developed the reduced-order, 17 state variable Biogeochemical Flux Model (BFM-17) that follows the chemical functional group approach, which allows for non-Redfield stoichiometric ratios and the exchange of matter through units of carbon, nitrate, and phosphate. This model captures the behavior of open-ocean biogeochemical systems without substantially increasing computational cost, thus allowing the model to be combined with computationally-intensive, fully three-dimensional, non-hydrostatic large eddy simulations (LES). In this talk, we couple BFM-17 with the Princeton Ocean Model and show good agreement between predicted monthly-averaged results and Bermuda testbed area field data (including the Bermuda-Atlantic Time-series Study and Bermuda Testbed Mooring). Through these tests, we demonstrate the capability of BFM-17 to accurately model open-ocean biochemistry. Additionally, we discuss the use of BFM-17 within a multi-scale LES framework and outline how this will further our understanding of turbulent biophysical interactions in the upper ocean.

  7. Reduced-Order Biogeochemical Flux Model for High-Resolution Multi-Scale Biophysical Simulations

    NASA Astrophysics Data System (ADS)

    Smith, K.; Hamlington, P.; Pinardi, N.; Zavatarelli, M.; Milliff, R. F.

    2016-12-01

    Biogeochemical tracers and their interactions with upper ocean physical processes such as submesoscale circulations and small-scale turbulence are critical for understanding the role of the ocean in the global carbon cycle. These interactions can cause small-scale spatial and temporal heterogeneity in tracer distributions which can, in turn, greatly affect carbon exchange rates between the atmosphere and interior ocean. For this reason, it is important to take into account small-scale biophysical interactions when modeling the global carbon cycle. However, explicitly resolving these interactions in an earth system model (ESM) is currently infeasible due to the enormous associated computational cost. As a result, understanding and subsequently parametrizing how these small-scale heterogeneous distributions develop and how they relate to larger resolved scales is critical for obtaining improved predictions of carbon exchange rates in ESMs. In order to address this need, we have developed the reduced-order, 17 state variable Biogeochemical Flux Model (BFM-17). This model captures the behavior of open-ocean biogeochemical systems without substantially increasing computational cost, thus allowing the model to be combined with computationally-intensive, fully three-dimensional, non-hydrostatic large eddy simulations (LES). In this talk, we couple BFM-17 with the Princeton Ocean Model and show good agreement between predicted monthly-averaged results and Bermuda testbed area field data (including the Bermuda-Atlantic Time Series and Bermuda Testbed Mooring). Through these tests, we demonstrate the capability of BFM-17 to accurately model open-ocean biochemistry. Additionally, we discuss the use of BFM-17 within a multi-scale LES framework and outline how this will further our understanding of turbulent biophysical interactions in the upper ocean.

  8. The Atlantic Multidecadal Oscillation without a role for ocean circulation.

    PubMed

    Clement, Amy; Bellomo, Katinka; Murphy, Lisa N; Cane, Mark A; Mauritsen, Thorsten; Rädel, Gaby; Stevens, Bjorn

    2015-10-16

    The Atlantic Multidecadal Oscillation (AMO) is a major mode of climate variability with important societal impacts. Most previous explanations identify the driver of the AMO as the ocean circulation, specifically the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the main features of the observed AMO are reproduced in models where the ocean heat transport is prescribed and thus cannot be the driver. Allowing the ocean circulation to interact with the atmosphere does not significantly alter the characteristics of the AMO in the current generation of climate models. These results suggest that the AMO is the response to stochastic forcing from the mid-latitude atmospheric circulation, with thermal coupling playing a role in the tropics. In this view, the AMOC and other ocean circulation changes would be largely a response to, not a cause of, the AMO. Copyright © 2015, American Association for the Advancement of Science.

  9. Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate.

    PubMed

    Thirumalai, Kaustubh; Quinn, Terrence M; Okumura, Yuko; Richey, Julie N; Partin, Judson W; Poore, Richard Z; Moreno-Chamarro, Eduardo

    2018-01-26

    Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.

  10. Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate

    USGS Publications Warehouse

    Thirumalai, Kaustubh; Quinn, Terrence M.; Okumura, Yuko; Richey, Julie; Partin, Judson W.; Poore, Richard Z.; Moreno-Chamarro, Eduardo

    2018-01-01

    Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.

  11. Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals

    PubMed Central

    Charrassin, J.-B.; Hindell, M.; Rintoul, S. R.; Roquet, F.; Sokolov, S.; Biuw, M.; Costa, D.; Boehme, L.; Lovell, P.; Coleman, R.; Timmermann, R.; Meijers, A.; Meredith, M.; Park, Y.-H.; Bailleul, F.; Goebel, M.; Tremblay, Y.; Bost, C.-A.; McMahon, C. R.; Field, I. C.; Fedak, M. A.; Guinet, C.

    2008-01-01

    Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea ice, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea ice remains almost entirely unobserved and the rate of sea-ice formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-ice zone, allowing the major fronts to be mapped south of 60°S and sea-ice formation rates to be inferred from changes in upper ocean salinity. Sea-ice production rates peaked in early winter (April–May) during the rapid northward expansion of the pack ice and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean–sea-ice model. By measuring the high-latitude ocean during winter, elephant seals fill a “blind spot” in our sampling coverage, enabling the establishment of a truly global ocean-observing system. PMID:18695241

  12. Global Observations and Understanding of the General Circulation of the Oceans

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The workshop was organized to: (1) assess the ability to obtain ocean data on a global scale that could profoundly change our understanding of the circulation; (2) identify the primary and secondary elements needed to conduct a World Ocean Circulation Experiment (WOCE); (3) if the ability is achievable, to determine what the U.S. role in such an experiment should be; and (4) outline the steps necessary to assure that an appropriate program is conducted. The consensus of the workshop was that a World Ocean Circulation Experiment appears feasible, worthwhile, and timely. Participants did agree that such a program should have the overall goal of understanding the general circulation of the global ocean well enough to be able to predict ocean response and feedback to long-term changes in the atmosphere. The overall goal, specific objectives, and recommendations for next steps in planning such an experiment are included.

  13. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition

    NASA Astrophysics Data System (ADS)

    Goldner, A.; Herold, N.; Huber, M.

    2014-07-01

    Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.

  14. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.

    PubMed

    Goldner, A; Herold, N; Huber, M

    2014-07-31

    Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.

  15. Submesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin

    2018-03-01

    Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.

  16. Vertical eddy diffusivity as a control parameter in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Martinez Avellaneda, N.; Cornuelle, B.

    2011-12-01

    Ocean models suffer from errors in the treatment of turbulent sub-grid-scale motions responsible for mixing and energy dissipation. Unrealistic small-scale physics in models can have large-scale consequences, such as biases in the upper ocean temperature, a symptom of poorly-simulated upwelling, currents and air-sea interactions. This is of special importance in the tropical Pacific Ocean (TP), which is home to energetic air-sea interactions that affect global climate. It has been shown in a number of studies that the simulated ENSO variability is highly dependent on the state of the ocean (e.g.: background mixing). Moreover, the magnitude of the vertical numerical diffusion is of primary importance in properly reproducing the Pacific equatorial thermocline. This work is part of a NASA-funded project to estimate the space- and time-varying ocean mixing coefficients in an eddy-permitting (1/3dgr) model of the TP to obtain an improved estimate of its time-varying circulation and its underlying dynamics. While an estimation procedure for the TP (26dgr S - 30dgr N) in underway using the MIT general circulation model, complementary adjoint-based sensitivity studies have been carried out for the starting ocean state from Forget (2010). This analysis aids the interpretation of the estimated mixing coefficients and possible error compensation. The focus of the sensitivity tests is the Equatorial Undercurrent and sub-thermocline jets (i.e., Tsuchiya Jets), which have been thought to have strong dependence on vertical diffusivity and should provide checks on the estimated mixing parameters. In order to build intuition for the vertical diffusivity adjoint results in the TP, adjoint and forward perturbed simulations were carried out for an idealized sharp thermocline in a rectangular domain.

  17. Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean

    NASA Astrophysics Data System (ADS)

    Hattermann, T.; Smedsrud, L. H.; Nøst, O. A.; Lilly, J. M.; Galton-Fenzi, B. K.

    2014-10-01

    Melting at the base of floating ice shelves is a dominant term in the overall Antarctic mass budget. This study applies a high-resolution regional ice shelf/ocean model, constrained by observations, to (i) quantify present basal mass loss at the Fimbul Ice Shelf (FIS); and (ii) investigate the oceanic mechanisms that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt rates suggested by observations and show that melting is primarily determined by the depth of the coastal thermocline, regulating deep ocean heat fluxes towards the ice. Furthermore, the uneven distribution of ice shelf area at different depths modulates the melting response to oceanic forcing, causing the existence of two distinct states of melting at the FIS. In the simulated present-day state, only small amounts of Modified Warm Deep Water enter the continental shelf, and ocean temperatures beneath the ice are close to the surface freezing point. The basal mass loss in this so-called state of "shallow melting" is mainly controlled by the seasonal inflow of solar-heated surface water affecting large areas of shallow ice in the upper part of the cavity. This is in contrast to a state of "deep melting", in which the thermocline rises above the shelf break depth, establishing a continuous inflow of Warm Deep Water towards the deep ice. The transition between the two states is found to be determined by a complex response of the Antarctic Slope Front overturning circulation to varying climate forcings. A proper representation of these frontal dynamics in climate models will therefore be crucial when assessing the evolution of ice shelf basal melting along this sector of Antarctica.

  18. The Influence of Ice-Ocean Interactions on Europa's Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Manucharyan, G. E.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2016-12-01

    Jupiter's moon Europa appears to have a global liquid ocean, which is located beneath an ice shell that covers the moon's entire surface. Linking ocean dynamics and ice-ocean interactions is crucial to understanding observed surface features on Europa as well as other satellite measurements. Ocean properties and circulation may also provide clues as to whether the moon has the potential to support extraterrestrial life through chemical transport governed by ice-ocean interactions. Previous studies have identified a Hadley cell-like overturning circulation extending from the equator to mid latitudes. However, these model simulations do not consider ice-ocean interactions. In this study, our goal is to investigate how the ocean circulation may be affected by ice. We study two ice-related processes by building idealized models. One process is horizontal convection driven by an equator-to-pole buoyancy difference due to latitudinal ice transport at the ocean surface, which is found to be much weaker than the convective overturning circulation. The second process we consider is the freshwater layer formed by ice melting at the equator. A strong buoyancy contrast between the freshwater layer and the underlying water suppresses convection and turbulent mixing, which may modify the surface heat flux from the ocean to the bottom of the ice. We find that the salinity of the ocean below the freshwater layer tends to be homogeneous both vertically and horizontally with the presence of an overturning circulation. Critical values of circulation strength constrain the freshwater layer depth, and this relationship is sensitive to the average salinity of the ocean. Further coupling of temperature and salinity of the ice and the ocean that includes mutual influences between the surface heat flux and the freshwater layer may provide additional insights into the ice-ocean feedback, and its influence on the latitudinal difference of heat transport.

  19. Impact of the Spring SST Gradient between the Tropical Indian Ocean and Western Pacific on Landfalling Tropical Cyclone Frequency in China

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Chen, Guanghua

    2018-06-01

    The present study identifies a significant influence of the sea surface temperature gradient (SSTG) between the tropical Indian Ocean (TIO; 15°S-15°N, 40°-90°E) and the western Pacific warm pool (WWP; 0°-15°N, 125°-155°E) in boreal spring on tropical cyclone (TC) landfall frequency in mainland China in boreal summer. During the period 1979-2015, a positive spring SSTG induces a zonal inter-basin circulation anomaly with lower-level convergence, mid-tropospheric ascendance and upper-level divergence over the west-central TIO, and the opposite situation over the WWP, which produces lower-level anomalous easterlies and upper-level anomalous westerlies between the TIO and WWP. This zonal circulation anomaly further warms the west-central TIO by driving warm water westward and cools the WWP by inducing local upwelling, which facilitates the persistence of the anomaly until the summer. Consequently, lower-level negative vorticity, strong vertical wind shear and lower-level anticyclonic anomalies prevail over most of the western North Pacific (WNP), which decreases the TC genesis frequency. Meanwhile, there is an anomalous mid-tropospheric anticyclone over the main WNP TC genesis region, meaning a westerly anomaly dominates over coastal regions of mainland China, which is unfavorable for steering TCs to make landfall in mainland China during summer. This implies that the spring SSTG may act as a potential indicator for TC landfall frequency in mainland China.

  20. Early concepts and charts of ocean circulation

    NASA Astrophysics Data System (ADS)

    Peterson, R. G.; Stramma, L.; Kortum, G.

    Charts of ocean currents from the late nineteenth century show that already by then the patterns of surface circulation in regions away from polar latitudes were well understood. This fundamental knowledge accumulated gradually through centuries of sea travel and had reached a state of near correctness by the time dedicated research cruises, full-depth measurements and the practical application of the dynamical method were being instituted. Perhaps because of the foregoing, many of the pioneering works, critical to establishing what the upper-level circulation is like, the majority of the charts accompanying them, and several of the groundbreaking theoretical treatments on the physics of currents, are only poorly known to present-day oceanographers. In this paper we trace Western developments in knowledge and understanding of ocean circulation from the earliest times to the late-1800s transition into the modern era. We also discuss certain peripheral advances that proved critical to the subject. The earliest known ideas, dating from the Bronze Age and described by Homer, necessarily reflect severe limitations to geographical knowledge, as well as basic human predilections toward conjecture and exaggeration in the face of inadequate information. People considered the earth to be flat and circular, with the ocean flowing like a river around it. They also believed in horrific whirlpools, a concept that persisted into the Renaissance and which would later provide subject material for modern literature. From the Greek Classical Age, we find hydrologic theories of Earth's interior being laced with subterranean channels (Socrates) and all motion deriving from a divine force forever propelling the heavens toward the west, the primum mobile (Aristotle). These ideas, particularly the latter, dominated opinions about ocean circulation into the late Renaissance. By late Antiquity mariners had very likely acquired intimate knowledge of coastal currents in the Mediterranean, but little about them was reported in the Classical works. Following the dark and Middle Ages, when little progress was made, the voyages of discovery brought startling observations of many of Earth's most important ocean currents, such as the North and South Equatorial currents, the Gulf Stream, the Agulhas, Kuroshio, Peru, and Guinea currents, and others. The Gulf Stream appears to have been mapped as early as 1525 (Ribeiro) on the basis of Spanish pilot charts. Some currents were found to be westward, in the direction of the primum mobile as expected by theologians and philosophers, while others were not. The fifteenth through seventeenth centuries were marked by attainments of knowledge that increasingly taxed the abilities of science writers to reconcile new information with accepted doctrine. Consequences of this were descriptions of ocean circulation that questioned doctrine, yet were limited by it (Martyr; Gilbert; Bourne; Varen), while other descriptions disdainfully violated observation (Kircher; Happel). The expectation of a continuous westward oceanic flow around Earth in the direction of the primum mobile was so pervasive that it became central to arguments about a need for a passage through or around the Canadian north, and thus weighed significantly on the exploration and mapping of North America. Religious influences and the conceptual importance of the primum mobile waned by the close of the Renaissance and wind came to be seen as the primary cause of ocean currents (Dampier). The Gulf Stream (Franklin) and other North Atlantic flow patterns (de Brahm), as well as the southern Agulhas Current (Rennell), were mapped in the mid-to-late eighteenth century. Significant advances beyond these in determining the global ocean circulation came only after the routine determination of longitude at sea was instituted. The introduction of the marine chronometer in the late eighteenth century (Harrison) made this possible. By the end of the eighteenth century it was realized that water is a poor conductor of heat and, unlike that of freshwater, the density of seawater continues to increase as it is cooled to its freezing point; the far-reaching significance of the implied vertical convection and deep circulation of the ocean on the moderation of climate was immediately clear (Rumford), though observations were available almost exclusively from the ocean's surface. Largely because of the marine chronometer, a wealth of unprecedentedly-accurate information about zonal, as well as meridional, surface currents began to accumulate in various hydrographic offices. In the early nineteenth century data from the Atlantic were collected and reduced in a systematic fashion (Rennell), to produce the first detailed description of the major circulation patterns at the surface for the entire mid- and low-latitude Atlantic, along with evidence for cross-equatorial flow. This work provided a foundation for the assemblage of a global data set (Humboldt; Berghaus) that yielded a worldwide charting of the non-polar currents by the late 1830s. Subtleties such as the North Equatorial Countercurrent in the Pacific were revealed for the first time. During the next two decades, the western intensification of subtropical gyres was recognized (Wilkes) while numerous refinements were made to other global descriptions (Wilkes; Kerhallet; Findlay). Heuristic and often incorrect theories of what causes the circulations in the atmosphere and oceans were popularized in the 1850s and 1860s which led to a precipitous decline in the quality of charts intended for the public (Maury; Gareis and Becker). Such errors in popular theories provided motivation for the adoption of analytical methods, which in turn led directly to the discovery of the full effect of Earth's rotation on relatively large-scale motion and the realization of how that effect produces flow perpendicular to horizontal pressure gradients (Ferrel). The precedents for modern dedicated research cruises came in the 1860s and 1870s (i.e. Lightning; Porcupine; Challenger; Gazelle; Vøringen), as well as mounting evidence for the existence of a deep and global thermohaline circulation (Carpenter; Prestwich). The dynamical method for calculating geostrophic flow in the atmosphere (Guldberg and Mohn) and a precursor to our present formulation for quantizing surface wind stress (Zöppritz) were introduced in the 1870s. On a regional scale for the Norwegian Sea, the dynamical method was applied to marine measurements made at depth to yield a three-dimensional view of flow patterns (Mohn). Further insight into the deep circulation came slowly, but with ever increasing numbers of observations being made at and near the surface, the upper-layer circulation in non-polar latitudes was approximately described by the late 1880s (Krümmel).

  1. The Indonesian throughflow, its variability and centennial change

    NASA Astrophysics Data System (ADS)

    Feng, Ming; Zhang, Ningning; Liu, Qinyan; Wijffels, Susan

    2018-12-01

    The Indonesian Throughflow (ITF) is an important component of the upper cell of the global overturning circulation that provides a low-latitude pathway for warm, fresh waters from the Pacific to enter the Indian Ocean. Variability and changes of the ITF have significant impacts on Indo-Pacific oceanography and global climate. In this paper, the observed features of the ITF and its interannual to decadal variability are reviewed, and processes that influence the centennial change of the ITF under the influence of the global warming are discussed. The ITF flows across a region that comprises the intersection of two ocean waveguides—those of the equatorial Pacific and equatorial Indian Ocean. The ITF geostrophic transport is stronger during La Niñas and weaker during El Niños due to the influences through the Pacific waveguide. The Indian Ocean wind variability associated with the Indian Ocean Dipole (IOD) in many years offsets the Pacific ENSO influences on the ITF geostrophic transport during the developing and mature phases of El Niño and La Niña through the Indian Ocean waveguide, due to the co-varying IOD variability with ENSO. Decadal and multi-decadal changes of the geostrophic ITF transport have been revealed: there was a weakening change from the mid-1970s climate regime shift followed by a strengthening trend of about 1Sv every 10 year during 1984-2013. These decadal changes are mostly due to the ITF responses to decadal variations of the trade winds in the Pacific. Thus, Godfrey's Island Rule, as well as other ITF proxies, appears to be able to quantify decadal variations of the ITF. Climate models project a weakening trend of the ITF under the global warming. Both climate models and downscaled ocean model show that this ITF weakening is not directly associated with the changes of the trade winds in the Pacific into the future, and the reduction of deep upwelling in the Pacific basin is mainly responsible for the ITF weakening. There is a need to amend the Island Rule to take into account the contributions from the overturning circulation which the current ITF proxies fail to capture. The implication of a weakened ITF on the Indo-Pacific Ocean circulation still needs to be assessed.

  2. Surface wave effect on the upper ocean in marine forecast

    NASA Astrophysics Data System (ADS)

    Wang, Guansuo; Qiao, Fangli; Xia, Changshui; Zhao, Chang

    2015-04-01

    An Operational Coupled Forecast System for the seas off China and adjacent (OCFS-C) is constructed based on the paralleled wave-circulation coupled model, which is tested with comprehensive experiments and operational since November 1st, 2007. The main feature of the system is that the wave-induced mixing is considered in circulation model. Daily analyses and three day forecasts of three-dimensional temperature, salinity, currents and wave height are produced. Coverage is global at 1/2 degreed resolution with nested models up to 1/24 degree resolution in China Sea. Daily remote sensing sea surface temperatures (SST) are taken to relax to an analytical product as hot restarting fields for OCFS-C by the Nudging techniques. Forecasting-data inter-comparisons are performed to measure the effectiveness of OCFS-C in predicting upper-ocean quantities including SST, mixed layer depth (MLD) and subsurface temperature. The variety of performance with lead time and real-time is discussed as well using the daily statistic results for SST between forecast and satellite data. Several buoy observations and many Argo profiles are used for this validation. Except the conventional statistical metrics, non-dimension skill scores (SS) is taken to estimate forecast skill. Model SST comparisons with more one year-long SST time series from 2 buoys given a large SS value (more than 0.90). And skill in predicting the seasonal variability of SST is confirmed. Model subsurface temperature comparisons with that from a lot of Argo profiles indicated that OCFS-C has low skill in predicting subsurface temperatures between 80m and 120m. Inter-comparisons of MLD reveal that MLD from model is shallower than that from Argo profiles by about 12m. QCFS-C is successful and steady in predicting MLD. The daily statistic results for SST between 1-d, 2-d and 3-d forecast and data is adopted to describe variability of Skill in predicting SST with lead time or real time. In a word QCFS-C shows reasonable accuracy over a series of studies designed to test ability to predict upper ocean conditions.

  3. Geophysical constraints on geodynamic processes at convergent margins: A global perspective

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-04-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean-ocean, ocean-continent, and continent-continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M N 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent-continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent-ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean-ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high convergence rate. (4) Local isostasy is not satisfied at the convergent margins as evidenced by strong free air gravity anomalies of positive and negative signs. However, near-isostatic equilibrium may exist in broad zones of distributed deformation such as Tibet. (5) No systematic patterns are recognized in heat flow data due to strong heterogeneity of measured values which are strongly affected by hydrothermal circulation, magmatic activity, crustal faulting, horizontal heat transfer, and also due to low number of heat flow measurements across many margins. (6) Low upper mantle Vs seismic velocities beneath the convergent margins are restricted to the upper 150 km and may be related to mantle wedge melting which is confined to shallow mantle levels. Artemieva, I.M., Thybo, H., and Shulgin, A., 2015. Geophysical constraints on geodynamic processes at convergent margins: A global perspective. Gondwana Research, http://dx.doi.org/10.1016/j.gr.2015.06.010

  4. Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed

    NASA Astrophysics Data System (ADS)

    Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.

    2018-02-01

    Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.

  5. Three-dimensional circulation structures leading to heavy summer rainfall over central North China

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Yu, Rucong; Li, Jian; Yuan, Weihua

    2016-04-01

    Using daily and hourly rain gauge records and Japanese 25 year reanalysis data over 30 years, this work reveals two major circulation structures leading to heavy summer rainfall events in central North China (CNC), and further analyzes the effects of the circulations on these rainfall events. One circulation structure has an extensive upper tropospheric warm anomaly (UTWA) covering North China (NC). By strengthening the upper anticyclonic anomaly and lower southerly flows around NC, the UTWA plays a positive role in forming upper level divergence and lower level moisture convergence. As a result, the warm anomalous circulation has a solid relationship with large-scale, long-duration rainfall events with a diurnal peak around midnight to early morning. The other circulation structure has an upper tropospheric cold anomaly (UTCA) located in the upper stream of NC. Contributed to by the UTCA, a cold trough appears in the upper stream of NC and an unstable configuration with upper (lower) cold (warm) anomalies forms around CNC. Consequently, CNC is covered by strong instability and high convective energy, and the cold anomalous circulation is closely connected with local, short-duration rainfall events concentrated from late afternoon to early nighttime. The close connections between circulation structures and typical rainfall events are confirmed by two independent converse analysis processes: from circulations to rainfall characteristics, and from typical rainfall events to circulations. The results presented in this work indicate that the upper tropospheric temperature has significant influences on heavy rainfall, and thus more attention should be paid to the upper tropospheric temperature in future analyses.

  6. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Marinov, I.; Gnanadesikan, A.

    2011-02-01

    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  7. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Marinov, I.; Gnanadesikan, A.

    2010-11-01

    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation results in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  8. Spiraling pathways of global deep waters to the surface of the Southern Ocean.

    PubMed

    Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert

    2017-08-02

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

  9. A global ocean climatological atlas of the Turner angle: implications for double-diffusion and water-mass structure

    NASA Astrophysics Data System (ADS)

    You, Yuzhu

    2002-11-01

    The 1994 Levitus climatological atlas is used to calculate the Turner angle (named after J. Stewart Turner) to examine which oceanic water masses are favorable for double-diffusion in the form of diffusive convection or salt-fingering and which are doubly stable. This atlas complements the Levitus climatology. It reveals the major double-diffusive signals associated with large-scale water-mass structure. In total, about 44% of the oceans display double-diffusion, of which 30% is salt-fingering and 14% is diffusive double-diffusion. Results show that various central and deep waters are favorable for salt-fingering. The former is due to positive evaporation minus precipitation, and the latter is due to thermohaline circulation, i.e. the southward spreading of relatively warm, salty North Atlantic Deep Water (NADW) overlying cold, fresh Antarctic Bottom Water. In the northern Indian Ocean and eastern North Atlantic, favorable conditions for salt-fingering are found throughout the water column. The Red Sea (including the Persian Gulf) and Mediterranean Sea are the sources of warm, salty water for the ocean. As consequence, temperature and salinity in these outflow regions both decrease from the sea surface to the bottom. On the other hand, ocean currents are in general sluggish in these regions. In the polar and subpolar regions of Arctic and Antarctic, Okhotsk Sea, Gulf of Alaska, the subpolar gyre of the North Pacific, the Labrador Sea, and the Norwegian Sea, the upper layer water is favorable for diffusive convection because of high latitude surface cooling and ice melting. Weak and shallow diffusive convection is also found throughout tropical regions and the Bay of Bengal. The former is due to excessive precipitation over evaporation and rain cooling, and the latter is due to both precipitation and river runoff. Diffusive convection in the ocean's interior is unique to the South Atlantic between Antarctic Intermediate Water and upper NADW (uNADW). It is the consequence of the intrusive equatorward flow of upper Circumpolar Deep Water, which carries with it the minimum temperature and very low salinity overlying warm, salty uNADW.

  10. Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography

    DTIC Science & Technology

    2009-02-01

    the largest zonal current in the world, which links the Atlantic , Indian and Pacific Oceans. The associated Meridional Overturning Circulation (MOC...formed in polar regions (Wunsch and Ferrari, 2004). Mixing is especially important in the Southern Ocean where the Meridional Overturning Circulation ...general circulation of the ocean and an important driver of the lower cell of the Meridional Overturning Circulation . Wunsch (1998) estimated that the

  11. Observation of water mass characteristics in the southwestern Mariana Trench

    NASA Astrophysics Data System (ADS)

    Xu, H.; Xie, Q.; Hong, B.

    2016-12-01

    The identification of large water mass characteristic can help oceanographer to better understand the oceanic circulation structures and other physical processes in open oceans. In current stage, the water mass characteristics were recognized well by extensive observation in the upper ocean, however, it was rarely studied in deep oceans, especially for deep trench with > 6000 m depth. In this study, we use observed data collected by CTDs during several surveys to investigate the water mass physical characteristic and transport in the world deepest trench, `Challenger Deep', in the southwestern Mariana Trench. The preliminary results show complex vertical structures of water mass in this trench. From surface to 4500 m, the water masses are occupied by typical tropical surface water, NPTUW, NPMW, NPIW and NPDW. Under 4500m, the water mass shows mixing characteristics of NPDW and AABW, which indicate AABW can be transported by form the deep ocean of the South Ocean to Northwestern Pacific and it can affect local water mass characteristics. The baroclinic geostrophic current calculated from the CTDs data shows the westerly transport of water mass can reach about 1.0 SV in the trench which is close to previous results.

  12. Medieval Warm Period and Little Ice Age Signatures in the Distribution of Modern Ocean Temperatures

    NASA Astrophysics Data System (ADS)

    Gebbie, G.; Huybers, P. J.

    2017-12-01

    It is well established both that global temperatures have varied overthe last millenium and that the interior ocean reflects surfaceproperties inherited over these timescales. Signatures of theMedieval Warm Period and Little Ice Age are thus to be expected in themodern ocean state, though the magnitude of these effects and whetherthey are detectable is unclear. Analysis of changes in temperatureacross those obtained in the 1870s as part of the theH.M.S. Challenger expedition, the 1990s World Ocean CirculationExperiment, and recent Argo observations shows a consistent pattern:the upper ocean and Atlantic have warmed, but the oldest waters inthe deep Pacific appear to have cooled. The implications of pressureeffects on the H.M.S. Challenger thermometers and uncertainties indepth of observations are non-negligible but do not appear tofundamentally alter this pattern. Inversion of the modern hydrographyusing ocean transport estimates derived from passive tracer andradiocarbon observations indicates that deep Pacific cooling could bea vestige of the Medieval Warm Period, and that warming elsewhere reflects thecombined effects of emergence from the Little Ice Age and modernanthropogenic warming. Implications for longterm variations in oceanheat uptake and separating natural and anthropogenic contributions to themodern energy imbalance are discussed.

  13. Large Scale Eocene Ocean Circulation Transition Could Help Antarctic Glaciation.

    NASA Astrophysics Data System (ADS)

    Baatsen, M.

    2016-12-01

    The global climate underwent major changes going from the Eocene into the Oligocene, including the formation of a continental-scale Antarctic ice sheet. In addition to a gradual drawdown of CO2 since the Early Eocene, the changing background geography of the earth may also have played a crucial role in setting the background oceanic circulation pattern favorable to ice growth. On the other hand, the ocean circulation may have changed only after the ice sheet started growing, with a similar climatic imprint. It is, therefore, still under debate what the primary forcing or trigger of this transition was. Using an ocean general circulation model (POP) and two different geography reconstruc-tions for the middle-late Eocene, we find two distinctly different patterns of the oceanic circulation to be possible under the same forcing. The first one features deep-water formation and warmer SSTs in the Southern Pacific while in the second, deep water forms in the North Pacific Ocean and Southern Ocean SSTs are colder. The presence of a double equilibrium shows that the ocean circulation was highly susceptible to large scale transitions during the middle-late Eocene. Additionally, changes in benthic oxygen and Neodymium isotopes depict significant changes during the same period. We suggest that a transition in the global meridional overturing circulation can explain the observed changes and preconditions the global climate for the two-step transition into an Icehouse state at the Eocene-Oligocene boundary.

  14. Global Ocean Circulation in Thermohaline Coordinates and Small-scale and Mesoscale mixing: An Inverse Estimate.

    NASA Astrophysics Data System (ADS)

    Groeskamp, S.; Zika, J. D.; McDougall, T. J.; Sloyan, B.

    2016-02-01

    I will present results of a new inverse technique that infers small-scale turbulent diffusivities and mesoscale eddy diffusivities from an ocean climatology of Salinity (S) and Temperature (T) in combination with surface freshwater and heat fluxes.First, the ocean circulation is represented in (S,T) coordinates, by the diathermohaline streamfunction. Framing the ocean circulation in (S,T) coordinates, isolates the component of the circulation that is directly related to water-mass transformation.Because water-mass transformation is directly related to fluxes of salt and heat, this framework allows for the formulation of an inverse method in which the diathermohaline streamfunction is balanced with known air-sea forcing and unknown mixing. When applying this inverse method to observations, we obtain observationally based estimates for both the streamfunction and the mixing. The results reveal new information about the component of the global ocean circulation due to water-mass transformation and its relation to surface freshwater and heat fluxes and small-scale and mesoscale mixing. The results provide global constraints on spatially varying patterns of diffusivities, in order to obtain a realistic overturning circulation. We find that mesoscale isopycnal mixing is much smaller than expected. These results are important for our understanding of the relation between global ocean circulation and mixing and may lead to improved parameterisations in numerical ocean models.

  15. Multiple states in the late Eocene ocean circulation

    NASA Astrophysics Data System (ADS)

    Baatsen, M. L. J.; von der Heydt, A. S.; Kliphuis, M.; Viebahn, J.; Dijkstra, H. A.

    2018-04-01

    The Eocene-Oligocene Transition (EOT) marks a major step within the Cenozoic climate in going from a greenhouse into an icehouse state, with the formation of a continental-scale Antarctic ice sheet. The roles of steadily decreasing CO2 concentrations versus changes in ocean circulation at the EOT are still debated and the threshold for Antarctic glaciation is obscured by uncertainties in global geometry. Here, a detailed study of the late Eocene ocean circulation is carried out using an ocean general circulation model under two slightly different geography reconstructions of the middle-to-late Eocene (38 Ma). Using the same atmospheric forcing, both geographies give a profoundly different equilibrium ocean circulation state. The underlying reason for this sensitivity is the presence of multiple equilibria characterised by either North or South Pacific deep water formation. A possible shift from a southern towards a northern overturning circulation would result in significant changes in the global heat distribution and consequently make the Southern Hemisphere climate more susceptible for significant cooling and ice sheet formation on Antarctica.

  16. Multimillennium changes in dissolved oxygen under global warming: results from an AOGCM and offline ocean biogeochemical model

    NASA Astrophysics Data System (ADS)

    Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.

    2016-12-01

    Long-term oceanic oxygen change due to global warming is still unclear; most future projections (such as CMIP5) are only performed until 2100. Indeed, few previous studies using conceptual models project oxygen change in the next thousands of years, showing persistent global oxygen reduction by about 30% in the next 2000 years, even after atmospheric carbon dioxide stops rising. Yet, these models cannot sufficiently represent the ocean circulation change: the key driver of oxygen change. Moreover, considering serious effect oxygen reduction has on marine life and biogeochemical cycling, long-term oxygen change should be projected for higher validity. Therefore, we used a coupled atmosphere-ocean general circulation model (AOGCM) and an offline ocean biogeochemical model, investigating realistic long-term changes in oceanic oxygen concentration and ocean circulation. We integrated these models for 2000 years under atmospheric CO2 doubling and quadrupling. After global oxygen reduction in the first 500 years, oxygen concentration in deep ocean globally recovers and overshoots, despite surface oxygen decrease and weaker Atlantic Meridional Overturning Circulation. Deep ocean convection in the Weddell Sea recovers and overshoots, after initial cessation. Thus, enhanced deep convection and associated Antarctic Bottom Water supply oxygen-rich surface waters to deep ocean, resulting global deep ocean oxygenation. We conclude that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in the deep ocean; contrary to past reported long-term oxygen reduction and general expectation. In presentation, we will discuss the mechanism of response of deep ocean convection in the Weddell Sea and show the volume changes of hypoxic waters.

  17. Non-Rayleigh control of upper-ocean Cd isotope fractionation in the western South Atlantic

    NASA Astrophysics Data System (ADS)

    Xie, Ruifang C.; Galer, Stephen J. G.; Abouchami, Wafa; Rijkenberg, Micha J. A.; de Baar, Hein J. W.; De Jong, Jeroen; Andreae, Meinrat O.

    2017-08-01

    We present seawater Cd isotopic compositions in five depth profiles and a continuous surface water transect, from 50°S to the Equator, in the western South Atlantic, sampled during GEOTRACES cruise 74JC057 (GA02 section, Leg 3), and investigate the mechanisms governing Cd isotope cycling in the upper and deep ocean. The depth profiles generally display high ε 112 / 110Cd at the surface and decrease with increasing depth toward values typical of Antarctic Bottom Water (AABW). However, at stations north of the Subantarctic Front, the decrease in ε 112 / 110Cd is interrupted by a shift to values intermediate between those of surface and bottom waters, which occurs at depths occupied by North Atlantic Deep Water (NADW). This pattern is associated with variations in Cd concentration from low surface values to a maximum at mid-depths and is attributed to preferential utilization of light Cd by phytoplankton in the surface ocean. Our new results show that in this region Cd-deficient waters do not display the extreme, highly fractionated ε 112 / 110Cd reported in some earlier studies from other oceanic regions. Instead, in the surface and subsurface southwest (SW) Atlantic, when [Cd] drops below 0.1 nmol kg-1, ε 112 / 110Cd are relatively homogeneous and cluster around a value of +3.7, in agreement with the mean value of 3.8 ± 3.3 (2SD, n = 164) obtained from a statistical evaluation of the global ocean Cd isotope dataset. We suggest that Cd-deficient surface waters may acquire their Cd isotope signature via sorption of Cd onto organic ligands, colloids or bacterial/picoplankton extracellular functional groups. Alternatively, we show that an open system, steady-state model is in good accord with the observed Cd isotope systematics in the upper ocean north of the Southern Ocean. The distribution of ε 112 / 110Cd in intermediate and deep waters is consistent with the water mass distribution, with the north-south variations reflecting changes in the mixing proportion of NADW and either AABW or AAIW depending on the depth. Overall, the SW Atlantic Cd isotope dataset demonstrates that the large-scale ocean circulation exerts the primary control on ε 112 / 110Cd cycling in the global deep ocean.

  18. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    DOE PAGES

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; ...

    2016-08-01

    Continued oceanic uptake of anthropogenic CO 2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representativemore » Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (Ω Ar) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H +] are most sensitive to parameters that directly affect atmospheric CO 2 concentrations – Q 10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in Ω Ar saturation levels are sensitive to changes in ocean salinity and Q 10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations and large-scale climate models under multiple emission pathways.« less

  19. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit

    Continued oceanic uptake of anthropogenic CO 2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representativemore » Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (Ω Ar) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H +] are most sensitive to parameters that directly affect atmospheric CO 2 concentrations – Q 10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in Ω Ar saturation levels are sensitive to changes in ocean salinity and Q 10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations and large-scale climate models under multiple emission pathways.« less

  20. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit

    Continued oceanic uptake of anthropogenic CO 2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representativemore » Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (Ω Ar) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H +] are most sensitive to parameters that directly affect atmospheric CO 2 concentrations – Q 10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in Ω Ar saturation levels are sensitive to changes in ocean salinity and Q 10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations and large-scale climate models under multiple emission pathways.« less

  1. Pathways of upwelling deep waters to the surface of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert

    2017-04-01

    Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.

  2. Long-term Variation of Ventilation System in the East Sea (Japan Sea) Revealed by Heat Content Change and Water Mass Analysis

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Chang, K. I.; Kim, K. R.; Lobanov, V. B.

    2016-02-01

    The semi-enclosed East Sea (ES) is called a miniature ocean with its own thermohaline circulation characterized by the formation of deep and intermediate water masses in the Japan Basin, southward discharge of those subsurface water masses towards the Ulleung and Yamato basins, and northward heat transport by the Tsushima Warm Current in the upper layer. Reports have been given of rapid changes of physical and biogeochemical properties associated with its ventilation system. We present results on upper ocean heat content variations and changes in water mass structure and properties from the analysis of historical and most recent hydrographic data. The analysis of non-seasonal heat content (HCA) variations in the upper 500 m from 1976 to 2007 highlights the 2-year lagged in-phase decadal-scale HCA variations in the eastern and western ES until 1995 followed by uncorrelated variations between two regions thereafter with pronounced interannual variations. Long-term trend of HCA in the entire ES shows an increasing trend, but with a large increase in the eastern part and relatively weaker but statistically significant decrease in the western part. The thickness variation of water warmer than 10°C mainly contributes to the HCA variation. Analyses of upper circulation in conjunction with climate indices suggest the importance of the wind-stress curl pattern represented by the Western Pacific index in the western ES and the influence of the Siberian High in the eastern ES. The thickness and temperature variation of 1-5°C representing the East Sea Intermediate Water (ESIW) is relatively minor contributor to the HCA variation in the upper 500 m. However, the thickness (temperature) of the ESIW has been increased (decreased) in the entire ES since 1992, which implies that the formation of the ESIW has been activated in recent decades. To investigate water mass changes in deeper than 500 m, we use full-depth CTD data obtained from CREAMS expeditions from 1993 to 2015. Temperature deeper than 1000 m has been increased about 0.03°C during 20 years and the depth of deep salinity minimum depth which is the lower (upper) limit of the East Sea Central Water (Deep Water) has been deepened. Other characteristics of water mass structure and property changes will be presented.

  3. Seasonal variations of thermocline circulation and ventilation in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    You, Yuzhu

    1997-05-01

    Two seasonal hydrographic data sets, including temperature, salinity, dissolved oxygen, and nutrients, are used in a mixing model which combines cluster analysis with optimum multiparameter analysis to determine the spreading and mixing of the thermocline waters in the Indian Ocean. The mixing model comprises a system of four major source water masses, which were identified in the thermocline through cluster analysis. They are Indian Central Water (ICW), North Indian Central Water (NICW) interpreted as aged ICW, Australasian Mediterranean Water (AAMW), and Red Sea Water (RSW)/Persian Gulf Water (PGW). The mixing ratios of these water masses are quantified and mapped on four isopycnal surfaces which span the thermocline from 150 to 600 m in the northern Indian Ocean, on two meridional sections along 60°E and 90°E, and on two zonal sections along 10°S and 6°N. The mixing ratios and pathways of the thermocline water masses show large seasonal variations, particularly in the upper 400-500 m of the thermocline. The most prominent signal of seasonal variation occurs in the Somali Current, the western boundary current, which appears only during the SW (summer) monsoon. The northward spreading of ICW into the equatorial and northern Indian Ocean is by way of the Somali Current centered at 300-400 m on the σθ=26.7 isopycnal surface during the summer monsoon and of the Equatorial Countercurrent during the NE (winter) monsoon. More ICW carried into the northern Indian Ocean during the summer monsoon is seen clearly in the zonal section along 6°N. NICW spreads southward through the western Indian Ocean and is stronger during the winter monsoon. AAMW appears in both seasons but is slightly stronger during the summer in the upper thermocline. The westward flow of AAMW is by way of the South Equatorial Current and slightly bends to the north on the σθ=26.7 isopycnal surface during the summer monsoon, indicative of its contribution to the western boundary current. Outflow of RSW/PGW seems effectively blocked by the continuation of strong northward jet of the Somali Current along the western Arabian Sea during the summer, giving a rather small contribution of only up to 20% in the Arabian Sea. A schematic summer and winter thermocline circulation emerges from this study. Both hydrography and water - mass mixing ratios suggest that the contribution of the water from the South Indian Ocean and from the Indo-Pacific through flow controls the circulation and ventilation in the western boundary region during the summer. However, during the winter the water is carried into the eastern boundary by the Equatorial Countercurrent and leaks into the eastern Bay of Bengal, from where the water is advected into the northwestern Indian Ocean by the North Equatorial Current. The so-called East Madagascar Current as a southward flow occurs only during the summer, as is suggested by both hydrography and water-mass mixing patterns from this paper. During the winter (austral summer) the current seems reversal to a northward flow along east of Madagascar, somewhat symmetrical to the Somali Current in the north.

