What electrical measurements can say about changes in fault systems.
Madden, T R; Mackie, R L
1996-01-01
Earthquake zones in the upper crust are usually more conductive than the surrounding rocks, and electrical geophysical measurements can be used to map these zones. Magnetotelluric (MT) measurements across fault zones that are parallel to the coast and not too far away can also give some important information about the lower crustal zone. This is because the long-period electric currents coming from the ocean gradually leak into the mantle, but the lower crust is usually very resistive and very little leakage takes place. If a lower crustal zone is less resistive it will be a leakage zone, and this can be seen because the MT phase will change as the ocean currents leave the upper crust. The San Andreas Fault is parallel to the ocean boundary and close enough to have a lot of extra ocean currents crossing the zone. The Loma Prieta zone, after the earthquake, showed a lot of ocean electric current leakage, suggesting that the lower crust under the fault zone was much more conductive than normal. It is hard to believe that water, which is responsible for the conductivity, had time to get into the lower crustal zone, so it was probably always there, but not well connected. If this is true, then the poorly connected water would be at a pressure close to the rock pressure, and it may play a role in modifying the fluid pressure in the upper crust fault zone. We also have telluric measurements across the San Andreas Fault near Palmdale from 1979 to 1990, and beginning in 1985 we saw changes in the telluric signals on the fault zone and east of the fault zone compared with the signals west of the fault zone. These measurements were probably seeing a better connection of the lower crust fluids taking place, and this may result in a fluid flow from the lower crust to the upper crust. This could be a factor in changing the strength of the upper crust fault zone. PMID:11607664
NASA Astrophysics Data System (ADS)
Karson, J. A.
2016-12-01
Structures generated by seafloor spreading in oceanic crust (and ophiolites) and thick oceanic crust of Iceland show a continuous spectrum of features that formed by similar mechanisms but at different scales. A high magma budget near the Iceland hotspot generates thick (40-25 km) mafic crust in a plate boundary zone about 50 km wide. The upper crust ( 10 km thick) is constructed by the subaxial subsidence and thickening of lavas fed by dense dike swarms over a hot, weak lower crust to produce structures analogous to seaward-dipping reflectors of volcanic rifted margins. Segmented rift zones propagate away from the hotspot creating migrating transform fault zones, microplate-like crustal blocks and rift-parallel strike-slip faults. These structures are decoupled from the underlying lower crustal gabbroic rocks that thin by along-axis flow that reduces the overall crustal thickness and smooths-out local crustal thickness variations. Spreading on mid-ocean ridges with high magma budgets have much thinner crust (10-5 km) generated at a much narrower (few km) plate boundary zone. Subaxial subsidence accommodates the thickening of the upper crust of inward-dipping lavas and outward-dipping dikes about 1-2 km thick over a hot weak lower crust. Along-axis (high-temperature ductile and magmatic) flow of lower crustal material may help account for the relatively uniform seismic thickness of oceanic crust worldwide. Spreading along even slow-spreading mid-ocean ridges near hotspots (e.g., the Reykjanes Ridge) probably have similar features that are transitional between these extremes. In all of these settings, upper crustal and lower crustal structures are decoupled near the plate boundary but eventually welded together as the crust ages and cools. Similar processes are likely to occur along volcanic rifted margins as spreading begins.
Interaction of sea water and lava during submarine eruptions at mid-ocean ridges
Perfit, M.R.; Cann, J.R.; Fornari, D.J.; Engels, J.; Smith, D.K.; Ridley, W.I.; Edwards, M.H.
2003-01-01
Lava erupts into cold sea water on the ocean floor at mid-ocean ridges (at depths of 2,500 m and greater), and the resulting flows make up the upper part of the global oceanic crust. Interactions between heated sea water and molten basaltic lava could exert significant control on the dynamics of lava flows and on their chemistry. But it has been thought that heating sea water at pressures of several hundred bars cannot produce significant amounts of vapour and that a thick crust of chilled glass on the exterior of lava flows minimizes the interaction of lava with sea water. Here we present evidence to the contrary, and show that bubbles of vaporized sea water often rise through the base of lava flows and collect beneath the chilled upper crust. These bubbles of steam at magmatic temperatures may interact both chemically and physically with flowing lava, which could influence our understanding of deep-sea volcanic processes and oceanic crustal construction more generally. We infer that vapour formation plays an important role in creating the collapse features that characterize much of the upper oceanic crust and may accordingly contribute to the measured low seismic velocities in this layer.
NASA Astrophysics Data System (ADS)
Saito, Satoshi; Tani, Kenichiro
2017-04-01
Granitic rocks (sensulato) are major constituents of upper continental crust. Recent reviews reveal that the average composition of Phanerozoic upper continental crust is granodioritic. Although oceanic arcs are regarded as a site producing continental crust material in an oceanic setting, intermediate to felsic igneous rocks occurring in modern oceanic arcs are dominantly tonalitic to trondhjemitic in composition and have lower incompatible element contents than the average upper continental crust. Therefore, juvenile oceanic arcs require additional processes in order to get transformed into mature continental crust enriched in incompatible elements. Neogene granitoid plutons are widely exposed in the Izu Collision Zone in central Japan, where the northern end of the Izu-Bonin-Mariana (IBM) arc (juvenile oceanic arc) has been colliding with the Honshu arc (mature island arc) since Middle Miocene. The plutons in this area are composed of various types of granitoids ranging from tonalite to trondhjemite, granodiorite, monzogranite and granite. Three main granitoid plutons are distributed in this area: Tanzawa plutonic complex, Kofu granitic complex, and Kaikomagatake granitoid pluton. Tanzawa plutonic complex is dominantly composed of tonalite and trondhjemite and characterized by low concentration of incompatible elements and shows geochemical similarity with modern juvenile oceanic arcs. In contrast, Kofu granitic complex and Kaikomagatake granitoid pluton consists mainly of granodiorite, monzogranite and granite and their incompatible element abundances are comparable to the average upper continental crust. Previous petrogenetic studies on these plutons suggested that (1) the Tanzawa plutonic complex formed by lower crustal anatexis of juvenile basaltic rocks occurring in the IBM arc, (2) the Kofu granitic complex formed by anatexis of 'hybrid lower crust' comprising of both basaltic rocks of the IBM arc and metasedimentary rocks of the Honshu arc, and (3) the Kaikomagatake granitoid pluton formed by anatexis of 'hybrid lower crust' consisting of K-rich rear-arc crust of the IBM arc and metasedimentary rocks of the Honshu arc. These studies collectively suggest that the chemical diversity within the Izu Collision Zone granitoid plutons reflects the chemical variation of basaltic sources (i.e., across-arc chemical variation in the IBM arc) as well as variable contribution of the metasedimentary component in the source region. The petrogenetic models of the Izu Collision Zone granitoid plutons suggest that collision with another mature arc/continent, hybrid lower crust formation and subsequent hybrid source anatexis are required for juvenile oceanic arcs to produce granitoid magmas with enriched compositions. The Izu Collision Zone granitoid plutons provide an exceptional example of the collision-induced transformation from a juvenile oceanic arc to the mature continental crust.
NASA Astrophysics Data System (ADS)
Altenbernd, Tabea; Jokat, Wilfried; Heyde, Ingo; Damm, Volkmar
2015-11-01
Investigating the crust of northern Baffin Bay provides valuable indications for the still debated evolution of this area. The crust of the southern Melville Bay is examined based on wide-angle seismic and gravity data. The resulting P wave velocity, density, and geological models give insights into the crustal structure. A stretched and rifted continental crust underneath southern Melville Bay is up to 30 km thick, with crustal velocities ranging between 5.5 and 6.9 km/s. The deep Melville Bay Graben contains a 9 km thick infill with velocities of 4 to 5.2 km/s in its lowermost part. West of the Melville Bay Ridge, a ~80 km wide and partly only 5 km thick Continent-Ocean Transition (COT) is present. West of the COT, up to 5 km thick sedimentary layers cover a 4.3 to 7 km thick, two-layered oceanic crust. The upper oceanic layer 2 has velocities of 5.2 to 6.0 km/s; the oceanic layer 3 has been modeled with rather low velocities of 6.3 to 6.9 km/s. Low velocities of 7.8 km/s characterize the probably serpentinized upper mantle underneath the thin crust. The serpentinized upper mantle and low thickness of the oceanic crust are another indication for slow or ultraslow spreading during the formation of the oceanic part of the Baffin Bay. By comparing our results on the crustal structure with other wide-angle seismic profiles recently published, differences in the geometry and structure of the crust and the overlying sedimentary cover are revealed. Moreover, the type of margin and the extent of crustal types in the Melville Bay area are discussed.
NASA Astrophysics Data System (ADS)
Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.
2015-12-01
Fracture and fault networks in the upper oceanic crust influence the circulation of hydrothermal fluids and heat transfer between crust and ocean. These fractures form by extensional stresses, with a predominant orientation parallel to the ridge axis, creating porosity- and permeability-derived anisotropy that can be measured in terms of seismic velocity. These properties change as the crust ages and evolves through cooling, alteration and sedimentation. The rate at which these changes occur and their effects on oceanic crustal structure and hydrothermal flow patterns are currently not well constrained. The NERC-funded OSCAR project aims to understand the development of upper oceanic crust, the extent and influence of hydrothermal circulation on the crust, and the behavior of fluids flowing in fractured rock. We show P-wave velocity models centered on DSDP/ODP Hole 504B, located ~200 km south of the Costa Rica Rift, derived from data acquired during a recent integrated geophysics and oceanography survey of the Panama Basin. The data were recorded by 25 four-component OBSs deployed in a grid, that recorded ~10,000 full azimuthal coverage shots fired by a combined high- and low-frequency seismic source. Both reflection and refraction data are integrated to reveal the seismic velocity structure of the crust within the 25 km by 25 km grid. The down-hole geological structure of 6 Ma crust at 504B comprises 571.5 m of extrusive basalts overlying a 209 m transition zone of mixed pillows and dikes containing a clear alteration boundary, which grades to >1050 m of sheeted dikes. Our model results are compared with this lithological structure and other previously published results to better understand the nature of velocity changes within seismic layer 2. The data provide a 3D framework, which together with analysis of the S-wave arrivals and particle motion studies, constrain estimates of the seismic anisotropy and permeability structure of the upper oceanic crust as it ages.
Production and recycling of oceanic crust in the early Earth
NASA Astrophysics Data System (ADS)
van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.
2004-08-01
Because of the strongly different conditions in the mantle of the early Earth regarding temperature and viscosity, present-day geodynamics cannot simply be extrapolated back to the early history of the Earth. We use numerical thermochemical convection models including partial melting and a simple mechanism for melt segregation and oceanic crust production to investigate an alternative suite of dynamics which may have been in operation in the early Earth. Our modelling results show three processes that may have played an important role in the production and recycling of oceanic crust: (1) Small-scale ( x×100 km) convection involving the lower crust and shallow upper mantle. Partial melting and thus crustal production takes place in the upwelling limb and delamination of the eclogitic lower crust in the downwelling limb. (2) Large-scale resurfacing events in which (nearly) the complete crust sinks into the (eventually lower) mantle, thereby forming a stable reservoir enriched in incompatible elements in the deep mantle. New crust is simultaneously formed at the surface from segregating melt. (3) Intrusion of lower mantle diapirs with a high excess temperature (about 250 K) into the upper mantle, causing massive melting and crustal growth. This allows for plumes in the Archean upper mantle with a much higher excess temperature than previously expected from theoretical considerations.
Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions.
Walter, M J; Kohn, S C; Araujo, D; Bulanova, G P; Smith, C B; Gaillou, E; Wang, J; Steele, A; Shirey, S B
2011-10-07
A primary consequence of plate tectonics is that basaltic oceanic crust subducts with lithospheric slabs into the mantle. Seismological studies extend this process to the lower mantle, and geochemical observations indicate return of oceanic crust to the upper mantle in plumes. There has been no direct petrologic evidence, however, of the return of subducted oceanic crustal components from the lower mantle. We analyzed superdeep diamonds from Juina-5 kimberlite, Brazil, which host inclusions with compositions comprising the entire phase assemblage expected to crystallize from basalt under lower-mantle conditions. The inclusion mineralogies require exhumation from the lower to upper mantle. Because the diamond hosts have carbon isotope signatures consistent with surface-derived carbon, we conclude that the deep carbon cycle extends into the lower mantle.
Carbon fixation in oceanic crust: Does it happen, and is it important?
NASA Astrophysics Data System (ADS)
Orcutt, B.; Sylvan, J. B.; Rogers, D.; Lee, R.; Girguis, P. R.; Carr, S. A.; Jungbluth, S.; Rappe, M. S.
2014-12-01
The carbon sources supporting a deep biosphere in igneous oceanic crust, and furthermore the balance of heterotrophy and autotrophy, are poorly understood. When the large reservoir size of oceanic crust is considered, carbon transformations in this environment have the potential to significantly impact the global carbon cycle. Furthermore, igneous oceanic crust is the most massive potential habitat for life on Earth, so understanding the carbon sources for this potential biosphere are important for understanding life on Earth. Geochemical evidence suggests that warm and anoxic upper basement is net heterotrophic, but the balance of these processes in cooler and potentially oxic oceanic crust are poorly known. Here, we present data from stable carbon isotope tracer incubations to examine carbon fixation in basalts collected from the Loihi Seamount, the Juan de Fuca Ridge, and the western flank of the Mid-Atlantic Ridge, to provide a first order constraint on the rates of carbon fixation on basalts. These data will be compared to recently available assessments of carbon cycling rates in fluids from upper basement to synthesize our current state of understanding of the potential for carbon fixation and respiration in oceanic crust. Moreover, we will present new genomic data of carbon fixation genes observed in the basalt enrichments as well as from the subsurface of the Juan de Fuca Ridge flank, enabling identification of the microbes and metabolic pathways involved in carbon fixation in these systems.
NASA Astrophysics Data System (ADS)
Chappell, A. R.; Kusznir, N. J.
2005-12-01
The southern Rockall Trough, located to the west of Ireland and the UK in the NE Atlantic, has been interpreted as both a Mesozoic intra-continental rift basin (O'Reilly 1995) and a mid Cretaceous ocean basin (e.g. Roberts et al. 1980). The continental rift hypothesis (O'Reilly 1995) requires differential stretching of the upper and lower crust and syn-tectonic cooling to mechanically explain the formation of 5-6km thick continental crust and allow serpentinisation of the upper mantle. In this model serpentinisation of the upper mantle is needed to explain low upper mantle seismic velocities. The serpentinisation has also been required to fit gravity modelling of seismic transects to the observed gravity (e.g. Shannon 1999). We use satellite gravity inversion to map Moho depth and crustal thickness (Chappell & Kusznir 2005) for the Rockall Trough area. The satellite gravity inversion is a 3D spectral method incorporating a correction for the residual lithosphere thermal gravity anomaly present in continental rifted margin lithosphere and oceanic lithosphere. The gravity inversion predicts Moho depth and geometry in agreement with wide-angle seismic estimates without invoking the extensive serpentinisation of the upper-mantle needed by the intra-continental rift hypothesis (O'Reilly 1995). Recent seismic modelling (Morewood 2005) suggests that the thin crust in the southern Rockall Trough does not have the seismic layering associated with oceanic crust formed at intermediate or fast spreading rates. Also, wide-angle seismic data shows low upper mantle seismic velocities are present and spatially associated with the thin 5-6km crust (Shannon 1999). These observations are consistent with models and observations of oceanic crust formed at slow spreading ocean ridges (Cannat 1996, Jokat 2003). Such models are based on a proportion of melt being retained in the upper mantle, producing low seismic velocities, and a reduced supply of melt to the crust, resulting in thin seismic crust with some serpentinised mantle material included. We propose that the southern Rockall Trough was formed by continental break-up and a period of slow mid Cretaceous sea floor spreading rather than as an intra- continental rift basin. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco-Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, AR Chappell, J Eccles, RJ Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, VJ Tymms & R Spitzer.
NASA Technical Reports Server (NTRS)
Harper, G. D.
1986-01-01
Archean mafic and ultramafic rocks occur in the southeastern Wind River Mountains near Atlantic City, Wyoming and are interpreted to represent a dismembered ophiolite suite. The ophiolitic rocks occur in a thin belt intruded by the 2.6 Ga Louis Lake Batholith on the northwest. On the southeast they are in fault contact with the Miners Delight Formation comprised primarily of metagraywackes with minor calc-alkaline volcanics. The ophiolitic and associated metasedimentry rocks (Goldman Meadows Formation) have been multiply deformed and metamorphosed. The most prominant structures are a pronounced steeply plunging stretching lineation and steeply dipping foliation. These structural data indicate that the ophiolitic and associated metasedimentary rocks have been deformed by simple shear. The ophiolitic rocks are interpreted as the remains of Archean oceanic crust, probably formed at either a mid-ocean ridge or back-arc basin. All the units of a complete ophiolite are present except for upper mantle periodotities. The absence of upper mantle rocks may be the result of detactment within the crust, rather than within the upper mantle, during emplacement. This could have been the result of a steeper geothermal gradient in the Archean oceanic lithosphere, or may have resulted from a thicker oceanic crust in the Archean.
Quantifying glassy and crystalline basalt partitioning in the oceanic crust
NASA Astrophysics Data System (ADS)
Moore, Rachael; Ménez, Bénédicte
2016-04-01
The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.
Oceanic crust recycling and the formation of lower mantle heterogeneity
NASA Astrophysics Data System (ADS)
van Keken, Peter E.; Ritsema, Jeroen; Haugland, Sam; Goes, Saskia; Kaneshima, Satoshi
2016-04-01
The Earth's lower mantle is heterogeneous at multiple scales as demonstrated for example by the degree-2 distribution of LLSVPs seen in global tomography and widespread distribution of small scale heterogeneity as seen in seismic scattering. The origin of this heterogeneity is generally attributed to leftovers from Earth's formation, the recycling of oceanic crust, or a combination thereof. Here we will explore the consequences of long-term oceanic crust extraction and recycling by plate tectonics. We use geodynamical models of mantle convection that simulate plates in an energetically consistent manner. The recycling of oceanic crust over the age of the Earth produces persistent lower mantle heterogeneity while the upper mantle tends to be significantly more homogeneous. We quantitatively compare the predicted heterogeneity to that of the present day Earth by tomographic filtering of the geodynamical models and comparison with S40RTS. We also predict the scattering characteristics from S-P conversions and compare these to global scattering observations. The geophysical comparison shows that lower mantle heterogeneity is likely dominated by long-term oceanic crust recycling. The models also demonstrate reasonable agreement with the geochemically observed spread between HIMU-EM1-DMM in ocean island basalts as well as the long-term gradual depletion of the upper mantle as observed in Lu-Hf systematics.
Insights into the crustal structure of the transition between Nares Strait and Baffin Bay
NASA Astrophysics Data System (ADS)
Altenbernd, Tabea; Jokat, Wilfried; Heyde, Ingo; Damm, Volkmar
2016-11-01
The crustal structure and continental margin between southern Nares Strait and northern Baffin Bay were studied based on seismic refraction and gravity data acquired in 2010. We present the resulting P wave velocity, density and geological models of the crustal structure of a profile, which extends from the Greenlandic margin of the Nares Strait into the deep basin of central northern Baffin Bay. For the first time, the crustal structure of the continent-ocean transition of the very northern part of Baffin Bay could be imaged. We divide the profile into three parts: continental, thin oceanic, and transitional crust. On top of the three-layered continental crust, a low-velocity zone characterizes the lowermost layer of the three-layered Thule Supergroup underneath Steensby Basin. The 4.3-6.3 km thick oceanic crust in the southern part of the profile can be divided into a northern and southern section, more or less separated by a fracture zone. The oceanic crust adjacent to the continent-ocean transition is composed of 3 layers and characterized by oceanic layer 3 velocities of 6.7-7.3 km/s. Toward the south only two oceanic crustal layers are necessary to model the travel time curves. Here, the lower oceanic crust has lower seismic velocities (6.4-6.8 km/s) than in the north. Rather low velocities of 7.7 km/s characterize the upper mantle underneath the oceanic crust, which we interpret as an indication for the presence of upper mantle serpentinization. In the continent-ocean transition zone, the velocities are lower than in the adjacent continental and oceanic crustal units. There are no signs for massive magmatism or the existence of a transform margin in our study area.
NASA Astrophysics Data System (ADS)
Becel, A.; Carton, H. D.; Shillington, D. J.
2017-12-01
The most heterogeneous, porous and permeable layer within a subducting oceanic crust is the uppermost layer called Layer 2A. This layer, made of extrusive basalts, forms at the ridge axis and persists as a thin ( 600 m) low-velocity cap in old crust. Nearing the trench axis, when oceanic plate bends, normal faults can be formed or reactivated at the outer-rise allowing a more vigorous hydrothermal circulation to resume within this layer. Porosity and heterogeneity within this layer are important to assess because these parameters might have a profound impact on subduction zone processes. However, conventional refraction data quality is rarely good enough to look into detail into the properties of the uppermost oceanic layer. Here we use 2D marine long-offset multi-channel seismic (MCS) reflection data collected offshore of the Alaska Peninsula during the ALEUT Program. The dataset was acquired aboard the R/V Marcus Langseth with a 636-channels, 8-km long streamer. We present initial results from three 140 km long profiles across the 52-56Myr old incoming Pacific oceanic crust formed at fast spreading rate: two perpendicular margin and one parallel margin profiles. Those profiles are located outboard of the Shumagin gaps. Outboard of this subduction zone segment, abundant bending related normal faults are imaged and concentrated within 50-60 km of the trench. Long-offset MCS data exhibit a prominent triplication that includes postcritical reflections and turning waves within the upper crust at offsets larger than 3 km. The triplication suggests the presence of a velocity discontinuity within the upper oceanic crust. We follow a systematic and uniform approach to extract upper crustal post-critical reflections and add them to them to the vertical incidence MCS images. Images reveal small-scale variations in the thickness of the Layer 2A and the strength of its base along the profiles. The second step consists of the downward continuation followed by travel-time modeling of the long streamer data. The downward continuation of the shots and receivers appears to be essential to unravel the refracted energy in the upper crust and is used to determine the detailed velocity-depth structure.
Decrease in oceanic crustal thickness since the breakup of Pangaea
NASA Astrophysics Data System (ADS)
van Avendonk, Harm J. A.; Davis, Joshua K.; Harding, Jennifer L.; Lawver, Lawrence A.
2017-01-01
Earth's mantle has cooled by 6-11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of thicker Jurassic ocean crust, the upper mantle may have cooled by 15-20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent Pangaea due to the effect of continental insulation.
NASA Astrophysics Data System (ADS)
Li, Lu; Stephenson, Randell; Clift, Peter D.
2016-11-01
Both the Canada Basin (a sub-basin within the Amerasia Basin) and southwest (SW) South China Sea preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the SW South China Sea but our results for the Canada Basin are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow and, accordingly, a lower crust that extends far more the upper crust are suggested for both basins. Extension in the COT may have continued even after seafloor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.
Mid-ocean ridges produced thicker crust in the Jurassic than in Recent times
NASA Astrophysics Data System (ADS)
Van Avendonk, H. J.; Harding, J.; Davis, J. K.; Lawver, L. A.
2016-12-01
We present a compilation of published marine seismic refraction data to show that oceanic crust was 1.7 km thicker on average in the mid-Jurassic (170 Ma) than along the present-day mid-ocean ridge system. Plate reconstructions in a fixed hotspot framework show that the thickness of oceanic crust does not correlate with proximity to mantle hotspots, so it is likely that mid-plate volcanism is not the cause of this global trend. We propose that more melt was extracted from the upper mantle beneath mid-ocean ridges in the Jurassic than in recent times. Numerical studies show that temperature increase of 1 degree C in the mantle can lead to approximately 50-70 m thicker crust, so the upper mantle may have cooled 15-20 degrees C/100 Myr since 170 Ma. This average temperature decrease is larger than the secular cooling rate of the Earth's mantle, which is roughly 10 degrees C/100 Myr since the Archean. Apparently, the present-day configuration and dynamics of continental and oceanic plates removes heat more efficiently from the Earth's mantle than in its earlier history. The increase of ocean crustal thickness with plate age is also stronger in the Indian and Atlantic oceans than in the Pacific Ocean basin. This confirms that thermal insulation by the supercontinent Pangaea raised the temperature of the underlying asthenospheric mantle, which in turn led to more magmatic output at the Jurassic mid-ocean ridges of the Indian and Atlantic oceans.
NASA Astrophysics Data System (ADS)
Barantseva, Olga; Artemieva, Irina; Thybo, Hans; Herceg, Matija
2015-04-01
We present the results from modelling the gravity and density structure of the upper mantle for the off-shore area of the North Atlantic region. The crust and upper mantle of the region is expected to be anomalous: Part of the region affected by the Icelandic plume has an anomalously shallow bathymetry, whereas the northern part of the region is characterized by ultraslow spreading. In order to understand the links between deep geodynamical processes that control the spreading rate, on one hand, and their manifestations such as oceanic floor bathymetry and heat flow, on the other hand, we model the gravity and density structure of the upper mantle from satellite gravity data. The calculations are based on interpretation of GOCE gravity satellite data for the North Atlantics. To separate the gravity signal responsible for density anomalies within the crust and upper mantle, we subtract the lower harmonics caused by deep density structure of the Earth (the core and the lower mantle). The gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crust for two crustal models. We use a recent regional seismic model for the crustal structure (Artemieva and Thybo, 2013) based om seismic data together with borehole data for sediments. For comparison, similar results are presented for the global CRUST 1.0 model as well (Laske, 2013). The conversion of seismic velocity data for the crustal structure to crustal density structure is crucial for the final results. We use a combination of Vp-to-density conversion based on published laboratory measurements for the crystalline basement (Ludwig, Nafe, Drake, 1970; Christensen and Mooney, 1995) and for oceanic sediments and oceanic crust based on laboratory measurements for serpentinites and gabbros from the Mid-Atlantic Ridge (Kelemen et al., 2004). Also, to overcome the high degree of uncertainty in Vp-to-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007). The results demonstrate the presence of strong gravity and density heterogeneity of the upper mantle in the North Atlantic region. In particular, there is a sharp contrast at the continent-ocean transition, which also allows for recognising mantle gravity anomalies associated with continental fragments and with anomalous oceanic lithosphere.
NASA Astrophysics Data System (ADS)
Jian, H.; Singh, S. C.
2017-12-01
The oceanic crust that covers >70% of the solid earth is formed at mid-ocean ridges, but get modified as it ages. Understanding the evolution of oceanic crust requires investigations of crustal structures that extend from zero-age on the ridge axis to old crust. In this study, we analyze a part of a 2000-km-long seismic transect that crosses the Mid-Atlantic Ridge segment at 1.3°S, south of the Chain transform fault. The seismic data were acquired using a 12-km-long multi-sensor streamer and dense air-gun shots. Using a combination of downward continuation and seismic tomography methods, we have derived a high-resolution upper crustal velocity structure down to 2-2.5 km depth below the seafloor, from the ridge axis to 3.5 Ma on both sides of the ridge axis. The results demonstrate that velocities increase at all depths in the upper crust as the crust ages, suggesting that hydrothermal precipitations seal the upper crustal pore spaces. This effect is most significant in layer 2A, causing a velocity increase of 0.5-1 km/s after 1-1.5 Ma, beyond which the velocity increase is very small. Furthermore, the results exhibit a significant decrease in both the frequency and amplitude of the low-velocity anomalies associated with faults beyond 1-1.5 Ma, when faults become inactive, suggesting a linkage between the sealing of fault space and the extinction of hydrothermal activity. Besides, the off-axis velocities are systematically higher on the eastern side of the ridge axis compared to on the western side, suggesting that a higher hydrothermal activity should exist on the outside-corner ridge flank than on the inside-corner flank. While the tomography results shown here cover 0-3.5 Ma crust, the ongoing research will further extend the study area to older crust and also incorporating pre-stack migration and full waveform inversion methods to improve the seismic structure.
NASA Technical Reports Server (NTRS)
Rapp, R. P.
1994-01-01
Subduction zones are presently the dominant sites on Earth for recycling and mass transfer between the crust and mantle; they feed hydrated basaltic oceanic crust into the upper mantle, where dehydration reactions release aqueous fluids and/or hydrous melts. The loci for fluid and/or melt generation will be determined by the intersection of dehydration reaction boundaries of primary hydrous minerals within the subducted lithosphere with slab geotherms. For metabasalt of the oceanic crust, amphibole is the dominant hydrous mineral. The dehydration melting solidus, vapor-absent melting phase relationships; and amphibole-out phase boundary for a number of natural metabasalts have been determined experimentally, and the pressure-temperature conditions of each of these appear to be dependent on bulk composition. Whether or not the dehydration of amphibole is a fluid-generating or partial melting reaction depends on a number of factors specific to a given subduction zone, such as age and thickness of the subducting oceanic lithosphere, the rate of convergence, and the maturity of the subduction zone. In general, subduction of young, hot oceanic lithosphere will result in partial melting of metabasalt of the oceanic crust within the garnet stability field; these melts are characteristically high-Al2O3 trondhjemites, tonalites and dacites. The presence of residual garnet during partial melting imparts a distinctive trace element signature (e.g., high La/Yb, high Sr/Y and Cr/Y combined with low Cr and Y contents relative to demonstrably mantle-derived arc magmas). Water in eclogitized, subducted basalt of the oceanic crust is therefore strongly partitioned into melts generated below about 3.5 GPa in 'hot' subduction zones. Although phase equilibria experiments relevant to 'cold' subduction of hydrated natural basalts are underway in a number of high-pressure laboratories, little is known with respect to the stability of more exotic hydrous minerals (e.g., ellenbergite) and the potential for oceanic crust (including metasediments) to transport water deeper into the mantle.
Churkin, M.; McKee, E.H.
1974-01-01
The seismic profile of the crust of the northern part of the Basin and Range province by its thinness and layering is intermediate between typical continental and oceanic crust and resembles that of marginal ocean basins, especially those with thick sedimentary fill. The geologic history of the Great Basin indicates that it was the site of a succession of marginal ocean basins opening and closing behind volcanic arcs during much of Paleozoic time. A long process of sedimentation and deformation followed throughout the Mesozoic modifying, but possibly not completely transforming the originally oceanic crust to continental crust. In the Cenozoic, after at least 40 m.y. of quiescence and stable conditions, substantial crustal and upper-mantle changes are recorded by elevation of the entire region in isostatic equilibrium, crustal extension resulting in Basin and Range faulting, extensive volcanism, high heat flow and a low-velocity mantle. These phenomena, apparently the result of plate tectonics, are superimposed on the inherited subcontinental crust that developed from an oceanic origin in Paleozoic time and possibly retained some of its thin and layered characteristics. The present anomalous crust in the Great Basin represents an accretion of oceanic geosynclinal material to a Precambrian continental nucleus apparently as an intermediate step in the process of conversion of oceanic crust into a stable continental landmass or craton. ?? 1974.
NASA Astrophysics Data System (ADS)
Ambos, E. L.; Hussong, D. M.
1986-02-01
A high quality seismic refraction data set was collected near the intersection of the tranform portion of the Oceanographer Fracture Zone (OFZ) with the adjacent northern limb of the Mid-Atlantic Ridge spreading center (MAR). One seismic line was shot down the axis of the transform valley. Another was shot parallel to the spreading center, crossing from normal oceanic crust into the transform valley, and out again. This latter line was recorded by four Ocean Bottom Seismometers (OBSs) spaced along its length, providing complete reversed coverage over the crucial transform valley zone. Findings indicate that whereas the crust of the transform valley is only slightly thinner (4.5 km) compared to normal oceanic crust (5-8 km), the structure is different. Velocities in the range of 6.9 to 7.7. km/sec, which are characteristics of seismic layer 3B, are absent, although a substantial thickness (approximately 3 km) of 6.1-6.8 km/sec material does appear to be present. The upper crust, some 2 km in thickness, is characterized by a high velocity gradient (1.5 sec -1) in which veloxity increases from 2.7 km/sec at the seafloor to 5.8 km/sec at the base of the section. A centrally-located deep of the transform valley has thinner crust (1-2 km), whereas the crust gradually thickens past the transform valley-spreading center intersection. Analysis of the seismic line crossing sub-perpendicular to the transform valley demonstrates abrupt thinning of the upper crustal section, and thickening of the lower crust outside of the trasform valley. In addition, high-velocity material seems to occur under the valley flanks, particularly the southern flanking ridge. This ridge, which is on the side of the transform opposite to the intersection of spreading ridge and transform, may be an expression of uplifted, partially serpentinized upper mantle rocks.
NASA Astrophysics Data System (ADS)
Wanless, V. D.; Behn, M. D.
2015-12-01
The depth and distribution of crystallization at mid-ocean ridges controls the overall architecture of the oceanic crust, influences hydrothermal circulation, and determines geothermal gradients in the crust and uppermost mantle. Despite this, there is no overall consensus on how crystallization is distributed within the crust/upper mantle or how this varies with spreading rate. Here, we examine crustal accretion at mid-ocean ridges by combining crystallization pressures calculated from major element barometers on mid-ocean ridge basalt (MORB) glasses with vapor-saturation pressures from melt inclusions to produce a detailed map of crystallization depths and distributions along the global ridge system. We calculate pressures of crystallization from >11,500 MORB glasses from the global ridge system using two established major element barometers (1,2). Additionally, we use vapor-saturation pressures from >400 olivine-hosted melt inclusions from five ridges with variable spreading rates to constrain pressures and distributions of crystallization along the global ridge system. We show that (i) crystallization depths from MORB glasses increase and become less focused with decreasing spreading rate, (ii) maximum glass pressures are greater than the maximum melt inclusion pressure, which indicates that the melt inclusions do not record the deepest crystallization at mid-ocean ridges, and (iii) crystallization occurs in the lower crust/upper mantle at all ridges, indicating accretion is distributed throughout the crust at all spreading rates, including those with a steady-state magma lens. Finally, we suggest that the remarkably similar maximum vapor-saturation pressures (~ 3000 bars) in melt inclusion from all spreading rates reflects the CO2 content of the depleted upper mantle feeding the global mid-ocean ridge system. (1) Michael, P. & W. Cornell (1998), Journal of Geophysical Research, 103(B8), 18325-18356; (2) Herzberg, C. (2004), Journal of Petrology, 45(12), 2389.
NASA Astrophysics Data System (ADS)
Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.; Zhang, L.
2016-12-01
Faults and fracture networks within the oceanic crust influence the pattern of hydrothermal circulation. This circulation changes the primary composition and structure of the crust as it evolves, particularly the upper crust (layer 2), through the secondary alteration of minerals and the infilling and 'sealing' of cracks. Processes influencing the extent and the depth within the crust of these changes are currently not well known. Alteration can be quantified by observing changes in the seismic velocity structure of the crust, and analysis of seismic anisotropy within the upper crust reveals the nature of ridge-parallel aligned faults and fractures. Here we show a 3D P-wave velocity model and anisotropy maps for 5.9 Ma crust at ODP borehole 504B, situated 200 km south of the Costa Rica Rift, derived from an active-source wide-angle seismic survey in the Panama Basin conducted in 2015. The seismic structure reveals relatively homogeneous, 5 km thick oceanic crust with upper crustal velocity boundaries occurring coincident with alteration fronts observed in 504B. Correlations between basement topography, velocity anomaly and anisotropy indicate that a distinct relationship between hydrothermal alteration, basement ridges, fractures, and the velocity structure of layer 2 exists in this location. A significant difference is seen in the velocity and anisotropic structure between regions to the east and west of the borehole, that correlates with patterns in heat flow observations and indicates that: 1) these two regions of crust have inherited differences in crustal fabric during accretion; and/or 2) different regimes of hydrothermal circulation have been active in each part of the crust as they have aged. This research is part of a major, interdisciplinary NERC-funded research collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).
NASA Astrophysics Data System (ADS)
Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi
2018-02-01
The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.
NASA Astrophysics Data System (ADS)
Horst, A. J.; Karson, J. A.; Varga, R. J.; Gee, J. S.
2007-12-01
Models of the internal structure of oceanic crust have been constructed from studies of ophiolites and from more recent observations of tectonic windows into the upper crust. Spreading rate and/or magma supply are the central variables that control ridge processes and the ultimate architecture of ocean crust. In addition to ophiolites, Iceland also provides an important analog to study mid-ocean ridge processes and structure. Flexure zones in Iceland characterize the structure of Tertiary-Recent lava flows, and are areas wherein lavas dip regionally inward toward the axis of one of several ~N/S-trending rift zones. These rift zones are interpreted to represent fossil spreading centers which were abandoned during a series of eastward-directed ridge jumps. In the Hildará area, north-central Iceland, the eastern side of a regional flexure is characterized by westward-dipping lavas, approximately 6-8 Ma, which are cut by east-dipping normal faults and dikes. The upper-crustal structure within this flexure zone from slow spread (~20 mm/yr) crust exhibits remarkable similarities to the structure of the upper crust created at a fast-spreading (110 mm/yr) segment of the East Pacific Rise (EPR) observed at Hess Deep. In this modern ocean setting, ~1 Ma crust is characterized by west-dipping lavas above consistently east-dipping (away from the EPR) dikes and dike-subparallel fault zones. In both locations, paleomagnetic and structural data indicate that west-dipping lavas and east-dipping dikes result from tectonic rotations. In addition, cross-cutting dike relationships demonstrate that dike intrusion occurred both during and after normal fault- related tilting. These data indicate that fault-controlled tilting was initiated within the narrow neovolcanic zone of the ridge and is not associated with off-axis processes. Lavas at magmatically robust ridges commonly flow away from elevated ridge-crests. Measurement of anisotropy of magnetic susceptibility (AMS) of the lavas from the flexure in Iceland suggests a mean flow direction to the northeast, that is, away from the fossil-ridge axis, demonstrating that the fossil spreading center from which the lavas were extruded was located to the west. Despite the distinct differences in spreading rates, the high magma supply in both environments resulted in a very similar upper crustal architecture.
Bending-related faulting and mantle serpentinization at the Middle America trench.
Ranero, C R; Morgan, J Phipps; McIntosh, K; Reichert, C
2003-09-25
The dehydration of subducting oceanic crust and upper mantle has been inferred both to promote the partial melting leading to arc magmatism and to induce intraslab intermediate-depth earthquakes, at depths of 50-300 km. Yet there is still no consensus about how slab hydration occurs or where and how much chemically bound water is stored within the crust and mantle of the incoming plate. Here we document that bending-related faulting of the incoming plate at the Middle America trench creates a pervasive tectonic fabric that cuts across the crust, penetrating deep into the mantle. Faulting is active across the entire ocean trench slope, promoting hydration of the cold crust and upper mantle surrounding these deep active faults. The along-strike length and depth of penetration of these faults are also similar to the dimensions of the rupture area of intermediate-depth earthquakes.
NASA Astrophysics Data System (ADS)
Kardell, D. A.; Christeson, G. L.; Reece, R.; Carlson, R. L.
2017-12-01
The upper section of oceanic crust (layer 2A) commonly exhibits relatively low seismic velocities due to abundant pore and crack space created by the extrusive emplacement of magma and extensional faulting at the spreading ridge. While this is generally true for all spreading rates, previous studies have shown that slow seafloor spreading can yield much higher levels of upper crustal heterogeneity than observed for faster spreading rates. We use a recent multichannel seismic dataset collected with a 12.5 km streamer during the CREST cruise (Crustal Reflectivity Experiment Southern Transect) to build eleven 60-80 km-long tomographic velocity models. These two-dimensional models include both ridge-normal and ridge-parallel orientations and cover oceanic crust produced at slow to intermediate spreading rates. Crustal ages range between 0 and 70 m.y., spreading rates range between slow-spreading and intermediate-spreading, and sedimentary cover thickness ranges from 0 m close to the spreading center to 500 m proximal to the Rio Grande Rise. Our results show a trend of increasing layer 2A velocities with age out to the midpoint of the seismic transect. There is a rapid increase in velocities from 2.8 km/s near the ridge to 4.3 km/s around 10 Ma, and a slower increase to velocities around 5 km/s in 37 m.y. old crust. While this indicates an ongoing evolution in oceanic crust older than expected, the velocities do level off in the older half of the transect, averaging 5 km/s. Crust covered by a thicker sedimentary section can exhibit velocities up to 1 km/s faster than adjacent non-sedimented crust, accounting for much of the local variations. This is possibly due to the effects of a sealed hydrothermal system. We also observe a more heterogeneous velocity structure parallel to the ridge than in the ridge-normal orientation, and more velocity heterogeneity for slow-spreading crust compared to intermediate-spreading crust.
Deep structure of the Santos Basin-São Paulo Plateau System, SE Brazil
NASA Astrophysics Data System (ADS)
Evain, Mikael; Afilhado, Alexandra; Rigoti, Caesar; Loureiro, Afonso; Alves, Daniela; Klingelhoefer, Frauke; Schnurle, Philippe; Feld, Aurelie; Fuck, Reinhardt; Soares, Jose; Vinicius de Lima, Marcus; Corela, Carlos; Matias, Luis; Benabdellouahed, Massinissa; Baltzer, Agnes; Rabineau, Marina; Viana, Adriano; Moulin, Maryline; Aslanian, Daniel
2015-04-01
The structure and nature of the crust underlying the Santos Basin-São Paulo Plateau System (SSPS), in the SE Brazilian margin, is discussed based on five wide-angle seismic profiles acquired during the SanBa experiment in 2011. Velocity models allow us to precisely divide the SSPS in six domains from unthinned continental crust (Domain CC) to normal oceanic crust (Domain OC). A seventh domain (Domain D), a triangular shape region in the SE of the SSPS, is discussed by [Klingelhoefer et al., GJI, 2014]. Beneath the continental shelf, a ~100 km wide necking zone (Domain N) is imaged where continental crust thins abruptly from ~40 km to less than 15 km. Toward the ocean, most of the SSPS (Domain A and C) shows velocity ranges, velocity gradients and a Moho interface characteristic of thinned continental crust. The central domain (Domain B) has, however, a very heterogeneous structure. While its southwestern part still exhibits extremely thinned (7 km) continental crust, its northeastern part depicts a 2-4 km thick upper layer (6.0-6.5 km/s) overlying an anomalous velocity layer (7.0-7.8 km/s) and no evidence of a Moho interface. This structure is interpreted as atypical oceanic crust, exhumed lower crust or upper continental crust intruded by mafic material, overlying either altered mantle in the first two cases or intruded lower continental crust in the last case. The v-shaped structuration in this central domain confirms an initial episode of rifting within the SSPS oblique to the general opening direction of the South Atlantic central segment.
NASA Astrophysics Data System (ADS)
Bécel, Anne; Shillington, Donna J.; Nedimović, Mladen R.; Webb, Spahr C.; Kuehn, Harold
2015-08-01
Multi-channel seismic (MCS) reflection profiles across the Pacific Plate south of the Alaska Peninsula reveal the internal structure of mature oceanic crust (48-56 Ma) formed at fast to intermediate spreading rates during and after a major plate re-organization. Oceanic crust formed at fast spreading rates (half spreading rate ∼ 74 mm /yr) has smoother basement topography, thinner sediment cover with less faulting, and an igneous section that is at least 1 km thicker than crust formed at intermediate spreading rates (half spreading rate ∼ 28- 34 mm /yr). MCS data across fast-spreading oceanic crust formed during plate re-organization contain abundant bright reflections, mostly confined to the lower crust above a highly reflective Moho transition zone, which has a reflection coefficient (RC) of ∼0.1. The lower crustal events dip predominantly toward the paleo-ridge axis at ∼10-30°. Reflections are also imaged in the uppermost mantle, which primarily dip away from the ridge at ∼10-25°, the opposite direction to those observed in the lower crust. Dipping events in both the lower crust and upper mantle are absent on profiles acquired across the oceanic crust formed at intermediate spreading rates emplaced after plate re-organization, where a Moho reflection is weak or absent. Our preferred interpretation is that the imaged lower crustal dipping reflections within the fast spread crust arise from shear zones that form near the spreading center in the region characterized by interstitial melt. The abundance and reflection amplitude strength of these events (RC ∼ 0.15) can be explained by a combination of solidified melt that was segregated within the shear structures, mylonitization of the shear zones, and crystal alignment, all of which can result in anisotropy and constructive signal interference. Formation of shear zones with this geometry requires differential motion between the crust and upper mantle, where the upper mantle moves away from the ridge faster than the crust. Active asthenospheric upwelling is one possible explanation for these conditions. The other possible interpretation is that lower crustal reflections are caused by magmatic (mafic/ultramafic) layering associated with accretion from a central mid-crustal magma chamber. Considering that the lower crustal dipping events have only been imaged in regions that have experienced plate re-organizations associated with ridge jumps or rift propagation, we speculate that locally enhanced mantle flow associated with these settings may lead to differential motion between the crust and the uppermost mantle, and therefore to shearing in the ductile lower crust or, alternatively, that plate reorganization could produce magmatic pulses which may lead to mafic/ultramafic banding.
Crustal shear velocity structure in the Southern Lau Basin constrained by seafloor compliance
NASA Astrophysics Data System (ADS)
Zha, Yang; Webb, Spahr C.
2016-05-01
Seafloor morphology and crustal structure vary significantly in the Lau back-arc basin, which contains regions of island arc formation, rifting, and seafloor spreading. We analyze seafloor compliance: deformation under long period ocean wave forcing, at 30 ocean bottom seismometers to constrain crustal shear wave velocity structure along and across the Eastern Lau Spreading Center (ELSC). Velocity models obtained through Monte Carlo inversion of compliance data show systematic variation of crustal structure in the basin. Sediment thicknesses range from zero thickness at the ridge axis to 1400 m near the volcanic arc. Sediment thickness increases faster to the east than to the west of the ELSC, suggesting a more abundant source of sediment near the active arc volcanoes. Along the ELSC, upper crustal velocities increase from the south to the north where the ridge has migrated farther away from the volcanic arc front. Along the axial ELSC, compliance analysis did not detect a crustal low-velocity body, indicating less melt in the ELSC crustal accretion zone compared to the fast spreading East Pacific Rise. Average upper crust shear velocities for the older ELSC crust produced when the ridge was near the volcanic arc are 0.5-0.8 km/s slower than crust produced at the present-day northern ELSC, consistent with a more porous extrusive layer. Crust in the western Lau Basin, which although thought to have been produced through extension and rifting of old arc crust, is found to have upper crustal velocities similar to older oceanic crust produced at the ELSC.
NASA Astrophysics Data System (ADS)
Dick, H.; Natland, J.
2003-04-01
No. With few exceptions, lower ocean crust sampled by dredge or submersible in tectonic windows such as Atlantis Bank in the Indian Ocean or the MARK area on the Mid-Atlantic Ridge are not representative of the ocean crust. They represent tectonic mixing of rocks from the mantle and crust on large faults that also localize late magmatic intrusion. Where this can be sorted out, the in-situ crustal sections may generally represent a sub-horizontal cross-section through the lower crust and mantle and not a vertical one. The gabbroic rocks exposed represent largely high-level intrusions, highly hybridized by late melt flow along deep faults, or highly evolved gabbro at the distal ends of larger intrusions emplaced into the mantle near transforms. Oceanic gabbros have average compositions that lie outside the range of primary MORB compositions, and rarely are equivalent to spatially associated MORB either as a parent to, or as a residue of their crystallization. Oceanic gabbros sampled from these complexes generally are very coarse-grained, and are unlike those seen in nearly all ophiolites and layered intrusions. In addition, there are few exposures of gabbro and lower ocean crust and mantle in Pacific tectonic windows, though there the possibility of more representative sections is greater due to their exposure in propagating rifts. Limited samples of the mantle from near the midpoints of ocean ridge segments at slow-spreading rifts are from anomalous crustal environments such as ultra-slow spreading ridges or failed rifts. These include abundant dunites, as opposed to samples from fracture zones, which contain only about 1% dunite. While this indicates focused mantle flow towards the midpoint of a ridge, it also shows that fracture zone peridotites are not fully representative of the oceanic upper mantle. Major classes of rocks common in ophiolites, such as fine to medium grained layered primitive olivine gabbros, troctolites, wherlites and dunites, sheeted dikes, and epidosites are rarely or even not exposed. Models of lower ocean crust stratigraphy drawn from deep sea sampling, certainly from slow spreading ridges, do not match those for major intact ophiolites. Thus the ophiolite hypothesis remains unconfirmed for the lower ocean crust and shallow mantle, and it is nearly impossible to accurately identify the ocean ridge environment of any one ophiolite. The one deep drill hole that exists in lower ocean crust, 1.5 km Hole 735B, has a bulk composition too fractionated to mass balance MORB back to a primary mantle melt composition. Thus, a large mass of primitive cumulates is missing and could be situated in the crust below the base of the hole or in the underlying mantle. This is an unresolved question that is critical to understanding the evolution of the most common magma on earth: MORB. Since lower ocean crust and mantle represent a major portion of the crust and the exchange of mass, heat and volatiles from the earth's interior to its exterior this leaves a major hole in our understanding of the global geochemical and tectonic cycle which can only be filled by deep drilling.
Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments
NASA Technical Reports Server (NTRS)
Rapp, J. F.; Draper, D. S.
2015-01-01
The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP
NASA Technical Reports Server (NTRS)
Ihnen, S. M.; Whitcomb, J. H.
1983-01-01
The broad gravity low in the equatorial Indian Ocean south of Sri Lanka is the largest and most striking feature in the gravitational field of the earth. The most negative long-wavelength free-air gravity anomalies are found there and the sea surface (geoid) lies more than 100 meters below the best fitting ellipsoid. A model of the lithosphere and upper mantle is proposed which accurately predicts the observed free-air gravity and geoid elevation. This model is consistent with bathymetry and sediment thickness data and suggests that the crust south of India currently floats as much as 600 meters lower than would be expected if the region were isostatically compensated. This residual depression of the crust is apparently confirmed by observations of ocean depth. An uncompensated depression is consistent with the presence of a mechanical wake left in the upper mantle behind India as it traveled toward Asia.
Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.
2015-01-01
The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212
NASA Astrophysics Data System (ADS)
Peucat, J. J.; Vidal, Ph.; Godard, G.; Postaire, B.
1982-08-01
U-Pb zircon ages have been determined for two eclogites from the Vendée and for two garnet pyroxenites from the Baie d'Audierne. In an episodic Pb loss model, the two discordia would give upper intercept ages around 1300-1250 Ma and lower intercepts ages of 436-384 Ma. Two interpretations are proposed: (1) The 1250-1300 Ma ages may reflect an unspecified upper mantle event or process; the Paleozoic ages correspond to the tectonic emplacement of an eclogitic mantle fragment into the continental crust. (2) The protolith may have been extracted from the upper mantle 1250-1300 Ma ago and stored in a crustal environment until it was metamorphosed under high-pressure conditions around 400 Ma ago. This latter model is favoured by available geologic and isotopic data. Consequently, we propose that a 1300 Ma old oceanic crust was tectonicly incorporated into a sialic basement during the Proterozoic. This mixture was subsequently subducted during the Paleozoic.
An IODP proposal to drill the Godzilla Megamullion as a step to Mohole
NASA Astrophysics Data System (ADS)
Ohara, Y.; Michibayashi, K.; Dick, H. J. B.; Snow, J. E.; Ono, S.
2017-12-01
The year 2017 represents the 60th anniversary of the "original" project Mohole, which was coined by Walter Munk in 1957. Although the project Mohole has not yet been realized, the hard-rock community is now striving hard to understand the upper mantle in a variety of ways. Firstly, the present-day project Mohole, M2M (Moho-to-Mantle) project, will move forward in this September, conducting multi-channel seismic profiling off Hawaii as a site survey. Oman Drilling Project has started last December, and the drilled cores are being described aboard D/V Chikyu from July, this year. Furthermore, the forearc M2M proposal to drill the Bonin Trench forearc mantle was submitted to IODP in April 2016. Being a part of these efforts, we are preparing an IODP proposal to drill the Godzilla Megamullion, the largest known oceanic core complex on the Earth, located in the Parece Vela Basin in the Philippine Sea. A significant fraction of the ocean floor is created in backarc basins, while there have been no single long core of backarc basin lower ocean crust, from which to understand the likely differences in magmatic evolution and crustal structure in this key setting. The opportunity to explore the formation of the backarc basin lower crust and upper mantle is, therefore, an important contribution to understanding the ocean basins. At the same time, a better understanding of the architecture of backarc basin lower crust and upper mantle will greatly aid in the interpretation of the results of ophiolite study, since much of our understanding of the architecture of oceanic lower crust and upper mantle comes from ophiolites, most of which are thought to have at least some arc and/or backarc component. The Godzilla Megamullion is unique in its huge size as well as its development in a backarc basin, a rare tectonic window to study backarc basin lithosphere. The Godzilla Megamullion is prepared for full drilling proposal, with complete bathymetric data, multiple bottom samplings, and multi-channel seismic profilings as well as P-wave velocity structures. We will propose substantial riserless drilling at Godzilla Megamullion that will provide an excellent opportunity to understand backarc basin lower crust and upper mantle. In this contribution, we will make use of this opportunity to share the general scheme of the proposal with the community.
NASA Astrophysics Data System (ADS)
Barantsrva, O.
2014-12-01
We present a preliminary analysis of the crustal and upper mantle structure for off-shore regions in the North Atlantic and Arctic oceans. These regions have anomalous oceanic lithosphere: the upper mantle of the North Atlantic ocean is affected by the Iceland plume, while the Arctic ocean has some of the slowest spreading rates. Our specific goal is to constrain the density structure of the upper mantle in order to understand the links between the deep lithosphere dynamics, ocean spreading, ocean floor bathymetry, heat flow and structure of the oceanic lithosphere in the regions where classical models of evolution of the oceanic lithosphere may not be valid. The major focus is on the oceanic lithosphere, but the Arctic shelves with a sufficient data coverage are also included into the analysis. Out major interest is the density structure of the upper mantle, and the analysis is based on the interpretation of GOCE satellite gravity data. To separate gravity anomalies caused by subcrustal anomalous masses, the gravitational effect of water, crust and the deep mantle is removed from the observed gravity field. For bathymetry we use the global NOAA database ETOPO1. The crustal correction to gravity is based on two crustal models: (1) global model CRUST1.0 (Laske, 2013) and, for a comparison, (2) a regional seismic model EUNAseis (Artemieva and Thybo, 2013). The crustal density structure required for the crustal correction is constrained from Vp data. Previous studies have shown that a large range of density values corresponds to any Vp value. To overcome this problem and to reduce uncertainty associated with the velocity-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007), and apply different Vp-density conversions for different parts of the region. We present preliminary results, which we use to examine factors that control variations in bathymetry, sedimentary and crustal thicknesses in these anomalous oceanic domains.
Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc
NASA Astrophysics Data System (ADS)
Freymuth, Heye; Vils, Flurin; Willbold, Matthias; Taylor, Rex N.; Elliott, Tim
2015-12-01
The fate of crustal material recycled into the convecting mantle by plate tectonics is important for understanding the chemical and physical evolution of the planet. Marked isotopic variability of Mo at the Earth's surface offers the promise of providing distinctive signatures of such recycled material. However, characterisation of the behaviour of Mo during subduction is needed to assess the potential of Mo isotope ratios as tracers for global geochemical cycles. Here we present Mo isotope data for input and output components of the archetypical Mariana arc: Mariana arc lavas, sediments from ODP Sites 800, 801 and 802 near the Mariana trench and the altered mafic, oceanic crust (AOC), from ODP Site 801, together with samples of the deeper oceanic crust from ODP Site 1256. We also report new high precision Pb isotope data for the Mariana arc lavas and a dataset of Pb isotope ratios from sediments from ODP Sites 800, 801 and 802. The Mariana arc lavas are enriched in Mo compared to elements of similar incompatibility during upper mantle melting, and have distinct, isotopically heavy Mo (high 98Mo/95Mo) relative to the upper mantle, by up to 0.3 parts per thousand. In contrast, the various subducting sediment lithologies dominantly host isotopically light Mo. Coupled Pb and Mo enrichment in the Mariana arc lavas suggests a common source for these elements and we further use Pb isotopes to identify the origin of the isotopically heavy Mo. We infer that an aqueous fluid component with elevated [Mo], [Pb], high 98Mo/95Mo and unradiogenic Pb is derived from the subducting, mafic oceanic crust. Although the top few hundred metres of the subducting, mafic crust have a high 98Mo/95Mo, as a result of seawater alteration, tightly defined Pb isotope arrays of the Mariana arc lavas extrapolate to a fluid component akin to fresh Pacific mid-ocean ridge basalts. This argues against a flux dominantly derived from the highly altered, uppermost mafic crust or indeed from an Indian-like mantle wedge. Thus we infer that the Pb and Mo budgets of the fluid component are dominated by contributions from the deeper, less altered (cooler) portion of the subducting Pacific crust. The high 98Mo/95Mo of this flux is likely caused by isotopic fractionation during dehydration and fluid flow in the slab. As a result, the residual mafic crust becomes isotopically lighter than the upper mantle from which it was derived. Our results suggest that the continental crust produced by arc magmatism should have an isotopically heavy Mo composition compared to the mantle, whilst a contribution of deep recycled oceanic crust to the sources of some ocean island basalts might be evident from an isotopically light Mo signature.
A numerical investigation of continental collision styles
NASA Astrophysics Data System (ADS)
Ghazian, Reza Khabbaz; Buiter, Susanne J. H.
2013-06-01
Continental collision after closure of an ocean can lead to different deformation styles: subduction of continental crust and lithosphere, lithospheric thickening, folding of the unsubducted continents, Rayleigh-Taylor (RT) instabilities and/or slab break-off. We use 2-D thermomechanical models of oceanic subduction followed by continental collision to investigate the sensitivity of these collision styles to driving velocity, crustal and lithospheric temperature, continental rheology and the initial density difference between the oceanic lithosphere and the asthenosphere. We find that these parameters influence the collision system, but that driving velocity, rheology and lithospheric (rather than Moho and mantle) temperature can be classified as important controls, whereas reasonable variations in the initial density contrast between oceanic lithosphere and asthenosphere are not necessarily important. Stable continental subduction occurs over a relatively large range of values of driving velocity and lithospheric temperature. Fast and cold systems are more likely to show folding, whereas slow and warm systems can experience RT-type dripping. Our results show that a continent with a strong upper crust can experience subduction of the entire crust and is more likely to fold. Accretion of the upper crust at the trench is feasible when the upper crust has a moderate to weak strength, whereas the entire crust can be scraped-off in the case of a weak lower crust. We also illustrate that weakening of the lithospheric mantle promotes RT-type of dripping in a collision system. We use a dynamic collision model, in which collision is driven by slab pull only, to illustrate that adjacent plates can play an important role in continental collision systems. In dynamic collision models, exhumation of subducted continental material and sediments is triggered by slab retreat and opening of a subduction channel, which allows upward flow of buoyant materials. Exhumation continues after slab break-off by reverse motion of the subducting plate (`eduction') caused by the reduced slab pull. We illustrate how a simple force balance of slab pull, slab push, slab bending, viscous resistance and buoyancy can explain the different collision styles caused by variations in velocity, temperature, rheology, density differences and the interaction with adjacent plates.
The provenance of low-calcic black shales
NASA Astrophysics Data System (ADS)
Quinby-Hunt, M. S.; Wilde, P.
1991-04-01
The elemental concentration of sedimentary rocks depends on the varying reactivity of each element as it goes from the source through weathering, deposition, diagenesis, lithification, and even low rank metamorphism. However, non-reactive components of detrital particles ideally are characteristic of the original igneous source and thus are useful in provenance studies. To determine the source of detrital granitic and volcanic components of low-calcic (<1% CaCO3) marine black shales, the concentrations of apparently non-reactive (i.e. unaffected by diagenetic, redox and/or low-rank metamorphic processes) trace elements were examined using standard trace element discrimination diagrams developed for igneous rocks. The chemical data was obtained by neutron activation analyses of about 200 stratigraphically well-documented black shale samples from the Cambrian through the Jurassic. A La-Th-Sc ternary diagram distinguishes among contributions from the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). All the low-calcic black shales cluster within the region of the upper crust. Th-Hf-Co ternary diagrams also are commonly used to distinguish among the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). As Co is redox sensitive in black shale environments, it was necessary to substitute an immobile element (i.e. example Rb) in the diagram. With this substitution of black shales all cluster in the region of the upper continental crust. To determine the provenance of the granitic component (Pearce et al. 1984), plots of Ta vs Yb and Rb vs Yb + Ta shows a cluster at the junction of the boundaries separating the volcanic arc granite (VAG), syn-collision granite (syn-COLG), and within-plate granite (WPG) fields. The majority fall within the VAG field. There are no occurrences of ocean ridge granite (ORG). The minimal contribution of basalts to marine black shales is confirmed by the ternary Wood diagram Th-Hf/3-Ta (Wood et al. 1979). The black shales plot in a cluster in a high Th region outside the various basalt fields, which suggests contribution from the continental crust.
Magnetization of lower oceanic crust and upper mantle
NASA Astrophysics Data System (ADS)
Kikawa, E.