  4. Factors favorable to frequent extreme precipitation in the upper Yangtze River Valley

    NASA Astrophysics Data System (ADS)

    Tian, Baoqiang; Fan, Ke

    2013-08-01

    Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land-sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.

  5. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations.

    PubMed

    McCarthy, Gerard D; Haigh, Ivan D; Hirschi, Joël J-M; Grist, Jeremy P; Smeed, David A

    2015-05-28

    Decadal variability is a notable feature of the Atlantic Ocean and the climate of the regions it influences. Prominently, this is manifested in the Atlantic Multidecadal Oscillation (AMO) in sea surface temperatures. Positive (negative) phases of the AMO coincide with warmer (colder) North Atlantic sea surface temperatures. The AMO is linked with decadal climate fluctuations, such as Indian and Sahel rainfall, European summer precipitation, Atlantic hurricanes and variations in global temperatures. It is widely believed that ocean circulation drives the phase changes of the AMO by controlling ocean heat content. However, there are no direct observations of ocean circulation of sufficient length to support this, leading to questions about whether the AMO is controlled from another source. Here we provide observational evidence of the widely hypothesized link between ocean circulation and the AMO. We take a new approach, using sea level along the east coast of the United States to estimate ocean circulation on decadal timescales. We show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres--the intergyre region. These circulation changes affect the decadal evolution of North Atlantic heat content and, consequently, the phases of the AMO. The Atlantic overturning circulation is declining and the AMO is moving to a negative phase. This may offer a brief respite from the persistent rise of global temperatures, but in the coupled system we describe, there are compensating effects. In this case, the negative AMO is associated with a continued acceleration of sea-level rise along the northeast coast of the United States.

  6. On the origin of the marine zinc-silicon correlation

    NASA Astrophysics Data System (ADS)

    de Souza, Gregory F.; Khatiwala, Samar P.; Hain, Mathis P.; Little, Susan H.; Vance, Derek

    2018-06-01

    The close linear correlation between the distributions of dissolved zinc (Zn) and silicon (Si) in seawater has puzzled chemical oceanographers since its discovery almost forty years ago, due to the apparent lack of a mechanism for coupling these two nutrient elements. Recent research has shown that such a correlation can be produced in an ocean model without any explicit coupling between Zn and Si, via the export of Zn-rich biogenic particles in the Southern Ocean, consistent with the observation of elevated Zn quotas in Southern Ocean diatoms. Here, we investigate the physical and biological mechanisms by which Southern Ocean uptake and export control the large-scale marine Zn distribution, using suites of sensitivity simulations in an ocean general circulation model (OGCM) and a box-model ensemble. These simulations focus on the sensitivity of the Zn distribution to the stoichiometry of Zn uptake relative to phosphate (PO4), drawing directly on observations in culture. Our analysis reveals that OGCM model variants that produce a well-defined step between relatively constant, high Zn:PO4 uptake ratios in the Southern Ocean and low Zn:PO4 ratios at lower latitudes fare best in reproducing the marine Zn-Si correlation at both the global and the regional Southern Ocean scale, suggesting the presence of distinct Zn-biogeochemical regimes in the high- and low-latitude oceans that may relate to differences in physiology, ecology or (micro-)nutrient status. Furthermore, a study of the systematics of both the box model and the OGCM reveals that regional Southern Ocean Zn uptake exerts control over the global Zn distribution via its modulation of the biogeochemical characteristics of the surface Southern Ocean. Specifically, model variants with elevated Southern Ocean Zn:PO4 uptake ratios produce near-complete Zn depletion in the Si-poor surface Subantarctic Zone, where upper-ocean water masses with key roles in the global oceanic circulation are formed. By setting the main preformed covariation trend within the ocean interior, the subduction of these Zn- and Si-poor water masses produces a close correlation between the Zn and Si distributions that is barely altered by their differential remineralisation during low-latitude cycling. We speculate that analogous processes in the high-latitude oceans may operate for other trace metal micronutrients as well, splitting the ocean into two fundamentally different biogeochemical, and thus biogeographic, regimes.

  7. Can increased poleward oceanic heat flux explain the warm Cretaceous climate?

    NASA Astrophysics Data System (ADS)

    Schmidt, Gavin A.; Mysak, Lawrence A.

    1996-10-01

    The poleward transport of heat in the mid-Cretaceous (100 Ma) is examined using an idealized coupled ocean-atmosphere model. The oceanic component consists of two zonally averaged basins representing the proto-Pacific and proto-Indian oceans and models the dynamics of the meridional thermohaline circulation. The atmospheric component is a simple energy and moisture balance model which includes the diffusive meridional transport of sensible heat and moisture. The ocean model is spun up with a variety of plausible Cretaceous surface temperature and salinity profiles, and a consistent atmosphere is objectively derived based on the resultant sea surface temperature and the surface heat and freshwater fluxes. The coupled model does not exhibit climate drift. Multiple equilibria of the coupled model are found that break the initial symmetry of the ocean circulation; several of these equilibria have one-cell (northern or southern sinking) thermohaline circulation patterns. Two main classes of circulation are found: circulations where the densest water is relatively cool and is formed at the polar latitudes and circulations where the densest water is warm, but quite saline, and the strongest sinking occurs at the tropics. In all cases, significant amounts of warm, saline bottom water are formed in the proto-Indian basin which modify the deepwater characteristics in the larger (proto-Pacific) basin. Temperatures in the deep ocean are warm, 10°-17°C, in agreement with benthic foraminiferal oxygen isotope data. The poleward transport of heat in the modeled Cretaceous oceans is larger than in some comparable models of the present day thermohaline circulation and significantly larger than estimates of similar processes in the present-day ocean. It is consistently larger in the polar sinking cases when compared with that seen in the tropical sinking cases, but this represents an increase of only 10%. The largest increase over present-day model transports is in the atmospheric latent heat transport, where an increased hydrological cycle (especially in the tropical sinking cases) contributes up to an extra 1 PW of poleward heat transport. Better constraints on the oceanic deepwater circulation during this period are necessary before the meridional circulation can be unambiguously described.

  8. Multidecadal Weakening of Indian Summer Monsoon Circulation Induces an Increasing Northern Indian Ocean Sea Level

    NASA Astrophysics Data System (ADS)

    Swapna, P.; Jyoti, J.; Krishnan, R.; Sandeep, N.; Griffies, S. M.

    2017-10-01

    North Indian Ocean sea level has shown significant increase during last three to four decades. Analyses of long-term climate data sets and ocean model sensitivity experiments identify a mechanism for multidecadal sea level variability relative to global mean. Our results indicate that North Indian Ocean sea level rise is accompanied by a weakening summer monsoon circulation. Given that Indian Ocean meridional heat transport is primarily regulated by the annual cycle of monsoon winds, weakening of summer monsoon circulation has resulted in reduced upwelling off Arabia and Somalia and decreased southward heat transport, and corresponding increase of heat storage in the North Indian Ocean. These changes in turn lead to increased retention of heat and increased thermosteric sea level rise in the North Indian Ocean, especially in the Arabian Sea. These findings imply that rising North Indian Ocean sea level due to weakening of monsoon circulation demands adaptive strategies to enable a resilient South Asian population.

  9. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    NASA Astrophysics Data System (ADS)

    Jansen, Malte F.

    2017-01-01

    Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  10. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    PubMed Central

    Jansen, Malte F.

    2017-01-01

    Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5–10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage. PMID:27994158

  11. Glacial ocean circulation and stratification explained by reduced atmospheric temperature.

    PubMed

    Jansen, Malte F

    2017-01-03

    Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  12. A special MJO event with a double Kelvin wave structure

    NASA Astrophysics Data System (ADS)

    Zhu, Lili; Li, Tim

    2017-04-01

    The second Madden-Julian Oscillation (MJO) event during the field campaign of the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (DYNAMO/CINDY2011) exhibi ted an unusual double rainband structure. Using a wavenumber-frequency spectral filtering method, we unveil that this double rainband structure arises primarily from the Kelvin wave component. The zonal phase speed of the double rainbands is about 7.9 degree per day in the equatorial Indian Ocean, being in the range of convectively coupled Kelvin wave phase speeds. The convection and circulation anomalies associated with the Kelvin wave component are characterized by two anomalous convective cells, with low-level westerly (easterly) and high (low) pressure anomalies to the west (east) of the convective centers, and opposite wind and pressure anomalies in the upper troposphere. Such a zonal wind-pressure phase relationship is consistent with the equatorial free-wave dynamics. While the free-atmospheric circulation was dominated by the first baroclinic mode vertical structure, moisture and vertical motion in the boundary layer led the convection. The convection and circulation structures derived based on the conventional MJO filter show a different characteristic. For example, the phase speed is slower (about 5.9 degree per day), and there were no double convective branches. This suggests that MJO generally involves multi-scales and it is incomplete to extract its signals by using the conventional filtering technique.

  13. Observed Hydrographic Variability Connecting the Continental Shelf to the Marine-Terminating Glaciers of Uummannaq Bay, West Greenland

    NASA Astrophysics Data System (ADS)

    Sutherland, D.; de Steur, L.; Nash, J. D.; Shroyer, E.; Mickett, J.

    2016-02-01

    Large-scale changes in ocean forcing, such as increased upper ocean heat content or variations in subpolar gyre circulation, are commonly implicated as factors causing the widespread retreat of Greenland's outlet glaciers. A recent surge in observational and modeling studies has shown how temperature increases and a changing subglacial discharge determine melt rates at glacier termini, driving a vigorous buoyancy-driven circulation. However, we still lack knowledge of what controls ambient water properties in the fjords themselves, i.e., how does the subpolar gyre communicate across the continental shelf towards the glacier termini. Here, we present a two-year mooring record of hydrographic variability in the Uummannaq Bay region of west Greenland. We focus on observations inside Rink Isbræ and Kangerlussuup Sermia fjords coupled with an outer mooring located in the submarine trough cutting across the shelf. We show how water properties vary seasonally inside the fjords and how they connect to variability in the trough. The two fjords exhibit large differences in temperature and salinity variability, which is possibly due to differences in the plume circulation driven by the glaciers themselves. We put these limited observations in temporal context by comparing them with observations from the nearby Davis Strait time array, and spatial context by comparing them with recent mooring records from Sermilik Fjord in southeast Greenland.

  14. Air-sea interaction over the Indian Ocean due to variations in the Indonesian throughflow

    NASA Astrophysics Data System (ADS)

    Wajsowicz, R. C.

    The effects of the Indonesian throughflow on the upper thermocline circulation and surface heat flux over the Indian Ocean are presented for a 3-D ocean model forced by two different monthly wind-stress climatologies, as they show interesting differences, which could have implications for long-term variability in the Indian and Australasian monsoons. The effects are determined by contrasting a control run with a run in which the throughflow is blocked by an artificial land-bridge across the exit channels into the Indian Ocean. In the model forced by ECMWF wind stresses, there is little impact on the annual mean surface heat flux in the region surrounding the throughflow exit straits, whereas in the model forced by SSM/I-based wind stresses, a modest throughflow of less than 5 ×106 m3s-1 over the upper 300 m induces an extra 10-50 Wm-2 output. In the SSM/I-forced model, there is insignificant penetration of the throughflow into the northern Indian Ocean. However, in the ECMWF-forced model, the throughflow induces a 5-10 Wm-2 reduction in heat input into the ocean, i.e., an effective output, over the Somali Current in the annual mean. These differences are attributed to differences in the strength and direction of the Ekman transport of the ambient flow, and the vertical structure of the transport and temperature anomalies associated with the throughflow. In both models, the throughflow induces a 5-30 Wm-2 increase in net output over a broad swathe of the southern Indian Ocean, and a reduction in heat output of 10-60 Wm-2 in a large L-shaped band around Tasmania. Effective increases in throughflow-induced net output reach up to 40 (60) Wm-2 over the Agulhas Current retroflection in the ECMWF (SSM/I)-forced model. Seasonal variations in the throughflow's effect on the net surface heat flux are attributed to seasonal variations in the ambient circulation of the Indian Ocean, specifically in coastal upwelling along the south Javan, west Australian, and Somalian coasts, and in the depth of convective overturning between 40°S to 50°S, and its sensing of the mean throughflow's thermal anomaly. The seasonal anomalies plus annual mean yield maximum values for the throughflow-induced net surface heat output in boreal summer. Values may exceed 40 Wm-2 in the southern Indian Ocean interior in both models, exceed 60 Wm-2 over the Agulhas retroflection and immediate vicinity of the exit channels in the SSM/I-forced model, and reach 30 Wm-2 over the Somali jet in the ECMWF-forced model.

  15. Impacts of Early Summer Eurasian Snow Cover Change on Atmospheric Circulation in Northern Mid-Latitudes

    NASA Astrophysics Data System (ADS)

    Nozawa, T.

    2016-12-01

    Recently, Japan Aerospace Exploration Agency (JAXA) has developed a new long-term snow cover extent (SCE) product using Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data spanning from 1980's to date. This new product (JAXA/SCE) has higher spatial resolution and smaller commission error compared with traditional SCE dataset of National Oceanic and Atmospheric Administration (NOAA/SCE). Continuity of the algorithm is another strong point in JAXA/SCE. According to the new JAXA/SCE dataset, the Eurasian SCE has been significantly retreating since 1980's, especially in late spring and early summer. Here, we investigate impacts of early summer Eurasian snow cover change on atmospheric circulation in Northern mid-latitudes, especially over the East Asia, using the new JAXA/SCE dataset and a few reanalysis data. We will present analyzed results on relationships between early summer SCE anomaly over the Eurasia and changes in atmospheric circulations such as upper level zonal jets (changes in strength, positions, etc.) over the East Asia.

  16. Seasonal-to-Interannual Variability in Antarctic Sea-Ice Dynamics, and Its Impact on Surface Fluxes and Water Mass Production

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1999-01-01

    Strong seasonal and interannual signals in Antarctic bottom-water outflow remain unexplained yet are highly correlated with anomalies in net sea-ice growth in coastal polynyas. The mechanisms responsible for driving salination and replenishment and rejuvenation of the dense shelf "source" waters likely also generate pulses of bottom water outflow. The objective of this research is to investigate time-scales of variability in the dynamics of sea-ice in the Southern Ocean in order to determine the primary sites for production of dense shelf waters. We are using a merged satellite/buoy sea-ice motion data set for the period 1978-present day to compute the dynamics of opening and closing of coastal polynyas over the continental shelf. The Ocean Circulation and Climate Advanced Model (OCCAM) ocean general circulation model with coupled sea-ice dynamics is presently forced using National Center for Environmental Prediction (NCEP) data to simulate fluxes and the salination impact of the ocean shelf regions. This work is relevant in the context of measuring the influence of polar sea-ice dynamics upon polar ocean characteristics, and thereby upon global thermohaline ocean circulation. Interannual variability in simulated net freezing rate in the Southern Weddell Sea is shown for the period 1986-1993. There is a pronounced maximum of ice production in 1988 and minimum in 1991 in response to anomalies in equatorward meridional wind velocity. This follows a similar approximate 8-year interannual cycle in Sea Surface Temperature (SST) and satellite-derived ice-edge anomalies reported elsewhere as the "Antarctic Circumpolar Wave." The amplitude of interannual fluctuations in annual net ice production are about 40% of the mean value, implying significant interannual variance in brine rejection and upper ocean heat loss. Southward anomalies in wind stress induce negative anomalies in open water production, which are observed in passive microwave satellite images. Thus, cycles of enhanced poleward wind stress reduce ice growth by compacting the ice along the coastline and closing open water in leads and polynyas. Model simulations confirm that years of low ice production, such as 1991, coincide with years of lower than normal bottom water outflow. Future plans include the assimilation of satellite ice concentrations and ice drift dynamics to more accurately constrain boundary conditions in the model.

  17. Reconstruct the past thermocline circulation in the Atlantic: calcification depths and Mg/Ca-temperature calibrations for 6 deep-dwelling planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Cleroux, C.; deMenocal, P.; Arbuszewski, J.; Linsley, B.

    2012-04-01

    The subtropical cells are shallow meridional overturning circulations driven by the atmospheric circulation and the deep thermohaline circulation. They connect the mid-latitude and the tropic, release latten heat to the atmosphere and impact climate on decadal to longer time scale. The upper water column temperature and salinity structures of the ocean reflect this circulation. We present proxies to study these past structures. We performed stable oxygen isotope (δ18O) and trace element ratio measurements on one surface-dwelling (G. ruber)1 and six deep-dwelling planktonic foraminifera species (N. dutertrei, G. inflata, G. tumida, G. truncatulinoides, G. hirsuta and G. crassaformis) on 66 coretops spanning from 35°N to 20°S along the Mid-Atlantic ridge. Comparison between measured δ18O and predicted δ18O (using water column temperature and seawater δ18O), shows that N. dutertrei, G. tumida, G. hirsuta and G. crassaformis keep the same apparent calcification depth along the transect (respectively: 125m, 150m, 700m and 800m). Calcification at two depth levels was also tested. For the six deep-dwelling species, we establish Mg/Ca-temperature calibrations with both atlas temperature at the calcification depth and isotopic temperature. We present Mg/Ca-temperature equations for species previously very poorly calibrated. The δ18O and temperature (Mg/Ca derived) on the six planktonic foraminifera species faithfully reproduce the modern water column structure of the upper 800 m depth, establishing promising proxies for past subsurface reconstruction. 1 Arbuszewski, J. J., P. B. deMenocal, A. Kaplan, and C. E. Farmer (2010), On the fidelity of shell-derived δ18Oseawater estimates, Earth and Planetary Science Letters, 300(3-4), 185-196.

  18. A zonally averaged, three-basin ocean circulation model for climate studies

    NASA Astrophysics Data System (ADS)

    Hovine, S.; Fichefet, T.

    1994-09-01

    A two-dimensional, three-basin ocean model suitable for long-term climate studies is developed. The model is based on the zonally averaged form of the primitive equations written in spherical coordinates. The east-west density difference which arises upon averaging the momentum equations is taken to be proportional to the meridional density gradient. Lateral exchanges of heat and salt between the basins are explicitly resolved. Moreover, the model includes bottom topography and has representations of the Arctic Ocean and of the Weddell and Ross seas. Under realistic restoring boundary conditions, the model reproduces the global conveyor belt: deep water is formed in the Atlantic between 60 and 70°N at a rate of about 17 Sv (1 Sv=106 m3 s-1) and in the vicinity of the Antarctic continent, while the Indian and Pacific basins show broad upwelling. Superimposed on this thermohaline circulation are vigorous wind-driven cells in the upper thermocline. The simulated temperature and salinity fields and the computed meridional heat transport compare reasonably well with the observational estimates. When mixed boundary conditions (i.e., a restoring condition on sea-surface temperature and flux condition on sea-surface salinity) are applied, the model exhibits an irregular behavior before reaching a steady state characterized by self-sustained oscillations of 8.5-y period. The conveyor-belt circulation always results at this stage. A series of perturbation experiments illustrates the ability of the model to reproduce different steady-state circulations under mixed boundary conditions. Finally, the model sensitivity to various factors is examined. This sensitivity study reveals that the bottom topography and the presence of a submarine meridional ridge in the zone of the Drake Passage play a crucial role in determining the properties of the model bottom-water masses. The importance of the seasonality of the surface forcing is also stressed.

  19. Importance of ocean salinity for climate and habitability

    PubMed Central

    Cullum, Jodie; Stevens, David P.; Joshi, Manoj M.

    2016-01-01

    Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies. PMID:27044090

  20. Importance of ocean salinity for climate and habitability.

    PubMed

    Cullum, Jodie; Stevens, David P; Joshi, Manoj M

    2016-04-19

    Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies.

  1. Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes

    NASA Astrophysics Data System (ADS)

    Herguera, J. C.; Herbert, T.; Kashgarian, M.; Charles, C.

    2010-05-01

    Intermediate ocean circulation changes during the last Glacial Maximum (LGM) in the North Pacific have been linked with Northern Hemisphere climate through air-sea interactions, although the extent and the source of the variability of the processes forcing these changes are still not well resolved. The ventilated volumes and ages in the upper wind driven layer are related to the wind stress curl and surface buoyancy fluxes at mid to high latitudes in the North Pacific. In contrast, the deeper thermohaline layers are more effectively ventilated by direct atmosphere-sea exchange during convective formation of Subantarctic Mode Waters (SAMW) and Antarctic Intermediate Waters (AAIW) in the Southern Ocean, the precursors of Pacific Intermediate Waters (PIW) in the North Pacific. Results reported here show a fundamental change in the carbon isotopic gradient between intermediate and deep waters during the LGM in the eastern North Pacific indicating a deepening of nutrient and carbon rich waters. These observations suggest changes in the source and nature of intermediate waters of Southern Ocean origin that feed PIW and enhanced ventilation processes in the North Pacific, further affecting paleoproductivity and export patters in this basin. Furthermore, oxygen isotopic results indicate these changes may have been accomplished in part by changes in circulation affecting the intermediate depths during the LGM.

  2. Triple seismic source, double research ship, single ambitious goal: integrated imaging of young oceanic crust in the Panama Basin

    NASA Astrophysics Data System (ADS)

    Wilson, Dean; Peirce, Christine; Hobbs, Richard; Gregory, Emma

    2016-04-01

    Understanding geothermal heat and mass fluxes through the seafloor is fundamental to the study of the Earth's energy budget. Using geophysical, geological and physical oceanography data we are exploring the interaction between the young oceanic crust and the ocean in the Panama Basin. We acquired a unique geophysical dataset that will allow us to build a comprehensive model of young oceanic crust from the Costa Rica Ridge axis to ODP borehole 504B. Data were collected over two 35 x 35 km2 3D grid areas, one each at the ridge axis and the borehole, and along three 330 km long 2D profiles orientated in the spreading direction, connecting the two grids. In addition to the 4.5 km long multichannel streamer and 75 ocean-bottom seismographs (OBS), we also deployed 12 magnetotelluric (MT) stations and collected underway swath bathymetry, gravity and magnetic data. For the long 2D profiles we used two research vessels operating synchronously. The RRS James Cook towed a high frequency GI-gun array (120 Hz) to image the sediments, and a medium frequency Bolt-gun array (50 Hz) for shallow-to-mid-crustal imaging. The R/V Sonne followed the Cook, 9 km astern and towed a third seismic source; a low frequency, large volume G-gun array (30 Hz) for whole crustal and upper mantle imaging at large offsets. Two bespoke vertical hydrophone arrays recorded real far field signatures that have enabled us to develop inverse source filters and match filters. Here we present the seismic reflection image, forward and inverse velocity-depth models and a density model along the primary 330 km north-south profile, from ridge axis to 6 Ma crust. By incorporating wide-angle streamer data from our two-ship, synthetic aperture acquisition together with traditional wide-angle OBS data we are able to constrain the structure of the upper oceanic crust. The results show a long-wavelength trend of increasing seismic velocity and density with age, and a correlation between velocity structure and basement roughness. Increased basement roughness leads to a non-uniform distribution of sediments, which we hypothesise influences the pattern of hydrothermal circulation and ultimately the secondary alteration of the upper crust. A combination of the complimentary wide-angle and normal incidence datasets and their individual models act as a starting point for joint inversion of seismic, gravity and MT data. The joint inversion produces a fully integrated model, enabling us to better understand how the oceanic crust evolves as a result of hydrothermal fluid circulation and cooling, as it ages from zero-age at the ridge-axis to 6 Ma at borehole 504B. Ultimately, this model can be used to undertake full waveform inversion to produce a high-resolution velocity model of the oceanic crust in the Panama Basin. This research is part of a major, interdisciplinary NERC-funded research collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).

  3. Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model

    NASA Astrophysics Data System (ADS)

    Thran, Amanda C.; Dutkiewicz, Adriana; Spence, Paul; Müller, R. Dietmar

    2018-05-01

    Contourite drifts are anomalously high sediment accumulations that form due to reworking by bottom currents. Due to the lack of a comprehensive contourite database, the link between vigorous bottom water activity and drift occurrence has yet to be demonstrated on a global scale. Using an eddy-resolving ocean model and a new georeferenced database of 267 contourites, we show that the global distribution of modern contourite drifts strongly depends on the configuration of the world's most powerful bottom currents, many of which are associated with global meridional overturning circulation. Bathymetric obstacles frequently modify flow direction and intensity, imposing additional finer-scale control on drift occurrence. Mean bottom current speed over contourite-covered areas is only slightly higher (2.2 cm/s) than the rest of the global ocean (1.1 cm/s), falling below proposed thresholds deemed necessary to re-suspend and redistribute sediments (10-15 cm/s). However, currents fluctuate more frequently and intensely over areas with drifts, highlighting the role of intermittent, high-energy bottom current events in sediment erosion, transport, and subsequent drift accumulation. We identify eddies as a major driver of these bottom current fluctuations, and we find that simulated bottom eddy kinetic energy is over three times higher in contourite-covered areas in comparison to the rest of the ocean. Our work supports previous hypotheses which suggest that contourite deposition predominantly occurs due to repeated acute events as opposed to continuous reworking under average-intensity background flow conditions. This suggests that the contourite record should be interpreted in terms of a bottom current's susceptibility to experiencing periodic, high-speed current events. Our results also highlight the potential role of upper ocean dynamics in contourite sedimentation through its direct influence on deep eddy circulation.

  4. An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skyllingstad, E.D.; Denbo, D.W.

    Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less

  5. Seabed topography beneath Larsen C Ice Shelf from seismic soundings

    NASA Astrophysics Data System (ADS)

    Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.

    2014-01-01

    Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-ice shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines was collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-ice shelf oceanic circulation may be affected by ice draft and seabed depth. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general < 10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-ice shelf ocean circulation models.

  6. Seabed topography beneath Larsen C Ice Shelf from seismic soundings

    NASA Astrophysics Data System (ADS)

    Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.

    2013-08-01

    Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines were collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-shelf oceanic circulation may be affected by ice draft and sub-shelf cavity thickness. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general <10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-shelf ocean circulation models.

  7. Towards the impact of eddies on the response of the global ocean circulation to Southern Ocean gateway opening

    NASA Astrophysics Data System (ADS)

    Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.

    2014-05-01

    During the past 65 Million (Ma) years, Earth's climate has undergone a major change from warm 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. A long-standing hypothesis is that the formation of the Antarctic Circumpolar Current due to opening/deepening of Southern Ocean gateways led to glaciation of the Antarctic continent. However, while this hypothesis remains controversial, its assessment via coupled climate model simulations depends crucially on the spatial resolution in the ocean component. More precisely, only high-resolution modeling of the turbulent ocean circulation is capable of adequately describing reorganizations in the ocean flow field and related changes in turbulent heat transport. In this study, for the first time results of a high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed Drake Passage are presented. Changes in global ocean temperatures, heat transport, and ocean circulation (e.g., Meridional Overturning Circulation and Antarctic Coastal Current) are established by comparison with an open Drake Passage high-resolution reference simulation. Finally, corresponding low-resolution simulations are also analyzed. The results highlight the essential impact of the ocean eddy field in palaeoclimatic change.

  8. Quantifying predictability variations in a low-order ocean-atmosphere model - A dynamical systems approach

    NASA Technical Reports Server (NTRS)

    Nese, Jon M.; Dutton, John A.

    1993-01-01

    The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.

  9. On the dynamical basis for the Asian summer monsoon rainfall-El Nino relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigam, S.

    The dynamical basis for the Asian summer monsoon rainfall-El Nino linkage is explored through diagnostic calculations with a linear steady-state multilayer primitive equation model. The contrasting monsoon circulation during recent El Nino (1987) and La Nina (1988) years is first simulated using orography and the residually diagnosed heating (from the thermodynamic equation and the uninitialized, but mass-balanced, ECMWF analysis) as forcings, and then analyzed to provide insight into the importance of various regional forcings, such as the El Nino-related heating anomalies over the tropical Indian and Pacific Oceans. The striking simulation of the June-August (1987-1988) near-surface and upper-air tropical circulationmore » anomalies indicates that tropical anomaly dynamics during northern summer is essentially linear even at the 150-mb level. The vertical structure of the residually diagnosed heating anomaly that contributes to this striking simulation differs significantly from the specified canonical vertical structure (used in generating 3D heating from OLR/precipitation distributions) near the tropical tropopause. The dynamical diagnostic analysis of the anomalous circulation during 1987 and 1988 March-May and June-August periods shows the orographically forced circulation anomaly (due to changes in the zonally averaged basic-state flow) to be quite dominant in modulating the low-level moisture-flux convergence and hence monsoon rainfall over Indochina. The El Nino-related persistent (spring-to-summer) heating anomalies over the tropical Pacific and Indian Ocean basins, on the other hand, mostly regulate the low-level westerly monsoon flow intensity over equatorial Africa and the northern Indian Ocean and, thereby, the large-scale moisture flux into Sahel and Indochina. 38 refs., 12 figs.« less

  10. Emerging climate change signals in the interior ocean oxygen content

    NASA Astrophysics Data System (ADS)

    Tjiputra, Jerry; Goris, Nadine; Schwinger, Jörg; Lauvset, Siv

    2017-04-01

    Earth System Models (ESMs) indicate that human-induced climate change will introduce spatially heterogeneous modifications of dissolved oxygen in the North Atlantic. In the upper ocean, an increase (decrease) is predicted at low (high) latitude. Oxygen increase is driven by a reduction of the oxygen consumption for biological remineralization while warming-induced reduction in air-sea fluxes and increase in remineralization due to weaker overturning circulation lead to the projected decrease. In the interior ocean, modifications in the apparent oxygen utilization (AOU) dominate the overall oxygen changes. Moreover, for the southern subpolar gyre, both observations and model hindcast indicate a close relationship between interior ocean oxygen and the subpolar gyre index. Over the 21st century, all ESMs consistently project a steady weakening of this index and consequently the oxygen. Our finding shows that climate change-induced oxygen depletion in the interior has likely occurred and can already be detected. Nevertheless, considering the observational uncertainties, we show that in the proximity of southern subpolar gyre the projected interior trend is sufficiently large enough for early detection.

  11. Sustaining observations in the polar oceans

    PubMed Central

    Abrahamsen, E. P.

    2014-01-01

    Polar oceans present a unique set of challenges to sustained observations. Sea ice cover restricts navigation for ships and autonomous measurement platforms alike, and icebergs present a hazard to instruments deployed in the upper ocean and in shelf seas. However, the important role of the poles in the global ocean circulation provides ample justification for sustained observations in these regions, both to monitor the rapid changes taking place, and to better understand climate processes in these traditionally poorly sampled areas. In the past, the vast majority of polar measurements took place in the summer. In recent years, novel techniques such as miniature CTD (conductivity–temperature–depth) tags carried by seals have provided an explosion in year-round measurements in areas largely inaccessible to ships, and, as ice avoidance is added to autonomous profiling floats and gliders, these promise to provide further enhancements to observing systems. In addition, remote sensing provides vital information about changes taking place in sea ice cover at both poles. To make these observations sustainable into the future, improved international coordination and collaboration is necessary to gain optimum utilization of observing networks. PMID:25157189

  12. Dissolved organic carbon in the carbon cycle of the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Hansell, Dennis A.

    Dissolved organic carbon (DOC) is one of the least quantified and least understood bioreactive pools of carbon in the Indian Ocean. Data gaps are large, with much of the central Indian Ocean not yet sampled. Here model results depict the surface distribution of DOC, which is interpreted in terms of anticipated net DOC production (13-26 Tmol C a-1), advective transport, and export to the subsurface with overturning circulation. These interpretations are tested against DOC measurements made on sections in the Arabian Sea, across the Agulhas Current, in the central Indian Ocean, and into the Bay of Bengal. The seasonality of net DOC production and consumption is evaluated in the Arabian Sea, where data density is relatively rich. DOC stocks in the upper 150 m of the western Arabian Sea increased by >1.5 mol C m-2 during the NE monsoon and disappeared rapidly during the SW monsoon. Rapid DOC removal may result in part from aggregation of dust and biogenic particles along with stripping of trace metals and DOC, perhaps as transparent exopolymer particles, from the surrounding waters.

  13. The influence of global sea surface temperature variability on the large-scale land surface temperature

    NASA Astrophysics Data System (ADS)

    Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike

    2015-04-01

    In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.

  14. An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes

    NASA Astrophysics Data System (ADS)

    Moreno-Chamarro, Eduardo; Zanchettin, Davide; Lohmann, Katja; Jungclaus, Johann H.

    2017-02-01

    We investigate the mechanism of a decadal-scale weakening shift in the strength of the subpolar gyre (SPG) that is found in one among three last millennium simulations with a state-of-the-art Earth system model. The SPG shift triggers multicentennial anomalies in the North Atlantic climate driven by long-lasting internal feedbacks relating anomalous oceanic and atmospheric circulation, sea ice extent, and upper-ocean salinity in the Labrador Sea. Yet changes throughout or after the shift are not associated with a persistent weakening of the Atlantic Meridional Overturning Circulation or shifts in the North Atlantic Oscillation. The anomalous climate state of the North Atlantic simulated after the shift agrees well with climate reconstructions from within the area, which describe a transition between a stronger and weaker SPG during the relatively warm medieval climate and the cold Little Ice Age respectively. However, model and data differ in the timing of the onset. The simulated SPG shift is caused by a rapid increase in the freshwater export from the Arctic and associated freshening in the upper Labrador Sea. Such freshwater anomaly relates to prominent thickening of the Arctic sea ice, following the cluster of relatively small-magnitude volcanic eruptions by 1600 CE. Sensitivity experiments without volcanic forcing can nonetheless produce similar abrupt events; a necessary causal link between the volcanic cluster and the SPG shift can therefore be excluded. Instead, preconditioning by internal variability explains discrepancies in the timing between the simulated SPG shift and the reconstructed estimates for the Little Ice Age onset.

  15. Seasonal cycle of oceanic mixed layer and upper-ocean heat fluxes in the Mediterranean Sea from in-situ observations.

    NASA Astrophysics Data System (ADS)

    Houpert, Loïc; Testor, Pierre; Durrieu de Madron, Xavier; Estournel, Claude; D'Ortenzio, Fabrizio

    2013-04-01

    Heat fluxes across the ocean-atmosphere interface play a crucial role in the upper turbulent mixing. The depth reached by this turbulent mixing is indicated by an homogenization of seawater properties in the surface layer, and is defined as the Mixed Layer Depth (MLD). The thickness of the mixed layer determines also the heat content of the layer that directly interacts with the atmosphere. The seasonal variability of these air-sea fluxes is crucial in the calculation of heat budget. An improvement in the estimate of these fluxes is needed for a better understanding of the Mediterranean ocean circulation and climate, in particular in Regional Climate Models. There are few estimations of surface heat fluxes based on oceanic observations in the Mediterranean, and none of them are based on mixed layer observations. So, we proposed here new estimations of these upper-ocean heat fluxes based on mixed layer. We present high resolution Mediterranean climatology (0.5°) of the mean MLD based on a comprehensive collection of temperature profiles of last 43 years (1969-2012). The database includes more than 150,000 profiles, merging CTD, XBT, ARGO Profiling floats, and gliders observations. This dataset is first used to describe the seasonal cycle of the mixed layer depth on the whole Mediterranean on a monthly climatological basis. Our analysis discriminates several regions with coherent behaviors, in particular the deep water formation sites, characterized by significant differences in the winter mixing intensity. Heat storage rates (HSR) were calculated as the time rate of change of the heat content integrated from the surface down to a specific depth that is defined as the MLD plus an integration constant. Monthly climatology of net heat flux (NHF) from ERA-Interim reanalysis was balanced by the 1°x1° resolution heat storage rate climatology. Local heat budget balance and seasonal variability in the horizontal heat flux are then discussed by taking into account uncertainties, due to errors in monthly value estimation and to intra-annual and inter-annual variability.

  16. Objective estimates of mantle 3He in the ocean and implications for constraining the deep ocean circulation

    NASA Astrophysics Data System (ADS)

    Holzer, Mark; DeVries, Timothy; Bianchi, Daniele; Newton, Robert; Schlosser, Peter; Winckler, Gisela

    2017-01-01

    Hydrothermal vents along the ocean's tectonic ridge systems inject superheated water and large amounts of dissolved metals that impact the deep ocean circulation and the oceanic cycling of trace metals. The hydrothermal fluid contains dissolved mantle helium that is enriched in 3He relative to the atmosphere, providing an isotopic tracer of the ocean's deep circulation and a marker of hydrothermal sources. This work investigates the potential for the 3He/4He isotope ratio to constrain the ocean's mantle 3He source and to provide constraints on the ocean's deep circulation. We use an ensemble of 11 data-assimilated steady-state ocean circulation models and a mantle helium source based on geographically varying sea-floor spreading rates. The global source distribution is partitioned into 6 regions, and the vertical profile and source amplitude of each region are varied independently to determine the optimal 3He source distribution that minimizes the mismatch between modeled and observed δ3He. In this way, we are able to fit the observed δ3He distribution to within a relative error of ∼15%, with a global 3He source that ranges from 640 to 850 mol yr-1, depending on circulation. The fit captures the vertical and interbasin gradients of the δ3He distribution very well and reproduces its jet-sheared saddle point in the deep equatorial Pacific. This demonstrates that the data-assimilated models have much greater fidelity to the deep ocean circulation than other coarse-resolution ocean models. Nonetheless, the modelled δ3He distributions still display some systematic biases, especially in the deep North Pacific where δ3He is overpredicted by our models, and in the southeastern tropical Pacific, where observed westward-spreading δ3He plumes are not well captured. Sources inferred by the data-assimilated transport with and without isopycnally aligned eddy diffusivity differ widely in the Southern Ocean, in spite of the ability to match the observed distributions of CFCs and radiocarbon for either eddy parameterization.

  17. On the Use of Satellite Altimetry to Detect Ocean Circulation's Magnetic Signals

    NASA Astrophysics Data System (ADS)

    Saynisch, J.; Irrgang, C.; Thomas, M.

    2018-03-01

    Oceanic magnetic signals are sensitive to ocean velocity, salinity, and heat content. The detection of respective signals with global satellite magnetometers would pose a very valuable source of information. While tidal magnetic fields are already detected, electromagnetic signals of the ocean circulation still remain unobserved from space. We propose to use satellite altimetry to construct proxy magnetic signals of the ocean circulation. These proxy time series could subsequently be fitted to satellite magnetometer data. The fitted data could be removed from the observations or the fitting constants could be analyzed for physical properties of the ocean, e.g., the heat budget. To test and evaluate this approach, synthetic true and proxy magnetic signals are derived from a global circulation model of the ocean. Both data sets are compared in dependence of location and time scale. We study and report when and where the proxy data describe the true signal sufficiently well. Correlations above 0.6 and explained variances of above 80% can be reported for large parts of the Antarctic ocean, thus explaining the major part of the global, subseasonal magnetic signal.

  18. Dynamic Downscaling of Seasonal Simulations over South America.

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu; Dirmeyer, Paul A.; Kirtman, Ben P.

    2003-01-01

    In this paper multiple atmospheric global circulation model (AGCM) integrations at T42 spectral truncation and prescribed sea surface temperature were used to drive regional spectral model (RSM) simulations at 80-km resolution for the austral summer season (January-February-March). Relative to the AGCM, the RSM improves the ensemble mean simulation of precipitation and the lower- and upper-level tropospheric circulation over both tropical and subtropical South America and the neighboring ocean basins. It is also seen that the RSM exacerbates the dry bias over the northern tip of South America and the Nordeste region, and perpetuates the erroneous split intertropical convergence zone (ITCZ) over both the Pacific and Atlantic Ocean basins from the AGCM. The RSM at 80-km horizontal resolution is able to reasonably resolve the Altiplano plateau. This led to an improvement in the mean precipitation over the plateau. The improved resolution orography in the RSM did not substantially change the predictability of the precipitation, surface fluxes, or upper- and lower-level winds in the vicinity of the Andes Mountains from the AGCM. In spite of identical convective and land surface parameterization schemes, the diagnostic quantities, such as precipitation and surface fluxes, show significant differences in the intramodel variability over oceans and certain parts of the Amazon River basin (ARB). However, the prognostic variables of the models exhibit relatively similar model noise structures and magnitude. This suggests that the model physics are in large part responsible for the divergence of the solutions in the two models. However, the surface temperature and fluxes from the land surface scheme of the model [Simplified Simple Biosphere scheme (SSiB)] display comparable intramodel variability, except over certain parts of ARB in the two models. This suggests a certain resilience of predictability in SSiB (over the chosen domain of study) to variations in horizontal resolution. It is seen in this study that the summer precipitation over tropical and subtropical South America is highly unpredictable in both models.

  19. Time variable eddy mixing in the global Sea Surface Salinity maxima

    NASA Astrophysics Data System (ADS)

    Busecke, J. J. M.; Abernathey, R.; Gordon, A. L.

    2016-12-01

    Lateral mixing by mesoscale eddies is widely recognized as a crucial mechanism for the global ocean circulation and the associated heat/salt/tracer transports. The Salinity in the Upper Ocean Processes Study (SPURS) confirmed the importance of eddy mixing for the surface salinity fields even in the center of the subtropical gyre of the North Atlantic. We focus on the global salinity maxima due to their role as indicators for global changes in the hydrological cycle as well as providing the source water masses for the shallow overturning circulation. We introduce a novel approach to estimate the contribution of eddy mixing to the global sea surface salinity maxima. Using a global 2D tracer experiments in a 1/10 degree MITgcm setup driven by observed surface velocities, we analyze the effect of eddy mixing using a water mass framework, thus focussing on the diffusive flux across surface isohalines. This enables us to diagnose temporal variability on seasonal to inter annual time scales, revealing regional differences in the mechanism causing temporal variability.Sensitivity experiments with various salinity backgrounds reveal robust inter annual variability caused by changes in the surface velocity fields potentially forced by large scale climate.