2004-05-01
The location of the magnetized rocks of the oceanic crust that are responsible for sea-floor spreading magnetic anomalies has been a long-standing problem in geophysics. The recognition of these anomalies was a key stone in the development of the theory of plate tectonics. Our present concept of oceanic crustal magnetization is much more complex than the original, uniformly magnetized model of Vine-Matthews-Morley Hypothesis. Magnetic inversion studies indicated that the upper oceanic extrusive layer (Layer 2A of 0.5km thick) was the only magnetic layer and that it was not necessary to postulate any contribution from deeper parts of oceanic crust. Direct measurements of the magnetic properties of the rocks recovered from the sea floor, however, have shown that the magnetization of Layer 2A, together with the observations that this layer could record geomagnetic field reversals within a vertical section, is insufficient to give the required size of observed magnetic anomalies and that some contribution from lower intrusive rocks is necessary. Magnetization of oceanic intrusive rocks were observed to be reasonably high enough to contribute to sea-floor spreading magnetic anomalies, but were considered somewhat equivocal until late 1980Os, in part because studies had been conducted on unoriented dredged and ophiolite samples and on intermittent DSDP/ODP cores. Since ODP Leg 118 that cored and recovered continuous 500m of oceanic intrusive layer at Site 735B, Southwest Indian Ridge with an extremely high recovery of 87 percent, there have been several ODP Legs (legs 147, 153, 176, 179 and 209) that were devoted to drilling gabbroic rocks and peridotites. In terms of the magnetization intensities, all of the results obtained from these ODP Legs were supportive of the model that a significant contribution must come from gabbros and peridotites and the source of the lineated magnetic anomalies must reside in most of the oceanic crust as well as crust-mantle boundary. However, it would be wise to note that similar to upper extrusive layer, geomagnetic field reversals were observed for Leg 153 gabbros and that process of magnetization acquisition of mantle peridotites still remains unclear, though we believe mantle peridotites acquire CRM with the formation of magnetite during the process of serpentinization near the ridge axis.
NASA Astrophysics Data System (ADS)
Tominaga, M.
2010-12-01
Understanding the detailed architecture of the upper ocean crust is one of the key components to advance our knowledge on numerous events occurring in the oceanic lithosphere from spreading ridges to subduction zones. Studies on crustal characterization are limited to either the crustal or hand-specimen scales so far, and little has been done at centimeter - meter scale, which potentially ties those two end-member prospects. The lack of this scale is due mainly to the difficulties in direct sampling and the limited resolution of geophysical experiments; as a consequence, critical questions remain unanswered, e.g., what does the cross-section of actual ocean crust look like and what does it tell us?; where exactly in the lithosphere does fluid exist and promote the deep hydration and biosphere?; to what extent do we average out the heterogeneity in the crustal properties depending on the scale? Ocean Drilling Program (ODP) Hole 1256D is located at the 15 Ma super-fast spreading Cocos Plate and the first drilled hole that successfully penetrate through the intact upper ocean crust. Coring in the Hole 1256D basement is suffered from the low core recovery rates (~ 32 %) and the origins of recovered cores are mostly biased toward formations with minimal fractures. Wire-line logging in this hole becomes, thus, extremely useful for both the physical and chemical characterization of the crust. In particular, Formation MicroScanner (FMS) data acquired from multiple paths during three drilling expeditions have unprecedented lateral coverage of the borehole wall. The FMS images are the first realization of the cross-section of in situ architecture of the intact upper ocean crust with a centimeter-meter scale resolution. A lithostratigraphy model is reconstructed by integrating the analyses on FMS electrofacies, other physical property logs, and recovered cores. The new lithostratigraphy reveals that nearly 50 % of the in situ lithofacies in the Hole 1256D crust consists of either breccias or highly fractured lava flows, inferring that the shipboard stratigraphy with mostly massive flows is inaccurate. The meticulously deciphered lava morphology tie the lava deposition history in Hole 1256D to the East Pacific Rise surface volcanology, and with this, the upper ocean crustal construction processes in the Hole 1256D crust, from the spreading axis to the abyssal plain, can be proposed. Furthermore, the vacancy in the crustal matrix, where water and minerals can be stored and microbes can exist, is determined from the FMS images. The distribution and areas of the surface void calculated by ImageJ image processor reveals that the visible void in the 1256D crust vary 10 to 60 % depending on lithofacies, with the average of 37 %. This downhole distribution of the void areas also shows the positive correlation with previously observed lab-based porosity and 1-D sonic-log based fractional porosity data. Further study is in progress on scaling of the porosity structure from hand-specimen to crustal scales in the Hole 1256D crust: from the lab porosity data, to 1D sonic-log, to the areas of surface void detected observed in the FMS images, and ultimately to the vertical seismic experiments.
NASA Astrophysics Data System (ADS)
Gawlick, Hans-Jürgen; Djerić, Nevenka; Missoni, Sigrid; Bragin, Nikita Yu.; Lein, Richard; Sudar, Milan; Jovanović, Divna
2017-08-01
Oceanic radiolarite components from the Middle Jurassic ophiolitic mélange between Trnava and Rožanstvo in the Zlatibor Mountains (Dinaridic Ophiolite Belt) west of the Drina-Ivanjica unit yield Late Triassic radiolarian ages. The microfacies characteristics of the radiolarites show pure ribbon radiolarites without crinoids or thin-shelled bivalves. Beside their age and the preservation of the radiolarians this points to a deposition of the radiolarites on top of the oceanic crust of the Neo-Tethys, which started to open in the Late Anisian. South of the study area the ophiolitic mélange (Gostilje-Ljubiš-Visoka-Radoševo mélange) contains a mixture of blocks of 1) oceanic crust, 2) Middle and Upper Triassic ribbon radiolarites, and 3) open marine limestones from the continental slope. On the basis of this composition we can conclude that the Upper Triassic radiolarite clasts derive either from 1) the younger parts of the sedimentary succession above the oceanic crust near the continental slope or, more convincingly 2) the sedimentary cover of ophiolites in a higher nappe position, because Upper Triassic ribbon radiolarites are only expected in more distal oceanic areas. The ophiolitic mélange in the study area overlies different carbonate blocks of an underlying carbonate-clastic mélange (Sirogojno mélange). We date and describe three localities with different Upper Triassic radiolarite clasts in a mélange, which occurs A) on top of Upper Triassic fore-reef to reefal limestones (Dachstein reef), B) between an Upper Triassic reefal limestone block and a Lower Carnian reef limestone (Wetterstein reef), and C) in fissures of an Upper Triassic lagoonal to back-reef limestone (Dachstein lagoon). The sedimentary features point to a sedimentary and not to a tectonic emplacement of the ophiolitic mélange (= sedimentary mélange) filling the rough topography of the topmost carbonate-clastic mélange below. The block spectrum of the underlying and slightly older carbonate-clastic mélange points to a deposition of the sedimentary ophiolitic mélange east of or on top of the Drina-Ivanjica unit.
Perk, N.W.; Coogan, L.A.; Karson, J.A.; Klein, E.M.; Hanna, H.D.
2007-01-01
A suite of samples collected from the uppermost part of the plutonic section of the oceanic crust formed at the southern East Pacific Rise and exposed at the Pito Deep has been examined. These rocks were sampled in situ by ROV and lie beneath a complete upper crustal section providing geological context. This is only the second area (after the Hess Deep) in which a substantial depth into the plutonic complex formed at the East Pacific Rise has been sampled in situ and reveals significant spatial heterogeneity in the plutonic complex. In contrast to the uppermost plutonic rocks at Hess Deep, the rocks studied here are generally primitive with olivine forsterite contents mainly between 85 and 88 and including many troctolites. The melt that the majority of the samples crystallized from was aggregated normal mid-ocean ridge basalt (MORB). Despite this high Mg# clinopyroxene is common despite model predictions that clinopyroxene should not reach the liquidus early during low-pressure crystallization of MORB. Stochastic modeling of melt crystallisation at various levels in the crust suggests that it is unlikely that a significant melt mass crystallized in the deeper crust (for example in sills) because this would lead to more evolved shallow level plutonic rocks. Similar to the upper plutonic section at Hess Deep, and in the Oman ophiolite, many samples show a steeply dipping, axis-parallel, magmatic fabric. This suggests that vertical magmatic flow is an important process in the upper part of the seismic low velocity zone beneath fast-spreading ridges. We suggest that both temporal and spatial (along-axis) variability in the magmatic and hydrothermal systems can explain the differences observed between the Hess Deep and Pito Deep plutonics. ?? Springer-Verlag 2007.
NASA Astrophysics Data System (ADS)
Si, H.; Ishikawa, K.; Arai, T.; Ibrahim, R.
2017-12-01
Understanding stress drop related to intraplate earthquakes in the subducting plate is very important for seismic hazard mitigation. In previous studies, Kita et al. (2015) analyzed stress drops for intraplate earthquakes under Hokkaido, Northern Japan, using S-coda wave spectral ratio analysis methods, and found that the stress drop for events occurring more than 10 km beneath the upper surface of the subducting plate (within the oceanic mantle) was larger than the stress drop for events occurring within 10 km of the upper surface of the subducting plate (in the oceanic crust). In this study, we focus on intraplate earthquakes that occur under Tohoku, Northeastern Japan, to determine whether similar stress drop differences may exist between earthquakes occurring within the upper 10 km of the subducting plate (within the oceanic crust) and those occurring deeper than 10 km (within the oceanic mantle), based on spectral inversion analysis of seismic waveforms recorded during the earthquakes. We selected 64 earthquakes with focal depths between 49-76 km and Mw 3.5-5.0 that occurred in the source area of the 2003 Miyagi-ken-oki earthquake (Mw 7.0) (region 1), and 82 earthquakes with focal depths between 49-67 km and Mw 3.5-5.5 in the source area of the 2011 Miyagi- ken-oki earthquake (Mw 7.1) (region 2). Records from the target earthquakes at 24 stations in region 1 and 21 stations in region 2 were used in the analysis. A 5-sec time window following S-wave onset was used for each station record. Borehole records of KiK-net station (MYGH04) was used as a reference station for both regions 1 and 2. We applied the spectral inversion analysis method of Matsunami et al. (2003) separately to regions 1 and 2. Our results show that stress drop generally increases with focal depth and that the stress drop for events occurring deeper than 10 km in the plate (within the oceanic mantle) were larger than the stress drop for events occurring within 10 km of the upper surface of the plate (within the oceanic crust). These results are consistent with previous studies.
The record of mantle heterogeneity preserved in Earth's oceanic crust
NASA Astrophysics Data System (ADS)
Burton, K. W.; Parkinson, I. J.; Schiano, P.; Gannoun, A.; Laubier, M.
2017-12-01
Earth's oceanic crust is produced by melting of the upper mantle where it upwells beneath mid-ocean ridges, and provides a geographically widespread elemental and isotopic `sample' of Earth's mantle. The chemistry of mid-ocean ridge basalts (MORB), therefore, holds key information on the compositional diversity of the upper mantle, but the problem remains that mixing and reaction during melt ascent acts to homogenise the chemical variations they acquire. Nearly all isotope and elemental data obtained thus far are for measurements of MORB glass, and this represents the final melt to crystallise, evolving in an open system. However, the crystals that are present are often not in equilibrium with their glass host. Melts trapped in these minerals indicate that they crystallised from primitive magmas that possess diverse compositions compared to the glass. Therefore, these melt inclusions preserve information on the true extent of the mantle that sources MORB, but are rarely amenable to precise isotope measurement. An alternative approach is to measure the isotope composition of the primitive minerals themselves. Our new isotope data indicates that these minerals crystallised from melts with significantly different isotope compositions to their glass host, pointing to a mantle source that has experienced extreme melt depletion. These primitive minerals largely crystallised in the lower oceanic crust, and our preliminary data for lower crustal rocks and minerals shows that they preserve a remarkable range of isotope compositions. Taken together, these results indicate that the upper mantle sampled by MORB is extremely heterogeneous, reflecting depletion and enrichment over much of Earth's geological history.
NASA Astrophysics Data System (ADS)
Mueller, S.; Koepke, J.; Garbe-Schoenberg, C. D.; Müller, T.; Mock, D.; Strauss, H.; Schuth, S.; Ildefonse, B.
2017-12-01
In the absence of a complete profile through fast-spreading oceanic crust in modern oceans, we established a reference profile through the whole paleocrust of the Sumail Ophiolite (Oman), which is regarded as the best analogue for fast-spreading oceanic crust on land. For establishing a coherent data set, we sampled the Wadi Gideah in the Wadi-Tayin massif from the mantle section up to the pillow basalts and performed different analytical and structural investigations on the same suite of samples (pool sample concept). The whole sample set contains about 400 samples focusing on both primary magmatic rocks and hydrothermal fault zones to characterize initial formation processes and cooling of the crust. The Wadi Gideah hosts the sites GT1A (lower crust) and GT2A (foliated / layered gabbro transition) where 400 m long cores have been drilled in the frame of the ICDP Oman Drilling Project (OmanDP). Thus, the Wadi Gideah crustal transect is well-suited for providing a reference frame for these two drill cores. Major and trace element data on minerals and rocks reveal in-situ crystallization in the deep crust, thus strongly supporting a hybrid accretion model that is characterized by sheeted sill intrusion in the lower part of the plutonic crust and gabbro glacier features in the upper section. This hybrid model is also supported by results on crystallographic preferred orientations (CPO) of the minerals within the gabbros, which call for distinct formation mechanisms in the upper and lower gabbro sections. A requirement for our hybrid model is significant hydrothermal cooling in the lower crust for the consumption of the latent heat of crystallization. This was facilitated by channelled hydrothermal flow zones, preserved today in faulted zones of extensively altered gabbro cutting both layered and foliated gabbros. These gabbros show higher Sr87/Sr86 ratios if compared to the background gabbro, the presence of late stage minerals (amphibole, oxides, orthopyroxene, apatite) and evidence for hydrous partial melting, as consequence of fluid / rock interaction at very high temperatures. Obviously, these fault zones remained active for channelled fluid flow during the entire cooling stage of the oceanic crust down to low-temperature mineral assemblages.
Imaging exhumed lower continental crust in the distal Jequitinhonha basin, Brazil
NASA Astrophysics Data System (ADS)
Loureiro, A.; Schnürle, P.; Klingelhöfer, F.; Afilhado, A.; Pinheiro, J.; Evain, M.; Gallais, F.; Dias, N. A.; Rabineau, M.; Baltzer, A.; Benabdellouahed, M.; Soares, J.; Fuck, R.; Cupertino, J. A.; Viana, A.; Matias, L.; Moulin, M.; Aslanian, D.; Vinicius Aparecido Gomes de Lima, M.; Morvan, L.; Mazé, J. P.; Pierre, D.; Roudaut-Pitel, M.; Rio, I.; Alves, D.; Barros Junior, P.; Biari, Y.; Corela, C.; Crozon, J.; Duarte, J. L.; Ducatel, C.; Falcão, C.; Fernagu, P.; Le Piver, D.; Mokeddem, Z.; Pelleau, P.; Rigoti, C.; Roest, W.; Roudaut, M.; Salsa Team
2018-07-01
Twelve combined wide-angle refraction and coincident multi-channel seismic profiles were acquired in the Jequitinhonha-Camamu-Almada, Jacuípe, and Sergipe-Alagoas basins, NE Brazil, during the SALSA experiment in 2014. Profiles SL11 and SL12 image the Jequitinhonha basin, perpendicularly to the coast, with 15 and 11 four-channel ocean-bottom seismometers, respectively. Profile SL10 runs parallel to the coast, crossing profiles SL11 and SL12, imaging the proximal Jequitinhonha and Almada basins with 17 ocean-bottom seismometers. Forward modelling, combined with pre-stack depth migration to increase the horizontal resolution of the velocity models, indicates that sediment thickness varies between 3.3 km and 6.2 km in the distal basin. Crustal thickness at the western edge of the profiles is of around 20 km, with velocity gradients indicating a continental origin. It decreases to less than 5 km in the distal basin, with high seismic velocities and gradients, not compatible with normal oceanic crust nor exhumed upper mantle. Typical oceanic crust is never imaged along these about 200 km-long profiles and we propose that the transitional crust in the Jequitinhonha basin is a made of exhumed lower continental crust.
Hosford, A.; Tivey, M.; Matsumoto, T.; Dick, H.; Schouten, Hans; Kinoshita, H.
2003-01-01
We analyze geophysical data that extend from 0 to 25-Myr-old seafloor on both flanks of the Southwest Indian Ridge (SWIR). Lineated marine magnetic anomalies are consistent and identifiable within the study area, even over seafloor lacking a basaltic upper crust. The full spreading rate of 14 km/Myr has remained nearly constant since at least 20 Ma, but crustal accretion has been highly asymmetric, with half rates of 8.5 and 5.5 km/Myr on the Antarctic and African flanks, respectively. This asymmetry may be unique to a ???400 km wide corridor between large-offset fracture zones of the SWIR. In contrast to the Mid-Atlantic Ridge, crustal magnetization amplitudes correlate directly with seafloor topography along the present-day rift valleys. This pattern appears to be primarily a function of along-axis variations in crustal thickness, rather than magnetic mineralogy. Off-axis, magnetization amplitudes at paleo-segment ends are more positive than at paleo-segment midpoints, suggesting the presence of an induced component of magnetization within the lower crust or serpentinized upper mantle. Alteration of the magnetic source layer at paleo-segment midpoints reduces magnetization amplitudes by 70-80% within 20 Myr of accretion. Magnetic and Ocean Drilling Program (ODP) Hole 735B data suggest that the lower crust cooled quickly enough to lock in a primary thermoremanent magnetization that is in phase with that of the overlying upper crust. Thus magnetic polarity boundaries within the intrusive lower crust may be steeper than envisioned in prior models of ocean crustal magnetization. As the crust ages, the lower crust becomes increasingly important in preserving marine magnetic stripes.
NASA Astrophysics Data System (ADS)
Wilson, Dean; Peirce, Christine; Hobbs, Richard; Gregory, Emma
2016-04-01
Understanding geothermal heat and mass fluxes through the seafloor is fundamental to the study of the Earth's energy budget. Using geophysical, geological and physical oceanography data we are exploring the interaction between the young oceanic crust and the ocean in the Panama Basin. We acquired a unique geophysical dataset that will allow us to build a comprehensive model of young oceanic crust from the Costa Rica Ridge axis to ODP borehole 504B. Data were collected over two 35 x 35 km2 3D grid areas, one each at the ridge axis and the borehole, and along three 330 km long 2D profiles orientated in the spreading direction, connecting the two grids. In addition to the 4.5 km long multichannel streamer and 75 ocean-bottom seismographs (OBS), we also deployed 12 magnetotelluric (MT) stations and collected underway swath bathymetry, gravity and magnetic data. For the long 2D profiles we used two research vessels operating synchronously. The RRS James Cook towed a high frequency GI-gun array (120 Hz) to image the sediments, and a medium frequency Bolt-gun array (50 Hz) for shallow-to-mid-crustal imaging. The R/V Sonne followed the Cook, 9 km astern and towed a third seismic source; a low frequency, large volume G-gun array (30 Hz) for whole crustal and upper mantle imaging at large offsets. Two bespoke vertical hydrophone arrays recorded real far field signatures that have enabled us to develop inverse source filters and match filters. Here we present the seismic reflection image, forward and inverse velocity-depth models and a density model along the primary 330 km north-south profile, from ridge axis to 6 Ma crust. By incorporating wide-angle streamer data from our two-ship, synthetic aperture acquisition together with traditional wide-angle OBS data we are able to constrain the structure of the upper oceanic crust. The results show a long-wavelength trend of increasing seismic velocity and density with age, and a correlation between velocity structure and basement roughness. Increased basement roughness leads to a non-uniform distribution of sediments, which we hypothesise influences the pattern of hydrothermal circulation and ultimately the secondary alteration of the upper crust. A combination of the complimentary wide-angle and normal incidence datasets and their individual models act as a starting point for joint inversion of seismic, gravity and MT data. The joint inversion produces a fully integrated model, enabling us to better understand how the oceanic crust evolves as a result of hydrothermal fluid circulation and cooling, as it ages from zero-age at the ridge-axis to 6 Ma at borehole 504B. Ultimately, this model can be used to undertake full waveform inversion to produce a high-resolution velocity model of the oceanic crust in the Panama Basin. This research is part of a major, interdisciplinary NERC-funded research collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).
NASA Astrophysics Data System (ADS)
Fontana, Emanuele
2015-09-01
Research on the deep sea is of great importance for a better understanding of the mechanism of magma emplacement and the tectonic evolution of oceanic crust. However, details of the internal structure in the upper levels of the oceanic crust are much less complete than that of the more fully studied sub-aerial areas. For the first time, this study proposes a dynamic analysis using the inversion method on core data derived from the drilled basement of the present-day intact oceanic crust at ODP/IODP Site 1256 in the Cocos plate. The research is based on an innovative core reorientation process and combines different stress hypothesis approaches for the analysis of heterogeneous failure-slip data via exploitation of two distinct techniques. From the analysis of the failure-slip data, both techniques produce 5 distinct subsystem datasets. All calculated subsystems are mechanically and geometrically admissible. Interpretation of the results allows the researchers to note a complex local and regional tectonic evolution deriving from the interplay of (1) the ridge push and rotation of both the East Pacific Rise and the Cocos-Nazca Spreading Center, (2) the effect of the slab pull of the Middle America Trench, (3) the influence of lava emplacement mechanisms, and (4) intra-plate deformation.
NASA Astrophysics Data System (ADS)
Xiaoli, W.; Li, C. F.
2017-12-01
A wide-angle OBS profile (OBS2016-2) was simulated by using forward method, in order to investigate the structures of the transition crust across the northeastern margin of the South China Sea (SCS). Reflection and refraction data recorded at 14 ocean bottom seismometers (OBS) along the NW-SE profile of 320 km long are integrated to image the Cenozoic (1.7-3.3 km/s) sediment and Mesozoic (4.2-5.3 km/s) sediment at northeastern Chaoshan Depression, the upper (5.5 km/s-6.3 km/s) and lower (6.4 km/s-6.9 km/s) crust successfully. The 2-D velocity-depth models are obtained by using the 2-D forward ray-tracing RayInvr software (Zelt and Smith, 1992). The initial model is established based on single channel seismic profile, the seismic phases of the 14 OBSs and the regional geologic and geophysical data. The velocity model reveals that the thickness of sediment (1.2-5.5 km) varies strongly from onshore to offshore due to the seafloor spreading of the SCS. Several relict volcanoes are identified in the upper crust (2.1-8.1 km) by single channel seismic data acquisited along the same profile. The depth of MOHO interface in the velocity model decreases seaward gradually from 26.8 to 10.8 km. Ocean-continent transition zone in the northeastern margin of the SCS is characterized by several volcanoes and igneous rocks in the upper crust.
Continents as lithological icebergs: The importance of buoyant lithospheric roots
Abbott, D.H.; Drury, R.; Mooney, W.D.
1997-01-01
An understanding of the formation of new continental crust provides an important guide to locating the oldest terrestrial rocks and minerals. We evaluated the crustal thicknesses of the thinnest stable continental crust and of an unsubductable oceanic plateau and used the resulting data to estimate the amount of mantle melting which produces permanent continental crust. The lithospheric mantle is sufficiently depleted to produce permanent buoyancy (i.e., the crust is unsubductable) at crustal thicknesses greater than 25-27 km. These unsubductable oceanic plateaus and hotspot island chains are important sources of new continental crust. The newest continental crust (e.g., the Ontong Java plateau) has a basaltic composition, not a granitic one. The observed structure and geochemistry of continents are the result of convergent margin magmatism and metamorphism which modify the nascent basaltic crust into a lowermost basaltic layer overlain by a more silicic upper crust. The definition of a continent should imply only that the lithosphere is unsubductable over ??? 0.25 Ga time periods. Therefore, the search for the oldest crustal rocks should include rocks from lower to mid-crustal levels.
Complex igneous processes and the formation of the primitive lunar crustal rocks
NASA Technical Reports Server (NTRS)
Longhi, J.; Boudreau, A. E.
1979-01-01
Crystallization of a magma ocean with initial chondritic Ca/Al and REE ratios such as proposed by Taylor and Bence (TB, 1975), is capable of producing the suite of primitive crustal rocks if the magma ocean underwent locally extensive assimilation and mixing in its upper layers as preliminary steps in formation of an anorthositic crust. Lunar anorthosites were the earliest permanent crustal rocks to form the result of multiple cycles of suspension and assimilation of plagioclase in liquids fractionating olivine and pyroxene. There may be two series of Mg-rich cumulate rocks: one which developed as a result of the equilibration of anorthositic crust with the magma ocean; the other which formed in the later stages of the magma ocean during an epoch of magma mixing and ilmenite crystallization. This second series may be related to KREEP genesis. It is noted that crystallization of the magma ocean had two components: a low pressure component which produced a highly fractionated and heterogeneous crust growing downward and a high pressure component which filled in the ocean from the bottom up, mostly with olivine and low-Ca pyroxene.
CRUST 5.1: A global crustal model at 5° x 5°
Mooney, Walter D.; Laske, Gabi; Masters, T. Guy
1998-01-01
We present a new global model for the Earth's crust based on seismic refraction data published in the period 1948–1995 and a detailed compilation of ice and sediment thickness. An extensive compilation of seismic refraction measurements has been used to determine the crustal structure on continents and their margins. Oceanic crust is modeled with both a standard model for normal oceanic crust, and variants for nonstandard regions, such as oceanic plateaus. Our model (CRUST 5.1) consists of 2592 5° × 5° tiles in which the crust and uppermost mantle are described by eight layers: (1) ice, (2) water, (3) soft sediments, (4) hard sediments, (5) crystalline upper, (6) middle, (7) lower crust, and (8) uppermost mantle. Topography and bathymetry are adopted from a standard database (ETOPO-5). Compressional wave velocity in each layer is based on field measurements, and shear wave velocity and density are estimated using recently published empirical Vp- Vs and Vp-density relationships. The crustal model differs from previous models in that (1) the thickness and seismic/density structure of sedimentary basins is accounted for more completely, (2) the velocity structure of unmeasured regions is estimated using statistical averages that are based on a significantly larger database of crustal structure, (3) the compressional wave, shear wave, and density structure have been explicitly specified using newly available constraints from field and laboratory studies. Thus this global crustal model is based on substantially more data than previous models and differs from them in many important respects. A new map of the thickness of the Earth's crust is presented, and we illustrate the application of this model by using it to provide the crustal correction for surface wave phase velocity maps. Love waves at 40 s are dominantly sensitive to crustal structure, and there is a very close correspondence between observed phase velocities at this period and those predicted by CRUST 5.1. We find that the application of crustal corrections to long-period (167 s) Rayleigh waves significantly increases the variance in the phase velocity maps and strengthens the upper mantle velocity anomalies beneath stable continental regions. A simple calculation of crustal isostacy indicates significant lateral variations in upper mantle density. The model CRUST 5.1 provides a complete description of the physical properties of the Earth's crust at a scale of 5° × 5° and can be used for a wide range of seismological and nonseismological problems.
Earth's crust model of the South-Okhotsk Basin by wide-angle OBS data
NASA Astrophysics Data System (ADS)
Kashubin, Sergey N.; Petrov, Oleg V.; Rybalka, Alexander V.; Milshtein, Evgenia D.; Shokalsky, Sergey P.; Verba, Mark L.; Petrov, Evgeniy O.
2017-07-01
Deep seismic studies of the Sea of Okhotsk region started in late 1950s. Since that time, wide-angle reflection and refraction data on more than two dozen profiles were acquired. Only five of those profiles either crossed or entered the deep-water area of the South-Okhotsk Basin (also known as the Kuril Basin or the South-Okhotsk Deep-Water Trough). Only P-waves were used to develop velocity-interface models in all the early research. Thus, all seismic and geodynamic models of the Okhotsk region were based only on the information on compressional waves. Nevertheless, the use of Vp/Vs ratio in addition to P-wave velocity allows discriminating felsic and mafic crustal layers with similar Vp values. In 2007 the Russian seismic service company Sevmorgeo acquired multi-component data with ocean bottom seismometers (OBS) along the 1700-km-long north-south 2-DV-M Profile. Only P-wave information was used previously to develop models for the entire profile. In this study, a multi-wave processing, analysis, and interpretation of the OBS data are presented for the 550-km-long southern segment of this Profile that crosses the deep-water South-Okhotsk Basin. Within this segment 50 seismometers were deployed with nominal OBS station spacing of 10-12 km. Shot point spacing was 250 m. Not only primary P-waves and S-waves but also multiples and P-S, S-P converted waves were analyzed in this study to constrain velocity-interface models by means of travel time forward modeling. In offshore deep seismic studies, thick water layer hinders an estimation of velocities in the sedimentary cover and in the upper consolidated crust. Primarily, this is due to the fact that refracted waves propagating in low-velocity solid upper layers interfere with high-amplitude direct water wave. However, in multi-component measurements with ocean bottom seismometers, it is possible to use converted and multiple waves for velocity estimations in these layers. Consequently, one can obtain P- and S-waves velocity models of the sedimentary strata and the upper consolidated crust. Velocity values in the upper consolidated crust beneath the South-Okhotsk Basin (Vp = 5.50-5.80 km/s, Vp/Vs = 1.74-1.76) allow interpretation of this 2.5-3.5-km-thick layer to be consistent with a felsic (granodioritic) crust. These results suggest that the Earth's crust in this region can be considered continental in nature, rather than previously accepted oceanic crust. Even though, the crust is thinned and stretched at this location.
Density structure of the lithosphere in the southwestern United States and its tectonic significance
Kaban, M.K.; Mooney, W.D.
2001-01-01
We calculate a density model of the lithosphere of the southwestern United States through an integrated analysis of gravity, seismic refraction, drill hole, and geological data. Deviations from the average upper mantle density are as much as ?? 3%. A comparison with tomographic images of seismic velocities indicates that a substantial part (>50%) of these density variations is due to changes in composition rather than temperature. Pronounced mass deficits are found in the upper mantle under the Basin and Range Province and the northern part of the California Coast Ranges and adjacent ocean. The density structure of the northern and central/southern Sierra Nevada is remarkably different. The central/southern part is anomalous and is characterized by a relatively light crust underlain by a higher-density upper mantle that may be associated with a cold, stalled subducted plate. High densities are also determined within the uppermost mantle beneath the central Transverse Ranges and adjoining continental slope. The average density of the crystalline crust under the Great Valley and western Sierra Nevada is estimated to be up to 200 kg m~3 higher than the regional average, consistent with tectonic models for the obduction of oceanic crust and uppermost mantle in this region.
NASA Astrophysics Data System (ADS)
Li, J.; Zhang, J.; Ruan, A.; Niu, X.; Ding, W.
2016-12-01
We report here a 3D ocean bottom seismometer experiment on the fossil spreading ridge in the Southwest Sub-basin of the South China Sea. An extreme asymmetric crustal structure across the axis is revealed and caused by lower crust thinning and upper mantle uplifting located on NW side of the ridge. Such crustal extension proposed a low-angle oceanic detachment fault throughout the whole crust on the last or post spreading stages. A low-velocity (7.6-7.9 km/s) on the uplifting upper mantle is possibly induced by both mantle serpentinization and/or decompression melting through the detachment fault. Velocity models also demonstrate that a post-spreading volcano erupted on the axis is mainly formed by an extrusive process with an extrusive/intrusive ratio of 1.92. Very low velocity of upper crust (3.1-4.8 km/s) of the volcano is attributed to the composition of volcaniclastic rocks and high-porosity basalts, which have been observed in the borehole and dredged samples on the seamounts nearby. KEY WORDS post-spreading ridge; wide-angle seismic refraction; crustal structure; South China Sea; Southwest Sub-basin
Geologic History of Asteroid 4 Vesta
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.
2014-01-01
Some types of meteorites - most irons, stony irons, some achondrites - hail from asteroids that were heated to the point where magmatism occurred within a very few million years of the formation of the earliest solids in the solar system. The largest clan of achondrites, the howardite, eucrite and diogenite (HED) meteorites, represent the crust of their parent asteroid]. Diogenites are cumulate harzburgites and orthopyroxenites from the lower crust whilst eucrites are basalts, diabases and cumulate gabbros from the upper crust. Howardites are impact-engendered breccias mostly of diogenites and eucrites. There remains only one large asteroid with a basaltic crust, 4 Vesta, which is thought to be the source of the HED clan. Differentiation models for Vesta are based on HED compositions. Proto-Vesta consisted of chondritic materials containing Al-26, a potent, short-lived heat source. Inferences from compositional data are that Vesta was melted to high degree (=50%) allowing homogenization of the silicate phase and separation of a metallic core. Convection of the silicate magma ocean allowed equilibrium crystallization, forming a harzburgitic mantle. After convective lockup occurred, melt collected between the mantle and the cool thermal boundary layer and underwent fractional crystallization forming an orthopyroxene-rich (diogenite) lower crust. The initial thermal boundary layer of chondritic material was replaced by a mafic upper crust through impact disruption and foundering. The mafic crust thickened over time as additional residual magma intrudes and penetrates the mafic crust forming plutons, dikes, sills and flows of cumulate and basaltic eucrite composition. This magmatic history may have taken only 2-3 Myr. This magma ocean scenario is at odds with a model of heat and magma transport that indicates that small degrees of melt would be rapidly expelled from source regions, precluding development of a magma ocean. Constraints from radiogenic Mg-26 distibutions suggest that the parent asteroid of HEDs was much smaller than Vesta. Thus, first-order questions regarding asteroid differentiation remain.
NASA Astrophysics Data System (ADS)
Garrido, C. J.; Machetel, P.
2005-12-01
We report the results of a new thermo-mechanical model of crustal flow beneath fast spreading mid-ocean ridges to investigate both the effect of deep, near off-axis hydrothermal convection on the thermal structure of the magma chamber and the role of variable number of melt intrusions on the accretion of the oceanic crust. In our model the melt is injected at the center of the axial magma chamber with a 'needle' with adjustable porosity at different depths allowing the simulation of different arrangements of melt injection and supply within the magma chamber. Conversely to previous models, the shape of the magma chamber -defined as the isotherm where 95% solidification of the melt occurs- is not imposed but computed from the steady state reached by the thermal field considering the heat diffusion and advection and the latent heat of crystallization. The motion equation is solved for a temperature and phase dependent viscosity. The thermal diffusivity is also dependent on temperature and depth, with a higher diffusivity in the upper plutonic crust to account for more efficient hydrothermal cooling at these crustal levels. In agreement with previous non-dynamic thermal models, our results show that near, deep off-axis hydrothermal circulation strongly affects the shape of the axial magma by tightening isotherms in the upper half of the plutonic oceanic crust where hydrothermal cooling is more efficient. Different accretion modes have however little effect on the shape of the magma chamber, but result in variable arrangements of flow lines ranging from tent-shape in a single-lens accretion scenario to sub-horizontal in "sheeted-sill" intrusion models. For different intrusion models, we computed the average Igneous Cooling Rates (ICR) of gabbros by dividing the crystallization temperature interval of gabbros by the integrated time, from the initial intrusion to the point where it crossed the 950 °C isotherm where total solidification of gabbro occurs, along individual flow lines. The distribution of ICR of gabbros along each flow line is then computed at their final off-axis emplacement as it is now observed in ophiolites. The main result of our model is that the variation of ICR with depth strongly constrains the accretion mode of the oceanic crust. The bimodal distribution of ICR with depth inferred from the crystal size distribution studies of gabbros from the Oman ophiolite (Garrido et al., 2001) can be only reproduced by accretion models with at least two melt lenses. The location of the jump in the bimodal distribution of ICR with depth observed at ca. 4 km above the MTZ in the Oman ophiolite implies that ca. 50% of the oceanic crust is accreted in an upper magma lens, while the 50% lower half is either accreted in one lens located at the MTZ or in several melt lenses with alike melt supply and evenly distributed along the lower half of the plutonic oceanic crust. Garrido, C. J., Kelemen, P. B. & Hirth, G.. G-cubed. 2, doi: 10.1029/2000GC000136 (2001).
NASA Astrophysics Data System (ADS)
van Keken, P. E.; Brandenburg, J. P.; Hauri, E. H.; Ballentine, C. J.
2009-12-01
The heterogeneity of the Earth's mantle is expressed in complementary geochemical and geophysical signatures, where the geochemistry provides a time-integrated signal and the geophysics tends to see a recent snapshot of the Earth's interior. While the geophysical evidence tends to support a form of whole mantle convection that is moderated by rheological and phase changes below the transition zone, the geochemical observations have been generally used to support the presence of long-lived and isolated reservoirs. Recent dynamical modeling (Brandenburg et al., EPSL, 2008) employed high resolution finite modeling of mantle convection using an energetically consistent simulation of tectonic plates. A suite of models was developed with a dynamic vigor similar to that of the present day earth. The recycling of oceanic crust combined with a two-stage formation of the continental crust leads to a satisfactory match to the observed spread between HIMU-DMM-EM1 in multiple isotope systems without invoking recycling of continental crust. Due to the rheological contrast between upper and lower mantle there is a natural occurrence of a well-mixed upper mantle overlaying a chemically more heterogeneous lower mantle. The pooling of dense oceanic crust provides the formation of dense piles at the base of the mantle. Together with the occurrence of slabs that thicken and/or stagnate at the 670 discontinuity we find reasonable correspondance with the present day tomographic signatures. At present the models fail to explain noble gas systematics, even when taking the suggested high compatibility of helium into account.
NASA Astrophysics Data System (ADS)
Julià, Jordi; Ammon, Charles J.; Herrmann, Robert B.
2003-08-01
We estimate lithospheric velocity structure for the Arabian Shield by jointly modeling receiver functions and fundamental-mode group velocities from events recorded by the 1995-1997 Saudi Arabian Portable Broadband Deployment. Receiver functions are primarily sensitive to shear-wave velocity contrasts and vertical travel times, and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages, so that their combination bridge resolution gaps associated with each individual data set. Our resulting models correlate well with the observed surface geology; the Asir terrane to the West consists of a 10-km-thick upper crust of 3.3 km/s overlying a lower crust of 3.7-3.8 km/s; in the Afif terrane to the East, the upper crust is 20 km thick and has an average velocity of 3.6 km/s, and the lower crust is about 3.8 km/s; separating the terranes, the Nabitah mobile belt is made of a gradational upper crust up to 3.6 km/s at 15 km overlying an also gradational lower crust up to 4.0 km/s. The crust-mantle transition is found to be sharp in terranes of continental affinity (east) and gradual in terranes of oceanic affinity (west). The upper mantle shear velocities range from 4.3 to 4.6 km/s. Temperatures around 1000 °C are obtained from our velocity models for a thin upper mantle lid observed beneath station TAIF, and suggest that the lithosphere could be as thin as 50-60 km under this station.
Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust
NASA Astrophysics Data System (ADS)
Farahat, Navah X.; Archer, David; Abbot, Dorian S.
2017-08-01
Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.
The Stirring of Oceanic Crust in the Mantle: How it Changes with Time?
NASA Astrophysics Data System (ADS)
McNamara, A. K.; Li, M.
2017-12-01
The Large Low Shear Velocity Provinces (LLSVPs) beneath Africa and the Pacific are considerably-sized seismic anomalies in the lower mantle that likely play a key role in global mantle convection. Unfortunately, we do not know what they are, and hypotheses include thermal megaplumes, plume clusters, primordial piles, thermochemical superplumes, and large accumulations of ancient, subducted oceanic crust. Discovering which of these are the cause of LLSVPs will provide fundamental understanding toward the nature of global-scale mantle convection. Here, we focus on two of the possibilities: primordial piles and accumulations of subducted oceanic crust. In previous work, it seemed clear that each provide a distinguishably-different morphology: primordial piles are clearly defined entities with sharp edges and tops, whereas accumulations of oceanic crust appear quite messy and have fuzzy, advective boundaries, particularly at their tops. Therefore, it was thought that by performing seismic studies that define the tops of LLSVPs, we could distinguish between these possibilities. Here, we ask the following question: Can piles formed by ancient oceanic crust eventually "clean themselves up" and evolve into structures that more-resemble what we think primordial piles should look like at the present day? Here, we present geodynamics work that demonstrates that this is indeed the case. The driving mechanism is a thinning of oceanic crust through time (as the mantle cools, there is less melt at ridges, and therefore, crust is thinner). We find that in the early, hotter Earth, if crust is on the order of 20-30 km thick, it will accumulate into messy piles at the base of the mantle. As crust thins beyond a critical thinness, it will stop accumulating and be stirred into the background mantle instead. Once crust stops accumulating in the lower mantle, the pre-existing messy piles begin to sharpen into well-defined piles with sharp edges and tops. Furthermore, we find that this process leads to a characteristically-different thermal evolution, in which the upper mantle cools more rapidly during the accumulation phase, and then heats up again afterwards. In conclusion, we find that the seismic detection of sharp edges on LLSVPs cannot be used to exclude accumulation of oceanic crust as a possible cause of LLSVPs.
NASA Astrophysics Data System (ADS)
Beaumais, A.; Teagle, D. A. H.; James, R. H.; Pearce, C. R.; Milton, J. A.; Alt, J.; Coggon, R. M.
2017-12-01
Alteration of the oceanic crust is thought to be the principal sink of Mg in seawater, but the effect of this process on the Mg isotope (δ26Mg) composition of the oceans remains unclear. Here we present the first measurements of Mg isotopes in altered oceanic crust from ODP Holes 504B and 896A, located in 5.9 Ma crust, 200 km south of the intermediate spreading rate Costa Rica Rift. Hole 504B penetrates: (i) A volcanic section, consisting of partially altered basalt that was open to seawater circulation under oxic-suboxic conditions at temperatures of <150°C. (ii) A transition zone, characterized by mixing between upwelling hydrothermal fluid and seawater between 100 and 350°C. (iii) A sheeted dike complex consisting of diabase partially altered to greenschist facies minerals. Hole 896A penetrates volcanic rocks altered at low temperature (<100 °C) under oxic-suboxic conditions. The overall range in δ26Mg values is -0.53 to -0.01‰; significantly greater than the range observed in unaltered mid-ocean ridge basalts (MORB: -0.25 ± 0.06‰ [1]). δ26Mg values decrease with depth in the volcanic sections of both Holes 504B and 896A. The highest δ26Mg values are found in saponite-bearing basalts at the top of the volcanic sections of both holes, and are attributed to the preferential incorporation of heavy Mg isotopes into secondary clays (Mg-saponite). Lower δ26Mg values recorded in the deeper part of the volcanic section may be a result of fluid-rock interaction with isotopically lighter evolved seawater. The transition zone is characterised by MORB-like to relatively high δ26Mg values in the chlorite-smectite bearing basalts. The sheeted dike complex yields a narrow range of MORB-like δ26Mg values suggesting that limited fractionation occurs during high-temperature alteration and that the fluids have very low Mg concentrations. Low temperature fluid-rock interactions modify the Mg isotopic composition of the upper part of the oceanic crust. Therefore, this process could potentially play a role in balancing the δ26Mg of (i) the seawater via lateral fluid flow through oceanic crust off-axis ridge flanks, and (ii) the mantle via recycling of oceanic lithosphere at subduction zones. [1] Teng et al., (2010) GCA 74, 4150-4166.
Crustal evolution derived from the Izu-Bonin-Mariana arc velocity images
NASA Astrophysics Data System (ADS)
Takahashi, N.; Kodaira, S.; Tatsumi, Y.; Miura, S.; Sato, T.; Yamashita, M.; No, T.; Takahashi, T.; Noguchi, N.; Takizawa, K.; Kaiho, Y.; Kaneda, Y.
2010-12-01
The Izu-Bonin-Mariana arc is known as one of typical oceanic island arcs, which has developed by subduction between oceanic crusts producing continental materials. Japan Agency for Marine-Earth Science and Technology has carried out seismic surveys using a multi-channel reflection survey system (MCS) and ocean bottom seismographs (OBSs) in the Izu-Bonin-Mariana (IBM) arc since 2002, and reported these crustal images. As the results, we identified the structural characteristics of whole Izu-Bonin-Mariana arc. Rough structural characteristics are, 1) middle crust with Vp of 6 km/s, 2) upper part of the lower crust with Vp of 6.5-6.8 km/s, 3) lower part of the lower crust with Vp of 6.8-7.5 km/s, and 4) lower mantle velocity beneath the arc crusts. In addition, structural variation along the volcanic front, for example, thickness variation of andesitic layers was imaged and the distributions is consistent with those of rhyolite volcanoes, that is, it suggested that the cause the structural variation is various degree of crustal growth (Kodaira et al., 2007). Moreover, crustal thinning with high velocity lower crust across arc was also imaged, and it is interpreted that such crust has been influenced backarc opening (Takahashi et al., 2009). According to Tatsumi et al. (2008), andesitic middle crust is produced by differentiation of basaltic lower crust and a part of the restites are transformed to the upper mantle. This means that region showing much crustal differentiation has large volume of transformation of dense crustal materials to the mantle. We calculated volume profiles of the lower crust along all seismic lines based on the petrologic model, and compared them with observed real volumes obtained by seismic images. If the real volume of the lower crust is large, it means that the underplating of dense materials to the crustal bottom is dominant rather than transformation of dense materials to the upper mantle. According to obtained profiles to judge if the region is the transformation dominant or underplating, the transformation dominant regions are located along the volcanic front, the remnant arc for the incipient rifting like the Sumisu Rift just behind the volcanic front, rear arc regions, and fore-arc basins. Beneath the fore-arc basins, multiple rows showing transformation dominant distribute, and it extends from north to south around the Ogasawara Trough. On the other hand, the underplating dominant regions distribute between the volcanic front and the rear arc region, beneath the incipient rift, and between the multiple rows beneath the fore-arc basins. These locations showing underplating dominant are consistent with those with high velocity lower crust.
Wetzel, L.R.; Raffensperger, Jeff P.; Shock, E.L.
2001-01-01
Coordinated geochemical and hydrological calculations guide our understanding of the composition, fluid flow patterns, and thermal structure of near-ridge oceanic crust. The case study presented here illustrates geochemical and thermal changes taking place as oceanic crust ages from 0.2 to 1.0 Myr. Using a finite element code, we model fluid flow and heat transport through the upper few hundred meters of an abyssal hill created at an intermediate spreading rate. We use a reaction path model with a customized database to calculate equilibrium fluid compositions and mineral assemblages of basalt and seawater at 500 bars and temperatures ranging from 150 to 400??C. In one scenario, reaction path calculations suggest that volume increases on the order of 10% may occur within portions of the basaltic basement. If this change in volume occurred, it would be sufficient to fill all primary porosity in some locations, effectively sealing off portions of the oceanic crust. Thermal profiles resulting from fluid flow simulations indicate that volume changes along this possible reaction path occur primarily within the first 0.4 Myr of crustal aging. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, X. M.; Gaschnig, R. M.; Rudnick, R. L.; Hazen, R. M.; Shahar, A.
2014-12-01
Iron is the fourth most abundant element in the continental crust and influences global climate and biogeochemical cycles in the ocean1. Continental inputs, including river waters, sediments and atmospheric dust are dominant sources (>95%) of iron into the ocean2. Therefore, understanding how continental inputs may have changed through time is important in understanding the secular evolution of the marine Fe cycle. We analysed the Fe isotopic composition of twenty-four glacial diamictite composites, upper continental crust (UCC) proxies, with ages ranging from the Mesoarchean to the Paleozoic eras to characterize the secular evolution of the UCC. The diamictites all have elevated chemical index of alteration (CIA) and other characteristics of weathered regolith (e.g., strong depletion in soluble elements such as Sr), which they inherited from their upper crustal source region3. δ56Fe in the diamictite composites range from -0.59 to +0.23‰, however, most diamictites cluster with an average δ56Fe of 0.11± 0.20 (2s), overlapping juvenile continental material such as island arc basalts (IABs), which show a narrow range in δ56Fe from -0.04 to +0.14 ‰4. There is no obvious correlation between δ56Fe of the glacial diamictites and the CIA, except that the diamictite with the lowest δ56Fe at -0.59 ‰ also has the highest CIA = 89 (the Paleoproterozoic Makganyene Fm.). The data suggest that the Fe isotope compositions in the upper continental crust did not vary throughout Earth history. Interestingly, chemical weathering and sedimentary transport likely play only a minor role in producing Fe isotope variations in the upper continental crust. Anoxic weathering pre-GOE (Great Oxidation Event) does not seem to generate different Fe isotopic signatures from the post-GOE oxidative weathering environment in the upper continental crust. Therefore, large Fe isotopic fractionations observed in various marine sedimentary records are likely due to other processes occurring in the ocean (e.g., biological activity) instead of abiotic redox reactions on the continent. References: 1.Martin (1990) Paleoceanography. 2.Fantle and DePaolo (2004) EPSL. 3. Gaschnig et al. (2014) EPSL. 4. Dauphas et al. (2009) EPSL.
NASA Astrophysics Data System (ADS)
Liu, X. M.; Gaschnig, R. M.; Rudnick, R. L.; Hazen, R. M.; Shahar, A.
2015-12-01
Iron is the fourth most abundant element in the continental crust and influences global climate and biogeochemical cycles in the ocean1. Continental inputs, including river waters, sediments and atmospheric dust are dominant sources (>95%) of iron into the ocean2. Therefore, understanding how continental inputs may have changed through time is important in understanding the secular evolution of the marine Fe cycle. We analysed the Fe isotopic composition of twenty-four glacial diamictite composites, upper continental crust (UCC) proxies, with ages ranging from the Mesoarchean to the Paleozoic eras to characterize the secular evolution of the UCC. The diamictites all have elevated chemical index of alteration (CIA) and other characteristics of weathered regolith (e.g., strong depletion in soluble elements such as Sr), which they inherited from their upper crustal source region3. δ56Fe in the diamictite composites range from -0.59 to +0.23‰, however, most diamictites cluster with an average δ56Fe of 0.11± 0.20 (2s), overlapping juvenile continental material such as island arc basalts (IABs), which show a narrow range in δ56Fe from -0.04 to +0.14 ‰4. There is no obvious correlation between δ56Fe of the glacial diamictites and the CIA, except that the diamictite with the lowest δ56Fe at -0.59 ‰ also has the highest CIA = 89 (the Paleoproterozoic Makganyene Fm.). The data suggest that the Fe isotope compositions in the upper continental crust did not vary throughout Earth history. Interestingly, chemical weathering and sedimentary transport likely play only a minor role in producing Fe isotope variations in the upper continental crust. Anoxic weathering pre-GOE (Great Oxidation Event) does not seem to generate different Fe isotopic signatures from the post-GOE oxidative weathering environment in the upper continental crust. Therefore, large Fe isotopic fractionations observed in various marine sedimentary records are likely due to other processes occurring in the ocean (e.g., biological activity) instead of abiotic redox reactions on the continent. References: 1.Martin (1990) Paleoceanography. 2.Fantle and DePaolo (2004) EPSL. 3. Gaschnig et al. (2014) EPSL. 4. Dauphas et al. (2009) EPSL.
New Estimates of Rhenium in the Crust: Implications for Mantle Re-Os Budgets
NASA Astrophysics Data System (ADS)
Bennett, V. C.; Sun, W.
2002-12-01
The 187Re-187Os isotopic system has provided a new probe of mantle chemical structure with, for example, now numerous studies balancing estimates of the Os isotopic compositions of the upper modern mantle with sizes and ages of proposed conjugate reservoirs stored within the deep mantle. This style of modeling is dependent upon estimates of the parent Re in the various reservoirs including total crust, upper mantle, MORB and ocean island basalts. New laser ICP-MS in situ and ID whole rock results from OIB, arc and back-arc basalts suggest Re concentrations in oceanic and crustal domains may have been greatly underestimated. For example Hawaiian OIBs show a clear distinction between subaerial and submarine erupted samples with the latter having Re much closer to the higher MORB estimates (1) than to previous OIB estimates. This difference has been attributed to Re volatility and loss during syn- and post-eruption degassing of subaerial samples. Recent work has produced similar results for submarine arc samples using both dredged glasses and melt inclusions in olivines from primitive basalts. Both have much higher average Re (ca. 1.5 and 3.4 ppb; 2,3) than literature values for arcs (ca. 0.30ppb) determined largely from sub-aerial samples, or for average crust estimated from loess (0.2 ppb; 4). If the undegassed arc samples are representative, then the total crust may have more than 5 times the Re previously estimated. Re lost during arc eruptions may ultimately be concentrated in anoxic seafloor sediments. Prior under-estimates may be linked to the extremely heterogeneous concentration (> 5 orders of magnitude) of the chalcophile, redox sensitive Re in crustal environments. If the residence time of high Re in the crust is long (>1 Ga) then, 1) much smaller reservoirs of stored Re in the deep mantle are required to balance Re depletions in the upper mantle, and 2) significant portions of the upper mantle are likely Re depleted. Alternatively Re may be rapidly recycled in oceanic sediments (short residence time) resulting in a smaller affect on Re-Os budgets, but creating areas of extreme Re heterogeneity in the upper mantle. Refs: 1. Bennett, Norman and Garcia, EPSL 2000. 2. Sun et al. (in press, Chemical Geology) 3. Sun et al. (submitted). 4. Peucker-Ehrenbrink and Jahn, G3, 2001.
NASA Technical Reports Server (NTRS)
Bentley, C. R.; Ritzwoller, M. H.
1983-01-01
Data selection and reduction procedures are described by which scalar and vector magnetic anomaly maps are constructed. The scalar and vertical magnetic anomalies are believed to be generated mainly in the Earth's crust. The horizontal anomalies are believed to be mainly due to short-period field-aligned currents. The correlation of scalar magnetic anomalies with known oceanic structure is remarkable -- magnetic highs are associated with oceanic ridges and magnetic lows with abyssal plains. The correlation between anomalies and continental geology is not so clear.
Osmium isotopes and mantle convection.
Hauri, Erik H
2002-11-15
The decay of (187)Re to (187)Os (with a half-life of 42 billion years) provides a unique isotopic fingerprint for tracing the evolution of crustal materials and mantle residues in the convecting mantle. Ancient subcontinental mantle lithosphere has uniquely low Re/Os and (187)Os/(188)Os ratios due to large-degree melt extraction, recording ancient melt-depletion events as old as 3.2 billion years. Partial melts have Re/Os ratios that are orders of magnitude higher than their sources, and the subduction of oceanic or continental crust introduces into the mantle materials that rapidly accumulate radiogenic (187)Os. Eclogites from the subcontinental lithosphere have extremely high (187)Os/(188)Os ratios, and record ages as old as the oldest peridotites. The data show a near-perfect partitioning of Re/Os and (187)Os/(188)Os ratios between peridotites (low) and eclogites (high). The convecting mantle retains a degree of Os-isotopic heterogeneity similar to the lithospheric mantle, although its amplitude is modulated by convective mixing. Abyssal peridotites from the ocean ridges have low Os isotope ratios, indicating that the upper mantle had undergone episodes of melt depletion prior to the most recent melting events to produce mid-ocean-ridge basalt. The amount of rhenium estimated to be depleted from the upper mantle is 10 times greater than the rhenium budget of the continental crust, requiring a separate reservoir to close the mass balance. A reservoir consisting of 5-10% of the mantle with a rhenium concentration similar to mid-ocean-ridge basalt would balance the rhenium depletion of the upper mantle. This reservoir most likely consists of mafic oceanic crust recycled into the mantle over Earth's history and provides the material that melts at oceanic hotspots to produce ocean-island basalts (OIBs). The ubiquity of high Os isotope ratios in OIB, coupled with other geochemical tracers, indicates that the mantle sources of hotspots contain significant quantities (greater than 10%) of lithologically distinct mafic material which represents ancient oceanic lithosphere cycled through the convecting mantle on a time-scale of 800 million years or more.
Stress drops for intermediate-depth intraslab earthquakes beneath Hokkaido, northern Japan
NASA Astrophysics Data System (ADS)
Kita, S.; Katsumata, K.
2015-12-01
Spatial variations in the stress drop for 1726 intermediate-depth intraslab earthquakes in the subducting Pacific plate beneath Hokkaido were examined, using precisely relocated hypocenters, the corner frequencies of events, and detailed determined geometry of the upper interface of the Pacific plate. The analysis results show that median stress drop for intraslab earthquakes generally increases with an increase in depth from 10 to 157 Mpa at depths of 70-300 km. Median stress drops for events in the oceanic crust decrease (9.9-6.8 MPa) at depths of 70-120 km and increase (6.8-17 MPa) at depths of 120- 170 km, whereas median stress drop for events in the oceanic mantle decrease (21.6-14.0 MPa) at depths of 70-170 km, where the geometry of the Pacific plate is well determined. The increase in stress drop with depth in the oceanic crust at depths of 120-170 km can be explained by a lithofacies change (increases in velocity and density and a decrease in the water content) due to the phase change with dehydration in the oceanic crust. At depths of 70-110 km, the decrease in the median stress drop in the oceanic crust would also be explained by that the temperature-induced rigidity decrease would be larger than that of the rigidity increase caused by lithofacies change and water content. Stress drops for events in the oceanic mantle were larger than those for events in the oceanic crust at depths of 70-120 km. Differences in both the rigidity of the rock types and in the rupture mechanisms for events between the oceanic crust and mantle could be causes for the stress drop differences within a slab. These analysis results can help clarify the nature of intraslab earthquakes and provide information useful for the prediction of strong motion associated with earthquakes in the slab at intermediate depths.
NASA Astrophysics Data System (ADS)
Li, L.
2015-12-01
Both the South China Sea and Canada Basin preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated the nature of strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the South China Sea but our results for the Beaufort Sea are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow is suggested for both basins. Extension in the COT may continue even after sea-floor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.
NASA Astrophysics Data System (ADS)
Varga, Robert J.; Horst, Andrew J.; Gee, Jeffrey S.; Karson, Jeffrey A.
2008-08-01
Rare, fault-bounded escarpments expose natural cross sections of ocean crust in several areas and provide an unparalleled opportunity to study the end products of tectonic and magmatic processes that operated at depth beneath oceanic spreading centers. We mapped the geologic structure of ocean crust produced at the East Pacific Rise (EPR) and now exposed along steep cliffs of the Pito Deep Rift near the northern edge of the Easter microplate. The upper oceanic crust in this area is typified by basaltic lavas underlain by a sheeted dike complex comprising northeast striking, moderately to steeply southeast dipping dikes. Paleomagnetic remanence of oriented blocks of dikes collected with both Alvin and Jason II indicate clockwise rotation of ˜61° related to rotation of the microplate indicating structural coupling between the microplate and crust of the Nazca Plate to the north. The consistent southeast dip of dikes formed as the result of tilting at the EPR shortly after their injection. Anisotropy of magnetic susceptibility of dikes provides well-defined magmatic flow directions that are dominantly dike-parallel and shallowly plunging. Corrected to their original EPR orientation, magma flow is interpreted as near-horizontal and parallel to the ridge axis. These data provide the first direct evidence from sheeted dikes in ocean crust for along-axis magma transport. These results also suggest that lateral transport in dikes is important even at fast spreading ridges where a laterally continuous subaxial magma chamber is present.
Ultramafic Terranes and Associated Springs as Analogs for Mars and Early Earth
NASA Technical Reports Server (NTRS)
Blake, David; Schulte, Mitch; Cullings, Ken; DeVincezi, D. (Technical Monitor)
2002-01-01
Putative extinct or extant Martian organisms, like their terrestrial counterparts, must adopt metabolic strategies based on the environments in which they live. In order for organisms to derive metabolic energy from the natural environment (Martian or terrestrial), a state of thermodynamic disequilibrium must exist. The most widespread environment of chemical disequilibrium on present-day Earth results from the interaction of mafic rocks of the ocean crust with liquid water. Such environments were even more pervasive and important on the Archean Earth due to increased geothermal heat flow and the absence of widespread continental crust formation. The composition of the lower crust and upper mantle of the Earth is essentially the-same as that of Mars, and the early histories of these two planets are similar. It follows that a knowledge of the mineralogy, water-rock chemistry and microbial ecology of Earth's oceanic crust could be of great value in devising a search strategy for evidence of past or present life on Mars. In some tectonic regimes, cross-sections of lower oceanic crust and upper mantle are exposed on land as so-called "ophiolite suites." Such is the case in the state of California (USA) as a result of its location adjacent to active plate margins. These mafic and ultramafic rocks contain numerous springs that offer an easily accessible field laboratory for studying water/rock interactions and the microbial communities that are supported by the resulting geochemical energy. A preliminary screen of Archaean biodiversity was conducted in a cold spring located in a presently serpentinizing ultramafic terrane. PCR and phylogenetic analysis of partial 16s rRNA, sequences were performed on water and sediment samples. Archaea of recent phylogenetic origin were detected with sequences nearly identical to those of organisms living in ultra-high pH lakes of Africa.
West margin of North America - A synthesis of recent seismic transects
Fuis, G.S.