  20. Under-ice ambient noise in Eastern Beaufort Sea, Canadian Arctic, and its relation to environmental forcing.

    PubMed

    Kinda, G Bazile; Simard, Yvan; Gervaise, Cédric; Mars, Jérome I; Fortier, Louis

    2013-07-01

    This paper analyzes an 8-month time series (November 2005 to June 2006) of underwater noise recorded at the mouth of the Amundsen Gulf in the marginal ice zone of the western Canadian Arctic when the area was >90% ice covered. The time-series of the ambient noise component was computed using an algorithm that filtered out transient acoustic events from 7-min hourly recordings of total ocean noise over a [0-4.1] kHz frequency band. Under-ice ambient noise did not respond to thermal changes, but showed consistent correlations with large-scale regional ice drift, wind speed, and measured currents in upper water column. The correlation of ambient noise with ice drift peaked for locations at ranges of ~300 km off the mouth of the Amundsen Gulf. These locations are within the multi-year ice plume that extends westerly along the coast in the Eastern Beaufort Sea due to the large Beaufort Gyre circulation. These results reveal that ambient noise in Eastern Beaufort Sea in winter is mainly controlled by the same meteorological and oceanographic forcing processes that drive the ice drift and the large-scale circulation in this part of the Arctic Ocean.

  1. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s

    NASA Astrophysics Data System (ADS)

    DU, Y.; Zhang, Y.

    2016-02-01

    A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004-2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate.

  2. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s

    NASA Astrophysics Data System (ADS)

    Du, Yan; Zhang, Yuhong; Feng, Ming; Wang, Tianyu; Zhang, Ningning; Wijffels, Susan

    2015-11-01

    A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004-2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate.

  3. The dynamics of oceanic fronts. I - The Gulf Stream

    NASA Technical Reports Server (NTRS)

    Kao, T. W.

    1980-01-01

    The establishment and maintenance of the mean hydrographic properties of large-scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near-surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density; full time dependent diffusion and Navier-Stokes equations are then used with constant eddy diffusion and viscosity coefficients, together with a constant Coriolis parameter. Scaling analysis reveals three independent scales of the problem including the radius of deformation of the inertial length, buoyancy length, and diffusive length scales. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on the Ekman number alone for problems of oceanic interest. It is concluded that the mean Gulf Stream dynamics can be interpreted in terms of a solution of the Navier-Stokes and diffusion equations, with the cross-stream circulation responsible for the maintenance of the front; this mechanism is suggested for the maintenance of the Gulf Stream dynamics.

  4. Contribution of Surface Thermal Forcing to Mixing in the Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Huang, Shi-Di; Xia, Ke-Qing

    2018-02-01

    A critical ingredient of the meridional overturning circulation (MOC) is vertical mixing, which causes dense waters in the deep sea to rise throughout the stratified interior to the upper ocean. Here, we report a laboratory study aimed at understanding the contributions from surface thermal forcing (STF) to this mixing process. Our study reveals that the ratio of the thermocline thickness to the fluid depth largely determines the mixing rate and the mixing efficiency in an overturning flow driven by STF. By applying this finding to a hypothetical MOC driven purely by STF, we obtain a mixing rate of O(10-6 m2/s) and a corresponding meridional heat flux of O(10-2 petawatt, PW), which are far smaller than the values found for real oceans. These results provide quantitative support for the notion that STF alone is not sufficient to drive the MOC, which essentially acts as a heat conveyor belt powered by other energy sources.

  5. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s

    PubMed Central

    Du, Yan; Zhang, Yuhong; Feng, Ming; Wang, Tianyu; Zhang, Ningning; Wijffels, Susan

    2015-01-01

    A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004–2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate. PMID:26522168

  6. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s.

    PubMed

    Du, Yan; Zhang, Yuhong; Feng, Ming; Wang, Tianyu; Zhang, Ningning; Wijffels, Susan

    2015-11-02

    A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004-2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate.

  7. Plumes do not Exist: Plate Circulation is Confined to Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2002-12-01

    Plumes from deep mantle are widely conjectured to define an absolute reference frame, inaugurate rifting, drive plates, and profoundly modify oceans and continents. Mantle properties and composition are assumed to be whatever enables plumes. Nevertheless, purported critical evidence for plume speculation is false, and all data are better interpreted without plumes. Plume fantasies are made ever more complex and ad hoc to evade contradictory data, and have no predictive value because plumes do not exist. All plume conjecture derives from Hawaii and the guess that the Emperor-Hawaii inflection records a 60-degree change in Pacific plate direction at 45 Ma. Paleomagnetic latitudes and smooth Pacific spreading patterns disprove any such change. Rationales for other fixed plumes collapse when tested, and hypotheses of jumping, splitting, and gyrating plumes are specious. Thermal and physical properties of Hawaiian lithosphere falsify plume predictions. Purported tomographic support elsewhere represents artifacts and misleading presentations. Asthenosphere is everywhere near solidus temperature, so melt needs a tensional setting for egress but not local heat. Gradational and inconsistent contrasts between MORB and OIB are as required by depth-varying melt generation and behavior in contrasted settings and do not indicate systematically unlike sources. MORB melts rise, with minimal reaction, through hot asthenosphere, whereas OIB melts react with cool lithosphere, and lose mass, by crystallizing refractories and retaining and assimilating fusibles. The unfractionated lower mantle of plume conjecture is contrary to cosmologic and thermodynamic data, for mantle below 660 km is more refractory than that above. Subduction, due to density inversion by top-down cooling that forms oceanic lithosphere, drives plate tectonics and upper-mantle circulation. It organizes plate motions and lithosphere stress, which controls plate boundaries and volcanic chains. Hinge rollback is the key to kinematics. Arcs advance and collide, fast-spreading Pacific shrinks, etc. A fore-arc basin atop an overriding plate shows that hinge and non-shortening plate front there track together: velocities of rollback and advance are equal. Convergence velocity commonly also equals rollback velocity but often is greater. Slabs sinking broadside push upper mantle back under incoming plates and force rapid Pacific spreading, whereas overriding plates flow forward with retreating hinges. Backarc basins open behind island arcs migrating with hinges. Slabs settle on uncrossable 660-km discontinuity. (Contrary tomographic claims reflect sampling and smearing artifacts, notably due to along-slab raypaths.) Plates advance over sunken slabs and mantle displaced rearward by them, and ridges spread where advancing plates pull away. Ridges migrate over asthenosphere, producing geophysical and bathymetric asymmetry, and tap fresh asthenosphere into which slab material is recycled upward. Sluggish deep-mantle circulation is decoupled from rapid upper-mantle circulation, so plate motions can be referenced to semistable lower mantle. Global plate motions make kinematic sense if Antarctica, almost ringed by departing ridges and varying little in Cenozoic paleomagnetic position, is stationary: hinges roll back, ridges migrate, and directions and velocities of plate rotations accord with subduction, including sliding and crowding of oceanic lithosphere toward free edges, as the dominant drive. (The invalid hotspot and no-net-rotation frames minimize motions of hinges and ridges, and their plate motions lack kinematic sense.) Northern Eurasia also is almost stationary, Africa rotates very slowly counterclockwise toward Aegean and Zagros, Pacific plate races toward surface-exit subduction systems, etc.

  8. Numerical simulation of inter-annual variations in the properties of the upper mixed layer in the Black Sea over the last 34 years

    NASA Astrophysics Data System (ADS)

    Shapiro, Georgy I.; Wobus, Fred; Zatsepin, Andrei G.; Akivis, Tatiana M.; Zanacchi, Marcus; Stanichny, Sergey

    2014-05-01

    The Black Sea is a nearly land-locked basin where a combination of salt and heat budgets results in a unique thermohaline water mass structure. An important feature of the Black Sea is that oxygen is dissolved and rich sea life made possible only in the upper water levels. This is due to a strong pycnocline which cannot be mixed even by strong winds or winter convection (Shapiro, 2008). The upper mixed layer (UML) with a nearly uniform temperature profile and a very sharp seasonal thermocline at its lower boundary develops during the summer season (Sur & Ilyin, 1997). The deepening of the UML has an important effect on the supply of nutrients into the euphotic upper layer from the underlying nutrient-rich water mass. The temperature of the UML at any given location is dependent on the surface heat flux, horizontal advection of heat, the depth and the rate of deepening of the UML. In this study we use a 3D ocean circulation model, NEMO-SHELF (O'Dea et al, 2012) to simulate the parameters of the UML in the Black Sea over the last 34 years. The model has horizontal resolution of 1/12×1/16 degrees and 33 layers in the vertical. The vertical discretization uses a hybrid enveloped s-z grid developed in Shapiro et al. (2012). The model is spun up from climatology (Suvorov et al., 2004); it is forced by the Drakkar Forcing Set v5.2 (Brodeau et al., 2010, Meinvielle et al., 2013) and river discharges from 8 major rivers are included. For each year the model is run from 1st January and the data for the period April to October are used for analysis. The sea surface temperature produced by the model is compared with satellite data ( Modis-Aqua, 2013) to show a good agreement. The model simulations are validated against in-situ observations (BSERP-3, 2004; Piotukh et al., 2011). The analysis is performed for the deep basin where the depth of the sea is greater than 1000m. It clearly shows the inter-annual variations of both the SST and the depth of UML. The depth of UML is calculated using the method by Thomson (1976). It is highly dependent on the meteorological forcing, in particular the wind speed. The correlation between the variations of parameters of UML, the weather patterns, buoyancy fluxes and the kinetic energy of the UML circulation is analysed. This study was supported by EU FP7 PERSEUS and EU FP7 MyOcean2 projects. References BSERP-3. Black Sea Ecosystem Recovery Project. BSERP-3 cruise, May 2004. http://www.research.plymouth.ac.uk/shelf/projects/Black_sea/C_S_BSERP3_final.pdf, 2004. Brodeau, L., B. Barnier, A-M. Treguier, T. Penduff, S. Gulev : An ERA40-based atmospheric forcing for global ocean circulation models, Ocean Modelling, 31, (3-4), 88-104, 2010, http://dx.doi.org/10.1016/j.ocemod.2009.10.005 Meinvielle, M., Brankart, J.-M., Brasseur, P., Barnier, B., Dussin, R., and Verron, J.: Optimal adjustment of the atmospheric forcing parameters of ocean models using sea surface temperature data assimilation, Ocean Sci., 9, 867-883, doi:10.5194/os-9-867-2013, 2013. MODIS-AQUA. http://aqua.nasa.gov/science/images_data.php, 2013. O'Dea, E. J., While, J., Furner, R., Arnold, A., Hyder, P., Storkey, D., Edwards, K.P., Siddorn, J.R., Martin, M.J., Liu, H., Holt, J.T.: An operational ocean forecast system incorporating SST data assimilation for the tidally driven European North-West European shelf. Journal of Operational Oceanography, 5, 3-17, 2012. Piotukh V.B., Zatsepin A.G., Kazmin A.S., Yakubenko V.G.: Impact of the winter cooling on the variability of the thermohaline characteristics of the active layer in the Black Sea. Oceanology, 41, 2, 221-230, 2011 Shapiro, G.I.: Black Sea Circulation. In: Encyclopedia of Ocean Sciences (Second Edition). Eds: J. H. Steele, K. K. Turekian, and S. A. Thorpe. ISBN: 978-0-12-374473-9, P.3519-3532, 2008. Sur, H. I., and Y. P. Ilyin: Evolution of satellite derived mesoscale thermal patterns in the Black Sea, Prog. Oceanogr., 39, 109-151, 1997 Suvorov, A.M., Eremeev, V.N., Belokopytov, V.N., Khaliulin, A.H., Godin, E.A., Ingerov, A.V., Palmer, D.R. and Levitus, S.: Digital Atlas: Physical Oceanography of the Black Sea. (CD-ROM), Environmental Services Data and Information Management Program, Marine Hydrophysical Institute of the National Academy of Sciences of Ukraine, 2004. Thompson, R. O. R. Y.: Climatological numerical models of the surface mixed layer of the ocean, J. Phys. Oceanogr., 6, 496-603, 1976

  9. U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model

    DTIC Science & Technology

    2008-09-30

    major contributors to the strength of the Gulf Stream, (1) the wind forcing, (2) the Atlantic meridional overturning circulation (AMOC), and (3) a...convergence and sensitivity studies with North Atlantic circulation models. Part I. The western boundary current system. Ocean Model., 16, 141-159...a baroclinic version of ADvanced CIRCulation (ADCIRC), the latter an unstructured grid model for baroclinic coastal/estuarian applications. NCOM is

  10. Parameterizing Gravity Waves and Understanding Their Impacts on Venus' Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Brecht, A. S.; Bougher, S. W.; Yigit, Erdal

    2018-01-01

    The complexity of Venus’ upper atmospheric circulation is still being investigated. Simulations of Venus’ upper atmosphere largely depend on the utility of Rayleigh Friction (RF) as a driver and necessary process to reproduce observations (i.e. temperature, density, nightglow emission). Currently, there are additional observations which provide more constraints to help characterize the driver(s) of the circulation. This work will largely focus on the impact parameterized gravity waves have on Venus’ upper atmosphere circulation within a three dimensional hydrodynamic model (Venus Thermospheric General Circulation Model).

  11. Quantifying the Contribution of Wind-Driven Linear Response to the Seasonal and Interannual Variability of Amoc Volume Transports Across 26.5ºN

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; von Storch, J. S.; Haak, H.; Nakayama, K.; Marotzke, J.

    2014-12-01

    Surface wind stress is considered to be an important forcing of the seasonal and interannual variability of Atlantic Meridional Overturning Circulation (AMOC) volume transports. A recent study showed that even linear response to wind forcing captures observed features of the mean seasonal cycle. However, the study did not assess the contribution of wind-driven linear response in realistic conditions against the RAPID/MOCHA array observation or Ocean General Circulation Model (OGCM) simulations, because it applied a linear two-layer model to the Atlantic assuming constant upper layer thickness and density difference across the interface. Here, we quantify the contribution of wind-driven linear response to the seasonal and interannual variability of AMOC transports by comparing wind-driven linear simulations under realistic continuous stratification against the RAPID observation and OCGM (MPI-OM) simulations with 0.4º resolution (TP04) and 0.1º resolution (STORM). All the linear and MPI-OM simulations capture more than 60% of the variance in the observed mean seasonal cycle of the Upper Mid-Ocean (UMO) and Florida Strait (FS) transports, two components of the upper branch of the AMOC. The linear and TP04 simulations also capture 25-40% of the variance in the observed transport time series between Apr 2004 and Oct 2012; the STORM simulation does not capture the observed variance because of the stochastic signal in both datasets. Comparison of half-overlapping 12-month-long segments reveals some periods when the linear and TP04 simulations capture 40-60% of the observed variance, as well as other periods when the simulations capture only 0-20% of the variance. These results show that wind-driven linear response is a major contributor to the seasonal and interannual variability of the UMO and FS transports, and that its contribution varies in an interannual timescale, probably due to the variability of stochastic processes.

  12. Does coupled ocean enhance ozone-hole-induced Southern Hemisphere circulation changes?

    NASA Astrophysics Data System (ADS)

    Son, S. W.; Han, B. R.; Kim, S. Y.; Park, R.

    2017-12-01

    The ozone-hole-induced Southern Hemisphere (SH) circulation changes, such as poleward shift of westerly jet and Hadley cell widening, have been typically explored with either coupled general circulation models (CGCMs) prescribing stratospheric ozone or chemistry-climate models (CCMs) prescribing surface boundary conditions. Only few studies have utilized ocean-coupled CCMs with a relatively coarse resolution. To better quantify the role of interactive chemistry and coupled ocean in the ozone-hole-induced SH circulation changes, the present study examines a set of CGCM and CCM simulations archived for the Coupled Model Intercomparison Project phase 5 (CMIP5) and CCM initiative (CCMI). Although inter-model spread of Antarctic ozone depletion is substantially large especially in the austral spring, both CGCMs with relatively simple ozone chemistry and CCMs with fully interactive comprehensive chemistry reasonably well reproduce long-term trends of Antarctic ozone and the associated polar-stratospheric temperature changes. Most models reproduce a poleward shift of SH jet and Hadley-cell widening in the austral summer in the late 20th century as identified in reanalysis datasets. These changes are quasi-linearly related with Antarctic ozone changes, confirming the critical role of Antarctic ozone depletion in the austral-summer zonal-mean circulation changes. The CGCMs with simple but still interactive ozone show slightly stronger circulation changes than those with prescribed ozone. However, the long-term circulation changes in CCMs are largely insensitive to the coupled ocean. While a few models show the enhanced circulation changes when ocean is coupled, others show essentially no changes or even weakened circulation changes. This result suggests that the ozone-hole-related stratosphere-troposphere coupling in the late 20th century may be only weakly sensitive to the coupled ocean.

  13. AO/NAO Response to Climate Change. 2; Relative Importance of Low- and High-Latitude Temperature Changes

    NASA Technical Reports Server (NTRS)

    Rind, D.; Perlwitz, J.; Lonergan, P.; Lerner, J.

    2005-01-01

    Using a variety of GCM experiments with various versions of the GISS model, we investigate how different aspects of tropospheric climate changes affect the extratropical Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) circulation indices. The results show that low altitude changes in the extratropical latitudinal temperature gradient can have a strong impact on eddy forcing of the extratropical zonal wind, in the sense that when this latitudinal temperature gradient increases, it helps force a more negative AO/NAO phase. In addition, local conditions at high latitudes can stabilize/destabilize the atmosphere, inducing negative/positive phase changes. To the extent that there is not a large temperature change in the tropical upper troposphere (either through reduced tropical sensitivity at the surface, or limited transport of this change to high levels), the changes in the low level temperature gradient can provide the dominate influence on the extratropical circulation, so that planetary wave meridional refraction and eddy angular momentum transport changes become uncorrelated with potential vorticity transports. In particular, the climate change that produces the most positive NAO phase change would have substantial warming in the tropical upper troposphere over the Pacific Ocean, with high latitude warming in the North Atlantic. An increase in positive phase of these circulation indices is still more likely than not, but it will depend on the degree of tropical and high latitude temperature response and the transport of low level warming into the upper troposphere. These are aspects that currently differ among the models used for predicting the effects of global warning, contributing to the lack of consensus of future changes in the AO/NAO.

  14. Upper Ocean Response to Hurricanes Katrina and Rita (2005) from Multi-sensor Satellites

    NASA Astrophysics Data System (ADS)

    Gierach, M. M.; Bulusu, S.

    2006-12-01

    Analysis of satellite observations and model simulations of the mixed layer provided an opportunity to assess the biological and physical effects of hurricanes Katrina and Rita (2005) in the Gulf of Mexico. Oceanic cyclonic circulation was intensified by the hurricanes' wind field, maximizing upwelling, surface cooling, and deepening the mixed layer. Two areas of maximum surface chlorophyll-a concentration and sea surface cooling were detected with peak intensities ranging from 2-3 mg m-3 and 4-6°C, along the tracks of Katrina and Rita. The temperature of the mixed layer cooled approximately 2°C and the depth of the mixed layer deepened by approximately 33-52 m. The forced deepening of the mixed layer injected nutrients into the euphotic zone, generating phytoplankton blooms 3-5 days after the passage of Katrina and Rita (2005).

  15. Simulation of South-Asian Summer Monsoon in a GCM

    NASA Astrophysics Data System (ADS)

    Ajayamohan, R. S.

    2007-10-01

    Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.

  16. Enhanced deep ocean ventilation and oxygenation with global warming

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  17. Diurnal warming impacts on atmospheric and oceanic evolution during the suppressed phase of the Madden Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Clayson, C. A.; Roberts, J.

    2016-02-01

    The Madden-Julian Oscillation (MJO) represents a prominent mode of intraseasonal tropical variability as manifest by coherent large-scale changes in atmospheric circulation, convection, and thermodynamic processes. Its impacts are far-reaching with influences on monsoons, flooding, droughts, and tropical storms. The characteristic timescale of the MJO is positioned in a gap between synoptic forecasting and longer range seasonal to interannual predictions, but has been shown to be dependent on diurnally-varying sea surface temperature (SST). In this work, we leverage a wide suite of satellite products with in situ oceanographic data over the 2002-2012 period to investigate the rectification effects of strong ocean diurnal warming onto the development of intraseasonal SST variability, and whether there a detectable influence on the diurnal cycle of cloud-radiative effects in the suppressed phase of the MJO. Diurnally-varying SST is used as a conditional sampling parameter, along with AIRS/AMSU-A temperature and moisture profiles, surface winds, radiative and turbulent surface fluxes, and precipitation. We use composite daily average atmospheric BL depths, changes in lower-tropospheric stability, and moist static energy to evaluate changes in convective inhibition based on the diurnal variability of surface parcel characteristics due to turbulent heat fluxes, and compare with diurnal changes in cloud-radiative effects and precipitation. Argo floats and ocean modeling experiments are used to examine the upper ocean response. An ensemble of MJO simulations are generated using Argo profiles and satellite-derived surface forcing from which the systematic impacts of diurnal variability on the generation of the intraseasonal SST warming are evaluated. These simulations inform the importance of diurnal variations in surface boundary forcing to upper ocean mixing and the integrated contribution to SST warming over the typical duration of a suppressed phase of the MJO.

  18. Tropical Cyclone Footprint in the Ocean Mixed Layer Observed by Argo in the Northwest Pacific

    DTIC Science & Technology

    2014-10-25

    668. Hu, A., and G. A. Meehl (2009), Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation and heat transport, Geo...atmospheric circulation [Hart et al., 2007]. Several studies, based on observations and modeling, suggest that TC-induced energy input and mixing may play...an important role in climate variability through regulating the oceanic general circulation and its variability [e.g., Emanuel, 2001; Sriver and Huber

  19. Slowing of the Atlantic meridional overturning circulation at 25 degrees N.

    PubMed

    Bryden, Harry L; Longworth, Hannah R; Cunningham, Stuart A

    2005-12-01

    The Atlantic meridional overturning circulation carries warm upper waters into far-northern latitudes and returns cold deep waters southward across the Equator. Its heat transport makes a substantial contribution to the moderate climate of maritime and continental Europe, and any slowdown in the overturning circulation would have profound implications for climate change. A transatlantic section along latitude 25 degrees N has been used as a baseline for estimating the overturning circulation and associated heat transport. Here we analyse a new 25 degrees N transatlantic section and compare it with four previous sections taken over the past five decades. The comparison suggests that the Atlantic meridional overturning circulation has slowed by about 30 per cent between 1957 and 2004. Whereas the northward transport in the Gulf Stream across 25 degrees N has remained nearly constant, the slowing is evident both in a 50 per cent larger southward-moving mid-ocean recirculation of thermocline waters, and also in a 50 per cent decrease in the southward transport of lower North Atlantic Deep Water between 3,000 and 5,000 m in depth. In 2004, more of the northward Gulf Stream flow was recirculating back southward in the thermocline within the subtropical gyre, and less was returning southward at depth.

  20. Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) scientific advances and future west pacific coordination

    NASA Astrophysics Data System (ADS)

    Ganachaud, A. S.; Sprintall, J.; Lin, X.; Ando, K.

    2016-02-01

    The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR (Climate Variability and Predictability). The key objectives are to understand the Southwest Pacific Ocean circulation and Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. It was designed to measure and monitor the ocean circulation, and to validate and improve numerical models. South Pacific oceanic waters are carried from the subtropical gyre centre in the westward flowing South Equatorial Current (SEC), towards the southwest Pacific-a major circulation pathway that redistributes water from the subtropics to the equator and Southern Ocean. Water transit through the Coral and Solomon Seas is potentially of great importance to tropical climate prediction because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate ENSO and produce basin-scale climate feedbacks. On average, the oceanic circulation is driven by the Trade Winds, and subject to substantial variability, related with the SPCZ position and intensity. The circulation is complex, with the SEC splitting into zonal jets upon encountering island archipelagos, before joining either the East Australian Current or the New Guinea Costal UnderCurrent towards the equator. SPICE included large, coordinated in situ measurement programs and high resolution numerical simulations of the area. After 8 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. We will review the recent advancements and discuss our current knowledge gaps and important emerging research directions. In particular we will discuss how SPICE, along with the Northwestern Pacific Ocean Circulation and Climate Experiment (NPOCE) and Indonesian ThroughFlow (ITF) programs could evolve toward an integrative observing system under CLIVAR coordination.

  1. Assimilation of TOPEX/POSEIDON Altimeter Data into a Global Ocean Circulation Model: Are the Results Any Good?

    NASA Technical Reports Server (NTRS)

    Fukumori, I.; Fu, L. L.; Chao, Y.

    1998-01-01

    The feasibility of assimilating satellite altimetry data into a global ocean general ocean general circulation model is studied. Three years of TOPEX/POSEIDON data is analyzed using a global, three-dimensional, nonlinear primitive equation model.

  2. Monthly mean large-scale analyses of upper-tropospheric humidity and wind field divergence derived from three geostationary satellites

    NASA Technical Reports Server (NTRS)

    Schmetz, Johannes; Menzel, W. Paul; Velden, Christopher; Wu, Xiangqian; Vandeberg, Leo; Nieman, Steve; Hayden, Christopher; Holmlund, Kenneth; Geijo, Carlos

    1995-01-01

    This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160 deg W to 50 deg E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-micron absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper-troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about-5 x 10(exp -6) and 5 x 10(exp 6)/s when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize the changes in the upper-tropospheric moisture sources and sinks over the past decade.

  3. Climate controls on streamflow variability in the Missouri River Basin

    NASA Astrophysics Data System (ADS)

    Wise, E.; Woodhouse, C. A.; McCabe, G. J., Jr.; Pederson, G. T.; St-Jacques, J. M.

    2017-12-01

    The Missouri River's hydroclimatic variability presents a challenge for water managers, who must balance many competing demands on the system. Water resources in the Missouri River Basin (MRB) have increasingly been challenged by the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, we use observed and modeled hydroclimatic data and estimated natural flow records to describe the climatic controls on streamflow in the upper and lower portions of the MRB, examine atmospheric and oceanic patterns associated with high- and low-flow years, and investigate trends in climate and streamflow over the instrumental period. Results indicate that the two main source regions for total outflow, in the uppermost and lowermost parts of the basin, are under the influence of very different sets of climatic controls. Winter precipitation, impacted by changes in zonal versus meridional flow from the Pacific Ocean, as well as spring precipitation and temperature, play a key role in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. The upper basin, with decreasing snowpack and streamflow and warming spring temperatures, will be less likely to provide important flow supplements to the lower basin in the future.

  4. Stratospheric Influence on Summer Monsoon and Associated Planetary Wave Breaking and Mixing in the Subtropical Tropopause Region

    NASA Astrophysics Data System (ADS)

    Lubis, S. W.; Nakamura, N.

    2017-12-01

    Previous studies have shown that the monsoonal circulation plays an important role in planetary wave breaking (PWB). The highest frequency of breaking events occurs just downstream (east) of the monsoon region in summer. PWB induces mixing of potential vorticity (PV) and hence, alter the horizontal mixing in the atmosphere. Here, the authors hypothesize that the stratospheric easterlies in the boreal summer also play a significant role in the PWB and mixing associated with the summer monsoon. If the stratospheric winds were westerly in boreal summer, the frequency of PWB would be decreased due to more waves penetrating in the stratosphere, resulting in less horizontal PWB and thus reduced mixing in the subtropical tropopause region. The hypothesis is examined by using a set of idealized moist GFDL simulations. The monsoon circulation is produced by adding a land-sea contrast with a Gaussian-shaped mountains positioned in the midlatitudes. Other key ingredients for the monsoon, including albedo, oceanic warm pool, and Q-flux, were also ideally imposed in all simulations. Our control simulation produces a summer monsoon-like circulation similar to the observation. In particular, the thermally forced monsoonal circulation forms a prominent closed upper-level anticyclone that dominates the summertime upper-level flow. Associated with this circulation is an upward-bulging tropopause that forms a large reservoir of anomalously low PV. Consistent with previous studies, the well-defined tropospheric jet lies just poleward of the upper-level anticyclone, and acts as a dynamical barrier between the low-PV reservoir over the monsoonal region and the high-PV reservoir in the extratropics. This barrier disappears just northeast of the monsoon area in the jet exit region, allowing more quasi-planetary waves to break in this region. Repetitive wave breaking further weakens the PV gradient, leading to the formation of the surf zone and stronger mixing in this region. To quantify the role of the stratospheric circulation in the PWB and mixing associated with the summer monsoon, we add an artificial local cooling in the stratosphere and thereby preserve the stratospheric westerlies in summer. The extent to which PWB and mixing are modified by the presence of stratospheric westerlies will be discussed.

  5. Spice: Southwest Pacific Ocean Circulation and Climate Experiment

    NASA Astrophysics Data System (ADS)

    Ganachaud, A. S.; Melet, A.; Maes, C.

    2010-12-01

    South Pacific oceanic waters are carried from the subtropical gyre centre in the westward flowing South Equatorial Current (SEC), towards the southwest Pacific-a major circulation pathway that redistributes water from the subtropics to the equator and Southern Ocean. The transit in the Coral Sea is potentially of great importance to tropical climate prediction because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate ENSO and produce basin-scale climate feedbacks. The south branch is associated with comparable impacts in the Tasman Sea area. The Southwest Pacific is a region of complex circulation, with the SEC splitting in strong zonal jets upon encountering island archipelagos. Those jets partition on the Australian eastern boundary to feed the East Australian Current for the southern branch and the North Queensland Current and eventually the Equatorial Undercurrent for the northern branch. On average, the oceanic circulation is driven by the Trade Winds, and subject to substantial variability, related with the South Pacific Convergence Zone (SPCZ) position and intensity. The circulation, and its influence on remote and regional climate, is poorly understood due to the lack of appropriate measurements. Ocean and atmosphere scientists from Australia, France, New Zealand, the United States and Pacific Island countries initiated an international research project under the auspices of CLIVAR to comprehend the southwest Pacific Ocean circulation and its direct and indirect influence on the climate and environment. SPICE is a regionally-coordinated experiment to measure, study and monitor the ocean circulation and the SPCZ, to validate and improve numerical models, and to integrate with assimilating systems. This ongoing project reflects a strong sense that substantial progress can be made through collaboration among South Pacific national research groups, coordinated with broader South Pacific projects.

  6. Dynamics of a Snowball Earth ocean.

    PubMed

    Ashkenazy, Yosef; Gildor, Hezi; Losch, Martin; Macdonald, Francis A; Schrag, Daniel P; Tziperman, Eli

    2013-03-07

    Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago), inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness, would have influenced the survival of photosynthetic life, and may provide important constraints for the interpretation of geochemical and sedimentological observations. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated. Although we cannot resolve the debate over the existence of global ice cover, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.

  7. Linking The Atlantic Gyres: Warm, Saline Intrusions From Subtropical Atlantic to the Nordic Seas

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa M.; Rhines, P. B.

    2010-01-01

    Ocean state estimates from SODA assimilation are analyzed to understand how major shifts in the North Atlantic Current path relate to AMOC, and how these shifts are related to large scale ocean circulation and surface forcing. These complement surface-drifter and altimetry data showing the same events. SODA data indicate that the warm water limb of AMOC, reaching to at least 600m depth, expanded in density/salinity space greatly after 1995, and that Similar events occurred in the late 1960s and around 1980. While there were large changes in the upper limb, there was no immediate response in the dense return flow, at least not in SODA, however one would expect a delayed response of increasing AMOC due to the positive feedback from increased salt transport. These upper limb changes are winddriven, involving changes in the eastern subpolar gyre, visible in the subduction of low potential vorticity waters. The subtropical gyre has been weak during the times of the northward intrusions of the highly saline subtropical waters, while the NAO index has been neutral or in a negative phase. The image of subtropical/subpolar gyre exchange through teleconnections within the AMOC overturning cell will be described.

  8. Axial crustal structure of the Costa Rica Rift: Implications for along-axis hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Tong, V.; Hobbs, R. W.; Peirce, C.; Lowell, R. P.; Haughton, G.; Murton, B. J.; Morales Maqueda, M. A.; Harris, R. N.; Robinson, A. H.

    2017-12-01

    In 2015, a multidisciplinary geophysical cruise surveyed the Costa Rica Rift (CRR) in the Panama Basin of the equatorial East Pacific, acquiring a grid of multichannel seismic and wide-angle profiles to determine the mode of oceanic crustal accretion at intermediate-spreading ridges, and how the crustal structure may be influenced by hydrothermal fluid flow. Analysis of 69,000 P-wave first arrivals recorded by 25 ocean-bottom seismographs deployed over a 20 × 20 km area that straddles the ridge axis, reveals a 3D velocity-depth model of upper crustal structure. In particular, the model shows a low velocity anomaly that extends to 2 km below seabed centred on a small-offset non-transform discontinuity (NTD), and a pattern of increasing velocity with distance off-axis that may reflect changes in porosity and permeability in layer 2 of the crust. Assuming the upper crustal velocity anomalies are linked with porosity and hence represent the ability of fluid to flow, comparison of the tomographic model with the volcanic seabed morphology suggests that the broad low velocity zone beneath the NTD may be a region of extensive fracturing. Hence, we infer that this region may provide a primary pathway for the recharge of seawater into the crust. Further west along the axis, beneath the bathymetric dome, which is the shallowest portion along the axis, the low-velocity anomaly is less pronounced, suggesting that fractures are less open and that fluid-rock interaction has encouraged mineral precipitation and alteration, as a result of a longer established hydrothermal fluid flow driven by the axial magma lens observed beneath it. This interpretation is supported by the presence of a plume from an active hydrothermal vent system. Hence, we infer that the variable velocity structure of the upper crust of the CRR is a proxy that reflects the primary porosity, faulting and fracturing related to phases of magma-driven accretion and/or ridge geometry re-adjustment, and that there is along-axis hydrothermal circulation transferring heat and impacting the properties of newly accreted oceanic crust. This research is part of a major, interdisciplinary NERC-funded collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).

  9. Impact of improved momentum transfer coefficients on the dynamics and thermodynamics of the north Indian Ocean

    NASA Astrophysics Data System (ADS)

    Parekh, Anant; Gnanaseelan, C.; Jayakumar, A.

    2011-01-01

    Long time series of in situ observations from the north Indian Ocean are used to compute the momentum transfer coefficients over the north Indian Ocean. The transfer coefficients behave nonlinearly for low winds (<4 m/s), when most of the known empirical relations assume linear relations. Impact of momentum transfer coefficients on the upper ocean parameters is studied using an ocean general circulation model. The model experiments revealed that the Arabian Sea and Equatorial Indian Ocean are more sensitive to the momentum transfer coefficients than the Bay of Bengal and south Indian Ocean. The impact of momentum transfer coefficients on sea surface temperature is up to 0.3°C-0.4°C, on mixed layer depth is up to 10 m, and on thermocline depth is up to 15 m. Furthermore, the impact on the zonal current is maximum over the equatorial Indian Ocean (i.e., about 0.12 m/s in May and 0.15 m/s in October; both May and October are the period of Wyrtki jets and the difference in current has potential impact on the seasonal mass transport). The Sverdrup transport has maximum impact in the Bay of Bengal (3 to 4 Sv in August), whereas the Ekman transport has maximum impact in the Arabian Sea (4 Sv during May to July). These highlight the potential impact of accurate momentum forcing on the results from current ocean models.

  10. Formation of a CliC/CLIVAR Northern Oceans Regional Panel to advance the understanding of the role of the Arctic in global climate

    NASA Astrophysics Data System (ADS)

    Solomon, A.

    2017-12-01

    The Arctic climate is rapidly transitioning into a new regime with lower sea ice extent and increasingly younger and thinner sea ice pack. The emergent properties of this new regime are yet to be determined since altered feedback processes between ice, ocean, and atmosphere will further impact upper ocean heat content, atmospheric circulation, atmospheric and oceanic stratification, the interactions between subsurface/intermediate warm waters and surface cold and fresh layer, cloud cover, ice growth, among other properties. This emergent new climate regime needs to be understood in terms of the two-way feedback between the Arctic and lower-latitudes (both in the ocean and atmosphere), as well as the local coupling between ocean-sea ice-atmosphere. The net result of these feedbacks will determine the magnitude of future Arctic amplification and potential impacts on mid-latitude weather extremes, among other impacts. A new international panel, the CliC/CLIVAR Northern Oceans Regional Panel, has been established to coordinate efforts that will enhance our ability to monitor the coupled system, understand the driving mechanisms of the system change from a coupled process perspective, and predict the evolution of the emerging "New Arctic" climate. This talk will discuss the scientific motivation for this new panel, the near-term objectives, and plans for deliverables.

  11. Indian Ocean sources of Agulhas leakage

    NASA Astrophysics Data System (ADS)

    Durgadoo, Jonathan; Rühs, Siren; Biastoch, Arne; Böning, Claus

    2017-04-01

    We examine the mean pathways, transit timescales, and transformation of waters flowing from the Pacific and the marginal seas through the Indian Ocean (IO) on their way toward the South Atlantic within a high-resolution ocean/sea-ice model. The model fields are analysed from a Lagrangian perspective where water volumes are tracked as they enter the IO. The IO contributes 12.6 Sv to Agulhas leakage, which within the model is 14.1 ± 2.2 Sv, the rest originates from the South Atlantic. The Indonesian Through-flow constitutes about half of the IO contribution, is surface bound, cools and salinificates as it leaves the basin within 1-3 decades. Waters entering the IO south of Australia are at intermediate depths and maintain their temperature-salinity properties as they exit the basin within 1.5-3.5 decades. Of these waters, the contribution from Tasman leakage is 1.4 Sv. The rest stem from recirculation of Subantarctic Mode Water formed within the IO. The marginal seas export 1.0 Sv into the Atlantic within 1.5-4 decades, and the waters cool and freshen on-route. However, the model's simulation of waters from the Gulfs of Aden and Oman are too light and hence overly susceptible to upper ocean circulations. In the Cape Basin, Agulhas leakage is well mixed. On-route, temperature-salinity transformations occur predominantly in the Arabian Sea and within the greater Agulhas Current region. Overall, the IO communicates at least 7.9 Sv from the Pacific to the Atlantic, thereby quantifying the strength of the upper cell of the global conveyor belt.

  12. Intra-seasonal Mixed Layer Process Variability from the ECCO Ocean Data Assimilation Product: Preliminary Analysis Relevant to DYNAMO

    NASA Astrophysics Data System (ADS)

    Halkides, D. J.; Waliser, D. E.; Lee, T.; Lucas, L. E.; Murtugudde, R. G.

    2010-12-01

    The Madden Julian Oscillation (MJO), the dominant feature of 30-90 day variability in the tropical Indian (IO) and Pacific (PO) Oceans, plays an important role in air-sea interactions and affects multi-scale phenomena ranging from hurricanes to ENSO. Understanding the MJO requires knowledge of ocean mixed layer (ML) heat budgets. As part of a model-data intercomparison planned for 2011-13 to support the Dynamics of the MJO (DYNAMO) project (a US branch of the CINDY2011 international field program), we perform ML heat budget calculations using a heat-conserving assimilation product from the Estimating the Circulation and Climate of the Ocean (ECCO) project to study the onset and evolution of MJO scale anomalies in the tropics. For the IO, we focus on the western equatorial basin and the southwest IO thermocline ridge. Here, upwelling processes are very important, indicating a slab or 1-D ocean model is insufficient for accurate MJO simulation. We also examine several locations across the equatorial PO. For example, in the eastern PO, we compare results from ECCO to prior studies with different findings: one based on incomplete mooring data indicating vertical processes dominate, another based on model output that indicates meridional advection dominates in the same area. In ECCO, subsurface process and horizontal advection terms are both important, but their relationships to the net tendency vary spatially. This work has implications for understanding MJO onset and development, associated air-sea interactions, ramifications for multi-scale cross-equatorial heat transport (especially in the IO), and, it is likely to be important in constructing a predictive index for MJO onset. We present budgets in terms of variability of the atmospheric and oceanic circulations, as well as mixed layer and barrier layer depths, and we address DYNAMO’s third hypothesis: “The barrier-layer, wind and shear driven mixing, shallow thermocline, and mixing-layer entrainment all play essential roles in MJO initiation in the Indian Ocean by controlling the upper-ocean heat content and SST, and thereby surface flux feedback.”

  13. Application of Satellite Altimetry to Ocean Circulation Studies: 1987-1994

    NASA Technical Reports Server (NTRS)

    Fu, L. -L.; Cheney, R. E.

    1994-01-01

    Altimetric measurement of the height of the sea surface from space provides global observation of the world's oceans. The last eight years have witnessed a rapid growth in the use of altimetry data from the study of the ocean circulations, thanks to the multiyear data from the Geosat Mission.

  14. Remote tropical and sub-tropical responses to Amazon deforestation

    NASA Astrophysics Data System (ADS)

    Badger, Andrew M.; Dirmeyer, Paul A.

    2016-05-01

    Replacing natural vegetation with realistic tropical crops over the Amazon region in a global Earth system model impacts vertical transport of heat and moisture, modifying the interaction between the atmospheric boundary layer and the free atmosphere. Vertical velocity is decreased over a majority of the Amazon region, shifting the ascending branch and modifying the seasonality of the Hadley circulation over the Atlantic and eastern Pacific oceans. Using a simple model that relates circulation changes to heating anomalies and generalizing the upper-atmosphere temperature response to deforestation, agreement is found between the response in the fully-coupled model and the simple solution. These changes to the large-scale dynamics significantly impact precipitation in several remote regions, namely sub-Saharan Africa, Mexico, the southwestern United States and extratropical South America, suggesting non-local climate repercussions for large-scale land use changes in the tropics are possible.

  15. Hydrothermal systems are a sink for dissolved black carbon in the deep ocean

    NASA Astrophysics Data System (ADS)

    Niggemann, J.; Hawkes, J. A.; Rossel, P. E.; Stubbins, A.; Dittmar, T.