1998-01-01
A comparison of the deep structure along nine recent transects of the west margin of North America shows many important similarities and differences. Common tectonic elements identified in the deep structure along these transects include actively subducting oceanic crust, accreted oceanic/arc (or oceanic-like) lithosphere of Mesozoic through Cenozoic ages. Cenozoic accretionary prisms, Mesozoic accretionary prisms, backstops to the Mesozoic prisms, and undivided lower crust. Not all of these elements are present along all transects. In this study, nine transects, including four crossing subduction zones and five crossing transform faults, are plotted at the same scale and vertical exaggeration (V.E. 1:1), using the above scheme for identifying tectonic elements. The four subduction-zone transects contain actively subducting oceanic crust. Cenozoic accretionary prisms, and bodies of basaltic rocks accreted in the Cenozoic, including remnants of a large, oceanic plateau in the Oregon and Vancouver Island transects. Rocks of age and composition (Eocene basalt) similar to the oceanic plateau are currently subducting in southern Alaska, where they are doubled up on top of Pacific oceanic crust and have apparently created a giant asperity, or impediment to subduction. Most of the subduction-zone transects also contain Mesozoic accretionary prisms, and two of them, Vancouver Island and Alaska, also contain thick, technically underplated bodies of late Mesozoic/early Cenozoic oceanic lithosphere, interpreted as fragments of the extinct Kula plate. In the upper crust, most of the five transform-fault transects (all in California) reflect: (1) tectonic wedging of a Mesozoic accretionary prism into a backstop, which includes Mesozoic/early Cenozoic forearc rocks and Mesozoic ophiolitic/arc basement rocks: and (2) shuffling of the subduction margin of California by strike-slip faulting. In the lower crust, they may reflect migration of the Mendocino triple junction northward (seen in rocks east of the San Andreas fault) and cessation of Farallon-plate subduction (seen in rocks west of the San Andreas fault). In northern California, lower-crustal rocks east of the San Andreas fault have oceanic-crustal velocity and thickness and contain patches of high reflectivity. They may represent basaltic rocks magmatically underplated in the wake of the migration of the Mendocino triple junction, or they may represent stalled, subducted fragments of the Farallon/Gorda plate. The latter alternative does not fit the accepted 'slabless window' model for the migration of the triple junction. This lower-crustal layer and the Moho are offset at the San Andreas and Maacama faults. In central California, a similar lower-crustal layer is observed west of the San Andreas fault. West of the continental slope, it is Pacitic oceanic crust, but beneath the continent it may represent either Pacific oceanic crust, stalled, subducted fragments (microplates) of the Farallon plate, or basaltic rocks magmatically underplated during subduction of the Pacific/Farallon ridge or during breakup of the subducted Farallon plate. The transect in southern California is only partly representative of regional structure, as the structure here is 3-dimensional. In the upper crust, a Mesozoic prism has been thrust beneath crystalline basement rocks of the San Gabriel Mountains and Mojave Desert. In the mid-crust, a bright reflective zone is interpreted as a possible 'master' decollement that can be traced from the fold-and-thrust belt of the Los Angeles basin northward to at least the San Andreas fault. A Moho depression beneath the San Gabriel Mountains is consistent with downwelling of lithospheric mantle beneath the Transverse Ranges that appears to be driving the compression across the Transverse Ranges and Los Angeles basin. ?? 1998 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Museur, T.; Roest, W. R.; Graindorge, D.; Chauvet, F.; Loncke, L.; Basile, C.; Poetisi, E.; Deverchere, J.; Lebrun, J. F.; Perrot, J.; Heuret, A.
2017-12-01
Many transform margins have associated intermediate depth marginal plateaus, which are commonly located between two oceanic basins. The Demerara plateau is located offshore Surinam and French Guiana. Plate kinematic reconstructions show that the plateau is located between the central and equatorial Atlantic in a position conjugate to the Guinean Plateau. In the fall of 2016, the MARGATS cruise acquired geophysical data along the 400 km wide Demerara plateau. The main objective of the cruise was to image the deep structure of the Demerara plateau and to study its tectonic history. A set of 4 combined wide-angle and reflection seismic profiles was acquired along the plateau, using 80 ocean-bottom seismometers, a 3 km long seismic streamer and a 8000 cu inch tuned airgun array. Forward modelling of the wide-angle seismic data on a profile, located in the eastern part of the plateau and oriented in a NE-SW direction, images the crustal structure of the plateau, the transition zone and the neighbouring crust of oceanic origin, up to a depth of 40 km. The plateau itself is characterised by a crust of 30 km thickness, subdivided into three distinct layers. However, the velocities and velocity gradients do not fit typical continental crust, with a lower crustal layer showing untypically high velocities and an upper layer having a steep velocity gradient. From this model we propose that the lowermost layer is probably formed from volcanic underplated material and that the upper crustal layer likely consists of the corresponding extrusive volcanic material, forming thick seaward-dipping reflector sequences on the plateau. A basement high is imaged at the foot of the slope and forms the ocean-continent transition zone. Further oceanward, a 5-6 km thick crust is imaged with velocities and velocity gradients corresponding to a thin oceanic crust. A compilation of magnetic data from the MARGATS and 3 previous cruises shows a high amplitude magnetic anomaly along the northern edge of the plateau thereby strengthening the hypothesis of an volcanic origin of at least part of the structure. We propose, that the plateau was formed by large-scale volcanism, possibly intruding into a thinner existing continental crust.
ODP Leg 210 Drills the Newfoundland Margin in the Newfoundland-Iberia Non-Volcanic Rift
NASA Astrophysics Data System (ADS)
Tucholke, B. E.; Sibuet, J.
2003-12-01
The final leg of the Ocean Drilling Project (Leg 210, July-September 2003) was devoted to studying the history of rifting and post-rift sedimentation in the Newfoundland-Iberia rift. For the first time, drilling was conducted in the Newfoundland Basin along a transect conjugate to previous drill sites on the Iberia margin (Legs 149 and 173) to obtain data on a complete `non-volcanic' rift system. The prime site during this leg (Site 1276) was drilled in the transition zone between known continental crust and known oceanic crust at chrons M3 and younger. Extensive geophysical work and deep-sea drilling have shown that this transition-zone crust on the conjugate Iberia margin is exhumed continental mantle that is strongly serpentinized in its upper part. Transition-zone crust on the Newfoundland side, however, is typically a kilometer or more shallower and has much smoother topography, and seismic refraction data suggest that the crust may be thin (about 4 km) oceanic crust. A major goal of Site 1276 was to investigate these differences by sampling basement and a strong, basinwide reflection (U) overlying basement. Site 1276 was cored from 800 to 1737 m below seafloor with excellent recovery (avg. 85%), bottoming in two alkaline diabase sills >10 m thick that are estimated to be 100-200 meters above basement. The sills have sedimentary contacts that show extensive hydrothermal metamorphism. Associated sediment structural features indicate that the sills were intruded at shallow levels within highly porous sediments. The upper sill likely is at the level of the U reflection, which correlates with lower Albian - uppermost Aptian(?) fine- to coarse-grained gravity-flow deposits. Overlying lower Albian to lower Oligocene sediments record paleoceanographic conditions similar to those on the Iberia margin and in the main North Atlantic basin, including deposition of `black shales'; however, they show an extensive component of gravity-flow deposits throughout.
Molybdenum Cycling During Crust Formation and Destruction
NASA Astrophysics Data System (ADS)
Greaney, A. T.; Rudnick, R. L.
2016-12-01
Molybdenum geochemistry has become an important tool for tracking the redox state of the early atmosphere and oceans as well as the emergence and sustainability of Mo-cofactored enzymes. However, in order for Mo to be enriched in the oceans, it must first be weathered out of the crust. Sulfides that weather in the presence of atmospheric O2have historically been deemed the predominant crustal source of Mo. Here, we test this assumption by determining the mineralogical hosts of Mo in Archean, Proterozoic, and Phanerozoic upper crustal rocks, using LA-ICP-MS. We also investigate Mo behavior during igneous differentiation and continental crust formation. We find that molybdenite, MoS2, is a weatherable sulfide source of Mo, but common igneous sulfides are not because their Mo concentrations are too low. However, molybdenite is uncommon in the upper continental crust. By contrast, volcanic glass is much more abundant and is a significant weatherable source of Mo that readily breaks down to release oxidized, soluble Mo whether or not atmospheric O2is present. Other common crustal mineral hosts of Mo are Ti-bearing phases like titanite, ilmenite, magnetite, and rutile that are resistant to weathering. Significant Mo depletion (relative to Ce and Pr) is observed in nearly every granitic rock analyzed in our study, but is not observed in OIB or MORB (Jenner and O'Neill, 2012). There are two possible reasons for this: 1) Mo is removed from cooling plutons during fluid expulsion, or 2) Mo is fractionated during igneous differentiation. The first scenario is a likely explanation given the solubility of oxidized Mo. However, correlations between Mo/Ce and Nb/La in several plutonic suites suggest a fractionating phase like rutile may sequester Mo in the lower crust. Additionally, a correlation between Mo/Ce and inferred tectonic setting (enrichments observed in rift-related plutons) suggest an overall tectonic influence on the availability of Mo in the upper crust.
NASA Astrophysics Data System (ADS)
Herbrich, Antje; Hauff, Folkmar; Hoernle, Kaj; Werner, Reinhard; Garbe-Schönberg, Dieter; White, Scott
2016-07-01
Shallow (elevated) portions of mid-ocean ridges with enriched geochemical compositions near hotspots document the interaction of hot, geochemically-enriched plume mantle with shallow depleted upper mantle. Whereas the spatial variations in geochemical composition of ocean crust along the ridge axis in areas where plume-ridge interaction is taking place have been studied globally, only restricted information exists concerning temporal variations in geochemistry of ocean crust formed through plume-ridge interaction. Here we present a detailed geochemical study of 0-1.5 Ma ocean crust sampled from the Western Galápagos Spreading Center (WGSC) axis to 50 km north of the axis, an area that is presently experiencing a high influx of mantle material from the Galápagos hotspot. The tholeiitic to basaltic andesitic fresh glass and few bulk rock samples have incompatible element abundances and Sr-Nd-Pb isotopic compositions intermediate between depleted normal mid-ocean-ridge basalt (N-MORB) from >95.5°W along the WGSC and enriched lavas from the Galápagos Archipelago, displaying enriched (E-)MORB type compositions. Only limited and no systematic geochemical variations are observed with distance from the ridge axis for <1.0 Ma old WGSC crust, whereas 1.0-1.5 Ma old crust trends to more enriched isotopic compositions in 87Sr/86Sr, 143Nd/144Nd, 207Pb/204Pb and 208Pb/204Pb isotope ratios. On isotope correlation diagrams, the data set displays correlations between depleted MORB and two enriched components. Neither the geographically referenced geochemical domains of the Galápagos Archipelago nor the end members used for principal component analysis can successfully describe the observed mixing relations. Notably an off-axis volcanic cone at site DR63 has the appropriate composition to serve as the enriched component for the younger WGSC and could represent a portion of the northern part of the Galápagos plume not sampled south of the WGSC. Similar compositions to samples from volcanic cone DR63 have been found in the northern part of the 11-14 Ma Galápagos hotspot track offshore Costa Rica, indicating that this composition is derived from the northern portion of the Galápagos plume. The older WGSC requires involvement of an enriched mantle two (EMII) type source, not recognized thus far in the Galápagos system, and is interpreted to reflect entrained material either from small-scale heterogeneities within the upper mantle or from the mantle transition zone. Overall the source material for the 0-1.5 Ma WGSC ocean crust appears to represent mixing of depleted upper mantle with Northern Galápagos Plume material of relatively uniform composition in relatively constant proportions.
NASA Astrophysics Data System (ADS)
Grad, Marek; Mjelde, Rolf; Krysiński, Lech; Czuba, Wojciech; Libak, Audun; Guterch, Aleksander
2015-03-01
As a part of the large international panel "IPY Plate Tectonics and Polar Gateways" within the "4th International Polar Year" framework, extensive geophysical studies were performed in the area of southern Svalbard, between the Mid-Atlantic Ridge and the Barents Sea. Seismic investigations were performed along three refraction and wide-angle reflection seismic lines. Integrated with gravity data the seismic data were used to determine the structure of the oceanic crust, the transition between continent and ocean (COT), and the continental structures down to the lithosphere-asthenosphere system (LAB). We demonstrate how modeling of multiple water waves can be used to determine the sound velocity in oceanic water along a seismic refraction profile. Our 2D seismic and density models documents 4-9 km thick oceanic crust formed at the Knipovich Ridge, a distinct and narrow continent-ocean transition (COT), the Caledonian suture zone between Laurentia and Barentsia, and 30-35 km thick continental crust beneath the Barents Sea. The COT west of southern Spitsbergen expresses significant excess density (more than 0.1 g/cm3 in average), which is characteristic for mafic/ultramafic and high-grade metamorphic rocks. The results of the gravity modeling show relatively weak correlation of the density with seismic velocity in the upper mantle, which suggests that the horizontal differences between oceanic and continental mantle are dominated by mineralogical changes, although a thermal effect is also present. The seismic velocity change with depth suggests lherzolite composition of the uppermost oceanic mantle, and dunite composition beneath the continental crust.
NASA Astrophysics Data System (ADS)
Corchete, V.
2017-04-01
A 3D imaging of S-velocity for the Arabian Sea crust and upper mantle structure is presented in this paper, determined by means of Rayleigh wave analysis, for depths ranging from zero to 300 km. The crust and upper mantle structure of this region of the earth never has been the subject of a surface wave tomography survey. The Moho map performed in the present study is a new result, in which a crustal thickening beneath the Arabian Fan sediments can be observed. This crustal thickening can be interpreted as a quasi-continental oceanic transitional structure. A crustal thickness of up to 20 km also can be observed for the Murray Ridge system in this Moho map. This crustal thickening can be due to that the Murray Ridge System consists of Indian continental crust. This continental crust is extremely thinned to the southwest of this region, as shown in this Moho map. This area can be interpreted as oceanic in origin. In the depth range from 30 to 60 km, the S-velocity presents its lower values at the Carlsberg Ridge region, because it is the younger region of the study area. In the depth range from 60 to 105 km of depth, the S-velocity pattern is very similar to that shown for the previous depth range, except for the regions in which the asthenosphere is reached, for these regions appear a low S-velocity pattern. The lithosphere-asthenosphere boundary (LAB), or equivalently the lithosphere thickness, determined in the present study is also a new result, in which the lithosphere thickness for the Arabian Fan can be estimated in 60-70 km. The lower lithospheric thickness observed in the LAB map, for the Arabian Fan, shows that this region may be in the transition zone between continental and oceanic structure. Finally, a low-velocity zone (LVZ) has been determined, for the whole study area, located between the LAB and the boundary of the asthenosphere base (or equivalently the lithosphere-asthenosphere system thickness). The asthenosphere-base map calculated in the present study is also a new result.
NASA Astrophysics Data System (ADS)
Ding, Weiwei; Sun, Zhen; Dadd, Kelsie; Fang, Yinxia; Li, Jiabiao
2018-04-01
Internal structures in mature oceanic crust can elucidate understanding of the processes and mechanism of crustal accretion. In this study, we present two multi-channel seismic (MCS) transects across the northern flank of the South China Sea basin to reveal the internal structures related to Cenozoic tectono-magmatic processes during seafloor spreading. Bright reflectors within the oceanic crust, including the Moho, upper crustal reflectors, and lower crustal reflectors, are clearly imaged in these two transects. The Moho reflection displays varied character in continuity, shape and amplitude from the continental slope area to the abyssal basin, and becomes absent in the central part of the basin where abundant seamounts and seamount chains formed after the cessation of seafloor spreading. Dipping reflectors are distinct in most parts of the MCS data but generally confined to the lower crust above the Moho reflection. These lower crustal reflectors merge downward into the Moho without offsetting it, probably arising from shear zones between the crust and mantle characterized by interstitial melt, although we cannot exclude other possibilities such as brittle faulting or magmatic layering in the local area. A notable feature of these lower crustal reflector events is their opposite inclinations. We suggest the two groups of conjugate lower crustal reflector events observed between magnetic anomalies C11 and C8 were associated with two unusual accretionary processes arising from plate reorganizations with southward ridge jumps.
A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems
NASA Technical Reports Server (NTRS)
Goldstein, S. L.; Onions, R. K.; Hamilton, P. J.
1984-01-01
Nd-143/Nd-144 ratios, together with Sm and Nd abundances, are given for particulates from major and minor rivers as well as continental sediments and aeolian dusts collected over the Atlantic, Pacific, and Indian Oceans. In combination with data from the literature, the present results have implications for the age, history, and composition of the sedimentary mass and the continental crust. It is noted that the average ratio of Sm/Nd is about 0.19 in the upper continental crust, and has remained so since the early Archean, thereby precluding the likelihood of major mafic-to-felsic or felsic-to-mafic trends in the overall composition of the upper continental crust through earth history. The average 'crustal residence age' of the entire sedimentary mass is about 1.9 Ga.
Crust and mantle of the gulf of Mexico
Moore, G.W.
1972-01-01
A SEEMING paradox has puzzled investigators of the crustal structure of the Gulf of Mexico since Ewing et al.1 calculated that a unit area of the rather thick crust in the gulf contains less mass than does a combination of the crust and enough of the upper mantle to make a comparable thickness in the Atlantic Ocean. They also noted that the free-air gravity of the gulf is essentially normal and fails by a large factor to be low enough to reflect the mass difference that they calculated. We propose a solution to this problem. ?? 1972 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Jones, R.; Van Keken, P. E.; Hauri, E.; Vervoort, J. D.; Ballentine, C. J.
2017-12-01
The chemical and isotopic evolution of the Earth's mantle is largely influenced by the formation of oceanic and continental crust at spreading ridges and through arc volcanism, and the subsequent recycling of this crust back into the mantle via subduction. In this study we use a combined geodynamical-geochemical modelling approach to investigate the Lu-Hf isotopic evolution of the terrestrial mantle and crust. We utilise the geodynamic mantle convection model developed by Brandenburg et al., 2008. This model satisfies the geophysical constraints of oceanic heat flow and average plate velocities, as well as geochemical observations such as 40Ar in the atmosphere. It has also been shown to reproduce the observed geochemical distributions in multiple isotope systems (U-Th-Pb, Rb-Sr, Sm-Nd, and Re-Os) that define the DMM, HIMU and EM1 mantle endmembers. We go on to extend this application to investigate the Lu-Hf isotope system, specifically in combination with Sm-Nd. The model has been updated to include a self-consistent reorganisation of the plates with regions of up-/down-wellings. The model is initiated at 4.55 Ga, assumes continental crust is produced from 4 Ga and that a transition from `dry' to `wet' subduction occurs at 3 Ga. The results of the geodynamic model suggest that the ƐHf composition and evolution of the upper mantle can be generated through the extraction and recycling of oceanic crust, which creates an enriched and radiogenic reservoir at the core-mantle boundary. The formation of continental crust, which is extracted at each time-step from the oceanic crust to imitate subduction zone processes, and the recycling of this continental crust as sediments, plays a lesser role. Depending on the selected partition coefficients DMM, FOZO and HIMU mantle endmember compositions are also produced via the simple extraction and recycling of oceanic crust. The formation of continental crust produces spread in the ƐNd vs. ƐHf array and extends the model values into the HIMU region of the terrestrial array. We go on to use this geodynamic-geochemical model to investigate different models of continental growth, by observing the effects on the coupled crustal-mantle reservoirs. Brandenburg, J.P., Hauri, E.H., van Keken, P.E., Ballentine, C.J., 2008. Earth and Planetary Science Letters 276, 1-13.
Origin and Evolution of the Moon: Apollo 2000 Model
NASA Astrophysics Data System (ADS)
Schmitt, H. H.
1999-01-01
A descriptive formulation of the stages of lunar evolution as an augmentation of the traditional time-stratigraphic approach [21 enables broadened multidisciplinary discussions of issues related to the Moon and planets. An update of this descriptive formulation [3], integrating Apollo and subsequently acquired data, provides additional perspectives on many of the outstanding issues in lunar science. (Stage 1): Beginning (Pre-Nectarian) - 4.57 Ga; (Stage 2): Magma Ocean (Pre-Nectarian) - 4.57-4.2(?) Ga; (Stage 3:) Cratered Highlands (Pre-Nectarian) - 4.4(?) 4.2(?) Ga (Stage 4:) Large Basins - (Pre-Nectarian - Upper Imbrium) 4.3(?)-3.8 Ga; (Stage 4A:) Old Large Basins and Crustal Strengthening (Pre Nectarian) - 4.3(?)-3.92 Ga; (Stage 4B): Young Large Basins (Nectarian - Lower Imbrium) 3.92-3.80 Ga; (Stage 5): Basaltic Maria (Upper Imbrium) - 4.3(?)- 1.0(?) Ga; (Stage 6): Mature Surface (Copernican and Eratosthenian) - 3.80 Ga to Present. Increasingly strong indications of a largely undifferentiated lower lunar mantle and increasingly constrained initial conditions for models of an Earth-impact origin for the Moon suggest that lunar origin by capture of an independently evolved planet should be investigated more vigorously. Capture appears to better explain the geochemical and geophysical details related to the lower mantle of the Moon and to the distribution of elements and their isotopes. For example, the source of the volatile components of the Apollo 17 orange glass apparently would have lain below the degassed and differentiated magma ocean (3) in a relatively undifferentiated primordial lower mantle. Also, a density reversal from 3.7 gm/cubic cm to approximately 3.3 gm/cubic cm is required at the base of the upper mantle to be consistent with the overall density of the Moon. Finally, Hf/W systematics allow only a very narrow window, if any at all for a giant impact to form the Moon. Continued accretionary impact activity during the crystallization of the magma ocean would result in the "splash intrusion" of residual liquids into the lower crust of the Moon as soon as the crust was coherent enough to resist re-incorporation into the magma ocean. For Mg-suite rocks with crystallization ages greater than about 4.4 Ga, impact-dominated dynamics of crustal formation resulted in the injection of liquids from the magma ocean into the crust. Such a process probably helps to account for the apparent increasingly mafic character of the crust with depth. Creation of a mega-regolith during the cratered highland stage constituted a necessary prerequisite for the later remelting of magma ocean cumulates to produce mare basalt magmas. The increasingly insulating character of the pulverized upper crust would slow the cooling of the residual magma ocean. It also would have allowed the gradual accumulation of radiogenic heat necessary to eventually partially remelt the source regions in the upper mantle that produced the mare basalts and related pyroclastic volcanic eruptions. The reverse wave of heating would proceed downward into the upper mantle from the still molten and significantly radio-isotopic urKREEP residual liquid zone at the base of the crust. The potential effects of a giant, Procellarum basin-forming event ca. 4.3 Ga and of a geographically coincident Imbrium event ca. 3.87 Ga can explain the surface concentration of KREEP-related materials in the Procellarum region of the Moon. Lunar Prospector gamma ray spectrometer data indicate that the Procellarum event excavated only relatively small amounts of material related to KREEP. This strongly suggests that urKREEP magmas had yet to move into the Moon's lower crust. The extensive movement of such liquids across and possibly along the crust-mantle boundary region to beneath Procellarum, however, may well have occurred in response to the regional reduction in lithostactic pressure. The coincidental formation of another large basin, the 1160-km diameter Imbrium basin, near the center of Procellarum resulted in the redistribution of KREEP-related materials roughly radial to the younger basin. This scenario may make unnecessary recent proposals of a chemically asymmetric Moon to account for the surface concentration of KREEP-related material around Imbrium. The timing of the giant, South Pole Aitken Basin-forming event at the end of the cratered highland stage (about 4.2 Ga.) can account for the lack of both extensive KREEP-related material and basaltic maria associated with South Pole Aitken. The absence of an Imbrium-size event in South Pole Aitken would have kept hidden any KREEP-rich crustal province. As would be expected with the removal of most of the insulating upper crust, relatively little mare basalt has erupted in South Pole Aitken, except possibly in its northern portions. After the cratered highlands stage and before the basaltic maria stage, objects from a discrete source region formed about 50 large basins on the Moon over -400 m.y. Four possibilities for sources of the impactors of the large basin stage appear plausible at this time. Of these possibilities, the initial breakup of the original Main Belt planetesimal would appear to be the best present choice as a discrete impactor source. The striking differences between young, mascon basins (about 3.92-3.80 Ga) and old, nonmascon basins (about 4.2-3.92 Ga) indicate that the older, isostaticly compensated basins triggered the regional intrusion, extrusion, and solidification of mobile urKREEP-related magmas prior to the formation of the younger, uncompensated basins. This suggests that the fracturing of the lunar crust by the older basin-forming events permitted urKREEP liquids to migrate into the crust, removing the potential for rapid, post-basin isostatic adjustment by urKREEP magma movement at the crust-mantle boundary. Additional information contained in original.
NASA Astrophysics Data System (ADS)
Zha, Yang
This dissertation focuses on imaging the crustal and upper mantle seismic velocity structure beneath oceanic spreading centers. The goals are to provide a better understanding of the crustal magmatic system and the relationship between mantle melting processes, crustal architecture and ridge characteristics. To address these questions I have analyzed ocean bottom geophysical data collected from the fast-spreading East Pacific Rise and the back-arc Eastern Lau Spreading Center using a combination of ambient noise tomography and seafloor compliance analysis. To characterize the crustal melt distribution at fast spreading ridges, I analyze seafloor compliance - the deformation under long period ocean wave forcing - measured during multiple expeditions between 1994 and 2007 at the East Pacific Rise 9º - 10ºN segment. A 3D numerical modeling technique is developed and used to estimate the effects of low shear velocity zones on compliance measurements. The forward modeling suggests strong variations of lower crustal shear velocity along the ridge axis, with zones of possible high melt fractions beneath certain segments. Analysis of repeated compliance measurements at 9º48'N indicates a decrease of crustal melt fraction following the 2005 - 2006 eruption. This temporal variability provides direct evidence for short-term variations of the magmatic system at a fast spreading ridge. To understand the relationship between mantle melting processes and crustal properties, I apply ambient noise tomography of ocean bottom seismograph (OBS) data to image the upper mantle seismic structure beneath the Eastern Lau Spreading Center (ELSC). The seismic images reveal an asymmetric upper mantle low velocity zone (LVZ) beneath the ELSC, representing a zone of partial melt. As the ridge migrates away from the volcanic arc, the LVZ becomes increasingly offset and separated from the sub-arc low velocity zone. The separation of the ridge and arc low velocity zones is spatially coincident with the abrupt transition in crustal composition and ridge morphology. Therefore these results confirm a previous prediction that the changing interaction between the arc and back-arc magmatic systems is responsible for the abrupt change in crustal properties along the ELSC. I further investigate the crustal structure along and across the ELSC using seafloor compliance. Compliance measurements are inverted for local crustal shear velocity structure as well as sediment thickness at 30 OBS locations using a Monte Carlo method. Sediment increases asymmetrically with seafloor age, with much a higher rate to the east of the ridge. Along the ELSC, upper crustal velocities increase from south to north as the ridge migrates away from the volcanic arc front, consistent with a less porous upper crust with possibly less subduction input. Furthermore, average upper crust shear velocities for crust produced at past ELSC when it was near the volcanic arc are considerably slower than crust produced at present day northern ELSC. I show that the implications of previous active seismic studies in the axial ELSC can be extended much farther off-axis and back in time. I also address a challenge of ocean bottom seismology and develop a new method for determining OBS horizontal orientations using multi-component ambient noise correlation. I demonstrate that the OBS orientations can be robustly estimated through maximizing the correlation between the diagonal and cross terms of the noise correlation function. This method is applied to the ELSC OBS experiment dataset and the obtained orientations are consistent with results from a conventional teleseismic method. The new method is promising for a wide range of applications.
Crustal formation and recycling in an oceanic environment in the early Earth
NASA Astrophysics Data System (ADS)
van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.
2003-04-01
Several lines of evidence indicate higher mantle temperatures (by some hundreds of degrees) during the early history of the Earth. Due to the strong effect of temperature on viscosity as well as on the degree of melting, this enforces a geodynamic regime which is different from the present plate tectonics, and in which smaller scale processes play a more important role. Upwelling of a hotter mantle produces a thicker oceanic crust, of which the lower part may reside in the eclogite stability field. This facilitates delamination, making room for fresh mantle material which may partly melt and add new material to the crust (Vlaar et al., 1994). We present results of numerical thermo-chemical convection models including a simple approximate melt segregation mechanism in which we investigate this alternative geodynamic regime, and its effect on the cooling history and chemical evolution of the mantle. Our results show that the mechanism is capable of working on two scales. On a small scale, involving the lower boundary of the crust, delaminations and downward transport of eclogite into the upper mantle takes place. On a larger scale, involving the entire crustal column, (parts of) the crust may episodically sink into the mantle and be replaced by a fresh crust. Both are capable of significantly and rapidly cooling a hot upper mantle by driving partial melting and thus the generation of new crust. After some hundreds of millions of years, as the temperature drops, the mechanism shuts itself off, and the cooling rate significantly decreases. Vlaar, N.J., P.E. van Keken and A.P. van den Berg (1994), Cooling of the Earth in the Archaean: consequences of pressure-release melting in a hotter mantle, Earth and Planetary Science Letters, vol 121, pp. 1-18
Wang, Xiao-Hong; Schlossmacher, Ute; Natalio, Filipe; Schröder, Heinz C; Wolf, Stephan E; Tremel, Wolfgang; Müller, Werner E G
2009-01-01
Ferromanganese [Fe/Mn] crusts formed on basaltic seamounts, gain considerable economic importance due to their high content of Co, Ni, Cu, Zn and Pt. The deposits are predominantly found in the Pacific Ocean in depths of over 1000m. They are formed in the mixing layer between the upper oxygen-minimum zone and the lower oxygen-rich bottom zone. At present an almost exclusive abiogenic origin of crust formation is considered. We present evidence that the upper layers of the crusts from the Magellan Seamount cluster are very rich in coccoliths/coccolithophores (calcareous phytoplankton) belonging to different taxa. Rarely intact skeletons of these unicellular algae are found, while most of them are disintegrated into their composing prisms or crystals. Studies on the chemical composition of crust samples by high resolution SEM combined with an electron probe microanalyzer (EPMA) revealed that they are built of distinct stacked piles of individual compartments. In the center of such piles Mn is the dominant element, while the rims of the piles are rich in Fe (mineralization aspect). The compartments contain coccospheres usually at the basal part. Energy dispersive X-ray spectroscopy (EDX) analyses showed that those coccospheres contain, as expected, CaCO3 but also Mn-oxide. Detailed analysis displayed on the surface of the coccolithophores a high level of CaCO3 while the concentration of Mn-oxide is relatively small. With increasing distance from the coccolithophores the concentration of Mn-oxide increases on the expense of residual CaCO3. We conclude that coccoliths/coccolithophores are crucial for the seed/nucleation phase of crust formation (biomineralization aspect). Subsequently, after the biologically induced mineralization phase Mn-oxide deposition proceeds "auto"catalytically.
Newmark, R.L.; Anderson, R.N.; Moos, D.; Zoback, M.D.
1985-01-01
The layered structure of the oceanic crust is characterized by changes in geophysical gradients rather than by abrupt layer boundaries. Correlation of geophysical logs and cores recovered from DSDP Hole 504B provides some insight into the physical properties which control these gradient changes. Borehole televiewer logging in Hole 504B provides a continuous image of wellbore reflectivity into the oceanic crust, revealing detailed structures not apparent otherwise, due to the low percentage of core recovery. Physical characteristics of the crustal layers 2A, 2B and 2C such as the detailed sonic velocity and lithostratigraphic structure are obtained through analysis of the sonic, borehole televiewer and electrical resistivity logs. A prediction of bulk hydrated mineral content, consistent with comparison to the recovered material, suggests a change in the nature of the alteration with depth. Data from the sonic, borehole televiewer, electrical resistivity and other porosity-sensitive logs are used to calculate the variation of porosity in the crustal layers 2A, 2B and 2C. Several of the well logs which are sensitive to the presence of fractures and open porosity in the formation indicate many zones of intense fracturing. Interpretation of these observations suggests that there may be a fundamental pattern of cooling-induced structure in the oceanic crust. ?? 1985.
Geological Structure and History of the Arctic Ocean
NASA Astrophysics Data System (ADS)
Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey; Sobolev, Nikolay; Kashubin, Sergey; Pospelov, Igor; Tolmacheva, Tatiana; Petrov, Eugeny
2016-04-01
New data on geological structure of the deep-water part of the Arctic Basin have been integrated in the joint project of Arctic states - the Atlas of maps of the Circumpolar Arctic. Geological (CGS, 2009) and potential field (NGS, 2009) maps were published as part of the Atlas; tectonic (Russia) and mineral resources (Norway) maps are being completed. The Arctic basement map is one of supplements to the tectonic map. It shows the Eurasian basin with oceanic crust and submerged margins of adjacent continents: the Barents-Kara, Amerasian ("Amerasian basin") and the Canada-Greenland. These margins are characterized by strained and thinned crust with the upper crust layer, almost extinct in places (South Barents and Makarov basins). In the Central Arctic elevations, seismic studies and investigation of seabed rock samples resulted in the identification of a craton with the Early Precambrian crust (near-polar part of the Lomonosov Ridge - Alpha-Mendeleev Rise). Its basement presumably consists of gneiss granite (2.6-2.2 Ga), and the cover is composed of Proterozoic quartzite sandstone and dolomite overlain with unconformity and break in sedimentation by Devonian-Triassic limestone with fauna and terrigenous rocks. The old crust is surrounded by accretion belts of Timanides and Grenvillides. Folded belts with the Late Precambrian crust are reworked by Caledonian-Ellesmerian and the Late Mesozoic movements. Structures of the South Anuy - Angayucham ophiolite suture reworked in the Early Cretaceous are separated from Mesozoides proper of the Pacific - Verkhoyansk-Kolyma and Koryak-Kamchatka belts. The complicated modern ensemble of structures of the basement and the continental frame of the Arctic Ocean was formed as a result of the conjugate evolution and interaction of the three major oceans of the Earth: Paleoasian, Paleoatlantic and Paleopacific.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, A.T.; Becker, K.; Narasimhan, T.
1990-06-01
Pore fluids are passively convecting through young oceanic sediments and crust around Deep Sea Drilling Project (DSDP) site 504 on the southern flank of the Costa Rica Rift, as inferred from a variety of geological, geochemical, and geothermal observations. The presence of a fluid circulation system is supported by new data collected on Ocean Drilling Program (ODP) Leg 111 and a predrilling survey cruise over the heavily sedimented, 5.9 Ma site; during the latter, elongated heat flow anomalies were mapped subparallel to structural strike, with individual measurements of twice the regional mean value, and large lateral and vertical geochemical gradientsmore » were detected in pore waters squeezed from sediment cores. Also, there is a strong correlation between heat flow, bathymetry, sediment thickness, and inferred fluid velocities up through the sediments. On an earlier DSDP leg, an 8-bar underpressure was measured in the upper 200 m of basement beneath thick sediment cover. The widely varied geothermal and hydrogeological observations near site 504 are readily explained by a model that combines (1) basement relief, (2) irregular sediment drape, (3) largely conductive heat transfer through the sediments overlying the crust, and (4) thermal and geochemical homogenization of pore fluids at the sediment/basement interface, which results from (5) topographically induced, passive hydrothermal circulation with large aspect ratio, convection cells. This convection involves mainly the permeable, upper 200-300 m of crust; the deeper crust is not involved. This convection is induced through a combination of buoyancy fluxes, owing to heating from below, and topographic variations on the seafloor and at the basement-sediment interface.« less
Formation and evolution of magma-poor margins, an example of the West Iberia margin
NASA Astrophysics Data System (ADS)
Perez-Gussinye, Marta; Andres-Martinez, Miguel; Morgan, Jason P.; Ranero, Cesar R.; Reston, Tim
2016-04-01
The West Iberia-Newfoundland (WIM-NF) conjugate margins have been geophysically and geologically surveyed for the last 30 years and have arguably become a paradigm for magma-poor extensional margins. Here we present a coherent picture of the WIM-NF rift to drift evolution that emerges from these observations and numerical modeling, and point out important differences that may exist with other magma-poor margins world-wide. The WIM-NF is characterized by a continental crust that thins asymmetrically and a wide and symmetric continent-ocean transition (COT) interpreted to consist of exhumed and serpentinised mantle with magmatic products increasing oceanward. The architectural evolution of these margins is mainly dominated by cooling under very slow extension velocities (<~6 mm/yr half-rate) and a lower crust that most probably was not extremely weak at the start of rifting. These conditions lead to a system where initially deformation is distributed over a broad area and the upper, lower crust and lithosphere are decoupled. As extension progresses upper, lower, crust and mantle become tightly coupled and deformation localizes due to strengthening and cooling during rifting. Coupling leads to asymmetric asthenospheric uplift and weakening of the hanginwall of the active fault, where a new fault forms. This continued process leads to the formation of an array of sequential faults that dip and become younger oceanward. Here we show that these processes acting in concert: 1) reproduce the margin asymmetry observed at the WIM-NF, 2) explain the fault geometry evolution from planar, to listric to detachment like by having one common Andersonian framework, 3) lead to the symmetric exhumation of mantle with little magmatism, and 4) explain the younging of the syn-rift towards the basin centre and imply that unconformities separating syn- and post-rift may be diachronous and younger towards the ocean. Finally, we show that different lower crustal rheologies lead to different patterns of extension and to an abrupt transition to oceanic crust, even at magma-poor margins.
Crustal and upper mantle velocity structure of the Salton Trough, southeast California
Parsons, T.; McCarthy, J.
1996-01-01
This paper presents data and modelling results from a crustal and upper mantle wide-angle seismic transect across the Salton Trough region in southeast California. The Salton Trough is a unique part of the Basin and Range province where mid-ocean ridge/transform spreading in the Gulf of California has evolved northward into the continent. In 1992, the U.S. Geological Survey (USGS) conducted the final leg of the Pacific to Arizona Crustal Experiment (PACE). Two perpendicular models of the crust and upper mantle were fit to wide-angle reflection and refraction travel times, seismic amplitudes, and Bouguer gravity anomalies. The first profile crossed the Salton Trough from the southwest to the northeast, and the second was a strike line that paralleled the Salton Sea along its western edge. We found thin crust (???21-22 km thick) beneath the axis of the Salton Trough (Imperial Valley) and locally thicker crust (???27 km) beneath the Chocolate Mountains to the northeast. We modelled a slight thinning of the crust further to the northeast beneath the Colorado River (???24 km) and subsequent thickening beneath the metamorphic core complex belt northeast of the Colorado River. There is a deep, apparently young basin (???5-6 km unmetamorphosed sediments) beneath the Imperial Valley and a shallower (???2-3 km) basin beneath the Colorado River. A regional 6.9-km/s layer (between ???15-km depth and the Moho) underlies the Salton Trough as well as the Chocolate Mountains where it pinches out at the Moho. This lower crustal layer is spatially associated with a low-velocity (7.6-7.7 km/s) upper mantle. We found that our crustal model is locally compatible with the previously suggested notion that the crust of the Salton Trough has formed almost entirely from magmatism in the lower crust and sedimentation in the upper crust. However, we observe an apparently magmatically emplaced lower crust to the northeast, outside of the Salton Trough, and propose that this layer in part predates Salton Trough rifting. It may also in part result from migration of magmatic spreading centers associated with the southern San Andreas fault system. These spreading centers may have existed east of their current locations in the past and may have influenced the lower crust and upper mantle to the east of the current Salton Trough.
How Much Ocean Is Left Between Libya and Crete
NASA Astrophysics Data System (ADS)
Makris, J.; Yegorova, T.
The intense deformation of the Hellenides is due to crustal shortening and the collision between the European and African Plates. This processes creates the Mediterranean accretionary wedge known as Mediterranean Ridge, which is composed of thick sedi- mentary sequences exceeding 10 km in thickness. The stage of this collision has been under dispute for many years. We performed wide aperture seismic soundings between Crete and Libya along 5 seismic lines. The results were used to constrain gravity mod- elling and develop density models in 2D and 3D between Libya and the Cretan Sea. We identified the limits of the European continental crust extending south of Crete for more than 100 km and building the backstop of the sediment accumulation . The African continental crust extends to the north for about 80 to 100 km, so that the remaining space floored by the oceanic Thethian basement is at its narrowest point not more than 100 to 120 km wide. By modelling in 3D the gravity field of the sedi- ments, crust and uppermost mantle we identified significant variations of the density distribution of the upper mantle. The young intensely deforming area of the Aegean domain is floored by low density upper mantle due to the mobilization of magma and the activation of the thermal regime. The subducted cold oceanic slab sinks below the Cretan crust in NE orientation and is decupled from the continental crust between central Crete and the southeastern edge of the Peloponnese. The deformation of the sediments controlled by the compressional processes have their maximum accumu- lation at the limits of the backstop. Here the transition of the deep trough to the flat and nearly undeformed sedimentary sequence is very abrupt and the transition oc- curs along vertical displacements of 6 to 8 km near vertical throw. Near the southern transition of the oceanic crust to the African continental domain obducted ophiolites extend over large areas explaining gravity highs and also observed intense magnetic anomalies. The computed gravity field fits the observed one in all its low frequency spectrum. We avoided modelling the high frequency part of the field since the seismic 1 information was not dense enough to justify the effort. 2
Numerical Mantle Convection Models of Crustal Formation in an Oceanic Environment in the Early Earth
NASA Astrophysics Data System (ADS)
van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.
2001-12-01
The generation of basaltic crust in the early Earth by partial melting of mantle rocks, subject to investigation in this study, is thought to be a first step in the creation of proto-continents (consisting largely of felsic material), since partial melting of basaltic material was probably an important source for these more evolved rocks. In the early Archean the earth's upper mantle may have been hotter than today by as much as several hundred degrees centigrade. As a consequence, partial melting in shallow convective upwellings would have produced a layering of basaltic crust and underlying depleted (lherzolitic-harzburgitic) mantle peridotite which is much thicker than found under modern day oceanic ridges. When a basaltic crustal layer becomes sufficiently thick, a phase transition to eclogite may occur in the lower parts, which would cause delamination of this dense crustal layer and recycling of dense eclogite into the upper mantle. This recycling mechanism may have contributed significantly to the early cooling of the earth during the Archean (Vlaar et al., 1994). The delamination mechanism which limits the build-up of a thick basaltic crustal layer is switched off after sufficient cooling of the upper mantle has taken place. We present results of numerical modelling experiments of mantle convection including pressure release partial melting. The model includes a simple approximate melt segregation mechanism and basalt to eclogite phase transition, to account for the dynamic accumulation and recycling of the crust in an upper mantle subject to secular cooling. Finite element methods are used to solve for the viscous flow field and the temperature field, and lagrangian particle tracers are used to represent the evolving composition due to partial melting and accumulation of the basaltic crust. We find that this mechanism creates a basaltic crust of several tens of kilometers thickness in several hundreds of million years. This is accompanied by a cooling of some hundred degrees centigrade. Vlaar, N.J., P.E. van Keken and A.P. van den Berg (1994), Cooling of the Earth in the Archaean: consequences of pressure-release melting in a hotter mantle, Earth and Planetary Science Letters, vol 121, pp. 1-18
NASA Astrophysics Data System (ADS)
Greenhalgh, E. E.; Kusznir, N. J.
2006-12-01
Satellite gravity inversion incorporating a lithosphere thermal gravity correction has been used to map crustal thickness and lithosphere thinning factor for the N.E. Atlantic. The inversion of gravity data to determine crustal thickness incorporates a lithosphere thermal gravity anomaly correction for both oceanic and continental margin lithosphere. Predicted crustal thicknesses in the Norwegian Basin are between 7 and 4 km on the extinct Aegir oceanic ridge which ceased sea-floor spreading in the Oligocene. Crustal thickness estimates do not include a correction for sediment thickness and are upper bounds. Crustal thicknesses determined by gravity inversion for the Aegir Ridge are consistent with recent estimates derived using refraction seismology by Breivik et al. (2006). Failure to incorporate a lithosphere thermal gravity anomaly correction produces an over-estimate of crustal thickness. Oceanic crustal thicknesses within the Norwegian Basin are predicted by the gravity inversion to increase to 9-10 km eastwards towards the Norwegian (Moere) and westwards towards the Jan Mayen micro-continent, consistent with volcanic margin continental breakup at the end of the Palaeocene. The observation (from gravity inversion and seismic refraction studies) of thin oceanic crust produced by the Aegir ocean ridge in the Oligocene has implications for the temporal evolution of asthenosphere temperature under the N.E. Atlantic during the Tertiary. Thin Oligocene oceanic crust may imply cool (normal) asthenosphere temperatures during the Oligocene in contrast to elevated asthenosphere temperatures in the Palaeocene and Miocene-Recent as indicated by volcanic margin formation and the formation of Iceland respectively. Gravity inversion also predicts a region of thin oceanic crust to the west of the northern part of the Jan Mayen micro-continent and to the east of the thicker oceanic crust currently being formed at the Kolbeinsey Ridge. Thicker crust (c.f. ocean basins) is predicted for the Jan Mayen micro- continent south of Jan Mayen Island, with crust of the order of 20 km thickness extending southwards to connect with both the Faroes-Iceland Ridge and N.E. Iceland. Predicted crustal thicknesses under the Faroes- Iceland Ridge are approximately 25 km. The lithosphere thermal model used to predict the lithosphere thermal gravity anomaly correction may be conditioned using magnetic isochron data to provide the age of oceanic lithosphere. The resulting crustal thickness determination and the location of ocean-continent transition (OCT) are however sensitive to errors in the magnetic isochron data. An alternative method of inverting satellite gravity to give crustal thickness, incorporating a lithosphere thermal correction, has been used which does not use magnetic isochron data and provides an independent prediction of crustal thickness and OCT location. The crustal thickness estimates and OCT locations detailed above are robust to these sensitivity tests.
Lithospheric electrical structure of the middle Lhasa terrane in the south Tibetan plateau
NASA Astrophysics Data System (ADS)
Liang, Hongda; Jin, Sheng; Wei, Wenbo; Gao, Rui; Ye, Gaofeng; Zhang, Letian; Yin, Yaotian; Lu, Zhanwu
2018-04-01
The Lhasa terrane in southern Tibetan plateau is a huge tectono-magmatic belt and an important metallogenic belt. Its formation evolution process and mineralization are affected by the subduction of oceanic plate and subsequent continental collision. However, the evolution of Lhasa terrane has been a subject of much debate for a long time. The Lithospheric structure records the deep processes of the subduction of oceanic plate and continental collision. The magnetotelluric (MT) method can probe the sub-surface electrical conductivity, newly dense broadband and long period magnetotelluric data were collected along a south-north trending profile that across the Lhasa terrane at 88°-89°E. Dimensionality analyses demonstrated that the MT data can be interpreted using two-dimensional approaches, and the regional strike direction was determined as N110°E.Based on data analysis results, a two-dimensional (2-D) resistivity model of crust and upper mantle was derived from inversion of the transverse electric mode, transverse magnetic mode and vertical magnetic field data. Inversion model shows a large north-dipping resistor that extended from the upper crust to upper mantle beneath the Himalaya and the south of Lhasa Terrane, which may represent the subducting Indian continental lithosphere. The 31°N may be an important boundary in the Lhasa Terrane, the south performs a prominent high-conductivity anomaly from the lower crust to upper mantle which indicates the existence of asthenosphere upwelling, while the north performs a higher resistivity and may have a reworking ancient basement. The formation of the ore deposits in the study area may be related to the upwelling of the mantle material triggered by slab tearing and/or breaking off of the Indian lithosphere, and the mantle material input also contributed the total thickness of the present-day Tibetan crust. The results provide helpful constrains to understand the mechanism of the continent-continent collision and the regional exploratory prospect of the deep resources.
NASA Astrophysics Data System (ADS)
Eddy, D. R.; Van Avendonk, H. J.; Christeson, G. L.; Norton, I. O.; Karner, G. D.; Kneller, E. A.; Johnson, C. A.; Snedden, J.
2013-12-01
Continental rifting and seafloor-spreading between North America and the Yucatán Block during the Jurassic to early Cretaceous formed the small ocean basin known today as the Gulf of Mexico. The lack of deeply-penetrating geophysical data in the Gulf of Mexico limited early reconstructions of the timing and location of the rift-to-drift transition, particularly with respect to the influence of magmatism on the breakup of continental crust and the onset of seafloor-spreading. To better understand the deep structure of this economically important basin, we acquired four marine seismic refraction profiles in the northern Gulf of Mexico from the shelf to deep water as part of the 2010 Gulf of Mexico Basin Opening project (GUMBO). We use travel times from long-offset reflections and refractions to image compressional seismic velocities in the sediments, crystalline crust, and upper mantle using an iterative tomographic inversion. GUMBO Line 3 extends from offshore Alabama through the De Soto Canyon towards the central Gulf of Mexico. We interpret velocities >5.0 km/s in the sediment layer landward of the Florida Escarpment as a Lower Cretaceous carbonate platform. Crystalline crust with velocities between 5.5-7.5 km/s thins significantly from 23 km to 7 km across a narrow necking zone. A deep, localized region of anomalously high seismic velocities (>7.5 km/s) at the base of crystalline crust exceeds those of continental lower crust in the eastern US. We interpret this section of GUMBO 3 to represent mafic under-plating and/or infiltration of asthenospheric melts, common at volcanic rifted margins. The seaward end of GUMBO 3 has seismic velocities consistent with mafic ocean crust produced by normal seafloor-spreading (6.0-7.5 km/s); this observation is supported by a consistent crustal thickness of ~7 km and minimal lateral heterogeneities in velocity structure. GUMBO Line 2 extends from offshore Louisiana southward across the Sigsbee Escarpment. We find a massive sediment package with substantial lateral heterogeneities, which we attribute to salt tectonics. GUMBO 2 crust thins slightly from north to south, and varies greatly in thickness from 3-10 km with seismic velocities between 6.0-8.0 km/s. We interpret the majority of GUMBO 2 as oceanic crust formed by slow to ultraslow seafloor-spreading, with a volcanic rift margin closer to the present-day coastline than most prior reconstructions. This finding substantially increases the amount of ocean crust interpreted in the Gulf of Mexico. We invoke a ridge jump to explain asymmetry in oceanic crust between North America and the Yucatán peninsula. We further suggest that the effects of heat and asthenospheric melt were more impactful, and the rift-to-drift transition more immediate, in the eastern Gulf of Mexico than in the west. Heat and melt infiltrated and weakened the thick continental crust at GUMBO 3, defining a sharp transition from a volcanic rifted margin to ocean ridge basalt production. Variable ocean crust thicknesses suggest a lower melt supply and more slow-spreading crust at GUMBO 2. Proximity of the eastern margin to the origin of the Central Atlantic Magmatic Province, as well as abundant mid-ocean ridge basalt production in the Atlantic Ocean, may explain differences in melt supply and seafloor-spreading.
Barium isotope composition of altered oceanic crust from the IODP Site 1256 at the East Pacific Rise
NASA Astrophysics Data System (ADS)
Nan, X.; Yu, H.; Gao, Y.
2017-12-01
To understand the behavior of Ba isotopes in the oceanic crust during seawater alteration, we analyzed Ba isotopes for altered oceanic crust (AOC) from the IODP Site 1256 at the East Pacific Rise (EPR). The samples include 33 basalts, 5 gabbros, and 1 gabbronorite. This drill profile has four sections from top to bottom, including the volcanic section, transition zone, sheeted dyke complex, and plutonic complex. They display various degrees of alteration with obviously variable temperatures and water/rock ratios (Gao et al., 2012). The volcanic section is slightly to moderately altered by seawater at 100 to 250°; the transition zone is a mixing zone between upwelling hydrothermal fluids and downwelling seawater; and the sheeted dyke complex and plutonic complex are highly altered by hydrothermal fluids (˜250°). Ba isotopes were analyzed on a Neptune Plus MC-ICP-MS at the University of Science and Technology of China. The long-term precision of δ137/134Ba is better than 0.04‰ (2SD). The δ137/134Ba of the volcanic section and the top of the transition zone range between -0.01 and 0.30‰, higher than the δ137/134Ba of fresh MORB and upper mantle (0.020 ± 0.021‰, 2SE, Huang et al., 2015). Similarly, the δ137/134Ba of the sheeted dyke complex ranges from 0.05 to 0.28‰. The plutonic section has δ137/134Ba from -0.17 to -0.05‰, which is lower than the upper mantle, with one exception that has δ137/134Ba of 0.19‰. No correlation exists between Ba contents and δ137/134Ba. The weighted average δ137/134Ba of the AOC samples is 0.13±0.04‰ (2SE), significantly higher than that of the upper mantle. In all, our AOC data reveal obvious Ba isotopic fractionation, reflecting alteration of the AOC by hydrothermal fluids and seawater. The obvious difference of Ba isotope composition between the AOC and the upper mantle further indicates that recycling of the AOC could result in Ba isotope heterogeneity of the mantle. References: Gao Y, Vils F, Cooper K M, et al. (2012) Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific Rise, ODP Site 1256. Geochemistry, Geophysics, Geosystems,13(10). Huang F., Nan X., Hu M., Huang S. and Huang J. (2015) Barium isotope compositions of igneous rocks. Goldschm. Abstr.2015, 1331.
NASA Astrophysics Data System (ADS)
Queano, Karlo L.; Marquez, Edanjarlo J.; Aitchison, Jonathan C.; Ali, Jason R.
2013-03-01
Results from the first detailed radiolarian biostratigraphic study conducted in Luzon are reported. The data were obtained from cherts associated with the Casiguran Ophiolite, a dismembered ophiolite mass consisting of serpentinized peridotites, gabbros, dolerite dikes and pillow basalts exposed along the eastern coast of the Northern Sierra Madre, Luzon, Philippines. Cherts and limestone interbeds conformably overlie the ophiolite. The radiolarian assemblages from the cherts constrain the stratigraphic range of the cherts to the Lower Cretaceous (upper Barremian-lower Aptian to Albian). This new biostratigraphic result is in contrast with the Upper Cretaceous stratigraphic range previously reported in the region. Radiolarian biostratigraphic results from the Casiguran Ophiolite provide additional evidence for the existence of Mesozoic oceanic substratum upon which Luzon and neighboring regions within the Philippine archipelago were likely built. Interestingly, the result closely resembles those reported for the ophiolite in southeastern Luzon as well as the oceanic crust of the Huatung Basin situated east of Taiwan and the ophiolites in eastern Indonesia. In light of this, along with previously gathered geochemical data from the ophiolites, a common provenance is being looked into for these crust-upper mantle sequences in the western Pacific region.
NASA Astrophysics Data System (ADS)
Shimoda, G.; Kogiso, T.
2017-12-01
Chemical composition of altered oceanic crust is one of important constraints to delineate chemical heterogeneity of the mantle. Accordingly, many researchers have been studied to determine bulk chemical composition of altered oceanic crust mainly based on chemical compositions of old oceanic crusts at Site 801 and Site 417/418, and young crust at Site 504 (e.g., Staudigel et al., 1996; Bach et al. 2003; Kuo et al., 2016). Their careful estimation provided reliable bulk chemical compositions of these Sites and revealed common geochemical feature of alteration. To assess effect of recycling of altered oceanic crust on chemical evolution of the mantle, it might be meaningful to discuss whether the reported chemical compositions of altered oceanic crusts can represent chemical composition of globally subducted oceanic crusts. Reported chemical compositions of fresh glass or less altered samples from Site 801, 417/418 and 504 were highly depleted compared to that of global MORB reported by Gale et al. (2013), suggesting that there might be sampling bias. Hence, it could be important to consider chemical difference between oceanic crusts of these three Sites and global MORB to discuss effect of recycling of oceanic crust on isotopic heterogeneity of the mantle. It has been suggested that one of controlling factors of chemical variation of oceanic crust is crustal spreading rate because different degree of partial melting affects chemical composition of magmas produced at a mid-ocean ridge. Crustal spreading rate could also affect intensity of alteration. Namely, oceanic crusts produced at slow-spreading ridges may prone to be altered due to existence of larger displacement faults compared to fast spreading ridges which have relatively smooth topography. Thus, it might be significant to evaluate isotopic evolution of oceanic crusts those were produced at different spreading rates. In this presentation, we will provide a possible chemical variation of altered oceanic crusts based on reported bulk chemical compositions of altered oceanic crusts and global data sets of MORB. On the basis of the chemical variation, we will discuss isotopic evolution of altered oceanic crusts to delineate isotopic variation of recycled oceanic crusts.
Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes
NASA Astrophysics Data System (ADS)
Klügel, Andreas; Longpré, Marc-Antoine; García-Cañada, Laura; Stix, John
2015-12-01
Oceanic intraplate volcanoes grow by accumulation of erupted material as well as by coeval or discrete magmatic intrusions. Dykes and other intrusive bodies within volcanic edifices are comparatively well studied, but intrusive processes deep beneath the volcanoes remain elusive. Although there is geological evidence for deep magmatic intrusions contributing to volcano growth through uplift, this has rarely been demonstrated by real-time monitoring. Here we use geophysical and petrological data from El Hierro, Canary Islands, to show that intrusions from the mantle and subhorizontal transport of magma within the oceanic crust result in rapid endogenous island growth. Seismicity and ground deformation associated with a submarine eruption in 2011-2012 reveal deep subhorizontal intrusive sheets (sills), which have caused island-scale uplift of tens of centimetres. The pre-eruptive intrusions migrated 15-20 km laterally within the lower oceanic crust, opening pathways that were subsequently used by the erupted magmas to ascend from the mantle to the surface. During six post-eruptive episodes between 2012 and 2014, further sill intrusions into the lower crust and upper mantle have caused magma to migrate up to 20 km laterally, resulting in magma accumulation exceeding that of the pre-eruptive phase. A comparison of geobarometric data for the 2011-2012 El Hierro eruption with data for other Atlantic intraplate volcanoes shows similar bimodal pressure distributions, suggesting that eruptive phases are commonly accompanied by deep intrusions of sills and lateral magma transport. These processes add significant material to the oceanic crust, cause uplift, and are thus fundamentally important for the growth and evolution of volcanic islands. We suggest that the development of such a magma accumulation zone in the lower oceanic crust begins early during volcano evolution, and is a consequence of increasing size and complexity of the mantle reservoir system, and potentially the lithospheric stresses imposed by increasing edifice load.
Shear Wave Structure in the Lithosphere of Texas from Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Yao, Y.; Li, A.
2014-12-01
Texas contains several distinct tectonic provinces, the Laurentia craton, the Ouachita belt, and the Gulf coastal plain. Although numerous geophysical experiments have been conducted in Texas for petroleum exploration, the lithosphere structure of Texas has not been well studied. We present here the Texas-wide shear wave structure using seismic ambient noise data recorded at 87 stations from the Transportable Array of the USArray between March 2010 and February 2011. Rayleigh wave phase velocities between pairs of stations are obtained by cross-correlating long ambient noise sequences and are used to develop phase velocity maps from 6 to 40 s. These measured phase velocities are used to construct 1-D and 3-D shear wave velocity models, which consist of four crust layers and one upper mantle layer. Shear wave velocity maps reveal a close correlation with major geological features. From the surface to 25 km depth, Positive anomalies coincide with the Laurentia craton, and negative anomalies coincide with the continental margin. The boundary of positive-negative anomaly perfectly matches the Ouachita belt. The Llano Uplift is imaged as the highest velocity through the mid-crust because the igneous rock forming the uplift has faster seismic velocity than the normal continental crust. Similarly, three small high-velocity areas exist beneath the Waco Uplift, Devils River Uplift, and Benton Uplift, even though surface geological traces are absent in these areas. The lowest velocity at the shallow crust appears in northeastern and southeastern Texas separated by the San Marcos Arch, correlating with thick sediment layers. An exceptional low velocity is imaged in southernmost Texas in the lower crust and upper mantle, probably caused by subducted wet oceanic crust before the rifting in the Gulf of Mexico. In the uppermost mantle, positive shear wave anomalies extend southeastward from the Ouachita belt to the Gulf coast, likely evidencing the subducted oceanic lithosphere during the Ouachita orogeny. This observation need be further tested using long period surface wave dispersions from earthquakes, which help to improve model resolution in the upper mantle.
Supracrustal origin of plagiogranite from the Gallieni Fracture Zone, Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Zhu, Jihao; Li, Zhenggang; Chu, Fengyou; Fu, Bin; Dong, Yanhui; Chen, Ling; Liu, Jiqiang
2017-04-01
Small amounts of felsic rocks such as tonalite, trondjhemite and diorite often called oceanic plagiogranites were found at all structure levels of the oceanic crust. They can be formed either by partial melting of hydrated gabbros and/or sheeted dikes, or by late-stage differentiation of parental mid-ocean ridge basalt melts. Here we report a granodiorite sampled in the Gallieni Fracture Zone, Southwest Indian Ridge, shows no ocean crust affinity but the nature of the continental crust. The granodiorite is extremely enriched in K2O (3.72%) and its rare-earth-element distribution pattern is incomparable to any type of oceanic plagiogranites from mid-ocean ridge and ophiolites, but similar to the Upper Continental Crust. Moreover, the in-situ zircon O isotopes (δ18O=5.9-7.5‰) are much higher than the plagiogranites from all the tectonic settings relevant to ocean crust generation, while Hf isotope compositions (ɛHf(0) =-4.0 to -7.9) are much lower than global oceanic basalts. In addition, the granodiorite suffered low-grade metamorphism as reflected by the penetration of late-stage felsic veins and the occurrence of metamorphic minerals such as epidote and chlorite. Secondary vein quartz has negative δ18O values as low as -3.9‰, suggesting the involvement of meteoric water. Zircon U-Pb age (183.7±1.2Ma) shows that the granodiorite was formed contemporarily with Karoo volcanism associating with the breakup of Gondwanaland. We suggest that it may be formed by the anataxis of continental crustal materials by underplated Karoo basaltic magma. Combining our unreported high-grade quartzite with zircon U-Pb ages of more than 500Ma and a Jurassic quartz diorite reported earlier which all sampled in or near the Gallieni Fracture Zone, we propose that a continental block probably from the South Madagascar was split during continental breakup but retained near the ridge segment as a result of repeated ridge jumping and transform migration. Keywords: zircon Hf-O isotopes, U-Pb age, plagiogranites, Gondwanaland, continental block, Southwest Indian Ridge
Christeson, Gail L.; Barth, Ginger A.
2015-01-01
We present two-dimensional P-wave velocity structure along two wide-angle ocean bottom seismometer profiles from the Aleutian basin in the Bering Sea. The basement here is commonly considered to be trapped oceanic crust, yet there is a change in orientation of magnetic lineations and gravity features within the basin that might reflect later processes. Line 1 extends ∼225 km from southwest to northeast, while Line 2 extends ∼225 km from northwest to southeast and crosses the observed change in magnetic lineation orientation. Velocities of the sediment layer increase from 2.0 km/s at the seafloor to 3.0–3.4 km/s just above basement, crustal velocities increase from 5.1–5.6 km/s at the top of basement to 7.0–7.1 km/s at the base of the crust, and upper mantle velocities are 8.1–8.2 km/s. Average sediment thickness is 3.8–3.9 km for both profiles. Crustal thickness varies from 6.2 to 9.6 km, with average thickness of 7.2 km on Line 1 and 8.8 km on Line 2. There is no clear change in crustal structure associated with a change in orientation of magnetic lineations and gravity features. The velocity structure is consistent with that of normal or thickened oceanic crust. The observed increase in crustal thickness from west to east is interpreted as reflecting an increase in melt supply during crustal formation.
NASA Astrophysics Data System (ADS)
Shreider, A. A.; Kashintsev, G. L.
2010-02-01
The comparative estimation of the parameters of the lithosphere of the Mid-Ocean Southwestern Indian range in the areas westwards and eastwards of the Atlantis II transform fault zone shows that, within this zone, an alteration in the basalt composition occurred. Eastwards of this zone, a decrease of the anomaly of the magnetic field occurred and increased average depths of the axial part (4.7 km) and thinning (up to 4-5 km) of the ocean crust with increased rates of seismic waves in the upper mantle were observed. This, first of all, indicates an anomalously cold mantle below the oceanic crust. The changes that occurred in the location of the Euler pole within the last millions of years resulted in slanting spreading in the area of the investigation with rates of opening lower than 1.8 cm/year probably accompanied by the phenomena of transtension in the active parts of the transform faults. The interaction between the Landly and Somali lithosphere plates occurred along the diffusion boundary and was accompanied by problems with tracing the chrones between the neighboring profiles of geomagnetic observations. Consequently, the more detailed investigation of the configuration of the diffusion boundary will contribute to the more accurate reconstruction of the paleogeodynamics of the central part of the Indian Ocean.
NASA Astrophysics Data System (ADS)
Estep, J. D.; Reece, R.; Kardell, D. A.; Christeson, G. L.; Carlson, R. L.
2017-12-01
Seismic layer 2A, the uppermost igneous portion of oceanic crust, is commonly used to refer to the seismic velocities of upper crust that are bounded below by a steep vertical velocity gradient. Layer 2A velocities are known to increase with crustal age, from 2.5 km/s in crust <1 Ma to 4.5-5 km/s in crust >15 Ma. Thickness of layer 2A has been shown to increase by a factor of 2 within 1 Ma at fast spreading ridges and then remain relatively constant, while layer 2A maintains a fairly consistent thickness, irrespective of age, at slow-intermediate spreading ridges. Layer 2A thickness and velocity evolution studies to date have been largely focused on young oceanic crust very proximal to a spreading center with little investigation of changes (or lack thereof) that occur at crustal ages >10 Ma. We utilize a multichannel seismic dataset collected at 30° S in the western South Atlantic that continuously images 0 - 70 Ma oceanic crust along a single flowline generated at the slow-intermediate spreading Mid-Atlantic Ridge. We follow the methods of previous studies by processing the data to image the layer 2A event, which is then used for calculating thickness. 1D travel time forward modeling at regularly spaced age intervals across the transect provides for the conversion of time to depth thickness, and for determining the evolution of velocities with age. Our results show layer 2A in 20 Ma crust is roughly double the thickness of that in crust 0-5 Ma (830 vs. 440 m), but thickness does not appear to change beyond 20 Ma. The layer 2A event is readily observable in crust 0-50 Ma, is nearly completely absent in crust 50-65 Ma, and then reappears with anomalously high amplitude and lateral continuity in crust 65-70 Ma. Our results suggest that layer 2A thickens with age at the slow-intermediate spreading southern Mid-Atlantic Ridge, and that layer 2A either continues to evolve at the older crustal ages, well beyond the expected 10-15 Ma "mature age", or that external factors have altered the crust at 65-70 Ma. The proximity and thermal influence of the Rio Grande Rise might explain the anomalous appearance of the layer 2A event at the older ages of crust for the study.
Mesozoic invasion of crust by MORB-source asthenospheric magmas, U.S. Cordilleran interior
NASA Astrophysics Data System (ADS)
Leventhal, Janet A.; Reid, Mary R.; Montana, Art; Holden, Peter
1995-05-01
Mafic and ultramafic xenoliths entrained in lavas of the Cima volcanic field have Nd and Sr isotopic ratios indicative of a source similar to that of mid-ocean ridge basalt (MORB). Nd and Sr internal isochrons demonstrate a Late Cretaceous intrusion age. These results, combined with evidence for emplacement in the lower crust and upper mantle, indicate invasion of the lower crust by asthenospheric magmas in the Late Cretaceous. Constituting the first prima facie evidence for depleted-mantle magmatism in the Basin and Range province prior to late Cenozoic volcanism, these results lend key support to models suggesting crustal heating by ascent of asthenosphere in the Mesozoic Cordilleran interior.
A Global 3D P-Velocity Model of the Earth’s Crust and Mantle for Improved Event Location -- SALSA3D
2010-09-01
incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified two layer crustal model derived from... crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path...upper mantle, and a third tessellation with variable resolution to all crustal layers. The crustal tessellation (not shown) has 2° triangles in oceanic
Experimental constraints on the damp peridotite solidus and oceanic mantle potential temperature
NASA Astrophysics Data System (ADS)
Sarafian, Emily; Gaetani, Glenn A.; Hauri, Erik H.; Sarafian, Adam R.
2017-03-01
Decompression of hot mantle rock upwelling beneath oceanic spreading centers causes it to exceed the melting point (solidus), producing magmas that ascend to form basaltic crust ~6 to 7 kilometers thick. The oceanic upper mantle contains ~50 to 200 micrograms per gram of water (H2O) dissolved in nominally anhydrous minerals, which—relative to its low concentration—has a disproportionate effect on the solidus that has not been quantified experimentally. Here, we present results from an experimental determination of the peridotite solidus containing known amounts of dissolved hydrogen. Our data reveal that the H2O-undersaturated peridotite solidus is hotter than previously thought. Reconciling geophysical observations of the melting regime beneath the East Pacific Rise with our experimental results requires that existing estimates for the oceanic upper mantle potential temperature be adjusted upward by about 60°C.
Crustal volumes of the continents and of oceanic and continental submarine plateaus
NASA Technical Reports Server (NTRS)
Schubert, G.; Sandwell, D.
1989-01-01
Using global topographic data and the assumption of Airy isostasy, it is estimated that the crustal volume of the continents is 7182 X 10 to the 6th cu km. The crustal volumes of the oceanic and continental submarine plateaus are calculated at 369 X 10 to the 6th cu km and 242 X 10 to the 6th cu km, respectively. The total continental crustal volume is found to be 7581 X 10 to the 6th cu km, 3.2 percent of which is comprised of continental submarine plateaus on the seafloor. An upper bound on the contintental crust addition rate by the accretion of oceanic plateaus is set at 3.7 cu km/yr. Subduction of continental submarine plateaus with the oceanic lithosphere on a 100 Myr time scale yields an upper bound to the continental crustal subtraction rate of 2.4 cu km/yr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peck, W.H.; Valley, J.W.
1996-06-01
Oxygen and hydrogen isotope ratios indicate that unusual rocks at the upper contact of the Archean Fiskenaesset Anorthosite Complex at Fiskenaesset Harbor (southwest Greenland) are the products of hydrothermal alteration by seawater at the time of anorthosite intrusion. Subsequent granulite-facies metamorphism of these Ca-poor and Al- and Mg-rich rocks produced sapphirine- and kornerupine-bearing assemblages. Because large amounts of surface waters cannot penetrate to depths of 30 km during granulite-facies metamorphism, the isotopic signature of the contact rocks must have been obtained prior to regional metamorphism. The stable isotope and geochemical characteristics of the contact rocks support a model of shallowmore » emplacement into Archean ocean crust for the Fiskenaesset Anorthosite Complex. 45 refs., 3 figs., 2 tabs.« less
Fluid and chemical fluxes along a buried-basement ridge in the eastern Juan de Fuca Ridge flank
NASA Astrophysics Data System (ADS)
Hulme, S.; Wheat, C. G.
2010-12-01
Hydrothermal fluid circulation within oceanic crust at low temperatures affects global biogeochemical cycles, with the volume of fluid circulation rivaling that of the world’s water flux to the oceans from rivers. Our work focuses on the best studied low temperature hydrothermal system on the eastern flank of the Juan de Fuca Ridge where a buried basement ridge 100 km from the active spreading axis has been sampled with a variety of mediums. We use data from deep sea drilling, gravity coring, and submersible operations from five sites along-strike of the buried ridge to better constrain the chemical and fluid fluxes along this transect. A transport (advection-diffusion) model is applied to the data, constraining the volumetric fluid flux per unit length within the oceanic crust from 0.05 and 0.2 m3 y-1 cm-1 and identifying conservative elements within this system. Using an average fluid flux, reactive fluxes are determined for non-conservative elements within basaltic crust for twenty-four chemical species. Conservative species include K, Cl, SO4, Ba, Sr, Cs, Mo, and Y. Only Ca and the rare earth elements Ce and Gd are produced by basaltic basement. The remaining chemical species Mg, Na, ammonium, Li, Rb, Mn, Fe, Co, Zn, Cd, U, La and Yb are all consumed within upper basaltic basement. Fluxes of potentially-bioavailable redox species ammonium, Fe, and Mn into the upper basaltic basement are 3 to 20 nmol y-1cm-2. Possible mechanisms of removal are suggested, placing constraints on microbial metabolic activity and biomineralization.
Cool seafloor hydrothermal springs reveal global geochemical fluxes
NASA Astrophysics Data System (ADS)
Wheat, C. Geoffrey; Fisher, Andrew T.; McManus, James; Hulme, Samuel M.; Orcutt, Beth N.
2017-10-01
We present geochemical data from the first samples of spring fluids from Dorado Outcrop, a basaltic edifice on 23 M.y. old seafloor of the Cocos Plate, eastern Pacific Ocean. These samples were collected from the discharge of a cool hydrothermal system (CHS) on a ridge flank, where typical reaction temperatures in the volcanic crust are low (2-20 °C) and fluid residence times are short. Ridge-flank hydrothermal systems extract 25% of Earth's lithospheric heat, with a global discharge rate equivalent to that of Earth's river discharge to the ocean; CHSs comprise a significant fraction of this global flow. Upper crustal temperatures around Dorado Outcrop are ∼15 °C, the calculated residence time is <3 y, and the composition of discharging fluids is only slightly altered from bottom seawater. Many of the major ions concentrations in spring fluids are indistinguishable from those of bottom seawater; however, concentrations of Rb, Mo, V, U, Mg, phosphate, Si and Li are different. Applying these observed differences to calculated global CHS fluxes results in chemical fluxes for these ions that are ≥15% of riverine fluxes. Fluxes of K and B also may be significant, but better analytical resolution is required to confirm this result. Spring fluids also have ∼50% less dissolved oxygen (DO) than bottom seawater. Calculations of an analytical model suggest that the loss of DO occurs primarily (>80%) within the upper basaltic crust by biotic and/or abiotic consumption. This calculation demonstrates that permeable pathways within the upper crust can support oxic water-rock interactions for millions of years.
NASA Astrophysics Data System (ADS)
Watremez, L.; Leroy, S.; Rouzo, S.; D'Acremont, E.; Unternehr, P.; Ebinger, C.; Lucazeau, F.; Al-Lazki, A.
2011-02-01
The wide-angle seismic (WAS) and gravity data of the Encens survey allow us to determine the deep crustal structure of the north-eastern Gulf of Aden non-volcanic passive margin. The Gulf of Aden is a young oceanic basin that began to open at least 17.6 Ma ago. Its current geometry shows first- and second-order segmentation: our study focusses on the Ashawq-Salalah second-order segment, between Alula-Fartak and Socotra-Hadbeen fracture zones. Modelling of the WAS and gravity data (three profiles across and three along the margin) gives insights into the first- and second-order structures. (1) Continental thinning is abrupt (15-20 km thinning across 50-100 km distance). It is accommodated by several tilted blocks. (2) The ocean-continent transition (OCT) is narrow (15 km wide). The velocity modelling provides indications on its geometry: oceanic-type upper-crust (4.5 km s-1) and continental-type lower crust (>6.5 km s-1). (3) The thickness of the oceanic crust decreases from West (10 km) to the East (5.5 km). This pattern is probably linked to a variation of magma supply along the nascent slow-spreading ridge axis. (4) A 5 km thick intermediate velocity body (7.6 to 7.8 km s-1) exists at the crust-mantle interface below the thinned margin, the OCT and the oceanic crust. We interpret it as an underplated mafic body, or partly intruded mafic material emplaced during a `post-rift' event, according to the presence of a young volcano evidenced by heat-flow measurement (Encens-Flux survey) and multichannel seismic reflection (Encens survey). We propose that the non-volcanic passive margin is affected by post-rift volcanism suggesting that post-rift melting anomalies may influence the late evolution of non-volcanic passive margins.
NASA Astrophysics Data System (ADS)
Wee, S. Y.; Edgcomb, V. P.; Burgaud, G.; Klein, F.; Schubotz, F.; Yvon-Lewis, S. A.; Sylvan, J. B.
2017-12-01
International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling program, SloMo, aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. The goal of Expedition 360 was to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. Recovered cores were primarily gabbro and olivine gabbro, which may potentially host serpentinization reactions and associated microbial life. Our goal was to sample this subseafloor environment and determine quantity, diversity and metabolic capabilities of any resident microbial life. Hole U1473A was drilled during Expedition 360 down to 790 m below seafloor and samples for detection of microbial communities and microbial biosignatures were collected throughout. We present here quantification of microbial biomass via fluorescence microscopy, preliminary analysis of nutrient addition experiments, data from sequencing of microbial 16S rRNA genes, analysis of microbial lipids, and data from Raman spectra of subsurface isolates. We initiated and sampled 12 nutrient addition experiments from 71-745 mbsf by adding sampled rocks to artificial seawater with no additions, added ammonium, added ammonium plus phosphate, and added organic acids. In nearly all of the experiment bottles, methane was detected when samples were collected at six months and again after one year of incubation. Phosphate in the incubations was drawn down, indicating active microbial metabolism, and archaeal lipids from in situ samples indicate the presence of methanogens, corroborating the likelihood of methanogens as the source of detected methane in the nutrient addition incubations. Altogether, the interdisciplinary approach used here provides a peek into life in the subseafloor upper ocean crust.
NASA Astrophysics Data System (ADS)
Dekkers, Mark J.; Heslop, David; Herrero-Bervera, Emilio; Acton, Gary; Krasa, David
2014-08-01
We analyze magnetic properties from Ocean Drilling Program (ODP)/Integrated ODP (IODP) Hole 1256D (6°44.1' N, 91°56.1' W) on the Cocos Plate in ˜15.2 Ma oceanic crust generated by superfast seafloor spreading, the only drill hole that has sampled all three oceanic crust layers in a tectonically undisturbed setting. Fuzzy c-means cluster analysis and nonlinear mapping are utilized to study down-hole trends in the ratio of the saturation remanent magnetization and the saturation magnetization, the coercive force, the ratio of the remanent coercive force and coercive force, the low-field magnetic susceptibility, and the Curie temperature, to evaluate the effects of magmatic and hydrothermal processes on magnetic properties. A statistically robust five cluster solution separates the data predominantly into three clusters that express increasing hydrothermal alteration of the lavas, which differ from two distinct clusters mainly representing the dikes and gabbros. Extensive alteration can obliterate magnetic property differences between lavas, dikes, and gabbros. The imprint of thermochemical alteration on the iron-titanium oxides is only partially related to the porosity of the rocks. Thus, the analysis complements interpretation based on electrofacies analysis. All clusters display rock magnetic characteristics compatible with an ability to retain a stable natural remanent magnetization suggesting that the entire sampled sequence of ocean crust can contribute to marine magnetic anomalies. Paleointensity determination is difficult because of the propensity of oxyexsolution during laboratory heating and/or the presence of intergrowths. The upper part of the extrusive sequence, the granoblastic dikes, and moderately altered gabbros may contain a comparatively uncontaminated thermoremanent magnetization.
3D free-air gravity anomaly modeling for the Southeast Indian Ridge
NASA Astrophysics Data System (ADS)
Girolami, Chiara; Heyde, Ingo; Rinaldo Barchi, Massimiliano; Pauselli, Cristina
2016-04-01
In this study we analyzed the free-air gravity anomalies measured on the northwestern part of the Southeast Indian Ridge (hereafter SEIR) during the BGR cruise INDEX2012 with RV FUGRO GAUSS. The survey area covered the ridge from the Rodriguez Triple Junction along about 500 km towards the SSE direction. Gravity and magnetic data were measured along 65 profiles with a mean length of 60 km running approximately perpendicular to the ridge axis. The final gravity data were evaluated every 20 seconds along each profile. This results in a sampling interval of about 100 m. The mean spacing of the profiles is about 7 km. Together with the geophysical data also the bathymetry was measured along all profiles with a Kongsberg Simrad EM122 multibeam echosounder system. Previous studies reveal that the part of the ridge covered by the high resolution profiles is characterized by young geologic events (the oldest one dates back to 1 Ma) and that the SEIR is an intermediate spreading ridge. We extended the length of each profile to the area outside the ridge, integrating INDEX2012 high resolution gravity and bathymetric data with low resolution data derived from satellite radar altimeter measurements. The 3D forward gravity modeling made it possible to reconstruct a rough crustal density model for an extended area (about 250000 km2) of the SEIR. We analyzed the gravity signal along those 2D sections which cross particular geological features (uplifted areas, accommodation zones, hydrothermal fields and areas with hints for extensional processes e.g. OCCs) in order to establish a correlation between the gravity anomaly signal and the surface geology. We started with a simple "layer-cake" geologic model consisting of four density bodies which represent the sea, upper oceanic crust, lower oceanic crust and the upper mantle. Considering that in the study area the oceanic crust is young, we did not include the sediment layer. We assumed the density values of these bodies considering the relation between the density and the seismic P-wave velocity VP. We choose the velocity data from the scientific literature. We found that the "layer-cake" model does not explain the measured anomalies satisfyingly and lateral density changes have to be considered for the area beneath the ridge axis. Accordingly we reduced the density values of the lower crust and the upper mantle beneath the axial ridge introducing in the model two additional bodies called partial melted crust and anomalous mantle. Finally we present isobaths maps of the anomalous mantle which highlight the lateral heterogeneity of the oceanic crust beneath the ridge axis. In particular there are areas characterized by crustal thickening related to magmatic accretion and areas of crustal thinning related to depleted accretion of the mantle which can lead to the exposure of OCCs.
Evolution of a Subduction Zone
NASA Astrophysics Data System (ADS)
Noack, Lena; Van Hoolst, Tim; Dehant, Veronique
2014-05-01
The purpose of this study is to understand how Earth's surface might have evolved with time and to examine in a more general way the initiation and continuance of subduction zones and the possible formation of continents on an Earth-like planet. Plate tectonics and continents seem to influence the likelihood of a planet to harbour life, and both are strongly influenced by the planetary interior (e.g. mantle temperature and rheology) and surface conditions (e.g. stabilizing effect of continents, atmospheric temperature), but may also depend on the biosphere. Employing the Fortran convection code CHIC (developed at the Royal Observatory of Belgium), we simulate a subduction zone with a pre-defined weak zone (between oceanic and continental crust) and a fixed plate velocity for the subducting oceanic plate (Quinquis et al. in preparation). In our study we first investigate the main factors that influence the subduction process. We simulate the subduction of an oceanic plate beneath a continental plate (Noack et al., 2013). The crust is separated into an upper crust and a lower crust. We apply mixed Newtonian/non-Newtonian rheology and vary the parameters that are most likely to influence the subduction of the ocanic plate, as for example density of the crust/mantle, surface temperature, plate velocity and subduction angle. The second part of our study concentrates on the long-term evolution of a subduction zone. Even though we model only the upper mantle (until a depth of 670km), the subducted crust is allowed to flow into the lower mantle, where it is no longer subject to our investigation. This way we can model the subduction zone over long time spans, for which we assume a continuous inflow of the oceanic plate into the investigated domain. We include variations in mantle temperatures (via secular cooling and decay of radioactive heat sources) and dehydration of silicates (leading to stiffening of the material). We investigate how the mantle environment influences the subduction of the oceanic crust in terms of subduction velocity and subduction angle over time. We develop scaling laws combining the subduction velocity and angle depending on the mantle environment (and thus time). These laws can then be applied to continental growth simulations with 1D parameterized models (Höning et al., in press) or 2D/3D subduction zone simulations at specific geological times (using the correct subduction zone setting). References: Quinquis, M. et al. (in preparation). A comparison of thermo-mechanical subduction models. In preparation for G3. Noack, L., Van Hoolst, T., Dehant, V., and Breuer, D. (2013). Relevance of continents for habitability and self-consistent formation of continents on early Earth. XIII International Workshop on Modelling of Mantle and Lithosphere Dynamics, Hønefoss, Norway, 31. Aug. - 5. Sept. 2013. Höning, D., Hansen-Goos, H., Airo, A., and Spohn, T. (in press). Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science.
3D Seismic Velocity Structure Around Philippine Sea Slab Subducting Beneath Kii Peninsula, Japan
NASA Astrophysics Data System (ADS)
Shibutani, T.; Imai, M.; Hirahara, K.; Nakao, S.
2013-12-01
Kii Peninsula is a part of the source area of Nankai Trough megaquakes and the region through which the strong seismic waves propagate to big cities in Kansai such as Osaka, Kyoto, Nara, Kobe, and so on. Moreover, the rupture starting point is thought to be possibly at off the peninsula. Therefore, it is important for simulations of the megaquakes and the strong motions to estimate accurately the configuration of the Philippine Sea slab and the seismic velocity structure around the slab and to investigate properties and conditions of the plate boundary surface. Deep low frequency events (DLFEs) are widely distributed from western Shikoku to central Tokai at 30 - 40 km depths on the plate boundary (Obara, 2002). Results from seismic tomography and receiver function analyses revealed that the oceanic crust of the Philippine Sea plate had a low velocity and a high Vp/Vs ratio (Hirose et al., 2007; Ueno et al., 2008). Hot springs with high 3He/4He ratios are found in an area between central Kinki and Kii Peninsula despite in the forearc region (Sano and Wakita, 1985). These phenomena suggest the process that H2O subducting with the oceanic crust dehydrates at the depths, causes the DLFEs, and moves to shallower depths. We carried out linear array seismic observations in the Kii Peninsula since 2004 in order to estimate the structure of the Philippine Sea slab and the surrounding area. We have performed receiver function analyses for four profile lines in the dipping direction of the slab and two lines in the perpendicular direction so far. We estimated three dimensional shapes of seismic velocity discontinuities such as the continental Moho, the upper surface of the oceanic crust and the oceanic Moho (Imai et al., 2013, this session). In addition, we performed seismic tomography with a velocity model embedded the discontinuities and observed travel times at stations in the linear arrays, and successfully estimated 3D seismic velocity structure around the Philippine Sea slab beneath the Kii Peninsula in higher resolutions. The results show that in the vicinity of the areas of the DLFEs low velocity anomalies (LVAs) are distributed from the oceanic crust to the mantle wedge. These LVAs are thought to be due to fluids discharged from hydrous minerals in the oceanic crust by dehydration that occurs at 30 - 40 km depths on the plate boundary. Other strong LVAs (with 5 % velocity perturbation or more) are widely distributed in the lower crust beneath northern Wakayama Prefecture where the seismicity in the upper crust is high. Since the latter LVAs continue to deeper in the mantle wedge than the former LVAs, the origin of the LVAs in the two regions might be different. No matter what the origin is, the latter LVAs beneath the northern Wakayama area are probably due to fluids too. Then the high seismicity in the area can be explained by the reduction of the effective normal stress on the fault planes due to the increase of the pore pressure in the micro cracks caused by the fluids from the LVAs.
The crustal structure of the Cocos ridge off Costa Rica
NASA Astrophysics Data System (ADS)
Walther, Christian H. E.
2003-03-01
The submarine Cocos ridge in the northwestern Panamá basin, a bathymetric feature more than 1000-km long and 250-500 km broad, is about 2 km shallower than the adjacent basin. It is generally interpreted as the trace of the Galápagos hot spot. Two 127- and 260-km long seismic wide-angle sections were recorded along and across this ridge, offshore the Osa peninsula, Costa Rica. Crustal thickening is seen everywhere along the sections. On the northwestern outer ridge flank, increased thickness is exclusively attributed to the upper crust and expressed by 2-km thick flow basalts. The Quepos plateau caps the upper crust in this area. Toward the center of the Cocos ridge, the Moho deepens from 11-12 to 21 km depth and crustal thickening is almost entirely attributed to the lower crust which makes up 80% of the crust and is three times the thickness of normal oceanic lower crust. It is homogeneously structured and the velocities which range from 6.5 km/s at the top to 7.35 km/s at the base are comparable to normal lower crust under these depth conditions and suggest no differences to a gabbroic rock composition. Similarities to the crustal velocity structure of Iceland, central Kerguelen plateau, and Broken ridge are consistent with a formation of this 13-15 Ma old Cocos ridge segment by excessive magmatism in a near-plate boundary setting.
Electrically Anisotropic 35 Ma Pacific Lithosphere
NASA Astrophysics Data System (ADS)
Chesley, C. J.; Key, K.; Constable, S.; Behrens, J.; MacGregor, L.
2017-12-01
Geophysical studies of anisotropy in the oceanic lithosphere and asthenosphere can yield crucial insights into the processes of plate formation and evolution as the plate cools and thickens. While most previous studies have employed seismic methods to investigate anisotropy, here we examine the electrical conductivity anisotropy as constrained by controlled-source electromagnetic (CSEM) data collected during the Anisotropy and Physics of the Pacific Lithosphere Experiment (APPLE). Unlike passive magnetotelluric data, which are not particularly sensitive to the resistive part of the lithosphere or its anisotropy, CSEM data are highly sensitive to anisotropy in both the resistive crust and uppermost mantle. The APPLE data include a 30 km radius circular deep-tow of a Horizontal Electric Dipole (HED) transmitter around orthogonal pairs of HED receivers. The circular tow was optimized to measure azimuthal anisotropy, while radially oriented data at ranges from 14 to 70 km provided constraints on depth dependence of bulk conductivity. We inverted these data with a nonlinear anisotropic inversion that allows for laterally transverse isotropy, with the vertical plane of isotropy aligned orthogonal to the paleo-spreading direction. Our best model shows at least an order of magnitude resistivity difference between the paleo-spreading and paleo-ridge strike directions in both the crust and upper mantle. In the crust, conductivity is higher in the paleo-ridge and vertical directions. The opposite is true in the upper mantle, where conductivity is ten times higher in the paleo-spreading direction. Since the study area is centered on 35 Ma lithosphere, it is unlikely that melt plays a role in the observed anisotropy. Instead we propose that the crustal anisotropy is due to conductive clay minerals in normal faults promoted by hydration during paleo-extension close to the mid-ocean ridge. The upper mantle anisotropy potentially results from a crystal preferred orientation of olivine induced by shear deformation. These findings offer clues about the processes associated with oceanic spreading and may be of import to ophiolite studies.
NASA Astrophysics Data System (ADS)
Mueller, S.; Hasenclever, J.; Garbe-Schönberg, D.; Koepke, J.; Hoernle, K.
2017-12-01
The accretion mechanisms forming oceanic crust at fast spreading ridges are still under controversial discussion. Thermal, petrological, and geochemical observations predict different end-member models, i.e., the gabbro glacier and the sheeted sill model. They all bear implications for heat transport, temperature distribution, mode of crystallization and hydrothermal heat removal over crustal depth. In a typical MOR setting, temperature is the key factor driving partitioning of incompatible elements during crystallization. LA-ICP-MS data for co-genetic plagioclase and clinopyroxene in gabbros along a transect through the plutonic section of paleo-oceanic crust (Wadi Gideah Transect, Oman ophiolite) reveal that REE partitioning coefficients are relatively constant in the layered gabbro section but increase for the overlying foliated gabbros, with an enhanced offset towards HREEs. Along with a systematic enrichment of REE's with crustal height, these trends are consistent with a system dominated by in-situ crystallization for the lower gabbros and a change in crystallization mode for the upper gabbros. Sun and Liang (2017) used experimental REE partitioning data for calibrating a new REE-in-plagioclase-clinopyroxene thermometer that we used here for establishing the first crystallization-temperature depth profile through oceanic crust that facilitates a direct comparison with thermal models of crustal accretion. Our results indicate crystallization temperatures of about 1220±8°C for the layered gabbros and lower temperatures of 1175±8°C for the foliated gabbros and a thermal minimum above the layered-to-foliated gabbro transition. Our findings are consistent with a hybrid accretion model for the oceanic crust. The thermal minimum is assumed to represent a zone where the descending crystal mushes originating from the axial melt lens meet with mushes that have crystallized in situ. These results can be used to verify and test thermal models (e.g., Maclennan et al., 2004, Theissen-Krah et al., 2016) and their predictions for heat flow and temperature distribution in the crust. Maclennan, J., Hulme, T., & Singh, S. C. (2004), G3, 5(2). / Sun, C., & Liang, Y., (2017), CMP, 172(4). / Theissen-Krah, S., Rüpke, L. H., & Hasenclever, J. (2016), GRL, 43(3).
Three-dimensional frictional plastic strain partitioning during oblique rifting
NASA Astrophysics Data System (ADS)
Duclaux, Guillaume; Huismans, Ritske S.; May, Dave
2017-04-01
Throughout the Wilson cycle the obliquity between lithospheric plate motion direction and nascent or existing plate boundaries prompts the development of intricate three-dimensional tectonic systems. Where oblique divergence dominates, as in the vast majority of continental rift and incipient oceanic domains, deformation is typically transtensional and large stretching in the brittle upper crust is primarily achieved by the accumulation of displacement on fault networks of various complexity. In continental rift depressions such faults are initially distributed over tens to hundreds of kilometer-wide regions, which can ultimately stretch and evolve into passive margins. Here, we use high-resolution 3D thermo-mechanical finite element models to investigate the relative timing and distribution of localised frictional plastic deformation in the upper crust during oblique rift development in a simplified layered lithosphere. We vary the orientation of a wide oblique heterogeneous weak zone (representing a pre-existing geologic feature like a past orogenic domain), and test the sensitivity of the shear zones orientation to a range of noise distribution. These models allow us to assess the importance of material heterogeneities for controlling the spatio-temporal shear zones distribution in the upper crust during oblique rifting, and to discuss the underlying controls governing oblique continental breakup.
NASA Astrophysics Data System (ADS)
Schlindwein, Vera; Bönnemann, Christian; Reichert, Christian; Grevemeyer, Ingo; Flueh, Ernst
2003-01-01
We have performed a 3-D seismic refraction tomography of a 48 × 48 km2 area surrounding ODP site 757, which is planned to host an International Ocean Network (ION) permanent seismological observatory, called the Ninetyeast Ridge Observatory (NERO). The study area is located in the southern part of the Ninetyeast Ridge, the trail left by the Kerguelen hotspot on the Indian plate. The GEOMAR Research Centre for Marine Geosciences and the Federal Institute for Geosciences and Natural Resources acquired 18 wide-angle profiles recorded by 23 ocean bottom hydrophones during cruise SO131 of R/V Sonne in spring 1998. We apply a first arrival traveltime tomography technique using regularized inversion to recover the 3-D velocity structure relative to a 1-D background model that was constructed from a priori information and averaged traveltime data. The final velocity model revealed the crustal structure down to approximately 8 km depth. Resolution tests showed that structures with approximately 6 km horizontal extent can reliably be resolved down to that depth. The survey imaged the extrusive layer of the upper crust of the Ninetyeast Ridge, which varies in thickness between 3 and 4 km. A high-velocity anomaly coinciding with a positive magnetic anomaly represents a volcanic centre from which crust in this area is thought to have formed. A pronounced low-velocity anomaly is located underneath a thick sedimentary cover in a bathymetric depression. However, poor ray coverage of the uppermost kilometre of the crust in this area resulted in smearing of the shallow structure to a larger depth. Tests explicitly including the shallow low-velocity layer confirmed the existence of the deeper structure. The heterogeneity of the upper crust as observed by our study will have consequences for the waveforms of earthquake signals to be recorded by the future seismic observatory.
Passive, off-axis convection through the southern flank of the Costa Rica rift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, A.T.; Becker, K.; Narasimhan, T.N.
1990-06-10
Pore fluids are passively convecting through young oceanic sediments and crust around Deep Sea Drilling Project (DSDP) site 504 on the southern flank of the Costa Rica Rift, as inferred from a variety of geological, geochemical, and geothermal observations. The presence of a fluid circulation system is supported by new data collected on Ocean Drilling Program (ODP) leg 111 and a predrilling survey cruise over the heavily sedimented, 5.9 Ma site; during the latter, elongated heat flow anomalies were mapped subparallel to structural strike, with individual measurements of twice the regional mean value, and strong lateral and vertical geochemical gradientsmore » were detected in pore waters squeezed from sediment cores. Also, there is a strong correlation between heat flow, bathymetry, sediment thickness, and inferred fluid velocities up through the sediments. Although the forces which drive passive circulation are not well understood, it has generally been thought that the length scale of heat flow variations provides a good indication of the depth of hydrothermal circulation within the oceanic crust. The widely varied geothermal and hydrogeological observations near site 504 are readily explained by a model which combines (1) basement relief, (2) irregular sediment drape, (3) largely conductive heat transfer through the sediments overlying the crust, and (4) thermal and geochemical homogenization of pore fluids at the sediment/basement interface, which results from (5) topographically induced, passive hydrothermal circulation with large aspect ratio, convection cells. This convection involves mainly the permeable, upper 200-300 m of crust; the deeper crust is not involved.« less
NASA Astrophysics Data System (ADS)
Rebay, G.; Tiepolo, M.; Zanoni, D.; Langone, A.; Spalla, M. I.
2015-12-01
The Zermatt-Saas (ZS) Zone, formerly part of Tethyan oceanic crust and variously affected by oceanic metamorphism, is now part of the orogenic suture that developed in the Western European Alps during the Alpine subduction and collision. The ZS rocks preserve a dominant HP to UHP metamorphic imprint overprinted by greenschist facies metamorphism. The age of the oceanic protoliths is considered to be middle to upper Jurassic whereas the HP metamorphism is mostly considered to be Eocene. In upper Valtournanche ZS ophiolites, the dominant regional S2 foliation is mapped with spatial continuity in serpentinite, metarodingite and eclogite and is defined by HP/UHP parageneses in all lithotypes. It developed at 2.5 ± 0.3 GPa and 600 ± 20°C during Alpine subduction. S2 foliation of serpentinites wraps rare clinopyroxene and zircon relics. Trace element composition of clinopyroxene suggests that they crystallised from a melt in equilibrium with plagioclase: they most likely represent relicts of gabbroic assemblages. The clinopyroxene porphyroclasts have rims indented within S2 and compositions similar to fine-grained clinopyroxeneII defining S2, suggesting that they recrystallised during Alpine subduction. Zircon cores show, under CL, sector zoning typical of magmatic growth. U-Pb dates suggest their crystallisation during Middle Jurassic. Magmatic cores have thin fringe overgrowths parallel to the S2 foliation. U-Pb concordant analyses on these domains reveal an Upper Cretaceous-Paleocene crystallization most likely representing the HP to UHP Alpine re-equilibration. This suggests that some sections of the ZS have experienced HP to UHP metamorphism earlier than previously thought, opening new interpretative geodynamic scenarios. Remarkably, these new dates are similar to those recorded for the HP re-equilibration in the continental crust of the adjacent Austroalpine units (upper plate of the Alpine subduction system) and to those recorded for prograde metamorphism in other parts of the ZS ophiolites.
Sunda-Banda Arc Transition: Marine Wide-Angle Seismic Modeling
NASA Astrophysics Data System (ADS)
Shulgin, A.; Planert, L.; Kopp, H.; Mueller, C.; Lueschen, E.; Engels, M.; Flueh, E.; Djajadihardja, Y.; Sindbad Working Group, T
2008-12-01
The Sunda-Banda Arc transition is the region of active convergence and collision of the Indo-Australian and Eurasian Plates. The style of subduction changes from an oceanic-island arc subduction to a continental- island arc collision. The character of the incoming plate varies from the rough topography of the Roo Rise, to the smooth seafloor of the Abyssal Plain off Bali, Sumbawa. Forearc structures include well-developed forearc basins and an accretionary prism/outer forearc high of variable size and shape. To quantify the variability of structure of the lower plate and the effects on the upper plate a refraction seismic survey was carried during cruise SO190-2. A total of 245 ocean bottom seismometers were deployed along 1020 nm of wide-angle seismic profiles in four major north-south oriented corridors. To assess the velocity structure we used a tomographic method which jointly inverts for refracted and reflected phases. The sedimentary layers of the models, obtained by the analysis of high-resolution MCS data (see Lueschen et al), were incorporated into the starting model. The obtained models exhibit strong changes of the incoming oceanic crust for the different portions of the margin: The westernmost profile off eastern Java shows a crustal thickness of more than 15 km, most likely related to the presence of an oceanic plateau. Profiles off Lombok reveal an oceanic crust of 8-9 km average thickness in the Argo Abyssal Plain. Crustal and upper mantle velocities are slightly decreased within an area of about 50-60 km seaward of the trench, indicating fracturing and related serpentinization due to bending of the oceanic crust and associated normal faulting. The outer forearc high is characterized by velocities of 2.5-5.5 km/s. For the Lombok Basin, the profiles show a sedimentary infill of up to 3.5 km thick and typical sediment velocities of 1.75-3.0 km/s. A reflector at 16 km depth and velocity values of 7.4-7.8 km/s beneath it suggest the presence of a shallow forearc mantle and a hydrated mantle wedge in this part of the margin. See in this session Planert et al.
Consequences of Rift Propagation for Spreading in Thick Oceanic Crust in Iceland
NASA Astrophysics Data System (ADS)
Karson, J. A.
2015-12-01
Iceland has long been considered a natural laboratory for processes related to seafloor spreading, including propagating rifts, migrating transforms and rotating microplates. The thick, hot, weak crust and subaerial processes of Iceland result in variations on the themes developed along more typical parts of the global MOR system. Compared to most other parts of the MOR, Icelandic rift zones and transform faults are wider and more complex. Rift zones are defined by overlapping arrays of volcanic/tectonic spreading segments as much as 50 km wide. The most active rift zones propagate N and S away from the Iceland hot spot causing migration of transform faults. A trail of crust deformed by bookshelf faulting forms in their wakes. Dead or dying transform strands are truncated along pseudofaults that define propagation rates close to the full spreading rate of ~20 mm/yr. Pseudofaults are blurred by spreading across wide rift zones and laterally extensive subaerial lava flows. Propagation, with decreasing spreading toward the propagator tips causes rotation of crustal blocks on both sides of the active rift zones. The blocks deform internally by the widespread reactivation of spreading-related faults and zones of weakness along dike margins. The sense of slip on these rift-parallel strike-slip faults is inconsistent with transform-fault deformation. These various deformation features as well as subaxial subsidence that accommodate the thickening of the volcanic upper crustal units are probably confined to the brittle, seismogenic, upper 10 km of the crust. At least beneath the active rift zones, the upper crust is probably decoupled from hot, mechanically weak middle and lower gabbroic crust resulting in a broad plate boundary zone between the diverging lithosphere plates. Similar processes may occur at other types of propagating spreading centers and magmatic rifts.
Earth's early O2 cycle suppressed by primitive continents
NASA Astrophysics Data System (ADS)
Smit, Matthijs A.; Mezger, Klaus
2017-10-01
Free oxygen began to accumulate in Earth's surface environments between 3.0 and 2.4 billion years ago. Links between oxygenation and changes in the composition of continental crust during this time are suspected, but have been difficult to demonstrate. Here we constrain the average composition of the exposed continental crust since 3.7 billion years ago by compiling records of the Cr/U ratio of terrigenous sediments. The resulting record is consistent with a predominantly mafic crust prior to 3.0 billion years ago, followed by a 500- to 700-million-year transition to a crust of modern andesitic composition. Olivine and other Mg-rich minerals in the mafic Archaean crust formed serpentine minerals upon hydration, continuously releasing O2-scavenging agents such as dihydrogen, hydrogen sulfide and methane to the environment. Temporally, the decline in mafic crust capable of such process coincides with the first accumulation of O2 in the oceans, and subsequently the atmosphere. We therefore suggest that Earth's early O2 cycle was ultimately limited by the composition of the exposed upper crust, and remained underdeveloped until modern andesitic continents emerged.
NASA Astrophysics Data System (ADS)
Shulgin, A.; Kopp, H.; Mueller, C.; Planert, L.; Lueschen, E.; Flueh, E. R.; Djajadihardja, Y.
2011-01-01
The region offshore Eastern Java represents one of the few places where the early stage of oceanic plateau subduction is occurring. We study the little investigated Roo Rise oceanic plateau on the Indian plate, subducting beneath Eurasia. The presence of the abnormal bathymetric features entering the trench has a strong effect on the evolution of the subduction system, and causes additional challenges on the assessment of geohazard risks. We present integrated results of a refraction/wide-angle reflection tomography, gravity modelling, and multichannel reflection seismic imaging using data acquired in 2006 south of Java near 113°E. The composite structural model reveals the previously unresolved deep geometry of the oceanic plateau and the subduction zone. The oceanic plateau crust is on average 15 km thick and covers an area of about 100 000 km2. Within our profile the Roo Rise crustal thickness ranges between 18 and 12 km. The upper oceanic crust shows high degree of fracturing, suggesting heavy faulting. The forearc crust has an average thickness of 14 km, with a sharp increase to 33 km towards Java, as revealed by gravity modelling. The complex geometry of the backstop suggests two possible models for the structural formation within this segment of the margin: either accumulation of the Roo Rise crustal fragments above the backstop or alternatively uplift of the backstop caused by basal accumulation of crustal fragments. The subducting plateau is affecting the stress field within the accretionary complex and the backstop edge, which favours the initiation of large, potentially tsunamogenic earthquakes such as the 1994 Mw= 7.8 tsunamogenic event.
Seismic Wave Velocity in the Subducted Oceanic Crust from Autocorrelation of Tectonic Tremor Signals
NASA Astrophysics Data System (ADS)
Ducellier, A.; Creager, K.
2017-12-01
Hydration and dehydration of minerals in subduction zones play a key role in the geodynamic processes that generate seismicity and that allow tectonic plates to subduct. Detecting the presence of water in the subducted plate is thus crucial to better understand the seismogenesis and the consequent seismic hazard. A landward dipping, low velocity layer has been detected in most subduction zones. In Cascadia, this low velocity zone is characterized by a low S-wave velocity and a very high Poisson's ratio, which has been interpreted as high pore-fluid pressure in the upper half part of the subducted oceanic crust. Most previous studies were based on seismic reflection imaging, receiver function analysis, or body wave tomography, with seismic sources located far from the low velocity zone. In contrast, the sources of the tectonic tremors generated during Episodic Tremor and Slip (ETS) events are located on the plate boundary. As the sources of the tremors are much closer to the low velocity zone, seismic waves recorded during ETS events should illuminate the area with greater precision. Most methods to detect and locate tectonic tremors and low-frequency earthquakes are based on the cross correlation of seismic signals; either signals at the same station for different events, or the same event at different stations. We use the autocorrelation of the seismic signal recorded by eight arrays of stations, located in the Olympic Peninsula, Washington. Each tremor, assumed to be on the plate boundary, generates a direct wave and reflected and converted waves from both the strong shear-wave velocity contrast in the mid-oceanic crust, and from the Moho of the subducted oceanic crust. The time lag between the arrivals of these different waves at a seismic station corresponds to a peak of amplitude on the autocorrelation signals. Using the time lags observed for different locations of the tremor source, we intend to invert for the seismic wave velocity of the subducted oceanic crust under the arrays. Identifying zones with lower S-wave velocity and a high Poisson's ratio will then help detecting the presence of water in the subducted oceanic crust. Our ultimate goal is contributing to a better understanding of the mechanism of ETS and subduction zone processes.
NASA Astrophysics Data System (ADS)
Mishra, D. C.; Arora, K.; Tiwari, V. M.
2004-02-01
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW-SE, NE-SW and N-S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35-40 km under the continent, which reduces to 22/20-24 km under the Bay of Bengal with thick sediments of 8-10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m 3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150-200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5-6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m 3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent-ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8-9 km with crustal layers of densities 2650 and 2870 kg/m 3 representing an oceanic crust.
IODP drilling in the South China Sea in 2017 will address the mechanism of continental breakup
NASA Astrophysics Data System (ADS)
Sun, Z.; Larsen, H. C.; Lin, J.; Pang, X.; McIntosh, K. D.; Stock, J. M.; Jian, Z.; Wang, P.; Li, C.
2016-12-01
Geophysical exploration and scientific drilling along the North Atlantic rifted continental margins suggested that passive continental margins can be classified into two end members: magma-rich and magma-poor. Bearing seaward-dipping reflector sequences (SDRS) and highly mafic underplated high velocity lower crust (HVLC), the magma-rich margin is thought to be related to large igneous provinces (LIP) or mantle plume activity. Magma-poor margins have been drilled offshore Iberia and Newfoundland, where brittle faults cut through the whole crust and reach the upper mantle. Following seawater infiltration, the mantle was serpentinized and exhumed in the continent-ocean transition zone (COT). Later geophysical exploration and modeling suggested that in magma-poor margins lithosphere may break up in different styles, including uniform breakup, lower crust exhumation, or upper mantle exhumed at the COT, etc. The northern continental margin of the South China Sea (SCS) between longitude 114.5º and 116.5º hosts features that might be similar to both of the two end-members defined in the North Atlantic. Wide-angle seismic studies suggest that below the inner margin, crustal underplating of high velocity material is present, while syn-rift as well as post-rift intrusive features are visible and have in places been verified by industry drilling. However, the profound volcanism and associated SDRS formation are entirely lacking, and thus classification as a volcanic rifted margin can be ruled out. Instead, the COT exhibits a profound thinning of the continental crust towards the ocean crust of the SCS, showing some similarity to the Iberia type margin. The crustal thinning is caused by low-angle faults that have stretched the upper continental crust. There are indications of lower crustal flow toward the SCS. Alternatively, these extensional faults may have reached the lithospheric mantle and generated serpentinized material in a similar fashion as seen off Iberia. It will require deep drilling and sampling of characteristic basement units within the COT to distinguish. Four months of drilling by IODP to address this question is scheduled for February to June in 2017. The IODP drilling has the potential to support a third breakup mechanism theorized by modelling in addition to the two types drilled.
NASA Astrophysics Data System (ADS)
Carbotte, S. M.; Canales, J.; Carton, H. D.; Nedimovic, M. R.; Han, S.; Marjanovic, M.; Gibson, J. C.; Janiszewski, H. A.; Horning, G.; Delescluse, M.; Watremez, L.; Farkas, A.; Biescas Gorriz, B.; Bornstein, G.; Childress, L. B.; Parker, B.
2012-12-01
The evolution of oceanic lithosphere involves incorporation of water into the physical and chemical structure of the crust and shallow mantle through fluid circulation, which initiates at the mid-ocean ridge and continues on the ridge flanks long after crustal formation. At subduction zones, water stored and transported with the descending plate is gradually released at depth, strongly influencing subduction zone processes. Cascadia is a young-lithosphere end member of the global subduction system where relatively little hydration of the downgoing Juan de Fuca (JdF) plate is expected due to its young age and presumed warm thermal state. However, numerous observations support the abundant presence of water within the subduction zone, suggesting that the JdF plate is significantly hydrated prior to subduction. Knowledge of the state of hydration of the JdF plate is limited, with few constraints on crustal and upper mantle structure. During the Cascadia Ridge-to-Trench experiment conducted in June-July 2012 over 4000 km of active source seismic data were acquired as part of a study of the evolution and state of hydration of the crust and shallow mantle of the JdF plate prior to subduction at the Cascadia margin. Coincident long-streamer (8 km) multi-channel seismic (MCS) and wide-angle ocean bottom seismometer (OBS) data were acquired in a two-ship program with the R/V Langseth (MGL1211), and R/V Oceanus (OC1206A). Our survey included two ridge-perpendicular transects across the full width of the JdF plate, a long trench-parallel line ~10 km seaward of the Cascadia deformation front, as well as three fan lines to study mantle anisotropy. The plate transects were chosen to provide reference sections of JdF plate evolution over the maximum range of JdF plate ages (8-9 Ma), offshore two contrasting regions of the Cascadia Subduction zone, and provide the first continuous ridge-to-trench images acquired at any oceanic plate. The trench-parallel line was designed to characterize variations in plate structure and hydration linked to JdF plate segmentation for over 450 km along the margin. Shipboard brute stacks of the MCS data reveal evidence for reactivation of abyssal hill faulting in the plate interior far from the trench. Ridgeward-dipping lower crustal reflectors are observed, similar to those observed in mature Pacific crust elsewhere, as well as conjugate reflectivity near the deformation front along the Oregon transect. Bright intracrustal reflectivity is also observed along the trench-parallel transect with marked changes in reflectivity along the Oregon and Washington margins. Initial inspection of the OBS record sections indicate good quality data with the expected oceanic crustal and upper mantle P-wave arrivals: Ps and Pg refractions through sedimentary and igneous layers, respectively, PmP wide-angle reflections from the crust-mantle transition zone, and Pn upper mantle refractions. The Pg-PmP-Pn triplication is typically observed at 40-50 km source-receiver offsets. Pn characteristics show evidence for upper mantle azimuthal anisotropic propagation: along the plate transects Pn is typically weaker and difficult to observe beyond ~80 km offsets, while along the trench-parallel transect Pn arrivals have higher amplitude and are easily observed up to source-receiver offsets of 160-180 km. An overview on the Cascadia Ridge to Trench data acquisition program and preliminary results will be presented.
Strontium and oxygen isotopic variations in Mesozoic and Tertiary plutons of central Idaho
Fleck, R.J.; Criss, R.E.
1985-01-01
Regional variations in initial 87Sr/86Sr ratios (ri) of Mesozoic plutons in central Idaho locate the edge of Precambrian continental crust at the boundary between the late Paleozoic-Mesozoic accreted terranes and Precambrian sialic crust in western Idaho. The ri values increase abruptly but continuously from less than 0.704 in the accreted terranes to greater than 0.708 across a narrow, 5 to 15 km zone, characterized by elongate, lens-shaped, highly deformed plutons and schistose metasedimentary and metavolcanic units. The chemical and petrologic character of the plutons changes concomitantly from ocean-arc-type, diorite-tonalite-trondhjemite units to a weakly peraluminous, calcic to calcalkalic tonalite-granodiorite-granite suite (the Idaho batholith). Plutons in both suites yield Late Cretaceous ages, but Permian through Early Cretaceous bodies are confined to the accreted terranes and early Tertiary intrusions are restricted to areas underlain by Precambrian crust. The two major terranes were juxtaposed between 75 and 130 m.y. ago, probably between 80 and 95 m.y. Oxygen and strontium isotopic ratios and Rb and Sr concentrations of the plutonic rocks document a significant upper-crustal contribution to the magmas that intrude Precambrian crust. Magmas intruding the arc terranes were derived from the upper mantle/subducted oceanic lithosphere and may have been modified by anatexis of earlier island-arc volcanic and sedimentary units. Plutons near the edge of Precambrian sialic crust represent simple mixtures of the Precambrian wall-rocks with melts derived from the upper mantle or subducted oceanic lithosphere with ri of 0.7035. Rb/Sr varies linearly with ri, producing "pseudoisochrons" with apparent "ages" close to the age of the wall rocks. Measured ??18O values of the wall rocks are less than those required for the assimilated end-member by Sr-O covariation in the plutons, however, indicating that wall-rock ??18O was reduced significantly by exchange with circulating fluids. Metasedimentary rocks of the Belt Supergroup are similarly affected near the batholith, documenting a systematic depletion in 18O as much as 50 km from the margin of the batholith. Plutons of the Bitterroot lobe of the Idaho batholith are remote from the accreted terranes and represent mixtures of Precambrian wall-rocks with melts dominated by continental lower crust (ri>0.708) rather than mantle. "Pseudoisochrons" resulting from these data are actually mixing lines that yield apparent "ages" less than the true age of the wall rocks and meaningless "ri". Assimilation/ fractional-crystallization models permit only insignificant amounts of crystal fractionation during anatexis and mixing for the majority of plutons of the region. ?? 1985 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Rai, A. K.; Breivik, A. J.; Mjelde, R.; Hanan, B. B.; Ito, G.; Sayit, K.; Howell, S.; Vogt, P. R.; Pedersen, R.
2012-12-01
The Aegir Ridge is an extinct spreading ridge in North-East Atlantic ocean. A thinner than normal crust around the Aegir Ridge appears as a hole in the extensively magmatic surroundings. Its proximity to the Iceland hot-spot makes it particularly important for understanding the changing dynamics of hotspot-ridge interaction. An integrated seismic and dredging experiment was conduced during the summer of 2010 with the primary aim to understand the nature of magmatism along the ridge shortly before cessation of seafloor spreading through variations of sub-seafloor lithological properties. Here, we present results of analysis of converted shear-waves recorded on OBS-sesimic data, and ship-gravity data. The shear-wave study enables us to quantify the variation of Vp/Vs in the sediments, crust and the upper-most mantle. We also inverted the gravity data to determine the sub-seafloor density distribution. The P- to S- converted shear-waves were identified on 20 OBSs along a profile with a total length of 550 km parallel to the ridge-axis. The sedimentary section on top of the crystalline crust is well illuminated in the streamer data. The forward modelling of the OBS data reveals that the Vp/Vs ratio in sediments are as high as 4.8, decreasing rapidly to a value of 3.00, primarily due to compaction of sediments with depth. Identification of sufficient PnS and PSn phases enable us to model the crustal and upper-most mantle Vp/Vs. The upper crystalline crust requires a Vp/Vs value of 1.99 and 1.89 for the southern and the northern profiles respectively, to fit the observations. The lower crust and upper-most part of the mantle have a Vp/Vs of ~1.82 and 1.795 respectively. Slightly lower Vp and moderate increase in Vp/Vs in parts of the crust and upper mantle presumably indicate presence of faulting, fracturing in the crust and moderate degree of serpentinization of the upper mantle. A sub-seafloor density model is derived by non-linear inversion of the gravity anomaly. The distribution of sediments appear to control the short-wavelength features of the gravity data, whereas density variations are required in the upper mantle to optimally fit the overall gravity anomaly. Our results suggest certain degree of temperature and/or compositional heterogeneities towards the southern ends of Aegir Ridge, near the Iceland-Faroes Ridge.
NASA Astrophysics Data System (ADS)
Krabbenhoeft, A.; von Huene, R.; Klaeschen, D.; Miller, J. J.
2016-12-01
Some of the largest earthquakes worldwide, including the 1964 9.2 Mw megathrust earthquake, occurred in Alaskan subduction zones. To better understand rupture processes and their mechanisms, we relate seafloor morphology from multibeam and regional bathymetric compilations with sub-seafloor images and seismic P-wave velocity structures. We re-processed legacy multichannel seismic (MCS) data including shot- and intra-shotgather interpolation, multiple removal and Kirchhoff depth migration. These images even reveal the shallow structure of the subducting oceanic crust. Traveltime tomography of a coincident vintage (1994) wide angle dataset reveals the P-wave velocity distribution as well as the deep structure of the subducting plate to the ocean crust Moho. The subducting oceanic crust morphology is rough and partly hidden by a thick sediment cover that reaches 3 km depth at the trench axis. Bathymetry shows two major contrasting upper plate morphologies: the shallow dipping lower slope consists of trench-parallel ridges that form the accreted prism whereas the steep rough middle and upper slopes are composed of competent older rock.Thrust faults are distributed across the entire slope, some of which connect with the subducted plate interface. A subtle change in seafloor gradient from the lower to the middle slope coincides with a thrust fault zone marking the boundary between the margin framework and the frontal prism. It corresponds to the most prominent lateral increase in seismic P-wave velocities, 25 km landward of the trench axis.Major thrusts in several MCS-lines are correlated with bathymetric data, showing their > 100 km lateral extent, which might also be tsunamigenic paths of earthquake rupture from the seismogenic zone to the seafloor.
NASA Astrophysics Data System (ADS)
Lin, J.; Zhu, J.
2012-12-01
We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness <5.2 km (designated as "thin" crust), while 56% of the crustal volume (or 65% of the surface area) is associated with crustal thickness of 5.2-8.6 km thick (designated as "normal" crust). The remaining 39% of the crustal volume (or 26% of the surface area) is associated with crustal thickness >8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic emplacements on the plate. (2) In contrast, crustal thickness near fast and intermediately fast spreading ridges typically does not exceed 7-8 km. The relatively weak lithosphere at fast and intermediately fast ridges might make it harder for excess magmatism to accrete. We further speculate that the relatively wide partial melting zones in the upper mantle beneath the fast and intermediately fast ridges might act as "buffer" zones, thus diluting the melt anomalies from the underlying hotspots or regions of mantle heterogeneities. (3) As the crustal age increases and the lithospheric plate thickens, regions of thickened crust start to develop on ocean basins that were originally created at fast and intermediately fast ridges. The integrated crustal volume for fast and intermediately fast ocean crust appears to reach peak values for certain geological periods, such as 40-50 Ma and 70-80 Ma. The newly constructed global models of gravity-derived crustal thickness, combining with geochemical and other constraints, can be used to investigate the processes of oceanic crustal accretion and hotspot-lithosphere interactions.
NASA Astrophysics Data System (ADS)
Chen, Huan; Xia, Qun-Ke; Ingrin, Jannick; Deloule, Etienne
2016-04-01
In recent few years, the recycled oceanic slab has been increasingly suggested to be the enriched component in the mantle source of widespread intra-plate small-volume basaltic magmatism in eastern China. The recycled oceanic slab is a mixture of sediment, upper oceanic crust and lower gabbro oceanic crust, and will undergo alteration and dehydration during the recycling progress. The influence of these different components on the mantle source needs to be further constrained. The Chaihe-aershan volcanic field in Northeast China is located close to the surface position of the front edge of the subducted Pacific slab and includes more than 35 small-volume Quaternary basaltic volcanoes, which provides an opportunity to study the evolution of mantle source in detail and the small-scale geochemical heterogeneity of the mantle source. We measured the oxygen isotopes and water content of clinopyroxene (cpx) phenocrysts by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectrometry (FTIR), respectively. The water content of magma was then estimated based on the partition coefficient of H2O between cpx and basaltic melt. The measured δ18O of cpx phenocrysts (4.27 to 8.57) and the calculated H2O content of magmas (0.23-2.70 wt.%) show large variations, reflecting the compositional heterogeneity of the mantle source. The δ18O values within individual samples also display a considerable variation, from 1.28 to 2.31‰ suggesting mixing of magmas or the sustained injection of magmas with different δ18O values during the crystallization. The relationship between the averaged δ18O values of cpx phenocrysts and the H2O/Ce, Ba/Th, Nb/La ratios and Eu anomaly of whole-rocks demonstrates the contribution to three components in the mantle source (hydrothermally altered upper oceanic crust or marine sediments, altered lower gabbroic oceanic crust, ambient mantle). The proportions of these three components varied strongly within a limited period (˜1.27 Ma to ˜0.25 Ma). As only the Pacific slab is constantly subducted to the eastern Asia during that time, we suggested that its ongoing subduction is the only reasonable candidate to result in the compositional heterogeneity and rapid variation of enriched components in such a limited and recent time. Combines with previous studies on other basalt localities of eastern China, these new results confirm that the Pacific slab subduction play a key role in the triggering of the wide spread Cenozoic basaltic volcanism in eastern China.
Continent-arc collision in the Banda Arc imaged by ambient noise tomography
NASA Astrophysics Data System (ADS)
Porritt, Robert W.; Miller, Meghan S.; O'Driscoll, Leland J.; Harris, Cooper W.; Roosmawati, Nova; Teofilo da Costa, Luis
2016-09-01
The tectonic configuration of the Banda region in southeast Asia captures the spatial transition from subduction of Indian Ocean lithosphere to subduction and collision of the Australian continental lithosphere beneath the Banda Arc. An ongoing broadband seismic deployment funded by NSF is aimed at better understanding the mantle and lithospheric structure in the region and the relationship of the arc-continent collision to orogenesis. Here, we present results from ambient noise tomography in the region utilizing this temporary deployment of 30 broadband instruments and 39 permanent stations in Indonesia, Timor Leste, and Australia. We measure dispersion curves for over 21,000 inter-station paths resulting in good recovery of the velocity structure of the crust and upper mantle beneath the Savu Sea, Timor Leste, and the Nusa Tenggara Timur (NTT) region of Indonesia. The resulting three dimensional model indicates up to ∼25% variation in shear velocity throughout the plate boundary region; first-order velocity anomalies are associated with the subducting oceanic lithosphere, subducted Australian continental lithosphere, obducted oceanic sediments forming the core of the island of Timor, and high velocity anomalies in the Savu Sea and Sumba. The structure in Sumba and the Savu Sea is consistent with an uplifting forearc sliver. Beneath the island of Timor, we confirm earlier inferences of pervasive crustal duplexing from surface mapping, and establish a link to underlying structural features in the lowermost crust and uppermost mantle that drive upper crustal shortening. Finally, our images of the volcanic arc under Flores, Wetar, and Alor show high velocity structures of the Banda Terrane, but also a clear low velocity anomaly at the transition between subduction of oceanic and continental lithosphere. Given that the footprint of the Banda Terrane has previously been poorly defined, this model provides important constraints on tectonic reconstructions that formerly have lacked information on the lower crust and uppermost mantle.
Muhs, D.R.; Budahn, J.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.