    2016-02-01

    Exposure to heat during fires on land or geothermal processes in Earth's crust induces modifications in the molecular structure of organic matter. The products of this thermogenesis are collectively termed black carbon. Dissolved black carbon (DBC) is a significant component of the oceanic dissolved organic carbon (DOC) pool. In the deep ocean, DBC accounts for 2% of DOC and has an apparent radiocarbon age of 18,000 years. Thus, DBC is much older than the bulk DOC pool, suggesting that DBC is highly refractory. Recently, it has been shown that recalcitrant deep-ocean DOC is efficiently removed during hydrothermal circulation. Here, we hypothesize that hydrothermal circulation is also a net sink for deep ocean DBC. We analyzed DBC in samples collected at different vent sites in the Atlantic, Pacific and Southern oceans. DBC was quantified in solid-phase extracts as benzenepolycarboxylic acids (BPCAs) following nitric acid digestion. Concentrations of DBC were much lower in hydrothermal fluids than in surrounding deep ocean seawater, confirming that hydrothermal circulation acts as a net sink for oceanic DBC. The relative contribution of DBC to bulk DOC did not change during hydrothermal circulation, indicating that DBC is removed at similar rates as bulk DOC. The ratio of the oxidation products benzenehexacarboxylic acid (B6CA) to benzenepentacarboxylic acid (B5CA) was significantly higher in hydrothermally altered samples compared to ratios typically found in the deep ocean, reflecting a higher degree of condensation of DBC molecules after hydrothermal circulation. Our study identified hydrothermal circulation as a quantitatively important sink for refractory DBC in the deep ocean. In contrast to photodegradation of DBC at the sea surface, which is more efficient for more condensed DBC, i.e. decreasing the B6CA/B5CA ratio, hydrothermal processing increases the B6CA/B5CA ratio, introducing a characteristic hydrothermal DBC signature.

  16. Improving Our Understanding of Antarctic Sea Ice with NASA's Operation IceBridge and the Upcoming ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Petty, Alek A.; Markus, Thorsten; Kurtz, Nathan T.

    2017-01-01

    Antarctic sea ice is a crucial component of the global climate system. Rapid sea ice production regimes around Antarctica feed the lower branch of the Southern Ocean overturning circulation through intense brine rejection and the formation of Antarctic Bottom Water (e.g., Orsi et al. 1999; Jacobs 2004), while the northward transport and subsequent melt of Antarctic sea ice drives the upper branch of the overturning circulation through freshwater input (Abernathy et al. 2016). Wind-driven trends in Antarctic sea ice (Holland Kwok 2012) have likely increased the transport of freshwater away from the Antarctic coastline, significantly altering the salinity distribution of the Southern Ocean (Haumann et al. 2016). Conversely, weaker sea ice production and the lack of shelf water formation over the Amundsen and Bellingshausen shelf seas promote intrusion of warm Circumpolar Deep Water onto the continental shelf and the ocean-driven melting of several ice shelves fringing the West Antarctic Ice Sheet (e.g., Jacobs et al. 2011; Pritchard et al. 2012; Dutrieux et al. 2014). Sea ice conditions around Antarctica are also increasingly considered an important factor impacting local atmospheric conditions and the surface melting of Antarctic ice shelves (e.g., Scambos et al. 2017). Sea ice formation around Antarctica is responsive to the strong regional variability in atmospheric forcing present around Antarctica, driving this bimodal variability in the behavior and properties of the underlying shelf seas (e.g., Petty et al. 2012; Petty et al. 2014).

  17. Does Southern Ocean Surface Forcing Shape the Global Ocean Overturning Circulation?

    NASA Astrophysics Data System (ADS)

    Sun, Shantong; Eisenman, Ian; Stewart, Andrew L.

    2018-03-01

    Paleoclimate proxy data suggest that the Atlantic Meridional Overturning Circulation (AMOC) was shallower at the Last Glacial Maximum (LGM) than its preindustrial (PI) depth. Previous studies have suggested that this shoaling necessarily accompanies Antarctic sea ice expansion at the LGM. Here the influence of Southern Ocean surface forcing on the AMOC depth is investigated using ocean-only simulations from a state-of-the-art climate model with surface forcing specified from the output of previous coupled PI and LGM simulations. In contrast to previous expectations, we find that applying LGM surface forcing in the Southern Ocean and PI surface forcing elsewhere causes the AMOC to shoal only about half as much as when LGM surface forcing is applied globally. We show that this occurs because diapycnal mixing renders the Southern Ocean overturning circulation more diabatic than previously assumed, which diminishes the influence of Southern Ocean surface buoyancy forcing on the depth of the AMOC.

  18. Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation.

    PubMed

    Kienast, Markus; Kienast, Stephanie S; Calvert, Stephen E; Eglinton, Timothy I; Mollenhauer, Gesine; François, Roger; Mix, Alan C

    2006-10-19

    Surface ocean conditions in the equatorial Pacific Ocean could hold the clue to whether millennial-scale global climate change during glacial times was initiated through tropical ocean-atmosphere feedbacks or by changes in the Atlantic thermohaline circulation. North Atlantic cold periods during Heinrich events and millennial-scale cold events (stadials) have been linked with climatic changes in the tropical Atlantic Ocean and South America, as well as the Indian and East Asian monsoon systems, but not with tropical Pacific sea surface temperatures. Here we present a high-resolution record of sea surface temperatures in the eastern tropical Pacific derived from alkenone unsaturation measurements. Our data show a temperature drop of approximately 1 degrees C, synchronous (within dating uncertainties) with the shutdown of the Atlantic meridional overturning circulation during Heinrich event 1, and a smaller temperature drop of approximately 0.5 degrees C synchronous with the smaller reduction in the overturning circulation during the Younger Dryas event. Both cold events coincide with maxima in surface ocean productivity as inferred from 230Th-normalized carbon burial fluxes, suggesting increased upwelling at the time. From the concurrence of equatorial Pacific cooling with the two North Atlantic cold periods during deglaciation, we conclude that these millennial-scale climate changes were probably driven by a reorganization of the oceans' thermohaline circulation, although possibly amplified by tropical ocean-atmosphere interaction as suggested before.

  19. Impacts of snow darkening by absorbing aerosols on South Asian monsoon

    NASA Astrophysics Data System (ADS)

    Kim, K. M.; Lau, W. K. M.; Kim, M. K.; Sang, J.; Yasunari, T. J.; Koster, R. D.

    2016-12-01

    Seasonal heating over the Tibetan Plateau is a main driver of the onset of the South Asian Monsoon. Aerosols can play an important role in pre- and early monsoon seasonal heating process over the Tibetan Plateau by increasing atmospheric heating in the northern India, and by heating of the surface of the Tibetan Plateau and Himalayan slopes, via reduction of albedo of the snow surface through surface deposition - the so call snow-darkening effect (SDE). To examine the impact of SDE on weather and climate during late spring and early summer, two sets of NASA/GEOS-5 model simulations with and without SDE are conducted. Results show that SDE-induced surface heating accelerates snow melts and increases surface temperature over 4K in the entire Tibetan Plateau regions during boreal summer. Warmer Tibetan Plateau further accelerates seasonal warming in the upper troposphere and increases the north-south temperature gradient between the Tibetan Plateau and the equatorial Indian Ocean. This reversal of the north-south temperature gradient is a primary cause of the onset of the South Asian monsoon. SDE-induced increase of the meridional temperature gradient drives meridional circulation and enhanced upper tropospheric easterlies and lower tropospheric westerlies, and intensifies monsoon circulation and rainfall. This pattern enhances the EHP-like circulation anomalies induced by atmospheric heating of absorbing aerosols over the northern India. SDE-induced change in the India subcontinent differs that in Eurasia. SDE-induced land-atmospheric interactions in two regions will be also compared.

  20. Interior Pathways to Dissipation of Mesoscale Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadiga, Balasubramanya T.

    This talk at Goethe University asks What Powers Overturning Circulation? How does Ocean Circulation Equilibrate? There is a HUGE reservoir of energy sitting in the interior ocean. Can fluid dynamic instabilities contribute to the mixing required to drive global overturning circulation? Study designed to eliminate distinguished horizontal surfaces such as bottom BL and surface layer

  1. Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Tolstykh, M. A.; Diansky, N. A.; Gusev, A. V.; Kiktev, D. B.

    2014-03-01

    A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989-2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997-1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.

  2. Contribution of tropical cyclones to abnormal sea surface temperature warming in the Yellow Sea in December 2004

    NASA Astrophysics Data System (ADS)

    Kim, Taekyun; Choo, Sung-Ho; Moon, Jae-Hong; Chang, Pil-Hun

    2017-12-01

    Unusual sea surface temperature (SST) warming occurred over the Yellow Sea (YS) in December 2004. To identify the causes of the abnormal SST warming, we conducted an analysis on atmospheric circulation anomalies induced by tropical cyclones (TCs) and their impacts on upper ocean characteristics using multiple datasets. With the analysis of various datasets, we explored a new aspect of the relationship between TC activity and SST. The results show that there is a significant link between TC activity over the Northwest Pacific (NWP) and SST in the YS. The integrated effect of consecutive TCs activity induces a large-scale atmospheric cyclonic circulation anomaly over the NWP and consequently anomalous easterly winds over the YS and East China Sea. The mechanism of the unusually warm SST in the YS can be explained by considering TCs acting as an important source of Ekman heat transport that results in substantial intrusion of relatively warm surface water into the YS interior. Furthermore, TC-related circulation anomalies contribute to the retention of the resulting warm SST anomalies in the entire YS.

  3. Spaceborne studies of ocean circulation

    NASA Technical Reports Server (NTRS)

    Patzert, W. C.

    1984-01-01

    The history and near-term future of ocean remote sensing to study ocean circulation are examined. Seasat provided the first-ever global data sets of sea surface topography (altimeter) and marine winds (scatterometer) and laid the foundation for the next generation of satellite missions planned for the late 1980s. The future missions are the next generation of altimeter and scatterometer to be flown aboard TOPEX (TOPography EXperiment) and NROSS (Navy Remote Sensing System), respectively. The data from these satellites will be coordinated with measurements made at sea to determine the driving forces of ocean circulation and to study the oceans' role in climate variability. The significance of such studies to such matters as climatic changes, fisheries, commerce, waste disposal, and national defense is noted.

  4. Upper oceanic response to tropical cyclone Phailin in the Bay of Bengal using a coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Prakash, Kumar Ravi; Pant, Vimlesh

    2017-01-01

    A numerical simulation of very severe cyclonic storm `Phailin', which originated in southeastern Bay of Bengal (BoB) and propagated northwestward during 10-15 October 2013, was carried out using a coupled atmosphere-ocean model. A Model Coupling Toolkit (MCT) was used to make exchanges of fluxes consistent between the atmospheric model `Weather Research and Forecasting' (WRF) and ocean circulation model `Regional Ocean Modelling System' (ROMS) components of the `Coupled Ocean-Atmosphere-Wave-Sediment Transport' (COAWST) modelling system. The track and intensity of tropical cyclone (TC) Phailin simulated by the WRF component of the coupled model agrees well with the best-track estimates reported by the India Meteorological Department (IMD). Ocean model component (ROMS) was configured over the BoB domain; it utilized the wind stress and net surface heat fluxes from the WRF model to investigate upper oceanic response to the passage of TC Phailin. The coupled model shows pronounced sea surface cooling (2-2.5 °C) and an increase in sea surface salinity (SSS) (2-3 psu) after 06 GMT on 12 October 2013 over the northwestern BoB. Signature of this surface cooling was also observed in satellite data and buoy measurements. The oceanic mixed layer heat budget analysis reveals relative roles of different oceanic processes in controlling the mixed layer temperature over the region of observed cooling. The heat budget highlighted major contributions from horizontal advection and vertical entrainment processes in governing the mixed layer cooling (up to -0.1 °C h-1) and, thereby, reduction in sea surface temperature (SST) in the northwestern BoB during 11-12 October 2013. During the post-cyclone period, the net heat flux at surface regained its diurnal variations with a noontime peak that provided a warming tendency up to 0.05 °C h-1 in the mixed layer. Clear signatures of TC-induced upwelling are seen in vertical velocity (about 2.5 × 10-3 m s-1), rise in isotherms and isohalines along 85-88° E longitudes in the northwestern BoB. The study demonstrates that a coupled atmosphere-ocean model (WRF + ROMS) serves as a useful tool to investigate oceanic response to the passage of cyclones.

  5. Classification of mechanisms, climatic context, areal scaling, and synchronization of floods: the hydroclimatology of floods in the Upper Paraná River basin, Brazil

    NASA Astrophysics Data System (ADS)

    Lima, Carlos H. R.; AghaKouchak, Amir; Lall, Upmanu

    2017-12-01

    Floods are the main natural disaster in Brazil, causing substantial economic damage and loss of life. Studies suggest that some extreme floods result from a causal climate chain. Exceptional rain and floods are determined by large-scale anomalies and persistent patterns in the atmospheric and oceanic circulations, which influence the magnitude, extent, and duration of these extremes. Moreover, floods can result from different generating mechanisms. These factors contradict the assumptions of homogeneity, and often stationarity, in flood frequency analysis. Here we outline a methodological framework based on clustering using self-organizing maps (SOMs) that allows the linkage of large-scale processes to local-scale observations. The methodology is applied to flood data from several sites in the flood-prone Upper Paraná River basin (UPRB) in southern Brazil. The SOM clustering approach is employed to classify the 6-day rainfall field over the UPRB into four categories, which are then used to classify floods into four types based on the spatiotemporal dynamics of the rainfall field prior to the observed flood events. An analysis of the vertically integrated moisture fluxes, vorticity, and high-level atmospheric circulation revealed that these four clusters are related to known tropical and extratropical processes, including the South American low-level jet (SALLJ); extratropical cyclones; and the South Atlantic Convergence Zone (SACZ). Persistent anomalies in the sea surface temperature fields in the Pacific and Atlantic oceans are also found to be associated with these processes. Floods associated with each cluster present different patterns in terms of frequency, magnitude, spatial variability, scaling, and synchronization of events across the sites and subbasins. These insights suggest new directions for flood risk assessment, forecasting, and management.

  6. On the Role of SST Forcing in the 2011 and 2012 Extreme U.S. Heat and Drought: A Study in Contrasts

    NASA Technical Reports Server (NTRS)

    Wang, Hailan; Schubert, Siegfried; Koster, Randal; Ham, Yoo-Geun; Suarez, Max

    2013-01-01

    This study compares the extreme heat and drought that developed over the United States in 2011 and 2012 with a focus on the role of SST forcing. Experiments with the NASA GEOS-5 atmospheric general circulation model show that the winter/spring response over the U.S. to the Pacific SST is remarkably similar for the two years despite substantial differences in the tropical Pacific SST. As such, the pronounced winter and early spring temperature differences between the two years (warmth confined to the south in 2011 and covering much of the continent in 2012) primarily reflect differences in the contributions from the Atlantic and Indian Oceans, with both acting to cool the east and upper mid-west during 2011, while during 2012 the Indian Ocean reinforced the Pacific-driven continental-wide warming and the Atlantic played a less important role. During late spring and summer of 2011 the tropical Pacific SST force a continued warming and drying over the southern U.S., though considerably weaker than observed. Nevertheless, the observed anomalies fall within the models intra-ensemble spread. In contrast, the rapid development of intense heat and drying over the central U.S. during June and July of 2012 falls outside the models intra-ensemble spread. The response to the SST (a northward expansion of a modest summer warming linked to the Atlantic) gives little indication that 2012 would produce record-breaking precipitation deficits and heat in the central Great Plains. A diagnosis of the 2012 observed circulation anomalies shows that the most extreme heat and drought was tied to the development of a stationary Rossby wave and an associated anomalous upper tropospheric high maintained by weather transients.

  7. A heat budget for the Stratus mooring in the southeast Pacific

    NASA Astrophysics Data System (ADS)

    Holte, J.; Straneo, F.; Weller, R. A.; Farrar, J. T.

    2012-12-01

    The surface layer of the southeast Pacific Ocean (SEP) requires an input of fresh, cold water to balance evaporation and heat gain from incoming solar radiation. Numerous processes contribute to closing the SEP's upper-ocean heat budget, including gyre circulation, Ekman transport and pumping, vertical mixing, and horizontal eddy heat flux divergence. However, there is little consensus on which processes are most important, as many modeling and observational studies have reported conflicting results. To examine how the SEP maintains relatively cool surface temperatures despite such strong surface forcing, we calculate a heat budget for the upper 250 m of the Stratus mooring. The Stratus mooring, deployed at 85(^o)W 20(^o)S since 2000, is in the center of the stratus cloud region. The surface buoy measures meteorological conditions and air-sea fluxes; the mooring line is heavily instrumented, measuring temperature, salinity, and velocity at approximately 15 to 20 depth levels. Our heat budget covers 2004 - 2010. The net air-sea heat flux over this period is 32 W m(^{-2}), approximately 2/3 of the flux over earlier periods. We use Argo profiles, relatively abundant in the region since 2004, to calculate horizontal temperature gradients. These gradients, coupled with the mooring velocity record, are used to estimate the advective heat flux. We find that the cool advective heat flux largely compensates the air-sea heat flux at the mooring; in our calculation this term includes the mean gyre circulation, horizontal Ekman transport, and some contribution from eddies. The passage of numerous eddies is evident in the mooring velocity record, but with the available data we cannot separate the eddy heat flux divergence from the mean heat advection. Vertical mixing and Ekman pumping across the base of the layer are both small.

  8. The Effect of Large Scale Salinity Gradient on Langmuir Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.

    2017-12-01

    Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by large fresh water inflow due to flooding from the Mississippi river. Model results indicate that the strong salinity gradient can reduce the mean flow in the ML and inhibit the turbulence in the planetary boundary layer. The Langmuir cells are also rotated clockwise by the pressure gradient.

  9. An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications

    NASA Astrophysics Data System (ADS)

    Goodwin, Philip

    2012-07-01

    To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.

  10. Upper Oceanic Energy Response to Tropical Cyclone Passage

    DTIC Science & Technology

    2013-04-15

    insolation, and the upper ocean stratification . The importance of the upper ocean energy content to TCs, particularly their intensification, has been...similar to those of Shay and Brewster (2010), who showed that the stable stratification of the east Pacific also makes the 100-m mixed layer depth a poor... The upper oceanic temporal response to tropical cyclone (TC) passage is investigated using a 6-yr daily record of data-driven analyses of two

  11. A perspective on the future of physical oceanography.

    PubMed

    Garabato, Alberto C Naveira

    2012-12-13

    The ocean flows because it is forced by winds, tides and exchanges of heat and freshwater with the overlying atmosphere and cryosphere. To achieve a state where the defining properties of the ocean (such as its energy and momentum) do not continuously increase, some form of dissipation or damping is required to balance the forcing. The ocean circulation is thought to be forced primarily at the large scales characteristic of ocean basins, yet to be damped at much smaller scales down to those of centimetre-sized turbulence. For decades, physical oceanographers have sought to comprehend the fundamentals of this fractal puzzle: how the ocean circulation is driven, how it is damped and how ocean dynamics connects the very different scales of forcing and dissipation. While in the last two decades significant advances have taken place on all these three fronts, the thrust of progress has been in understanding the driving mechanisms of ocean circulation and the ocean's ensuing dynamical response, with issues surrounding dissipation receiving comparatively little attention. This choice of research priorities stems not only from logistical and technological difficulties in observing and modelling the physical processes responsible for damping the circulation, but also from the untested assumption that the evolution of the ocean's state over time scales of concern to humankind is largely independent of dissipative processes. In this article, I illustrate some of the key advances in our understanding of ocean circulation that have been achieved in the last 20 years and, based on a range of evidence, contend that the field will soon reach a stage in which uncertainties surrounding the arrest of ocean circulation will pose the main challenge to further progress. It is argued that the role of the circulation in the coupled climate system will stand as a further focal point of major advances in understanding within the next two decades, supported by the drive of physical oceanography towards a more operational enterprise by contextual factors. The basic elements that a strategy for the future must have to foster progress in these two areas are discussed, with an overarching emphasis on the promotion of curiosity-driven fundamental research against opposing external pressures and on the importance of upholding fundamental research as the apex of education in the field.

  12. The Diurnal Cycle over the Maritime Continent and its Interaction with the MJO

    NASA Astrophysics Data System (ADS)

    Matthews, A. J.; Peatman, S.; Baranowski, D. B.; Stevens, D. P.; Heywood, K. J.; Flatau, P. J.; Schmidtko, S.

    2014-12-01

    The complex land-sea distribution and topography of the maritime continent acts to disrupt or even completely block the eastward propagation of the Madden-Julian Oscillation (MJO) from the Indian Ocean to the western Pacific. This leads to changes in tropical latent heat release and subsequent impacts on global circulation. Convection over the maritime continent is dominated by the diurnal cycle. Where the mean diurnal cycle is strong (over the islands and surrounding seas), 80% of the MJO precipitation signal in the maritime continent is accounted for by changes in the amplitude of the diurnal cycle. The canonical view of the MJO as the smooth eastward propagation of a large-scale precipitation envelope also breaks down over the islands of the Maritime Continent. Instead, a vanguard of precipitation jumps ahead of the main body by approximately 6 days or 2000 km. Hence, there can be enhanced precipitation over Sumatra, Borneo or New Guinea when the large-scale MJO envelope over the surrounding ocean is one of suppressed precipitation. This behaviour is discussed in terms of an interaction between the diurnal cycle and the MJO circulation. The diurnal cycle is also strong in the ocean. Seaglider measurements taken during the CINDY/DYNAMO campaign show the existence of a diurnal warm layer in the upper few metres of the ocean. This has a significant effect on the surface fluxes, of an order of Watts per square metre. The diurnal warm layer is favoured during the inactive phase of the MJO and may act to help precondition the atmosphere to convection. The activities of the MJO Task Force and Subseasonal to Seasonal Prediction project will be discussed in this context.

  13. The future of spaceborne altimetry. Oceans and climate change: A long-term strategy

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J. (Editor); Gaspar, P. (Editor); Lagerloef, G. (Editor)

    1992-01-01

    The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments.

  14. An Overview of Climatic Elements

    NASA Technical Reports Server (NTRS)

    Crutcher, H. L.; Johnson, D. L.

    2007-01-01

    This Technical Publication (TP) addresses some climatic elements with emphasis on atmospheric composition, including gas radiative characteristics. Solar radiation is discussed with considerable information on the mathematical and statistical formulae. On a worldwide basis, temperature and precipitation for the globe are discussed along with interaction in drought. Also included is the simultaneous interaction with winds, humidity, and solar radiation. Volcanology gets minimum treatment. The oceans and seas are treated in chart form along with the interrelationship of oceanic currents and El Nino and La Nina, and ENSO phenomena. Upper air circulations are discussed. Various cloud formations up to 85-95 km altitude are described. Information on tornadoes and hurricanes is also included. One section is devoted to the climate physical-chemical elements. A short discussion is given on the importance for the quality of data and/or information in descriptions of the climate. This TP presents only an overview or survey of these and other various climatic elements.

  15. The phytoplankton bloom in the northwestern Arabian Sea during the southwest monsoon of 1979

    NASA Technical Reports Server (NTRS)

    Brock, John C.; Mcclain, Charles R.; Luther, Mark E.; Hay, William W.

    1991-01-01

    The present study investigates the biological variability of the northwestern Arabian Sea during the 1979 southwest monsoon by the synthesis of satellite ocean color remote sensing with an analysis of in situ hydrographic and meteorological data sets and the results of wind-driven modeling of upper-ocean circulation. The phytoplankton bloom peaked during August-September, extended from the Oman coast to about 65 deg E, and lagged behind the development of open-sea upwelling by at least 1 mo. The pigment distributions, hydrographic data, and model results all suggest that the boom was driven by spatially distinct upward nutrient fluxes to the euphotic zone forced by the physical processes of coastal upwelling and offshore Ekman pumping. Coastal upwelling was evident from May through September, yielded the most extreme concentrations of phytoplankton biomass, and, along the Arabian coast, was limited to the continental shelf in the promotion of high concentrations of phytoplankton.

  16. Sustaining observations in the polar oceans.

    PubMed

    Abrahamsen, E P

    2014-09-28

    Polar oceans present a unique set of challenges to sustained observations. Sea ice cover restricts navigation for ships and autonomous measurement platforms alike, and icebergs present a hazard to instruments deployed in the upper ocean and in shelf seas. However, the important role of the poles in the global ocean circulation provides ample justification for sustained observations in these regions, both to monitor the rapid changes taking place, and to better understand climate processes in these traditionally poorly sampled areas. In the past, the vast majority of polar measurements took place in the summer. In recent years, novel techniques such as miniature CTD (conductivity-temperature-depth) tags carried by seals have provided an explosion in year-round measurements in areas largely inaccessible to ships, and, as ice avoidance is added to autonomous profiling floats and gliders, these promise to provide further enhancements to observing systems. In addition, remote sensing provides vital information about changes taking place in sea ice cover at both poles. To make these observations sustainable into the future, improved international coordination and collaboration is necessary to gain optimum utilization of observing networks. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Mercury transport and human exposure from global marine fisheries.

    PubMed

    Lavoie, Raphael A; Bouffard, Ariane; Maranger, Roxane; Amyot, Marc

    2018-04-30

    Human activities have increased the global circulation of mercury, a potent neurotoxin. Mercury can be converted into methylmercury, which biomagnifies along aquatic food chains and leads to high exposure in fish-eating populations. Here we quantify temporal trends in the ocean-to-land transport of total mercury and methylmercury from fisheries and we estimate potential human mercury intake through fish consumption in 175 countries. Mercury export from the ocean increased over time as a function of fishing pressure, especially on upper-trophic-level organisms. In 2014, over 13 metric tonnes of mercury were exported from the ocean. Asian countries were important contributors of mercury export in the last decades and the western Pacific Ocean was identified as the main source. Estimates of per capita mercury exposure through fish consumption showed that populations in 38% of the 175 countries assessed, mainly insular and developing nations, were exposed to doses of methylmercury above governmental thresholds. Our study shows temporal trends and spatial patterns of Hg transport by fisheries. Given the high mercury intake through seafood consumption observed in several understudied yet vulnerable coastal communities, we recommend a comprehensive assessment of the health exposure risk of those populations.

  18. Geothermal influences on the abyssal ocean

    NASA Astrophysics Data System (ADS)

    Emile-Geay, J.; Madec, G.

    2017-12-01

    Long considered a negligible contribution to ocean dynamics, geothermal heat flow (GHF) is now increasingly recognized as an important contributor to the large scale ocean's deep structure and circulation. This presentation will review the history of theories regarding geothermal influences on the abyssal ocean. Though the contribution to the thermal structure was recognized early on, its potential in driving a circulation [Worthington, 1968] was largely ignored on the grounds that it could not materially affect potential vorticity. Huang [JPO, 1999] proposed that GHF may provide 30-50% of the energy available for deep mixing, a calculation that later proved too optimistic [Wunsch & Ferrari ARFM 2004]. Model simulations suggested that a uniform GHF of 50 mW/m2 could drive an abyssal of a few Sverdrups (1 Sv = 106 m3.s-1) [Adcroft et al, GRL 2001], but it was not until Emile-Geay & Madec [OS, 2009] (EM09) that GHF began to be taken seriously [Mashayek et al, GRL 2013; Voldoire et al. Clim. Dyn. 2013; Dufresnes et al., Clim. Dyn. 2013]. Using analytical and numerical approaches, the study made 3 main points: GHF brings as much energy to the deep ocean as intense diapycnal mixing (1 cm2/s). GHF consumes the densest water masses, inducing a deep circulation of 5 Sv even without mixing. This circulation varies in inverse proportion to abyssal stratification. The spatial structure of GHF, highest at mid-ocean ridges and lowest in abyssal plains, matters far less than the fact that it bathes vast fractions of the ocean floor in a relatively low, constant flux. EM09 concluded that GHF "is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies". Recent work has confirmed that geothermal heat flow is of comparable importance to ocean circulation as bottom-intensified mixing induced by internal wave breaking [De Lavergne et al, JPO 2016a,b]. Thus, including GHF in ocean general circulation models improves abyssal structure and circulation. We conclude with a perspective on the role of conductive geothermal heat loss versus localized, advective hydrothermal heat flow on abyssal dynamics, and delineate unsolved research problems for the years ahead.

  19. Incorporating Prognostic Marine Nitrogen Fixers and Related Bio-Physical Feedbacks in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Paulsen, H.; Ilyina, T.; Six, K. D.

    2016-02-01

    Marine nitrogen fixers play a fundamental role in the oceanic nitrogen and carbon cycles by providing a major source of `new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Furthermore, nitrogen fixers may regionally have a direct impact on ocean physics and hence the climate system as they form extensive surface mats which can increase light absorption and surface albedo and reduce the momentum input by wind. Resulting alterations in temperature and stratification may feed back on nitrogen fixers' growth itself.We incorporate nitrogen fixers as a prognostic 3D tracer in the ocean biogeochemical component (HAMOCC) of the Max Planck Institute Earth system model and assess for the first time the impact of related bio-physical feedbacks on biogeochemistry and the climate system.The model successfully reproduces recent estimates of global nitrogen fixation rates, as well as the observed distribution of nitrogen fixers, covering large parts of the tropical and subtropical oceans. First results indicate that including bio-physical feedbacks has considerable effects on the upper ocean physics in this region. Light absorption by nitrogen fixers leads locally to surface heating, subsurface cooling, and mixed layer depth shoaling in the subtropical gyres. As a result, equatorial upwelling is increased, leading to surface cooling at the equator. This signal is damped by the effect of the reduced wind stress due to the presence of cyanobacteria mats, which causes a reduction in the wind-driven circulation, and hence a reduction in equatorial upwelling. The increase in surface albedo due to nitrogen fixers has only inconsiderable effects. The response of nitrogen fixers' growth to the alterations in temperature and stratification varies regionally. Simulations with the fully coupled Earth system model are in progress to assess the implications of the biologically induced changes in upper ocean physics for the global climate system.

  20. Comparison of Two Global Ocean Reanalyses, NRL Global Ocean Forecast System (GOFS) and U. Maryland Simple Ocean Data Assimilation (SODA)

    NASA Astrophysics Data System (ADS)

    Richman, J. G.; Shriver, J. F.; Metzger, E. J.; Hogan, P. J.; Smedstad, O. M.

    2017-12-01

    The Oceanography Division of the Naval Research Laboratory recently completed a 23-year (1993-2015) coupled ocean-sea ice reanalysis forced by NCEP CFS reanalysis fluxes. The reanalysis uses the Global Ocean Forecast System (GOFS) framework of the HYbrid Coordinate Ocean Model (HYCOM) and the Los Alamos Community Ice CodE (CICE) and the Navy Coupled Ocean Data Assimilation 3D Var system (NCODA). The ocean model has 41 layers and an equatorial resolution of 0.08° (8.8 km) on a tri-polar grid with the sea ice model on the same grid that reduces to 3.5 km at the North Pole. Sea surface temperature (SST), sea surface height (SSH) and temperature-salinity profile data are assimilated into the ocean every day. The SSH anomalies are converted into synthetic profiles of temperature and salinity prior to assimilation. Incremental analysis updating of geostrophically balanced increments is performed over a 6-hour insertion window. Sea ice concentration is assimilated into the sea ice model every day. Following the lead of the Ocean Reanalysis Intercomparison Project (ORA-IP), the monthly mean upper ocean heat and salt content from the surface to 300 m, 700m and 1500 m, the mixed layer depth, the depth of the 20°C isotherm, the steric sea surface height and the Atlantic Meridional Overturning Circulation for the GOFS reanalysis and the Simple Ocean Data Assimilation (SODA 3.3.1) eddy-permitting reanalysis have been compared on a global uniform 0.5° grid. The differences between the two ocean reanalyses in heat and salt content increase with increasing integration depth. Globally, GOFS trends to be colder than SODA at all depth. Warming trends are observed at all depths over the 23 year period. The correlation of the upper ocean heat content is significant above 700 m. Prior to 2004, differences in the data assimilated lead to larger biases. The GOFS reanalysis assimilates SSH as profile data, while SODA doesn't. Large differences are found in the Western Boundary Currents, Southern Ocean and equatorial regions. In the Indian Ocean, the Equatorial Counter Current extends to far to the east and the subsurface flow in the thermocline is too weak in GOFS. The 20°C isotherm is biased 2 m shallow in SODA compared to GOFS, but the monthly anomalies in the depth are highly correlated.

  1. The impact of the ocean observing system on estimates of the California current circulation spanning three decades

    NASA Astrophysics Data System (ADS)

    Moore, Andrew M.; Jacox, Michael G.; Crawford, William J.; Laughlin, Bruce; Edwards, Christopher A.; Fiechter, Jérôme

    2017-08-01

    Data assimilation is now used routinely in oceanography on both regional and global scales for computing ocean circulation estimates and for making ocean forecasts. Regional ocean observing systems are also expanding rapidly, and observations from a wide array of different platforms and sensor types are now available. Evaluation of the impact of the observing system on ocean circulation estimates (and forecasts) is therefore of considerable interest to the oceanographic community. In this paper, we quantify the impact of different observing platforms on estimates of the California Current System (CCS) spanning a three decade period (1980-2010). Specifically, we focus attention on several dynamically related aspects of the circulation (coastal upwelling, the transport of the California Current and the California Undercurrent, thermocline depth and eddy kinetic energy) which in many ways describe defining characteristics of the CCS. The circulation estimates were computed using a 4-dimensional variational (4D-Var) data assimilation system, and our analyses also focus on the impact of the different elements of the control vector (i.e. the initial conditions, surface forcing, and open boundary conditions) on the circulation. While the influence of each component of the control vector varies between different metrics of the circulation, the impact of each observing system across metrics is very robust. In addition, the mean amplitude of the circulation increments (i.e. the difference between the analysis and background) remains relatively stable throughout the three decade period despite the addition of new observing platforms whose impact is redistributed according to the relative uncertainty of observations from each platform. We also consider the impact of each observing platform on CCS circulation variability associated with low-frequency climate variability. The low-frequency nature of the dominant climate modes in this region allows us to track through time the impact of each observation on the circulation, and illustrates how observations from some platforms can influence the circulation up to a decade into the future.

  2. The importance of deep, basinwide measurements in optimized Atlantic Meridional Overturning Circulation observing arrays

    NASA Astrophysics Data System (ADS)

    McCarthy, G. D.; Menary, M. B.; Mecking, J. V.; Moat, B. I.; Johns, W. E.; Andrews, M. B.; Rayner, D.; Smeed, D. A.