2007-01-01
Islands are natural dust traps, and San Clemente Island, California, is a good example. Soils on marine terraces cut into Miocene andesite on this island are clay-rich Vertisols or Alfisols with vertic properties. These soils are overlain by silt-rich mantles, 5-20 cm thick, that contrast sharply with the underlying clay-rich subsoils. The silt mantles have a mineralogy that is distinct from the island bedrock. Silt mantles are rich in quartz, which is rare in the island andesite. The clay fraction of the silt mantles is dominated by mica, also absent from local andesite, and contrasts with the subsoils, dominated by smectite. Ternary plots of immobile trace elements (Sc-Th-La and Ta-Nd-Cr) show that the island andesite has a composition intermediate between average upper continental crust and average oceanic crust. In contrast, the silt and, to a lesser extent, clay fractions of the silt mantles have compositions closer to average upper continental crust. The silt mantles have particle size distributions similar to loess and Mojave Desert dust, but are coarser than long-range-transported Asian dust. We infer from these observations that the silt mantles are derived from airborne dust from the North American mainland, probably river valleys in the coastal mountains of southern California and/or the Mojave Desert. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. Examination of satellite imagery shows that easterly Santa Ana winds carry abundant dust to the eastern Pacific Ocean and the California Channel Islands. Airborne dust from mainland North America may be an important component of the offshore sediment budget in the easternmost Pacific Ocean, a finding of potential biogeochemical and climatic significance.
NASA Astrophysics Data System (ADS)
Gawęda, Aleksandra; Burda, Jolanta; Klötzli, Urs; Golonka, Jan; Szopa, Krzysztof
2016-06-01
The Tatra granitoid pluton (Central Western Carpathians, Poland/Slovakia) is an example of composite polygenetic intrusion, comprising many magmatic pulses varying compositionally from diorite to granite. The U-Pb LA-MC-ICP-MS zircon dating of successive magma batches indicates the presence of magmatic episodes at 370-368, 365, 360, 355 and 350-340 Ma, all together covering a time span of 30 Ma of magmatic activity. The partial resorption and recycling of former granitoid material ("petrological cannibalism") was a result of the incremental growth of the pluton and temperature in the range of 750-850 °C. The long-lasting granitoid magmatism was connected to the prolonged subduction of oceanic crust and collision of the Proto-Carpathian Terrane with a volcanic arc and finally with Laurussia, closing the Rheic Ocean. The differences in granitoid composition are the results of different depths of crustal melting. More felsic magmas were generated in the outer zone of the volcanic arc, whilst more mafic magmas were formed in the inner part of the supra-subduction zone. The source rocks of the granitoid magmas covered the compositional range of metapelite-amphibolite and were from both lower and upper crust. The presence of the inherited zircon cores suggests that the collision and granitoid magmatism involved crust of Cadomian consolidation age (c. 530 and 518 Ma) forming the Proto-Carpathian Terrane, crust of Avalonian affinity (462, 426 Ma) and melted metasedimentary rocks of volcanic arc provenance.
Axial crustal structure of the Costa Rica Rift: Implications for along-axis hydrothermal circulation
NASA Astrophysics Data System (ADS)
Zhang, L.; Tong, V.; Hobbs, R. W.; Peirce, C.; Lowell, R. P.; Haughton, G.; Murton, B. J.; Morales Maqueda, M. A.; Harris, R. N.; Robinson, A. H.
2017-12-01
In 2015, a multidisciplinary geophysical cruise surveyed the Costa Rica Rift (CRR) in the Panama Basin of the equatorial East Pacific, acquiring a grid of multichannel seismic and wide-angle profiles to determine the mode of oceanic crustal accretion at intermediate-spreading ridges, and how the crustal structure may be influenced by hydrothermal fluid flow. Analysis of 69,000 P-wave first arrivals recorded by 25 ocean-bottom seismographs deployed over a 20 × 20 km area that straddles the ridge axis, reveals a 3D velocity-depth model of upper crustal structure. In particular, the model shows a low velocity anomaly that extends to 2 km below seabed centred on a small-offset non-transform discontinuity (NTD), and a pattern of increasing velocity with distance off-axis that may reflect changes in porosity and permeability in layer 2 of the crust. Assuming the upper crustal velocity anomalies are linked with porosity and hence represent the ability of fluid to flow, comparison of the tomographic model with the volcanic seabed morphology suggests that the broad low velocity zone beneath the NTD may be a region of extensive fracturing. Hence, we infer that this region may provide a primary pathway for the recharge of seawater into the crust. Further west along the axis, beneath the bathymetric dome, which is the shallowest portion along the axis, the low-velocity anomaly is less pronounced, suggesting that fractures are less open and that fluid-rock interaction has encouraged mineral precipitation and alteration, as a result of a longer established hydrothermal fluid flow driven by the axial magma lens observed beneath it. This interpretation is supported by the presence of a plume from an active hydrothermal vent system. Hence, we infer that the variable velocity structure of the upper crust of the CRR is a proxy that reflects the primary porosity, faulting and fracturing related to phases of magma-driven accretion and/or ridge geometry re-adjustment, and that there is along-axis hydrothermal circulation transferring heat and impacting the properties of newly accreted oceanic crust. This research is part of a major, interdisciplinary NERC-funded collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).
The gravity field of the Red Sea and East Africa
NASA Astrophysics Data System (ADS)
Makris, Jannis; Henke, Christian H.; Egloff, Frank; Akamaluk, Thomas
1991-11-01
Reevaluation of all gravity data from the Red Sea, the Gulf of Aden and East Africa permitted the compilation of a new Bouguer anomaly map. The intensity of the gravity field and its regional pattern correlate closely with the topographic features of the region. The maximum Bouguer values (> + 100 mGal) are located over the median troughs of the Red Sea and Gulf of Aden. Dense juvenile oceanic crust in these rifts and intruding magmas in stretched continental areas produce excess mass responsible for the anomaly highs. In the Red Sea the orientation of the gravity highs is NW-SE in the south, turning to NE-SW in the north, almost parallel to the Aqaba-Dead Sea strike. This pattern reveals that the present basin axis is not identical with that which formed the Tertiary coastal margins and the pre-Red Sea zones of crustal weakness. In the Gulf of Aden, new oceanic crust along the Tadjura Trench and its eastward extension is also expressed in the Bouguer anomaly map by gravity highs and a sharp bending of the isolines. A maximum of approx. +150 mGal is located over the central section of the Sheba Ridge. Bouguer gravity values over the East African and Yemen Plateaus are of the order of -180 to -240 mGal, indicating significant crustal thickening. On the Somali Plateau, the Marda Fault also has a strong gravity signature that can be traced towards Somalia. By constraining crustal thickness and structure with seismic data and density values from the velocity distribution by means of the Nafe-Drake and Birch relationships, we computed density models for the crust and upper mantle. The crustal thickness is of the order of 40 km beneath the plateaus and only 5 to 6 km at the oceanized parts in the central and southern portions of the Red Sea median trough. The flanks of the southern Red Sea and the corresponding Arabian side are underlain by 12 to 16 km thick stretched continental type crust. Oceanization offshore Sudan and Egypt is asymmetrical. The continental crust terminates abruptly at about 20 km off the coastline, followed by an oceanic crust of early Miocene age that was produced in pull-apart basins. By contrast, the eastern side of the Red Sea trough offshore Saudi Arabia is floored by stretched continental crust that extends far into the sea. Seafloor spreading and the generation of oceanic crust in organized spreading centres are limited to the median troughs off Sudan and the northern part of Ethiopia and commenced approx. 5 m.y. BP. They are absent in the northern Red Sea, where crustal fracturing occurs only in pull-apart basins of Dead Sea-Aqaba orientation distributed in en-echelon pattern.
Subseafloor processes in mid-ocean ridge hydrothennal systems
NASA Astrophysics Data System (ADS)
Alt, Jeffrey C.
Convective circulation of seawater through oceanic crust at mid-ocean ridges (MOR) and on ridge flanks has wide-ranging effects on heat transport, the chemical and isotopic compositions of ocean crust and seawater, mineralization of the crust, and on the physical properties of oceanic basement. Submarine hydrothermal systems remove about 30% of the heat lost from oceanic crust [Selater et al., 1981; Stein and Stein, 1994], and chemical and isotopic exchange between seawater and basement rocks exerts important controls on the composition of seawater [Edmond et al., 1979a; Thompson, 1983]. The composition of altered crust is also changed and, when subducted, this altered crust can contribute to chemical and isotopic heterogeneities in the mantle [Zindler and Hart, 1986] and may affect the compositions of volcanic rocks in island arcs [Perfit et al., 1980; Tatsumi, 1989]. Mineralization of ocean crust occurs where metals, leached from large volumes of altered crust at depth, are concentrated at or near the surface by hydrothermal circulation [Hannington, 1995]. Hydrothermal alteration of magnetic minerals may affect the source of marine magnetic anomalies [Pariso and Johnson, 1991], and the formation of secondary minerals influences the density, porosity, and seismic velocity structure of the crust [Wilkens et al., 1991; Jacobson, 1992].
High-pressure phase relation of KREEP basalts: A clue for finding the lost Hadean crust?
NASA Astrophysics Data System (ADS)
Gréaux, Steeve; Nishi, Masayuki; Tateno, Shigehiko; Kuwayama, Yasuhiro; Hirao, Naohisa; Kawai, Kenji; Maruyama, Shigenori; Irifune, Tetsuo
2018-01-01
The phase relations, mineral chemistry and density of KREEP basalt were investigated at pressures of 12-125 GPa and temperatures up to 2810 K by a combination of large volume multi-anvil press experiments and in situ synchrotron X-ray diffraction measurements in a laser-heated diamond anvil cell. Our results showed that grossular-rich majorite garnet, liebermannite and Al-bearing stishovite are dominant in the upper-to-middle part of the upper mantle while in the lowermost transition zone a dense Ti-rich CaSiO3 perovskite exsoluted from the garnet, which becomes more pyropic with increasing pressure. At lower mantle conditions, these minerals transform into an assemblage of bridgmanite, Ca-perovskite, Al-stishovite, the new aluminium-rich (NAL) phase and the calcium-ferrite type (CF) phase. At pressures higher than 50 GPa, NAL phase completely dissolved into the CF phase, which becomes the main deposit of alkali metals in the lower mantle. The density of KREEP estimated from phase compositions obtained by energy dispersive X-ray spectroscopy (EDS) in scanning (SEM) and transmission (TEM) electron microscopes, was found substantially denser than pyrolite suggesting that the Earth primordial crust likely subducted deep into the Earth's mantle after or slightly before the final solidification of magma ocean at 4.53 Ga. Radiogenic elements U, Th and 40K which were abundant in the final residue of magma ocean were brought down along the subduction of the primordial crust and generate heat by decay after the settlement of the primordial crust on top of the CMB, suggesting the non-homogeneous distribution of radiogenic elements in the Hadean mantle with implications for the thermal history of the Earth.
NASA Astrophysics Data System (ADS)
Matsubara, Makoto; Obara, Kazushige
2015-04-01
P-wave seismic velocity is well known to be up to 7.0 km/s and over 7.5 km/s in the lower crust and in the mantle, respectively. A large velocity gradient is the definition of the Moho discontinuity between the crust and mantle. In this paper, we investigates the configuration of Moho discontinuity defined as an isovelocity plane with large velocity gradient derived from our fine-scale three-dimensional seismic velocity structure beneath Japanese Islands using data obtained by dense seismic network with the tomographic method (Matsubara and Obara, 2011). Japanese Islands are mainly on the Eurasian and North American plates. The Philippine Sea and Pacific plates are subducting beneath these continental plates. We focus on the Moho discontinuity at the continental side. We calculate the P-wave velocity gradients between the vertical grid nodes since the grid inversion as our tomographic method does not produce velocity discontinuity. The largest velocity gradient is 0.078 (km/s)/km at velocities of 7.2 and 7.3 km/s. We define the iso-velocity plane of 7.2 km/s as the Moho discontinuity. We discuss the Moho discontinuity above the upper boundary of the subducting oceanic plates with consideration of configuration of plate boundaries of prior studies (Shiomi et al., 2008; Kita et al., 2010; Hirata et al, 2012) since the Moho depth derived from the iso-velocity plane denotes the oceanic Moho at the contact zones of the overriding continental plates and the subducting oceanic plates. The Moho discontinuity shallower than 30 km depth is distributed within the tension region like northern Kyushu and coastal line of the Pacific Ocean in the northeastern Japan and the tension region at the Cretaceous as the northeastern Kanto district. These regions have low seismicity within the upper crust. Positive Bouguer anomaly beneath the northeastern Kanto district indicates the ductile material with large density in lower crust at the shallower portion and the aseismic upper crust. The Moho discontinuity deepens over 35 km in the collision zone like as Kanto Mountains, the volcanic underplating zone as the Tohoku backbone range, and non-tension region like as Chugoku Mountains. These regions associated with deep Moho are characterized by the crustal seismicity within the depth range from 20 to 30 km. The iso-depth contour of 35 km beneath the southwestern Japan is consistent with that derived from the receiver function method (Shiomi et al. 2006). There are nonvolcanic tremors and short-time slow slip events (SSE) beneath the southwestern Japan (eg. Obara, 2002). Matsubara et al. (2009) consider that the tremors and SSEs occur along the contact zone of Moho discontinuity beneath the Eurasian plate and the subducting Philippine Sea plate beneath southwestern Japan. Our Moho model is consistent with this since they exist along the southern edge of the Moho discontinuity of the continental Eurasian plate. Reference: Hirata, N., Sakai, S., Nakagawa, S., Ishikawa, M., Sato, H., Kasahara, K., Kimura, H. and Honda, R. (2012) A new tomographic image on the Philippine Sea Slab beneath Tokyo - Implication to seismic hazard in the Tokyo metropolitan region, EOS, Transactions, AGU, T11C-06. Kita, S., T. Okada, A. Hasegawa, J. Nakajima, and T. Matsuzawa (2010) Anomalous deepening of a seismic belt in the upper-plane of the double seismic zone in the Pacific slab beneath the Hokkaido corner: Possible evidence for thermal shielding caused by subducted forearc crust materials, Earth Planet. Science Lett., 290, 415-426. Matsubara, M. and K. Obara (2011) The 2011 Off the Pacific Coast of Tohoku earthquake related to a strong velocity gradient with the Pacific plate, Earth Planets Space, 63, 663-667. Matsubara, M., K. Obara, and K. Kasahara (2009) High-Vp/Vs zone accompanying non-volcanic tremors and slow-slip events beneath southwestern Japan, Tectonophysics, 472, 6-17, doi:10.1016/j.tecto.2008.06.013. Obara, K. (2002) Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296, 1679-1681. Shiomi, K., K. Obara, and H. Sato (2006) Moho depth variation beneath southwestern Japan revealed from the velocity structure based on receiver function inversion , Tectonophysics, 420, 205-221, doi:10.1016/j.tecto.2006.01.017. Shiomi, K., M. Matsubara, Y. Ito, and K. Obara (2008) Simple relationship between seismic activity along Philippine Sea slab and geometry of oceanic Moho beneath southwest Japan, Geophys. J. Int., 173, 1018-1029.
NASA Astrophysics Data System (ADS)
Yamamoto, Yojiro; Takahashi, Narumi; Pinar, Ali; Kalafat, Dogan; Citak, Seckin; Comoglu, Mustafa; Polat, Remzi; Kaneda, Yoshiyuki
2017-04-01
Both the geometry and the depth of the seismogenic zone of the North Anatolian Fault under the Marmara Sea (the Main Marmara Fault; MMF) are poorly understood, in part because of the fault's undersea location. We have started a series of long-term ocean bottom seismographs (OBSs) observation since 2014, as a part of the SATREPS collaborative project between Japan and Turkey namely "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education in Turkey". We recorded 10 months of microseismic data with a dense array of OBSs from Sep. 2014 to Jul. 2015 and then applied double-difference relocation and 3-D tomographic modeling to obtain precise hypocenters on the MMF beneath the central and western Marmara Sea. The hypocenters show distinct lateral changes along the MMF: (1) Both the upper and lower crust beneath the Western High are seismically active and the maximum focal depth reaches 26 km, (2) seismic events are confined to the upper crust beneath the region extending from the eastern part of the Central Basin to the Kumburgaz Basin, and (3) the magnitude and direction of dip of the main fault changes under the Central Basin, where there is also an abrupt change in the depth of the lower limit of the seismogenic zone. We attribute this change to a segment boundary of the MMF. Our data show that the upper limit of the seismogenic zone corresponds to sedimentary basement. We also identified several inactive seismicity regions within the upper crust along the MMF; their spatial extent beneath the Kumburgaz Basin is greater than beneath the Western High. From the comparison with seafloor extensometer data, we consider that these inactive seismicity regions might indicate zones of strong coupling that are accumulating stress for release during future large earthquakes. In this presentation, we will also show the preliminary result of our second phase observation from Jul. 2015 to Jun. 2016.
NASA Astrophysics Data System (ADS)
Leitchenkov, G.; Guseva, J.; Gandyukhin, V.; Grikurov, G.; Kristoffersen, Y.; Sand, M.; Golynsky, A.; Aleshkova, N.
2008-06-01
About 16,000 km of multichannel seismic (MCS), gravity and magnetic data and 28 sonobuoys were acquired in the Riiser-Larsen Sea Basin and across the Gunnerus and Astrid Ridges, to study their crustal structure. The study area has contrasting basement morphologies and crustal thicknesses. The crust ranges in thickness from about 35 km under the Riiser-Larsen Sea shelf, 26 28 km under the Gunnerus Ridge, 12 17 km under the Astrid Ridge, and 9.5 10 km under the deep-water basin. A 50-km-wide block with increased density and magnetization is modeled from potential field data in the upper crust of the inshore zone and is interpreted as associated with emplacement of mafic intrusions into the continental margin of the southern Riiser-Larsen Sea. In addition to previously mapped seafloor spreading magnetic anomalies in the western Riiser-Larsen Sea, a linear succession from M2 to M16 is identified in the eastern Riiser-Larsen Sea. In the southwestern Riiser-Larsen Sea, a symmetric succession from M24B to 24n with the central anomaly M23 is recognized. This succession is obliquely truncated by younger lineation M22 M22n. It is proposed that seafloor spreading stopped at about M23 time and reoriented to the M22 opening direction. The seismic stratigraphy model of the Riiser-Larsen Sea includes five reflecting horizons that bound six seismic units. Ages of seismic units are determined from onlap geometry to magnetically dated oceanic basement and from tracing horizons to other parts of the southern Indian Ocean. The seaward edge of stretched and attenuated continental crust in the southern Riiser-Larsen Sea and the landward edge of unequivocal oceanic crust are mapped based on structural and geophysical characteristics. In the eastern Riiser-Larsen Sea the boundary between oceanic and stretched continental crust is better defined and is interpreted as a strike-slip fault lying along a sheared margin.
Structural-tectonic zoning of the Arctic
NASA Astrophysics Data System (ADS)
Petrov, Oleg; Sobolev, Nikolay; Morozov, Andrey; Shokalsky, Sergey; Kashubin, Sergey; Grikurov, Garrik; Tolmacheva, Tatiana; Rekant, Pavel; Petrov, Evgeny
2017-04-01
Structural-tectonic zoning of the Arctic is based on the processing of geological and geophysical data and bottom sampling materials produced within the project "Atlas of Geological Maps of the Circumpolar Arctic." Zoning of the Arctic territories has been conducted taking into account the Earth's crust types, age of consolidated basement, and features of geological structure of the sedimentary cover. Developed legend for the zoning scheme incorporates five main groups of elements: continental and oceanic crust, folded platform covers, accretion-collision systems, and provinces of continental cover basalts. An important feature of the structural-tectonic zoning scheme is designation of continental crust in the central regions of the Arctic Ocean, the existence of which is assumed on the basis of numerous geological data. It has been found that most of the Arctic region has continental crust with the exception of the Eurasian Basin and the central part of the Canada Basin, which are characterized by oceanic crust type. Thickness of continental crust from seismic data varies widely: from 30-32 km on the Mendeleev Rise to 18-20 km on the Lomonosov Ridge, decreasing to 8-10 km in rift structures of the Podvodnikov-Makarov Basin at the expense of reduction of the upper granite layer. New data confirm similar basement structure on the western and eastern continental margins of the Eurasian oceanic basin. South to north, areas of Neoproterozoic (Baikalian) and Paleozoic (Ellesmerian) folding are successively distinguished. Neoproterozoic foldbelt is observed in Central Taimyr (Byrranga Mountains). Continuation of this belt in the eastern part of the Arctic is Novosibirsk-Chukchi fold system. Ellesmerian orogen incorporates the northernmost areas of Taimyr and Severnaya Zemlya, wherefrom it can be traced to the Geofizikov Spur of the Lomonosov Ridge and further across the De Long Archipelago and North Chukchi Basin to the north of Alaska Peninsula and in the Beaufort Sea. From the north, Ellesmerides are limited by the Precambrian continental blocks - North Kara and Mendeleev Rise, the sedimentary cover within which is represented by undisturbed Paleozoic and Mesozoic deposits. Analysis of the geological and tectonic maps and the map of the Arctic basement structure indicates that the heterogeneous crustal structure of the Arctic Ocean and its continental framing were formed as a result of simultaneous development and interaction of three large paleo-oceans in the Neoproterozoic and Phanerozoic - Paleo-Asian, Proto-Atlantic and Paleo-Pacific oceans. A conceptual model that represents our understanding of structural relationships and crustal types of the main Arctic Basin structures is quite simple. The Arctic Basin is bounded by continental margins with continental crust: relatively elevated Barents-Kara - in the west, and generally submerged Amerasia margin - in the east. The latter represents a continental "bridge" formed by thinned and stretched continental crust. It connects two opposite continents - Laurentia and Eurasia, and is essentially a fragmented, tectonically mobile structure.
Oceanic-type accretion may begin before complete continental break-up
NASA Astrophysics Data System (ADS)
Geoffroy, L.; Zalan, P. V.; Viana, A. R.
2011-12-01
Oceanic accretion is thought to be the process of oceanic crust (and lithosphere) edification through adiabatic melting of shallow convecting mantle at oceanic spreading ridges. It is usually considered as a post-breakup diagnostic process following continents rupturing. However, this is not always correct. The structure of volcanic passive margins (representing more than 50% of passive continental margins) outlines that the continental lithosphere is progressively changed into oceanic-type lithosphere during the stage of continental extension. This is clear at least, at crustal level. The continental crust is 'changed' from the earliest stages of extension into a typical -however thicker- oceanic crust with the typical oceanic magmatic layers (from top to bottom: lava flows/tuffs, sheeted dyke complexes, dominantly (sill-like) mafic intrusions in the lower crust). The Q-rich continental crust is highly extended and increases in volume (due to the magma) during the extensional process. At the continent-ocean transition there is, finally, no seismic difference between this highly transformed continental crust and the oceanic crust. Using a large range of data (including deep seismic reflection profiles), we discuss the mantle mechanisms that governs the process of mantle-assisted continental extension. We outline the large similarity between those mantle processes and those acting at purely-oceanic spreading axis and discuss the effects of the inherited continental lithosphere in the pattern of new mafic crust edification.
Dating low-temperature alteration of the upper oceanic crust
NASA Astrophysics Data System (ADS)
Coogan, L. A.; Hinton, R. W.; Gillis, K. M.; Dosso, S. E.
2011-12-01
Off-axis hydrothermal systems lead to extensive chemical exchange between the oceans and upper oceanic crust but it is unclear when this exchange occurs. We address this using a new dating approach and via the re-evaluation of existing data that contain age information. We have developed a method to directly date adularia, a common alkali-rich phase in old oceanic crust, using the 40K to 40Ca radiogenic decay system. In situ analysis, using the Cameca 1270 ion microprobe at the University of Edinburgh, allows small, replacive, secondary mineral grains to be analyzed. In comparison to previous radiogenic dating of low-temperature secondary minerals, using Rb-Sr and K-Ar approaches on mineral separates, this approach has the advantages that: (i) analysis is not limited to large, void filling, grains; (ii) the initial isotopic ratio is well constrained; (iii) contamination and phase heterogeneity are minimized; and (iv) the daughter isotope is relatively immobile. However, the requirement to analyse doubly charged ions, to reduce molecular interferences and suppress the presence of 40K on 40Ca, leads to low count rates [1]; e.g. single spot ages have uncertainties of 10's of millions of years. Combining all analyses for a given sample gives best fitting instantaneous precipitation "ages" of 102 and 70 Myr for DSDP Holes 417A and 543A (versus crustal ages of 120 and 80 Myr). The scatter in the data are consistent with adularia precipitation over >30 Myr. The timing of carbonate precipitation in the upper oceanic crust can be constrained from comparison of their 87Sr/86Sr to the seawater Sr-isotope curve if the proportion of basaltic Sr in the fluid can be constrained. Modeling such data from 12 drill cores shows that they are best fit by a model in which >90% of carbonate precipitation occurs over ≤20 Myr after crustal formation [2]. Evaluation of published Rb-Sr "isochron" data [3,4] shows that these data can be explained in different ways. The "isochron" interpretation implies that secondary mineral crystallization occurs over a geologically brief interval, 10-50 Myr after crustal accretion, and that the clay minerals crystallize with a constant 87Sr/86Sr but variable Rb/Sr. None of these seem likely. Alternative models to explain these data include: (i) assuming a constant initial 87Sr/86Sr ratio but a different age for each mineral separate; (ii) a model including time varying fluid (and hence clay) Rb/Sr and 87Sr/86Sr; or (iii) mixing within the clay structure between alkali-rich and alkali-poor domains. In scenarios (i) and (ii) model mineral ages are different for each mineral separate analysed, and clay precipitation occurs over 10's of millions of years. The combination of age information from different approaches leads to a picture of low-temperature alteration of the ocean crust occurring over a few 10's of millions of years after crustal formation. A model incorporating all of these data is currently being developed to statistically test how well constrained the timing of secondary mineral crystallization is. [1] Harrison et al., EPSL v. 299 p. 426 (2010); [2] Gillis and Coogan (2011) EPSL v. 302 p. 385; [3] Hart and Staudigel (1986) GCA v50; p2751 [4] Richardson et al. (1980) JGR v85 p 7195.
NASA Astrophysics Data System (ADS)
Huang, H.; Klingelhoefer, F.
2017-12-01
The South China Sea (SCS) has undergone episodic spreading during the Cenozoic Era. The long-term extension has shaped the continental margins of the SCS, leading to a progressive breakup of the lithosphere. Separated blocks and rift troughs, as controlled by tectonic stretching, contains key information about the deforming mechanism of the crust. In this work, we present a P-wave velocity model of a wide-angle seismic profile OBS2013-1 which passes through the NW margin of the SCS. Modeling of 25 ocean bottom seismometers (OBS) data revealed a detailed crustal structure and shallow complexities along the profile (Figure 1). The crust thins symmetrically across the Xisha Trough, from more than 20 km on flanks to 10 km in the central valley where the sediments thickens over 5 km; A volcano is situated on top of the centre basement high where the Moho drops slightly. At the distal margin around the Zhongsha Trough, the upper crust was detached and accordingly made the middle crust exhumed in a narrow area ( 20 km wide). Meanwhile, materials from the lower crust rises asymmetrically, increasing the crustal velocity by 0.3 km/s and may also giving rise to volcanisms along the hanging side. A 40 km wide hyper-stretched crust (with thickness of 5 km) was identified next to the Zhongsha Trough and covered by overflowing magma and post-rift sediments on the top. These observations argue for a depth-related and asymmetrically extension of the crust, including (1) detachment fault controls the deformation of the upper crust, leading to exhumation of the middle crust and asymmetrically rising of the lower crust, (2) The region adjacent to the exhumation region and with highly thinned crust can be considered as extinct OCT due to magma-starved supplying.
Crustal Stretching Style and Lower Crust Flow of the South China Sea Northern Margin
NASA Astrophysics Data System (ADS)
Bai, Y.; Dong, D.; Runlin, D.
2017-12-01
There is a controversy about crustal stretching style of the South China Sea (SCS) northern margin mainly due to considerable uncertainty of stretching factor estimation, for example, as much as 40% of upper crust extension (Walsh et al., 1991) would be lost by seismic profiles due to poor resolution. To discover and understand crustal stretching style and lower crustal flow on the whole, we map the Moho and Conrad geometries based on gravity inversion constrained by deep seismic profiles, then according to the assumption of upper and lower crust initial thickness, upper and lower crust stretching factors are estimated. According to the comparison between upper and lower crust stretching factors, the SCS northern margin could be segmented into three parts, (1) sediment basins where upper crust is stretched more than lower crust, (2) COT regions where lower crust is stretched more than upper crust, (3) other regions where the two layers have similar stretching factors. Stretching factor map shows that lower crust flow happened in both of COT and sediment basin regions where upper crust decouples with lower crust due to high temperature. Pressure contrast by sediment loading in basins and erosion in sediment-source regions will lead to lower crust flow away from sediment sink to source. Decoupled and fractured upper crust is stretched further by sediment loading and the following compensation would result in relatively thick lower crust than upper crust. In COT regions with thin sediment coverage, low-viscosity lower crust is easier to thin in extensional environment, also the lower crust tends to flow away induced by magma upwelling. Therefore, continental crust on the margin is not stretching in a constant way but varies with the tectonic setting changes. This work is supported by National Natural Science Foundation of China (Grant No. 41506055, 41476042) and Fundamental Research Funds for the Central Universities China (No.17CX02003A).
NASA Astrophysics Data System (ADS)
Neumann, E.; Vannucci, R.; Tiepolo, M.; Griffin, W. L.; Pearson, N. J.; O'Reilly, S. Y.
2005-05-01
Our present information on passive margins rests almost exclusively on seismic and density data. An important exception is the west Iberia margin where petrological and geochemical information on crustal and mantle rocks have been made available through drilling experiments. In order to increase our information about, and understanding of, passive margins and their mode of formation, more information on crustal and mantle rocks along different types of passive margins are needed. In the area of the Canary Islands such information has been obtained through the study of mantle and deep crustal xenoliths brought to the surface by basaltic magmas. In-situ laser ablation (LA) ICP-MS mineral analyses have enabled us to "see through" the effects of the Canary Islands event and obtain robust information about the original (pre-Canarian) chemical character of the crust and upper mantle on which these islands are built. Our studies show that the lithosphere beneath the Canary Islands originated as highly refractory N-MORB type oceanic mantle overlain by highly refractory N-MORB crust. Both the lithospheric mantle and lower crust have been metasomatized to different degrees by a variety of fluid and melts. The enriched material is commonly concentrated along grain boundaries and cracks through mineral grains, suggesting that the metasomatism is relatively recent, and is thus associated with the Canary Islands magmatism. The original, strongly depleted trace element patterns and the low 87Sr/86Sr isotopic ratios typical of the oceanic lithosphere are preserved in the minerals in the least metasomatized rocks (e.g. LaN/LuN<0.1 in orthopyroxene and 87Sr/86Sr=0.7027-0.7029 in clinopyroxene in mantle xenoliths). The compositions of the most depleted gabbro samples from the different islands are closely similar, implying that there was no significant change in chemistry during the early stages of formation of the Atlantic oceanic crust in this area. Strongly depleted gabbros similar to those collected in Fuerteventura have also been retrieved in the MARK area along the central Mid-Atlantic Ridge. Furthermore, we have found no evidence of continental material that might reflect attenuated continental lithosphere in this area. The easternmost Canary Islands, Fuerteventura and Lanzarote, appear to overlap the lower part of the continental slope of Africa. The presence of normal oceanic lithosphere beneath these islands implies that the continent-ocean transition in the Canary Islands area must be relatively sharp, in contrast to the passive non-volcanic margin further north along the coast of Morocco, along the Iberia peninsula, and in many other areas. Our data also contradict the hypothesis that a mantle plume was present in this area during the opening of the Atlantic Ocean.
Lunar Magma Ocean Bedrock Anorthosites Detected at Orientale Basin by M3
NASA Astrophysics Data System (ADS)
Pieters, C. M.; Boardman, J. W.; Burratti, B.; Cheek, L.; Clark, R. N.; Combe, J.; Green, R. O.; Head, J. W.; Hicks, M.; Isaacson, P.; Klima, R.; Kramer, G. Y.; Lundeen, S.; Malaret, E.; McCord, T. B.; Mustard, J. F.; Nettles, J. W.; Petro, N. E.; Runyon, C. J.; Staid, M.; Sunshine, J. M.; Taylor, L. A.; Tompkins, S.; Varanasi, P.
2009-12-01
The lunar crust is thought to have formed as a result of global melting of the outer parts of the Moon in its earliest history, a lunar magma ocean (LMO). Crystallization of this magma ocean set the stage for the ensuing history of the planet. Models for the formation of the lunar crust and the evolution of the LMO were derived from individual Apollo samples that could not be placed directly in the context of crustal bedrock with remote sensing data that was available. Data from modern sensors, such as the Moon Mineralogy Mapper (M3) on Chandrayaan-1, now allow such bedrock issues to be addressed. The ~930 km diameter Orientale multi-ringed impact basin in the western highlands provides an opportunity to evaluate the mineralogy of the in situ crust of the Moon in the search for LMO mineralogy and structure. Orientale is the youngest large basin on the Moon, and the basin deposits and ring structures expose progressively deeper bedrock layering that can be used to determine lunar crustal structure and test the LMO model. With its high spatial and spectral resolution, M3 data show that the ejecta of the basin is composed of mixed assemblages of processed feldspathic breccias with small amounts of low-Ca pyroxene comprising the upper kilometers-thick mega-regolith layer of the crust. Exposures in the outermost (Cordillera) ring reveal less processed examples of this material. The M3 data show that the next interior ring (Outer Rook), representing deeper material, is characterized by distinctly more crystalline blocks of impact-shocked anorthosite and noritic anorthosite. Most importantly, M3 data reveal that the mountains of the closest ring toward the basin interior (Inner Rook) consist of pure anorthosite, including outcrops of the unshocked crystalline form. This massive exposure of anorthosite across the entire mountain range provides validation for the LMO hypothesis. These mountains are believed to have originated in the upper crust below the impact fragmented regolith and were formed and uplifted during the basin event. Such extensive exposures of this rock type, consisting of almost pure plagioclase, could not have formed in any other way than plagioclase flotation in the crystallizing lunar magma ocean. Figure 1. Schematic cross section of the Orientale basin illustrating the relation of the Inner Rook Ring to the basin deposits of the exterior (after Head et al., 1993, JGR, 98, 17149).
NASA Astrophysics Data System (ADS)
Simancas, F.; Carbonell, R.; Gonzalez-Lodeiro, F.; Perez-Estaun, A.; Ayarza, P.; Juhlin, C.; Azor, A.; Saez, R.; Martinez-Poyatos, D.; Pascual, E.
The recently acquired IBERSEIS Seismic Reflection Profile runs across major do- mains of the Variscan Orogen in SW Iberia. Geological studies indicate that the seis- mically surveyed region has been built up from three terranes, namely the South Por- tuguese Zone (SPZ), the Ossa-Morena Zone (OMZ) and the Central Iberian Zone (CIZ). These terranes became sutured after a complex, mainly transpressive (left- lateral), collisional history in Devonian-Carboniferous time. The deep seismic reflec- tion profile IBERSEIS has successfully imaged the sutures between these terranes as well as the structure of their crust. The following main features emerge from the pre- liminary integration of seismic and geological data: 1) The suture between the SPZ and OMZ terranes, marked by oceanic amphibolites, appears at present as a north- dipping left-lateral thrust merging in a mid-crustal detachment; the continuity of this suture-contact in the lower crust is not well defined in the seismic image. 2) The OMZ/CIZ suture, a shear zone with eclogites, is clearly imaged in the upper crust as a band of reflectivity dipping to the NE which, after a flat geometry in the middle crust, may continue downwards to the Moho as NE-dipping lower crustal reflections. 3) The SPZ upper crust has an imbricate structure merging into a mid-crustal detachment at constant depth in the surveyed profile. 4) The structure of the OMZ upper crust is dominated by large-scale recumbent folds affected by late upright folds, as fore- seen by geology and fully confirmed by the seismic image. 5) A general mid-crustal detachment exists in the whole surveyed area, whose geometry varies from a sharp detachment-level in the SPZ to a pinching and swelling horizontal band of reflectivity -a melting layer?- in the OMZ; in any case, a strong decoupling between upper and lower crust characterizes this transect of the Variscan orogen. 6) The lower crust of the SPZ has an intense seismic fabric, in accordance with the consideration of this ter- rane as an external orogenic domain with discrete shear bands preserved in the whole crust. 7) The lower crust of the OMZ is much less reflective than the lower crust of the SPZ. 8) The Moho is flat all along the surveyed area, which means that crustal 1 roots formed during the collisional processes were eliminated later on, probably in Late Carboniferous-Permian times. Despite the disturbance due to the generation of a post-orogenic flat Moho, the IBERSEIS seismic image seems to be a good snapshot of the Variscan collision, with very minor reworking by alpine processes. 2
Central Atlantic Break-up: A competition between CAMP Hotspot and thinning rate.
NASA Astrophysics Data System (ADS)
Sapin, F.; Maurin, T.
2017-12-01
The break-up of the Central Atlantic is known to have ended at about 190Myrs while the CAMP (Central Atlantic Magmatic Province) was still active. Several seismic lines, acquired recently in the deep offshore Senegal and Mauritanian domain, provide detailed images of continent-ocean transition and the oceanic crust architecture. Their interpretation is the opportunity to describe the progressive interaction between the hot spot activity, the architecture and timing of break up and the oceanic crust production. In the North, seismic data and gravity/magnetic inversions suggest an extremely thinned continental crust with possible mantle exhumation. In the South, the continental crust is thick and the transition to oceanic crust is sharp. In addition, three oceanic crust facies were described along the margin in an extremely slow spreading ridge setting ( 0.8cm/yr during the first 20Myrs): facies (1) with a poorly imaged Moho and a strongly faulted thin oceanic crust or exhumed mantle; facies (2) with an extensively faulted 6km thick oceanic crust; facies (3) with abnormally thick (9km) oceanic crust marked by SDR-type reflections. They are diachronous from North to South and the two first one disappear southwards and (facies 3) being younger toward the North. Only a single very thick oceanic crust (12-14km) remains in front of the Guinea Plateau. We concluded that, in the South, the break-up had been forced through a thick or thickened continental crust due to the remnant activity of the CAMP Hotspot. In the North, the magmatic pulse arrived far after the break-up during the spreading and the thinning of the continental crust could lead to hyper extension. This evolution emphasizes that the architecture, and thus processes leading to the break-up can vary a lot considering the influence of thermal vertical forces (mantle dynamics/hotspot/magmatism) and mechanical horizontal forces (plate movement/faulting/spreading), both of them being necessary for a rift to succeed.
Lithospheric architecture of the Levant Basin (Eastern Mediterranean region): A 2D modeling approach
NASA Astrophysics Data System (ADS)
Inati, Lama; Zeyen, Hermann; Nader, Fadi Henri; Adelinet, Mathilde; Sursock, Alexandre; Rahhal, Muhsin Elie; Roure, François
2016-12-01
This paper discusses the deep structure of the lithosphere underlying the easternmost Mediterranean region, in particular the Levant Basin and its margins, where the nature of the crust, continental versus oceanic, remains debated. Crustal thickness and the depth of the lithosphere-asthenosphere boundary (LAB) as well as the crustal density distribution were calculated by integrating surface heat flow data, free-air gravity anomaly, geoid and topography. Accordingly, two-dimensional, lithospheric models of the study area are discussed, demonstrating the presence of a progressively attenuated crystalline crust from E to W (average thickness from 35 to 8 km). The crystalline crust is best interpreted as a strongly thinned continental crust under the Levant Basin, represented by two distinct components, an upper and a lower crust. Further to the west, the Herodotus Basin is believed to be underlain by an oceanic crust, with a thickness between 6 and 10 km. The Moho under the Arabian Plate is 35-40 km deep and becomes shallower towards the Mediterranean coast. It appears to be situated at depths ranging between 20 and 23 km below the Levant Basin and 26 km beneath the Herodotus Basin, based on our proposed models. At the Levantine margin, the thinning of the crust in the transitional domain between the onshore and the offshore is gradual, indicating successive extensional regimes that did not reach the beak up stage. In addition, the depth to LAB is around 120 km under the Arabian and the Eurasian Plates, 150 km under the Levant Basin, and it plunges to 180 km under the Herodotus Basin. This study shows that detailed 2D lithosphere modeling using integrated geophysical data can help understand the mechanisms responsible for the modelled lithospheric architecture when constrained with geological findings.
Models of a partially hydrated Titan interior with clathrate crust
NASA Astrophysics Data System (ADS)
Lunine, J. I.; Castillo-Rogez, J.
2012-04-01
We present an updated model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan's history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consisted of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the liquid water ocean. The crust of Titan was assumed to be pure water ice I. The model was consistent with the moment of inertia of Titan, but neglected the presence of large amounts of methane in the upper crust invoked to explain methane's persistence at present and through geologic time (Tobie et al. 2006). We have updated our model with such a feature. We have also improved our modeling with a better physical model for the dehydration of antigorite and other hydrated minerals. In particular our modeling now simulates heat advection resulting from water circulation (e.g., Seipold and Schilling 2003), rather than the purely conductive heat transfer regime assumed in the first version of our model. The modeling proceeds as in Castillo-Rogez and Lunine (2010), with the thermal conductivity of the methane clathrate crust rather than that of ice I. The former is several times lower than that of the latter, and the two have rather different temperature dependences (English and Tse, 2009). The crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, with the insulating methane clathrate crust, there must be a liquid water ocean beneath the methane clathrate crust and in contact with the silicates beneath for most of Titan's history. Although a high-pressure ice layer is likely in place today, it is thin enough that plumes of hot water from the dehydrating core probably breach the high pressure ice layer maintaining contact between the ocean and the silicate core. Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged.
Sulfide enrichment at an oceanic crust-mantle transition zone: Kane Megamullion (23°N, MAR)
NASA Astrophysics Data System (ADS)
Ciazela, Jakub; Koepke, Juergen; Dick, Henry J. B.; Botcharnikov, Roman; Muszynski, Andrzej; Lazarov, Marina; Schuth, Stephan; Pieterek, Bartosz; Kuhn, Thomas
2018-06-01
The Kane Megamullion oceanic core complex located along the Mid-Atlantic Ridge (23°30‧N, 45°20‧W) exposes lower crust and upper mantle directly on the ocean floor. We studied chalcophile elements and sulfides in the ultramafic and mafic rocks of the crust-mantle transition and the mantle underneath. We determined mineralogical and elemental composition and the Cu isotope composition of the respective sulfides along with the mineralogical and elemental composition of the respective serpentines. The rocks of the crust-mantle transition zone (i.e., plagioclase harzburgite, peridotite-gabbro contacts, and dunite) overlaid by troctolites are by one order of magnitude enriched in several chalcophile elements with respect to the spinel harzburgites of the mantle beneath. Whereas the range of Cu concentrations in spinel harzburgites is 7-69 ppm, the Cu concentrations are highly elevated in plagioclase harzburgites with a range of 90-209 ppm. The zones of the peridotite-gabbro contacts are even more enriched, exhibiting up to 305 ppm Cu and highly elevated concentrations of As, Zn, Ga, Sb and Tl. High Cu concentrations show pronounced correlation with bulk S concentrations at the crust-mantle transition zone implying an enrichment process in this horizon of the oceanic lithosphere. We interpret this enrichment as related to melt-mantle reaction, which is extensive in crust-mantle transition zones. In spite of the ubiquitous serpentinization of primary rocks, we found magmatic chalcopyrites [CuFeS2] as inclusions in plagioclase as well as associated with pentlandite [(Fe,Ni)9S8] and pyrrhotite [Fe1-xS] in polysulfide grains. These chalcopyrites show a primary magmatic δ65Cu signature ranging from -0.04 to +0.29 ‰. Other chalcopyrites have been dissolved during serpentinization. Due to the low temperature (<300 °C) of circulating fluids chalcophile metals from primary sulfides have not been mobilized and transported away but have been trapped in smaller secondary sulfides and hydroxides. Combined with the Cu deposits documented in the crust-mantle transition zones of various ophiolite complexes, our results indicate that the metal enrichment, increased sulfide modes, and potentially formation of small sulfide deposits could be expected globally along the petrological Moho.
Crustal structure of southwestern Saudi Arabia
Gettings, M.E.; Blank, H.R.; Mooney, W.D.; Healy, J.H.
1983-01-01
The southwestern Arabian Shield is composed of uplifted Proterozoic metamorphic and plutonic rocks. The Shield is bordered on the southwest by Cenozoic sedimentary and igneous rocks of the Red Sea paar and on the east by the Arabian Platform, an area of basin sedimentation throughout Phanerozoic time. The Shield appears to have been formed by successive episodes of island arc volcanism and sea-floor spreading, followed by several cycles of compressive tectonism and metamorphism. An interpretation and synthesis of a deep-refraction seismic profile from the Riyadh area to the Farasan Islands, and regional gravity, aeromagnetic, heat flow, and surface geologic data have yielded a self-consistent regional-scale model of the crust and upper mantle for this area. The model consists of two 20 km-thick layers of crust with an average compressional wave velocity in the upper crust of about 6.3 km/s and an average velocity in the lower. crust of about 7.0 km/s. This crust thins abruptly to less than 20 km near the southwestern end of the profile where Precambrian outcrops abut the Cenozoic rocks and to 8 km beneath the Farasan Islands. The data over the coastal plain and Red Sea shelf areas are fit satisfactorily by an oceanic crustal model. A major lateral velocity inhomogeneity in the crust is inferred about 25 km northeast of Sabhah and is supported by surface geologic evidence. The major velocity discontinuities occur at about the same depth across the entire Shield and are interpreted to indicate horizontal metamorphic stratification of the Precambrian crust. Several lateral inhomogenities in both the upper and lower .crust of the . Shield are interpreted, to indicate bulk compositional variations. The subcrustal portion of the model is composed of a hot, low-density lithosphere beneath the Red Sea which is systematically cooler and denser to the northeast. This model provides a mechanism which explains the observed topographic uplift, regional gravity pattern, heat flow, and mantle compressional wave velocities. Such a lithosphere could be produced by upwelling of hot asthenosphere beneath the Red Sea which then flows laterally beneath the lithosphere of the Arabian Plate.
NASA Astrophysics Data System (ADS)
Julià, J.; Ammon, C. J.; Herrmann, R. B.
2002-12-01
Models of crustal evolution strongly rely on our knowledge on the mineralogical composition of subsurface rocks, as well as pressure and temperature conditions. Direct sampling of subsurface rocks is often not possible, so that constraints have to be placed from indirect estimates of rock properties. Detailed seismic imaging of subsurface rocks has the potential for providing such constraints, and probe the extent at depth of surface geologic observations. In this study, we provide detailed S-wave velocity profiles for the crust and uppermost mantle beneath the Saudi Arabian Portable Broadband Deployment stations. Seismic velocities have been estimated from the joint inversion of receiver functions and fundamental mode group velocities. Receiver functions are sensitive to S-wave velocity contrasts and vertical travel times, and surface-wave dispersion is sensitive to vertical S-wave velocity averages, so that their combination bridge resolution gaps associated with each individual data set. Our resulting models correlate well with surface geology observations in the Arabian Shield and characterize its terranes at depth: the Asir terrane consists of a 10-km thick upper crust of 3.3~km/s overlying a lower crust with shear-wave velocities of 3.7-3.8 km/s; the Afif terrane is made of a 20-km thick upper crust with average velocity of 3.6 km/s and a lower crust with a shear-velocity of about 3.8~km/s; the Nabitah mobile belt has a gradational, 15-km thick upper crust up to 3.6 km/s overlying a gradational lower crust with velocities up to 4.0 km/s. The crust-mantle transition is sharper in terranes of continental affinity and more gradational beneath terranes of oceanic affinity. In the uppermost mantle, our models suggest a thin lid between up to 50-60 km depth overlying a low velocity zone beneath station TAIF, located close to a region of upwelling mantle material. Temperatures in the lid are estimated to be about 1000 C, which are in good agreement with independent xenolith data, and suggest that the lithosphere could be eroded to a thickness as little as 50~km under this station.
NASA Astrophysics Data System (ADS)
Grose, C. J.; Afonso, J. C.
2013-12-01
We have developed new physically comprehensive thermal plate models of the oceanic lithosphere which incorporate temperature- and pressure-dependent heat transport properties and thermal expansivity, melting beneath ridges, hydrothermal circulation near ridge axes, and insulating oceanic crust. These models provide good fits to global databases of seafloor topography and heat flow, and seismic evidence of thermal structure near ridge axes. We couple these thermal plate models with thermodynamic models to predict the petrology of oceanic lithosphere. Geoid height predictions from our models suggest that there is a strong anomaly in geoid slope (over age) above ~25 Ma lithosphere due to the topography of garnet-field mantle. A similar anomaly is also present in geoid data over fracture zones. In addition, we show that a new assessment of a large database of ocean island basalt Sm/Yb systematics indicates that there is an unmistakable step-like increase in Sm/Yb values around 15-20 Ma, indicating the presence of garnet. To explain this feature, we have attempted to couple our thermo-petrological models of oceanic upper mantle with an open system, non-modal, dynamic melting model with diffusion kinetics to investigate trace element partitioning in an ascending mantle column.
NASA Astrophysics Data System (ADS)
Chen, F.; Coggon, R. M.; Teagle, D. A. H.; Turchyn, A. V.
2016-12-01
Calcium carbonate vein formation in the oceanic crust has been proposed as a climate-sensitive feedback mechanism that regulates the carbon cycle on million-year timescales. The suggestion has been that higher pCO2 levels may drive changes in ocean temperature and pH that increase seafloor alteration, releasing more calcium from oceanic basalt. This results in more removal of carbon from Earth's surface through calcium carbonate formation, which includes calcium carbonate vein formation in oceanic crust. The importance of this feedback mechanism remains enigmatic. Measurements of the δ44Ca of calcium carbonate veins in the oceanic crust may constrain the sources of calcium and timing of vein formation. Seawater and basalt are the only sources present shortly after crustal formation, whereas other sources, such as anhydrite dissolution and sedimentary carbonates become available when the crust ages, at which point carbonate veins may form far from the ridge axis. We report the calcium isotopic composition of 65 calcium carbonate veins, ranging from 108 to 1.2 million years old, in hydrothermally altered basalt from the Mid-Atlantic and Juan de Fuca ridges. We also present 43 δ44Ca measurements of 5.9 million year old basalts and dikes from the Costa Rica Rift that have undergone hydrothermal alteration over a range of conditions in upper crust. The δ44Ca of the calcium carbonate veins ranges from -1.59 to 1.01‰ (versus Bulk Silicate Earth), whereas the δ44Ca of altered basalts ranges from -0.18 to 0.28‰. Depth and temperature of formation seem to be major influences on calcium carbonate vein δ44Ca, with veins formed at cool, shallower depths having higher δ44Ca, closer to seawater. In contrast, we note no temporal variation in δ44Ca of calcium carbonate veins when comparing samples from older and younger crust. The majority of veins (54 out of 65) have δ44Ca between that of seawater and basalt, which implies that they may have formed quite soon after crustal formation before other sources of calcium became available. We conclude that calcium carbonate vein formation may derive a significant fraction of calcium from seafloor alteration of basalts. This may cause rates of carbonate vein formation to be sensitive to aspects of ocean chemistry that vary due to changing climate conditions.
Assessing the Role of Seafloor Weathering in Global Geochemical Cycling
NASA Astrophysics Data System (ADS)
Farahat, N. X.; Abbot, D. S.; Archer, D. E.
2015-12-01
Low-temperature alteration of the basaltic upper oceanic crust, known as seafloor weathering, has been proposed as a mechanism for long-term climate regulation similar to the continental climate-weathering negative feedback. Despite this potentially far-reaching impact of seafloor weathering on habitable planet evolution, existing modeling frameworks do not include the full scope of alteration reactions or recent findings of convective flow dynamics. We present a coupled fluid dynamic and geochemical numerical model of low-temperature, off-axis hydrothermal activity. This model is designed to explore the the seafloor weathering flux of carbon to the oceanic crust and its responsiveness to climate fluctuations. The model's ability to reproduce the seafloor weathering environment is evaluated by constructing numerical simulations for comparison with two low-temperature hydrothermal systems: A transect east of the Juan de Fuca Ridge and the southern Costa Rica Rift flank. We explore the sensitivity of carbon uptake by seafloor weathering on climate and geology by varying deep ocean temperature, seawater dissolved inorganic carbon, continental weathering inputs, and basaltic host rock in a suite of numerical experiments.
Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust.
Ernst, W G; Maruyama, S; Wallis, S
1997-09-02
Preservation of ultrahigh-pressure (UHP) minerals formed at depths of 90-125 km require unusual conditions. Our subduction model involves underflow of a salient (250 +/- 150 km wide, 90-125 km long) of continental crust embedded in cold, largely oceanic crust-capped lithosphere; loss of leading portions of the high-density oceanic lithosphere by slab break-off, as increasing volumes of microcontinental material enter the subduction zone; buoyancy-driven return toward midcrustal levels of a thin (2-15 km thick), low-density slice; finally, uplift, backfolding, normal faulting, and exposure of the UHP terrane. Sustained over approximately 20 million years, rapid ( approximately 5 mm/year) exhumation of the thin-aspect ratio UHP sialic sheet caught between cooler hanging-wall plate and refrigerating, downgoing lithosphere allows withdrawal of heat along both its upper and lower surfaces. The intracratonal position of most UHP complexes reflects consumption of an intervening ocean basin and introduction of a sialic promontory into the subduction zone. UHP metamorphic terranes consist chiefly of transformed, yet relatively low-density continental crust compared with displaced mantle material-otherwise such complexes could not return to shallow depths. Relatively rare metabasaltic, metagabbroic, and metacherty lithologies retain traces of phases characteristic of UHP conditions because they are massive, virtually impervious to fluids, and nearly anhydrous. In contrast, H2O-rich quartzofeldspathic, gneissose/schistose, more permeable metasedimentary and metagranitic units have backreacted thoroughly, so coesite and other UHP silicates are exceedingly rare. Because of the initial presence of biogenic carbon, and its especially sluggish transformation rate, UHP paragneisses contain the most abundantly preserved crustal diamonds.
Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust
Ernst, W. G.; Maruyama, S.; Wallis, S.
1997-01-01
Preservation of ultrahigh-pressure (UHP) minerals formed at depths of 90–125 km require unusual conditions. Our subduction model involves underflow of a salient (250 ± 150 km wide, 90–125 km long) of continental crust embedded in cold, largely oceanic crust-capped lithosphere; loss of leading portions of the high-density oceanic lithosphere by slab break-off, as increasing volumes of microcontinental material enter the subduction zone; buoyancy-driven return toward midcrustal levels of a thin (2–15 km thick), low-density slice; finally, uplift, backfolding, normal faulting, and exposure of the UHP terrane. Sustained over ≈20 million years, rapid (≈5 mm/year) exhumation of the thin-aspect ratio UHP sialic sheet caught between cooler hanging-wall plate and refrigerating, downgoing lithosphere allows withdrawal of heat along both its upper and lower surfaces. The intracratonal position of most UHP complexes reflects consumption of an intervening ocean basin and introduction of a sialic promontory into the subduction zone. UHP metamorphic terranes consist chiefly of transformed, yet relatively low-density continental crust compared with displaced mantle material—otherwise such complexes could not return to shallow depths. Relatively rare metabasaltic, metagabbroic, and metacherty lithologies retain traces of phases characteristic of UHP conditions because they are massive, virtually impervious to fluids, and nearly anhydrous. In contrast, H2O-rich quartzofeldspathic, gneissose/schistose, more permeable metasedimentary and metagranitic units have backreacted thoroughly, so coesite and other UHP silicates are exceedingly rare. Because of the initial presence of biogenic carbon, and its especially sluggish transformation rate, UHP paragneisses contain the most abundantly preserved crustal diamonds. PMID:11038569
Buoyancy-Driven, Rapid Exhumation of Ultrahigh-Pressure Metamorphosed Continental Crust
NASA Astrophysics Data System (ADS)
Ernst, W. G.; Maruyama, S.; Wallis, S.
1997-09-01
Preservation of ultrahigh-pressure (UHP) minerals formed at depths of 90-125 km require unusual conditions. Our subduction model involves underflow of a salient (250 ± 150 km wide, 90-125 km long) of continental crust embedded in cold, largely oceanic crust-capped lithosphere; loss of leading portions of the high-density oceanic lithosphere by slab break-off, as increasing volumes of microcontinental material enter the subduction zone; buoyancy-driven return toward midcrustal levels of a thin (2-15 km thick), low-density slice; finally, uplift, backfolding, normal faulting, and exposure of the UHP terrane. Sustained over ≈ 20 million years, rapid (≈ 5 mm/year) exhumation of the thin-aspect ratio UHP sialic sheet caught between cooler hanging-wall plate and refrigerating, downgoing lithosphere allows withdrawal of heat along both its upper and lower surfaces. The intracratonal position of most UHP complexes reflects consumption of an intervening ocean basin and introduction of a sialic promontory into the subduction zone. UHP metamorphic terranes consist chiefly of transformed, yet relatively low-density continental crust compared with displaced mantle material--otherwise such complexes could not return to shallow depths. Relatively rare metabasaltic, metagabbroic, and metacherty lithologies retain traces of phases characteristic of UHP conditions because they are massive, virtually impervious to fluids, and nearly anhydrous. In contrast, H2O-rich quartzofeldspathic, gneissose/schistose, more permeable metasedimentary and metagranitic units have backreacted thoroughly, so coesite and other UHP silicates are exceedingly rare. Because of the initial presence of biogenic carbon, and its especially sluggish transformation rate, UHP paragneisses contain the most abundantly preserved crustal diamonds.
NASA Astrophysics Data System (ADS)
Martín-Barajas, Arturo; González-Escobar, Mario; Fletcher, John M.; Pacheco, Martín.; Oskin, Michael; Dorsey, Rebecca
2013-09-01
transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfin basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos demonstrates that ~1000% extension is accommodated on a series of NNE striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 s (two-way travel time) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge-shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low-angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low-angle normal faults engendered by a thick sedimentary lid.
NASA Astrophysics Data System (ADS)
Martin, A.; González-Escobar, M.; Fletcher, J. M.; Pacheco, M.; Oskin, M. E.; Dorsey, R. J.
2013-12-01
The transition from distributed continental extension to the rupture of continental lithosphere is imaged in the northern Gulf of California across the obliquely conjugate Tiburón-Upper Delfín basin segment. Structural mapping on a 5-20 km grid of seismic reflection lines of Petroleos Mexicanos (PEMEX) demonstrates that ~1000% extension is accommodated on a series of NNE-striking listric-normal faults that merge at depth into a detachment fault. The detachment juxtaposes a late-Neogene marine sequence over thinned continental crust and contains an intrabasinal divide due to footwall uplift. Two northwest striking, dextral-oblique faults bound both ends of the detachment and shear the continental crust parallel to the tectonic transport. A regional unconformity in the upper 0.5 seconds (TWTT) and crest erosion of rollover anticlines above the detachment indicates inversion and footwall uplift during the lithospheric rupture in the Upper Delfin and Lower Delfin basins. The maximum length of new crust in both Delfin basins is less than 40 km based on the lack of an acoustic basement and the absence of a lower sedimentary sequence beneath a wedge shaped upper sequence that reaches >5 km in thickness. A fundamental difference exists between the Tiburón-Delfin segment and the Guaymas segment to the south in terms of presence of low angle normal faults and amount of new oceanic lithosphere, which we attribute to thermal insulation, diffuse upper-plate extension, and slip on low angle normal faults engendered by a thick sedimentary lid.
Continental Affinities of the Alpha Ridge
NASA Astrophysics Data System (ADS)
Jackson, H. Ruth; Li, Qingmou; Shimeld, John; Chian, Deping
2017-04-01
Identifying the crustal attributes of the Alpha Ridge (AR) part of the High Arctic Large Igneous Province and tracing the spreading centre across the Amerasia Basin plays a key role in understanding the opening history of the Arctic Ocean. In this approach, we report the evidence for a continental influence on the development of the AR and reduced ocean crust in the Amerasia Basin. These points are inferred from a documented continental sedimentation source in the Amerasia Basin and calculated diagnostic compressional and shear refraction waves, and from the tracing of the distinct spreading centre using the potential field data. (1) The circum-Arctic geology of the small polar ocean provides compelling evidence of a long-lived continental landmass north of the Sverdrup Basin in the Canadian Arctic Islands and north of the Barents Sea continental margin. Based on sediment distribution patterns in the Sverdrup Basin a continental source is required from the Triassic to mid Jurassic. In addition, an extensive continental sediment source to the north of the Barents Sea is required until the Barremian. (2) Offshore data suggest a portion of continental crust in the Alpha and Mendeleev ridges including measured shear wave velocities, similarity of compressional wave velocities with large igneous province with continental fragments and magnetic patterns. Ocean bottom seismometers recorded shear waves velocities that are sensitive to the quartz content of rocks across the Chukchi Borderland and the Mendeleev Ridge that are diagnostic of both an upper and lower continental crust. On the Nautilus Spur of the Alpha Ridge expendable sonobuoys recorded clear converted shear waves also consistent with continental crust. The magnetic patterns (amplitude, frequency, and textures) on the Northwind Ridge and the Nautilus Spur also have similarities. In fact only limited portions of the deepest water portions of the Canada Basin and the Makarov Basin have typical oceanic layer 2 and 3 crustal velocities and lineated magnetic anomalies. (3) The gravity and magnetic anomalies associated with the spreading centre in the Canada Basin unveiled by multifractal singularity analysis of the potential field data can now be traced as far as the Lomonosov Ridge. In addition, linear magnetic features cutting across the spreading centres are identified as transform faults. The combination of the detected continental attributes of AR, the quantification of transform faults, and the outlined reduced extent of oceanic crust in the Amerasia Basin provide new insights into the opening history of the basin.