    2017-03-01

    The Atlantic Meridional Overturning Circulation (AMOC) is a key process in the global redistribution of heat. The AMOC is defined as the maximum of the overturning stream function, which typically occurs near 30°N in the North Atlantic. The RAPID mooring array has provided full-depth, basinwide, continuous estimates of this quantity since 2004. Motivated by both the need to deliver near real-time data and optimization of the array to reduce costs, we consider alternative configurations of the mooring array. Results suggest that the variability observed since 2004 could be reproduced by a single tall mooring on the western boundary and a mooring to 1500 m on the eastern boundary. We consider the potential future evolution of the AMOC in two generations of the Hadley Centre climate models and a suite of additional CMIP5 models. The modeling studies show that deep, basinwide measurements are essential to capture correctly the future decline of the AMOC. We conclude that, while a reduced array could be useful for estimates of the AMOC on subseasonal to decadal time scales as part of a near real-time data delivery system, extreme caution must be applied to avoid the potential misinterpretation or absence of a climate time scale AMOC decline that is a key motivation for the maintenance of these observations.Plain Language SummaryThe Atlantic Overturning Circulation is a system of ocean currents that carries heat northwards in the Atlantic. This heat is crucial to maintaining the mild climate of northwest Europe. The Overturning Circulation is predicted to slow in future in response to man-made climate change. The RAPID program is designed to measure the Overturning Circulation using a number of fixed point observations spanning the Atlantic between the Canary Islands and the Bahamas. We look at whether we could reduce the number of these fixed point observations to continue to get accurate estimates of the overturning strength but for less cost. We conclude that variations on timescales from seasons to years could be captured by focusing observations in the upper ocean but that to observe a future climate change related slowdown, deep measurements across the ocean basin are needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53D2278H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53D2278H"><span>On the Impact of Sea Level Fingerprints on the Estimation of the Meridional Geostrophic Transport in the Atlantic Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsu, C. W.; Velicogna, I.</p> <p>2017-12-01</p> <p>The mid-ocean geostrophic transport accounts for more than half of the seasonal and inter-annual variabilities in Atlantic meridional overturning circulation (AMOC) based on the in-situ measurement from RAPID MOC/MOCHA array since 2004. Here, we demonstrate that the mid-ocean geostrophic transport estimates derived from ocean bottom pressure (OBP) are affected by the sea level fingerprint (SLF), which is a variation of the equi-geopotential height (relative sea level) due to rapid mass unloading of the entire Earth system and in particular from glaciers and ice sheets. This potential height change, although it alters the OBP, should not be included in the derivation of the mid-ocean geostrophic transport. This "pseudo" geostrophic-transport due to the SLF is in-phase with the seasonal and interannual signal in the upper mid-ocean geostrophic transport. The east-west SLF gradient across the Atlantic basin could be mistaken as a north-south geostrophic transport that increases by 54% of its seasonal variability and by 20% of its inter-annual variability. This study demonstrates for the first time the importance of this pseudo transport in both the annual and interannual signals by comparing the SLF with in-situ observation from RAPID MOC/MOCHA array. The pseudo transport needs to be taken into account if OBP measurements and remote sensing are used to derive mid-ocean geostrophic transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10466E..57I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10466E..57I"><span>Influence of the vertical mixing parameterization on the modeling results of the Arctic Ocean hydrology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iakshina, D. F.; Golubeva, E. N.</p> <p>2017-11-01</p> <p>The vertical distribution of the hydrological characteristics in the upper ocean layer is mostly formed under the influence of turbulent and convective mixing, which are not resolved in the system of equations for large-scale ocean. Therefore it is necessary to include additional parameterizations of these processes into the numerical models. In this paper we carry out a comparative analysis of the different vertical mixing parameterizations in simulations of climatic variability of the Arctic water and sea ice circulation. The 3D regional numerical model for the Arctic and North Atlantic developed in the ICMMG SB RAS (Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of Science) and package GOTM (General Ocean Turbulence Model1,2, http://www.gotm.net/) were used as the numerical instruments . NCEP/NCAR reanalysis data were used for determination of the surface fluxes related to ice and ocean. The next turbulence closure schemes were used for the vertical mixing parameterizations: 1) Integration scheme based on the Richardson criteria (RI); 2) Second-order scheme TKE with coefficients Canuto-A3 (CANUTO); 3) First-order scheme TKE with coefficients Schumann and Gerz4 (TKE-1); 4) Scheme KPP5 (KPP). In addition we investigated some important characteristics of the Arctic Ocean state including the intensity of Atlantic water inflow, ice cover state and fresh water content in Beaufort Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSME13A..04L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSME13A..04L"><span>Potential Impact of North Atlantic Climate Variability on Ocean Biogeochemical Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Y.; Muhling, B.; Lee, S. K.; Muller-Karger, F. E.; Enfield, D. B.; Lamkin, J. T.; Roffer, M. A.</p> <p>2016-02-01</p> <p>Previous studies have shown that upper ocean circulations largely determine primary production in the euphotic layers, here the global ocean model with biogeochemistry (GFDL's Modular Ocean Model with TOPAZ biogeochemistry) forced with the ERA-Interim is used to simulate the natural variability of biogeochemical processes in global ocean during 1979-present. Preliminary results show that the surface chlorophyll is overall underestimated in MOM-TOPAZ, but its spatial pattern is fairly realistic. Relatively high chlorophyll variability is shown in the subpolar North Atlantic, northeastern tropical Atlantic, and equatorial Atlantic. Further analysis suggests that the chlorophyll variability in the North Atlantic Ocean is affected by long-term climate variability. For the subpolar North Atlantic region, the chlorophyll variability is light-limited and is significantly correlated with North Atlantic Oscillation. A dipole pattern of chlorophyll variability is found between the northeastern tropical Atlantic and equatorial Atlantic. For the northeastern North Atlantic, the chlorophyll variability is significantly correlated with Atlantic Meridional Mode (AMM) and Atlantic Multidecadal Oscillation (AMO). During the negative phase of AMM and AMO, the increased trade wind in the northeast North Atlantic can lead to increased upwelling of nutrients. In the equatorial Atlantic region, the chlorophyll variability is largely link to Atlantic-Niño and associated equatorial upwelling of nutrients. The potential impact of climate variability on the distribution of pelagic fishes (i.e. yellowfin tuna) are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP34B..05G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP34B..05G"><span>Meridional Transect of Atlantic Overturning Circulation across the Mid-Pleistocene Transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goldstein, S. L.; Pena, L. D.; Seguí, M. J.; Kim, J.; Yehudai, M.; Farmer, J. R.; Ford, H. L.; Haynes, L.; Hoenisch, B.; Raymo, M. E.; Ferretti, P.; Bickert, T.</p> <p>2016-12-01</p> <p>The Mid-Pleistocene Transition (MPT) marked a major transition in glacial-interglacial periodicity from dominantly 41 kyr to 100 kyr cycles between 1.3-0.7 Ma. From Nd isotope records in the South Atlantic, Pena and Goldstein (Science, 2014) concluded that the Atlantic overturning circulation circulation experienced major weakening between 950-850 ka (MIS 25-21), which generated the climatic conditions that intensified cold periods, prolonged their duration, and stabilized 100 kyr cycles. Such weakening would provide a mechanism for decreased atmospheric CO2 (Hönisch et al., Science, 2009) by allowing for additional atmospheric CO2 to be stored in the deep ocean. We present a summary of work in-progress to generate two dimensional representations of the Atlantic meridional overturning circulation, from the north Atlantic to the Southern Ocean, at different time slices over the past 2Ma, including the MPT, based on Nd isotope ratios measured on Fe-Mn-oxide encrusted foraminifera and fish debris. Thus far we are analyzing samples from DSDP/ODP Sites 607, 1063 from the North Atlantic, 926 from the Equatorial Atlantic, 1264, 1267, 1088, 1090 in the South Atlantic, and 1094 from the Southern Ocean. Our data generated thus far support important changes in the overturning circulation during the MPT, and greater glacial-interglacial variability in the 100 kyr world compared with the 40 kyr world. In addition, the data indicate a North Atlantic-sourced origin for the ocean circulation disruption during the MPT. Comparison with ɛNd records in different ocean basins and with benthic foraminiferal δ13C and B/Ca ratios will also allow us to understand the links between deep ocean circulation changes and the global carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4537J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4537J"><span>Using a global ocean circulation model to conduct a preliminary risk assessment of oil spills in the Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jacobs, Zoe; Popova, Katya; Hirschi, Joel; Coward, Andrew; Yool, Andrew; van Gennip, Simon; Anifowose, Babtunde; Harrington-Missin, Liam</p> <p>2017-04-01</p> <p>Although oil blowouts from deep-water drilling happen very rarely, they can cause catastrophic damage to the environment. Despite such potentially high impacts, relatively little research effort has gone into understanding subsurface oil plumes in the deep ocean. In this study, we demonstrate the significance of this problem and offer potential solutions using a novel approach based on a leading-edge, high-resolution global ocean circulation model. We present examples demonstrating: (a) the importance of ocean circulation in the propagation of oil spills; and (b) likely circulation footprints for oil spills at four key locations in the Atlantic Ocean that exist in different circulation regimes - the shelves of Brazil, the Gulf of Guinea, the Gulf of Mexico and the Faroe-Shetland Channel. In order to quantify the variability at each site on seasonal timescales, interannual timescales and at different depths, we utilize the Modified Hausdorff Distance (MHD), which is a shape-distance metric that measures the similarity between two shapes. The scale of the footprints across the four focus locations varies considerably and is determined by the main circulation features in their vicinity. For example, the hypothetical oil plume can be affected by variations in the speed and location of a particular current (e.g. Brazil Current at the Brazilian shelf site) or be influenced by different currents entirely depending on the release depth, month and year (e.g. Angola Current or Southern Equatorial Current at the Gulf of Guinea site). Overall, our results demonstrate the need to use state of the art global, or basin-scale, ocean circulation models when assessing the environmental impacts of proposed oil drilling activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP13C..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP13C..04M"><span>Reconstructing Deep Ocean Circulation in the North Atlantic from Bermuda Rise, and Beyond</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McManus, J. F.</p> <p>2016-12-01</p> <p>The large-scale subsurface circulation of the ocean is an important component of the Earth's climate system, and contributes to the global and regional transport of heat and mass. Assessing how this system has changed in the past is thus a priority for understanding natural climate variability. A long-coring campaign on Bermuda Rise has provided additional abundant high-quality sediments from this site of rapid accumulation in the deep western basin, situated beneath the subtropical gyre of the North Atlantic Ocean. These sediments allow the high-resolution reconstruction of deepwater chemistry and export from this key location throughout the last 150,000 years, covering the entire last glacial cycle in a continuous section of 35 meters in core KNR191-CDH19. The suite of proxy indicators analyzed includes uranium-series disequilibria, neodymium isotopes, and benthic stable isotopes. Combined with multiple previous studies of nearby cores on Bermuda Rise, the published and new proxy data from CDH19 confirm the variability of the deep circulation in the Atlantic Ocean in association with past climate changes. The multiple indicators, along with complementary data from other locations, display coherent evidence for contrasts between deep circulation during glacial and interglacial intervals, with persistent strong, deep ventilation only within the peak interglacial of marine isotope stage 5e (MIS 5e) and the Holocene. In contrast, repeated, dramatic variability in deep ocean circulation accompanied the millennial climate changes of the last glaciation and deglaciation. The largest magnitude circulation shifts occurred at the transitions into stadials associated with the Hudson strait iceberg discharges and between them and the ensuing northern interstadial warmings, significantly exceeding that of the overall glacial-interglacial difference, highlighting the potential oceanographic and climatic importance of short-term perturbations to the deep ocean circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950056374&hterms=balance+general&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbalance%2Bgeneral','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950056374&hterms=balance+general&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbalance%2Bgeneral"><span>Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.</p> <p>1995-01-01</p> <p>This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PalOc..29..454T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PalOc..29..454T"><span>Nd isotopic structure of the Pacific Ocean 70-30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, Deborah J.; Korty, Robert; Huber, Matthew; Schubert, Jessica A.; Haines, Brian</p> <p>2014-05-01</p> <p>The oceanic meridional overturning circulation (MOC) is a crucial component of the climate system, impacting heat and nutrient transport, and global carbon cycling. Past greenhouse climate intervals present a paradox because their weak equator-to-pole temperature gradients imply a weaker MOC, yet increased poleward oceanic heat transport appears to be required to maintain these weak gradients. To investigate the mode of MOC that operated during the early Cenozoic, we compare new Nd isotope data with Nd tracer-enabled numerical ocean circulation and coupled climate model simulations. Assimilation of new Nd isotope data from South Pacific Deep Sea Drilling Project and Ocean Drilling Program Sites 323, 463, 596, 865, and 869 with previously published data confirm the hypothesized MOC characterized by vigorous sinking in the South and North Pacific 70 to 30 Ma. Compilation of all Pacific Nd isotope data indicates vigorous, distinct, and separate overturning circulations in each basin until 40 Ma. Simulations consistently reproduce South Pacific and North Pacific deep convection over a broad range of conditions, but cases using strong deep ocean vertical mixing produced the best data-model match. Strong mixing, potentially resulting from enhanced abyssal tidal dissipation, greater interaction of wind-driven internal wave activity with submarine plateaus, or higher than modern values of the geothermal heat flux enable models to achieve enhanced MOC circulation rates with resulting Nd isotope distributions consistent with the proxy data. The consequent poleward heat transport may resolve the paradox of warmer worlds with reduced temperature gradients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840022400&hterms=worlds+oceans&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dworlds%2Boceans','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840022400&hterms=worlds+oceans&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dworlds%2Boceans"><span>Ocean circulation studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koblinsky, C. J.</p> <p>1984-01-01</p> <p>Remotely sensed signatures of ocean surface characteristics from active and passive satellite-borne radiometers in conjunction with in situ data were utilized to examine the large scale, low frequency circulation of the world's oceans. Studies of the California Current, the Gulf of California, and the Kuroshio Extension Current in the western North Pacific were reviewed briefly. The importance of satellite oceanographic tools was emphasized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26473335','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26473335"><span>Ocean Data Assimilation in Support of Climate Applications: Status and Perspectives.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stammer, D; Balmaseda, M; Heimbach, P; Köhl, A; Weaver, A</p> <p>2016-01-01</p> <p>Ocean data assimilation brings together observations with known dynamics encapsulated in a circulation model to describe the time-varying ocean circulation. Its applications are manifold, ranging from marine and ecosystem forecasting to climate prediction and studies of the carbon cycle. Here, we address only climate applications, which range from improving our understanding of ocean circulation to estimating initial or boundary conditions and model parameters for ocean and climate forecasts. Because of differences in underlying methodologies, data assimilation products must be used judiciously and selected according to the specific purpose, as not all related inferences would be equally reliable. Further advances are expected from improved models and methods for estimating and representing error information in data assimilation systems. Ultimately, data assimilation into coupled climate system components is needed to support ocean and climate services. However, maintaining the infrastructure and expertise for sustained data assimilation remains challenging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996AnGeo..14..986E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996AnGeo..14..986E"><span>Study of the air-sea interactions at the mesoscale: the SEMAPHORE experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eymard, L.; Planton, S.; Durand, P.; Le Visage, C.; Le Traon, P. Y.; Prieur, L.; Weill, A.; Hauser, D.; Rolland, J.; Pelon, J.; Baudin, F.; Bénech, B.; Brenguier, J. L.; Caniaux, G.; de Mey, P.; Dombrowski, E.; Druilhet, A.; Dupuis, H.; Ferret, B.; Flamant, C.; Flamant, P.; Hernandez, F.; Jourdan, D.; Katsaros, K.; Lambert, D.; Lefèvre, J. M.; Le Borgne, P.; Le Squere, B.; Marsoin, A.; Roquet, H.; Tournadre, J.; Trouillet, V.; Tychensky, A.; Zakardjian, B.</p> <p>1996-09-01</p> <p>The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale) experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and air-sea interactions. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period). Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the sea surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies), and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a heating loss of about 100 W m-2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in heat fluxes between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The classical momentum flux bulk parameterization was found to fail in low wind and unstable conditions. Finally, the sea surface was investigated using airborne and satellite radars and wave buoys. A wave model, operationally used, was found to get better results compared with radar and wave-buoy measurements, when initialized using an improved wind field, obtained by assimilating satellite and buoy wind data in a meteorological model. A detailed analysis of a 2-day period showed that the swell component, propagating from a far source area, is underestimated in the wave model. A data base has been created, containing all experimental measurements. It will allow us to pursue the interpretation of observations and to test model simulations in the ocean, at the surface and in the atmospheric boundary layer, and to investigate the ocean-atmosphere coupling at the local and mesoscales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GBioC..31..515E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GBioC..31..515E"><span>A global ocean climatology of preindustrial and modern ocean δ13C</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eide, Marie; Olsen, Are; Ninnemann, Ulysses S.; Johannessen, Truls</p> <p>2017-03-01</p> <p>We present a global ocean climatology of dissolved inorganic carbon δ13C (‰) corrected for the 13C-Suess effect, preindustrial δ13C. This was constructed by first using Olsen and Ninnemann's (2010) back-calculation method on data from 25 World Ocean Circulation Experiment cruises to reconstruct the preindustrial δ13C on sections spanning all major oceans. Next, we developed five multilinear regression equations, one for each major ocean basin, which were applied on the World Ocean Atlas data to construct the climatology. This reveals the natural δ13C distribution in the global ocean. Compared to the modern distribution, the preindustrial δ13C spans a larger range of values. The maxima, of up to 1.8‰, occurs in the subtropical gyres of all basins, in the upper and intermediate waters of the North Atlantic, as well as in mode waters with a Southern Ocean origin. Particularly strong gradients occur at intermediate depths, revealing a strong potential for using δ13C as a tracer for changes in water mass geometry at these levels. Further, we identify a much tighter relationship between δ13C and apparent oxygen utilization (AOU) than between δ13C and phosphate. This arises because, in contrast to phosphate, AOU and δ13C are both partly reset when waters are ventilated in the Southern Ocean and underscore that δ13C is a highly robust proxy for past changes in ocean oxygen content and ocean ventilation. Our global preindustrial δ13C climatology is openly accessible and can be used, for example, for improved model evaluation and interpretation of sediment δ13C records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850006091&hterms=extratropical+storm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dextratropical%2Bstorm','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850006091&hterms=extratropical+storm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dextratropical%2Bstorm"><span>Observational-numerical Study of Maritime Extratropical Cyclones Using FGGE Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wash, C. H.; Elsberry, R. L.</p> <p>1984-01-01</p> <p>The accomplishments, current research, and future plans of a study investigating the development, maturation, and decay of maritime extratropical cyclones are reported. Three cases of explosive cyclogenesis during the first GARP global experiment (FGGE) DOP-1 were studied diagnostically using storm-following budgets derived from the ECMWF and GLAS level III-b analyses. Mass, vorticity and angular momentum budgets for the moving storm environment were computed for each case. Key results from these studies include: (1) demonstration that the FGGE analyses can be used to explore oceanic circulations; (2) isolation of the role of upper level jet streaks in the initiation of the explosive period in all three cases; and (3) illustration of the lower tropospheric destabilization during each rapid deepening period, which is primarily due to sensible heating of the cold air by the warmer ocean surface. The physics package of the Navy global forecast model was successfully utilized in a semi-prognostic mode to estimate diabatic components of oceanic cyclone systems. Fields of sensible and latent heat fluxes, radiational heating and inferred cloud structures were also computed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A14B2547M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A14B2547M"><span>Monsoon Variability in the Arabian Sea from Enhanced and Standard Horizontal Resolution Coupled Climate Models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McClean, J.; Veneziani, C.; Maltrud, M. E.; Taylor, M.; Bader, D. C.; Branstetter, M. L.; Evans, K. J.; Mahajan, S.</p> <p>2016-02-01</p> <p>The circulation of the upper ocean in the Arabian Sea switches direction seasonally due to the change in direction of the prevailing winds associated with the Indian Monsoon. Predictability of the monsoon circulation, however, is uncertain due to incomplete understanding of the physical processes operating on the monsoon and other time scales, particularly interannual and intraseasonal. We use the Community Earth System Model (CESM) with enhanced horizontal resolution in each of its components relative to standard coupled climate model resolution, to better understand these time scale interactions. A standard resolution CESM counterpart is used to assess how horizontal resolution impacts the depiction of these processes. In the enhanced resolution case, 0.25° Community Atmosphere Model 5 (CAM5) is coupled to, among other components, the tripolar nominal 0.1° Parallel Ocean Program 2 (POP2). The fine resolution CESM simulation was run for 85 years; constant 1850 preindustrial forcing was used throughout the run, allowing us to isolate internal variability of the coupled system. Model parameters were adjusted ("tuned") to produce an acceptably small top of the atmosphere radiation imbalance. The reversal of the Somali Current (SC), the western boundary current off northeast Africa, has typically been associated with that of the monsoon. The SC reverses from southwestward in boreal winter to northeastward in summer; coastal upwelling is induced by the summer monsoonal winds. Recently it has been shown from new observations that the SC starts to reverse prior to the monsoon switch. Westward propagating Rossby waves have been implicated as responsible for the early SC reversal. We will discuss the sequencing of remote and local forcing on the timing of the spring inter-monsoonal switch in the direction of the SC and the appearance of the Great Whirl off the Oman Coast. Particularly, we consider how the Indian Ocean Dipole (IOD) acts to modify the seasonal strength and variability of the western boundary current system including upwelling. We look for a connection between interannual upwelling variability and that of rainfall off the west coast of India. As well, we examine changes due to the IOD in the upper ocean temperature and salinity structure along the Rossby wave propagation route in the Arabian Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.9893B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.9893B"><span>Can the Ocean's Heat Engine Control Horizontal Circulation? Insights From the Caspian Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bruneau, Nicolas; Zika, Jan; Toumi, Ralf</p> <p>2017-10-01</p> <p>We investigate the role of the ocean's heat engine in setting horizontal circulation using a numerical model of the Caspian Sea. The Caspian Sea can be seen as a virtual laboratory—a compromise between realistic global models that are hampered by long equilibration times and idealized basin geometry models, which are not constrained by observations. We find that increases in vertical mixing drive stronger thermally direct overturning and consequent conversion of available potential to kinetic energy. Numerical solutions with water mass structures closest to observations overturn 0.02-0.04 × 106 m3/s (sverdrup) representing the first estimate of Caspian Sea overturning. Our results also suggest that the overturning is thermally forced increasing in intensity with increasing vertical diffusivity. Finally, stronger thermally direct overturning is associated with a stronger horizontal circulation in the Caspian Sea. This suggests that the ocean's heat engine can strongly impact broader horizontal circulations in the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SedG..364...89E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SedG..364...89E"><span>Paleogeographic and paleo-oceanographic influences on carbon isotope signatures: Implications for global and regional correlation, Middle-Upper Jurassic of Saudi Arabia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eltom, Hassan A.; Gonzalez, Luis A.; Hasiotis, Stephen T.; Rankey, Eugene C.; Cantrell, Dave L.</p> <p>2018-02-01</p> <p>Carbon isotope data (δ13C) can provide an essential means for refining paleogeographic and paleo-oceanographic reconstructions, and interpreting stratigraphic architecture within complex carbonate strata. Although the primary controls on global δ13C signatures of marine carbonates are well understood, understanding their latitudinal and regional variability is poor. To better constrain the nature and applications of δ13C stratigraphy, this study: 1) presents a new high-resolution δ13C stratigraphic curve from Middle to Upper Jurassic carbonates in the upper Tuwaiq Mountain, Hanifa, and lower Jubaila formations in central Saudi Arabia; 2) explores their latitudinal and regional variability; and 3) discusses their implications for stratigraphic correlations. Analysis of δ13C data identified six mappable units with distinct δ13C signatures (units 1-6) between up-dip and down-dip sections, and one unit (unit 7) that occurs only in the down-dip section of the study succession. δ13C data from the upper Tuwaiq Mountain Formation and the lower Hanifa Formation (units 1, 2), which represent Upper Callovian to Middle Oxfordian strata, and record two broad positive δ13C excursions. In the upper part of the Hanifa Formation (units 3-6, Early Oxfordian-Late Kimmeridgian), δ13C values decreased upward to unit 7, which showed a broad positive δ13C excursion. Isotopic data suggest similar δ13C trends between the southern margin of the Tethys Ocean (Arabian Plate; low latitude, represented by the study succession) and northern Tethys oceans (high latitude), despite variations in paleoclimatic, paleogeographic, and paleoceanographic conditions. Variations in the δ13C signal in this succession can be attributed to the burial of organic matter and marine circulation at the time of deposition. Our study uses δ13C signatures to provide independent data for chronostratigraphic constraints which help in stratigraphic correlations within heterogeneous carbonate successions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980237548','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980237548"><span>Mechanisms Regulating Deep Moist Convection and Sea-Surface Temperatures of the Tropics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sud, Y. C.; Walker, G. K.; Lau, K. M.</p> <p>1998-01-01</p> <p>Despite numerous previous studies, two relationships between deep convection and the sea-surface temperature (SST) of the tropics remain unclear. The first is the cause for the sudden emergence of deep convection at about 28 deg SST, and the second is its proximity to the highest observed SST of about 30 C. Our analysis provides a rational explanation for both by utilizing the Improved Meteorological (IMET) buoy data together with radar rainfall retrievals and atmospheric soundings provided by the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE). The explanation relies on the basic principles of moist convection as enunciated in the Arakawa-Schubert cumulus parameterization. Our analysis shows that an SST range of 28-29 C is necessary for "charging" the atmospheric boundary layer with sufficient moist static energy that can enable the towering convection to reach up to the 200 hPa level. In the IMET buoy data, the changes in surface energy fluxes associated with different rainfall amounts show that the deep convection not only reduces the solar flux into the ocean with a thick cloud cover, but it also generates downdrafts which bring significantly cooler and drier air into the boundary-layer thereby augmenting oceanic cooling by increased sensible and latent heat fluxes. In this way, the ocean seasaws between a net energy absorber for non-raining and a net energy supplier for deep-convective raining conditions. These processes produce a thermostat-like control of the SST. The data also shows that convection over the warm pool is modulated by dynamical influences of large-scale circulation embodying tropical easterly waves (with a 5-day period) and MJOs (with 40-day period); however, the quasi-permanent feature of the vertical profile of moist static energy, which is primarily maintained by the large-scale circulation and thermodynamical forcings, is vital for both the 28 C SST for deep convection and its upper limit at about 30 C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2968S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2968S"><span>Particle transport model sensitivity on wave-induced processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna</p> <p>2017-04-01</p> <p>Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....13273W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....13273W"><span>High-temperature hydrothermal circulation in the lower oceanic crust at fast spreading ridges: Reconciling geophysical and geochemical constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilcock, W.</p> <p>2003-04-01</p> <p>Hydrothermal circulation is the dominant mechanism for cooling young oceanic crust and knowledge of its depth, extent and timing is critical for our understanding of crustal accretion. At fast-spreading ridges there is considerable controversy regarding the importance of this process in the lower crust. Geochemical data indicate that high-temperature hydrothermal fluids react with the lower crust but they also suggest that the reactions are limited to a narrow temperature interval and involve relatively small volumes of fluid. As a result many geochemical studies conclude that high-temperature hydrothermal circulation plays a relatively small role in heat transport in the lower crust and occurs in a closed system that is isolated from upper crustal hydrothermal cells. In contrast, seismic observations on the fast spreading East Pacific Rise show that the mid-crustal axial magma chamber is underlain by a low velocity zone which is no more than 5-8 km wide throughout the lower crust and is interpreted as a region of elevated temperatures containing relatively low average melt fractions. Irrespective of the style of lower crustal accretion, simple physical considerations suggest that this structure is only thermally feasible if the lower crust cools by extensive hydrothermal circulation. Modeling studies indicate that this requires the permeability of the lower crust to temporarily reach at least ~10-13 m2. In order to reconcile the geochemical and geophysical data it is important to recognize that the thermal constraints do not require pervasive seawater circulation in the lower crust and can be satisfied by focused flow through narrow permeable zones spaced as far as about 1 km apart. Widely spaced regions of flow might be difficult to find in the field especially if the sampling strategies focus on the freshest outcrops. There is a tendency to overestimate the volume of fluid that must circulate through an open single-pass system. The fluid-rock ratios (0.2 - 1) inferred from oxygen isotope studies are often cited as evidence of limited circulation but when interpreted physically they are actually sufficient to transport a substantial proportion of the heat required to solidify and cool the lower crust. Nevertheless the geophysical constraints are also compatible with circulation in a two-layer double diffusive system favored by many researchers, in which the lower crust is cooled by a recirculating brine cell.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3799353','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3799353"><span>Iceberg discharges of the last glacial period driven by oceanic circulation changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Alvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa; Ritz, Catherine</p> <p>2013-01-01</p> <p>Proxy data reveal the existence of episodes of increased deposition of ice-rafted detritus in the North Atlantic Ocean during the last glacial period interpreted as massive iceberg discharges from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence of the crucial role that the ocean plays both for past and future behavior of the cryosphere suggests a climatic control of these ice surges. Here, we present simulations of the last glacial period carried out with a hybrid ice sheet–ice shelf model forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. The model generates a time series of iceberg discharge that closely agrees with ice-rafted debris records over the past 80 ka, indicating that oceanic circulation variations were responsible for the enigmatic ice purges of the last ice age. PMID:24062437</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70155864','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70155864"><span>Ocean circulation and biogeochemistry moderate interannual and decadal surface water pH changes in the Sargasso Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nathalie F. Goodkin,; Bo-Shian Wang,; Chen-Feng You,; Konrad Hughen,; Prouty, Nancy G.; Bates, Nicholas; Scott Doney,</p> <p>2015-01-01</p> <p>The oceans absorb anthropogenic CO2 from the atmosphere, lowering surface ocean pH, a concern for calcifying marine organisms. The impact of ocean acidification is challenging to predict as each species appears to respond differently and because our knowledge of natural changes to ocean pH is limited in both time and space. Here we reconstruct 222 years of biennial seawater pH variability in the Sargasso Sea from a brain coral, Diploria labyrinthiformis. Using hydrographic data from the Bermuda Atlantic Time-series Study and the coral-derived pH record, we are able to differentiate pH changes due to surface temperature versus those from ocean circulation and biogeochemical changes. We find that ocean pH does not simply reflect atmospheric CO2 trends but rather that circulation/biogeochemical changes account for >90% of pH variability in the Sargasso Sea and more variability in the last century than would be predicted from anthropogenic uptake of CO2 alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC24A..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC24A..04P"><span>Spatial and Temporal Variability of Surface Energy Fluxes During Autumn Ice Advance: Observations and Model Validation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Persson, O. P. G.; Blomquist, B.; Grachev, A. A.; Guest, P. S.; Stammerjohn, S. E.; Solomon, A.; Cox, C. J.; Capotondi, A.; Fairall, C. W.; Intrieri, J. M.</p> <p>2016-12-01</p> <p>From Oct 4 to Nov 5, 2015, the Office of Naval Research - sponsored Sea State cruise in the Beaufort Sea with the new National Science Foundation R/V Sikuliaq obtained extensive in-situ and remote sensing observations of the lower troposphere, the advancing sea ice, wave state, and upper ocean conditions. In addition, a coupled atmosphere, sea ice, upper-ocean model, based on the RASM model, was run at NOAA/PSD in a hindcast mode for this same time period, providing a 10-day simulation of the atmosphere/ice/ocean evolution. Surface energy fluxes quantitatively represent the air-ice, air-ocean, and ice-ocean interaction processes, determining the cooling (warming) rate of the upper ocean and the growth (melting) rate of sea ice. These fluxes also impact the stratification of the lower troposphere and the upper ocean. In this presentation, both direct and indirect measurements of the energy fluxes during Sea State will be used to explore the spatial and temporal variability of these fluxes and the impacts of this variability on the upper ocean, ice, and lower atmosphere during the autumn ice advance. Analyses have suggested that these fluxes are impacted by atmospheric synoptic evolution, proximity to existing ice, ice-relative wind direction, ice thickness and snow depth. In turn, these fluxes impact upper-ocean heat loss and timing of ice formation, as well as stability in the lower troposphere and upper ocean, and hence heat transport to the free troposphere and ocean mixed-layer. Therefore, the atmospheric structure over the advancing first-year ice differs from that over the nearby open water. Finally, these observational analyses will be used to provide a preliminary validation of the spatial and temporal variability of the surface energy fluxes and the associated lower-tropospheric and upper-ocean structures in the simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CliPa..12..837A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CliPa..12..837A"><span>Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abbott, April N.; Haley, Brian A.; Tripati, Aradhna K.; Frank, Martin</p> <p>2016-04-01</p> <p>Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜ 55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8689M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8689M"><span>Upper air teleconnections to Ob River flows and tree rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meko, David; Panyushkina, Irina; Agafonov, Leonid</p> <p>2015-04-01</p> <p>The Ob River, one of the world's greatest rivers, with a catchment basin about the size of Western Europe, contributes 12% or more of the annual freshwater inflow to the Arctic Ocean. The input of heat and fresh water is important to the global climate system through effects on sea ice, salinity, and the thermohaline circulation of the ocean. As part of a tree-ring project to obtain multi-century long information on variability of Ob River flows, a network of 18 sites of Pinus, Larix, Populus and Salix has been collected along the Ob in the summers of 2013 and 2014. Analysis of collections processed so far indicates a significant relationship of tree-growth to river discharge. Moderation of the floodplain air temperature regime by flooding appears to be an important driver of the tree-ring response. In unraveling the relationship of tree-growth to river flows, it is important to identify atmospheric circulation features directly linked to observed time series variations of flow and tree growth. In this study we examine statistical links between primary teleconnection modes of Northern Hemisphere upper-air (500 mb) circulation, Ob River flow, and tree-ring chronologies. Annual discharge at the mouth of the Ob River is found to be significantly positively related to the phase of the East Atlantic (EA) pattern, the second prominent mode of low-frequency variability over the North Atlantic. The EA pattern, consisting of a north-south dipole of pressure-anomaly centers spanning the North Atlantic from east to west, is associated with a low-pressure anomaly centered over the Ob River Basin, and with a pattern of positive precipitation anomaly of the same region. The positive correlation of discharge and EA is consistent with these know patterns, and is contrasted with generally negative (though smaller) correlations between EA and tree-ring chronologies. The signs of correlations are consistent with a conceptual model of river influence on tree growth through air temperature. Future work aims at combining the tree-ring samples from living trees and remnant wood to reconstruction to quantitiative reconstruction of annual flow over the past millennium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53E0939H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53E0939H"><span>Impact of Seawater Nonlinearities on Nordic Seas Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Helber, R. W.; Wallcraft, A. J.; Shriver, J. F.</p> <p>2017-12-01</p> <p>The Nordic Seas (Greenland, Iceland, and Norwegian Seas) form an ocean basin important for Arctic-mid-latitude climate linkages. Cold fresh water from the Arctic Ocean and warm salty water from the North Atlantic Ocean meet in the Nordic Seas, where a delicate balance between temperature and salinity variability results in deep water formation. Seawater non-linearities are stronger at low temperatures and salinities making high-latitude oceans highly subject to thermbaricity and cabbeling. This presentation highlights and quantifies the impact of seawater non-linearities on the Nordic Seas circulation. We use two layered ocean circulation models, the Hybrid Coordinate Ocean Model (HYOCM) and the Modular Ocean Model version 6 (MOM6), that enable accurate representation of processes along and across density or neutral density surfaces. Different equations-of-state and vertical coordinates are evaluated to clarify the impact of seawater non-linearities. Present Navy systems, however, do not capture some features in the Nrodic Seas vertical structure. For example, observations from the Greenland Sea reveal a subsurface temperature maximum that deepens from approximately 1500 m during 1998 to 1800 m during 2005. We demonstrate that in terms of density, salinity is the largest source of error in Nordic Seas Navy forecasts, regional scale models can represent mesoscale features driven by thermobaricity, vertical coordinates are a critical issue in Nordic Sea circulation modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970022305','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970022305"><span>Combination of TOPEX/POSEIDON Data with a Hydrographic Inversion for Determination of the Oceanic General Circulation and its Relation to Geoid Accuracy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ganachaud, Alexandre; Wunsch, Carl; Kim, Myung-Chan; Tapley, Byron</p> <p>1997-01-01</p> <p>A global estimate of the absolute oceanic general circulation from a geostrophic inversion of in situ hydrographic data is tested against and then combined with an estimate obtained from TOPEX/POSEIDON altimetric data and a geoid model computed using the JGM-3 gravity-field solution. Within the quantitative uncertainties of both the hydrographic inversion and the geoid estimate, the two estimates derived by very different methods are consistent. When the in situ inversion is combined with the altimetry/geoid scheme using a recursive inverse procedure, a new solution, fully consistent with both hydrography and altimetry, is found. There is, however, little reduction in the uncertainties of the calculated ocean circulation and its mass and heat fluxes because the best available geoid estimate remains noisy relative to the purely oceanographic inferences. The conclusion drawn from this is that the comparatively large errors present in the existing geoid models now limit the ability of satellite altimeter data to improve directly the general ocean circulation models derived from in situ measurements. Because improvements in the geoid could be realized through a dedicated spaceborne gravity recovery mission, the impact of hypothetical much better, future geoid estimates on the circulation uncertainty is also quantified, showing significant hypothetical reductions in the uncertainties of oceanic transport calculations. Full ocean general circulation models could better exploit both existing oceanographic data and future gravity-mission data, but their present use is severely limited by the inability to quantify their error budgets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcMod.107...28H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcMod.107...28H"><span>Impact of submesoscales on surface material distribution in a gulf of Mexico mesoscale eddy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haza, A. C.; Özgökmen, T. M.; Hogan, P.</p> <p>2016-11-01</p> <p>Understanding material distribution at the ocean's surface is important for a number of applications, in particular for buoyant pollutants such as oil spills. The main tools to estimate surface flows are satellite altimeters, as well as data-assimilative ocean general circulation models (OGCMs). Current-generation altimeter products rely on the geostrophic approximation to derive surface currents. Recent modeling and experimental work revealed existence of ageostrophic submesoscale motions within the upper ocean boundary layer. The next frontier is how submesoscales influence transport pathways in the upper ocean, which is a multi-scale problem involving the interaction of submesoscale and mesoscale coherent structures. Here we focus on a mesoscale eddy that exhibits submesoscale fluctuations along its rim. The high-resolution OCGM fields are then treated with two filters. A Lanczos filter is applied to velocity fields to remove the kinetic energy over the submesoscales. Then a Gaussian filter is used for the modeled sea surface height to simulate a geostrophic velocity field that would be available from gridded satellite altimeter data. Lagrangian Coherent Structures (LCS) are then generated from full-resolution and filtered fields to compare Lagrangian characteristics corresponding to different realizations of the surface velocity fields. It is found that while mesoscale currents exert a general control over the pathways of the tracer initially launched in the mesoscale eddy, there is a leak across the mesoscale transport barriers, induced by submesoscale motions. This leak is quantified as 20% of the tracer when using the submesoscale filter over one month of advection, while it increases to 50% using the geostrophic velocity field. We conclude that LCS computed from mesoscale surface velocity fields can be considered as a good first-order proxy, but the leakage of material across them in the presence of submesoscales can be significant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GGG....13.AG12S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GGG....13.AG12S"><span>The cooling history and the depth of detachment faulting at the Atlantis Massif oceanic core complex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schoolmeesters, Nicole; Cheadle, Michael J.; John, Barbara E.; Reiners, Peter W.; Gee, Jeffrey; Grimes, Craig B.</p> <p>2012-10-01</p> <p>Oceanic core complexes (OCCs) are domal exposures of oceanic crust and mantle interpreted to be denuded to the seafloor by large slip oceanic detachment faults. We combine previously reported U-Pb zircon crystallization ages with (U-Th)/He zircon thermochronometry and multicomponent magnetic remanence data to determine the cooling history of the footwall to the Atlantis Massif OCC (30°N, MAR) and help establish cooling rates, as well as depths of detachment faulting and gabbro emplacement. We present nine new (U-Th)/He zircon ages for samples from IODP Hole U1309D ranging from 40 to 1415 m below seafloor. These data paired with U-Pb zircon ages and magnetic remanence data constrain cooling rates of gabbroic rocks from the upper 800 m of the central dome at Atlantis Massif as 2895 (+1276/-1162) °C Myr-1 (from ˜780°C to ˜250°C); the lower 600 m of the borehole cooled more slowly at mean rates of ˜500 (+125/-102) °C Myr-1(from ˜780°C to present-day temperatures). Rocks from the uppermost part of the hole also reveal a brief period of slow cooling at rates of ˜300°C Myr-1, possibly due to hydrothermal circulation to ˜4 km depth through the detachment fault zone. Assuming a fault slip rate of 20 mm/yr (from U-Pb zircon ages of surface samples) and a rolling hinge model for the sub-surface fault geometry, we predict that the 780°C isotherm lies at ˜7 km below the axial valley floor, likely corresponding both to the depth at which the semi-brittle detachment fault roots and the probable upper limit of significant gabbro emplacement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990092487&hterms=neither+deep+shallow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dneither%2Bdeep%2Bshallow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990092487&hterms=neither+deep+shallow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dneither%2Bdeep%2Bshallow"><span>Tidal Energy Available for Deep Ocean Mixing: Bounds from Altimetry Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Egbert, Gary D.; Ray, Richard D.</p> <p>1999-01-01</p> <p>Maintenance of the large-scale thermohaline circulation has long presented a problem to oceanographers. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon (T/P) satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990115479&hterms=neither+deep+shallow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dneither%2Bdeep%2Bshallow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990115479&hterms=neither+deep+shallow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dneither%2Bdeep%2Bshallow"><span>Tidal Energy Available for Deep Ocean Mixing: Bounds From Altimetry Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Egbert, Gary D.; Ray, Richard D.</p> <p>1999-01-01</p> <p>Maintenance of the large-scale thermohaline circulation has long presented a problem to oceanographers. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990114316&hterms=neither+deep+shallow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dneither%2Bdeep%2Bshallow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990114316&hterms=neither+deep+shallow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dneither%2Bdeep%2Bshallow"><span>Tidal Energy Available for Deep Ocean Mixing: Bounds from Altimetry Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.; Egbert, Gary D.</p> <p>1999-01-01</p> <p>Maintenance of the large-scale thermohaline circulation has long presented an interesting problem. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CliPD..11.4483R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CliPD..11.4483R"><span>Atmospheric circulation patterns associated to the variability of River Ammer floods: evidence from observed and proxy data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rimbu, N.; Czymzik, M.; Ionita, M.; Lohmann, G.; Brauer, A.</p> <p>2015-09-01</p> <p>The relationship between the frequency of River Ammer floods (southern Germany) and atmospheric circulation variability is investigated based on observational Ammer discharge data back to 1926 and a flood layer time series from varved sediments of the downstream Lake Ammersee for the pre-instrumental period back to 1766. A composite analysis reveals that, at synoptic time scales, observed River Ammer floods are associated with enhanced moisture transport from the Atlantic Ocean and the Mediterranean towards the Ammer region, a pronounced trough over Western Europe as well as enhanced potential vorticity at upper levels. We argue that this synoptic scale configuration can trigger heavy precipitation and floods in the Ammer region. Interannual to multidecadal increases in flood frequency as recorded in the instrumental discharge record are associated to a wave-train pattern extending from the North Atlantic to western Asia with a prominent negative center over western Europe. A similar atmospheric circulation pattern is associated to increases in flood layer frequency in the Lake Ammersee sediment record during the pre-instrumental period. We argue that the complete flood layer time-series from Lake Ammersee sediments covering the last 5500 years, contains information about atmospheric circulation variability on inter-annual to millennial time-scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2085.6048G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2085.6048G"><span>Interactions Between Ocean Circulation and Topography in Icy Worlds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodman, J. C.</p> <p>2018-05-01</p> <p>To what extent does topography at the water-rock interface control the general circulation patterns of icy world oceans? And contrariwise, to what extent does liquid flow control the topography at the ice-water interface (or interfaces)?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000114833','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000114833"><span>Goddard Cumulus Ensemble (GCE) Model: Application for Understanding Preciptation Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tao, Wei-Kuo; Einaudi, Franco (Technical Monitor)</p> <p>2000-01-01</p> <p>The global hydrological cycle is central to climate system interactions and the key to understanding their behavior. Rainfall and its associated precipitation processes are a key link in the hydrologic cycle. Fresh water provided by tropical rainfall and its variability can exert a large impact upon the structure of the upper ocean layer. In addition, approximately two-thirds of the global rain falls in the Tropics, while the associated latent heat release accounts for about three-fourths of the total heat energy for the Earth's atmosphere. Precipitation from convective cloud systems comprises a large portion of tropical heating and rainfall. Furthermore, the vertical distribution of convective latent-heat releases modulates large-scale tropical circulations (e.g., the 30-60-day intraseasonal oscillation), which, in turn, impacts midlatitude weather through teleconnection patterns such as those associated with El Nino. Shifts in these global circulations can result in prolonged periods of droughts and floods, thereby exerting a tremendous impact upon the biosphere and human habitation. And yet, monthly rainfall over the tropical oceans is still not known within a factor of two over large (5 degrees latitude by 5 degrees longitude) areas. Hence, the Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, can provide a more accurate measurement of rainfall as well as estimate the four-dimensional structure of diabatic heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. In addition, this information can be used for global circulation and climate models for testing and improving their parameterizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPP13A1862Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPP13A1862Z"><span>Causes of strong ocean heating during glacial periods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zimov, N.; Zimov, S. A.</p> <p>2013-12-01</p> <p>During the last deglaciation period, the strongest climate changes occurred across the North Atlantic regions. Analyses of borehole temperatures from the Greenland ice sheet have yielded air temperature change estimates of 25°C over the deglaciation period (Dahl-Jensen et al. 1998). Such huge temperature changes cannot currently be explained in the frames of modern knowledge about climate. We propose that glacial-interglacial cycles are connected with gradual warming of ocean interior waters over the course of glaciations and quick transport of accumulated heat from ocean to the atmosphere during the deglaciation periods. Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic and filling up the ocean interior with cold and heavy water. However during the glaciation thermal circulation stopped and ocean circulation was driven by 'haline pumps' -Red and Mediterranean seas connected with ocean with only narrow but deep straights acts as evaporative basins, separating ocean water into fresh water which returns to the ocean surface (precipitation) and warm but salty, and therefore heavy, water which flows down to the ocean floor. This haline pump is stratifying the ocean, allowing warmer water locate under the colder water and thus stopping thermal convection in the ocean. Additional ocean interior warming is driven by geothermal heat flux and decomposition of organic rain. To test the hypothesis we present simple ocean box model that describes thermohaline circulation in the World Ocean. The first box is the Red and Mediterranean sea, the second is united high-latitude seas, the third is the ocean surface, and the fourth the ocean interior. The volume of these water masses and straight cross-sections are taken to be close to real values. We have accepted that the exchange of water between boxes is proportional to the difference in water density in these boxes, Sun energy inputs to the ocean and sea surface are taken as constant. Energy income to the interior box from the geothermal heat flux is also taken as constant. Even though energy inputs are taken as constants, the model manages to recreate the glacial-interglacial cycles. In the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior box accumulates heat, while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal convection take place, and the ocean quickly (within 14,600 years) releases the heat. The magnitude and duration of such cycles correspond with magnitudes and durations reconstructed for actual glacial-interglacial cycles. From the proposed mechanism it follows that during the glaciations it is likely that the Arctic Ocean was a big reservoir of isotopically light fresh ice. If in a glacial period, the World Ocean were half filled with warm water from the Red Sea and bioproductivity of the ocean declined because of the slow circulation, then carbon storage within the ocean reservoir would decline by ~2000 Pg (10^15 g) of carbon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A33B0217T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A33B0217T"><span>Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trossman, D.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.</p> <p>2016-12-01</p> <p>We argue that a substantial fraction of the uncertainty in the cloud radiative feedback during transient climate change may be due to uncertainty in the ocean circulation perturbation. A suite of climate model simulations in which the ocean circulation, the cloud radiative feedback, or a combination of both are held fixed while CO2 doubles, shows that changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback. Specifically, a slowdown in the Atlantic Meridional Overturning Circulation (AMOC) helps to maintain low cloud cover in the Northern Hemisphere extratropics. We propose that the AMOC decline increases the meridional SST gradient, strengthening the storm track, its attendant clouds and the amount of shortwave radiation they reflect back to space. If the results of our model were to scale proportionately in the CMIP5 models, whose AMOC decline ranges from 15 to 60% under RCP8.5, then as much as 70% of the intermodel spread in the cloud radiative feedback and 35% of the spread in the transient climate response could possibly stem from the model representations of AMOC decline.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060030263&hterms=pathways&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dpathways','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060030263&hterms=pathways&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dpathways"><span>Interannual-to-decadal variation of tropical-subtropical exchange in the Pacific Ocean: boundary versus interior pathways</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, T.; Fukumori, I.; Fu, L. L.</p> <p>2002-01-01</p> <p>In this study, we address issues using sea level measurements obtained by the TOPEX/Poseidon satellite altimter and circulation estimated by the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000092058','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000092058"><span>Observations and Modeling of the Transient General Circulation of the North Pacific Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McWilliams, James C.</p> <p>2000-01-01</p> <p>Because of recent progress in satellite altimetry and numerical modeling and the accumulation and archiving of long records of hydrographic and meteorological variables, it is becoming feasible to describe and understand the transient general circulation of the ocean (i.e., variations with spatial scales larger than a few hundred kilometers and time scales of seasonal and longer-beyond the mesoscale). We have carried out various studies in investigation of the transient general circulation of the Pacific Ocean from a coordinated analysis of satellite altimeter data, historical hydrographic gauge data, scatterometer wind observations, reanalyzed operational wind fields, and a variety of ocean circulation models. Broadly stated, our goal was to achieve a phenomenological catalogue of different possible types of large-scale, low-frequency variability, as a context for understanding the observational record. The approach is to identify the simplest possible model from which particular observed phenomena can be isolated and understood dynamically and then to determine how well these dynamical processes are represented in more complex Oceanic General Circulation Models (OGCMs). Research results have been obtained on Rossby wave propagation and transformation, oceanic intrinsic low-frequency variability, effects of surface gravity waves, pacific data analyses, OGCM formulation and developments, and OGCM simulations of forced variability.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.3430V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.3430V"><span>Impact of realistic future ice sheet discharge on the Atlantic ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van den Berk, Jelle</p> <p>2015-04-01</p> <p>Royal Netherlands Meteorological Institute, De Bilt, The Netherlands A high-end scenario of polar ice loss from the Greenland and Antarctic ice sheet is presented with separate projections for different mass-loss sites up to the year 2100. The resultant freshwater forcing is applied to a global climate model and the effects on sea-level rise are discussed. The simulations show strong sea level rise on the Antarctic continental shelves. To separate the effects of atmospheric warming and melt water we then ran four simulations. One without either forcing, one with both and two with one of each separately. Melt water leads to a slight additional depression of the Atlantic overturning circulation, but a strong decrease remains absent. The bulk of the strength reduction is due to higher atmospheric temperatures which inhibits deep water formation in the North Atlantic. The melt water freshens the upper layers of the ocean, but does not strongly impact buoyancy. The balance between North Atlantic Deep Water and Antarctic Bottom Water must then remain relatively unaffected. Only applying the melt water forcing to the Northern Hemisphere does not lead to a stronger effect. We conclude that the meltwater scenario only impacts the overturning circulation superficially because the deeper ocean is not affected. Transport through Bering Strait and across the zonal section at the latitude of Cape Agulhas is increased by increased atmospheric temperatures and adds some inertia to these transports. Reversing the atmospheric forcing bears this out when the transport then further increases. The freshwater, however, mitigates this inertia somewhat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919339M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919339M"><span>Water masses transform at mid-depths over the Antarctic Continental Slope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mead Silvester, Jess; Lenn, Yueng-Djern; Polton, Jeffrey; Phillips, Helen E.; Morales Maqueda, Miguel</p> <p>2017-04-01</p> <p>The Meridional Overturning Circulation (MOC) controls the oceans' latitudinal heat distribution, helping to regulate the Earth's climate. The Southern Ocean is the primary place where cool, deep waters return to the surface to complete this global circulation. While water mass transformations intrinsic to this process predominantly take place at the surface following upwelling, recent studies implicate vertical mixing in allowing transformation at mid-depths over the Antarctic continental slope. We deployed an EM-Apex float near Elephant Island, north of the Antarctic Peninsula's tip, to profile along the slope and use potential vorticity to diagnose observed instabilities. The float captures direct heat exchange between a lens of Upper Circumpolar Deep Water (UCDW) and surrounding Lower Circumpolar Deep Waters (LCDW) at mid-depths and over the course of several days. Heat fluxes peak across the top and bottom boundaries of the UCDW lens and peak diffusivities across the bottom boundary are associated with shear instability. Estimates of diffusivity from shear-strain finestructure parameterisation and heat fluxes are found to be in reasonable agreement. The two-dimensional Ertel potential vorticity is elevated both inside the UCDW lens and along its bottom boundary, with a strong contribution from the shear term in these regions and instabilities are associated with gravitational and symmetric forcing. Thus, shear instabilities are driving turbulent mixing across the lower boundary between these two water masses, leading to the observed heat exchange and transformation at mid-depths over the Antarctic continental slope. This has implications for our understanding of the rates of upwelling and ocean-atmosphere exchanges of heat and carbon at this critical location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003TrGeo...6..181G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003TrGeo...6..181G"><span>Hydrothermal Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>German, C. R.; von Damm, K. L.</p> <p>2003-12-01</p> <p>What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater (after C. A. Stein and S. Stein, 1994). The first geochemical evidence for the existence of hydrothermal vents on the ocean floor came in the mid-1960s when investigations in the Red Sea revealed deep basins filled with hot, salty water (40-60 °C) and underlain by thick layers of metal-rich sediment (Degens and Ross, 1969). Because the Red Sea represents a young, rifting, ocean basin it was speculated that the phenomena observed there might also prevail along other young MOR spreading centers. An analysis of core-top sediments from throughout the world's oceans ( Figure 2) revealed that such metalliferous sediments did, indeed, appear to be concentrated along the newly recognized global ridge crest (Boström et al., 1969). Another early indication of hydrothermal activity came from the detection of plumes of excess 3He in the Pacific Ocean Basin (Clarke et al., 1969) - notably the >2,000 km wide section in the South Pacific ( Lupton and Craig, 1981) - because 3He present in the deep ocean could only be sourced through some form of active degassing of the Earth's interior, at the seafloor. (62K)Figure 2. Global map of the (Al+Fe+Mn):Al ratio for surficial marine sediments. Highest ratios mimic the trend of the global MOR axis (after Boström et al., 1969). One area where early heat-flow studies suggested hydrothermal activity was likely to occur was along the Galapagos Spreading Center in the eastern equatorial Pacific Ocean (Anderson and Hobart, 1976). In 1977, scientists diving at this location found hydrothermal fluids discharging chemically altered seawater from young volcanic seafloor at elevated temperatures up to 17 °C ( Edmond et al., 1979). Two years later, the first high-temperature (380±30 °C) vent fluids were found at 21° N on the East Pacific Rise (EPR) (Spiess et al., 1980) - with fluid compositions remarkably close to those predicted from the lower-temperature Galapagos findings ( Edmond et al., 1979). Since that time, hydrothermal activity has been found at more than 40 locations throughout the Pacific, North Atlantic, and Indian Oceans (e.g., Van Dover et al., 2002) with further evidence - from characteristic chemical anomalies in the ocean water column - of its occurrence in even the most remote and slowly spreading ocean basins ( Figure 3), from the polar seas of the Southern Ocean (German et al., 2000; Klinkhammer et al., 2001) to the extremes of the ice-covered Arctic ( Edmonds et al., 2003). (61K)Figure 3. Schematic map of the global ridge crest showing the major ridge sections along which active hydrothermal vents have already been found (red circles) or are known to exist from the detection of characteristic chemical signals in the overlying water column (orange circles). Full details of all known hydrothermally active sites and plume signals are maintained at the InterRidge web-site: http://triton.ori.u-tokyo.ac.jp/~intridge/wg-gdha.htm The most spectacular manifestation of seafloor hydrothermal circulation is, without doubt, the high-temperature (>400 °C) "black smokers" that expel fluids from the seafloor along all parts of the global ocean ridge crest. In addition to being visually compelling, vent fluids also exhibit important enrichments and depletions when compared to ambient seawater. Many of the dissolved chemicals released from the Earth's interior during venting precipitate upon mixing with the cold, overlying seawater, generating thick columns of black metal-sulfide and oxide mineral-rich smoke - hence the colloquial name for these vents: "black smokers" (Figure 4). In spite of their common appearance, high-temperature hydrothermal vent fluids actually exhibit a wide range of temperatures and chemical compositions, which are determined by subsurface reaction conditions. Despite their spectacular appearance, however, high-temperature vents may only represent a small fraction - perhaps as little as 10% - of the total hydrothermal heat flux close to ridge axes. A range of studies - most notably along the Juan de Fuca Ridge (JdFR) in the NE Pacific Ocean (Rona and Trivett, 1992; Schultz et al., 1992; Ginster et al., 1994) have suggested that, instead, axial hydrothermal circulation may be dominated by much lower-temperature diffuse flow exiting the seafloor at temperatures comparable to those first observed at the Galapagos vent sites in 1977. The relative importance of high- and low-temperature hydrothermal circulation to overall ocean chemistry remains a topic of active debate. (141K)Figure 4. (a) Photograph of a "black smoker" hydrothermal vent emitting hot (>400 °C) fluid at a depth of 2,834 m into the base of the oceanic water column at the Brandon vent site, southern EPR. The vent is instrumented with a recording temperature probe. (b) Diffuse flow hydrothermal fluids have temperatures that are generally <35 °C and, therefore, may host animal communities. This diffuse flow site at a depth of 2,500 m on the EPR at 9°50' N is populated by Riftia tubeworms, mussels, crabs, and other organisms. While most studies of seafloor hydrothermal systems have focused on the currently active plate boundary (˜0-1 Ma crust), pooled heat-flow data from throughout the world's ocean basins (Figure 1) indicate that convective heat loss from the oceanic lithosphere actually continues in crust from 0-65 Ma in age ( Stein et al., 1995). Indeed, most recent estimates would indicate that hydrothermal circulation through this older (1-65 Ma) section, termed "flank fluxes," may be responsible for some 70% or more of the total hydrothermal heat loss associated with spreading-plate boundaries - either in the form of warm (20-65 °C) altered seawater, or as cooler water, which is only much more subtly chemically altered ( Mottl, 2003).When considering the impact of hydrothermal circulation upon the chemical composition of the oceans and their underlying sediments, however, attention returns - for many elements - to the high-temperature "black smoker" systems. Only here do many species escape from the seafloor in high abundance. When they do, the buoyancy of the high-temperature fluids carries them hundreds of meters up into the overlying water column as they mix and eventually form nonbuoyant plumes containing a wide variety of both dissolved chemicals and freshly precipitated mineral phases. The processes active within these dispersing hydrothermal plumes play a major role in determining the net impact of hydrothermal circulation upon the oceans and marine geochemistry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28393849','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28393849"><span>Response of the North Atlantic surface and intermediate ocean structure to climate warming of MIS 11.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kandiano, Evgenia S; van der Meer, Marcel T J; Schouten, Stefan; Fahl, Kirsten; Sinninghe Damsté, Jaap S; Bauch, Henning A</p> <p>2017-04-10</p> <p>Investigating past interglacial climates not only help to understand how the climate system operates in general, it also forms a vital basis for climate predictions. We reconstructed vertical stratification changes in temperature and salinity in the North Atlantic for a period some 400 ka ago (MIS11), an interglacial time analogue of a future climate. As inferred from a unique set of biogeochemical, geochemical, and faunal data, the internal upper ocean stratification across MIS 11 shows distinct depth-dependent dynamical changes related to vertical as well as lateral shifts in the upper Atlantic meridional circulation system. Importantly, transient cold events are recognized near the end of the long phase of postglacial warming at surface, subsurface, mid, and deeper water layers. These data demonstrate that MIS 11 coolings over the North Atlantic were initially triggered by freshwater input at the surface and expansion of cold polar waters into the Subpolar Gyre. The cooling signal was then transmitted downwards into mid-water depths. Since the cold events occurred after the main deglacial phase we suggest that their cause might be related to continuous melting of the Greenland ice sheet, a mechanism that might also be relevant for the present and upcoming climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28500352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28500352"><span>Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M</p> <p>2017-05-12</p> <p>The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI43B0361R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI43B0361R"><span>NoMelt Experiment: High-resolution constraints on Pacific upper mantle fabric inferred from radial and azimuthal anisotropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, J. B.; Gaherty, J. B.; Lin, P. P.; Lizarralde, D.; Collins, J. A.; Hirth, G.; Evans, R. L.</p> <p>2017-12-01</p> <p>Observations of seismic anisotropy in the ocean basins are important for constraining deformation and melting processes in the upper mantle. The NoMelt OBS array was deployed on relatively pristine, 70 Ma seafloor in the central Pacific with the aim of constraining upper mantle circulation and the evolution of the lithosphere-asthenosphere system. Surface-waves traversing the array provide a unique opportunity to estimate a comprehensive set of anisotropic parameters. Azimuthal variations in Rayleigh-wave velocity over a period band of 15-180 s suggest strong anisotropic fabric both in the lithosphere and deep in the asthenosphere. High-frequency ambient noise (4-10 s) provides constraints on average VSV and VSH as well as azimuthal variations in both VS and VP in the upper ˜10 km of the mantle. Our best fitting models require radial anisotropy in the uppermost mantle with VSH > VSV by 3 - 7% and as much as 2% radial anisotropy in the crust. Additionally, we find a strong azimuthal dependence for Rayleigh- and Love-wave velocities, with Rayleigh 2θ fast direction parallel to the fossil spreading direction (FSD) and Love 2θ and 4θ fast directions shifted 90º and 45º from the FSD, respectively. These are some of the first direct observations of the Love 2θ and 4θ azimuthal signal, which allows us to directly invert for anisotropic terms G, B, and E in the uppermost Pacific lithosphere, for the first time. Together, these observations of radial and azimuthal anisotropy provide a comprehensive picture of oceanic mantle fabric and are consistent with horizontal alignment of olivine with the a-axis parallel to fossil spreading and having an orthorhombic or hexagonal symmetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS11C1668Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS11C1668Y"><span>Impact of effective ocean optical properties on the Pacific subtropical cell: a CGCM study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamanaka, G.; Tsujino, H.; Ishizaki, H.; Nakano, H.; Hirabara, M.</p> <p>2012-12-01</p> <p>The choice of ocean radiant scheme is important for modeling the upper ocean. According to the ocean-only simulation (Yamanaka et al., 2012), introduction of the chlorophyll-a dependent ocean radiant scheme results in the decreased mixed layer depth (MLD), the enhanced subtropical cell (STC), and the cooling of the eastern tropical Pacific sea surface temperature (SST). They also found that the enhanced STC results from the velocity profile change associated with the decreased Ekman boundary layer. However, the impact is not well understood when the air-sea feedback process is at work. This study examines the impact of the effective ocean optical properties on the Pacific mean fields, especially focusing on the STC, using a coupled general circulation model (CGCM). The CGCM we employed is the Meteorological Research Institute Earth System Model (MRI-ESM1). The atmospheric model is TL159L48, and the ocean model has a horizontal resolution of 1 x 0.5 deg. with 51 levels in vertical. Experimental design basically follows the CMIP5 protocol. Two experiments (CTL and SLR runs) are performed to investigate the impact of the effective ocean optical properties. In the CTL run, a conventional ocean radiant heating scheme (Paul and Simpson, 1977) is used, whereas a new ocean radiant heating scheme is used in the SLR run, where the satellite-derived chlorophyll-a distribution is taken into consideration based on Morel and Antoine (1994) as well as the effect of the varying solar angle (Ishizaki and Yamanaka, 2010). Each experiment is integrated during the period from 1985 to 2005. It is found that introduction of the new ocean radiant scheme (SLR run) changes the long-term mean wind pattern in the Pacific: easterly winds are strengthened in the equatorial Pacific, but weakened in the off-equatorial region. In the tropical Pacific, the enhanced equatorial upwelling cools the equatorial SST and the MLD becomes shallower. This is similar to the ocean-only simulation, but is more reinforced due to the Bjerknes feedback. On the other hand, unlike the ocean-only simulation, the STC is enhanced only in the equatorial band from 5 S to 5 N. Analysis of meridional volume transport in the upper 300 m indicates that poleward Ekman transport forced by the enhanced trade winds is balanced by the interior flow in the equatorial region. Apart from the equatorial region, the decreased Ekman transport due to the decreased easterly wind weakens the increased poleward transport associated with the velocity profile change in the Ekman boundary layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016064','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016064"><span>Planktonic benthonic foraminiferal ratios: Modern patterns and Tertiary applicability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gibson, T.G.</p> <p>1989-01-01</p> <p>The abundance of planktonic specimens in foraminiferal assemblages was determined in numerous bottom samples from inner neritic to deep oceanic depths along the Atlantic margin of the northeastern United States. The results augment previous studies in other areas that have shown a general increase in percentage of planktonic specimens in total foraminiferal bottom assemblages as water depth increases. The patterns found in this area of complex shelf bathymetry and hydrography illustrate the influence on the planktonic-benthonic percentages of water depth, distance from shore, different water mass properties and downslope movement of tests in high energy areas. The patterns found in the 661 samples from the Atlantic margin were compared with results from 795 stations in the Gulf of Mexico, Pacific Ocean and Red Sea. The relative abundance of planktonic specimens and water depth correlates positively in all open oceanic areas even though taxonomic composition and diversity of the faunas from different areas is variable. The variation of planktonic percentages in bottom samples within most depth intervals is large so that a precise depth determination cannot be made for any given value. However, an approximate upper depth limit for given percentages can be estimated for open ocean environments. A decrease in planktonic percentages is seen in the lower salinity and higher turbidity coastal waters of the Gulf of Maine. Planktonic percentages intermediate between the lower values in the less saline coastal waters and the higher values in the normal open oceanic conditions occur in the transitional area between the Gulf of Maine and the open marine Atlantic Ocean to the east. Similarly lowered values in another area of restricted oceanic circulation occur in the high salinity, clear, but nutrient-poor waters of the Gulf of Aqaba off the Red Sea. A comparison of the similarity of modern planktonic percentage values to those found in earlier Tertiary assemblages was made to confirm the usefulness of this measure in the fossil record. In some stratigraphic sections in upper Paleocene and lower Eocene strata of the eastern Gulf Coastal Plain, water depths inferred from trends and values of planktonic percentages consistently match paleobathymetry constructed from physical stratigraphic characteristics and paleogeographic relationships. ?? 1989.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.3735M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.3735M"><span>Analysis of Oceans' Influence on Spring Time Rainfall Variability Over Southeastern South America during the 20th Century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martín, Verónica; Barreiro, Marcelo</p> <p>2015-04-01</p> <p>Southeastern South America (SESA) rainfall presents large variability from interannual to multidecadal times scales and is influenced by the tropical Pacific, Atlantic and Indian oceans. At the same time, these tropical oceans interact with each other inducing sea surface temperature anomalies in remote basins through atmospheric and oceanic teleconnections. In this study we employ a tool from complex networks to analyze the collective influence of the three tropical oceans on austral spring rainfall variability over SESA during the 20th century. To do so we construct a climate network considering as nodes the observed Niño3.4, Tropical North Atlantic (TNA), and Indian Ocean Dipole (IOD) indices, together with an observed or simulated precipitation (PCP) index over SESA. The mean network distance is considered as a measure of synchronization among all these phenomena during the 20th century. The approach allowed to uncover large interannual and interdecadal variability in the interaction among nodes. In particular, there are two main synchronization periods characterized by different interactions among the oceanic and precipitation nodes. Whereas in the '30s El Niño and the TNA were the main tropical oceanic phenomena that influenced SESA precipitation variability, during the '70s they were El Niño and the IOD. Simulations with an Atmospheric General Circulation Model reproduced the overall behavior of the collective influence of the tropical oceans on rainfall over SESA, and allowed to study the circulation anomalies that characterized the synchronization periods. In agreement with previous studies, the influence of El Niño on SESA precipitation variability might be understood through an increase of the northerly transport of moisture in lower levels and advection of cyclonic vorticity in upper levels. On the other hand, the interaction between the IOD and PCP can be interpreted in two possible ways. One possibility is that both nodes (IOD and PCP) are forced by El Niño. Another possibility is that the Indian Ocean warming influences rainfall over Southeastern South America through the eastward propagation of Rossby waves as suggested previously. Finally, the influence of TNA on SESA precipitation persists even when El Niño signal is removed, suggesting that SST anomalies in the tropical north Atlantic can directly influence SESA precipitation and further studies are needed to elucidate this connection. KEY WORDS: climate networks, synchronization events, climate variability, tropical ocean teleconnections, tropic-extratropic teleconnections, precipitation over SESA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120004248&hterms=climate+change+ocean&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate%2Bchange%2Bocean','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120004248&hterms=climate+change+ocean&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate%2Bchange%2Bocean"><span>SWOT: The Surface Water and Ocean Topography Mission. Wide- Swath Altimetric Elevation on Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fu, Lee-Lueng (Editor); Alsdorf, Douglas (Editor); Morrow, Rosemary; Rodriguez, Ernesto; Mognard, Nelly</p> <p>2012-01-01</p> <p>The elevation of the surface of the ocean and freshwater bodies on land holds key information on many important processes of the Earth System. The elevation of the ocean surface, called ocean surface topography, has been measured by conventional nadirlooking radar altimeter for the past two decades. The data collected have been used for the study of large-scale circulation and sea level change. However, the spatial resolution of the observations has limited the study to scales larger than about 200 km, leaving the smaller scales containing substantial kinetic energy of ocean circulation that is responsible for the flux of heat, dissolved gas and nutrients between the upper and the deep ocean. This flux is important to the understanding of the ocean's role in regulatingfuture climate change.The elevation of the water bodies on land is a key parameter required for the computation of storage and discharge of freshwater in rivers, lakes, and wetlands. Globally, the spatial and temporal variability of water storage and discharge is poorly known due to the lack of well-sampled observations. In situ networks measuring river flows are declining worldwide due to economic and political reasons. Conventional altimeter observations suffers from the complexity of multiple peaks caused by the reflections from water, vegetation canopy and rough topography, resulting in much less valid data over land than over the ocean. Another major limitation is the large inter track distance preventing good coverage of rivers and other water bodies.This document provides descriptions of a new measurement technique using radar interferometry to obtain wide-swath measurement of water elevation at high resolution over both the ocean and land. Making this type of measurement, which addresses the shortcomings of conventional altimetry in both oceanographic and hydrologic applications, is the objective of a mission concept called Surface Water and Ocean Topography (SWOT), which was recommended by the National Research Council's first decadal survey of NASA's Earth science program. This document provides wide-ranging examples of research opportunities in oceanography and land hydrology that would be enabled by the new type of measurement. Additional applications in many other branches of Earth System science ranging from ocean bathymetry to sea ice dynamics are also discussed. Many of the technical issues in making the measurement are discussed as well. Also presented is a preliminary design of the SWOT Mission concept, which is being jointly developed by NASA and CNES, with contributions from the Canadian Space Agency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DyAtO..82....1H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DyAtO..82....1H"><span>Simulating and understanding the gap outflow and oceanic response over the Gulf of Tehuantepec during GOTEX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hong, Xiaodong; Peng, Melinda; Wang, Shouping; Wang, Qing</p> <p>2018-06-01</p> <p>Tehuantepecer is a strong mountain gap wind traveling through Chivela Pass into eastern Pacific coast in southern Mexico, most commonly between October and February and brings huge impacts on local and surrounding meteorology and oceanography. Gulf of Tehuantepec EXperiment (GOTEX) was conducted in February 2004 to enhance the understanding of the strong offshore gap wind, ocean cooling, vertical circulations and interactions among them. The gap wind event during GOTEX was simulated using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). The simulations are compared and validated with the observations retrieved from several satellites (GOES 10-12, MODIS/Aqua/Terra, TMI, and QuikSCAT) and Airborne EXpendable BathyThermograph (AXBT). The study shows that the gap wind outflow has a fanlike pattern expending from the coast and with a strong diurnal variability. The surface wind stress and cooling along the axis of the gap wind outflow caused intense upwelling and vertical mixing in the upper ocean; both contributed to the cooling of the ocean mixed layer under the gap wind. The cooling pattern of sea surface temperature (SST) also reflects temperature advection by the nearby ocean eddies to have a crescent shape. Two sensitivity experiments were conducted to understand the relative roles of the wind stress and heat flux on the ocean cooling. The control has more cooling right under the gap flow region than either the wind-stress-only or the heat-flux-only experiment. Overall, the wind stress has a slightly larger effect in bringing down the ocean temperature near the surface and plays a more important role in local ocean circulations beneath the mixed layer. The impact of surface heat flux on the ocean is more limited to the top 30 m within the mixed layer and is symmetric to the gap flow region by cooling the ocean under the gap flow region and reducing the warming on both sides. The effect of surface wind stress is to induce more cooling in the mixed layer under the gap wind through upwelling associated with Ekman divergence at the surface. Its effect deeper down is antisymmetric related to the nearby thermocline dome by inducing more upwelling to the east side of the gap flow region and more downwelling on the west side. Diagnostics from the mixed layer heat budget for the control and sensitivity experiments confirm that the surface heat flux has more influence on the broader area and the wind stress has more influence in a deeper region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.3200C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.3200C"><span>Dynamics of Andaman Sea circulation and its role in connecting the equatorial Indian Ocean to the Bay of Bengal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chatterjee, Abhisek; Shankar, D.; McCreary, J. P.; Vinayachandran, P. N.; Mukherjee, A.</p> <p>2017-04-01</p> <p>Circulation in the Bay of Bengal (BoB) is driven not only by local winds, but are also strongly forced by the reflection of equatorial Kelvin waves (EKWs) from the eastern boundary of the Indian Ocean. The equatorial influence attains its peak during the monsoon-transition period when strong eastward currents force the strong EKWs along the equator. The Andaman Sea, lying between the Andaman and Nicobar island chains to its west and Indonesia, Thailand, and Myanmar to the south, east, and north, is connected to the equatorial ocean and the BoB by three primary passages, the southern (6°N), middle (10°N), and northern (15°N) channels. We use ocean circulation models, together with satellite altimeter data, to study the pathways by which equatorial signals pass through the Andaman Sea to the BoB and associated dynamical interactions in the process. The mean coastal circulation within the Andaman Sea and around the islands is primarily driven by equatorial forcing, with the local winds forcing a weak sea-level signal. On the other hand, the current forced by local winds is comparable to that forced remotely from the equator. Our results suggest that the Andaman and Nicobar Islands not only influence the circulation within the Andaman Sea, but also significantly alter the circulation in the interior bay and along the east coast of India, implying that they need to be represented accurately in numerical models of the Indian Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6369M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6369M"><span>Splitting turbulence algorithm for mixing parameterization embedded in the ocean climate model. Examples of data assimilation and Prandtl number variations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moshonkin, Sergey; Gusev, Anatoly; Zalesny, Vladimir; Diansky, Nikolay</p> <p>2017-04-01</p> <p>Series of experiments were performed with a three-dimensional, free surface, sigma coordinate eddy-permitting ocean circulation model for Atlantic (from 30°S) - Arctic and Bering sea domain (0.25 degrees resolution, Institute of Numerical Mathematics Ocean Model or INMOM) using vertical grid refinement in the zone of fully developed turbulence (40 sigma-levels). The model variables are horizontal velocity components, potential temperature, and salinity as well as free surface height. For parameterization of viscosity and diffusivity, the original splitting turbulence algorithm (STA) is used when total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF) split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage the analytical solution was obtained for TKE and TDF as functions of the buoyancy and velocity shift frequencies (BF and VSF). The proposed model with STA is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. For mixing simulation in the zone of turbulence decay, the two kind numerical experiments were carried out, as with assimilation of annual mean climatic buoyancy frequency, as with variation of Prandtl number function dependence upon the BF, VSF, TKE and TDF. The CORE-II data for 1948-2009 were used for experiments. Quality of temperature T and salinity S structure simulation is estimated by the comparison of model monthly profiles T and S averaged for 1980-2009, with T and S monthly data from the World Ocean Atlas 2013. Form of coefficients in equations for TKE and TDF on the generation-dissipation stage makes it possible to assimilate annual mean climatic buoyancy frequency in a varying degree that cardinally improves adequacy of model results to climatic data in all analyzed model domain. The numerical experiments with modified Prandtl number presents possibility for essential improvement of the TKE attenuation with depth and more realistic water entrainment from pycnocline into the mixed layer. The high sensitivity is revealed of the eddy-permitting circulation stable model solution to the change of the used above mixing parameterizations. This sensitivity is connected with significant changes of density fields in the upper baroclinic ocean layer over the total considered area. For instance, assimilation of annual mean climatic buoyancy frequency in equations for TKE and TDF leads to more realistic circulation in the North Atlantic. Variations of Prandtl number made it possible to simulate intense circulation in Beaufort Gyre owing to steric effect during the whole period under consideration. The research was supported by the Russian Foundation for Basic Research (grants №16-05-00534 and 15-05-00557).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCo...816010S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCo...816010S"><span>Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skinner, L. C.; Primeau, F.; Freeman, E.; de La Fuente, M.; Goodwin, P. A.; Gottschalk, J.; Huang, E.; McCave, I. N.; Noble, T. L.; Scrivner, A. E.</p> <p>2017-07-01</p> <p>While the ocean's large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean-atmosphere radiocarbon disequilibrium estimates to demonstrate a ~689+/-53 14C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial-interglacial CO2 change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930015733','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930015733"><span>World Ocean Circulation Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clarke, R. Allyn</p> <p>1992-01-01</p> <p>The oceans are an equal partner with the atmosphere in the global climate system. The World Ocean Circulation Experiment is presently being implemented to improve ocean models that are useful for climate prediction both by encouraging more model development but more importantly by providing quality data sets that can be used to force or to validate such models. WOCE is the first oceanographic experiment that plans to generate and to use multiparameter global ocean data sets. In order for WOCE to succeed, oceanographers must establish and learn to use more effective methods of assembling, quality controlling, manipulating and distributing oceanographic data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880016621','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880016621"><span>A study of the dynamics of the Intertropical Convergence Zone (ITCZ) in a symmetric atmosphere-ocean model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Charney, J. G.; Kalnay, E.; Schneider, E.; Shukla, J.</p> <p>1988-01-01</p> <p>A numerical model of the circulation of a coupled axisymmetric atmosphere-ocean system was constructed to investigate the physical factors governing the location and intensity of the Intertropical Convergence Zone (ITCZ) over oceans and over land. The results of several numerical integrations are presented to illustrate the interaction of the individual atmospheric and oceanic circulations. It is shown that the ITCA cannot be located at the equator because the atmosphere-ocean system is unstable for lateral displacements of the ITCA from an equilibrium position at the equator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMPP13A1818R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMPP13A1818R"><span>A new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riesselman, C. R.; Dowsett, H. J.; Scher, H. D.; Robinson, M. M.</p> <p>2011-12-01</p> <p>The mid-Pliocene (3.264 - 3.025 Ma) is the most recent interval in Earth's history with sustained global temperatures in the range of warming predicted for the 21st century, providing an appealing analog with which to examine the Earth system changes we might encounter in the coming century. Ongoing sea surface and deep ocean temperature reconstructions and coupled ocean-atmosphere general circulation model simulations by the USGS PRISM (Pliocene Research Interpretation and Synoptic Mapping) Group identify a dramatic North Atlantic warm anomaly coupled with increased evaporation in the mid-Pliocene, possibly driving enhanced meridional overturning circulation and North Atlantic Deep Water production. However deep ocean temperature is not a conclusive proxy for water mass, and most coupled model simulations predict transient decreases in North Atlantic Deep Water production in 21st century, presenting a contrasting picture of future warmer worlds. Here, we present early results from a new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene, using δ13C of benthic foraminifera as a proxy for water mass age and the neodymium isotopic imprint on fossil fish teeth as a proxy for water mass source region along a three-site depth transect from the Walvis Ridge (subtropical South Atlantic). The deep ocean circulation reconstructions resulting from this project will add a new dimension to the PRISM effort and will be useful for both initialization and evaluation of future model simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110012834','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110012834"><span>Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boy, J.-P.; Rowlands, D. D.; Sabaka, T. J.; Luthcke, S. B.; Lemoine, F. G.</p> <p>2011-01-01</p> <p>Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.1659S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.1659S"><span>Association between mean and interannual equatorial Indian Ocean subsurface temperature bias in a coupled model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Srinivas, G.; Chowdary, Jasti S.; Gnanaseelan, C.; Prasad, K. V. S. R.; Karmakar, Ananya; Parekh, Anant</p> <p>2018-03-01</p> <p>In the present study the association between mean and interannual subsurface temperature bias over the equatorial Indian Ocean (EIO) is investigated during boreal summer (June through September; JJAS) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. Anomalously high subsurface warm bias (greater than 3 °C) over the eastern EIO (EEIO) region is noted in CFSv2 during summer, which is higher compared to other parts of the tropical Indian Ocean. Prominent eastward current bias in the upper 100 m over the EIO region induced by anomalous westerly winds is primarily responsible for subsurface temperature bias. The eastward currents transport warm water to the EEIO and is pushed down to subsurface due to downwelling. Thus biases in both horizontal and vertical currents over the EIO region support subsurface warm bias. The evolution of systematic subsurface warm bias in the model shows strong interannual variability. These maximum subsurface warming episodes over the EEIO are mainly associated with La Niña like forcing. Strong convergence of low level winds over the EEIO and Maritime continent enhanced the westerly wind bias over the EIO during maximum warming years. This low level convergence of wind is induced by the bias in the gradient in the mean sea level pressure with positive bias over western EIO and negative bias over EEIO and parts of western Pacific. Consequently, changes in the atmospheric circulation associated with La Niña like conditions affected the ocean dynamics by modulating the current bias thereby enhancing the subsurface warm bias over the EEIO. It is identified that EEIO subsurface warming is stronger when La Niña co-occurred with negative Indian Ocean Dipole events as compared to La Niña only years in the model. Ocean general circulation model (OGCM) experiments forced with CFSv2 winds clearly support our hypothesis that ocean dynamics influenced by westerly winds bias is primarily responsible for the strong subsurface warm bias over the EEIO. This study advocates the importance of understanding the ability of the models in representing the large scale air-sea interactions over the tropics and their impact on ocean biases for better monsoon forecast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/798773','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/798773"><span>Biogeochemical Proxies in Scleractinian Corals used to Reconstruct Ocean Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Guilderson, T.P.; Kashgarian, M.; Schrag, D.P.</p> <p></p> <p>We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variablesmore » several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon ({sup 14}C) in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as these, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment onetime surveys such as GEOSECS and WOCE. These data not only provide fundamental information about the shallow circulation of the Pacific, but can be used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate change.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15013150','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15013150"><span>Biogeochemical Proxies in Scleractinian Corals used to Reconstruct Ocean Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Guilderson, T P; Kashgarian, M; Schrag, D P</p> <p>2001-02-23</p> <p>We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variablesmore » several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon ({sup 14}C) in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as these, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment onetime surveys such as GEOSECS and WOCE. These data not only provide fundamental information about the shallow circulation of the Pacific, but can be used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate change.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA605135','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA605135"><span>Eddy Resolving Global Ocean Prediction including Tides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>atlantic meridional overturning circulation in the subpolar North Atlantic . Journal of Geophysical Research vol 118, doi:10.1002/jgrc,20065. [published, refereed] ...global ocean circulation model was examined using results from years 2005-2009 of a seven and a half year 1/12.5° global simulation that resolves...internal tides, along with barotropic tides and the eddying general circulation . We examined tidal amplitudes computed using 18 183-day windows that</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA494628','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA494628"><span>Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part 1. Ocean Features and the Category 5 Typhoons’ Intensification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-09-01</p> <p>Structure and the Western North Pacific Category 5 Typhoons. Part 1: Ocean Features and the Category 5 Typhoons’ Intensification 5a. CONTRACT NUMBER...intensification of category 5 cyclones. Based on 13 yr of satellite altimetry data, in situ &climatological upper-ocean thermal structure data, best-track...Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 3288 MONTHLY WEATHER REVIEW VOLUME 136 Upper-Ocean Thermal Structure and the Western North</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010E%26PSL.297..379B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010E%26PSL.297..379B"><span>Low helium flux from the mantle inferred from simulations of oceanic helium isotope data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert</p> <p>2010-09-01</p> <p>The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000070380&hterms=climate+change+anthropogenic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate%2Bchange%2Banthropogenic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000070380&hterms=climate+change+anthropogenic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate%2Bchange%2Banthropogenic"><span>Characterization of Climate Change and Variability with GPS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kursinski, R.</p> <p>1999-01-01</p> <p>We compared zonal mean specific humidity derived from the 21 June-4 July 1995 Global Positioning System (GPS)/MET occultation observations with that derived from the European Center for Medium-Range Weather Forecasts (ECMWF) global analyses. The GPS/MET results indicate a drier troposphere, especially near the subtropical tradewind inversion. A small, moist bias in the GPS/MET upper northern-hemisphere troposphere compared to ECMWF may be due to a small radiosonde temperature bias. A diagram shows the difference (g/kg) between the GPS/MET zonal mean specific humidity and that for June-August derived from 1963-1973 radiosondes. Although the observing period is short, GPS and ECMWF results both indicate a significantly wetter boundary layer at most latitudes consistent with decadal trends observed in radiosonde data. GPS/MET results exhibit higher tropical convective available potential energy (CAPE), suggesting a more vigorous tropical Hadley circulation. Drier, free troposphere air in the descending branches of the Hadley circulation is due in part to a moist radiosonde bias but may also reflect some negative moisture feedback. Using 1992-1997 ground GPS observations and recent advancements in GPS technology, we removed an apparent altimetric drift (-1.2 +/- 0.4 mm/yr) due to columnar water vapor from the Topography (Ocean) Experiment (TOPEX) microwave radiometer, which brought the TOPEX mean sea level change estimates into better agreement with historical tide gauge records, suggesting global mean sea level is rising at a rate of 1.5-2.0 mm/yr. We can also discern a statistically significant increase of 0.2 +/- 0.1 kg/square m/yr in mean columnar water vapor over the ocean from 1992-1997. Optimal fingerprinting can be used for the detection and attribution of tropospheric warming due to an anthropogenic greenhouse. Optimal fingerprinting distinguishes between different types of signals according to their spatial and temporal patterns, while minimizing the influence of natural climate variability. S. Leroy concludes that the signal-to-noise ratio of global warming detection increases by unity approximately every 10 years if a single oceanic region is chosen. Less time for detection is likely when many global regions are considered simultaneously. GPS occultation constellations allow the possibility of detecting small changes in upper air temperature with inconsequential calibration errors, making occultation an ideal data type for global warming detection studies. Our initial study of a 22-GHz satellite-satellite occultation system predicts upper troposphere moisture sensitivities of 3-5 ppmv and 1-2 percent in the middle and lower troposphere. Additional information contained in original.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26089521','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26089521"><span>OCEAN CIRCULATION. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Srokosz, M A; Bryden, H L</p> <p>2015-06-19</p> <p>The importance of the Atlantic Meridional Overturning Circulation (AMOC) heat transport for climate is well acknowledged. Climate models predict that the AMOC will slow down under global warming, with substantial impacts, but measurements of ocean circulation have been inadequate to evaluate these predictions. Observations over the past decade have changed that situation, providing a detailed picture of variations in the AMOC. These observations reveal a surprising degree of AMOC variability in terms of the intraannual range, the amplitude and phase of the seasonal cycle, the interannual changes in strength affecting the ocean heat content, and the decline of the AMOC over the decade, both of the latter two exceeding the variations seen in climate models. Copyright © 2015, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29662073','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29662073"><span>Global warming hiatus contributed to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Jiuwei; Zhan, Ruifen; Wang, Yuqing</p> <p>2018-04-16</p> <p>The recent global warming hiatus (GWH) was characterized by a La Niña-like cooling in the tropical Eastern Pacific accompanied with the Indian Ocean and the tropical Atlantic Ocean warming. Here we show that the recent GWH contributed significantly to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia since 1998. The GWH associated sea surface temperature anomalies triggered a pair of anomalous cyclonic and anticyclonic circulations and equatorial easterly anomalies over the Northwest Pacific, which favored TC genesis and intensification over the western Northwest Pacific but suppressed TC genesis and intensification over the southeastern Northwest Pacific due to increased vertical wind shear and anticyclonic circulation anomalies. Results from atmospheric general circulation model experiments demonstrate that the Pacific La Niña-like cooling dominated the Indian Ocean and the tropical Atlantic Ocean warming in contributing to the observed GWH-related anomalous atmospheric circulation over the Northwest Pacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.6106G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.6106G"><span>Ocean Hydrodynamics Numerical Model in Curvilinear Coordinates for Simulating Circulation of the Global Ocean and its Separate Basins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gusev, Anatoly; Diansky, Nikolay; Zalesny, Vladimir</p> <p>2010-05-01</p> <p>The original program complex is proposed for the ocean circulation sigma-model, developed in the Institute of Numerical Mathematics (INM), Russian Academy of Sciences (RAS). The complex can be used in various curvilinear orthogonal coordinate systems. In addition to ocean circulation model, the complex contains a sea ice dynamics and thermodynamics model, as well as the original system of the atmospheric forcing implementation on the basis of both prescribed meteodata and atmospheric model results. This complex can be used as the oceanic block of Earth climate model as well as for solving the scientific and practical problems concerning the World ocean and its separate oceans and seas. The developed program complex can be effectively used on parallel shared memory computational systems and on contemporary personal computers. On the base of the complex proposed the ocean general circulation model (OGCM) was developed. The model is realized in the curvilinear orthogonal coordinate system obtained by the conformal transformation of the standard geographical grid that allowed us to locate the system singularities outside the integration domain. The horizontal resolution of the OGCM is 1 degree on longitude, 0.5 degree on latitude, and it has 40 non-uniform sigma-levels in depth. The model was integrated for 100 years starting from the Levitus January climatology using the realistic atmospheric annual cycle calculated on the base of CORE datasets. The experimental results showed us that the model adequately reproduces the basic characteristics of large-scale World Ocean dynamics, that is in good agreement with both observational data and results of the best climatic OGCMs. This OGCM is used as the oceanic component of the new version of climatic system model (CSM) developed in INM RAS. The latter is now ready for carrying out the new numerical experiments on climate and its change modelling according to IPCC (Intergovernmental Panel on Climate Change) scenarios in the scope of the CMIP-5 (Coupled Model Intercomparison Project). On the base of the complex proposed the Pacific Ocean circulation eddy-resolving model was realized. The integration domain covers the Pacific from Equator to Bering Strait. The model horizontal resolution is 0.125 degree and it has 20 non-uniform sigma-levels in depth. The model adequately reproduces circulation large-scale structure and its variability: Kuroshio meandering, ocean synoptic eddies, frontal zones, etc. Kuroshio high variability is shown. The distribution of contaminant was simulated that is admittedly wasted near Petropavlovsk-Kamchatsky. The results demonstrate contaminant distribution structure and provide us understanding of hydrological fields formation processes in the North-West Pacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15.1367O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15.1367O"><span>The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ödalen, Malin; Nycander, Jonas; Oliver, Kevin I. C.; Brodeau, Laurent; Ridgwell, Andy</p> <p>2018-03-01</p> <p>During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90-100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air-sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment in which we investigate the capacity for increased carbon storage by artificially maximising the efficiency of the biological pump in our ensemble members. We conclude that different initial states for an ocean model result in different capacities for ocean carbon storage due to differences in the ocean circulation state and the origin of the carbon in the initial ocean carbon reservoir. This could explain why it is difficult to achieve comparable responses of the ocean carbon pumps in model inter-comparison studies in which the initial states vary between models. We show that this effect of the initial state is quantifiable. The drawdown experiment highlights the importance of the strength of the biological pump in the control state for model studies of increased biological efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMNG23A1545M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMNG23A1545M"><span>A Preliminary Study on the Circulation of an ocean covering a Synchronously Rotating Planet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matsuo, H.; Ishiwatari, M.; Takehiro, S.; Hayashi, Y.; Nakajima, K.</p> <p>2012-12-01</p> <p>Recently, nearly 800 extrasolar planets have been detected. It seems that some of them present into habitable zone, in which planets can have ocean, and such planets rotate synchronously with their central stars. Ocean is necessary for life, and the circulation makes climate mild by heat transport on the earth. The earth is the only planet that has ocean in the solar system so that it has not been understood what oceanic circulation is like in another planets. The purpose of this study is prediction of oceanic circulation on extrasolar planets by using numerical simulation. As a first step, elementary consideration is made. The planet is almost entirely covered with ocean and whose rotation period corresponds with its orbital period. On synchronously rotating planets, the thermal contrast between day-hemisphere and night-hemisphere would be extreme. However, it may be lessend if there is significant zonal heat transport. The circulation in such conditions has not been known well. We performed a numerical experiment based on the linear shallow water equation, assuming that both the evaporation and the precipitation occur only on day-hemisphere (Noda et al., 2011). With these distributions of the evaporation and the precipitation, one may anticipate the circulation occurs in only day-hemisphere. However, the resulting calculation is characterized with zonally uniform zonal flow, which also covers night hemisphere. In addition, the intensity of the flow increases with time. That behavior can be understood by constructing asymptotic solution which is first degree in time. The importance of Coriolis force, which bends meridional flow to zonal flow, is identified. It is implied that, even when only day-hemisphere has the evaporation and precipitation, there may be significant amount of heat can be transported from the day-hemisphere to the night-hemisphere by the strong zonal flow. The growth of zonal flow would be stopped when the evaporation and the precipitation are balanced with mass transport in the bottom Ekman layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A43D3301S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A43D3301S"><span>Using a Very Large Ensemble to Examine the Role of the Ocean in Recent Warming Trends.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sparrow, S. N.; Millar, R.; Otto, A.; Yamazaki, K.; Allen, M. R.</p> <p>2014-12-01</p> <p>Results from a very large (~10,000 member) perturbed physics and perturbed initial condition ensemble are presented for the period 1980 to present. A set of model versions that can shadow recent surface and upper ocean observations are identified and the range of uncertainty in the Atlantic Meridional Overturning Circulation (AMOC) assessed. This experiment uses the Met Office Hadley Centre Coupled Model version 3 (HadCM3), a coupled model with fully dynamic atmosphere and ocean components as part of the climateprediction.net distributive computing project. Parameters are selected so that the model has good top of atmosphere radiative balance and simulations are run without flux adjustments that "nudge" the climate towards a realistic state, but have an adverse effect on important ocean processes. This ensemble provides scientific insights on the possible role of the AMOC, among other factors, in climate trends, or lack thereof, over the past 20 years. This ensemble is also used to explore how the occurrence of hiatus events of different durations varies for models with different transient climate response (TCR). We show that models with a higher TCR are less likely to produce a 15-year warming hiatus in global surface temperature than those with a lower TCR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1021963-prototype-two-decade-fully-coupled-fine-resolution-ccsm-simulation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1021963-prototype-two-decade-fully-coupled-fine-resolution-ccsm-simulation"><span>A Prototype Two-Decade Fully-Coupled Fine-Resolution CCSM Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McClean, Julie L.; Bader, David C; Bryan, Frank O.</p> <p>2011-01-01</p> <p>A fully coupled global simulation using the Community Climate System Model (CCSM) was configured using grid resolutions of 0.1{sup o} for the ocean and sea-ice, and 0.25{sup o} for the atmosphere and land, and was run under present-day greenhouse gas conditions for 20 years. It represents one of the first efforts to simulate the planetary system at such high horizontal resolution. The climatology of the circulation of the atmosphere and the upper ocean were compared with observational data and reanalysis products to identify persistent mean climate biases. Intensified and contracted polar vortices, and too cold sea surface temperatures (SSTs) inmore » the subpolar and mid-latitude Northern Hemisphere were the dominant biases produced by the model. Intense category 4 cyclones formed spontaneously in the tropical North Pacific. A case study of the ocean response to one such event shows the realistic formation of a cold SST wake, mixed layer deepening, and warming below the mixed layer. Too many tropical cyclones formed in the North Pacific however, due to too high SSTs in the tropical eastern Pacific. In the North Atlantic anomalously low SSTs lead to a dearth of hurricanes. Agulhas eddy pathways are more realistic than in equivalent stand-alone ocean simulations forced with atmospheric reanalysis.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO51C..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO51C..01C"><span>Impact of uncertainty in surface forcing on the new SODA 3 global reanalysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carton, J.; Chepurin, G. A.; Chen, L.</p> <p>2016-02-01</p> <p>An updated version of the Simple Ocean Data Assimilation reanalysis (SODA 3)has been constructed based on GFDL MOM ocean and sea ice numerics, with improved resolution and other changes. A series of three 30+ year long global ocean reanalysis experiments (1980-2014) have carried out which differ only in the choice of specified daily surface heat, momentum, and freshwater forcing: MERRA2, ERA-Int, and ERA-20. The first two forcing data sets make extensive use of satellite observations while the third only uses surface observations. The differences in the resulting SODA reanalysis experiments allow us to explore a major source of error in ocean reanalyses, which is the uncertainty introduced by errors in the surface forcing. The modest differences among the experiments tend to be concentrated at higher latitude where the MERRA2-SODA has a somewhat cooler (1C), saltier (1psu) surface leading to lower (10cm) sea level. Cooler conditions affect the upper 300m heat content at high latitude (although MERRA2-SODA HC300 is higher in the subtropics). RMS differences are small except for surface salinity at high latitude (1psu). The implications for such issues thermosteric sea level, the overturning circulation, and the rise of global heat storage will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...46.2305P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...46.2305P"><span>Seasonal prediction of Indian summer monsoon rainfall in NCEP CFSv2: forecast and predictability error</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pokhrel, Samir; Saha, Subodh Kumar; Dhakate, Ashish; Rahman, Hasibur; Chaudhari, Hemantkumar S.; Salunke, Kiran; Hazra, Anupam; Sujith, K.; Sikka, D. R.</p> <p>2016-04-01</p> <p>A detailed analysis of sensitivity to the initial condition for the simulation of the Indian summer monsoon using retrospective forecast by the latest version of the Climate Forecast System version-2 (CFSv2) is carried out. This study primarily focuses on the tropical region of Indian and Pacific Ocean basin, with special emphasis on the Indian land region. The simulated seasonal mean and the inter-annual standard deviations of rainfall, upper and lower level atmospheric circulations and Sea Surface Temperature (SST) tend to be more skillful as the lead forecast time decreases (5 month lead to 0 month lead time i.e. L5-L0). In general spatial correlation (bias) increases (decreases) as forecast lead time decreases. This is further substantiated by their averaged value over the selected study regions over the Indian and Pacific Ocean basins. The tendency of increase (decrease) of model bias with increasing (decreasing) forecast lead time also indicates the dynamical drift of the model. Large scale lower level circulation (850 hPa) shows enhancement of anomalous westerlies (easterlies) over the tropical region of the Indian Ocean (Western Pacific Ocean), which indicates the enhancement of model error with the decrease in lead time. At the upper level circulation (200 hPa) biases in both tropical easterly jet and subtropical westerlies jet tend to decrease as the lead time decreases. Despite enhancement of the prediction skill, mean SST bias seems to be insensitive to the initialization. All these biases are significant and together they make CFSv2 vulnerable to seasonal uncertainties in all the lead times. Overall the zeroth lead (L0) seems to have the best skill, however, in case of Indian summer monsoon rainfall (ISMR), the 3 month lead forecast time (L3) has the maximum ISMR prediction skill. This is valid using different independent datasets, wherein these maximum skill scores are 0.64, 0.42 and 0.57 with respect to the Global Precipitation Climatology Project, CPC Merged Analysis of Precipitation and the India Meteorological Department precipitation dataset respectively for L3. Despite significant El-Niño Southern Oscillation (ENSO) spring predictability barrier at L3, the ISMR skill score is highest at L3. Further, large scale zonal wind shear (Webster-Yang index) and SST over Niño3.4 region is best at L1 and L0. This implies that predictability aspect of ISMR is controlled by factors other than ENSO and Indian Ocean Dipole. Also, the model error (forecast error) outruns the error acquired by the inadequacies in the initial conditions (predictability error). Thus model deficiency is having more serious consequences as compared to the initial condition error for the seasonal forecast. All the model parameters show the increase in the predictability error as the lead decreases over the equatorial eastern Pacific basin and peaks at L2, then it further decreases. The dynamical consistency of both the forecast and the predictability error among all the variables indicates that these biases are purely systematic in nature and improvement of the physical processes in the CFSv2 may enhance the overall predictability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C11D..04L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C11D..04L"><span>The relationship between Arctic sea ice and the Atlantic meridional overturning circulation in a warming climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, W.; Fedorov, A. V.</p> <p>2017-12-01</p> <p>A recent study (Sevellec, Fedorov, Liu 2017, Nature Climate Change) has suggested that Arctic sea ice decline can lead to a slow-down of the Atlantic meridional overturning circulation (AMOC). Here, we build on this previous work and explore the relationship between Arctic sea ice and the AMOC in climate models. We find that the current Arctic sea ice decline can contribute about 40% to the AMOC weakening over the next 60 years. This effect is related to the warming and freshening of the upper ocean in the Arctic, and the subsequent spread of generated buoyancy anomalies downstream where they affect the North Atlantic deep convection sites and hence the AMOC on multi-decadal timescales. The weakening of the AMOC and its poleward heat transport, in turn, sustains the "Warming Hole" - a region in the North Atlantic with anomalously weak (or even negative) warming trends. We discuss the key factors that control this robust AMOC response to changes in Arctic sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4410125G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4410125G"><span>Evidence of Tropospheric 90 Day Oscillations in the Thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gasperini, F.; Hagan, M. E.; Zhao, Y.</p> <p>2017-10-01</p> <p>In the last decade evidence demonstrated that terrestrial weather greatly impacts the dynamics and mean state of the thermosphere via small-scale gravity waves and global-scale solar tidal propagation and dissipation effects. While observations have shown significant intraseasonal variability in the upper mesospheric mean winds, relatively little is known about this variability at satellite altitudes (˜250-400 km). Using cross-track wind measurements from the Challenging Minisatellite Payload and Gravity field and steady-state Ocean Circulation Explorer satellites, winds from a Modern-Era Retrospective Analysis for Research and Applications/Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model simulation, and outgoing longwave radiation data, we demonstrate the existence of a prominent and global-scale 90 day oscillation in the thermospheric zonal mean winds and in the diurnal eastward propagating tide with zonal wave number 3 (DE3) during 2009-2010 and present evidence of its connection to variability in tropospheric convective activity. This study suggests that strong coupling between the troposphere and the thermosphere occurs on intraseasonal timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA53B4128H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA53B4128H"><span>Comparisons Between TIME-GCM/MERRA Simulations and LEO Satellite Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hagan, M. E.; Haeusler, K.; Forbes, J. M.; Zhang, X.; Doornbos, E.; Bruinsma, S.; Lu, G.</p> <p>2014-12-01</p> <p>We report on yearlong National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) simulations where we utilize the recently developed lower boundary condition based on 3-hourly MERRA (Modern-Era Retrospective Analysis for Research and Application) reanalysis data to account for tropospheric waves and tides propagating upward into the model domain. The solar and geomagnetic forcing is based on prevailing geophysical conditions. The simulations show a strong day-to-day variability in the upper thermospheric neutral temperature tidal fields, which is smoothed out quickly when averaging is applied over several days, e.g. up to 50% DE3 amplitude reduction for a 10-day average. This is an important result with respect to tidal diagnostics from satellite observations where averaging over multiple days is inevitable. In order to assess TIME-GCM performance we compare the simulations with measurements from the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AdAtS..32.1669L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AdAtS..32.1669L"><span>Predictability of the summer East Asian upper-tropospheric westerly jet in ENSEMBLES multi-model forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Chaofan; Lin, Zhongda</p> <p>2015-12-01</p> <p>The interannual variation of the East Asian upper-tropospheric westerly jet (EAJ) significantly affects East Asian climate in summer. Identifying its performance in model prediction may provide us another viewpoint, from the perspective of upper-tropospheric circulation, to understand the predictability of summer climate anomalies in East Asia. This study presents a comprehensive assessment of year-to-year variability of the EAJ based on retrospective seasonal forecasts, initiated from 1 May, in the five state-of-the-art coupled models from ENSEMBLES during 1960-2005. It is found that the coupled models show certain capability in describing the interannual meridional displacement of the EAJ, which reflects the models' performance in the first leading empirical orthogonal function (EOF) mode. This capability is mainly shown over the region south of the EAJ axis. Additionally, the models generally capture well the main features of atmospheric circulation and SST anomalies related to the interannual meridional displacement of the EAJ. Further analysis suggests that the predicted warm SST anomalies in the concurrent summer over the tropical eastern Pacific and northern Indian Ocean are the two main sources of the potential prediction skill of the southward shift of the EAJ. In contrast, the models are powerless in describing the variation over the region north of the EAJ axis, associated with the meridional displacement, and interannual intensity change of the EAJ, the second leading EOF mode, meaning it still remains a challenge to better predict the EAJ and, subsequently, summer climate in East Asia, using current coupled models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26163010','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26163010"><span>Effects of Southern Hemisphere Wind Changes on the Meridional Overturning Circulation in Ocean Models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gent, Peter R</p> <p>2016-01-01</p> <p>Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..192...27P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..192...27P"><span>Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pedro, Joel B.; Jochum, Markus; Buizert, Christo; He, Feng; Barker, Stephen; Rasmussen, Sune O.</p> <p>2018-07-01</p> <p>The thermal bipolar ocean seesaw hypothesis was advanced by Stocker and Johnsen (2003) as the 'simplest possible thermodynamic model' to explain the time relationship between Dansgaard-Oeschger (DO) and Antarctic Isotope Maxima (AIM) events. In this review we combine palaeoclimate observations, theory and general circulation model experiments to advance from the conceptual model toward a process understanding of interhemispheric coupling and the forcing of AIM events. We present four main results: (1) Changes in Atlantic heat transport invoked by the thermal seesaw are partially compensated by opposing changes in heat transport by the global atmosphere and Pacific Ocean. This compensation is an integral part of interhemispheric coupling, with a major influence on the global pattern of climate anomalies. (2) We support the role of a heat reservoir in interhemispheric coupling but argue that its location is the global interior ocean to the north of the Antarctic Circumpolar Current (ACC), not the commonly assumed Southern Ocean. (3) Energy budget analysis indicates that the process driving Antarctic warming during AIM events is an increase in poleward atmospheric heat and moisture transport following sea ice retreat and surface warming over the Southern Ocean. (4) The Antarctic sea ice retreat is itself driven by eddy-heat fluxes across the ACC, amplified by sea-ice-albedo feedbacks. The lag of Antarctic warming after AMOC collapse reflects the time required for heat to accumulate in the ocean interior north of the ACC (predominantly the upper 1500 m), before it can be mixed across this dynamic barrier by eddies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ESRv...96..279P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ESRv...96..279P"><span>Global Miocene tectonics and the modern world</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Potter, Paul Edwin; Szatmari, Peter</p> <p>2009-11-01</p> <p>An amazing congruence of seemingly unrelated, diverse global events began in the Middle and Upper Miocene and established our modern world. Two global orogenic belts were active, mostly in the Middle and Upper Miocene, while backarc basins formed along the eastern margin of Asia. Coincident with these events global temperatures cooled in both the ocean and atmosphere, desertification occurred from Central Asia into and across most of northern Africa and also in Australia, and in southern South America. Coincident with the expansion of the Antarctic ice cap at 14 Ma, there was initial widespread deep sea erosion and changes in patterns of deep sea sedimentation. Muddy pelagic sedimentation increased six-fold in the North and Central Atlantic and Pacific Oceans and global changes in circulation lead to more diatomites in the Pacific and fewer in the Atlantic. By the end of the Miocene most of the Mediterranean Sea had evaporated. Broadly coincident with these events, many old, large river systems were destroyed and new ones formed as much of the world's landscape changed. Collectively, these global on-shore tectonic and ocean-atmospheric events provide the foundation for our modern world—a mixture of new and rejuvenated orogenic belts and their far-field effects (distant epiorogenic uplift, rain-shadow deserts, large alluvial aprons, and distant deltas) as inherited Gondwanan landscapes persisted remote from plate boundaries. Thus at the end of the Miocene much of the world's landscape, except for that changed by Pleistocene continental glaciation, would be recognizable to us today. We argue that all of these events had the same ultimate common cause-an internal Earth engine-that drove plate motions in two broad ways: first, the opening and closing of seven key gateways to deep-water oceanic currents radically altered global heat transfer and changed a lingering Greenhouse to an Icehouse world; secondly, these events were in part coincident with renewed heat flow in the African and Pacific Superplumes that energized global plate motions in the Middle and Upper Miocene. We hope this global synthesis will stimulate more research on the many global events of the Miocene—to understand better both our modern world and earlier global orogenies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.U35A..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.U35A..01C"><span>Atlantic Ocean Circulation and Climate: The Current View From the Geological Record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curry, W.</p> <p>2006-12-01</p> <p>Several recent advances in our understanding of past ocean circulation come from geological reconstructions using deep sea sediment proxies of water mass structure and flow. Put together, the observations suggest that the Atlantic Ocean during the last glacial period (21,000 years ago) was very different from today. Geochemical tracers document a shoaling of North Atlantic Deep Water and a much greater volume of deep waters with an Antarctic origin. Sedimentary pore water profiles have detected a reversal in the salinity gradient between northern and southern deep water sources. Uranium-series decay products in North Atlantic sediments indicate that the southward transport of North Atlantic Deep Water was as much as 30-40% reduced from today's transport. Ocean-margin density reconstructions are consistent with a one third reduction in transport through the Florida Straits. A reversed cross-basin density gradient in the South Atlantic calls for a different intermediate water circulation in the South Atlantic. The glacial Atlantic circulation appears to be best explained by a reduced influence of North Atlantic deep water sources and much greater influence of Antarctic deep water sources. More recent changes in Atlantic circulation have been much more modest. During the Little Ice Age (LIA - a much smaller cooling event about 200 to 600 years ago), transport of the Florida Current was reduced by about 10%, significant but a much smaller reduction than observed during the glacial period. There is little evidence for a change in the distribution or geochemistry of the water masses during the LIA. For both climate events (the glacial and the LIA) reduced Florida Current transport was accompanied by increased salinity of its surface waters, linking changes in ocean circulation to large scale changes in surface water hydrology. A feedback between the circulation of the Atlantic Ocean and the climate of the tropics has been proposed before and also seen in some coupled climate models: variations in the temperature gradients in the Atlantic basin affect the position of the Intertropical Convergence Zone and alter evaporation and precipitation patterns in the tropics. The salinity anomalies caused by these atmospheric shifts eventually are transported back to high latitudes by ocean circulation (Vellinga and Wu, 2004). Several recent geological reconstructions appear to observe such a coupling on centennial and millennial time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OSJ....53....1C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OSJ....53....1C"><span>Interannual Variation of Surface Circulation in the Japan/East Sea due to External Forcings and Intrinsic Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman</p> <p>2018-03-01</p> <p>The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070023935&hterms=ocean+climate+changes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Docean%2Bclimate%2Bchanges','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070023935&hterms=ocean+climate+changes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Docean%2Bclimate%2Bchanges"><span>NASA Supercomputer Improves Prospects for Ocean Climate Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Menemenlis, D.; Hill, C.; Adcroft, A.; Campin, J. -M.; Cheng, B.; Ciotti, B.; Fukumori, I.; Heimbach, P.; Henze, C.; Kohl, A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20070023935'); toggleEditAbsImage('author_20070023935_show'); toggleEditAbsImage('author_20070023935_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20070023935_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20070023935_hide"></p> <p>2005-01-01</p> <p>Estimates of ocean circulation constrained by in situ and remotely sensed observations have become routinely available during the past five years, and they are being applied to myriad scientific and operational problems [Stammer et al.,2002]. Under the Global Ocean Data Assimilation Experiment (GODAE), several regional and global estimates have evolved for applications in climate research, seasonal forecasting, naval operations, marine safety, fisheries,the offshore oil industry, coastal management, and other areas. This article reports on recent progress by one effort, the consortium for Estimating the Circulation and Climate of the Ocean (ECCO), toward a next-generation synthesis of ocean and sea-ice data that is global, that covers the full ocean depth, and that permits eddies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9632385','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9632385"><span>The influence of vegetation-atmosphere-ocean interaction on climate during the mid-holocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ganopolski; Kubatzki; Claussen; Brovkin; Petoukhov</p> <p>1998-06-19</p> <p>Simulations with a synchronously coupled atmosphere-ocean-vegetation model show that changes in vegetation cover during the mid-Holocene, some 6000 years ago, modify and amplify the climate system response to an enhanced seasonal cycle of solar insolation in the Northern Hemisphere both directly (primarily through the changes in surface albedo) and indirectly (through changes in oceanic temperature, sea-ice cover, and oceanic circulation). The model results indicate strong synergistic effects of changes in vegetation cover, ocean temperature, and sea ice at boreal latitudes, but in the subtropics, the atmosphere-vegetation feedback is most important. Moreover, a reduction of the thermohaline circulation in the Atlantic Ocean leads to a warming of the Southern Hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820008784','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820008784"><span>Effects of diabatic heating on the ageostrophic circulation of an upper tropospheric jet streak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Keyser, D. A.; Johnson, D. R.</p> <p>1982-01-01</p> <p>Interaction between the mass circulation within a mesoscale convective complex (MCC) and a direct mass circulation in the entrance region of an upper tropospheric polar jet streak was examined within the isentropic structure to investigate mechanisms responsible for linking these two scales of motion. The results establish that latent heating in the MCC modifies the direct mass circulation in the jet streak entrance region through the diabatically induced components of ageostrophic motion analyzed within isentropic coordinates. Within the strong mesoscale mass circulation of each MCC, strong horizontal mass flux convergence into the MCC at low levels is balanced by strong horizontal mass flux divergence away from the convergence at upper levels. Locations of large diabatic heating rates correspond well to the MCC position for each case; diabatic heating forces the upward vertical branch for the mesoscale mass circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5881L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5881L"><span>The impact of oceanic heat transport on the atmospheric circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lucarini, Valerio; Lunkeit, Frank</p> <p>2017-04-01</p> <p>A general circulation model of intermediate complexity with an idealized Earth-like aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is on the atmospheric mean meridional circulation and global thermodynamic properties. The atmosphere counterbalances to a large extent the imposed changes in the oceanic heat transport, but, nonetheless, significant modifications to the atmospheric general circulation are found. Increasing the strength of the oceanic heat transport up to 2.5 PW leads to an increase in the global mean near-surface temperature and to a decrease in its equator-to-pole gradient. For stronger transports, the gradient is reduced further, but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. Additionally, a stronger oceanic heat transport leads to a decline in the intensity and a poleward shift of the maxima of both the Hadley and Ferrel cells. Changes in zonal mean diabatic heating and friction impact the properties of the Hadley cell, while the behavior of the Ferrel cell is mostly controlled by friction. The efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport. This suggests that the climate system becomes less efficient and turns into a state of reduced entropy production as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fluids with different temperatures, thus reducing the available energy in the climate system and bringing it closer to a state of thermal equilibrium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989PalOc...4...87W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989PalOc...4...87W"><span>Miocene deepwater oceanography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woodruff, Fay; Savin, Samuel M.</p> <p>1989-02-01</p> <p>A global synthesis of Miocene benthic foraminiferal carbon and oxygen isotopic and faunal abundance data indicates that Miocene thermohaline circulation evolved through three regimes corresponding approximately to early, middle, and late Miocene times. There is evidence for major qualitative differences between the circulation of the modern ocean and the Miocene ocean prior to 11 Ma. The 13C/12C ratios of the benthic foraminifera Cibicidoides are interpreted in terms of water mass aging, i.e., the progressive depletion of dissolved O2 and lowering of δ13C values as the result of oxidation of organic matter as water flows further from its sources at the surface of the oceans. Both isotopic and faunal data indicate that the early Miocene regime, from 22 to 15 Ma, was the most different from today's. During that interval intermediate and deep waters of both the Atlantic and the Pacific oceans aged in a northward direction, and the intermediate waters of the Indian, the South Atlantic and the South Pacific oceans were consistently the youngest in the global ocean. We speculate that early Miocene global thermohaline circulation may have been strongly influenced by the influx of warm saline water, Tethyan Indian Saline Water, from the Tethys into the northern Indian Ocean. The isotopic and faunal data suggest that flow from the Tethyan region into the Indian Ocean diminished or terminated at about 14 Ma. Isotopic and faunal data give no evidence for North Atlantic Deep Water (NADW) formation prior to about 14.5 Ma (with the exception of a brief episode in the early Miocene). From 14.5 to 11 Ma NADW formation was weak, and circumpolar and Antarctic water flooded the deep South Atlantic and South Pacific as the Antarctic ice cap grew. From about 10 Ma to the end of the Miocene, thermohaline circulation resembled the modern circulation in many ways. In latest Miocene time (6 to 5 Ma) circulation patterns were very similar to today's except that NADW formation was greatly diminished. The distribution pattern of siliceous oozes in Miocene sediments is consistent with our proposed reconstruction of thermohaline circulation. Major changes which occurred in circulation during the middle Miocene were probably related to the closing of the Tethys and may have contributed to rapid middle Miocene growth of the Antarctic ice cap. Appendices 1, 4, 6, and 7 are available withentire article on microfiche. Order fromAmerican Geophysical Union, 2000 FloridaAvenue, N.W., Washington, DC 20009.Document 88P-002; $5.00. Payment mustaccompany order.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1107722','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1107722"><span>"What Controls the Structure and Stability of the Ocean Meridional Overturning Circulation: Implications for Abrupt Climate Change?"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fedorov, Alexey</p> <p>2013-11-23</p> <p>The central goal of this research project is to understand the properties of the ocean meridional overturning circulation (MOC) – a topic critical for understanding climate variability and stability on a variety of timescales (from decadal to centennial and longer). Specifically, we have explored various factors that control the MOC stability and decadal variability in the Atlantic and the ocean thermal structure in general, including the possibility abrupt climate change. We have also continued efforts on improving the performance of coupled ocean-atmosphere GCMs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA526502','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA526502"><span>Near-Inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-06-01</p> <p>meridional transport of heat (Hoskins and Valdes, 1990). Formation of North Atlantic Subtropical Mode Water is thought to take place during the...North Atlantic Ocean MIT/WHOI Joint Program in Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole...Oceanographic Institution MITIWHOI 2010-16 Near-inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean by</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GeoRL..3824603D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GeoRL..3824603D"><span>Buffered versus non-buffered ocean carbon reservoir variations: Application to the sensitivity of atmospheric pCO2 to ocean circulation changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>d'Orgeville, M.; England, M. H.; Sijp, W. P.</p> <p>2011-12-01</p> <p>Changes in the ocean circulation on millenial timescales can impact the atmospheric CO2 concentration by two distinct mechanisms: either by modifying the non-buffered ocean carbon storage (through changes in the physical and biological oceanic pumps) or by directly varying the surface mean oceanic partial pressure of pCO2 (through changes in mean surface alkalinity, temperature or salinity). The equal importance of the two mechanisms is illustrated here by introducing a diagnostic buffered carbon budget on the results of simulations performed with an Earth System Climate Model. For all the circulation changes considered in this study (due to a freshening of the North Atlantic, or a change in the Southern Hemisphere Westerly winds), the sign of the atmospheric CO2 response is opposite to the sign of the non-buffered ocean carbon storage change, indicating a transfer of carbon between ocean and atmosphere reservoirs. However the concomitant changes in the buffered ocean carbon reservoir can either greatly enhance or almost inhibit the atmospheric response depending on its sign. This study also demonstrates the utility of the buffered carbon budget approach in diagnosing the transient response of the global carbon cycle to climatic variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613907P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613907P"><span>Impact of CO2 and continental configuration on Late Cretaceous ocean dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Puceat, Emmanuelle; Donnadieu, Yannick; Moiroud, Mathieu; Guillocheau, François; Deconinck, Jean-François</p> <p>2014-05-01</p> <p>The Late Cretaceous period is characterized by a long-term climatic cooling (Huber et al., 1995; Pucéat et al., 2003; Friedrich et al., 2012) and by major changes in continental configuration with the widening of the Atlantic Ocean, the initiation of the Tethyan ocean closure, and the deepening of the Central Atlantic Gateway. The Late Cretaceous also marks the end of the occurrence of Oceanic Anoxic Events (OAEs), that are associated to enhanced organic carbon burial, to major crises of calcifying organisms, and to possible ocean acidification (Jenkyns, 2010). It has been suggested that the evolution in continental configuration and climate occurring during the Late Cretaceous could have induced a reorganization in the oceanic circulation, that may have impacted the oxygenation state of the oceanic basins and contributed to the disappearance of OAEs (Robinson et al., 2010; Robinson and Vance, 2012). Yet there is no consensus existing on the oceanic circulation modes and on their possible evolution during the Late Cretaceous, despite recent improvement of the spatial and temporal coverage of neodymium isotopic data (ɛNd), a proxy of oceanic circulation (MacLeod et al., 2008; Robinson et al., 2010; Murphy and Thomas, 2012; Robinson and Vance, 2012; Martin et al., 2012; Moiroud et al., 2012). Using the fully coupled ocean-atmosphere General Circulation Model FOAM, we explore in this work the impact on oceanic circulation of changes in continental configuration between the mid- and latest Cretaceous. Two paleogeography published by Sewall et al. (2007) were used, for the Cenomanian/Turonian boundary and for the Maastrichtian. For each paleogeography, 3 simulations have been realized, at 2x, 4x, and 8x the pre-industrial atmospheric CO2 level, in order to test the sensitivity of the modelled circulation to CO2. Our results show for both continental configurations a bipolar mode for the oceanic circulation displayed by FOAM. Using the Cenomanian/Turonian land-sea mask, two major areas of deep-water production are simulated in the model, one located in the northern and northwestern Pacific area, and the other located in the southern Pacific. An additional area is present in the southern Atlantic Ocean, near the modern Weddell Sea area, but remains very limited. Using the Maastrichtian land-sea mask, the simulations show a major change in the ocean dynamic with the disappearance of the southern Pacific convection cell. The northern Pacific area of deep-water production is reduced to the northwestern Pacific region only. By contrast, the simulations show a marked development of the southern Atlantic deep-water production, that intensifies and extends eastward along the Antarctic coast. These southern Atlantic deep-waters are conveyed northward into the North Atlantic and eastward to the Indian Ocean. Importantly, changes in atmospheric CO2 level do not impact the oceanic circulation simulated by FOAM, at least in the range of tested values. The circulation simulated by FOAM is coherent with existing ɛNd data for the two studied periods and support an intensification of southern Atlantic deep-water production along with a reversal of the deep-water fluxes through the Carribean Seaway as the main causes of the decrease in ɛNd values recorded in the Atlantic and Indian deep-waters during the Late Cretaceous. The simulations reveal a change from a sluggish circulation in the south Atlantic simulated with the Cenomanian/Turonian paleogeography to a much more active circulation in this basin using the Maastrichtian paleogeography, that may have favoured the disappearance of OAEs after the Late Cretaceous. Friedrich, O., Norris, R.D., Erbacher, J., 2012. Evolution of middle to Late Cretaceous oceans - A 55 m.y. record of Earth's temperature and carbon cycle. Geology 40 (2), 107-110. Huber, B.T., Hodell, D.A., Hamilton, C.P., 1995. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol. Soc. of Am. Bull. 107, 1164-1191. Jenkyns, H.C., 2010. Geochemistry of oceanic anoxic events. Geochemistry Geophysics Geosystems 11, doi:10.1029/2009GC002788. MacLeod, K.G., Martin, E.E., Blair, S.W., 2008. Nd isotopic excursion across Cretaceous Ocean Anoxic Event 2 (Cenomanian-Turonian) in the tropical North Atlantic. Geology 36 (10), 811-814. Martin, E.E., MacLeod, K.G., Jiménez Berrocoso, Á., Bourbon, E., 2012. Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes. Earth Planet. Sci. Lett. 327-328, 111-120. Moiroud, M., Pucéat, E., Donnadieu, Y., Bayon, G., Moriya, K., Deconinck, J.F., and Boyet, M., 2012. Evolution of the neodymium isotopic signature of neritic seawater on a northwestern Pacific margin: new constrains on possible end-members for the composition of deep-water masses in the Late Cretaceous ocean. Chemical Geology 356, p. 160-170. Murphy, D.P., Thomas, D.J., 2012. Cretaceous deep-water formation in the Indian sector of the Southern Ocean. Paleoceanography 27, doi:10.1029/2011PA002198. Pucéat, E., Lécuyer, C., Sheppard, S.M.F., Dromart, G., Reboulet, S., Grandjean, P., 2003. Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18 (2), doi:10.1029/2002PA000823. Robinson, A., Murphy, D.P., Vance, D., Thomas, D.J., 2010. Formation of 'Southern Component Water' in the Late Cretaceous: evidence from Nd-isotopes. Geological Society of America 38 (10), 871-874 Robinson, S.A., Vance, D., 2012. Widespread and synchronous change in deep-ocean circulation in the North and South Atlantic during the Late Cretaceous. Paleoceanography 27, PA1102, doi:10.1029/2011PA002240. Sewall, J.O., van de Wal, R.S.W., can der Zwan, K., van Oosterhout, C., Dijkstra, H.A., and Scotese, C.R., 2007. Climate model boundary conditions for four Cretaceous time slices. Clim. Past 3, p. 647-657.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010E%26PSL.295..554L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010E%26PSL.295..554L"><span>Heat-flow and hydrothermal circulation at the ocean-continent transition of the eastern gulf of Aden</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lucazeau, Francis; Leroy, Sylvie; Rolandone, Frédérique; d'Acremont, Elia; Watremez, Louise; Bonneville, Alain; Goutorbe, Bruno; Düsünur, Doga</p> <p>2010-07-01</p> <p>In order to investigate the importance of fluid circulation associated with the formation of ocean-continent transitions (OCT), we examine 162 new heat-flow (HF) measurements in the eastern Gulf of Aden, obtained at close locations along eight seismic profiles and with multi-beam bathymetry. The average HF values in the OCT and in the oceanic domain (~ 18 m.y.) are very close to the predictions of cooling models, showing that the overall importance of fluids remains small at the present time compared to oceanic ridge flanks of the same age. However, local HF anomalies are observed, although not systematically, in the vicinity of the unsedimented basement and are interpreted by the thermal effect of meteoric fluids flowing laterally. We propose a possible interpretation of hydrothermal paths based on the shape of HF anomalies and on the surface morphology: fluids can circulate either along-dip or along-strike, but are apparently focussed in narrow "pipes". In several locations in the OCT, there is no detectable HF anomaly while the seismic velocity structure suggests serpentinization and therefore past circulation. We relate the existence of the present day fluid circulation in the eastern Gulf of Aden to the presence of unsedimented basement and to the local extensional stress in the vicinity of the Socotra-Hadbeen fault zone. At the scale of rifted-margins, fluid circulation is probably not as important as in the oceanic domain because it can be inhibited rapidly with high sedimentation rates, serpentinization and stress release after the break-up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011CliPa...7.1103A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011CliPa...7.1103A"><span>Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum - a model study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.</p> <p>2011-10-01</p> <p>Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011CliPa...7.1149A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011CliPa...7.1149A"><span>Corrigendum to "Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum - a model study" published in Clim. Past, 7, 1103-1122, 2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.</p> <p>2011-11-01</p> <p>Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCo...712571W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCo...712571W"><span>El Niño and coral larval dispersal across the eastern Pacific marine barrier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, S.; Baums, I. B.; Paris, C. B.; Ridgwell, A.; Kessler, W. S.; Hendy, E. J.</p> <p>2016-08-01</p> <p>More than 5,000 km separates the frequently disturbed coral reefs of the Eastern Tropical Pacific (ETP) from western sources of population replenishment. It has been hypothesized that El Niño events facilitate eastward dispersal across this East Pacific Barrier (EPB). Here we present a biophysical coral larval dispersal model driven by 14.5 years of high-resolution surface ocean current data including the extreme 1997-1998 El Niño. We find no eastward cross-EPB connections over this period, which implies that ETP coral populations decimated by the 1998 bleaching event can only have recovered from eastern Pacific sources, in congruence with genetic data. Instead, rare connections between eastern and central Pacific reefs are simulated in a westward direction. Significant complexity and variability in the surface flows transporting larvae mean that generalized upper-ocean circulation patterns are poor descriptors of inter-regional connectivity, complicating the assessment of how climate change will impact coral gene flow Pacific wide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4996977','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4996977"><span>El Niño and coral larval dispersal across the eastern Pacific marine barrier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wood, S.; Baums, I. B.; Paris, C. B.; Ridgwell, A.; Kessler, W. S.; Hendy, E. J.</p> <p>2016-01-01</p> <p>More than 5,000 km separates the frequently disturbed coral reefs of the Eastern Tropical Pacific (ETP) from western sources of population replenishment. It has been hypothesized that El Niño events facilitate eastward dispersal across this East Pacific Barrier (EPB). Here we present a biophysical coral larval dispersal model driven by 14.5 years of high-resolution surface ocean current data including the extreme 1997–1998 El Niño. We find no eastward cross-EPB connections over this period, which implies that ETP coral populations decimated by the 1998 bleaching event can only have recovered from eastern Pacific sources, in congruence with genetic data. Instead, rare connections between eastern and central Pacific reefs are simulated in a westward direction. Significant complexity and variability in the surface flows transporting larvae mean that generalized upper-ocean circulation patterns are poor descriptors of inter-regional connectivity, complicating the assessment of how climate change will impact coral gene flow Pacific wide. PMID:27550393</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..194..205B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..194..205B"><span>Circulation and fjord-shelf exchange during the ice-covered period in Young Sound-Tyrolerfjord, Northeast Greenland (74°N)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boone, W.; Rysgaard, S.; Kirillov, S.; Dmitrenko, I.; Bendtsen, J.; Mortensen, J.; Meire, L.; Petrusevich, V.; Barber, D. G.</p> <p>2017-07-01</p> <p>Fjords around Greenland connect the Greenland Ice Sheet to the ocean and their hydrography and circulation are determined by the interplay between atmospheric forcing, runoff, topography, fjord-shelf exchange, tides, waves, and seasonal growth and melt of sea ice. Limited knowledge exists on circulation in high-Arctic fjords, particularly those not impacted by tidewater glaciers, and especially during winter, when they are covered with sea-ice and freshwater input is low. Here, we present and analyze seasonal observations of circulation, hydrography and cross-sill exchange of the Young Sound-Tyrolerfjord system (74°N) in Northeast Greenland. Distinct seasonal circulation phases are identified and related to polynya activity, meltwater and inflow of coastal water masses. Renewal of basin water in the fjord is a relatively slow process that modifies the fjord water masses on a seasonal timescale. By the end of winter, there is two-layer circulation, with outflow in the upper 45 m and inflow extending down to approximately 150 m. Tidal analysis showed that tidal currents above the sill were almost barotropic and dominated by the M2 tidal constituent (0.26 m s-1), and that residual currents (∼0.02 m s-1) were relatively small during the ice-covered period. Tidal pumping, a tidally driven fjord-shelf exchange mechanism, drives a salt flux that is estimated to range between 145 kg s-1 and 603 kg s-1. Extrapolation of these values over the ice-covered period indicates that tidal pumping is likely a major source of dense water and driver of fjord circulation during the ice-covered period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.7131D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.7131D"><span>Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Domingues, Ricardo; Goni, Gustavo; Bringas, Francis; Lee, Sang-Ki; Kim, Hyun-Sook; Halliwell, George; Dong, Jili; Morell, Julio; Pomales, Luis</p> <p>2015-09-01</p> <p>During October 2014, Hurricane Gonzalo traveled within 85 km from the location of an underwater glider situated north of Puerto Rico. Observations collected before, during, and after the passage of this hurricane were analyzed to improve our understanding of the upper ocean response to hurricane winds. The main finding in this study is that salinity potentially played an important role on changes observed in the upper ocean; a near-surface barrier layer likely suppressed the hurricane-induced upper ocean cooling, leading to smaller than expected temperature changes. Poststorm observations also revealed a partial recovery of the ocean to prestorm conditions 11 days after the hurricane. Comparison with a coupled ocean-atmosphere hurricane model indicates that model-observations discrepancies are largely linked to salinity effects described. Results presented in this study emphasize the value of underwater glider observations for improving our knowledge of how the ocean responds to tropical cyclone winds and for tropical cyclone intensification studies and forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5133693','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5133693"><span>Global warming-induced upper-ocean freshening and the intensification of super typhoons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby; Emanuel, Kerry A.