K isotopes as a tracer of seafloor hydrothermal alteration
NASA Astrophysics Data System (ADS)
Parendo, Christopher A.; Jacobsen, Stein B.; Wang, Kun
2017-02-01
At ocean spreading ridges, circulation of seawater through rock at elevated temperatures alters the chemical and isotopic composition of oceanic crust. Samples obtained from drilling into ocean floor and from ophiolites have demonstrated that certain isotope systems, such as 18O/16O and 87Sr/86Sr, are systematically modified in hydrothermally altered oceanic crust. Although K is known to be mobile during hydrothermal alteration, there have not yet been any K-isotope analyses of altered oceanic crustal materials. Moreover, the 41K/39K of seawater was recently found to be significantly higher than that of igneous rocks, so the addition of seawater K to oceanic crust would be expected to generate 41K/39K variations in affected rocks. Here, we report high-precision 41K/39K measurements for samples from the Bay of Islands ophiolite, and we document large variations in 41K/39K, covarying with previous determinations of 87Sr/86Sr. Our data indicate that analytically resolvable 41K/39K effects arise in oceanic crust as a result of hydrothermal alteration. This finding raises the possibility that 41K/39K can be used as an effective tracer of oceanic crust recycled into the mantle, as a diagnostic criterion by which to identify ancient fragments of oceanic crust, and as a constraint on the flux of K between oceanic crust and seawater.
NASA Astrophysics Data System (ADS)
Fontaine, Fabrice J.; Rabinowicz, M.; Cannat, M.
2017-05-01
We present numerical models to explore possible couplings along the axis of fast-spreading ridges, between hydrothermal convection in the upper crust and magmatic flow in the lower crust. In an end-member category of models corresponding to effective viscosities μM lower than 1013 Pa.s in a melt-rich lower crustal along-axis corridor and permeability k not exceeding ˜10-16 m2 in the upper crust, the hot, melt-rich, gabbroic lower crust convects as a viscous fluid, with convection rolls parallel to the ridge axis. In these models, we show that the magmatic-hydrothermal interface settles at realistic depths for fast ridges, i.e., 1-2 km below seafloor. Convection cells in both horizons are strongly coupled and kilometer-wide hydrothermal upflows/plumes, spaced by 8-10 km, arise on top of the magmatic upflows. Such magmatic-hydrothermal convective couplings may explain the distribution of vent fields along the East (EPR) and South-East Pacific Rise (SEPR). The lower crustal plumes deliver melt locally at the top of the magmatic horizon possibly explaining the observed distribution of melt-rich regions/pockets in the axial melt lenses of EPR and SEPR. Crystallization of this melt provides the necessary latent heat to sustain permanent ˜100 MW vents fields. Our models also contribute to current discussions on how the lower crust forms at fast ridges: they provide a possible mechanism for focused transport of melt-rich crystal mushes from moho level to the axial melt lens where they further crystallize, feed eruptions, and are transported both along and off-axis to produce the lower crust.
Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean
Banakar, V.K.; Hein, J.R.
2000-01-01
A deep-water ferromanganese crust from a Central Indian Ocean seamount dated previously by 10Be and 230Th(excess) was studied for compositional and textural variations that occurred throughout its growth history. The 10Be/9Be dated interval (upper 32 mm) yields an uniform growth rate of 2.8 ?? 0.1 mm/Ma [Frank, M., O'Nions, R.K., 1998. Sources of Pb for Indian Ocean ferromanganese crusts: a record of Himalayan erosion. Earth Planet. Sci. Lett., 158, pp. 121-130.] which gives an extrapolated age of ~ 26 Ma for the base of the crust at 72 mm and is comparable to the maximum age derived from the Co-model based growth rate estimates. This study shows that Fe-Mn oxyhydroxide precipitation did not occur from the time of emplacement of the seamount during the Eocene (~ 53 Ma) until the late Oligocene (~ 26 Ma). This paucity probably was the result of a nearly overlapping palaeo-CCD and palaeo-depth of crust formation, increased early Eocene productivity, instability and reworking of the surface rocks on the flanks of the seamount, and lack of oxic deep-water in the nascent Indian Ocean. Crust accretion began (older zone) with the formation of isolated cusps of Fe-Mn oxide during a time of high detritus influx, probably due to the early-Miocene intense erosion associated with maximum exhumation of the Himalayas (op. cit.). This cuspate textured zone extends from 72 mm to 42 mm representing the early-Miocene period. Intense polar cooling and increased mixing of deep and intermediate waters at the close of the Oligocene might have led to the increased oxygenation of the bottom-water in the basin. A considerable expansion in the vertical distance between the seafloor depth and the CCD during the early Miocene in addition to the influx of oxygenated bottom-water likely initiated Fe-Mn crust formation. Pillar structure characterises the younger zone, which extends from 40 mm to the surface of the crust, i.e., ~ 15 Ma to Present. This zone is characterised by > 25% higher content of oxide-bound elements than in the older zone, possibly corresponding to further increased oxygenation of bottom-waters, increased stability of the seamount slope, and gradually reduced input of continental detritus from the erosion of the Himalayas. Middle Miocene Antarctic glaciation, which peaked ~ 12-13 Ma ago, increased the oxic bottom-water influx to the basin resulting in accretion of the crust with low detritus. Therefore, the younger crust started to accrete in response to a shift in bottom-water circulation towards the contemporary pattern, which produced a uniform growth rate and pillar structure up to the present. (C) 2000 Published by Elsevier Science B.V.
What governs the enrichment of Pb in the continental crust? An answer from the Mexican Volcanic Belt
NASA Astrophysics Data System (ADS)
Goldstein, S. L.; Lagatta, A.; Langmuir, C. H.; Straub, S. M.; Martin-Del-Pozzo, A.
2009-12-01
One of Al Hofmann’s many important contributions to our understanding of geochemical cycling in the Earth is the observation that Pb behaves like the light rare earth elements Ce and Nd during melting to form oceanic basalts, but is enriched in the continental crust compared to the LREE by nearly an order of magnitude (Hofmann et al. 1986). This is unusual behavior, and has been called one of the Pb paradoxes, since in most cases, the ratios of elements are effectively the same in the continental crust and oceanic basalts if they show similar mantle melting behavior. One of several mechanisms suggested to mediate this special enrichment is hydrothermal circulation at ocean ridges, which preferentially transports Pb compared to the REE from the interior of the ocean crust to the surface. We confirm the importance of hydrothermal processes at the East Pacific to mediate Pb enrichment at the Trans-Mexican Volcanic Belt (TMVB, through comparison of Pb isotope and Ce/Pb ratios of TMVB lavas with sediments from DSDP Site 487 near the Middle America trench. The lavas of the Trans-Mexican Volcanic Belt include “high Nb” alkali basalts (HNAB), whose trace element patterns lack subduction signatures. The HNAB basalts and hydrothermally affected sediments from DSDP 487, form end-members that bound calcalkaline lavas from volcanoes Colima, Toluca, Popocatépetl, and Malinche in Ce/Pb versus Pb isotope space. The HNAB represent the high Ce/Pb and high Pb-isotope end-member. The hydrothermal sediments have Pb isotopes like Pacific MORB but Ce/Pb ratios typical of the arcs and the continental crust, and an order of magnitude lower than MORB. No analyzed calcalkaline lavas are have compositions outside of the bounds formed by the HNAB and the hydrothermal sediments. The Ce/Pb and Pb isotope ratios show that the calcalkaline lava compositions are inconsistent with contributions from HNAB and EPR MORB, rather the contributions are from HNAB upper mantle and subducted hydrothermal sediments. The Trans-Mexican Volcanic Belt data confirm the two-step process of Pb enrichment in the arc lavas (and more generally in the continental crust). In the first step, hydrothermal processes at the East Pacific Rise preferentially transport Pb from the basaltic oceanic crust to surface sediments. In the second step, during subduction, these sediments are the main source of asthenospheric mantle-derived Pb to the lavas. Our data also confirm the importance of subduction contributions to the Quaternary Mexican arc, despite the >40 km thick continental crust. Ref: Hofmann et al. (1986) EPSL 79 p. 33-45.
Lithospheric Structure of the Zagros and Alborz Mountain Belts (Iran) from Seismic Imaging
NASA Astrophysics Data System (ADS)
Paul, A.; Hatzfeld, D.; Kaviani, A.; Tatar, M.
2008-12-01
We present a synthesis of the results of two dense temporary passive seismic experiments installed for a few months across Central Zagros for the first one, and from North-western Zagros to Alborz for the second one. On both transects, the receiver function analysis shows that the crust has an average thickness of ~ 43 km beneath the Zagros fold-and-thrust belt and the Iranian plateau. The crust is thicker in the back side of the Main Zagros Reverse Fault (MZRF), with a larger maximum Moho depth in Central Zagros (69 ± 2 km) than in North-western Zagros (56 ± 2 km). To reconcile Bouguer anomaly data and Moho depth profile of Central Zagros, we proposed that the thickening is related to overthrusting of the Arabian margin by Central Iran on the MZRF considered as a major thrust fault rooted at Moho depth. The better-quality receiver functions of NW Zagros display clear conversions on a low-velocity channel which cross-cuts the whole crust from the surface trace of the MZRF to the Moho on 250-km length. Waveform modeling shows that the crustal LVZ is ~ 10-km thick with a S-wave velocity 8-30 % smaller than the average crustal velocity. We interpret the low-velocity channel as the trace of the thrust fault and the suture between the Arabian and the Iranian lithospheres. We favour the hypothesis of the LVZ being due to sediments of the Arabian margin dragged to depth during the subduction of the Neotethyan Ocean. At upper mantle depth, we find shield-like shear-wave velocities in the Arabian upper-mantle, and lower velocities in the Iranian shallow mantle (50-150 km) which are likely due to higher temperature. The lack of a high-velocity anomaly in the mantle northeast of the MZRF suture suggests that the Neotethian oceanic lithosphere is now detached from the Arabian margin. The crust of the Alborz mountain range is not thickened in relation with its high elevations, but its upper mantle has low P-wave velocities.
NASA Astrophysics Data System (ADS)
MacLeod, C. J.; Lissenberg, C. J.
2014-12-01
We propose a revised magma chamber model for fast-spreading mid-ocean ridges based upon a synthesis of new data from a complete section of lower crust from the East Pacific Rise, reconstructed from samples collected from the Hess Deep rift valley during cruise JC21. Our investigation includes detailed sampling across critical transitions in the upper part of the plutonic section, including the inferred axial melt lens (AML) within the dyke-gabbro transition. We find that an overall petrological progression, from troctolite and primitive gabbro at the base up into evolved (oxide) gabbro and gabbronorite at the top of the lower crustal section, is mirrored by a progressive upward chemical fractionation as recorded in bulk rock and mineral compositions. Crystallographic preferred orientations measured using EBSD show that the downward increase in deformation of mush required in crystal subsidence models is not observed. Together these observations are consistent only with a model in which crystallisation of upward migrating evolving melts occurs in situ in the lower crust. Over-enrichment in incompatible trace element concentrations and ratios above that possible by fractional crystallisation is ubiquitous. This implies redistribution of incompatible trace elements in the lower crust by low porosity, near-pervasive reactive porous flow of interstitial melt moving continuously upward through the mush pile. Mass balance calculations reveal a significant proportion of this trace element enriched melt is trapped at mid-crustal levels. Mineral compositions in the upper third to half of the plutonic section are too evolved to represent the crystal residues of MORB. Erupted MORB therefore must be fed from melts sourced in the deeper part of the crystal mush pile, and which must ascend rapidly without significant modification in the upper plutonics or AML. From physical models of mush processes we posit that primitive melts are transported through transient, high porosity channels generated by gravitational instabilities that periodically overturn and drain crystallising melt bodies (sills) from deeper levels of the lower crustal mush. We conclude that magma chambers are characterised by melt delivery to the deep crust, followed by in situ crystallisation of melts transported upwards via a dual-porosity system.
Asteroid 4 Vesta: A Fully Differentiated Dwarf Planet
NASA Technical Reports Server (NTRS)
Mittlefehldt, David
2014-01-01
One conclusion derived from the study of meteorites is that some of them - most irons, stony irons, some achondrites - hail from asteroids that were heated to the point where metallic cores and basaltic crusts were formed. Telescopic observations show that there remains only one large asteroid with a basaltic crust, 4 Vesta; present day mean radius 263 km. The largest clan of achondrites, the howardite, eucrite and diogenite (HED) meteorites, represent the crust of their parent asteroid. Diogenites are cumulate harzburgites and orthopyroxenites from the lower crust whilst eucrites are cumulate gabbros, diabases and basalts from the upper crust. Howardites are impact-engendered breccias of diogenites and eucrites. A strong case can be made that HEDs are derived from Vesta. The NASA Dawn spacecraft orbited Vesta for 14 months returning data allowing geological, mineralogical, compositional and geophysical interpretations of Vesta's surface and structure. Combined with geochemical and petrological observations of HED meteorites, differentiation models for Vesta can be developed. Proto-Vesta probably consisted of primitive chondritic materials. Compositional evidence, primarily from basaltic eucrites, indicates that Vesta was melted to high degree (>=50%) which facilitated homogenization of the silicate phase and separation of immiscible Fe,Ni metal plus Fe sulphide into a core. Geophysical models based on Dawn data support a core of 110 km radius. The silicate melt vigorously convected and initially followed a path of equilibrium crystallization forming a harzburgitic mantle, possibly overlying a dunitic restite. Once the fraction of crystals was sufficient to cause convective lockup, the remaining melt collected between the mantle and the cool thermal boundary layer. This melt undergoes fractional crystallization to form a dominantly orthopyroxenite (diogenite) lower crust. The initial thermal boundary layer of primitive chondritic material is gradually replaced by a mafic crust through impact disruption and foundering. The quenched mafic crust thickens over time through magma extrusion/intrusion. Melt from the residual magma ocean intrudes and penetrates the mafic crust forming cumulate eucrite plutons, and dikes, sills and flows of basaltic eucrite composition. The post-differentiation vestan structure is thus not too dissimilar from that of terrestrial planets: (i) a metallic core; (ii) an ultramafic mantle comprised of a lower dunitic layer (if melting was substantially <100%) and an upper cumulate harzburgitic layer; (iii) a lower crust of harzburgitic and orthopyroxenitic cumulates; and (iv) an upper mafic crust of basalts and diabases (melt compositions) with cumulate gabbro intrusions. Impacts have excavated to the lower crust and delivered howardites, eucrites and diogenites to Earth, but there is yet no evidence demonstrating excavation of the vestan mantlle.
NASA Astrophysics Data System (ADS)
Chin, Emily J.; Shimizu, Kei; Bybee, Grant M.; Erdman, Monica E.
2018-01-01
Two distinct igneous differentiation trends - the tholeiitic and calc-alkaline - give rise to Earth's oceanic and continental crust, respectively. Mantle melting at mid-ocean ridges produces dry magmas that differentiate at low-pressure conditions, resulting in early plagioclase saturation, late oxide precipitation, and Fe-enrichment in mid-ocean ridge basalts (MORBs). In contrast, magmas formed above subduction zones are Fe-depleted, have elevated water contents and are more oxidized relative to MORBs. It is widely thought that subduction of hydrothermally altered, oxidized oceanic crust at convergent margins oxidizes the mantle source of arc magmas, resulting in erupted lavas that inherit this oxidized signature. Yet, because our understanding of the calc-alkaline and tholeiitic trends largely comes from studies of erupted melts, the signals from shallow crustal contamination by potentially oxidized, Si-rich, Fe-poor materials, which may also generate calc-alkaline rocks, are obscured. Here, we use deep crustal cumulates to "see through" the effects of shallow crustal processes. We find that the tholeiitic and calc-alkaline trends are indeed reflected in Fe-poor mid-ocean ridge cumulates and Fe-rich arc cumulates, respectively. A key finding is that with increasing crustal thickness, arc cumulates become more Fe-enriched. We propose that the thickness of the overlying crustal column modulates the melting degree of the mantle wedge (lower F beneath thick arcs and vice versa) and thus water and Fe3+ contents in primary melts, which subsequently controls the onset and extent of oxide fractionation. Deep crustal cumulates beneath thick, mature continental arcs are the most Fe-enriched, and therefore may be the "missing" Fe-rich reservoir required to balance the Fe-depleted upper continental crust.
What major faults look like, and why this matters for lithospheric dynamics
NASA Astrophysics Data System (ADS)
Fagereng, Ake
2016-04-01
Earthquakes involve seconds to minutes of frictional sliding on a discontinuity, likely of sub-cm thickness, within a damage zone. Earthquakes are separated by an interseismic period of hundreds to thousands of years, during which a number of healing and weakening processes occur within the fault zone. The next earthquake occurs as shear stress exceeds frictional resistance, on the same or a different discontinuity as the previous event, embedded within the fault damage zone. After incremental damage and healing in multiple earthquake cycles, the fault zone rock assemblage evolves to a structure and composition distinctly different from the host rock(s). This presentation presents field geology evidence from a range of settings, to discuss the interplay between the earthquake cycle, long-term deformation, and lithospheric rheology. Classic fault zone models are based on continental transforms, which generally form discrete faults in the upper crust, and wide, anastomosing shear zones in the lower crust. In oceanic crust, transforms are considered frictionally weak, and appear to exploit dyke margins and joint surfaces, but also locally cross-cut these structures in anastomosing networks. In the oceanic lower crust and upper mantle, serpentinisation significantly alters fault structure. In old continental crust, previous deformation events leave a heterogeneous geology affecting active faulting. For example, the amagmatic, southern East African Rift has long been thought to exploit weak Proterozoic 'mobile belts'. However, detailed look at the Bilila-Mtakataka border fault in Malawi indicates that this fault locally exploits weak foliation in existing deformed zones, but also locally forms a new set of anastomosing fault surfaces cross-cutting existing weak foliation. In exhumed lower crust, the Antarctic Maud Belt provides an example of multiple phases of plastic deformation, where the second event is only visible in localised shear zones, likely inherited from the first event. The subduction thrust interface provides an example of fault evolution in underthrust sediments as they deform and dewater. At shallow levels, distributed shear leads to development of scaly cleavage, which in places provides weak, clay surfaces on which earthquakes can propagate to the sea floor. With further deformation, a melange is progressively developed, with increasingly dismembered, sheared lenses of higher viscosity sedimentary rock and slivers of oceanic crust, in a low viscosity, cleaved matrix. The range of examples presented here illustrate how long-term deformation results in weak structures that likely control future deformation. Yet, the rheology of these structures is modulated by strength fluctuations during the earthquake cycle, illustrated by common evidence of episodic fault healing. The take home message from these field studies of fault zones is therefore the heterogeneity of the Earth's crust, the importance of long-term weak zones as a first order control on crustal deformation, and short-term strength fluctuations within these zones as a consequence of, and reason for, the earthquake cycle.
NASA Astrophysics Data System (ADS)
Santiago Ramos, D. P.; Higgins, J. A.
2017-12-01
Low-temperature alteration of oceanic crust plays an important role in a number of geochemical cycles, thus modulating the chemical composition of the oceans. In particular, it has been established that low-temperature (<150oC) alteration of basalt is a major sink of seawater potassium. However, little is known about the effects of this process on the potassium isotope composition of seawater, which is 0.5‰ enriched relative to bulk silicate Earth (δ41KBSE=-0.54‰). Here we measure a number of isotope systems (δ41K, δ26Mg, 87Sr/86Sr) in both host rock and vein material from the upper volcanic section of Cretaceous (Troodos Ophiolite) and Jurassic (ODP 801C) oceanic crust using a MC-ICP-MS. The goal is to estimate the K isotopic fractionation associated with basalt alteration in low-temperature conditions, and how it might affect the K isotope enrichment of seawater relative to BSE. We find that marine hydrothermal samples from Troodos and ODP site 801C are enriched in potassium relative to the unaltered glass compositions and have δ41K values both higher and lower than BSE, ranging from -0.45‰ to -0.69‰ (n = 9) and -0.32‰ to -0.71‰ (n = 5), respectively. The low measured δ41K values could represent 1) fractionation (α<1) of K isotopes during uptake from seawater (δ41KSW 0‰), or 2) remobilized mantle-sourced K (δ41KBSE=-0.54‰) from deeper within the ophiolite sequence. Measurements of δ26Mg (n=15) and 87Sr/86Sr (n=12) in these samples yield enriched values relative to bulk silicate Earth, suggesting that alteration of oceanic crust likely happened under high water-to-rock ratios in both Troodos and ODP 801C, and that the added potassium is seawater-sourced. We thus suggest that the isotopically light δ41K values measured in both sites are associated with the formation of secondary clays enriched in the 39K isotope. This light isotope enrichment could be intensified if seawater K sourcing is a diffusion-limited process, as aqueous potassium diffusion has been associated with K isotope fractionations between 0.9967 and 0.9984. Our results indicate that the uptake of potassium in altered oceanic crust could be responsible, in part, for the observed K isotope enrichment of seawater relative to bulk silicate Earth.
NASA Astrophysics Data System (ADS)
Marcaillou, Boris; Klingelhoefer, Frauke; Laurencin, Muriel; Biari, Youssef; Graindorge, David; Lebrun, Jean-Frederic; Laigle, Mireille; Lallemand, Serge
2017-04-01
Wide-angle, multichannel reflection seismic data and heat-flow measurements from the Lesser Antilles subduction zone depict a large patch of atypical oceanic basement in the trench and beneath the outer fore-arc offshore of the Antigua-Saint Martin active margin segment. This segment triggers a very low number of earthquakes compared to the seismicity beneath the Virgin Island Platform to the north or in the Central Antilles (Martinique-Guadeloupe) to the south. Seven along-dip and two along-strike multichannel seismic lines acquired in this region show high amplitude steep reflectors that extend downward to 15-km depth in the downgoing slab. These lines also substantiate the absence of any reflections at Moho depth. Based on the wide-angle velocity model, the oceanic basement consists of a 5-km-thick unique layer with p-wave velocities ranging from 5.2 to 7.4 km/s, which is atypical for an oceanic crust. Heat-flow measurements along a transect perpendicular to the margin indicate a "flat" heat-flow trend from the trench to the fore-arc at 40 ± 15 mW.m-2 (Biari et al., same session). This heat flow profile contrasts with the expected trench-to-forearc decreasing heat-flow and the 50% higher heat-flow values measured in the trench offshore off the central Antilles. Calculated heat-flow for an incoming oceanic plate with a depressed geothermal gradient in the trench and heat source at depth in the subduction zone corresponding with temperatures of 200-250°C fit the measurements. We propose that a large patch of exhumed and serpentinized mantle rocks solidified at the slow-spreading mid-Atlantic Ridge is currently subducting beneath the studied margin segment. The fact that the crust here consists of one single layer and comprises velocities higher than found in igneous rocks (> 7.2 km/s) are consistent with this hypothesis. The plate bending possibly triggers long and deep delamination planes that extend into the mantle beneath the serpentinization front, which has been identified as a reflector in the wide-angle seismic data. These delamination planes outcrop at the interplate contact creating weak zones that focus the tectonic deformation in the upper plate. An incoming oceanic crust made of serpentinized mantle rocks is consistent with a depressed geothermal gradient in the trench due to water alteration and heat generation at depth due to serpentinite dehydration. This fluid-rich altered and weak oceanic crust likely reduces the seismic activity along this margin segment.
Hein, J.R.; Koschinsky, A.; Halliday, A.N.
2003-01-01
Hydrogenetic ferromanganese oxyhydroxide crusts (Fe-Mn crusts) precipitate out of cold ambient ocean water onto hard-rock surfaces (seamounts, plateaus, ridges) at water depths of about 400 to 4000 m throughout the ocean basins. The slow-growing (mm/Ma) Fe-Mn crusts concentrate most elements above their mean concentration in the Earth's crust. Tellurium is enriched more than any other element (up to about 50,000 times) relative to its Earth's crustal mean of about 1 ppb, compared with 250 times for the next most enriched element. We analyzed the Te contents for a suite of 105 bulk hydrogenetic crusts and 140 individual crust layers from the global ocean. For comparison, we analyzed 10 hydrothermal stratabound Mn-oxide samples collected from a variety of tectonic environments in the Pacific. In the Fe-Mn crust samples, Te varies from 3 to 205 ppm, with mean contents for Pacific and Atlantic samples of about 50 ppm and a mean of 39 ppm for Indian crust samples. Hydrothermal Mn samples have Te contents that range from 0.06 to 1 ppm. Continental margin Fe-Mn crusts have lower Te contents than open-ocean crusts, which is the result of dilution by detrital phases and differences in growth rates of the hydrogenetic phases. Correlation coefficient matrices show that for hydrothermal deposits, Te has positive correlations with elements characteristic of detrital minerals. In contrast, Te in open-ocean Fe-Mn crusts usually correlates with elements characteristic of the MnO2, carbonate fluorapatite, and residual biogenic phases. In continental margin crusts, Te also correlates with FeOOH associated elements. In addition, Te is negatively correlated with water depth of occurrence and positively correlated with crust thickness. Q-mode factor analyses support these relationships. However, sequential leaching results show that most of the Te is associated with FeOOH in Fe-Mn crusts and ???10% is leached with the MnO2. Thermodynamic calculations indicate that Te occurs predominantly as H5TeO6- in ocean water. The speciation of Te in ocean water and charge balance considerations indicate that Te should be scavenged by FeOOH, which is in agreement with our leaching results. The thermodynamically more stable Te(IV) is less abundant by factors of 2 to 3.5 than Te(VI) in ocean water. This can be explained by preferential (not exclusive) scavenging of Te(IV) by FeOOH at the Fe-Mn crust surface and by Fe-Mn colloids in the water column. We propose a model in which the extreme enrichment of Te in Fe-Mn crusts is likely the result of an oxidation reaction on the surface of FeOOH. A similar oxidation process has been confirmed for Co, Ce, and Tl at the surface of MnO2 in crusts, but has not been suggested previously to occur in association with FeOOH in Fe-Mn crusts. Mass-balance considerations indicate that ocean floor Fe-Mn deposits are the major sink for Te in the oceans. The concentration and redox chemistry of Te in the global ocean are likely controlled by scavenging on Fe-Mn colloids in the water column and Fe-Mn deposits on the ocean floor, as is also the case for Ce. ?? 2003 Elsevier Science Ltd.
Statistical averaging of marine magnetic anomalies and the aging of oceanic crust.
Blakely, R.J.
1983-01-01
Visual comparison of Mesozoic and Cenozoic magnetic anomalies in the North Pacific suggests that older anomalies contain less short-wavelength information than younger anomalies in this area. To test this observation, magnetic profiles from the North Pacific are examined from crust of three ages: 0-2.1, 29.3-33.1, and 64.9-70.3Ma. For each time period, at least nine profiles were analyzed by 1) calculating the power density spectrum of each profile, 2) averaging the spectra together, and 3) computing a 'recording filter' for each time period by assuming a hypothetical seafloor model. The model assumes that the top of the source is acoustic basement, the source thickness is 0.5km, and the time scale of geomagnetic reversals is according to Ness et al. (1980). The calculated power density spectra of the three recording filters are complex in shape but show an increase of attenuation of short-wavelength information as the crust ages. These results are interpreted using a multilayer model for marine magnetic anomalies in which the upper layer, corresponding to pillow basalt of seismic layer 2A, acts as a source of noise to the magnetic anomalies. As the ocean crust ages, this noisy contribution by the pillow basalts becomes less significant to the anomalies. Consequently, magnetic sources below layer 2A must be faithful recorders of geomagnetic reversals.-AuthorPacific power density spectrum
Earth observations taken during STS-8
2009-06-25
STS008-32-748 (30 Aug-5 Sept 1983) --- Bora-Bora, with its wide-fringing reef, stands out in the center of this photographed, taken over the Society Island chain from the Earth-orbiting Space Shuttle Challenger on its third spaceflight. In the upper left corner are the islands of Raiatea and Tahaa. The ancient volcano islands are very slowly sinking into the oceanic crust, while coral growth maintains a reef platform.
Age of amphibolites associated with alpine peridotites in the Dinaride ophiolite zone, Yugoslavia
Lanphere, M.A.; Coleman, R.G.; Karamata, S.; Pamic, J.
1975-01-01
Amphibolites associated with alpine peridotites in the Central Ophiolite zone in Yugoslavia have K-Ar ages of 160-170 m.y. These amphibolites and associated peridotites underwent deep-seated metamorphism prior to tectonic emplacement into the sedimentary-volcanic assemblage of the Dinarides. The alpine peridotites and associated local rocks of the ophiolite suite are interpreted as Jurassic oceanic crust and upper mantle. ?? 1975.
Birth of an oceanic spreading center at a magma-poor rift system.
Gillard, Morgane; Sauter, Daniel; Tugend, Julie; Tomasi, Simon; Epin, Marie-Eva; Manatschal, Gianreto
2017-11-08
Oceanic crust is continuously created at mid-oceanic ridges and seafloor spreading represents one of the main processes of plate tectonics. However, if oceanic crust architecture, composition and formation at present-day oceanic ridges are largely described, the processes governing the birth of a spreading center remain enigmatic. Understanding the transition between inherited continental and new oceanic domains is a prerequisite to constrain one of the last major unsolved problems of plate tectonics, namely the formation of a stable divergent plate boundary. In this paper, we present newly released high-resolution seismic reflection profiles that image the complete transition from unambiguous continental to oceanic crusts in the Gulf of Guinea. Based on these high-resolution seismic sections we show that onset of oceanic seafloor spreading is associated with the formation of a hybrid crust in which thinned continental crust and/or exhumed mantle is sandwiched between magmatic intrusive and extrusive bodies. This crust results from a polyphase evolution showing a gradual transition from tectonic-driven to magmatic-driven processes. The results presented in this paper provide a characterization of the domain in which lithospheric breakup occurs and enable to define the processes controlling formation of a new plate boundary.
Transition from continental to oceanic crust on the Wilkes-Adelie margin of Antarctica
NASA Astrophysics Data System (ADS)
Eittreim, Stephen L.
1994-12-01
The Wilkes-Adelie margin of East Antarctica, a passive margin rifted in the Early Cretaceous, has an unusually reflective Moho which can be traced seismically across the continent-ocean transition. Velocity models and depth sections were constructed from a combined set of U.S. and French multichannel seismic reflection lines to investigate the transition from continental to oceanic crust. These data show that the boundary between oldest oceanic crust and transitional continental crust is marked by a minimum in subsediment crustal thickness and, in places, by a shoaling of Moho. The Moho reflection is continuous across the edge of oceanic crust, and gradually deepens landward under the continental edge. A marginal rift basin, some tens of kilometers in width, lies in the transition between continental and oceanic crust, contains an average of about 4 km of synrift sediment that is prograded in places, and has characteristics of a former rift valley, now subsided to about 10 km. Three types of reflections in the seismic data are interpreted as volcanic deposits: (1) high-amplitude reflections that floor the marginal rift basin, (2) irregularly seaward dipping sequences that comprise an anomalously thick edge of oceanic crust, and (3) highly irregular and diffractive reflections from oceanic crustal basins that cap a normal-thickness ocean crust. The present depth to the prefit surface of continental crust is compatible with passive margin subsidence since 95 Ma, corrected for its load of synrift and postrift sediment and mechanically stretched by factors of beta = 1.8 or higher. Comparison of seismic crustal thickness measurements with inferred crustal thinning from subsidence analysis shows agreement for areas where beta less than 4. In areas where beta greater than 4, measured thickness is greater than that inferred from subsidence analysis, a result that could be explained by underplating the crust beneath the marginal rift basin.
Magmatic densities control erupted volumes in Icelandic volcanic systems
NASA Astrophysics Data System (ADS)
Hartley, Margaret; Maclennan, John
2018-04-01
Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ). By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallisation under Iceland.
Extension style in the Orphan Basin during the Mesozoic North Atlantic rifting
NASA Astrophysics Data System (ADS)
Gouiza, Mohamed; Hall, Jeremy
2013-04-01
The Orphan Basin, lying along the Newfoundland passive continental margin, has formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. Regional deep seismic reflection profiles across the basin indicate that the Neoproterozoic basement has been affected by repeated extensional episodes between the Late Triassic/Jurassic and the Early Cretaceous. Deformation initiated in the eastern part of the Orphan basin in the Jurassic and migrated toward the west in the Early Cretaceous, resulting in numerous rift structures filled with Jurassic-Lower Cretaceous syn-rift successions and sealed by thick Upper Cretaceous-Cenozoic post-rift sediments. The seismic data show an extremely attenuated crust underneath the eastern and western part of the deep basin, forming two sub-basins associated with the development of rifting. The two sub-basins are separated by a wide structural high with a relatively thick crust and are bounded to the west by the continental shelf domain. Restoration of the Orphan Basin along a 2D crustal section (520 km long), yields a total amount of stretching of about 144 km, while the total crustal thinning indicates an extension of around 250 km, assuming mass conservation along the section and an initial crustal thickness of 28 km. Brittle deformation accommodated by normal faults is documented in the seismic profiles and affected essentially the present-day upper portion of the crust, and represents only 60% of the total extension which thinned the Orphan crust. The remaining crustal thinning must involve other deformation processes which are not (easily) recognizable in the seismic data. We propose two models that could explain discrepancies between brittle deformation and total crustal thinning during lithospheric extension. The first model assumes the reactivation of pre-rift inherited structures, which act as crustal-scale detachments during the early stages of rifting. The second model uses depth-dependent extension of a 20 km thick crust characterized by a strong upper crust and a weak lower crust. Both models raise secondary issues that are discussed around the order of rifting events and the original crustal thickness.
NASA Astrophysics Data System (ADS)
Patten, C. G. C.; Pitcairn, I. K.; Teagle, D. A. H.; Harris, M.
2016-11-01
Fluxes of metals during the hydrothermal alteration of the oceanic crust have far reaching effects including buffering of the compositions of the ocean and lithosphere, supporting microbial life and the formation of sulphide ore deposits. The mechanisms responsible for metal mobilisation during the evolution of the oceanic crust are complex and are neither fully constrained nor quantified. Investigations into the mineral reactions that release metals, such as sulphide leaching, would generate better understanding of the controls on metal mobility in the oceanic crust. We investigate the sulphide and oxide mineral paragenesis and the extent to which these minerals control the metal budget in samples from Ocean Drilling Program (ODP) Hole 1256D. The ODP Hole 1256D drill core provides a unique sample suite representative of a complete section of a fast-spreading oceanic crust from the volcanic section down to the plutonic complex. The sulphide population at Hole 1256D is divided into five groups based on mineralogical assemblage, lithological location and texture: the magmatic, metasomatised, high temperature hydrothermal, low temperature and patchy sulphides. The initiation of hydrothermal alteration by downward flow of moderate temperature (250-350 °C) hydrothermal fluids under oxidising conditions leads to metasomatism of the magmatic sulphides in the sheeted dyke and plutonic complexes. Subsequent increase in the degree of hydrothermal alteration at temperatures >350 °C under reducing conditions then leads to the leaching of the metasomatised sulphides by rising hydrothermal fluids. Mass balance calculations show that the mobility of Cu, Se and Au occurs through sulphide leaching during high temperature hydrothermal alteration and that the mobility of Zn, As, Sb and Pb is controlled by silicate rather than sulphide alteration. Sulphide leaching is not complete at Hole 1256D and more advanced alteration would mobilise greater masses of metals. Alteration of oxide minerals does not release significant quantities of metal into the hydrothermal fluid at Hole 1256D. Mixing of rising high temperature fluids with low temperature fluids, either in the upper sheeted dyke section or in the transitional zone, triggers local high temperature hydrothermal sulphide precipitation and trapping of Co, Ni, Cu, Zn, As, Ag, Sb, Se, Te, Au, Hg and Pb. In the volcanic section, low temperature fluid circulation (<150 °C) leads to low temperature sulphide precipitation in the form of pyrite fronts that have high As concentrations due to uptake from the circulating fluids. Deep late low temperature circulation in the sheeted dyke and the plutonic complexes results in local precipitation of patchy sulphides and local metal remobilisation. Control of sulphides over Au, Se and Cu throughout fast-spreading mid-oceanic crust history implies that the generation of hydrothermal fluids enriched in these metals, which can eventually form VMS deposits, is strongly controlled by sulphide leaching.
Marine Magnetic Anomalies, Oceanic Crust Magnetization, and Geomagnetic Time Variations
NASA Astrophysics Data System (ADS)
Dyment, J.; Arkani-Hamed, J.
2005-12-01
Since the classic paper of Vine and Matthews (Nature, 1963), marine magnetic anomalies are commonly used to date the ocean floor through comparison with the geomagnetic polarity time scale and proper identification of reversal sequences. As a consequence, the classical model of rectangular prisms bearing a normal / reversed magnetization has been dominant in the literature for more than 40 years. Although the model explains major characteristics of the sea-surface magnetic anomalies, it is contradicted by (1) recent advances on the geophysical and petrologic structure of the slow-spreading oceanic crust, and (2) the observation of short-term geomagnetic time variations, both of which are more complex than assumed in the classical model. Marine magnetic anomalies may also provide information on the magnetization of the oceanic crust as well as short-term temporal fluctuations of the geomagnetic field. The "anomalous skewness", a residual phase once the anomalies have been reduced to the pole, has been interpreted either in terms of geomagnetic field variations or crustal structure. The spreading-rate dependence of anomalous skewness rules out the geomagnetic hypothesis and supports a spreading-rate dependent magnetic structure of the oceanic crust, with a basaltic layer accounting for most of the anomalies at fast spreading rates and an increasing contribution of the deeper layers with decreasing spreading rate. The slow cooling of the lower crust and uppermost mantle and serpentinization, a low temperature alteration process which produces magnetite, are the likely cause of this contribution, also required to account for satellite magnetic anomalies over oceanic areas. Moreover, the "hook shape" of some sea-surface anomalies favors a time lag in the magnetization acquisition processes between upper and lower magnetic layers: extrusive basalt acquires a thermoremanent magnetization as soon as emplaced, whereas the underlying peridotite and olivine gabbro cool slowly and pass through serpentinization to bear a significant magnetization. Our analysis of the amplitude of Anomaly 25 shows a sharp threshold at the spreading rate of 30 km/Ma, which corresponds to the transition between oceanic lithosphere built at axial domes and axial valleys. The twice lower amplitudes are in agreement with a much disrupted and altered basaltic layer at slow rates and a significant contribution from the deeper layers. Oceanic lithosphere created at fast and slow spreading rates therefore exhibits contrasted magnetic structures. High resolution magnetic anomaly measurements carried out with deep tows and submersibles show that the magmatic (fast spreading and parts of the slow spreading) crust is a good recorder of short-term geomagnetic time variations, such as short polarity intervals, excursions, or paleointensity variations. Surface and deep-sea magnetic anomalies therefore help to confirm or infirm geomagnetic findings obtained by other means. Many excursions and paleointensity variations within Brunhes and Matuyama periods are confirmed, but the "saw tooth pattern" inferred from sediment cores - a possible candidate to explain the anomalous skewness - is not, which suggests a bias in the sedimentary approach.
A new conceptual model for whole mantle convection and the origin of hotspot plumes
NASA Astrophysics Data System (ADS)
Yoshida, Masaki
2014-08-01
A new conceptual model of mantle convection is constructed for consideration of the origin of hotspot plumes, using recent evidence from seismology, high-pressure experiments, geodynamic modeling, geoid inversion studies, and post-glacial rebound analyses. This conceptual model delivers several key points. Firstly, some of the small-scale mantle upwellings observed as hotspots on the Earth's surface originate at the base of the mantle transition zone (MTZ), in which the Archean granitic continental material crust (TTG; tonalite-trondhjemite-granodiorite) with abundant radiogenic elements is accumulated. Secondly, the TTG crust and the subducted oceanic crust that have accumulated at the base of MTZ could act as thermal or mechanical insulators, leading to the formation of a hot and less viscous layer just beneath the MTZ; which may enhance the instability of plume generation at the base of the MTZ. Thirdly, the origin of some hotspot plumes is isolated from the large low shear-wave velocity provinces (LLSVPs) under Africa and the South Pacific. I consider that the conceptual model explains why almost all the hotspots around Africa are located above the margins of the African LLSVP. Because a planetary-scale trench system surrounding a “Pangean cell” has been spatially stable throughout the Phanerozoic, a large amount of the oceanic crustal layer is likely to be trapped in the MTZ under the Pangean cell. Therefore, under Africa, almost all of the hotspot plumes originate from the base of the MTZ, where a large amount of TTG and/or oceanic crusts has accumulated. This conceptual model may explain the fact that almost all the hotspots around Africa are located on margins above the African LLSVP. It is also considered that some of the hotspot plumes under the South Pacific thread through the TTG/oceanic crusts accumulated around the bottom of the MTZ, and some have their roots in the South Pacific LLSVP while others originate from the MTZ. The numerical simulations of mantle convection also speculate that the Earth's mantle convection is not thermally double-layered at the ringwoodite to perovskite + magnesiowüstite (Rw → Pv + Mw) phase boundary, because of its gentle negative Clapeyron slope. This is in contrast with some traditional images of mantle convection that have independent convection cells between the upper and lower mantle. These numerical studies speculate that the generation of stagnant slab at the base of the MTZ (as seismically observed globally) may not be due to the negative Clapeyron slope, and may instead be related to a viscosity increase (i.e., a viscosity jump) at the Rw → Pv + Mw phase boundary, or to a chemically stratified boundary between the upper and the lower mantle, as suggested by a recent high-pressure experiment.
von Huene, Roland E.; Scholl, D. W.
1991-01-01
At ocean margins where two plates converge, the oceanic plate sinks or is subducted beneath an upper one topped by a layer of terrestrial crust. This crust is constructed of continental or island arc material. The subduction process either builds juvenile masses of terrestrial crust through arc volcanism or new areas of crust through the piling up of accretionary masses (prisms) of sedimentary deposits and fragments of thicker crustal bodies scraped off the subducting lower plate. At convergent margins, terrestrial material can also bypass the accretionary prism as a result of sediment subduction, and terrestrial matter can be removed from the upper plate by processes of subduction erosion. Sediment subduction occurs where sediment remains attached to the subducting oceanic plate and underthrusts the seaward position of the upper plate's resistive buttress (backstop) of consolidated sediment and rock. Sediment subduction occurs at two types of convergent margins: type 1 margins where accretionary prisms form and type 2 margins where little net accretion takes place. At type 2 margins (???19,000 km in global length), effectively all incoming sediment is subducted beneath the massif of basement or framework rocks forming the landward trench slope. At accreting or type 1 margins, sediment subduction begins at the seaward position of an active buttress of consolidated accretionary material that accumulated in front of a starting or core buttress of framework rocks. Where small-to-mediumsized prisms have formed (???16,300 km), approximately 20% of the incoming sediment is skimmed off a detachment surface or decollement and frontally accreted to the active buttress. The remaining 80% subducts beneath the buttress and may either underplate older parts of the frontal body or bypass the prism entirely and underthrust the leading edge of the margin's rock framework. At margins bordered by large prisms (???8,200 km), roughly 70% of the incoming trench floor section is subducted beneath the frontal accretionary body and its active buttress. In rounded figures the contemporary rate of solid-volume sediment subduction at convergent ocean margins (???43,500 km) is calculated to be 1.5 km3/yr. Correcting type 1 margins for high rates of terrigenous seafloor sedimentation during the past 30 m.y. or so sets the long-term rate of sediment subduction at 1.0 km3/yr. The bulk of the subducted material is derived directly or indirectly from continental denudation. Interstitial water currently expulsed from accreted and deeply subducted sediment and recycled to the ocean basins is estimated at 0.9 km3/yr. The thinning and truncation caused by subduction erosion of the margin's framework rock and overlying sedimentary deposits have been demonstrated at many convergent margins but only off northern Japan, central Peru, and northern Chile has sufficient information been collected to determine average or long-term rates, which range from 25 to 50 km3/m.y. per kilometer of margin. A conservative long-term rate applicable to many sectors of convergent margins is 30 km3/km/m.y. If applied to the length of type 2 margins, subduction erosion removes and transports approximately 0.6 km3/yr of upper plate material to greater depths. At various places, subduction erosion also affects sectors of type 1 margins bordered by small- to medium-sized accretionary prisms (for example, Japan and Peru), thus increasing the global rate by possibly 0.5 km3/yr to a total of 1.1 km3/yr. Little information is available to assess subduction erosion at margins bordered by large accretionary prisms. Mass balance calculations allow assessments to be made of the amount of subducted sediment that bypasses the prism and underthrusts the margin's rock framework. This subcrustally subducted sediment is estimated at 0.7 km3/yr. Combined with the range of terrestrial matter removed from the margin's rock framework by subduction erosion, the global volume of subcrustally subducted materia
NASA Astrophysics Data System (ADS)
Montesi, L.
2017-12-01
Ductile rheologies are characterized by strain rate hardening, which favors deformation zones that are as wide as possible, thus minimizing strain rate and stress. By contrast, plate tectonics and the observation of ductile shear zones in the exposed middle to lower crust show that deformation is often localized, that is, strain (and likely strain rate) is locally very high. This behavior is most easily explained if the material in the shear zone is intrinsically weaker than the reference material forming the wall rocks. Many origins for that weakness have been proposed. They include higher temperature (shear heating), reduced grain size, and fabric. The latter two were shown to be the most effective in the middle crust and upper mantle (given observational limits restricting heating to 50K or less) but they were not very important in the lower crust. They are not sufficient to explain the generation of narrow plate boundaries in the oceans. We evaluate here the importance of metamorphism, especially related to hydration, in weakening the lithosphere. Serpentine is a major player in the dynamics of the oceanic lithosphere. Although its ductile behavior is poorly constrained, serpentine is likely to behave in a brittle or quasi-plastic manner with a reduced coefficient of friction, replacing stronger peridotite. Serpentinization sufficiently weakens the oceanic lithosphere to explain the generation of diffuse plate boundaries and, combined with grain size reduction, the development of narrow plate boundaries. Lower crust outcrops, especially in the Bergen Arc (Norway), display eclogite shear zones hosted in metastable granulites. The introduction of water triggered locally a metamorphic reaction that reduces rock strength and resulted in a ductile shear zone. The presence of these shear zones has been used to explain the weakness of the lower crust perceived from geodesy and seismic activity. We evaluate here how much strain rate may increase as a result of eclogitization and determine if this can sufficiently decrease the integrated strength of the lithosphere to allow a measurable increase in strain rate.
The North American upper mantle: density, composition, and evolution
Mooney, Walter D.; Kaban, Mikhail K.
2010-01-01
The upper mantle of North America has been well studied using various seismic methods. Here we investigate the density structure of the North American (NA) upper mantle based on the integrative use of the gravity field and seismic data. The basis of our study is the removal of the gravitational effect of the crust to determine the mantle gravity anomalies. The effect of the crust is removed in three steps by subtracting the gravitational contributions of (1) topography and bathymetry, (2) low-density sedimentary accumulations, and (3) the three-dimensional density structure of the crystalline crust as determined by seismic observations. Information regarding sedimentary accumulations, including thickness and density, are taken from published maps and summaries of borehole measurements of densities; the seismic structure of the crust is based on a recent compilation, with layer densities estimated from P-wave velocities. The resultant mantle gravity anomaly map shows a pronounced negative anomaly (−50 to −400 mGal) beneath western North America and the adjacent oceanic region and positive anomalies (+50 to +350 mGal) east of the NA Cordillera. This pattern reflects the well-known division of North America into the stable eastern region and the tectonically active western region. The close correlation of large-scale features of the mantle anomaly map with those of the topographic map indicates that a significant amount of the topographic uplift in western NA is due to buoyancy in the hot upper mantle, a conclusion supported by previous investigations. To separate the contributions of mantle temperature anomalies from mantle compositional anomalies, we apply an additional correction to the mantle anomaly map for the thermal structure of the uppermost mantle. The thermal model is based on the conversion of seismic shear-wave velocities to temperature and is consistent with mantle temperatures that are independently estimated from heat flow and heat production data. The thermally corrected mantle density map reveals density anomalies that are chiefly due to compositional variations. These compositional density anomalies cause gravitational anomalies that reach ~250 mGal. A pronounced negative anomaly (−50 to −200 mGal) is found over the Canadian shield, which is consistent with chemical depletion and a corresponding low density of the lithospheric mantle, also referred to as the mantle tectosphere. The strongest positive anomaly is coincident with the Gulf of Mexico and indicates a positive density anomaly in the upper mantle, possibly an eclogite layer that has caused subsidence in the Gulf. Two linear positive anomalies are also seen south of 40°N: one with a NE-SW trend in the eastern United States, roughly coincident with the Grenville-Appalachians, and a second with a NW-SE trend beneath the states of Texas, New Mexico, and Colorado. These anomalies are interpreted as being due to (1) the presence of remnants of an oceanic slab in the upper mantle beneath the Grenville-Appalachian suture and (2) mantle thickening caused by a period of shallow, flat subduction during the Laramie orogeny, respectively. Based on these geophysical results, the evolution of the NA upper mantle is depicted in a series of maps and cartoons that display the primary processes that have formed and modified the NA crust and lithospheric upper mantle.
NASA Astrophysics Data System (ADS)
Darbyshire, Fiona A.; Dahl-Jensen, Trine; Larsen, Tine B.; Voss, Peter H.; Joyal, Guillaume
2018-03-01
The Greenland landmass preserves ˜4 billion years of tectonic history, but much of the continent is inaccessible to geological study due to the extensive inland ice cap. We map out, for the first time, the 3-D crustal structure of Greenland and the NW Atlantic ocean, using Rayleigh wave anisotropic group velocity tomography, in the period range 10-80 s, from regional earthquakes and the ongoing GLATIS/GLISN seismograph networks. 1-D inversion gives a pseudo-3-D model of shear wave velocity structure to depths of ˜100 km with a horizontal resolution of ˜200 km. Crustal thickness across mainland Greenland ranges from ˜25 km to over 50 km, and the velocity structure shows considerable heterogeneity. The large sedimentary basins on the continental shelf are clearly visible as low velocities in the upper ˜5-15 km. Within the upper continental basement, velocities are systematically lower in northern Greenland than in the south, and exhibit a broadly NW-SE trend. The thinning of the crust at the continental margins is also clearly imaged. Upper-mantle velocities show a clear distinction between typical fast cratonic lithosphere (Vs ≥4.6 km s-1) beneath Greenland and its NE margin and anomalously slow oceanic mantle (Vs ˜4.3-4.4 km s-1) beneath the NW Atlantic. We do not observe any sign of pervasive lithospheric modification across Greenland in the regions associated with the presumed Iceland hotspot track, though the average crustal velocity in this region is higher than that of areas to the north and south. Crustal anisotropy beneath Greenland is strong and complex, likely reflecting numerous episodes of tectonic deformation. Beneath the North Atlantic and Baffin Bay, the dominant anisotropy directions are perpendicular to the active and extinct spreading centres. Anisotropy in the subcontinental lithosphere is weaker than that of the crust, but still significant, consistent with cratonic lithosphere worldwide.
A global geochemical model for the evolution of the mantle
NASA Technical Reports Server (NTRS)
Anderson, D. L.
1979-01-01
It is proposed that the upper mantle transition region, 220 to 670 km, is composed of eclogite which has been derived from primitive mantle by about 20 percent partial melting and that this is the source and sink of oceanic crust. The remainder of the upper mantle is garnet peridotite which is the source of continental basalts and hotspot magmas. This region is enriched in incompatible elements by hydrous and CO2 rich metasomatic fluids which have depleted the underlying layers in the L.I.L. elements and L.R.E.E. The volatiles make this a low-velocity, high attenuation, low viscosity region. The eclogite layer is internally heated and its controls the convection pattern in the upper mantle. Plate tectonics is intermittent. The continental thermal anomaly at a depth of 150-220 km triggers kimberlite and carbonatite activity, alkali and flood basalt volcanism, vertical tectonics and continental breakup. Hot spots remain active after the continents leave and build the oceanic islands. Mantle plumes rise from a depth of about 220 km. Midocean ridge basalts rise from the depleted layer below this depth. Material from this layer can also be displaced upwards by subducted oceanic lithosphere to form back-arc basins.
Gravity modelling of the Hellenic subduction zone — a regional study
NASA Astrophysics Data System (ADS)
Casten, U.; Snopek, K.
2006-05-01
The Hellenic subduction zone is clearly expressed in the arc-shaped distribution of earthquake epicenters and gravity anomalies, which connect the Peloponnesos with Crete and Anatolia. In this region, oceanic crust of the African plate collides northward with continental crust of the Aegean microplate, which itself is pushed apart to the south-west by the Anatolian plate and, at the same time, is characterised by crustal extension. The result is an overall collision rate of up to 4 cm/year and a retreating subduction process. Recent passive and active seismic studies on and around Crete gave first, but not in all details consistent, structural results useful for supporting gravity modelling. This was undertaken with the aim of presenting the first 3D density structure of the entire subduction zone. Gravity interpretation was based on a Bouguer map, newly compiled using data from land, marine and satellite sources. The anomalies range from + 170 mGal (Cretan Sea) to - 10 mGal (Mediterranean Ridge). 3D gravity modelling was done applying the modelling software IGMAS. The computed Bouguer map fits the low frequency part of the observed one, which is controlled by variations in Moho depth (less than 20 km below the Cretan Sea and extending 30 km below Crete) and the extremely thick sedimentary cover (partly up to 18 km) of the Mediterranean Ridge. The southernmost edge of the Eurasian plate, with its more triangular-shaped backstop area, was traced south off Crete. Only 50 to 100 km further to the south, the edge of the African continent was traced as well. In between these boundaries there is African oceanic crust, which has a clear arc-shaped detachment line situated at the Eurasian continental edge. The subduction arc is open towards the north, its slab separates hotter mantle material (lower density) below the updoming Moho of the Cretan Sea from colder one (higher density) in the south. Subjacent to the upper continental crust of Crete is a thickened layer of lower crust followed by the subducted oceanic crust with some mantle material as intermediate layer. The depth of the oceanic Moho below Crete is 50 km. The presence and structure of subducted or underplated sediments remains uncertain.
A multidisciplinary approach to constrain incoming plate hydration in the Central American Margin
NASA Astrophysics Data System (ADS)
Hu, Y.; Guild, M. R.; Naif, S.; Eimer, M. O.; Evans, O.; Fornash, K.; Plank, T. A.; Shillington, D. J.; Vervelidou, F.; Warren, J. M.; Wiens, D.
2017-12-01
The oceanic crust and mantle of the incoming plate are potentially the greatest source of water to the subduction zone, but their extent of hydration is poorly constrained. Hydrothermal alteration of the oceanic crust is an important source of mineral-bound water that ultimately dehydrates during subduction. Bend faults at the trench-outer rise provide another viable mechanism to further hydrate the down-going plate. Here, we take a multidisciplinary approach to constrain the fluid budget of the subducting plate at the Northern Central American margin; this site was chosen since it has an unusually wet subducting slab at the Nicaragua segment. Abundant geophysical and geochemical datasets are available for this region and this work is an analysis of these data. Controlled-source electromagnetic (CSEM) and wide-angle seismic (WAS) observations show significant resistivity and velocity reductions in the incoming oceanic crust associated with bend faults, which suggests seawater infiltration and hydrous alteration. We used the CSEM porosity constraints to predict P-wave velocity and find that the WAS data require an additional reduction of up to 0.3 km/s in the lower crust at the trench, equivalent to 2 wt% H2O. We implemented the porosity structure together with constraints on fluid flow and reaction kinetics into two-phase flow numerical models to quantify the degree of serpentinization possible relative to WAS estimates. Thermodynamic modeling of basalt and peridotite bulk compositions were used to predict the alteration assemblages and associated water contents in the bend faulting region as well as the dehydration fluxes during subduction. In Nicaragua, the major fluid pulse at sub-arc depths results from chlorite and antigorite breakdown in the upper 10 km of the slab mantle, whereas in Costa Rica, the slab mantle is not predicted to dehydrate at sub-arc depths. In addition, comparisons between observed and predicted magnetic anomalies and geochemical variations along strike and across arc provide insights into the relative contribution of fluids from the subducted crust and mantle. Our findings suggest that, in addition to mantle serpentinization, the incoming oceanic crust also experiences a high degree of bending-induced hydration and transports a substantial flux of H2O to the mantle wedge.
NASA Astrophysics Data System (ADS)
Wilson, D. J.; Peirce, C.; Hobbs, R. W.; Gregory, E. P. M.; Zhang, L.
2016-12-01
Geophysical studies of crustal structure at a diverse range of ridges have provided evidence that the balance between spreading rate and magma supply determines whether spreading predominantly occurs by magmatic accretion of new oceanic crust or through tectonic stretching of the whole lithosphere. Asymmetric spreading, patterns of on- and off-axis volcanism, the evolution of oceanic core complexes and the distribution of hydrothermal systems all indicate that the process of spreading is not constant over geologically short timescales. The structure of the resulting crust reflects this complexity in origin. Studies along flow-lines across ridges spreading at intermediate rates suggest variations in topographic style and crustal structure have periodically occurred, controlled by the interplay between magmatic accretion and tectonic stretching, and coupled to the degree of hydrothermal activity. Seismic reflection images and tomographic models derived from wide-angle seismic data have enabled a detailed examination of the oceanic crust that formed at the fast-to-intermediate-spreading (36 mm yr-1) Costa Rica Rift over the last 6 Ma, to look for any temporal variation in basement topography, upper crust (layer 2) P-wave velocity/density structure and crustal thickness. Coincident marine gravity and magnetic data not only allow us to test the validity of the final velocity-density model but also review variability in half-spreading rate, respectively. Collectively our analyses allow us to investigate the timescale and cyclicity of crustal structure variations and, having determined the spreading rate over time, consider how this may reflect changes in magma supply and/or hydrothermal activity at the Costa Rica Rift, using borehole 504B as the ground-truth. This research is part of a major, interdisciplinary NERC-funded collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).
Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.
1997-01-01
The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.
Mars Geological Province Designations for the Interpretation of GRS Data
NASA Technical Reports Server (NTRS)
Dohm, J. M.; Kerry, K.; Baker, V. R.; Boynton, W.; Maruyama, Shige; Anderson, R. C.
2005-01-01
Introduction: An overarching geologic theory, GEOMARS, coherently explains many otherwise anomalous aspects of the geological history of Mars. Premises for a theory of martian geologic evolution include: (1) Mars is a water-rich terrestrial planet, (2) terrestrial planets should evolve through progressive stages of dynamical history (accretion, differentiation, tectonism) and mantle convection (magma ocean, plate tectonism, stagnant lid), and (3) the early history of Earth affords an analogue to the evolution of Mars. The theory describes the following major stages of evolution for Mars (from oldest to youngest): Stage 1 - shortly after accretion, Mars differentiates to a liquid metallic core, a mantle boundary (MBL) of high-pressure silicate mineral phases, upper mantle, magma ocean, thin komatiic crust, and convecting steam atmosphere; Stage 2- Mars cools to condense its steam atmosphere and transform its mode of mantle convection to plate tectonism; subduction of waterrich oceanic crust initiates arc volcanism and transfers water, carbonates and sulfates to the mantle; Stage 3 - the core dynamo initiates, and the associated magnetosphere leads to conditions conducive to the development of near-surface life and photosynthetic production of oxygen; Stage 4 - accretion of thickened, continental crust and subduction of hydrated oceanic crust to the mantle boundary layer and lower mantle of Mars occurs; Stage 5 - the core dynamo stops during Noachian heavy bombardment while plate tectonism continues; Stage 6 - initiation of the Tharsis superplume (approx. between 4.0 and 3.8Ga) occurs, and Stage 7 - the superlume phase (stagnant-lid regime) of martian planetary evolution with episodic phases of volcanism and water outflows continues into the present. The GEOMARS Theory is testable through a multidisciplinary approach, including utilizing GRS-based information. Based on a synthesis of published geologic, paleohydrologic, topographic, geophysical, spectral, and elemental information, we have defined geologic provinces that represent significant windows into the geological evolution of Mars, unfolding the GEOMARS Theory and forming the basis for interpreting GRS data.
NASA Astrophysics Data System (ADS)
Gouiza, Mohamed; Hall, Jeremy; Welford, J. Kim
2017-04-01
The Orphan Basin is located in the deep offshore of the Newfoundland margin, and it is bounded by the continental shelf to the west, the Grand Banks to the south, and the continental blocks of Orphan Knoll and Flemish Cap to the east. The Orphan Basin formed in Mesozoic time during the opening of the North Atlantic Ocean between eastern Canada and western Iberia-Europe. This work, based on well data and regional seismic reflection profiles across the basin, indicates that the continental crust was affected by several extensional episodes between the Jurassic and the Early Cretaceous, separated by events of uplift and erosion. The preserved tectono-stratigraphic sequences in the basin reveal that deformation initiated in the eastern part of the Orphan Basin in the Jurassic and spread towards the west in the Early Cretaceous, resulting in numerous rift structures filled with a Jurassic-Lower Cretaceous syn-rift succession and overlain by thick Upper Cretaceous to Cenozoic post-rift sediments. The seismic data show an extremely thinned crust (4-16 km thick) underneath the eastern and western parts of the Orphan Basin, forming two sub-basins separated by a wide structural high with a relatively thick crust (17 km thick). Quantifying the crustal architecture in the basin highlights the large discrepancy between brittle extension localized in the upper crust and the overall crustal thinning. This suggests that continental deformation in the Orphan Basin involved, in addition to the documented Jurassic and Early Cretaceous rifting, an earlier brittle rift phase which is unidentifiable in seismic data and a depth-dependent thinning of the crust driven by localized lower crust ductile flow.