</p> <p>2016-01-01</p> <p>Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall in places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961–2008 is ∼53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes. PMID:27886199</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1339813','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1339813"><span>Global warming-induced upper-ocean freshening and the intensification of super typhoons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby</p> <p></p> <p>Here, super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall inmore » places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961–2008 is ~53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27886199','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27886199"><span>Global warming-induced upper-ocean freshening and the intensification of super typhoons.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Balaguru, Karthik; Foltz, Gregory R; Leung, L Ruby; Emanuel, Kerry A</p> <p>2016-11-25</p> <p>Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall in places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961-2008 is ∼53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1339813-global-warming-induced-upper-ocean-freshening-intensification-super-typhoons','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1339813-global-warming-induced-upper-ocean-freshening-intensification-super-typhoons"><span>Global warming-induced upper-ocean freshening and the intensification of super typhoons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby; ...</p> <p>2016-11-25</p> <p>Here, super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall inmore » places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961–2008 is ~53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeCoA.193..132P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeCoA.193..132P"><span>Sulphide mineral evolution and metal mobility during alteration of the oceanic crust: Insights from ODP Hole 1256D</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patten, C. G. C.; Pitcairn, I. K.; Teagle, D. A. H.; Harris, M.</p> <p>2016-11-01</p> <p>Fluxes of metals during the hydrothermal alteration of the oceanic crust have far reaching effects including buffering of the compositions of the ocean and lithosphere, supporting microbial life and the formation of sulphide ore deposits. The mechanisms responsible for metal mobilisation during the evolution of the oceanic crust are complex and are neither fully constrained nor quantified. Investigations into the mineral reactions that release metals, such as sulphide leaching, would generate better understanding of the controls on metal mobility in the oceanic crust. We investigate the sulphide and oxide mineral paragenesis and the extent to which these minerals control the metal budget in samples from Ocean Drilling Program (ODP) Hole 1256D. The ODP Hole 1256D drill core provides a unique sample suite representative of a complete section of a fast-spreading oceanic crust from the volcanic section down to the plutonic complex. The sulphide population at Hole 1256D is divided into five groups based on mineralogical assemblage, lithological location and texture: the magmatic, metasomatised, high temperature hydrothermal, low temperature and patchy sulphides. The initiation of hydrothermal alteration by downward flow of moderate temperature (250-350 °C) hydrothermal fluids under oxidising conditions leads to metasomatism of the magmatic sulphides in the sheeted dyke and plutonic complexes. Subsequent increase in the degree of hydrothermal alteration at temperatures >350 °C under reducing conditions then leads to the leaching of the metasomatised sulphides by rising hydrothermal fluids. Mass balance calculations show that the mobility of Cu, Se and Au occurs through sulphide leaching during high temperature hydrothermal alteration and that the mobility of Zn, As, Sb and Pb is controlled by silicate rather than sulphide alteration. Sulphide leaching is not complete at Hole 1256D and more advanced alteration would mobilise greater masses of metals. Alteration of oxide minerals does not release significant quantities of metal into the hydrothermal fluid at Hole 1256D. Mixing of rising high temperature fluids with low temperature fluids, either in the upper sheeted dyke section or in the transitional zone, triggers local high temperature hydrothermal sulphide precipitation and trapping of Co, Ni, Cu, Zn, As, Ag, Sb, Se, Te, Au, Hg and Pb. In the volcanic section, low temperature fluid circulation (<150 °C) leads to low temperature sulphide precipitation in the form of pyrite fronts that have high As concentrations due to uptake from the circulating fluids. Deep late low temperature circulation in the sheeted dyke and the plutonic complexes results in local precipitation of patchy sulphides and local metal remobilisation. Control of sulphides over Au, Se and Cu throughout fast-spreading mid-oceanic crust history implies that the generation of hydrothermal fluids enriched in these metals, which can eventually form VMS deposits, is strongly controlled by sulphide leaching.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT.......215H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT.......215H"><span>Aspects of oceanic forcing of drought over Southwest Asia and the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoell, Andrew</p> <p></p> <p>An exceptionally severe drought affected much of the Northern Hemisphere mid-latitudes during 1998 -- 2002, with maxima over Southwest Asia and the United States. Previous research has suggested that the oceans played an important role in the hemispheric drought, with oceanic links to tropical Indo-west Pacific Ocean convection highlighted as important for Southwest Asia, and several additional ocean regions suggested as important for the United States. Here, the regional and hemispheric circulation response to tropical Indo-west Pacific Ocean convection is examined for both Southwest Asia and the United States, and the relative importance of individual sea surface temperature areas are explored for United States precipitation. For Southwest Asia, the regional thermodynamic forcing of precipitation and the Northern Hemisphere circulation are related to the leading pattern of Indian Ocean precipitation and its intraseasonal and interannual contributions. Both intraseasonal and interannual timescales are associated with baroclinic Gill-Matsuno-like circulation responses extending over southern Asia, but the interannual component also has a strong equivalent-barotropic circulation. A stationary barotropic Rossby wave extending over North America is associated with interannual tropical Indo-west Pacific Ocean convection and is supported by barotropic ray tracing. For United States regions, historical SST and precipitation links are identified for 1948 -- 1997, and the importance of these links are assessed during the 1998 -- 2002 drought using a linear regression model. The reconstructed precipitation has good correspondence for the Southwest and Southeast United States, but is not able to reproduce precipitation variability over the Northwest and Central United States, especially Texas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JGR...10320963H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JGR...10320963H"><span>Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large-scale processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hickey-Vargas, Rosemary</p> <p>1998-09-01</p> <p>Basalts erupted from spreading centers on the Philippine Sea plate between 50 Ma and the present have the distinctive isotopic characteristics of Indian Ocean mid-ocean ridge basalt (MORB), such as high 208Pb/204Pb and low 143Nd/144Nd for a given 206Pb/204Pb compared with Pacific and Atlantic Ocean MORB. This feature may indicate that the upper mantle of the Philippine Sea plate originated as part of the existing Indian Ocean upper mantle domain, or, alternatively, that local processes duplicated these isotopic characteristics within the sub-Philippine Sea plate upper mantle. Synthesis of new and published isotopic data for Philippine Sea plate basin basalts and island arc volcanic rocks, radiometric ages, and tectonic reconstructions of the plate indicates that local processes, such as contamination of the upper mantle by subducted materials or by western Pacific mantle plumes, did not produce the Indian Ocean-type signature in Philippine Sea plate MORB. It is more likely that the plate originated over a rapidly growing Indian Ocean upper mantle domain that had spread into the area between Australia/New Guinea and southeast Asia before 50 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....1711803P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....1711803P"><span>Impacts of large-scale atmospheric circulation changes in winter on black carbon transport and deposition to the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pozzoli, Luca; Dobricic, Srdan; Russo, Simone; Vignati, Elisabetta</p> <p>2017-10-01</p> <p>Winter warming and sea-ice retreat observed in the Arctic in the last decades may be related to changes of large-scale atmospheric circulation pattern, which may impact the transport of black carbon (BC) to the Arctic and its deposition on the sea ice, with possible feedbacks on the regional and global climate forcing. In this study we developed and applied a statistical algorithm, based on the maximum likelihood estimate approach, to determine how the changes of three large-scale weather patterns associated with increasing temperatures in winter and sea-ice retreat in the Arctic impact the transport of BC to the Arctic and its deposition. We found that two atmospheric patterns together determine a decreasing winter deposition trend of BC between 1980 and 2015 in the eastern Arctic while they increase BC deposition in the western Arctic. The increasing BC trend is mainly due to a pattern characterized by a high-pressure anomaly near Scandinavia favouring the transport in the lower troposphere of BC from Europe and North Atlantic directly into to the Arctic. Another pattern with a high-pressure anomaly over the Arctic and low-pressure anomaly over the North Atlantic Ocean has a smaller impact on BC deposition but determines an increasing BC atmospheric load over the entire Arctic Ocean with increasing BC concentrations in the upper troposphere. The results show that changes in atmospheric circulation due to polar atmospheric warming and reduced winter sea ice significantly impacted BC transport and deposition. The anthropogenic emission reductions applied in the last decades were, therefore, crucial to counterbalance the most likely trend of increasing BC pollution in the Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA510021','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA510021"><span>Slope/Shelf Circulation and Cross-Slope/Shelf Transport Out of a Bay Driven by Eddies from the Open Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-09-01</p> <p>channel. More recently, they examined the role of eddies in the overturning circulation of the Southern Ocean using the hemispheric HIM with realistic... meridional velocity with intervals of 0.1 · 10−3ms−1 159 PV equation to study the bay-scale circulations : d dt ( f + ζ H0 − f0h0 H 20 ) = F, (4.30) where...2009-18 DOCTORAL DISSERTATION by Yu Zhang September 2009 Slope/shelf Circulation and Cross-slope/shelf Transport Out of a Bay Driven by Eddies from</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5559419','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5559419"><span>High-latitude ocean ventilation and its role in Earth's climate transitions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>MacGilchrist, Graeme A. ; Brown, Peter J.; Evans, D. Gwyn; Meijers, Andrew J. S.; Zika, Jan D.</p> <p>2017-01-01</p> <p>The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered. This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’. PMID:28784714</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28784714','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28784714"><span>High-latitude ocean ventilation and its role in Earth's climate transitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Naveira Garabato, Alberto C; MacGilchrist, Graeme A; Brown, Peter J; Evans, D Gwyn; Meijers, Andrew J S; Zika, Jan D</p> <p>2017-09-13</p> <p>The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Authors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.6503C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.6503C"><span>Arctic sea-ice variability and its implication to the path of pollutants under a changing climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castro-Morales, K.; Gerdes, R.; Riemann-Campe, K.; Köberle, C.; Losch, M.</p> <p>2012-04-01</p> <p>The increasing concentration of pollutants from anthropogenic origin in the Arctic atmosphere, water, sediments and biota has been evident during the last decade. The sea-ice is an important vehicle for pollutants in the Arctic Ocean. Pollutants are taken up by precipitation and dry atmospheric deposition over the snow and ice cover during winter and released to the ocean during melting. Recent changes in the sea-ice cover of the Arctic Ocean affect the fresh water balance and the oceanic circulation, and with it, the fate of pollutants in the system. The Arctic Ocean is characterized by complex dynamics and strong stratification. Thus, to evaluate the current and future changes in the Arctic circulation high-resolution models are needed. As part of the EU FP7 project ArcRisk (under the scope of the IPY), we use a high resolution regional sea-ice-ocean coupled model covering the Arctic Ocean and the subpolar North Atlantic based on the Massachusetts Institute of Technology - circulation model (MITgcm). Under realistic atmospheric forcing we obtain hindcast results of circulation patterns for the period 1990 - 2010 for validation of the model. We evaluate possible consequences on the pathways and transport of contaminants by downscaling future climate scenario runs available in the coupled model intercomparison project (CMIP3) for the following fifty years. Particular interest is set in the Barents Sea. In this shallow region strong river runoff, sea-ice delivered from the interior of the Arctic Ocean and warm waters from the North Atlantic current are main sources of contaminants. Under a changing climate, a higher input of contaminants delivered to surface waters is expected, remaining in the interior of the Arctic Ocean in a strongly stratified water column remaining.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25157191','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25157191"><span>Sustaining observations of the unsteady ocean circulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Frajka-Williams, E</p> <p>2014-09-28</p> <p>Sustained observations of ocean properties reveal a global warming trend and rising sea levels. These changes have been documented by traditional ship-based measurements of ocean properties, whereas more recent Argo profiling floats and satellite records permit estimates of ocean changes on a near real-time basis. Through these and newer methods of observing the oceans, scientists are moving from quantifying the 'state of the ocean' to monitoring its variability, and distinguishing the physical processes bringing signals of change. In this paper, I give a brief overview of the UK contributions to the physical oceanographic observations, and the role they have played in the wider global observing systems. While temperature and salinity are the primary measurements of physical oceanography, new transbasin mooring arrays also resolve changes in ocean circulation on daily timescales. Emerging technologies permit routine observations at higher-than-ever spatial resolutions. Following this, I then give a personal perspective on the future of sustained observations. New measurement techniques promise exciting discoveries concerning the role of smaller scales and boundary processes in setting the large-scale ocean circulation and the ocean's role in climate. The challenges now facing the scientific community include sustaining critical observations in the case of funding system changes or shifts in government priorities. These long records will enable a determination of the role and response of the ocean to climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PrOce.161...19H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PrOce.161...19H"><span>A window on the deep ocean: The special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hughes, Chris W.; Williams, Joanne; Blaker, Adam; Coward, Andrew; Stepanov, Vladimir</p> <p>2018-02-01</p> <p>We show how, by focusing on bottom pressure measurements particularly on the global continental slope, it is possible to avoid the "fog" of mesoscale variability which dominates most observables in the deep ocean. This makes it possible to monitor those aspects of the ocean circulation which are most important for global scale ocean variability and climate. We therefore argue that such measurements should be considered an important future component of the Global Ocean Observing System, to complement the present open-ocean and coastal elements. Our conclusions are founded on both theoretical arguments, and diagnostics from a fine-resolution ocean model that has realistic amplitudes and spectra of mesoscale variability. These show that boundary pressure variations are coherent over along-slope distances of tens of thousands of kilometres, for several vertical modes. We illustrate the value of this in the model Atlantic, by determining the time for boundary and equatorial waves to complete a circuit of the northern basin (115 and 205 days for the first and second vertical modes), showing how the boundary features compare with basin-scale theoretical models, and demonstrating the ability to monitor the meridional overturning circulation using these boundary measurements. Finally, we discuss applicability to the real ocean and make recommendations on how to make such measurements without contamination from instrumental drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1014419','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1014419"><span>SST Control by Subsurface Mixing During Indian Ocean Monsoons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. SST Control by Subsurface Mixing during Indian Ocean ...quantify the variability in upper ocean mixing associated with changes in barrier layer thickness and strength across the BoB and under different...These objectives directly target the fundamental role that upper ocean dynamics play in the complex air-sea interactions of the northern Indian Ocean</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770003824','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770003824"><span>Adaptation of a general circulation model to ocean dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Turner, R. E.; Rees, T. H.; Woodbury, G. E.</p> <p>1976-01-01</p> <p>A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA526929','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA526929"><span>Simulated and Observed Circulation in the Indonesian Seas: 1/12 degree Global HYCOM and the INSTANT Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-01-01</p> <p>Circulation in the Indonesian Seas: 1/12 degree Global HYCOM and the INSTANT Observations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...SUPPLEMENTARY NOTES 14. ABSTRACT A l/l 2 global version of the HYbrid Coordinate Ocean Model (HYCOM) using 3-hourly atmospheric forcing is analyzed and...TERMS Indonesian Throughflow, global HYCOM, INSTANT, Inter-ocean exchange, ocean modeling 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1420141','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1420141"><span>Exploring the sensitivity of global ocean circulation to future ice loss from Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Condron, Alan</p> <p></p> <p>The sensitivity of the global ocean circulation and climate to large increases in iceberg calving and meltwater discharges from the Antarctic Ice Sheet (AIS) are rarely studied and poorly understood. The requirement to investigate this topic is heightened by growing evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse on multidecadal-to-centennial timescales. Observations collected over the last 30 years indicate that the WAIS is now losing mass at an accelerated and that a collapse may have already begun in the Amundsen Sea sector. In addition, some recent future model simulations of the AIS showmore » the potential for rapid ice sheet retreat in the next 50 – 300 years. Such a collapse would be associated with the discharge of enormous volumes of ice and meltwater to the Southern Ocean. This project funds PI Condron to begin assessing the sensitivity of the global ocean circulation to projected increases in meltwater discharge and iceberg calving from the AIS for the next 50 – 100 years. A series of climate model simulations will determine changes in ocean circulation and temperature at the ice sheet grounding line, the role of mesoscale ocean eddies in mixing and transporting freshwater away from the continent to deep water formation regions, and the likely impact on the northward transport of heat to Europe and North America.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919291V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919291V"><span>The Bay of Bengal : an ideal laboratory for studying salinity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vialard, jerome; Lengaigne, Matthieu; Akhil, Valiya; Chaitanya, Akurathi; Krishna-Mohan, Krishna; D'Ovidio, Francesco; Keerthi, Madhavan; Benshila, Rachid; Durand, Fabien; Papa, Fabrice; Suresh, Iyappan; Neetu, Singh</p> <p>2017-04-01</p> <p>The Bay of Bengal combines several unique features that make it an excellent laboratory to study the variability of salinity and its potential effects on the oceanic circulation and climate. This basin receives very large quantities of freshwater in association to the southwest monsoon, either directly from rain or indirectly through the runoffs of the Ganges-Brahmaputra and Irrawaddy. This large quantity of freshwater in a small, semi enclosed basin results in some of the lowest sea surface salinities (SSS) and strongest near-surface haline stratification in the tropical band. The strong monsoon winds also drive an energetic circulation, which exports the excess water received during the monsoon and results in strong horizontal salinity gradients. In this talk, I will summarize several studies of the Bay of Bengal salinity variability and its impacts undertaken in the context of an Indo-French collaboration. In situ data collected along the coast by fishermen and model results show that the intense, coastally-trapped East India Coastal Current (EICC) transports the very fresh water near the Ganges-Brahmaputra river mouth along the eastern Bay of Bengal rim to create a narrow, very fresh "river in the sea" after the southwest monsoon. The salinity-induced pressure gradient contributes to almost 50% of the EICC intensity and sustains mesoscale eddy generation through its effect on horizontal current shears and baroclinic gradients. Oceanic eddies play a strong role in exporting this fresh water from the coast to the basin interior. This "river in the sea" has a strong interannual variability related to the EICC remote modulation by the Indian Ocean Dipole (a regional climate mode). I will also discuss the potential effect of haline stratification on the regional climate through its influence on the upper ocean budget. Finally, I will briefly discuss the performance of remote-sensing for observing SSS in the Bay of Bengal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Chaos..27l6902K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Chaos..27l6902K"><span>Ocean eddies and climate predictability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirtman, Ben P.; Perlin, Natalie; Siqueira, Leo</p> <p>2017-12-01</p> <p>A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29289056','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29289056"><span>Ocean eddies and climate predictability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kirtman, Ben P; Perlin, Natalie; Siqueira, Leo</p> <p>2017-12-01</p> <p>A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23883934','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23883934"><span>Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moum, James N; Perlin, Alexander; Nash, Jonathan D; McPhaden, Michael J</p> <p>2013-08-01</p> <p>Sea surface temperature (SST) is a critical control on the atmosphere, and numerical models of atmosphere-ocean circulation emphasize its accurate prediction. Yet many models demonstrate large, systematic biases in simulated SST in the equatorial 'cold tongues' (expansive regions of net heat uptake from the atmosphere) of the Atlantic and Pacific oceans, particularly with regard to a central but little-understood feature of tropical oceans: a strong seasonal cycle. The biases may be related to the inability of models to constrain turbulent mixing realistically, given that turbulent mixing, combined with seasonal variations in atmospheric heating, determines SST. In temperate oceans, the seasonal SST cycle is clearly related to varying solar heating; in the tropics, however, SSTs vary seasonally in the absence of similar variations in solar inputs. Turbulent mixing has long been a likely explanation, but firm, long-term observational evidence has been absent. Here we show the existence of a distinctive seasonal cycle of subsurface cooling via mixing in the equatorial Pacific cold tongue, using multi-year measurements of turbulence in the ocean. In boreal spring, SST rises by 2 kelvin when heating of the upper ocean by the atmosphere exceeds cooling by mixing from below. In boreal summer, SST decreases because cooling from below exceeds heating from above. When the effects of lateral advection are considered, the magnitude of summer cooling via mixing (4 kelvin per month) is equivalent to that required to counter the heating terms. These results provide quantitative assessment of how mixing varies on timescales longer than a few weeks, clearly showing its controlling influence on seasonal cooling of SST in a critical oceanic regime.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.1429C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.1429C"><span>Indian Ocean and Indian summer monsoon: relationships without ENSO in ocean-atmosphere coupled simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crétat, Julien; Terray, Pascal; Masson, Sébastien; Sooraj, K. P.; Roxy, Mathew Koll</p> <p>2017-08-01</p> <p>The relationship between the Indian Ocean and the Indian summer monsoon (ISM) and their respective influence over the Indo-Western North Pacific (WNP) region are examined in the absence of El Niño Southern Oscillation (ENSO) in two partially decoupled global experiments. ENSO is removed by nudging the tropical Pacific simulated sea surface temperature (SST) toward SST climatology from either observations or a fully coupled control run. The control reasonably captures the observed relationships between ENSO, ISM and the Indian Ocean Dipole (IOD). Despite weaker amplitude, IODs do exist in the absence of ENSO and are triggered by a boreal spring ocean-atmosphere coupled mode over the South-East Indian Ocean similar to that found in the presence of ENSO. These pure IODs significantly affect the tropical Indian Ocean throughout boreal summer, inducing a significant modulation of both the local Walker and Hadley cells. This meridional circulation is masked in the presence of ENSO. However, these pure IODs do not significantly influence the Indian subcontinent rainfall despite overestimated SST variability in the eastern equatorial Indian Ocean compared to observations. On the other hand, they promote a late summer cross-equatorial quadrupole rainfall pattern linking the tropical Indian Ocean with the WNP, inducing important zonal shifts of the Walker circulation despite the absence of ENSO. Surprisingly, the interannual ISM rainfall variability is barely modified and the Indian Ocean does not force the monsoon circulation when ENSO is removed. On the contrary, the monsoon circulation significantly forces the Arabian Sea and Bay of Bengal SSTs, while its connection with the western tropical Indian Ocean is clearly driven by ENSO in our numerical framework. Convection and diabatic heating associated with above-normal ISM induce a strong response over the WNP, even in the absence of ENSO, favoring moisture convergence over India.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JGR...103.7549H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JGR...103.7549H"><span>Bifurcation of the Kuroshio Extension at the Shatsky Rise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hurlburt, Harley E.; Metzger, E. Joseph</p> <p>1998-04-01</p> <p>A 1/16° six-layer Pacific Ocean model north of 20°S is used to investigate the bifurcation of the Kuroshio Extension at the main Shatsky Rise and the pathway of the northern branch from the bifurcation to the subarctic front. Upper ocean-topographic coupling via a mixed barotropic-baroclinic instability is essential to this bifurcation and to the formation and mean pathway of the northern branch as are several aspects of the Shatsky Rise complex of topography and the latitude of the Kuroshio Extension in relation to the topography. The flow instabilities transfer energy to the abyssal layer where it is constrained by geostrophic contours of the bottom topography. The topographically constrained abyssal currents in turn steer upper ocean currents, which do not directly impinge on the bottom topography. This includes steering of mean pathways. Obtaining sufficient coupling requires very fine resolution of mesoscale variability and sufficient eastward penetration of the Kuroshio as an unstable inertial jet. Resolution of 1/8° for each variable was not sufficient in this case. The latitudinal extent of the main Shatsky Rise (31°N-36°N) and the shape of the downward slope on the north side are crucial to the bifurcation at the main Shatsky Rise, with both branches passing north of the peak. The well-defined, relatively steep and straight eastern edge of the Shatsky Rise topographic complex (30°N-42°N) and the southwestward abyssal flow along it play a critical role in forming the rest of the Kuroshio northern branch which flows in the opposite direction. A deep pass between the main Shatsky Rise and the rest of the ridge to the northeast helps to link the northern fork of the bifurcation at the main rise to the rest of the northern branch. Two 1/16° "identical twin" interannual simulations forced by daily winds 1981-1995 show that the variability in this region is mostly nondeterministic on all timescales that could be examined (up to 7 years in these 15-year simulations). A comparison of climatologically forced and interannual simulations over the region 150°E-180°E, 29°N-47°N showed greatly enhanced abyssal and upper ocean eddy kinetic energy and much stronger mean abyssal currents east of the Emperor Seamount Chain (about 170°E) in the interannual simulations but little difference west of 170°E. This greatly enhanced the upper ocean-topographic coupling in the interannual simulations east of 170°E. This coupling affected the latitudinal positioning of the eastward branches of the Kuroshio Extension and tended to reduce latitudinal movement compared to the climatologically forced simulation, including a particularly noticeable impact from the Hess Rise. Especially in the interannual simulations, effects of almost all topographic features in the region could be seen in the mean upper ocean currents (more so than in instantaneous currents), including meanders and bifurcations of major and minor currents, closed circulations, and impacts from depressions and rises of large and small amplitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23117411','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23117411"><span>Optimum interpolation analysis of basin-scale ¹³⁷Cs transport in surface seawater in the North Pacific Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Inomata, Y; Aoyama, M; Tsumune, D; Motoi, T; Nakano, H</p> <p>2012-12-01</p> <p>¹³⁷Cs is one of the conservative tracers applied to the study of oceanic circulation processes on decadal time scales. To investigate the spatial distribution and the temporal variation of ¹³⁷Cs concentrations in surface seawater in the North Pacific Ocean after 1957, a technique for optimum interpolation (OI) was applied to understand the behaviour of ¹³⁷Cs that revealed the basin-scale circulation of Cs ¹³⁷Cs in surface seawater in the North Pacific Ocean: ¹³⁷Cs deposited in the western North Pacific Ocean from global fallout (late 1950s and early 1960s) and from local fallout (transported from the Bikini and Enewetak Atolls during the late 1950s) was further transported eastward with the Kuroshio and North Pacific Currents within several years of deposition and was accumulated in the eastern North Pacific Ocean until 1967. Subsequently, ¹³⁷Cs concentrations in the eastern North Pacific Ocean decreased due to southward transport. Less radioactively contaminated seawater was also transported northward, upstream of the North Equatorial Current in the western North Pacific Ocean in the 1970s, indicating seawater re-circulation in the North Pacific Gyre.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990116498&hterms=rainforests&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drainforests','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990116498&hterms=rainforests&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drainforests"><span>Effects of 1997-1998 El Nino on Tropospheric Ozone and Water Vapor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chandra, S.; Ziemke, J. R.; Min, W.; Read, W. G.</p> <p>1998-01-01</p> <p>This paper analyzes the impact of the 1997-1998 El Nino on tropospheric column ozone and tropospheric water vapor derived respectively from the Total Ozone Mapping Spectrometer (TOMS) on Earth Probe and the Microwave Limb Scanning instrument on the Upper Atmosphere Research Satellite. The 1997-1998 El Nino, characterized by an anomalous increase in sea-surface temperature (SST) across the eastern and central tropical Pacific Ocean, is one of the strongest El Nino Southern Oscillation (ENSO) events of the century, comparable in magnitude to the 1982-1983 episode. The major impact of the SST change has been the shift in the convection pattern from the western to the eastern Pacific affecting the response of rain-producing cumulonimbus. As a result, there has been a significant increase in rainfall over the eastern Pacific and a decrease over the western Pacific and Indonesia. The dryness in the Indonesian region has contributed to large-scale burning by uncontrolled wildfires in the tropical rainforests of Sumatra and Borneo. Our study shows that tropospheric column ozone decreased by 4-8 Dobson units (DU) in the eastern Pacific and increased by about 10-20 DU in the western Pacific largely as a result of the eastward shift of the tropical convective activity as inferred from National Oceanic and Atmospheric Administration (NOAA) outgoing longwave radiation (OLR) data. The effect of this shift is also evident in the upper tropospheric water vapor mixing ratio which varies inversely as ozone (O3). These conclusions are qualitatively consistent with the changes in atmospheric circulation derived from zonal and vertical wind data obtained from the Goddard Earth Observing System data assimilation analyses. The changes in tropospheric column O3 during the course of the 1997-1998 El Nino appear to be caused by a combination of large-scale circulation processes associated with the shift in the tropical convection pattern and surface/boundary layer processes associated with forest fires in the Indonesian region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A51C0070C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A51C0070C"><span>Rectification of the Diurnal Cycle and the Impact of Islands on the Tropical Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cronin, T. W.; Emanuel, K.</p> <p>2012-12-01</p> <p>Tropical islands are observed to be rainier than nearby ocean areas, and rainfall over the islands of the Maritime Continent plays an important role in the atmospheric general circulation. Convective heating over tropical islands is also strongly modulated by the diurnal cycle of solar insolation and surface enthalpy fluxes, and convective parameterizations in general circulation models are known to reproduce the phase and amplitude of the observed diurnal cycle of convection rather poorly. Connecting these ideas suggests that poor representation of the diurnal cycle of convection and precipitation over tropical islands in climate models may be a significant source of model biases. Here, we explore how a highly idealized island, which differs only in heat capacity from the surrounding ocean, could rectify the diurnal cycle and impact the tropical climate, especially the spatial distribution of rainfall. We perform simulations of radiative-convective equilibrium with the System for Atmospheric Modeling cloud-system-resolving model, with interactive surface temperature and a varied surface heat capacity. For the case of relatively small-scale simulations, where a shallow (~5 cm) slab-ocean "swamp island" surface is embedded in a deeper (~1 m) slab-ocean domain, the precipitation rate over the island is more than double the domain average value, with island rainfall occurring primarily in a strong regular convective event each afternoon. In addition to this island precipitation enhancement, the upper troposphere also warms with the inclusion of a low- heat capacity island. We discuss two radiative mechanisms that contribute to both island precipitation enhancement and free tropospheric warming, by producing a top-of-atmosphere radiative surplus over the island. The first radiative mechanism is a clear-sky effect, related to nonlinearities in the surface energy budget, and differences in how surface energy balance is achieved over surfaces of different heat capacities. The second radiative mechanism is a cloudy-sky effect, related to the timing of clouds with respect to solar forcing, as well as to the mean cloud fraction and height. We also discuss an advective mechanism for island precipitation enhancement, related to both the moist static energy convergence by the diurnally-reversing land/sea breeze, and the enhanced variability of moist static energy in the island subcloud layer. Preliminary results from larger-domain equatorial beta-channel simulations are also discussed, with potentially greater applicability to the impacts of islands on the large-scale tropical circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28924606','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28924606"><span>Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burls, Natalie J; Fedorov, Alexey V; Sigman, Daniel M; Jaccard, Samuel L; Tiedemann, Ralf; Haug, Gerald H</p> <p>2017-09-01</p> <p>An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world's largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400-ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004Geo....32.1025K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004Geo....32.1025K"><span>Extinction of a fast-growing oyster and changing ocean circulation in Pliocene tropical America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirby, Michael X.; Jackson, Jeremy B. C.</p> <p>2004-12-01</p> <p>Ocean circulation changed profoundly in the late Cenozoic around tropical America as a result of constriction and final closure of the Central American seaway. In response, regional planktonic productivity is thought to have decreased in the Caribbean Sea. Previous studies have shown that shallow-marine communities reflect these changes by reorganizing from a suspension-feeder dominated community to a more carbonate-rich, phototrophic-based community. Although changes in diversity, abundance, and body size of various shallow-marine invertebrates have previously been examined, no study has specifically used growth rate in suspension feeders to examine the effect that changes in ocean circulation may have had on shallow-marine communities. Here we show that a fast-growing oyster went extinct concurrently with changes in ocean circulation and planktonic productivity in the Pliocene. Faster-growing Crassostrea cahobasensis</em> went extinct, whereas slower-growing Crassostrea virginica</em> and columbiensis</em> survived to the Holocene. Miocene Pliocene C. cahobasensis</em> grew 522% faster in shell carbonate and 251% faster in biomass relative to Quaternary C. virginica</em> and C. columbiensis</em>. Although differences in growth are due to proximate differences in environment, the disappearance of faster-growing C. cahobasensis</em> from shallow-marine environments and the continued survival of slower-growing C. virginica</em> and C. columbiensis</em> in marginal-marine environments (e.g., estuaries, lagoons) is consistent with the view that concurrent changes in ocean circulation and declining primary production resulted in the restriction of Crassostrea</em> to marginal-marine environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000072434','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000072434"><span>Arctic Climate and Atmospheric Planetary Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cavalieri, D. J.; Haekkinen, S.</p> <p>2000-01-01</p> <p>Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave I pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach to determine significant forcing patterns of sea ice and high-latitude variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1014414','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1014414"><span>Glider Observations of Upper Ocean Structure in the Bay of Bengal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Glider Observations of Upper Ocean Structure in the Bay...using gliders and floats • Improve glider technology to overcome fresh, buoyant surface layers • Establish a new technology to observe turbulence...with profiling floats APPROACH We use two approaches to observe the upper ocean in the BoB. First, we deploy Spray underwater gliders to resolve</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13C2074S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13C2074S"><span>Is Polar Amplification Deeper and Stronger than Dynamicists Assume?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scheff, J.; Maroon, E.</p> <p>2017-12-01</p> <p>In the CMIP multi-model mean under strong future warming, Arctic amplification is confined to the lower troposphere, so that the meridional gradient of warming reverses around 500 mb and the upper troposphere is characterized by strong "tropical amplification" in which warming weakens with increasing latitude. This model-derived pattern of warming maxima in the upper-level tropics and lower-level Arctic has become a canonical assumption driving theories of the large-scale circulation response to climate change. Yet, several lines of evidence and reasoning suggest that Arctic amplification may in fact extend through the entire depth of the troposphere, and/or may be stronger than commonly modeled. These include satellite Microwave Sounding Unit (MSU) temperature trends as a function of latitude and vertical level, the recent discovery that the extratropical negative cloud phase feedback in models is largely spurious, and the very strong polar amplification observed in past warm and lukewarm climates. Such a warming pattern, with deep, dominant Arctic amplification, would have very different implications for the circulation than a canonical CMIP-like warming: instead of slightly shifting poleward and strengthening, eddies, jets and cells might shift equatorward and considerably weaken. Indeed, surface winds have been mysteriously weakening ("stilling") at almost all stations over the last half-century or so, there has been no poleward shift in northern hemisphere circulation metrics, and past warm climates' subtropics were apparently quite wet (and their global ocean circulations were weak.) To explore these possibilities more deeply, we examine the y-z structure of warming and circulation changes across a much broader range of models, scenarios and time periods than the CMIP future mean, and use an MSU simulator to compare them to the satellite warming record. Specifically, we examine whether the use of historical (rather than future) forcing, AMIP (rather than CMIP) configuration, individual GCMs, and/or individual ensemble members can better reproduce the structure of the MSU and surface-wind observations. Figure 1 already shows that tropical amplification is absent in the CESM1 historical ensemble (1979-2012). The results of these analyses will guide our future modeling work on these topics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO14E2852L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO14E2852L"><span>Linking the South Atlantic Meridional Overturning Circulation and the Global Monsoons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lopez, H.; Dong, S.; Goni, G. J.; Lee, S. K.</p> <p>2016-02-01</p> <p>This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984SPIE..481..159P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984SPIE..481..159P"><span>Spaceborne Studies Of Ocean Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patzert, William C.</p> <p>1984-08-01</p> <p>The global view of the oceans seen by Seasat during its 1978 flight demonstrated the feasibility of ocean remote sensing. These first-ever global data sets of sea surface topography (altimeter) and marine winds (scatterometer) laid the foundation for two satellite missions planned for the late 1980's. The future missions are the next generation of altimeter and scatterometer to be flown aboard TOPEX (Topography Experiment) and NROSS (Navy Remote Ocean Sensing System), respectively. The data from these satellites will be coordinated with measurements made at sea to determine the driving forces of ocean circulation and to study the oceans role in climate variability. Sea surface winds (calculated from scatterometer measurements) are the fundamental driving force for ocean waves and currents (estimated from altimeter measurements). On a global scale, the winds and currents are approximately equal partners in redistributing the excess heat gained in the tropics from solar radiation to the cooler polar regions. Small perturbations in this system can dramatically alter global weather, such as the El Niho event of 1982-83. During an El Ni?io event, global wind patterns and ocean currents are perturbed causing unusual ocean warming in the tropical Pacfic Ocean. These ocean events are coupled to complex fluctuations in global weather. Only with satellites will we be able to collect the global data sets needed to study events such as El Ni?o. When TOPEX and NROSS fly, oceanographers will have the equivalent of meteorological high and low pressure charts of ocean topography as well as the surface winds to study ocean "weather." This ability to measure ocean circulation and its driving forces is a critical element in understanding the influence of oceans on society. Climatic changes, fisheries, commerce, waste disposal, and national defense are all involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11..334S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11..334S"><span>Microbial decomposition of marine dissolved organic matter in cool oceanic crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shah Walter, Sunita R.; Jaekel, Ulrike; Osterholz, Helena; Fisher, Andrew T.; Huber, Julie A.; Pearson, Ann; Dittmar, Thorsten; Girguis, Peter R.</p> <p>2018-05-01</p> <p>Marine dissolved organic carbon (DOC) is one of the largest active reservoirs of reduced carbon on Earth. In the deep ocean, DOC has been described as biologically recalcitrant and has a radiocarbon age of 4,000 to 6,000 years, which far exceeds the timescale of ocean overturning. However, abiotic removal mechanisms cannot account for the full magnitude of deep-ocean DOC loss. Deep-ocean water circulates at low temperatures through volcanic crust on ridge flanks, but little is known about the associated biogeochemical processes and carbon cycling. Here we present analyses of DOC in fluids from two borehole observatories installed in crustal rocks west of the Mid-Atlantic Ridge, and show that deep-ocean DOC is removed from these cool circulating fluids. The removal mechanism is isotopically selective and causes a shift in specific features of molecular composition, consistent with microbe-mediated oxidation. We suggest organic molecules with an average radiocarbon age of 3,200 years are bioavailable to crustal microbes, and that this removal mechanism may account for at least 5% of the global loss of DOC in the deep ocean. Cool crustal circulation probably contributes to maintaining the deep ocean as a reservoir of `aged' and refractory DOC by discharging the surviving organic carbon constituents that are molecularly degraded and depleted in 14C and 13C into the deep ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP21D..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP21D..08M"><span>Weak overturning circulation and increased iron fertilization maximized carbon storage in the glacial ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muglia, J.; Skinner, L.; Schmittner, A.</p> <p>2017-12-01</p> <p>Circulation changes have been suggested to play an important role in the sequestration of atmospheric CO2 in the glacial ocean. However, previous studies have resulted in contradictory results regarding the strength of the Atlantic Meridional Overturning Circulation (AMOC) and three-dimensional, quantitative reconstructions of the glacial ocean constrained by multiple proxies remain lacking. Here we simulate the modern and glacial ocean using a coupled, global, three-dimensional, physical-biogeochemical model constrained simultaneously by d13C, radiocarbon, and d15N to explore the effects of AMOC differences and Southern Ocean iron fertilization on the distributions of these isotopes and ocean carbon storage. We show that d13C and radiocarbon data sparsely sampled at the locations of existing glacial sediment cores can be used to reconstruct the modern AMOC accurately. Applying this method to the glacial ocean we find that a surprisingly weak (6-9 Sv or about half of today's) and shallow AMOC maximizes carbon storage and best reproduces the sediment data. Increasing the atmospheric soluble iron flux in the model's Southern Ocean intensifies export production, carbon storage, and improves agreement with d13C and d15N reconstructions. Our best fitting model is a significant improvement compared with previous studies. It suggests that a weak and shallow AMOC and enhanced iron fertilization conspired to maximize carbon storage in the glacial ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24784218','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24784218"><span>North Atlantic forcing of tropical Indian Ocean climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mohtadi, Mahyar; Prange, Matthias; Oppo, Delia W; De Pol-Holz, Ricardo; Merkel, Ute; Zhang, Xiao; Steinke, Stephan; Lückge, Andreas</p> <p>2014-05-01</p> <p>The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5093862','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5093862"><span>The formation of the ocean’s anthropogenic carbon reservoir</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Iudicone, Daniele; Rodgers, Keith B.; Plancherel, Yves; Aumont, Olivier; Ito, Takamitsu; Key, Robert M.; Madec, Gurvan; Ishii, Masao</p> <p>2016-01-01</p> <p>The shallow overturning circulation of the oceans transports heat from the tropics to the mid-latitudes. This overturning also influences the uptake and storage of anthropogenic carbon (Cant). We demonstrate this by quantifying the relative importance of ocean thermodynamics, circulation and biogeochemistry in a global biochemistry and circulation model. Almost 2/3 of the Cant ocean uptake enters via gas exchange in waters that are lighter than the base of the ventilated thermocline. However, almost 2/3 of the excess Cant is stored below the thermocline. Our analysis shows that subtropical waters are a dominant component in the formation of subpolar waters and that these water masses essentially form a common Cant reservoir. This new method developed and presented here is intrinsically Lagrangian, as it by construction only considers the velocity or transport of waters across isopycnals. More generally, our approach provides an integral framework for linking ocean thermodynamics with biogeochemistry. PMID:27808101</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27365315','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27365315"><span>North Atlantic ocean circulation and abrupt climate change during the last glaciation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Henry, L G; McManus, J F; Curry, W B; Roberts, N L; Piotrowski, A M; Keigwin, L D</p> <p>2016-07-29</p> <p>The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ(13)C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean's persistent, central role in abrupt glacial climate change. Copyright © 2016, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA567452','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA567452"><span>Atlantic Ocean Circulation at the Last Glacial Maximum: Inferences from Data and Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-01</p> <p>available. Uncertainties in proxies themselves, and in the dating of the proxy records, are generally lower for the LGM than for periods further back...proven useful in understanding new aspects of the modern ocean circulation. Due to the poor dating resolution of sediment cores from the LGM period, and...Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPI- LOG) project was an effort to reconstruct the state of the Earth in glacial states; a</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26642318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26642318"><span>Impacts of Interannual Ocean Circulation Variability on Japanese Eel Larval Migration in the Western North Pacific Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chang, Yu-Lin; Sheng, Jinyu; Ohashi, Kyoko; Béguer-Pon, Mélanie; Miyazawa, Yasumasa</p> <p>2015-01-01</p> <p>The Japanese eel larvae hatch near the West Mariana Ridge seamount chain and travel through the North Equatorial Current (NEC), the Kuroshio, and the Subtropical Countercurrent (STCC) region during their shoreward migration toward East Asia. The interannual variability of circulation over the subtropical and tropical regions of the western North Pacific Ocean is affected by the Philippines-Taiwan Oscillation (PTO). This study examines the effect of the PTO on the Japanese eel larval migration routes using a three-dimensional (3D) particle tracking method, including vertical and horizontal swimming behavior. The 3D circulation and hydrography used for particle tracking are from the ocean circulation reanalysis produced by the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2). Our results demonstrate that bifurcation of the NEC and the strength and spatial variation of the Kuroshio affect the distribution and migration of eel larvae. During the positive phase of PTO, more virtual eels ("v-eels") can enter the Kuroshio to reach the south coast of Japan and more v-eels reach the South China Sea through the Luzon Strait; the stronger and more offshore swing of the Kuroshio in the East China Sea leads to fewer eels entering the East China Sea and the onshore movement of the Kuroshio to the south of Japan brings the eels closer to the Japanese coast. Significant differences in eel migration routes and distributions regulated by ocean circulation in different PTO phases can also affect the otolith increment. The estimated otolith increment suggests that eel age tends to be underestimated after six months of simulation due to the cooler lower layer temperature. Underestimation is more significant in the positive PTO years due to the wide distribution in higher latitudes than in the negative PTO years.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>