NASA Astrophysics Data System (ADS)
Welford, J. Kim; Hall, Jeremy; Hübscher, Christian; Reiche, Sönke; Louden, Keith
2015-02-01
Wide-angle reflection/refraction seismic profiles were recorded across the Cyprus Arc, the plate boundary between the African Plate and the Aegean-Anatolian microplate, from the Eratosthenes Seamount to the Hecataeus Rise immediately south of Cyprus. The resultant models were able to resolve detail of significant lateral velocity variations, though the deepest crust and Moho are not well resolved from the seismic data alone. Conclusions from the modelling suggest that (i) Eratosthenes Seamount consists of continental crust but exhibits a laterally variable velocity structure with a thicker middle crust and thinner lower crust to the northeast; (ii) the Hecataeus Rise has a thick sedimentary rock cover on an indeterminate crust (likely continental) and the crust is significantly thinner than Eratosthenes Seamount based on gravity modelling; (iii) high velocity basement blocks, coincident with highs in the magnetic field, occur in the deep water between Eratosthenes and Hecataeus, and are separated and bounded by deep low-velocity troughs and (iv) one of the high velocity blocks runs parallel to the Cyprus Arc, while the other two appear linked based on the magnetic data and run NW-SE, parallel to the margin of the Hecataeus Rise. The high velocity block beneath the edge of Eratosthenes Seamount is interpreted as an older magmatic intrusion while the linked high velocity blocks along Hecataeus Rise are interpreted as deformed remnant Tethyan oceanic crust or mafic intrusives from the NNW-SSE oriented transform margin marking the northern boundary of Eratosthenes Seamount. Eratosthenes Seamount, the northwestern limit of rifted continental crust from the Levant Margin, is part of a jagged rifted margin transected by transform faults on the northern edge of the lower African Plate that is being obliquely subducted under the Aegean-Anatolian upper plate. The thicker crust of Eratosthenes Seamount may be acting as an asperity on the subducting slab, locally locking up subduction of the Cyprus Arc on its northern margin, while deformed Tethyan oceanic crust remains trapped between its northeastern margin and the Hecataeus Rise.
Sequestration of volatiles in the martian crust through hydrated minerals
NASA Astrophysics Data System (ADS)
Mustard, J. F.; Ehlmann, B. L.; Poulet, F.; Fraeman, A. A.; Carter, J.
2011-12-01
The magnitude and history of volatile reservoirs is a key question in understanding Mars' evolution. The volumes of reservoirs for water through time have been estimated on the basis of morphology (e.g. Carr 1996) and modeling while the volume of active identifiable modern reservoirs such as the polar caps, the near-surface cryosphere, and the atmosphere are reasonably well known. One reservoir that has been hypothesized but not examined is the crust where water would be in the form of hydrous minerals. The OMEGA and CRISM experiments on Mars Express and Mars Reconnaissance Orbiter respectively, have shown that phyllosilicate minerals are commonly observed in the Noachian crust of Mars. Modeling has shown that depending on the location the abundance of clays and phyllosilicates can exceed 50% but more typically is less or absent, particularly in the Hesperian and younger terrains (Poulet 2007). Phyllosilicate-bearing outcrops have been observed in the deepest wall exposures of Valles Marineris (8 km below the rim) and in the central peaks of impact craters as large of 100 km. Modeling suggests that the porosity of the crust in maintained to approximate 8-10 km depth permitting the circulation of water to this depth and formation of phyllosilicate and other hydrated minerals. Based on these and other observations it is evident that at least the top 10 km of the crust can be considered to contain hydrated silicate minerals. These observations also show that phyllosilicates are globally present in Noachian crust. We use altered oceanic crust as an analog for the amount of alteration on Mars. Analyses show that the average volume fraction of hydrous phases in the lower oceanic crust is 10%. Simple calculations show this results in a water content of between 1 - 3%. If the upper 10 km of the martian crust is altered to this extent then a global equivalent thickness (GET) of water of 0.3 to 0.9 km is stored in the crust due to alteration minerals. This is comparable to the GET derived from geologic evidence (Carr, 1996). We will expand on these calculations and their implications for the meeting.
NASA Astrophysics Data System (ADS)
Dhali, K. K.; Majhi, S.; Mitra, S.; Priestley, K.
2007-12-01
Fundamental mode Rayleigh and Love wave group velocity dispersion for paths crossing the Bay of Bengal have been calculated for earthquakes in the Indo-Burman arc and the Andaman-Sumatra subduction zone recorded at seismographs in the eastern part of Peninsula India and Sri Lanka. The ray-path coverage in this study provides a better spatial sampling than any previous studies of the region. The individual dispersion curves range from 12 to 70~s and have been clustered in four spatial groups to form average dispersion curves representative of the Bengal basin, northern, central and southern Bay of Bengal. These average dispersion curves for Rayleigh and Love waves are jointly inverted to obtain shear wave velocity structure of the lithosphere. The higher frequencies/shorter periods (12--30~s) used in the inversion constrains the sediment shear wave speed and thickness while the longer periods provide information of the upper mantle structure. The results show a remarkable increase in the sediments thickness along the Bengal Fan from south to north ranging from 6 km, around the southern tip of India, to 23 km beneath the Bengal basin. The shear wave velocity models reveal a sediment saturation beyond 7-10 km of burial leading to metamorphism and eventual increase in velocity to continent like material with depth. The average crustal thickness (loose sediments overlying consolidated sediments followed by metasediments and oceanic crust) is anomalously continental (~20-36 km) rather than being simply oceanic crust overlain by sediments. The average shear wave velocity is about 3.5-3.8 km/s which is more representative of continental crusts. Finally the low velocity zone in the uppermost mantle is possibly an effect of the expected increase in temperature due to blanketing of the fan sediments over the Bay of Bengal crust. The misfits to parts of the dispersion data using a 1D isotropic model provides an indication of the presence of polarization anisotropy in the lithosphere and sets a good starting point for modeling the anisotropic structure.
NASA Astrophysics Data System (ADS)
Smart, Katie A.; Chacko, Thomas; Stachel, Thomas; Tappe, Sebastian; Stern, Richard A.; Ickert, Ryan B.; EIMF
2012-02-01
We report the geochemical and oxygen isotope compositions for eclogitic mineral inclusions in diamonds hosted by high-MgO eclogite xenoliths from the Jericho kimberlite, Canada. These data are used to constrain the nature and evolution of the eclogite protolith. The garnet and clinopyroxene diamond inclusions (DIs) are compositionally different than their host eclogite counterparts. In particular, garnet DIs have much lower Mg-numbers (54 vs. 82) and Cr2O3 contents (0.1 vs. 0.6 wt.%) and higher CaO contents (7.6 vs. 4.3 wt.%) than host eclogite garnet. DI and host eclogite clinopyroxenes are more similar but differences include lower Mg-numbers (78-81 vs. 93) and higher Na2O contents (2.3 vs. 1.8 wt.%) in the DIs. The DIs lack typical shallow oceanic crust signatures such as strong positive Eu and Sr anomalies, and oxygen isotope compositions that deviate significantly from the pristine mantle average. On the contrary, both the Jericho DIs and host eclogite garnets have small negative Eu and Sr anomalies, fractionated HREE patterns ((LuN/GdN) ~ 3-5) and pristine mantle-like δ18O values of 5.2-6.0‰, indicating that shallow, plagioclase-rich oceanic crust protoliths are unlikely. The eclogitic DI trace-element characteristics require that both garnet and plagioclase were present in the protolith, which likely crystallized in the shallow upper mantle. DI-based reconstructed whole-rock eclogite compositions have higher Mg-numbers and lower Al2O3 contents than found in typical basaltic or gabbroic oceanic crust, and are similar to pyroxenitic veins found in orogenic peridotite massifs. Due to the lack of clear oceanic crust signatures and the mantle-like δ18O values of the studied DIs, we propose that the Jericho diamond eclogites originally crystallized as pyroxenite cumulates that formed veins within the oceanic mantle lithosphere. Following partial melt extraction, the eclogite protoliths were subducted into the diamond stability field beneath the evolving Slave craton. Hence, the Jericho DIs and host high-MgO eclogites may represent an example of eclogite formation in an oceanic setting without the diagnostic 'crustal signatures' that are typically observed in cratonic eclogite xenolith suites worldwide.
NASA Astrophysics Data System (ADS)
Boulahanis, B.; Canales, J. P.; Carbotte, S. M.; Carton, H. D.; Han, S.; Nedimovic, M. R.
2016-12-01
We conduct a two-dimensional travel time tomography study of a cross-plate, 300-km long, ocean bottom seismometer (OBS) transect collected as part of the Ridge to Trench (R2T) program to investigate the structure, evolution and state of hydration of the Juan de Fuca (JdF) plate from the ridge axis to subduction at the Cascadia margin offshore Washington. Our study employs the methodology of Korenaga et al. (2000) to derive a P-wave velocity model using wide-angle data from 15 OBSs spaced on average 15 km apart, spanning from the Endeavour segment of the JdF ridge to the Cascadia accretionary prism. A top down modeling approach is employed, first assessing velocities of the sediment layer, then the crust, and finally the upper mantle; at each stage of the inversion we fix the structure of the overlaying layers. Quality of data fit is evaluated using the root mean square value of the difference between predicted and observed travel times normalized by pick uncertainty. Previous studies provide a well-resolved multi-channel seismic (MCS) reflection image of this transect (Han et al., 2016), affording good constraints of the location of basement and Moho reflectors while allowing for comparison of the relationship between velocities and crustal structure. MCS results along this transect suggest evidence of little bending faulting confined to the sediment and upper-middle crust. An initial velocity model of the sediment layer above igneous crust is constructed utilizing the MCS derived sediment velocities. A one-dimensional velocity starting model of the oceanic crust is generated using the results of Horning et al. (in press) from a quasi-parallel cross-plate transect also acquired as part of the R2T study. Seismic velocities are compared to predicted velocities for crustal and mantle lithologies at temperatures estimated from a plate-cooling model and are used to provide constraints on water contents in these layers.
Variations of Oceanic Crust in the Northeastern Gulf of Mexico From Integrated Geophysical Analysis
NASA Astrophysics Data System (ADS)
Liu, M.; Filina, I.
2017-12-01
Tectonic history of the Gulf of Mexico remains a subject of debate due to structural complexity of the area and lack of geological constraints. In this study, we focus our investigation on oceanic domain of the northeastern Gulf of Mexico to characterize the crustal distribution and structures. We use published satellite derived potential fields (gravity and magnetics), seismic refraction data (GUMBO3 and GUMBO4) and well logs to build the subsurface models that honor all available datasets. In the previous study, we have applied filters to potential fields grids and mapped the segments of an extinct mid-ocean ridge, ocean-continent boundary (OCB) and several transform faults in our study area. We also developed the 2D potential fields model for seismic profile GUMBO3 (Eddy et al., 2014). The objectives of this study are: 1) to develop a similar model for another seismic profile GUMBO 4 (Christeson, 2014) and derive subsurface properties (densities and magnetic susceptibilities), 2) to compare and contrast the two models, 3) to establish spatial relationship between the two crustal domains. Interpreted seismic velocities for the profiles GUMBO 3 and GUMBO 4 show significant differences, suggesting that these two profiles cross different segments of oceanic crust. The total crustal thickness along GUMBO 3 is much thicker (up to 10 km) than the one for GUMBO 4 (5.7 km). The upper crustal velocity along GUMBO 4 (6.0-6.7 km/s) is significantly higher than the one for GUMBO 3 ( 5.8 km/s). Based our 2D potential fields models along both of the GUMBO lines, we summarize physical properties (seismic velocities, densities and magnetic susceptibilities) for different crustal segments, which are proxies for lithologies. We use our filtered potential fields grids to establish the spatial relationship between these two segments of oceanic crust. The results of our integrated geophysical analysis will be used as additional constraints for the future tectonic reconstruction of the Gulf of Mexico.
Under the sea: microbial life in volcanic oceanic crust.
Edwards, Katrina J; Wheat, C Geoffrey; Sylvan, Jason B
2011-09-06
Exploration of the microbiology in igneous, 'hard rock' oceanic crust represents a major scientific frontier. The igneous crust harbours the largest aquifer system on Earth, most of which is hydrologically active, resulting in a substantial exchange of fluids, chemicals and microorganisms between oceanic basins and crustal reservoirs. Study of the deep-subsurface biosphere in the igneous crust is technically challenging. However, technologies have improved over the past decade, providing exciting new opportunities for the study of deep-seated marine life, including in situ and cross-disciplinary experimentation in microbiology, geochemistry and hydrogeology. In this Progress article, we describe the recent advances, available technology and remaining challenges in the study of the marine intraterrestrial microbial life that is harboured in igneous oceanic crust.
Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle.
Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua
2017-04-18
Earth's water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg 0.9 Fe 0.1 ) 2 SiO 4 (Fo90) up to 15 gigapascals using an ultrafast optical pump-probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine-wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone.
Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise
Francheteau, Jean; Needham, H.D.; Choukroune, P.; Juteau, Tierre; Seguret, M.; Ballard, Richard D.; Fox, P.J.; Normark, William; Carranza, A.; Cordoba, D.; Guerrero, J.; Rangin, C.; Bougault, H.; Cambon, P.; Hekinian, R.
1979-01-01
Massive ore-grade zinc, copper and iron sulphide deposits have been found at the axis of the East Pacific Rise. Although their presence on the deep ocean-floor had been predicted there was no supporting observational evidence. The East Pacific Rise deposits represent a modern analogue of Cyprus-type sulphide ores associated with ophiolitic rocks on land. They contain at least 29% zinc metal and 6% metallic copper. Their discovery will provide a new focus for deep-sea exploration, leading to new assessments of the concentration of metals in the upper layers of the oceanic crust. ?? 1979 Nature Publishing Group.
The Hadean-Archaean Environment
Sleep, Norman H.
2010-01-01
A sparse geological record combined with physics and molecular phylogeny constrains the environmental conditions on the early Earth. The Earth began hot after the moon-forming impact and cooled to the point where liquid water was present in ∼10 million years Subsequently, a few asteroid impacts may have briefly heated surface environments, leaving only thermophile survivors in kilometer-deep rocks. A warm 500 K, 100 bar CO2 greenhouse persisted until subducted oceanic crust sequestered CO2 into the mantle. It is not known whether the Earth's surface lingered in a ∼70°C thermophile environment well into the Archaean or cooled to clement or freezing conditions in the Hadean. Recently discovered ∼4.3 Ga rocks near Hudson Bay may have formed during the warm greenhouse. Alkalic rocks in India indicate carbonate subduction by 4.26 Ga. The presence of 3.8 Ga black shales in Greenland indicates that S-based photosynthesis had evolved in the oceans and likely Fe-based photosynthesis and efficient chemical weathering on land. Overall, mantle derived rocks, especially kimberlites and similar CO2-rich magmas, preserve evidence of subducted upper oceanic crust, ancient surface environments, and biosignatures of photosynthesis. PMID:20516134
NASA Astrophysics Data System (ADS)
Xu, M.; Tivey, M.
2016-12-01
Near-bottom magnetic field measurements made by the submersible Nautile during the 1992 Kanaut Expedition define the cross-sectional geometry of magnetic polarity reversal boundaries and the vertical variation of crustal magnetization in lower oceanic crust exposed along the Kane Transform Fault (TF) at the northern boundary of the Kane Megamullion (KMM). The KMM exposes lower crust and upper mantle rocks on a low-angle normal fault that was active between 3.3 Ma and 2.1 Ma. The geometry of the polarity boundaries is estimated from an inversion of the submarine magnetic data for crustal magnetization. In general, the polarity boundaries dip away from the ridge axis along the Kane TF scarp, with a west-dipping angle of 45° in the shallow (<1 km) crust and <20° in the deeper crust. The existence of the magnetic polarity boundaries (e.g. C2r.2r/C2An.1n, 2.581 Ma) indicates that the lower crustal gabbros and upper mantle serpentinized peridotites are able to record a coherent magnetic signal. Our results support the conclusion of Williams [2007] that the lower crust cools through the Curie temperature of magnetite to become magnetic, with the polarity boundaries representing both frozen isotherms and isochrons. We also test the effects of the rotation of this isotherm structure and/or footwall rotation, and find that the magnetic polarity boundary geometry is not sensitive to these directional changes.
NASA Astrophysics Data System (ADS)
Xu, Min; Tivey, M. A.
2016-05-01
Near-bottom magnetic field measurements made by the submersible Nautile during the 1992 Kanaut Expedition define the cross-sectional geometry of magnetic polarity reversal boundaries and the vertical variation of crustal magnetization in lower oceanic crust exposed along the Kane Transform Fault (TF) at the northern boundary of the Kane Megamullion (KMM). The KMM exposes lower crust and upper mantle rocks on a low-angle normal fault that was active between 3.3 Ma and 2.1 Ma. The geometry of the polarity boundaries is estimated from an inversion of the submarine magnetic data for crustal magnetization. In general, the polarity boundaries dip away from the ridge axis along the Kane TF scarp, with a west dipping angle of ~45° in the shallow (<1 km) crust and <20° in the deeper crust. The existence of the magnetic polarity boundaries (e.g., C2r.2r/C2An.1n, ~2.581 Ma) indicates that the lower crustal gabbros and upper mantle serpentinized peridotites are able to record a coherent magnetic signal. Our results support the conclusion of Williams (2007) that the lower crust cools through the Curie temperature of magnetite to become magnetic, with the polarity boundaries representing both frozen isotherms and isochrons. We also test the effects of the rotation of this isotherm structure and/or footwall rotation and find that the magnetic polarity boundary geometry is not sensitive to these directional changes.
NASA Astrophysics Data System (ADS)
Dekkers, M. J.; Heslop, D.; Herrero-Bervera, E.; Acton, G.; Krasa, D.
2014-12-01
Ocean Drilling Program (ODP)/Integrated ODP (IODP) Hole 1256D (6.44.1' N, 91.56.1' W) on the Cocos Plate occurs in 15.2 Ma oceanic crust generated by superfast seafloor spreading. Presently, it is the only drill hole that has sampled all three oceanic crust layers in a tectonically undisturbed setting. Here we interpret down-hole trends in several rock-magnetic parameters with fuzzy c-means cluster analysis, a multivariate statistical technique. The parameters include the magnetization ratio, the coercivity ratio, the coercive force, the low-field susceptibility, and the Curie temperature. By their combined, multivariate, analysis the effects of magmatic and hydrothermal processes can be evaluated. The optimal number of clusters - a key point in the analysis because there is no a priori information on this - was determined through a combination of approaches: by calculation of several cluster validity indices, by testing for coherent cluster distributions on non-linear-map plots, and importantly by testing for stability of the cluster solution from all possible starting points. Here, we consider a solution robust if the cluster allocation is independent of the starting configuration. The five-cluster solution appeared to be robust. Three clusters are distinguished in the extrusive segment of the Hole that express increasing hydrothermal alteration of the lavas. The sheeted dike and gabbro portions are characterized by two clusters, both with higher coercivities than in lava samples. Extensive alteration, however, can obliterate magnetic property differences between lavas, dikes, and gabbros. The imprint of thermochemical alteration on the iron-titanium oxides is only partially related to the porosity of the rocks. All clusters display rock magnetic characteristics in line with a stable NRM. This implies that the entire sampled sequence of ocean crust can contribute to marine magnetic anomalies. Determination of the absolute paleointensity with thermal techniques is not straightforward because of the propensity of oxyexsolution during laboratory heating and/or the presence of intergrowths. The upper part of the extrusive sequence, the granoblastic portion of the dikes, and moderately altered gabbros may contain a comparatively uncontaminated thermoremanent magnetization.
Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study
Soares, J.E.; Berrocal, J.; Fuck, R.A.; Mooney, W.D.; Ventura, D.B.R.
2006-01-01
A two-dimensional model of the Brazilian central crust and upper mantle was obtained from the traveltime interpretation of deep seismic refraction data from the Porangatu and Cavalcante lines, each approximately 300 km long. When the lines were deployed, they overlapped by 50 km, forming an E-W transect approximately 530 km long across the Tocantins Province and western Sa??o Francisco Craton. The Tocantins Province formed during the Neoproterozoic when the Sa??o Francisco, the Paranapanema, and the Amazon cratons collided, following the subduction of the former Goia??s ocean basin. Average crustal VP and VP/VS ratios, Moho topography, and lateral discontinuities within crustal layers suggest that the crust beneath central Brazil can be associated with major geological domains recognized at the surface. The Moho is an irregular interface, between 36 and 44 km deep, that shows evidences of first-order tectonic structures. The 8.05 and 8.23 km s-1 P wave velocities identify the upper mantle beneath the Porangatu and Cavalcante lines, respectively. The observed seismic features allow for the identification of (1) the crust has largely felsic composition in the studied region, (2) the absence of the mafic-ultramafic root beneath the Goia??s magmatic arc, and (3) block tectonics in the foreland fold-and-thrust belt of the northern Brasi??lia Belt during the Neoproterozoic. Seismic data also suggested that the Bouguer gravimetric discontinuities are mainly compensated by differences in mass distribution within the lithospheric mantle. Finally, the Goia??s-Tocantins seismic belt can be interpreted as a natural seismic alignment related to the Neoproterozoic mantle domain. Copyright 2006 by the American Geophysical Union.
The crustal structure of the Enderby Basin, East Antarctica
NASA Astrophysics Data System (ADS)
Davis, Joshua K.; Lawver, Lawrence A.; Norton, Ian O.; Dalziel, Ian W. D.; Gahagan, Lisa M.
2018-05-01
The passive margin and ocean crust of the Enderby Basin, East Antarctica preserves a record of the breakup of East Gondwana. Using a suite of public domain geophysical data, we have examined and described the crustal morphology of the basin. Based on our geophysical observations, we divide the Enderby Basin into three distinct morphologic domains. The Eastern Domain demonstrates the most volcanic morphology of the basin, with abundant seaward dipping reflector packages and anomalously thick oceanic crust. These features suggest an early influence by the Kerguelen Hotspot on continental breakup within the domain. The Central Domain is characterized by two regions of oceanic crust of varying morphology segregated by a high amplitude magnetic anomaly. Geophysical observations suggest that the basement directly inboard of this magnetic anomaly is composed of thin, rugged, and poorly structured, proto-oceanic crust, similar in morphology to oceanic crust formed at ultraslow/slow mid-ocean ridged. Outboard of this anomaly, oceanic crust appears to be well-structured and of normal thickness. We offer three, non-exclusive, explanations for the observed change in ocean crustal structure: (1) melt production was initially low at the time of continental breakup, and the progressive decompression of the mantle led to a gradual increase in melt production and ocean crust thickness, (2) melt production was initially low to due lower extension rates and that melt production increased following a change in spreading rate, (3) a change in spreading ridge geometry led to more effective seafloor spreading rate and concurrent increase in melt production. The Western Domain of the Enderby Basin is characterized by abundant fracture zones and anomalously thin oceanic crust. We believe these features arose as a geometric consequence of the originally oblique orientation of continental rifting relative to the extension direction within the domain. Together these observations suggest that the breakup of East Gondwana was highly variable, with notable along-strike differences in crustal deformation and seafloor spreading processes.
FERROMANGANESE CRUST RESOURCES IN THE PACIFIC AND ATLANTIC OCEANS.
Commeau, R.F.; Clark, A.; Johnson, Chad; Manheim, F.T.; Aruscavage, P. J.; Lane, C.M.
1984-01-01
Ferromanganese crusts on raised areas of the ocean floor have joined abyssal manganese nodules and hydrothermal sulfides as potential marine resources. Significant volumes of cobalt-rich (about 1% Co) crusts have been identified to date within the US Exclusive Economic Zone (EEZ) in the Central Pacific: in the NW Hawaiian Ridge and Seamount region and in the seamounts in the Johnston Island and Palmyra Island regions. Large volumes of lower grade crusts, slabs, and nodules are also present in shallow ( greater than 1000 m) waters on the Blake plateau, off Florida-South Carolina in the Atlantic Ocean. Data on ferromanganese crusts have been increased by recent German and USGS cruises, but are still sparse, and other regions having crust potential are under current investigation. The authors discuss economic potentials for cobalt-rich crusts in the Central Pacific and Western North Atlantic oceans, with special reference to US EEZ areas. Additional research is needed before more quantitative resource estimates can be made.
NASA Astrophysics Data System (ADS)
Harmon, Nicholas; Rychert, Catherine A.
2015-11-01
Continental crust formed billions of years ago but cannot be explained by a simple evolution of primary mantle magmas. A multi-step process is required that likely includes re-melting of wet metamorphosed basalt at high pressures. Such a process could occur at depth in oceanic crust that has been thickened by a large magmatic event. In Central America, variations in geologically inferred, pre-existing oceanic crustal thickness beneath the arc provides an excellent opportunity to study its effect on magma storage, re-melting of meta-basalts, and the potential for creating continental crust. We use surface waves derived from ambient noise tomography to image 6% radially anisotropic structures in the thickened oceanic plateau crust of Costa Rica that likely represent deep crustal melt sills. In Nicaragua, where the arc is forming on thinner oceanic crust, we do not image these deep crustal melt sills. The presence of these deep sills correlates with more felsic arc outputs from the Costa Rican Arc suggesting pre-existing thickened crust accelerates processing of primary basalts to continental compositions. In the Archean, reprocessing thickened oceanic crust by subsequent hydrated hotspot volcanism or subduction zone volcanism may have similarly enhanced formation of early continental crust. This mechanism may have been particularly important if subduction did not initiate until 3 Ga.
Foulger, G.R.; Du, Z.; Julian, B.R.
2003-01-01
Numerous seismic studies, in particular using receiver functions and explosion seismology, have provided a detailed picture of the structure and thickness of the crust beneath the Iceland transverse ridge. We review the results and propose a structural model that is consistent with all the observations. The upper crust is typically 7 ?? 1 km thick, heterogeneous and has high velocity gradients. The lower crust is typically 15-30 ?? 5 km thick and begins where the velocity gradient decreases radically. This generally occurs at the V p ??? 6.5 km s-1 level. A low-velocity zone ??? 10 000 km2 in area and up to ??? 15 km thick occupies the lower crust beneath central Iceland, and may represent a submerged, trapped oceanic microplate. The crust-mantle boundary is a transition zone ???5 ?? 3 km thick throughout which V p increases progressively from ???7.2 to ???8.0 km s-1. It may be gradational or a zone of alternating high- and low-velocity layers. There is no seismic evidence for melt or exceptionally high temperatures in or near this zone. Isostasy indicates that the density contrast between the lower crust and the mantle is only ???90 kg m-3 compared with ???300 kg m-3 for normal oceanic crust, indicating compositional anomalies that are as yet not understood. The seismological crust is ???30 km thick beneath the Greenland-Iceland and Iceland-Faeroe ridges, and eastern Iceland, ???20 km beneath western Iceland, and ???40 km thick beneath central Iceland. This pattern is not what is predicted for an eastward-migrating plume. Low attenuation and normal V p/V s ratios in the lower crust beneath central and southwestern Iceland, and normal uppermost mantle velocities in general, suggest that the crust and uppermost mantle are subsolidus and cooler than at equivalent depths beneath the East Pacific Rise. Seismic data from Iceland have historically been interpreted both in terms of thin-hot and thick-cold crust models, both of which have been cited as supporting the plume hypothesis. This suggests that the plume model for Iceland is an a priori assumption rather than a hypothesis subject to testing. The long-extinct Ontong-Java Plateau, northwest India and Parana??, Brazil large igneous provinces, beneath which mantle plumes are not expected are all underlain by mantle low-velocity bodies similar to that beneath Iceland. A plume interpretation for the mantle anomaly beneath Iceland is thus not required.
a Baseline for Upper Crustal Velocity Variations Along the East Pacific Rise
NASA Astrophysics Data System (ADS)
Kappus, Mary Elizabeth
Seismic measurements of the oceanic crust and theoretical models of its generation at mid-ocean ridges suggest several systematic variations in upper crustal velocity structure, but without constraints on the inherent variation in newly-formed crust these suggestions remain tentative. The Wide Aperture Profiles (WAPs) which form the database for this study have sufficient horizontal extent and resolution in the upper crust to establish a zero-age baseline. After assessing the adequacy of amplitude preservation in several tau - p transform methods we make a precise estimate of the velocity at the top of the crust from analysis of amplitudes in the tau - p domain. Along a 52-km segment we find less than 5% variation from 2.45 km/s. Velocity models of the uppermost crust are constructed using waveform inversion for both reflection and refraction arrivals. This method exploits the high quality of both primary and secondary phases and provides an objective process for iteratively improving trial models and for measuring misfit. The resulting models show remarkable homogeneity: on-axis variation is 5% or less within layers 2A and 2B, increasing to 10% at the sharp 2A/2B boundary. The extrusive volcanic layer is only 130 m thick along-axis and corresponds to the triangular -shaped neovolcanic zone. From this we infer that the sheeted dikes feeding the extrusive layer 2A come up to very shallow depths on axis. Along axis, a fourth-order deviation from axial linearity identified geochemically is observed as a small increase in thickness of the extrusive layer. Off -axis, the velocity increases only slightly to 2.49 km/s, while the thickness of the extrusives increases to 217 km and the variability in both parameters increases with distance from the ridge axis. In a separate section we present the first published analysis of seismic records of thunder. We calculate multi -taper spectra to determine the peak energy in the lightning bolt and apply time-dependent polarization analysis to determine the lightning propagation path. The peak energies of the intracloud lightning bolts are all infrasonic, but we show that this is not incompatible with the mechanism of thunder production by a rapidly heated gas channel as was previously thought. From polarization analysis we find the direction to the lightning bolt from a single station record, in several cases resolving a significant horizontal component to the lightning path.
NASA Astrophysics Data System (ADS)
Tominaga, Masako; Tivey, Maurice A.; MacLeod, Christopher J.; Morris, Antony; Lissenberg, C. Johan; Shillington, Donna J.; Ferrini, Vicki
2016-06-01
Marine magnetic anomalies are a powerful tool for detecting geomagnetic polarity reversals, lithological boundaries, topographic contrasts, and alteration fronts in the oceanic lithosphere. Our aim here is to detect lithological contacts in fast-spreading lower crust and shallow mantle by characterizing magnetic anomalies and investigating their origins. We conducted a high-resolution, near-bottom, vector magnetic survey of crust exposed in the Hess Deep "tectonic window" using the remotely operated vehicle (ROV) Isis during RRS James Cook cruise JC21 in 2008. Hess Deep is located at the western tip of the propagating rift of the Cocos-Nazca plate boundary near the East Pacific Rise (EPR) (2°15'N, 101°30'W). ROV Isis collected high-resolution bathymetry and near-bottom magnetic data as well as seafloor samples to determine the in situ lithostratigraphy and internal structure of a section of EPR lower crust and mantle exposed on the steep (~20°dipping) south facing slope just north of the Hess Deep nadir. Ten magnetic profiles were collected up the slope using a three-axis fluxgate magnetometer mounted on ROV Isis. We develop and extend the vertical magnetic profile (VMP) approach of Tivey (1996) by incorporating, for the first time, a three-dimensional vector analysis, leading to what we here termed as "vector vertical magnetic profiling" approach. We calculate the source magnetization distribution, the deviation from two dimensionality, and the strike of magnetic boundaries using both the total field Fourier-transform inversion approach and a modified differential vector magnetic analysis. Overall, coherent, long-wavelength total field anomalies are present with a strong magnetization contrast between the upper and lower parts of the slope. The total field anomalies indicate a coherently magnetized source at depth. The upper part of the slope is weakly magnetized and magnetic structure follows the underlying slope morphology, including a "bench" and lobe-shaped steps, imaged by microbathymetry. The lower part of the slope is strongly magnetized, with a gradual reduction in amplitude from east to west across the slope. Surface morphology and recent drilling results indicate that the slope has been affected by mass wasting, but the observation of internally coherent magnetization distributions within the upper and lower slopes suggest that the disturbance is surficial. We attribute the spatial differences in magnetization distribution to the combination of changes in in situ lithology and depth to the source. These survey lines document the first magnetic profiles that capture the gabbro-ultramafic and possibly dike-gabbro boundaries in fast-spreading lower crust.
Muhs, D.R.; Budahn, J.R.; Johnson, D.L.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.; Jones, J.A.
2008-01-01
There is an increasing awareness that dust plays important roles in climate change, biogeochemical cycles, nutrient supply to ecosystems, and soil formation. In Channel Islands National Park, California, soils are clay-rich Vertisols or Alfisols and Mollisols with vertic properties. The soils are overlain by silt-rich mantles that contrast sharply with the underlying clay-rich horizons. Silt mantles contain minerals that are rare or absent in the volcanic rocks that dominate these islands. Immobile trace elements (Sc-Th-La and Ta-Nd-Cr) and rare-earth elements show that the basalt and andesite on the islands have a composition intermediate between upper-continental crust and oceanic crust. In contrast, the silt fractions and, to a lesser extent, clay fractions of the silt mantle have compositions closer to average upper-continental crust and very similar to Mojave Desert dust. Island shelves, exposed during the last glacial period, could have provided a source of eolian sediment for the silt mantles, but this is not supported by mineralogical data. We hypothesize that a more likely source for the silt-rich mantles is airborne dust from mainland California and Baja California, either from the Mojave Desert or from the continental shelf during glacial low stands of sea. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. The eolian silt mantles constitute an important medium of plant growth and provide evidence that abundant eolian silt and clay may be delivered to the eastern Pacific Ocean from inland desert sources. ?? 2007 Geological Society of America.
Crustal architecture of the eastern margin of Japan Sea: back-arc basin opening and contraction
NASA Astrophysics Data System (ADS)
No, T.; Sato, T.; Takahashi, N.; Kodaira, S.; Kaneda, Y.; Ishiyama, T.; Sato, H.
2012-12-01
Although large earthquakes such as the 1964 Niigata earthquake (M 7.5), 1983 Nihonkai-Chubu earthquake (M 7.8), and 1993 Hokkaido Nansei-Oki earthquake (M 7.8) have caused large amounts of damage to the eastern margin of the Japan Sea, a substantial number of seismic studies have been conducted for the seismogenic zone on the Pacific Ocean side of Japan. In addition, the detail of the source fault model for the eastern margin of the Japan Sea is not well defined for all cases. This highlights the need for further studies to investigate seismic imaging. Therefore, we have collaborated with other Japanese research institutions for a project titled "Priority Investigations of Strain Concentration Areas" (which is funded by Special Coordination Funds for Promoting Science and Technology, Japan). This project has conducted seismic surveys from 2009 to 2012 using the deep-sea research vessel, Kairei, from the Japan Agency for Marine-Earth Science and Technology. There is a strain concentration area in the eastern part of the survey area (Okamura et al., 1995). The western part of the survey area includes the Yamato Basin and Japan Basin. It is very important to study the crustal structure in the seismotectonic studies of the eastern margin of the Japan Sea. We conducted a marine seismic survey by using a multichannel seismic (MCS) system and ocean bottom seismographs (OBSs) along the eastern margin of the Japan Sea. Seismic data were acquired along 42 lines with a total length of approximately 9,000 km. The following results were obtained from seismic imaging. On the basis of the results of the MCS imaging, active reverse faults and folds were observed in the margin of the Toyama Trough; however, the sedimentary layers in the trough were flat. In the sedimentary layers and crusts of the Sado Ridge, Mogami Trough, and source area of the 1964 Niigata earthquake located north of the Sado Island, greater deformation was observed. The deformation weakened toward the Yamato Basin and Japan Basin; however, the development of an asymmetric anticline and its associated reverse fault was observed off Akita prefecture, which could indicate a very recent growth structure. This development is associated with an active structure on the southern extension of the fault that caused the 1983 Nihonkai-Chubu Earthquake. On the other hand, the results from the seismic refraction/wide-angle reflection imaging using OBSs indicated that the area from the basin to the continental shelf, including the source area of the 1964 Niigata Earthquake, and the island arc crust had a large lateral variation in the upper and middle crust. In contrast, beneath the source area of the 1983 Nihonkai-Chubu Earthquake, the crustal structure is interpreted as a transitional crust between oceanic and island arc crusts, with larger variation in the P-wave velocity than those of the surrounding areas. Furthermore, the crust of the Yamato Basin area is thicker than a typical oceanic crust, whereas the crust of the Japan Basin area is similar to a typical oceanic crust.
Heat flow evidence for hydrothermal circulation in the volcanic basement of subducting plates
NASA Astrophysics Data System (ADS)
Harris, R. N.; Spinelli, G. A.; Fisher, A. T.
2017-12-01
We summarize and interpret evidence for hydrothermal circulation in subducting oceanic basement from the Nankai, Costa Rica, south central Chile, Haida Gwaii, and Cascadia margins and explore the influence of hydrothermal circulation on plate boundary temperatures in these settings. Heat flow evidence for hydrothermal circulation in the volcanic basement of incoming plates includes: (a) values that are well below conductive (lithospheric) predictions due to advective heat loss, and (b) variability about conductive predictions that cannot be explained by variations in seafloor relief or thermal conductivity. We construct thermal models of these systems that include an aquifer in the upper oceanic crust that enhances heat transport via a high Nusselt number proxy for hydrothermal circulation. At the subduction zones examined, patterns of seafloor heat flow are not well fit by purely conductive simulations, and are better explained by simulations that include the influence of hydrothermal circulation. This result is consistent with the young basement ages (8-35 Ma) of the incoming igneous crust at these sites as well as results from global heat flow analyses showing a significant conductive heat flow deficit for crustal ages less than 65 Ma. Hydrothermal circulation within subducting oceanic basement can have a profound influence on temperatures close to the plate boundary and, in general, leads to plate boundary temperatures that are cooler than those where fluid flow does not occur. The magnitude of cooling depends on the permeability structure of the incoming plate and the evolution of permeability with depth and time. Resolving complex relationships between subduction processes, the permeability structure in the ocean crust, and the dynamics of hydrothermal circulation remains an interdisciplinary frontier.
Grimes, Craig B.; John, Barbara E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, Michael J.; Hanghoj, K.; Schwartz, J.J.
2007-01-01
We present newly acquired trace element compositions for more than 300 zircon grains in 36 gabbros formed at the slow-spreading Mid-Atlantic and Southwest Indian Ridges. Rare earth element patterns for zircon from modern oceanic crust completely overlap with those for zircon crystallized in continental granitoids. However, plots of U versus Yb and U/Yb versus Hf or Y discriminate zircons crystallized in oceanic crust from continental zircon, and provide a relatively robust method for distinguishing zircons from these environments. Approximately 80% of the modern ocean crust zircons are distinct from the field defined by more than 1700 continental zircons from Archean and Phanerozoic samples. These discrimination diagrams provide a new tool for fingerprinting ocean crust zircons derived from reservoirs like that of modern mid-ocean ridge basalt (MORB) in both modern and ancient detrital zircon populations. Hadean detrital zircons previously reported from the Acasta Gneiss, Canada, and the Narryer Gneiss terrane, Western Australia, plot in the continental granitoid field, supporting hypotheses that at least some Hadean detrital zircons crystallized in continental crust forming magmas and not from a reservoir like modern MORB. ?? 2007 The Geological Society of America.
Solid earth as a recycling systems and the lateral growth of Precambrian North America
NASA Technical Reports Server (NTRS)
Veizer, Jan
1988-01-01
If plotted on mass vs time diagrams, geologic entities (for example, continental and oceanic crust, sediments, and mineral resources) display an exponential (power law) relationship, with entity per unit time increasing toward the present. This relationship is consistent with the concept of recycling and can be simulated mathematically. The approach is based on the plate tectonic theory and considers area-age or mass-age distributions of crystalline basement and sediments for major global tectonic realms. Each tectonic realm is characterized by a specific lifespan, which is an inverse function of its recycling rate. The estimated average half-area of half-mass ages are given. The corresponding parameters for continental crust are 690 Ma for K/Ar, and approximately 1200 Ma for Rb/St and U-Th/Pb dating pairs. Tectonic diversity preserved in the geologic record is therefore a function of time, with oceanic tectonic realms, because of their rapid recycling, underrepresented in the rocks older than approximately 300 Ma. The Sm/Nd isotopic systematic of sediments suggest that, for a near steady-state post-Archean sedimentary mass, recycling is approximately 90 + or - 5 percent cannibalistic. This yields an estimated upper limit on crust-mantle exchange via sediment subduction of approximately 1.1 + or - 0.5 x 10 g a(sup -1) considerably less than demanded by isotopic constraints. The discrepancy may indicate the existence of additional loci, such as orogenic belts, for significant crust-mantle interaction.
Subduction and collision processes in the Central Andes constrained by converted seismic phases.
Yuan, X; Sobolev, S V; Kind, R; Oncken, O; Bock, G; Asch, G; Schurr, B; Graeber, F; Rudloff, A; Hanka, W; Wylegalla, K; Tibi, R; Haberland, C; Rietbrock, A; Giese, P; Wigger, P; Röwer, P; Zandt, G; Beck, S; Wallace, T; Pardo, M; Comte, D
The Central Andes are the Earth's highest mountain belt formed by ocean-continent collision. Most of this uplift is thought to have occurred in the past 20 Myr, owing mainly to thickening of the continental crust, dominated by tectonic shortening. Here we use P-to-S (compressional-to-shear) converted teleseismic waves observed on several temporary networks in the Central Andes to image the deep structure associated with these tectonic processes. We find that the Moho (the Mohorovicić discontinuity--generally thought to separate crust from mantle) ranges from a depth of 75 km under the Altiplano plateau to 50 km beneath the 4-km-high Puna plateau. This relatively thin crust below such a high-elevation region indicates that thinning of the lithospheric mantle may have contributed to the uplift of the Puna plateau. We have also imaged the subducted crust of the Nazca oceanic plate down to 120 km depth, where it becomes invisible to converted teleseismic waves, probably owing to completion of the gabbro-eclogite transformation; this is direct evidence for the presence of kinetically delayed metamorphic reactions in subducting plates. Most of the intermediate-depth seismicity in the subducting plate stops at 120 km depth as well, suggesting a relation with this transformation. We see an intracrustal low-velocity zone, 10-20 km thick, below the entire Altiplano and Puna plateaux, which we interpret as a zone of continuing metamorphism and partial melting that decouples upper-crustal imbrication from lower-crustal thickening.
NASA Astrophysics Data System (ADS)
Cuthbert, Simon
2017-04-01
The Scandinavian Caledonides (SC) represents a plate collision zone of Himalayan style and scale. Three fundamental characteristics of this orogen are: (1) early foreland-directed, tectonic transport and stacking of nappes; (2) late, wholesale reversal of tectonic transport; (3) ultrahigh pressure metamorphism of felsic crust derived from the underthrusting plate at several levels in the orogenic wedge and below the main thrust surface, indicating subduction of continental crust into the mantle. The significance of this for crustal evolution is the profound remodeling of continental crust, direct geochemical interaction of such crust and the mantle and the opening of accommodation space trapping large volumes of clastic detritus within the orogen. The orogenic wedge of the SC was derived from the upper crust of the Baltica continental margin (a hyper-extended passive margin), plus terranes derived from an assemblage of outboard arcs and intra-oceanic basins and, at the highest structural level, elements of the Laurentian margin. Nappe emplacement was driven by Scandian ( 430Ma) collision of Baltica with Laurentia, but emerging Middle Ordovician ages for diamond-facies metamorphism for the most outboard (or rifted) elements of Baltica suggest prior collision with an arc or microcontinent. Nappes derived from Baltica continental crust were subducted, in some cases to depths sufficient to form diamond. These then detached from the upper part of the down-going plate along major thrust faults, at which time they ceased to descend and possibly rose along the subduction channel. Subduction of the remaining continental margin continued below these nappes, possibly driven by slab-pull of the previously subducted Iapetus oceanic lithosphere and metamorphic densification of subducted felsic continental margin. 3D numerical modelling based upon a Caledonide-like plate scenario shows that if a continental corner or promontory enters the subduction zone, the continental margin descends to greater depths than for a simple orthogonal collision and its modelled thermal evolution is consistent with UHP metamorphic assemblages recorded in the southern part of the SC. Furthermore, a tear initiates at the promontary tip along the ocean-continent junction and propagates rapidly along the orogen. The buoyant upthrust of the subducted margin can then lead to reversal of the motion vector of the entire subducting continent, which withdraws the subducted lithospheric margin out of the subduction channel ("eduction"). Because of the diachroneity of slab failure, the continent also rotates, which causes the eduction vector to change azimuth over time. These model behaviours are consistent with the late orogenic structural evolution of the southern SC. However, during the final exhumation stage the crust may not have acted entirely coherently, as some eduction models propose: There is evidence that some inboard Baltica crust experienced late, shallow subduction before detaching as giant "flakes" that carried the orogenic wedge piggyback, forelandwards. Eduction and flake-tectonics could have operated coevally; the model system does not preclude this. Finally, the traction of a large educting (or extruding) mass of continental margin against the overlying orogenic wedge may have stretched and ruptured the wedge, resulting in opening of the late-orogenic Old Red Sandstone molasse basins.
Bimodal tholeiitic-dacitic magmatism and the Early Precambrian crust
Barker, F.; Peterman, Z.E.
1974-01-01
Interlayered plagioclase-quartz gneisses and amphibolites from 2.7 to more than 3.6 b.y. old form much of the basement underlying Precambrian greenstone belts of the world; they are especially well-developed and preserved in the Transvaal and Rhodesian cratons. We postulate that these basement rocks are largely a metamorphosed, volcanic, bimodal suite of tholeiite and high-silica low-potash dacite-compositionally similar to the 1.8-b.y.-old Twilight Gneiss - and partly intrusive equivalents injected into the lower parts of such volcanic piles. We speculate that magmatism in the Early Precambrian involved higher heat flow and more hydrous conditions than in the Phanerozoic. Specifically, we suggest that the early degassing of the Earth produced a basaltic crust and pyrolitic upper mantle that contained much amphibole, serpentine, and other hydrous minerals. Dehydration of the lower parts of a downgoing slab of such hydrous crust and upper mantle would release sufficient water to prohibit formation of andesitic liquid in the upper part of the slab. Instead, a dacitic liquid and a residuum of amphibole and other silica-poor phases would form, according to Green and Ringwood's experimental results. Higher temperatures farther down the slab would cause total melting of basalt and generation of the tholeiitic member of the suite. This type of magma generation and volcanism persisted until the early hydrous lithosphere was consumed. An implication of this hypothesis is that about half the present volume of the oceans formed before about 2.6 b.y. ago. ?? 1974.
Water-rich bending faults at the Middle America Trench
NASA Astrophysics Data System (ADS)
Naif, Samer; Key, Kerry; Constable, Steven; Evans, Rob L.
2015-09-01
The portion of the Central American margin that encompasses Nicaragua is considered to represent an end-member system where multiple lines of evidence point to a substantial flux of subducted fluids. The seafloor spreading fabric of the incoming Cocos plate is oriented parallel to the trench such that flexural bending at the outer rise optimally reactivates a dense network of normal faults that extend several kilometers into the upper mantle. Bending faults are thought to provide fluid pathways that lead to serpentinization of the upper mantle. While geophysical anomalies detected beneath the outer rise have been interpreted as broad crustal and upper mantle hydration, no observational evidence exists to confirm that bending faults behave as fluid pathways. Here we use seafloor electromagnetic data collected across the Middle America Trench (MAT) offshore of Nicaragua to create a comprehensive electrical resistivity image that illuminates the infiltration of seawater along bending faults. We quantify porosity from the resistivity with Archie's law and find that our estimates for the abyssal plain oceanic crust are in good agreement with independent observations. As the Cocos crust traverses the outer rise, the porosity of the dikes and gabbros progressively increase from 2.7% and 0.7% to 4.8% and 1.7%, peaking within 20 km of the trench axis. We conclude that the intrusive crust subducts twice as much pore water as previously thought, significantly raising the flux of fluid to the seismogenic zone and the mantle wedge.
NASA Astrophysics Data System (ADS)
Campbell, Ian H.
2002-05-01
The Nb/U and Th/U of the primitive mantle are 34 and 4.04 respectively, which compare with 9.7 and 3.96 for the continental crust. Extraction of continental crust from the mantle therefore has a profound influence on its Nb/U but little influence on its Th/U. Conversely, extraction of midocean ridge-type basalts lowers the Th/U of the mantle residue but has little influence on its Nb/U. As a consequence, variations in Th/U and Nb/U with Sm/Nd can be used to evaluate the relative importance of continental and basaltic crust extraction in the formation of the depleted (Sm/Nd enriched) mantle reservoir. This study evaluates Nb/U, Th/U, and Sm/Nd variations in suites of komatiites, picrites, and their associated basalts, of various ages, to determine whether basalt and/or continental crust have been extracted from their source region. Emphasis is placed on komatiites and picrites because they formed at high degrees of partial melting and are expected to have Nb/U, Th/U, and Sm/Nd that are essentially the same as the mantle that melted to produce them. The results show that all of the studied suites, with the exception of the Barberton, have had both continental crust and basaltic crust extracted from their mantle source region. The high Sm/Nd of the Gorgona and Munro komatiites require the elevated ratios seen in these suites to be due primarily to extraction of basaltic crust from their source regions, whereas basaltic and continental crust extraction are of subequal importance in the source regions of the Yilgarn and Belingwe komatiites. The Sm/Nd of modern midocean ridge basalts lies above the crustal extraction curve on a plot of Sm/Nd against Nb/U, which requires the upper mantle to have had both basaltic and continental crust extracted from it. It is suggested that the extraction of the basaltic reservoir from the mantle occurs at midocean ridges and that the basaltic crust, together with its complementary depleted mantle residue, is subducted to the core-mantle boundary. When the two components reach thermal equilibrium with their surroundings, the lighter depleted component separates from the denser basaltic component. Both are eventually returned to the upper mantle, but the lighter depleted component has a shorter residence time in the lower mantle than the denser basaltic component. If the difference in the recycling times for the basaltic and depleted components is ˜1.0 to 1.5 Ga, a basaltic reservoir is created in the lower mantle, equivalent to the amount of basalt that is subducted in 1.0 to 1.5 Ga, and that reservoir is isolated from the upper mantle. It is this reservoir that is responsible for the Sm/Nd ratio of the upper mantle lying above the trend predicted by extraction of continental crust on the plot of Sm/Nd against Nb/U.
NASA Astrophysics Data System (ADS)
Gozzard, S. P.; Kusznir, N.; Goodliffe, A.; Manatschal, G.
2007-12-01
Understanding how the continental crust and lithosphere thins at the propagating tip of sea-floor spreading is the key to understanding the continental breakup process. The Woodlark Basin, a young ocean basin located in the Western Pacific to the east of Papua New Guinea, commenced formation at approximately 8.4Ma and is propagating westwards at a rate of approximately 140km/Myr. Immediately to the west of the most recent segment of sea-floor spreading propagation, in the vicinity of the Moresby Seamount, evidence from bathymetry, subsidence and seismic Moho depth suggests that continental lithosphere is being thinned. In this study we have determined lithosphere thinning in the vicinity of the Moresby Seamount at the level of the whole lithosphere, the whole crust and the upper crust. Whole lithosphere thinning factors have been determined from subsidence analysis; whole continental crustal thinning factors have been determined from gravity inversions and upper crustal thinning factors have been determined from fault analysis. Three 2D seismic profiles surrounding the Moresby Seamount have been flexurally backstripped to the base of the syn-rift sediments to determine the water loaded subsidence. Using the McKenzie lithosphere extension model, modified to include volcanic addition at high thinning factors, whole thinning factors for the lithosphere have been determined from the water loaded subsidence. Results show that thermal subsidence alone cannot account for the observed subsidence, and that an additional initial subsidence is needed. Whole lithosphere thinning factors increase from an average of 0.5 to 0.8 across the Moresby Seamount eastwards towards the propagating tip. A satellite gravity inversion incorporating a lithosphere thermal gravity anomaly correction has been used to determine Moho depth, crustal thickness and thinning factors for the propagating tip in the Woodlark Basin. Moho depths are consistent with depths obtained from receiver function analysis (Ferris et al. 2006). Crustal thickness estimates do not include a correction for sediment thickness and are upper bounds. Crustal thinning factors in the vicinity of the Moresby Seamount are similar to those observed for the whole lithosphere. Fault analysis of the three 2D profiles have been used to determine upper crustal thinning factors. Upper crustal thinning factors between 0.1 to 0.2 are observed for the vicinity of the Moresby Seamount, substantially lower than thinning factors predicted for the whole lithosphere and continental crust, suggesting depth-dependent lithosphere thinning. Crustal thicknesses predicted from gravity inversion immediately to the east of the Moresby Seamount are substantially greater than would be expected for oceanic lithosphere in this region, while highly thinned, has not completely ruptured.
Crustal control of dissipative ocean tides in Enceladus and other icy moons
NASA Astrophysics Data System (ADS)
Beuthe, Mikael
2016-12-01
Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 m deep. The model is general: it applies to all icy satellites with a thin crust and a shallow ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.
Subsurface Ocean Tides in Enceladus and Other Icy Moons
NASA Astrophysics Data System (ADS)
Beuthe, M.
2016-12-01
Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 meters deep. The model is general: it applies to all icy satellites with a thin crust and a shallow or stratified ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.
Imaging hydration and dehydration across the Cascadia subduction zone (Invited)
NASA Astrophysics Data System (ADS)
Abers, G. A.; Van Keken, P. E.; Hacker, B. R.; Mann, M. E.; Crosbie, K.; Creager, K.
2017-12-01
Arc volcanoes and exhumed forearc metamorphic rocks show clear evidence for upward transport of slab-derived fluids, but geophysical measurements rarely image features that could constrain the mode of this fluid transport. The hottest subduction zones such as Cascadia pose a particular challenge, as the depths where hydrous minerals are stable seaward of trenches is limited, and much of the water is expected to depart the slab before reaching sub-arc depths. Here we improve our understanding of this problem by developing a new thermal model for central Cascadia, leveraging new results several onshore and offshore geophysical investigations, notably the iMUSH project (Imaging Magma Under mount St. Helens), to evaluate constraints on the fluid flux. Offshore onshore heat flow measurements require a cold forearc and preclude detectable shear heating. Several puzzles emerge. The first is that Mount St. Helens overlies a continuous subducting plate which has an upper surface only 65-70 km deep beneath the volcano, imaged by migrated scattered P coda. This location, together with heat flow observations and inferences from the strength of the upper plate Moho, place the volcano over a cold forearc mantle wedge that is substantially hydrated. It is unclear how the wide range of magmas at Mount St. Helens could emerge in this setting since many have mantle origin. A second puzzle is that a large velocity step, about 10% in Vs, is seen along the slab Moho to depths exceeding 90 km where thermal models predict the subducting crust is in eclogite facies; eclogite and peridotite should have nearly indistinguishable Vs. Possibly a gabbroic oceanic crust persists metastably well below the arc, or perhaps the interface represents a deeper hydration front rather than petrologic Moho. A third puzzle is the persistent indication of H2O in arc magmas here despite almost certain dehydration of subducting sediments and upper oceanic crust. This indicates substantial H2O delivered by hydrated mantle lithosphere despite seismic evidence offshore for very little hydration. Perhaps the subducting lower crust carries more H2O than previously thought, or H2O transports structurally downward into the slab after subduction commences. Overall, substantial evidence exists for lateral transport of hydrous fluids in their path from slab to surface.
Seismic signatures of up- and down-going hydrothermal pathways along the East Pacific Rise 9ºN
NASA Astrophysics Data System (ADS)
Marjanovic, M.; Fuji, N.; Singh, S. C.; Belahi, T.
2016-12-01
Hydrothermal circulation along divergent plate boundaries plays an important role in the transfer of heat between Earth's lithosphere and deep ocean, evidenced by the presence of hydrothermal vents on the seafloor. Although the spatial distribution of different types of vents or fluid discharge zones is well documented, the distribution of fluid recharge zones and its flow pattern within the oceanic crust are still elusive. Here, we apply seismic elastic full waveform inversion techniques to extrapolated high-fidelity 2D along-axis seismic data collected in 2008 to characterise the nature of zero-age upper crust formed at the East Pacific Rise (EPR) within 9º15-57'N. The resulting velocity model shows prominent perturbation in background velocity in the northern part of the profile, where prolific hydrothermal and volcanic activities have been observed. This, 22 km wide region is represented by five low velocity anomalies (for 300 m/s lower) that are 3 km wide and can be tracked to up to 1 km below the seafloor. Two of the low velocity zones seem to underlay vent clusters centered at 9º47' and 9º50' that we relate to the presence of up-going pathways of the fluid. The three remaining low velocity zones (centered at 9º44', 9º48.5', 9º51') are more prominent and their extent roughly coincides with the previously identified fine-scale tectonic discontinuities. The results suggest these deviations of axial orientation observed in the seafloor, coupled with upper crustal fracturing that can be sustained for several 100s of years as ideal locations for seawater to penetrate more permeable crust on the ridge-axis and establish down-going pathway of hydrothermal flow. Similar scenario was suggested by micro-earthquakes within one small portion of the region during the last eruption. The presence of a strong axial melt lens and associated anomalous velocity zone indicate enhanced thermal regime within the area responsible for establishing and sustaining hydrothermal flow in the upper crust. Although similar low velocity regions are imaged in the vicinity of prominent third-order discontinuities at 9º17' and 9º37'N the underlying AML is shown to be mostly cristalized hindering the hydrothermal circulation process in the area.
NASA Astrophysics Data System (ADS)
Holm, Paul Martin; Søager, Nina; Dyhr, Charlotte Thorup; Nielsen, Mia Rohde
2014-05-01
Mafic basaltic-andesitic volcanic rocks from the Andean Southern Volcanic Zone (SVZ) exhibit a northward increase in crustal components in primitive arc magmas from the Central through the Transitional and Northern SVZ segments. New elemental and Sr-Nd-high-precision Pb isotope data from the Quaternary arc volcanic centres of Maipo (NSVZ) and Infernillo and Laguna del Maule (TSVZ) are argued to reflect mainly their mantle source and its melting. For the C-T-NSVZ, we identify two types of source enrichment: one, represented by Antuco in CSVZ, but also present northward along the arc, was dominated by fluids which enriched a pre-metasomatic South Atlantic depleted MORB mantle type asthenosphere. The second enrichment was by melts having the characteristics of upper continental crust (UCC), distinctly different from Chile trench sediments. We suggest that granitic rocks entered the source mantle by means of subduction erosion in response to the northward increasingly strong coupling of the converging plates. Both types of enrichment had the same Pb isotope composition in the TSVZ with no significant component derived from the subducting oceanic crust. Pb-Sr-Nd isotopes indicate a major crustal compositional change at the southern end of the NSVZ. Modelling suggests addition of around 2 % UCC for Infernillo and 5 % for Maipo.
Behrendt, John C.; Hutchinson, D.R.; Lee, M.; Thornber, C.R.; Tréhu, A.; Cannon, W.; Green, A.
1990-01-01
Deep-crustal and Moho reflections, recorded on vertical incidence and wide angle ocean bottom Seismometer (OBS) data in the 1986 GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) experiment, provide evidence for magmatic underplating and intrusions within the lower crust and upper mantle contemporaneous with crustal extension in the Midcontinent Rift system at 1100 Ma. The rift fill consists of 20-30 km (7-10 s) of basalt flows, secondary syn-rift volcaniclastic and post-basalt sedimentary rock. Moho reflections recorded in Lake Superior over the Midcontinent Rift system have times from 14-18 s (about 46 km to as great as 58 km) in contrast to times of about 11-13 s (about 36-42 km crustal thickness) beneath the surrounding Great Lakes. The Seismically complex deep-crust to mantle transition zone (30-60 km) in north-central Lake Superior, which is 100 km wider than the rift half-graben, reflects the complicated products of tectonic and magmatic interaction of lower-crustal and mantle components during evolution or shutdown of the aborted Midcontinent Rift. In effect, mantle was changed into crust by lowering Seismic velocity (through intrusion of lower density magmatic rocks) and increasing Moho (about 8.1 km s-1 depth.
NASA Astrophysics Data System (ADS)
Göğüş, Oğuz H.; Ueda, Kosuke
2018-06-01
Geodynamical models investigate the rheological and physical properties of the lithosphere that peels back (delaminates) from the upper-middle crust. Meanwhile, model predictions are used to relate to a set of observations in the geological context to the test the validity of delamination. Here, we review numerical and analogue models of delamination from these perspectives and provide a number of first-order topics which future modeling studies may address. Models suggest that the presence of the weak lower crust that resides between the strong mantle lithosphere (at least 100 times more viscous/stronger) and the strong upper crust is necessary to develop delamination. Lower crustal weakening may be induced by melt infiltration, shear heating or it naturally occurs through the jelly sandwich type strength profile of the continental lithosphere. The negative buoyancy of the lithosphere required to facilitate the delamination is induced by the pre-existing ocean subduction and/or the lower crustal eclogitization. Surface expression of the peeling back lithosphere has a distinct transient and migratory imprint on the crust, resulting in rapid surface uplift/subsidence, magmatism, heating and shortening/extension. New generation of geodynamical experiments can explain how different types of melting (e.g hydrated, dry melting) occurs with delamination. Reformation of the lithosphere after removal, three dimensional aspects, and the termination of the process are key investigation areas for future research. The robust model predictions, as with other geodynamic modeling studies should be reconciled with observations.
NASA Astrophysics Data System (ADS)
Wilcock, W.
2003-04-01
Hydrothermal circulation is the dominant mechanism for cooling young oceanic crust and knowledge of its depth, extent and timing is critical for our understanding of crustal accretion. At fast-spreading ridges there is considerable controversy regarding the importance of this process in the lower crust. Geochemical data indicate that high-temperature hydrothermal fluids react with the lower crust but they also suggest that the reactions are limited to a narrow temperature interval and involve relatively small volumes of fluid. As a result many geochemical studies conclude that high-temperature hydrothermal circulation plays a relatively small role in heat transport in the lower crust and occurs in a closed system that is isolated from upper crustal hydrothermal cells. In contrast, seismic observations on the fast spreading East Pacific Rise show that the mid-crustal axial magma chamber is underlain by a low velocity zone which is no more than 5-8 km wide throughout the lower crust and is interpreted as a region of elevated temperatures containing relatively low average melt fractions. Irrespective of the style of lower crustal accretion, simple physical considerations suggest that this structure is only thermally feasible if the lower crust cools by extensive hydrothermal circulation. Modeling studies indicate that this requires the permeability of the lower crust to temporarily reach at least ~10-13 m2. In order to reconcile the geochemical and geophysical data it is important to recognize that the thermal constraints do not require pervasive seawater circulation in the lower crust and can be satisfied by focused flow through narrow permeable zones spaced as far as about 1 km apart. Widely spaced regions of flow might be difficult to find in the field especially if the sampling strategies focus on the freshest outcrops. There is a tendency to overestimate the volume of fluid that must circulate through an open single-pass system. The fluid-rock ratios (0.2 - 1) inferred from oxygen isotope studies are often cited as evidence of limited circulation but when interpreted physically they are actually sufficient to transport a substantial proportion of the heat required to solidify and cool the lower crust. Nevertheless the geophysical constraints are also compatible with circulation in a two-layer double diffusive system favored by many researchers, in which the lower crust is cooled by a recirculating brine cell.
Crustal Growth: In Defense of the Dogma
NASA Astrophysics Data System (ADS)
Albarede, F.; Blichert-Toft, J.; Guitreau, M.
2012-12-01
Plate tectonics was not even in its teens when Armstrong suggested that mantle and crust have interacted at steady-state over Earth's history. With the help of new geochemical tools and large-scale compilations, the concept of steady-state crust (as opposed to continuous crustal growth) is being revived with the implications that the equivalent of several volumes of present-day crust (PDCV) may have been subducted through geological times. Here we argue --or recall-- that four different lines of evidence invalidate this model. (i) The subduction filter must be particularly efficient for argon, even more so than for LILE and most other volatile elements. Atmosphere collects 40Ar degassed from both the extant crust and the crust dragged down at subduction zones over geological time. Regardless of the residence time of the crust at the surface, the amount of atmospheric 40Ar limits subduction of continental crust into the mantle to < 30% of the PDCV [1]. (ii) EM II, the only component that undoubtedly represents subducted continental crust in oceanic basalts, is extremely uncommon. (iii) Crustal age histograms are irrepressibly episodic. It has been argued that erosion selectively removes the crust with the elusive ages [2]. Ages of detrital zircons, which in the selective erosion conjecture should fill the voids, do not support this view [3]. Episodicity is difficult to reconcile with a continental protolith isolated by the common geological processes working either at mid-ocean ridges or subduction zones. A role may be recognized for Wilson cycles, if they can be shown to have prevailed for the entire history of the Earth. Geochemistry demonstrates that superplume material makes up the crustal protolith of all the major juvenile provinces. (iv) The residence time in the mantle of the elements distinctive of the crust is similar to the age of the Earth or even longer [4]. Continental crust finds its source in the instabilities of the lower mantle and the irreversible extraction of its low-melting point components, not in the steady-state processing of the rather barren upper mantle. This is why we surmise that steady-state does not provide an adequate account of crustal dynamics. [1] Coltice, N. et al. Science 288 (2000) 845 [2] Gurnies, M. & Davies, G. J. Geol. 14 (1986) 396 [3] Guitreau, M. et al., Earth Planet. Sci. Lettes 337-338 (2012) 211 [4] Albarede, F. AGU Monogr. 160 (2005) 25.
NASA Astrophysics Data System (ADS)
Barantsrva, O.; Artemieva, I. M.; Thybo, H.
2015-12-01
We present the results of gravity modeling for the North Atlantic region based on interpretation of GOCE gravity satellite data. First, to separate the gravity signal caused by density anomalies within the crust and the upper mantle, we subtract the lower harmonics in the gravity field, which are presumably caused by deep density structure of the Earth (the core and the lower mantle). Next, the gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crustal model. Our "basic model" is constrained by a recent regional seismic model EUNAseis for the crustal structure (Artemieva and Thybo, 2013); for bathymetry and topography we use a global ETOPO1 model by NOAA. We test sensitivity of the results to different input parameters, such as bathymetry, crustal structure, and gravity field. For bathymetry, we additionally use GEBCO data; for crustal correction - a global model CRUST 1.0 (Laske, 2013); for gravity - EGM2008 (Pavlis, 2012). Sensitivity analysis shows that uncertainty in the crustal structure produces the largest deviation from "the basic model". Use of different bathymetry data has little effect on the final results, comparable to the interpolation error. The difference in mantle residual gravity models based on GOCE and EMG2008 gravity data is 5-10 mGal. The results based on two crustal models have a similar pattern, but differ significantly in amplitude (ca. 250 mGal) for the Greenland-Faroe Ridge. The results demonstrate the presence of a strong gravity and density heterogeneity in the upper mantle in the North Atlantic region. A number of mantle residual gravity anomalies are robust features, independent of the choice of model parameters. This include (i) a sharp contrast at the continent-ocean transition, (ii) positive mantle gravity anomalies associated with continental fragments (microcontinents) in the North Atlantic ocean; (iii) negative mantle gravity anomalies which mark regions with anomalous oceanic mantle and the Mid-Atlantic Ridge. To understand better a complex geodynamics mosaic in the region, we compare our results with regional geochemical data (Korenaga and Klemen, 2000), and find that residual mantle gravity anomalies are well correlated with anomalies in epsilon-Nd and iron-depletion.
Magma Supply of Southwest Indian Ocean: Implication from Crustal Thickness Anomalies
NASA Astrophysics Data System (ADS)
Chiheng, L.; Jianghai, L.; Huatian, Z.; Qingkai, F.
2017-12-01
The Southwest Indian Ridge (SWIR) is one of the world's slowest spreading ridges with a full spreading rate of 14mm a-1, belonging to ultraslow spreading ridge, which are a novel class of spreading centers symbolized by non-uniform magma supply and crustal accretion. Therefore, the crustal thickness of Southwest Indian Ocean is a way to explore the magmatic and tectonic process of SWIR and the hotspots around it. Our paper uses Residual Mantle Bouguer Anomaly processed with the latest global public data to invert the relative crustal thickness and correct it according to seismic achievements. Gravity-derived crustal thickness model reveals a huge range of crustal thickness in Southwest Indian Ocean from 0.04km to 24km, 7.5km of average crustal thickness, and 3.5km of standard deviation. In addition, statistics data of crustal thickness reveal the frequency has a bimodal mixed skewed distribution, which indicates the crustal accretion by ridge and ridge-plume interaction. Base on the crustal thickness model, we divide three types of crustal thickness in Southwest Indian Ocean. About 20.31% of oceanic crust is <4.8km thick designated as thin crust, and 60.99% is 4.8-9.8km thick as normal crust. The remaining 18.70% is >9.8km thick as thick crust. Furthermore, Prominent thin crust anomalies are associated with the trend of most transform faults, but thick crust anomalies presents to northeast of Andrew Bain transform fault. Cold and depleted mantle are also the key factors to form the thin crust. The thick crust anomalies are constrained by hotspots, which provide abundant heat to the mantle beneath mid-ocean ridge or ocean basin. Finally, we roughly delineate the range of ridge-plume interaction and transform fault effect.
ERIC Educational Resources Information Center
Francheteau, Jean
1983-01-01
The earth's oceanic crust is created and destroyed in a flow outward from midocean ridges to subduction zones, where it plunges back into the mantle. The nature and dynamics of the crust, instrumentation used in investigations of this earth feature, and research efforts/findings are discussed. (JN)
Chabaux, F.; O'Nions, R. K.; Cohen, A.S.; Hein, J.R.
1997-01-01
A detailed TIMS study of (234Uexc/238U), (230Th/232Th), and Th/U ratios have been performed on the outermost margin of ten hydrogenous Fe-Mn crusts from the equatorial Pacific Ocean and west-central Indian Ocean. Th/U concentration ratios generally decrease from the crust's surface down to 0.5-1 mm depth and growth rates estimated by uranium and thorium isotope ratios are significantly different in Fe-Mn crusts from the Peru Basin and the west-central Indian Ocean. Fe-Mn crusts from the same geographical area define a single trend in plots of Ln (234Uexc/238U) vs. Ln(230Th/232Th) and Th/U ratios vs. age of the analysed fractions. Results suggest that (1) hydrogenous Fe-Mn crusts remain closed-systems after formation, and consequently (2) the discrepancy observed between the 230Th and 234U chronometers in Fe-Mn crusts, and the variations of the Th/U ratios through the margin of Fe-Mn crusts, are not due to redistribution of uranium and thorium isotopes after oxyhydroxide precipitation, but rather to temporal variations of both Th/U and initial thorium activity ratios recorded by the Fe-Mn layers. Implications of these observations for determination of Fe-Mn crust growth-rates are discussed. Variations of both Th/U and initial Th activity ratios in Fe-Mn crusts might be related to changes in particle input to seawater and/or changes in ocean circulation during the last 150 ka. Copyright ?? 1997 Elsevier Science Ltd.
The African Plate: A history of oceanic crust accretion and subduction since the Jurassic
NASA Astrophysics Data System (ADS)
Gaina, C.; Torsvik, T. H.; Labails, C.; van Hinsbergen, D.; Werner, S.; Medvedev, S.
2012-04-01
Initially part of Gondwana and Pangea, and now surrounded almost entirely by spreading centres, the African plate moved relatively slowly for the last 200 million years. Yet both Africa's cratons and passive margins were affected by tectonic stresses developed at distant plate boundaries. Moreover, the African plate was partly underlain by hot mantle (at least for the last 300 Ma) - either a series of hotspots or a superswell, or both - that contributed to episodic volcanism, basin-swell topography, and consequent sediment deposition, erosion, and structural deformation. A systematic study of the African plate boundaries since the opening of surrounding oceanic basins is presently lacking. This is mainly because geophysical data are sparse and there are still controversies regarding the ages of oceanic crust. The publication of individual geophysical datasets and more recently, global Digital Map of Magnetic Anomalies (WDMAM, EMAG2) prompted us to systematically reconstruct the ages and extent of oceanic crust around Africa for the last 200 Ma. Location of Continent Ocean Boundary/Continent Ocean Transition and older oceanic crust (Jurassic and Cretaceous) are updates in the light of gravity, magnetic and seismic data and models of passive margin formation. Reconstructed NeoTethys oceanic crust is based on a new model of microcontinent and intr-oceanic subduction zone evolution in this area.The new set of oceanic palaeo-age grid models constitutes the basis for estimating the dynamics of oceanic crust through time and will be used as input for quantifying the paleo-ridge push and slab pull that contributed to the African plate palaeo-stresses and had the potential to influence the formation of sedimentary basins.
Crustal structure and origin of the Eggvin Bank west of Jan Mayen, NE Atlantic
NASA Astrophysics Data System (ADS)
Tan, Pingchuan; Breivik, Asbjørn Johan; Trønnes, Reidar G.; Mjelde, Rolf; Azuma, Ryosuke; Eide, Sigurd
2017-01-01
The Eggvin Bank, located between the Jan Mayen Island and Greenland, is an unusually shallow area containing several submarine volcanic peaks, confined by two transforms on the Northern Kolbeinsey Ridge (NKR). We represent P and S wave velocity models for the Eggvin Bank based on an Ocean Bottom Seismometer profile collected in 2011, showing igneous crustal thickness variations from 8 km to 13 km. A 2-5 km increase is associated with two separate 20-30 km wide segments under the main seamounts. The oceanic crust has three layers: upper crust (L2A: 2.8-4.8 km/s), middle crust (L2B: 5.5-6.5 km/s), and lower crust (L3: 6.7-7.35 km/s). Both the thick layer 2(A/B) and the high ratio of layer 2(A/B) thickness to total crustal thickness indicate that secondary, intraplate magmatism built the seamounts of the Eggvin Bank. The seamount in the north where the crust is thickest has a flat top indicating subaerial exposure but is deeper than those with rounded tops in the south and is therefore probably older. Comparing lower crustal seismic velocity with crustal thickness also indicates that the degree of mantle melting may be higher in the north than in the south. An enriched mantle source presently feeds the NKR magmatism and probably influenced the Eggvin Bank development also at earlier times. To what extent the Eggvin Bank has been influenced by the Iceland plume is uncertain, both an enriched mantle component and elevated mantle temperature may have played a role at different times and locations.
NASA Astrophysics Data System (ADS)
Li, Fucheng; Sun, Zhen; Zhang, Jiangyang
2018-06-01
Although the presence of low-viscosity middle crustal layer in the continental crust has been detected by both geophysical and geochemical studies, its influence on the deformation behavior of continental crust during subduction remains poorly investigated. To illustrate the crustal deformation associated with layered crust during continental subduction, we conducted a suite of 2-D thermo-mechanical numerical studies with visco-brittle/plastic rheology based on finite-differences and marker-in-cell techniques. In the experiments, we established a three-layer crustal model with a quartz-rich middle crustal layer embedded between the upper and lower continental crust. Results show that the middle crustal layer determines the amount of the accreted upper crust, maximum subduction depth, and exhumation path of the subducted upper crust. By varying the initial effective viscosity and thickness of the middle crustal layer, the further effects can be summarized as: (1) a rheologically weaker and/or thicker middle crustal layer results in a larger percentage of the upper crust detaching from the underlying slab and accreting at the trench zone, thereby leading to more serious crustal deformation. The rest of the upper crust only subducts into the depths of high pressure (HP) conditions, causing the absence of ultra-high pressure (UHP) metamorphic rocks; (2) a rheologically stronger and/or thinner middle crustal layer favors the stable subduction of the continental crust, dragging the upper crust to a maximum depth of ∼100 km and forming UHP rocks; (3) the middle crustal layer flows in a ductile way and acts as an exhumation channel for the HP-UHP rocks in both situations. In addition, the higher convergence velocity decreases the amount of subducted upper crust. A detailed comparison of our modeling results with the Himalayan collisional belt are conducted. Our work suggests that the presence of low-viscosity middle crustal layer may be another possible mechanism for absence of UHP rocks in the southern Tibet.
Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes
Got, J.-L.; Monteiller, V.; Monteux, J.; Hassani, R.; Okubo, P.
2008-01-01
Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process - emission of magma onto the oceanic crust - the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes. ??2008 Nature Publishing Group.
Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes.
Got, Jean-Luc; Monteiller, Vadim; Monteux, Julien; Hassani, Riad; Okubo, Paul
2008-01-24
Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process--emission of magma onto the oceanic crust--the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes.
Upper-mantle water stratification inferred from observations of the 2012 Indian Ocean earthquake.
Masuti, Sagar; Barbot, Sylvain D; Karato, Shun-Ichiro; Feng, Lujia; Banerjee, Paramesh
2016-10-20
Water, the most abundant volatile in Earth's interior, preserves the young surface of our planet by catalysing mantle convection, lubricating plate tectonics and feeding arc volcanism. Since planetary accretion, water has been exchanged between the hydrosphere and the geosphere, but its depth distribution in the mantle remains elusive. Water drastically reduces the strength of olivine and this effect can be exploited to estimate the water content of olivine from the mechanical response of the asthenosphere to stress perturbations such as the ones following large earthquakes. Here, we exploit the sensitivity to water of the strength of olivine, the weakest and most abundant mineral in the upper mantle, and observations of the exceptionally large (moment magnitude 8.6) 2012 Indian Ocean earthquake to constrain the stratification of water content in the upper mantle. Taking into account a wide range of temperature conditions and the transient creep of olivine, we explain the transient deformation in the aftermath of the earthquake that was recorded by continuous geodetic stations along Sumatra as the result of water- and stress-activated creep of olivine. This implies a minimum water content of about 0.01 per cent by weight-or 1,600 H atoms per million Si atoms-in the asthenosphere (the part of the upper mantle below the lithosphere). The earthquake ruptured conjugate faults down to great depths, compatible with dry olivine in the oceanic lithosphere. We attribute the steep rheological contrast to dehydration across the lithosphere-asthenosphere boundary, presumably by buoyant melt migration to form the oceanic crust.
NASA Astrophysics Data System (ADS)
Van der Werf, Thomas F.; Chatzaras, Vasileios; Tikoff, Basil; Drury, Martyn R.
2016-04-01
Baja California is an active transtensional rift zone, which links the San Andreas Fault with the East Pacific Rise. The erupted basalts of the Holocene San Quintin volcanic field contain xenoliths, which sample the lower crust and upper mantle beneath Baja California. The aim of this research is to gain insight in the rheology of the lower crust and the upper mantle by investigating the xenolith microstructure. Microstructural observations have been used to determine the dominant deformation mechanisms. Differential stresses were estimated from recrystallized grain size piezometry of plagioclase and clinopyroxene for the lower crust and olivine for the upper mantle. The degree of deformation can be inferred from macroscopic foliations and the deformation microstructures. Preliminary results show that both the lower crust and the upper mantle have been affected by multiple stages of deformation and recrystallization. In addition the dominant deformation mechanism in both the lower crust and the upper mantle is dislocation creep based on the existence of strong crystallographic preferred orientations. The differential stress estimates for the lower crust are 10-29 MPa using plagioclase piezometry and 12-35 MPa using clinopyroxene piezometry. For the upper mantle, differential stress estimates are 10-20 MPa. These results indicate that the strength of the lower crust and the upper mantle are very similar. Our data do not fit with the general models of lithospheric strength and may have important implications for the rheological structure of the lithosphere in transtensional plate margins and for geodynamic models of the region.
Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle
Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua
2017-01-01
Earth’s water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg0.9Fe0.1)2SiO4 (Fo90) up to 15 gigapascals using an ultrafast optical pump−probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine−wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone. PMID:28377520
Continental crustal composition and lower crustal models
NASA Technical Reports Server (NTRS)
Taylor, S. R.
1983-01-01
The composition of the upper crust is well established as being close to that of granodiorite. The upper crustal composition is reflected in the uniform REE abundances in shales which represent an homogenization of the various REE patterns. This composition can only persist to depths of 10-15 km, for heat flow and geochemical balance reasons. The composition of the total crust is model dependent. One constraint is that it should be capable of generating the upper granodioritic (S.L.) crust by partial melting within the crust. This composition is based on the andesite model, which assumes that the total crust has grown by accretion of island arc material. A representation of the growth rate of the continental crust is shown. The composition of the lower crust, which comprises 60-80% of the continental crust, remains a major unknown factor for models of terrestrial crustal evolution. Two approaches are used to model the lower crust.
NASA Astrophysics Data System (ADS)
Brookfield, M. E.
2000-12-01
The Tien Shan form a high intracontinental mountain belt, lying north of the main India-Asia collision mountains, and consist of re-activated Paleozoic orogens. The western segment of the southern Tien Shan lies northwest of the Pamir and west of the Talas-Fergana fault. The stratigraphy, lithology, igneous and metamorphic petrology and geochemistry of this segment indicate that it was formed by the assembly of Lower Paleozoic arcs which developed into microcontinents with Upper Paleozoic mature shelf and slope clastic and carbonate sediments. Precambrian continental crust is confined to two small blocks along its southern margin. The bulk of the southern Tien Shan consists of ?Vendian to Silurian oceanic and slope clastic rocks, resting on oceanic lithosphere, and overlain by thick passive margin Devonian to mid-Carboniferous mature shelf clastics and carbonates. These are unconformably overlain by syn- and post-orogenic immature clastic sediments derived from mountains on the north formed by closure of a Carboniferus southern Tajik and a northern Vendian to Carboniferous Turkestan ocean with the southern Tien Shan microcontinent sandwiched between. Associated with these collisions are late Carboniferous to Permian intrusives, which form three south to north (though overlapping) suites; a southern calc-alkaline granodiorite-granite suite, an intermediate gabbro-monzodiorite-granite suite, and a northern alkaline monzodiorite-granite-alaskite suite. The gabbro-monzodiorite-granite suite forms the earliest subduction-related magmatism of the southern Tien Shan: rare earth element patterns are consistent with derivation from a primitive or slightly enriched mantle. The other suites show more crustal contamination. Rb and Sr vary with depth and degree of partial melting and are consistent with progressive involvement of crustal material in partial melts during collision. The gradual change in composition within each complex, lasting in some cases from 295 to 250 Ma (the entire Permian), may be explained by a consecutive shift in the melting sedimentary cover of the subducting plate from oceanic crust through transitional crust to marginal continental crust. Like the Central Asian orogenic belt (the main focus of IGCP 420), the Tien Shan represent a net addition of continental crust during the Phanerozoic. Very little of the belt has any Precambrian precursor.
Spectroscopic Characterization of Mineralogy Across Vesta: Evidence of Different Lithologies
NASA Technical Reports Server (NTRS)
De Sanotis, M. C.; Ammannito, E.; Filacchione, G.; Capria, M. T.; Tosi, F.; Capaccioni, F.; Zambon, F.; Carraro, F.; Fonte, S.; Frigeri, A.;
2012-01-01
The average spectrum of Vesta, obtained by VIR in the range 0.25-5.1 microns, shows clear evidence of absorption bands due to pyroxenes and thermal emissions beyond 3.5 11m. Vesta shows considerable variability across its surface in terms of spectral reflectance and emission, band depths, bands widths and bands centers, reflecting a complex geological history. Vesta's average spectrum and inferred mineralogy resemble those of howardite meteorites. On a regional scale, significant deviations are seen: the south polar 500km Rheasilvia impact crater has a higher diogenitic component, and equatorial regions show a higher eucritic component. This lithologic distribution, with a concentration of Mg-pyroxenes in the Rheasilvia area, reinforces the hypothesis of a deeper diogenitic crust excavated by the impact that formed the Rheasilvia crater, and an upper eucritic crust, whose remnants are seen in the equatorial region. This scenario has implications for Vesta differentiation, consistent with magma ocean models. However, serial magmatism models could also have concentrated pyroxene cumulates in plutons emplaced within the lower crust,
Rift migration explains continental margin asymmetry and crustal hyper-extension
Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan V.
2014-01-01
When continents break apart, continental crust and lithosphere are thinned until break-up is achieved and an oceanic basin is formed. The most remarkable and least understood structures associated with this process are up to 200 km wide areas of hyper-extended continental crust, which are partitioned between conjugate margins with pronounced asymmetry. Here we show, using high-resolution thermo-mechanical modelling, that hyper-extended crust and margin asymmetry are produced by steady state rift migration. We demonstrate that rift migration is accomplished by sequential, oceanward-younging, upper crustal faults, and is balanced through lower crustal flow. Constraining our model with a new South Atlantic plate reconstruction, we demonstrate that larger extension velocities may account for southward increasing width and asymmetry of these conjugate magma-poor margins. Our model challenges conventional ideas of rifted margin evolution, as it implies that during rift migration large amounts of material are transferred from one side of the rift zone to the other. PMID:24905463
Relic magma chamber structures preserved within the Mesozoic North Atlantic crust?
McCarthy, J.; Mutter, J.C.; Morton, J.L.; Sleep, Norman H.; Thompson, G.A.
1988-01-01
The North Atlantic Transect seismic reflection data, collected southwest of Bermuda, have been reinterpreted following post-stack migration and reveal two major intracrustal reflections. The shallower of these two events, located ~1 s below the igneous basement, is a subhorizontal, undulating surface that in some places is continuous for as much as 10 km. This upper crustal reflection corresponds to the intermittently sharp contact between the sheeted dikes and the underlying isotropic gabbro. A second set of lower crustal reflections, dipping ~20??-40?? eastward, is also prominent on the migrated profile and terminates downdip against the subhorizontal reflection Moho. Their presence may be ascribed to mafic-ultramafic cumulate layers frozen into the oceanic crust at the time of formation at the paleo-spreading center. The gradual thinning in the crust approaching the fracture zones is shown to be more complex than was originally inferred. An intepretation advocating crustal thickening in this narrow zone is proposed as an alternative to the crustal-thinning model of Mutter and others. -from Authors
Constraining Mantle Differentiation Processes with La-Ce and Sm-Nd Isotope Systematics
NASA Astrophysics Data System (ADS)
Willig, M.; Stracke, A.
2016-12-01
Cerium (Ce) and Neodymium (Nd) isotopic ratios in oceanic basalts reflect the time integrated La-Ce and Sm-Nd ratios, and hence the extent of light rare earth element element (LREE) depletion or enrichment of their mantle sources. New high precision Ce-Nd isotope data from several ocean islands define a tight array in ԑCe-ԑNd space with ԑNd = -8.2±0.4 ԑCe + 1.3±0.9 (S.D.), in good agreement with previous data [1, 2]. The slope of the ԑCe-ԑNd array and the overall isotopic range are sensitive indicators of the processes that govern the evolution of the mantle's LREE composition. A Monte Carlo approach is employed to simulate continuous mantle-crust differentiation by partial melting and recycling of crustal materials. Partial melting of mantle peridotites produces variably depleted mantle and oceanic crust, which evolve for different time periods, before the oceanic crust is recycled back into the mantle including small amounts of continental crust (GLOSS [3]). Subsequently, depleted mantle and recycled materials of variable age and composition melt, and the respective melts mix in different proportions. Mixing lines strongly curve towards depleted mantle, and tend to be offset from the data for increasingly older and more depleted mantle. Observed ԑCe-ԑNd in ridge [1] and ocean island basalts and the slope of the ԑCe-ԑNd array therefore define upper limits for the extent and age of LREE depletion preserved in mantle peridotites. Very old average mantle depletion ages (> ca. 1-2 Ga) for the bulk of the mantle are difficult to reconcile with the existing ԑCe-ԑNd data, consistent with the range of Nd-Hf-Os model ages in abyssal peridotites [4-6]. Moreover, unless small amounts of continental crust are included in the recycled material, it is difficult to reproduce the relatively shallow slope of the ԑCe-ԑNd array, consistent with constraints from the ԑNd - ԑHf mantle array [7]. [1] Makishima and Masuda, 1994 Chem. Geol. 118, 1-8. [2] Doucelance et al., 2014 EPSL 407, 175-186. [3] Plank, 2014 ToG, 607-629. [4] Stracke et al., 2011 EPSL 308, 359-368. [5] Mallick et al., 2014 G-cubed 15, 2438-2453. [6] Harvey et al., 2006 EPSL 244, 606-621. [7] Chauvel et al. 2008. Nat. Geosci. 1, 64 - 67.
Magma-poor vs. magma-rich continental rifting and breakup in the Labrador Sea
NASA Astrophysics Data System (ADS)
Gouiza, M.; Paton, D.
2017-12-01
Magma-poor and magma-rich rifted margins show distinct structural and stratigraphic geometries during the rift to breakup period. In magma-poor margins, crustal stretching is accommodated mainly by brittle faulting and the formation of wide rift basins shaped by numerous graben and half-graben structures. Continental breakup and oceanic crust accretion are often preceded by a localised phase of (hyper-) extension where the upper mantle is embrittled, serpentinized, and exhumed to the surface. In magma-rich margins, the rift basin is narrow and extension is accompanied by a large magmatic supply. Continental breakup and oceanic crust accretion is preceded by the emplacement of a thick volcanic crust juxtaposing and underplating a moderately thinned continental crust. Both magma-poor and magma-rich rifting occur in response to lithospheric extension but the driving forces and processes are believed to be different. In the former extension is assumed to be driven by plate boundary forces, while in the latter extension is supposed to be controlled by sublithospheric mantle dynamics. However, this view fails in explaining observations from many Atlantic conjugate margins where magma-poor and magma-rich segments alternate in a relatively abrupt fashion. This is the case of the Labrador margin where the northern segment shows major magmatic supply during most of the syn-rift phase which culminate in the emplacement of a thick volcanic crust in the transitional domain along with high density bodies underplating the thinned continental crust; while the southern segment is characterized mainly by brittle extension, mantle seprentinization and exhumation prior to continental breakup. In this work, we use seismic and potential field data to describe the crustal and structural architectures of the Labrador margin, and investigate the tectonic and mechanical processes of rifting that may have controlled the magmatic supply in the different segments of the margin.
NASA Astrophysics Data System (ADS)
Kastner, M.; Elderfield, H.; Martin, J. B.
1991-05-01
The nature and origin of fluids in convergent margins can be inferred from geochemical and isotopic studies of the venting and pore fluids, and is attempted here for the Barbados Ridge, Nankai Trough and the convergent margin off Peru. Venting and pore fluids with lower than seawater Cl- concentrations characterize all these margins. Fluids have two types of source: internal and external. The three most important internal sources are: (1) porosity reduction; (2) diagenetic and metamorphic dehydration; and (3) the breakdown of hydrous minerals. Gas hydrate formation and dissociation, authigenesis of hydrous minerals and the alteration of volcanic ash and/or the upper oceanic crust lead to a redistribution of the internal fluids and gases in vertical and lateral directions. The maximum amount of expelled water calculated can be ca. 7 m3 a-1 m-1, which is much less than the tens to more than 100 m3 a-1 m-1 of fluid expulsion which has been observed. The difference between these figures must be attributed to external fluid sources, mainly by transport of meteoric water enhanced by mixing with seawater. The most important diagenetic reactions which modify the fluid compositions, and concurrently the physical and even the thermal properties of the solids through which they flow are: (1) carbonate recrystallization, and more importantly precipitation; (2) bacterial and thermal degradation of organic matter; (3) formation and dissociation of gas hydrates; (4) dehydration and transformation of hydrous minerals, especially of clay minerals and opal-A; and (5) alteration, principally zeolitization and clay mineral formation, of volcanic ash and the upper oceanic crust.
NASA Astrophysics Data System (ADS)
Xu, Yi-Gang
2014-10-01
Major, trace element and Sr-Nd-Pb isotopic data of basalts emplaced during 90-40 Ma in the North and Northeast China are compiled in this review, with aims of constraining their petrogenesis, and by inference the evolution of the North China Craton during the late Cretaceous and early Cenozoic. Three major components are identified in magma source, including depleted component I and II, and an enriched component. The depleted component I, which is characterized by relatively low 87Sr/86Sr (<0.7030), moderate 206Pb/204Pb (18.2), moderately high εNd (∼4), high Eu/Eu∗ (>1.1) and HIMU-like trace element characteristics, is most likely derived from gabbroic cumulate of the oceanic crust. The depleted component II, which distinguishes itself by its high εNd (∼8) and moderate 87Sr/86Sr (∼0.7038), is probably derived from a sub-lithospheric ambient mantle. The enriched component has low εNd (2-3), high 87Sr/86Sr (>0.7065), low 206Pb/204Pb (17), excess Sr, Rb, Ba and a deficiency of Zr and Hf relative to the REE. This component is likely from the basaltic portion of the oceanic crust, which is variably altered by seawater and contains minor sediments. Comparison with experimental melts and trace element modeling suggest that these recycled oceanic components may be in form of garnet pyroxenite/eclogite. These components are young (<0.5 Ga) and show an Indian-MORB isotopic character. Given the share of this isotopic affinity by the extinct Izanaghi-Pacific plate, currently stagnated within the mantle transition zone, we propose that it ultimately comes from the subducted Pacific slab. Eu/Eu∗ and 87Sr/86Sr of the 90-40 Ma magmas increases and decreases, respectively, with decreasing emplacement age, mirroring a change in magma source from upper to lower parts of subducted oceanic crust. Such secular trends are created by dynamic melting of a heterogeneous mantle containing recycled oceanic crust. Due to different melting temperature of the upper and lower ocean crust and progressive thinning of the lithosphere, the more fertile basaltic crustal component is preferentially sampled during the early stage of volcanism, whereas the more depleted gabbroic lower crust and lithospheric mantle components are preferentially sampled during a late stage. This model is consistent with a protracted destruction process of the lithosphere beneath eastern China. The presence of significant recycled oceanic crust components in the 90-40 Ma basalts highlights the influence of Pacific subduction on the deep processes in the North China Craton, which can be traced back at least to the late Cretaceous. This, along with the conjugation of crustal deformation pattern in this region with the movement of the Pacific plate, makes the Pacific subduction as a potential trigger of the destruction of the North China Craton. Geophysical investigations and morphological analyses indicate that decratonization is largely confined to east of the NSGL, whereas to west of NSGL, in particular the Ordos basin, characteristics typical of a craton are observed (Menzies et al., 2007; Zhu et al., 2011). This spatial pattern of craton destruction, together with NE-NNE-oriented extensional basins, main structural alignments and metamorphic core complexes (Zheng et al., 1978; Ye et al., 1987; Ren et al., 2002; Liu et al., 2006; Zhu G et al., 2012), is consistent with the subduction direction of the Pacific plate. Two main episodes of late Mesozoic magmatism have been identified in the Jurassic and the early Cretaceous. These correspond to the subduction of the Pacific plate underneath the Eurasian content and to subsequent extensions, respectively (Wu et al., 2005, 2006). Global tomography studies indicate that the subducted Pacific oceanic slab has become stagnant within the mantle transition zone and extended subhorizontally westward beneath the East Asian continent (Fukao et al., 1992; Huang and Zhao, 2006; Chen and Ai, 2009; Van der Hilst and Li, 2010). The western end of this stagnant slab does not go beyond the NNE-trending NSGL (Huang and Zhao, 2006; Xu, 2007). Given the subduction of Pacific plate underneath eastern Asian continent, the slab-derived materials are expected to be involved in the sources of the Mesozoic-Cenozoic magmas in this region. Recent studies have shown the ubiquitous presence of subduction-related components in late Cenozoic basalts in eastern China (Zhang et al., 2009; Xu et al., 2012b; Sakuyama et al., 2013). However, it remains unclear whether similar recycled oceanic components are present in earlier basalts (i.e., those emplaced during 90-40 Ma, Fig. 1), for which high quality geochemical data are not available until very recently (Zhang et al., 2008; Kuang et al., 2012; Xu et al., 2012a). In addition, the provenance of recycled oceanic components, if any, is highly relevant to the proposal of the Pacific subduction as one of the possible triggers of the destruction of the NCC. The timing of the first appearance of oceanic components in magmas will provide constraints on the role of the Pacific subduction on the evolution of the NCC.The objective of this study is to review and compile major, trace elements and Sr-Nd-Pb isotopic compositions of mafic magmas emplaced since 90 Ma in North and Northeastern China, and to use these data to elaborate their petrogenesis. We will demonstrate the ubiquitous involvement of subduction-related components in the magma sources. Furthermore, temporal variation in geochemical features suggests that different parts of the recycled oceanic crust are preferentially sampled at different time. In collaborating with melting solidus temperature and the melting column concept, this is interpreted as differential melting of upwelling heterogeneous mantle as a result of lithospheric thinning. The peculiar isotopic compositions of these oceanic crust components suggests a link with the subducted Pacific slab, which currently stagnates at the mantle transition zone beneath the eastern Asian continental margin (Fukao et al., 1992; Huang and Zhao, 2006). This study therefore provides petrological evidence for the effect of Pacific subduction on the studied region, rendering the Pacific subduction as a potential trigger of the destruction of the NCC.
NASA Astrophysics Data System (ADS)
Rudnick, R. L.; Gaschnig, R. M.; Li, S.; Tang, M.; Qiu, L.; Valley, J. W.; Zurkowski, C.; McDonough, W. F.
2014-12-01
The upper continental crust (UCC), the interface between the atmosphere and solid Earth, is the site of weathering that produces sedimentary rocks, influences ocean chemistry through runoff of soluble elements, and affects climate through CO2 draw-down. The UCC also contains more than 50% of the crust's highly incompatible element budget (including K, Th, and U). Therefore, understanding its composition and evolution provides insight into how continents have formed, evolved, and interacted with the hydrosphere. New major and trace element compositions of >100 glacial diamictites and >100 Archean shales, plus δ7Li and δ18O for a subset of these samples, combined with data from the literature, show that the average composition of the UCC has changed through time, reflecting both the rise of atmospheric oxygen and its attendant effects on weathering, as well as the mode of crust formation and differentiation. Some changes that occur as a step function near the Archean/Proterozoic boundary (increased Th/U, decreased Mo/Pr, V/Lu) reflect the rise of oxygen at the great oxidation event (GOE) and its influence on chemical weathering signatures in the UCC. Other changes are more gradual with time (e.g., higher Th/Sc and δ18O, lower Ni/Co, La/Nb, Eu/Eu* and transition metal abundances) and reflect an UCC that has transitioned from a more mafic to a more felsic bulk composition, and which experienced increased interaction with the hydrosphere with time. The gradual nature of these compositional changes likely reflects the waning heat production of the Earth, rather than an abrupt change in tectonics or style of crust formation. These more gradual changes in crust composition, which contrast with the abrupt changes associated with the GOE, suggest that a fundamental change in the nature of crust differentiation is unlikely to be responsible for the rise of atmospheric oxygen (cf. Keller and Schoene, 2012). Indeed, it appears that the opposite may be true: that the rise of oxygen has influenced crust composition (and possibly differentiation).
Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite
NASA Astrophysics Data System (ADS)
Walowski, K. J.; Wallace, P. J.; Hauri, E. H.; Wada, I.; Clynne, M. A.
2015-05-01
Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water--subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate--is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab--hydrated mantle peridotite in the slab interior--compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.
Slab melting beneath the Cascades Arc driven by dehydration of altered oceanic peridotite
Walowski, Kristina J; Wallace, Paul J.; Hauri, E.H.; Wada, I.; Clynne, Michael A.
2015-01-01
Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water—subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate—is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab—hydrated mantle peridotite in the slab interior—compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.
No sodium in the vapour plumes of Enceladus.
Schneider, Nicholas M; Burger, Matthew H; Schaller, Emily L; Brown, Michael E; Johnson, Robert E; Kargel, Jeffrey S; Dougherty, Michele K; Achilleos, Nicholas A
2009-06-25
The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses.
NASA Astrophysics Data System (ADS)
Teixell, A.; Labaume, P.; Ayarza, P.; Espurt, N.; de Saint Blanquat, M.; Lagabrielle, Y.
2018-01-01
This paper provides a synthesis of current data and interpretations on the crustal structure of the Pyrenean-Cantabrian orogenic belt, and presents new tectonic models for representative transects. The Pyrenean orogeny lasted from Santonian ( 84 Ma) to early Miocene times ( 20 Ma), and consisted of a spatial and temporal succession of oceanic crust/exhumed mantle subduction, rift inversion and continental collision processes at the Iberia-Eurasia plate boundary. A good coverage by active-source (vertical-incidence and wide-angle reflection) and passive-source (receiver functions) seismic studies, coupled with surface data have led to a reasonable knowledge of the present-day crustal architecture of the Pyrenean-Cantabrian belt, although questions remain. Seismic imaging reveals a persistent structure, from the central Pyrenees to the central Cantabrian Mountains, consisting of a wedge of Eurasian lithosphere indented into the thicker Iberian plate, whose lower crust is detached and plunges northwards into the mantle. For the Pyrenees, a new scheme of relationships between the southern upper crustal thrust sheets and the Axial Zone is here proposed. For the Cantabrian belt, the depth reached by the N-dipping Iberian crust and the structure of the margin are also revised. The common occurrence of lherzolite bodies in the northern Pyrenees and the seismic velocity and potential field record of the Bay of Biscay indicate that the precursor of the Pyrenees was a hyperextended and strongly segmented rift system, where narrow domains of exhumed mantle separated the thinned Iberian and Eurasian continental margins since the Albian-Cenomanian. The exhumed mantle in the Pyrenean rift was largely covered by a Mesozoic sedimentary lid that had locally glided along detachments in Triassic evaporites. Continental margin collision in the Pyrenees was preceded by subduction of the exhumed mantle, accompanied by the pop-up thrust expulsion of the off-scraped sedimentary lid above. To the west, oceanic subduction of the Bay of Biscay under the North Iberian margin is supported by an upper plate thrust wedge, gravity and magnetic anomalies, and 3D inclined sub-crustal reflections. However, discrepancies remain for the location of continent-ocean transitions in the Bay of Biscay and for the extent of oceanic subduction. The plate-kinematic evolution during the Mesozoic, which involves issues as the timing and total amount of opening, as well as the role of strike-slip drift, is also under debate, discrepancies arising from first-order interpretations of the adjacent oceanic magnetic anomaly record.
NASA Astrophysics Data System (ADS)
de Jong, M. T.; Clark, J. F.; Neira, N. M.; Fisher, A. T.; Wheat, C. G.
2015-12-01
We present results from a gas tracer injection experiment in the ocean crust on the eastern flank of the Juan de Fuca Ridge, in an area of hydrothermal circulation. Sulfur hexafluoride (SF6) tracer was injected in Hole 1362B in 2010, during IODP Expedition 327. Fluid samples were subsequently collected from a borehole observatory (CORK) installed in this hole and similar CORKs in three additional holes (1026B, 1362A, and 1301A), located 300 to 500 m away. This array of holes is located on 3.5 My old seafloor, as an array oriented subparallel to the Endeavor Segment of Juan de Fuca Ridge. Borehole fluid samples were collected in copper coils using osmotic pumps. In addition to pumps at seafloor wellheads, downhole sampling pumps were installed in the perforated casing in the upper ocean crust. These downhole samplers were intended to produce a high-resolution continuous record of tracer concentrations, including records from the first year after tracer injection in Holes 1362A and 1362B. In contrast, wellhead samplers were not installed on these CORKs holes until 2011, and wellhead records from all CORKs have a record gap of up to one year, because of a delayed expedition in 2012. The downhole samples were recovered with the submersible Alvin in August 2014. SF6 concentrations in downhole samples recovered in 2014 are generally consistent with data obtained from wellhead samples. Of particular interest are the results from Hole 1362B, where a seafloor valve was opened and closed during various recovery expeditions. High resolution tracer curves produced from the 1362B downhole samples confirm that these operations produced an SF6 breakthrough curve corresponding to a classic push-pull test used to evaluate contaminant field locations in terrestrial setting. Complete analyses of downhole samples from these CORKs are expected to produce high-resolution breakthrough curves that will allow more precise analysis and modeling of hydrothermal flow in the study area.
Critical Metals In Western Arctic Ocean Ferromanganese Mineral Deposits
NASA Astrophysics Data System (ADS)
Hein, J. R.; Spinardi, F.; Conrad, T. A.; Conrad, J. E.; Genetti, J.
2013-12-01
Little exploration for minerals has occurred in the Arctic Ocean due to ice cover and the remote location. Small deposits of seafloor massive sulfides that are rich in copper and zinc occur on Gakkel Ridge, which extends from Greenland to the Laptev Sea, and on Kolbeinsey and Mohns ridges, both located between Greenland and mainland Europe. However, rocks were recently collected by dredge along the western margin of the Canada Basin as part of the U.S. Extended Continental Shelf (ECS) program north of Alaska. Sample sites include steep escarpments on the Chukchi Borderland, a newly discovered seamount informally named Healy seamount, the southern part of Alpha-Mendeleev Ridge, and several basement outcrops in Nautilus Basin. These dredge hauls yielded three types of metal-rich mineralized deposits: ferromanganese crusts, ferromanganese nodules, and hydrothermal iron and manganese deposits. Chemical analyses of 43 crust and nodule samples show high contents of many critical metals needed for high-technology, green-technology, and energy and military applications, including cobalt (to 0.3 wt.%), vanadium (to 0.12 wt.%), zirconium (to 459 grams/tonne=ppm), molybdenum (to 453 g/t), the rare-earth elements (including scandium and yttrium; yttrium to 229 g/t), lithium (to 205 g/t), tungsten (to 64 g/t), and gallium (to 26 g/t). The metal contents of these Arctic Ocean crusts and nodules are comparable to those found throughout the global ocean, however, these Arctic Ocean samples are the first that have been found to be enriched in rare metal scandium. The metal contents of these samples indicate a diagenetic component. Crusts typically form by precipitation of metal oxides solely from seawater (hydrogenetic) onto rock surfaces producing a pavement, whereas nodules form by accretion of metal oxides, from both seawater and pore waters (diagenetic), around a nucleus on the surface of soft sediment. The best evidence for this diagenetic input to the crusts is that crusts typically have low lithium contents, 1-10 g/t while diagenetic nodules can have contents up to 600 g/t; the Arctic Ocean crusts have relatively high lithium contents of up to 205 g/t, indicating that these crusts may be only the second yet discovered to acquire some elements from sediment pore waters. A potential avenue for acquisition of diagenetic metals would be via release from pore waters into the bottom waters that bathe the crusts, or alternatively by partial burial of the crusts in mud. However, the overall composition of the crusts indicates predominantly a hydrogenetic origin. Hydrothermal iron hydroxide samples from the Arctic Ocean were dated using argon isotopes, which produced a Paleozoic age. This indicates that the Chukchi Platform in the SW Arctic Ocean is a piece of continental crust. This age also indicates that hydrothermal iron and manganese deposits are not temporally related to the Neogene ferromanganese crusts and nodules. Our preliminary results suggest that additional exploration in the Arctic Ocean for mineral deposits is warranted.
Formation of Fe-Mn crusts within a continental margin environment
Conrad, Tracey A.; Hein, James R.; Paytan, Adina; Clague, David A.
2017-01-01
This study examines Fe-Mn crusts that form on seamounts along the California continental-margin (CCM), within the United States 200 nautical mile exclusive economic zone. The study area extends from approximately 30° to 38° North latitudes and from 117° to 126° West longitudes. The area of study is a tectonically active northeast Pacific plate boundary region and is also part of the North Pacific Subtropical Gyre with currents dominated by the California Current System. Upwelling of nutrient-rich water results in high primary productivity that produces a pronounced oxygen minimum zone. Hydrogenetic Fe-Mn crusts forming along the CCM show distinct chemical and mineral compositions compared to open-ocean crusts. On average, CCM crusts contain more Fe relative to Mn than open-ocean Pacific crusts. The continental shelf and slope release both Fe and Mn under low-oxygen conditions. Silica is also enriched relative to Al compared to open-ocean crusts. This is due to the North Pacific silica plume and enrichment of Si along the path of deep-water circulation, resulting in Si enrichment in bottom and intermediate waters of the eastern Pacific.The CCM Fe-Mn crusts have a higher percentage of birnessite than open-ocean crusts, reflecting lower dissolved seawater oxygen that results from the intense coastal upwelling and proximity to zones of continental slope pore-water anoxia. Carbonate fluorapatite (CFA) is not present and CCM crusts do not show evidence of phosphatization, even in the older sections. The mineralogy indicates a suboxic environment under which birnessite forms, but in which pH is not high enough to facilitate CFA deposition. Growth rates of CCM crusts generally increase with increasing water depth, likely due to deep-water Fe sources mobilized from reduced shelf and slope sediments.Many elements of economic interest including Mn, Co, Ni, Cu, W, and Te have slightly or significantly lower concentrations in CCM crusts relative to crusts from the Pacific Prime Crust Zone and other open-ocean basins. However, concentrations of total rare earth elements and yttrium average only slightly lower contents and in the future may be a strategic resource for the U.S.
NASA Astrophysics Data System (ADS)
Naif, S.; Key, K.; Constable, S.; Evans, R. L.
2017-12-01
In Northern Central America, the portion of the incoming Cocos oceanic plate formed at the East Pacific Rise has a seafloor spreading fabric that is oriented nearly parallel to the trench axis, whereby flexural bending at the outer rise reactivates a dense network of dormant abyssal hill faults. If bending-induced normal faults behave as fluid pathways they may promote extensive mantle hydration and significantly raise the flux of fluids into the subduction system. Multi-channel seismic reflection data imaged bend faults that extend several kilometers beneath the Moho offshore Nicaragua, coincident with seismic refraction data showing significant P-wave velocity reductions in both the crust and uppermost mantle. Ignoring the effect of fracture porosity, the observed mantle velocity reduction is equivalent to an upper bound of 15-20% serpentinization (or 2.0-2.5 wt% H2O). Yet the impact of bend faulting on porosity structure and crustal hydration are not well known. Here, we present results on the electrical resistivity structure of the incoming Cocos plate offshore Nicaragua, the first controlled-source electromagnetic (CSEM) experiment at a subduction zone. The CSEM data imaged several sub-vertical conductive channels extending beneath fault scarps to 5.5 km below seafloor, providing independent evidence for fluid infiltration into the oceanic crust via bending faults. We applied Archie's Law to estimate porosity from the resistivity observations: the dike and gabbro layers increase from 2.7% and 0.7% porosity at 100 km to 4.8% and 1.7% within 20 km of the trench, respectively. In contrast the resistivity, and hence porosity, remain relatively unchanged at sub-Moho depths. Therefore, either the faults do not provide an additional flux of free water to the mantle or, in light of the reduced seismic velocities, the volumetric expansion resulting from mantle serpentinization rapidly consumes any fault-generated porosity. Since our crustal porosity estimates seaward of the outer rise are in very good agreement with drilling observations, we conclude that bending faults effectively double the subducted free water budget of the intrusive oceanic crust.
Asthenosphere rheology inferred from observations of the 2012 Indian Ocean earthquake.
Hu, Yan; Bürgmann, Roland; Banerjee, Paramesh; Feng, Lujia; Hill, Emma M; Ito, Takeo; Tabei, Takao; Wang, Kelin
2016-10-20
The concept of a weak asthenospheric layer underlying Earth's mobile tectonic plates is fundamental to our understanding of mantle convection and plate tectonics. However, little is known about the mechanical properties of the asthenosphere (the part of the upper mantle below the lithosphere) underlying the oceanic crust, which covers about 60 per cent of Earth's surface. Great earthquakes cause large coseismic crustal deformation in areas hundreds of kilometres away from and below the rupture area. Subsequent relaxation of the earthquake-induced stresses in the viscoelastic upper mantle leads to prolonged postseismic crustal deformation that may last several decades and can be recorded with geodetic methods. The observed postseismic deformation helps us to understand the rheological properties of the upper mantle, but so far such measurements have been limited to continental-plate boundary zones. Here we consider the postseismic deformation of the very large (moment magnitude 8.6) 2012 Indian Ocean earthquake to provide by far the most direct constraint on the structure of oceanic mantle rheology. In the first three years after the Indian Ocean earthquake, 37 continuous Global Navigation Satellite Systems stations in the region underwent horizontal northeastward displacements of up to 17 centimetres in a direction similar to that of the coseismic offsets. However, a few stations close to the rupture area that had experienced subsidence of up to about 4 centimetres during the earthquake rose by nearly 7 centimetres after the earthquake. Our three-dimensional viscoelastic finite-element models of the post-earthquake deformation show that a thin (30-200 kilometres), low-viscosity (having a steady-state Maxwell viscosity of (0.5-10) × 10 18 pascal seconds) asthenospheric layer beneath the elastic oceanic lithosphere is required to produce the observed postseismic uplift.
NASA Astrophysics Data System (ADS)
Bach, W.; Busch, A.; Genske, F. S.; Beier, C.; Krumm, S.
2017-12-01
A stratigraphic section comprising >1000 m of upper crust in the Princess Alice Bank (PAB) of the western Azores Plateau was sampled during RV Meteor cruise M128 in July of 2016, using the ROV MARUM Quest 4000m. Twenty-two samples were recovered between 2484 and 1439 m water depth from the southfacing footwall of the Master fault bounding a prominent NW-SE striking rift zone within the PAB. Our geochemical and petrographic results show that virtually all samples are pervasively altered. The deeper part of the section (up to 1750 m water depth) was altered under greenschist-facies conditions to assemblages that include epidote, chlorite, albite, titanite, and actinolite. These rocks show 87Sr/86Sr values between 0.7036 and 0.7050. The topmost section was altered under lower metamorphic grades to chlorite/smectite-quartz-anatase. These rocks show severe losses of Ca and Sr, and gains in Mg, Li, and B, with 87Sr/86Sr ratios as high as 0.708. These geochemical signatures indicate an intensity of hydrothermal exchange between seawater and crust that is unmatched by any in situ section of upper ocean crust sampled by ocean drilling to date. Oxygen isotope data for epidote-calcite veins indicate temperatures of 250-300°C. Later quartz gives about 200°C. The implications of the intense hydrothermal alteration for crust-seawater exchange budgets can be evaluated in the light of the geological evolution of the PAB. Based on immobile element ratios of whole rocks and REE characteristics of relict clinopyroxene in the only incompletely altered sample, an E-type MORB primary composition of the basalts can be reconstructed. Our data suggest that the degrees of mantle melting were much higher than during extrusion of the <4 Ma old alkali-basalts recovered from the top of PAB (Beier et al., 2015, doi:10.1130/2015.2511(02)), and even higher than modern MORB at the adjacent mid-Atlantic Ridge. These results lead us to suggest that the deeper sections of the PAB formed during the initial stages of flood basalt activity. The extreme hydrothermal alteration may hence be directly linked to the prolonged magmatic period during which excess melting produced a 13-km thick igneous crust. Our results indicate that marine plateau-forming events may cause transient highs in hydrothermal flux rates.
NASA Technical Reports Server (NTRS)
Smith, R. B.
1986-01-01
The structural evolution of the U.S. Cordillera has been influenced by a variety of tectonic mechanisms including passive margin rifting and sedimentation; arc volcanism; accretion of exotic terranes; intraplate magmatism; and folding and faulting associated with compression and extension processes that have profoundly influenced the lithospheric structure. As a result the Cordilleran crust is laterally inhomogeneous across its 2000 km east-west breadth. It is thin along the West Coast where it has close oceanic affinities. The crust thickens eastward beneath the Sierra Nevada, then thins beneath the Basin-Range. Crustal thickening continues eastward beneath the Colorado Plateau, the Rocky Mountains, and the Great Plains. The total lithospheric thickness attains 65 km in the Basin-Range and increases eastward beneath the Colorado Plateau. The upper-crust, including the crystalline basement of the Cordillera, has P sub G velocities of 6 km/s in the Basin-Range and Rio Grande Rift. Lower P sub G velocities of 5.4 to 5.7 km/s are associated with the youthful Yellowstone, Valles and Long Valley calderas and the Franciscan assemblage of the western coastal margin. Averaged crustal velocity reflects integrated tectonic evolution of the crust-thick silicic bodies, velocity reversals, and a thin crust produce low averaged velocities that are characteristic of a highly attenuated and thermally deformed crust.
NASA Astrophysics Data System (ADS)
Kokkalas, S.; Joun, H.; Tombros, S.
2017-12-01
Plagiogranite intrusions are common in the Khor Fakkan block of the Semail ophiolite, where the mantle sequence is predominant. Several models have been proposed for the source of these leucocratic intrusions, but their genesis is still under debate. The examined plagiogranites are characterized by 68 wt. % SiO2 and display volcanic-arc granite affinity. They have crystallize at temperatures that range from 550° to 720o C and pressures ranging from 5.0 to 6.5 Kbars. The parental plagiogranite melts, based on the relations of the δ18Omelt or δ18OH2O versus eSr suggest mixing of subducted crust with overlying upper mantle. The relatively wide range of the 87Rb/86Sr ratios, at almost constant 87Sr/86Sr, implies that partial melting and mixing was followed by fractional crystallization. The isotopic ages from the examined plagiogranites range between 94.9-98.5 Ma, predating the sole metamorphism. Based on our source contribution calculations, 96% of the igneous and 4% of sedimentary end-member components are involved in formation of plagiogranitic melts. The igneous end-member derived from partial melting of 3 % upper mantle and 97% recycled oceanic crust. We propose that the mafic melts were initially produced by the off-axis melting of recycled oceanic slab under a compressional regime a supra-subduction zone (SSZ) setting. The mafic melts were modified due to mixing with small amount of melts from the upper mantle by influx of slab-derived fluids. Then these melts underwent extended fractional crystallization with crystallization of An-enriched plagioclase and emplaced on the Moho level to form Dadnah plagiogranites in the Khor Fakkan block.
NASA Astrophysics Data System (ADS)
Planert, L.; Shulgin, A.; Kopp, H.; Lueschen, E.; Mueller, C.; Flueh, E.; Djajadihardja, Y.; Engels, M.
2009-04-01
The Sunda-Banda arc transition, the easternmost portion of the Indonesian convergent margin, presents a probably unique natural laboratory to study lower plate variability and related upper plate deformation in the so-called ‘subduction factory' for a deeper understanding of forearc evolution. In neighboring margin segments, we can observe strong changes of the incoming plate (transition from an oceanic to a continental lower plate, increasing plate age to the East, presence/absence of an oceanic plateau, variability in plate roughness) as well as a wide range of corresponding forearc structures, including large sedimentary basins and an accretionary prism/outer arc high of variable size and shape. During RV Sonne cruise SO190 in 2006 (SINDBAD: Seismic and Geoacoustic Investigations along the Sunda-Banda Arc Transition), we acquired a combination of seismic wide-angle OBH/OBS refraction, multichannel streamer and gravity data in order to study the seismic velocity structure of the subducting crust and the overriding island arc along a number of trench normal corridors located between 113°E and 121°E. Additionally, a number of trench parallel profiles were conducted which mainly focus on the internal structure of the large sedimentary basins and which were also intended for further clarifying the type of underlying forearc crust and mantle respectively. We used a tomographic approach for refracted and reflected phases to obtain seismic velocity models which again were used for prestack depth-migration of the MCS data. In turn, we incorporated the highly resolved sedimentary portions as a priori structure in our tomography. The results show the seismic velocity structure of the incoming plate, starting 100 km seaward of the trench, and the adjoining forearc down to depths of 20-28 km, i.e. well into the upper mantle, and at the same time fit the gravity data very well, using simple velocity-density relations. In the Argo abyssal plain, the models show 8.0-8.5 km thick oceanic crust. The velocities in the crust and uppermost mantle are reduced within distances of ~50 km seaward of the trench, which coincides with the onset of normal faulting on the incoming oceanic plate. Anomalously low mantle velocities of 7.5 km/s directly beneath the Moho are possibly due to the intrusion of seawater and subsequent serpentinisation of mantle peridotite. Landward of the trench in the outer arc high, velocities do not exceed 5.5 km/s down to the top of the subducting slab, which can be traced over ~70 km length beneath the forearc down to ~13 km depth. The plate boundary is of irregular shape, obviously imprinted by the complex deformation of the oceanic basement prior to subduction, which is further amplified as response to thrusting/downbending of the dissected oceanic blocks. Offshore Lombok island, our models reveal the geometry of the Lombok basin as well as the forearc Moho in ~16 km depth. Reduced upper mantle velocities suggest a hydrated shallow mantle wedge for this corridor. Further east offshore Sumba island, where the Java trench terminates and the transition to the collisional regime further east occurs, our models show a subducting oceanic plate of similar thickness and structure. But different to the situation offshore Lombok, we find no evidence for a shallow mantle wedge beneath the forearc; crustal-type velocities are found down to depths of ~20 km. The different forearc regime is most likely related to the collision with the Sumba block. Our results give a detailed view into the complex structure in both the deeper and shallower portions of this convergent margin.
NASA Astrophysics Data System (ADS)
Afilhado, Alexandra; Gallais, Flora; Moulin, Maryline; Schnürle, Philippe; Afonso Dias, Nuno; Soares, José; Loureiro, Afonso; Fuck, Reinhardt; Cupertino, José; Viana, Adriano; Matias, Luis; Evain, Mikael; Aslanian, Daniel
2017-04-01
Five profiles, with coincident multi-chanel and wide-angle seismic, were acquired during the MAGIC (Margins of brAsil, Ganha and Ivory Coast) cruise, in order to image the Maranhão-Barreirinhas-Ceará segment of the Brazilian Margins. The seismic experiment was conducted by Ifremer (Institut Français de Recherche pour l'Exploration de la Mer), UnB (University of Brasilia), FCUL (Faculdade de Ciencias da Universidade de Lisboa) and Petrobras. The main objective of the experiment is to understand the fundamental processes which lead to the thinning and breakup of the continental crust in a specific context of a pull-apart system, limited by two strike-slip borders. We present the main results evidenced by two of these profiles, MC3 and MC4, oriented in the directions of flow lines (E-W) and margin segmentation (SW-NE), respectively. The profile MC3 spans from the continental crust, near Sao Luis Craton, to the oceanic basin, north of Ceara. 31 Ocean Bottom Seismometers (OBS) from the Ifremer pool and 8 small arrays of 6 RefTek Land Seismic Stations (LSS) from the Brazilian pool were deployed in this profile, jointly with 400 km multi channel seismic acquisition. The profile MC4 spans from the Parnaiba and Barreirinhas Basins onshore to the oceanic basin, South of the Northern Brazilian Ridge. The MC4 seismic data includes 225 km multi channel seismic data and wide-angle data acquired in 19 OBS and 21 arrays of 3 LSS each, totaling a maximum source-receiver offset of 400 km. The analysis of these profiles evidence a NW-SE segmentation of the margin following the opening direction of this pull-apart basin, from unthinned continental crust (about 40 km thick) to thin oceanic crust. The width of the necking zone increases from about 50 km in the direction of flow-lines (MC3-Ilha da Santana margin), to more than 125 km in the direction of segmentation (MC4-Barreirinhas margin), at the corner of the pull-apart system, with two steps first in the upper crust then in middle/lower crust. The intermediate domain, is formed by a thick sedimentary basin overlying a substratum of 5 km- thickness, with velocity ranging from 6.2 to 6.6 km/s. Below, a 2-3 km thick layer with very high velocity (7.4-7.6 km/s) and marked by reflections at the top and base, is followed continuously towards the continent beneath the Parnaiba-Barreirinhas province, at the corner of the system. These observations favor a lower continental crust nature for this domain, in relation to its flow and exhumation in the flow-lines direction. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz
Geochemical Evidence for a Terrestrial Magma Ocean
NASA Technical Reports Server (NTRS)
Agee, Carl B.
1999-01-01
The aftermath of phase separation and crystal-liquid fractionation in a magma ocean should leave a planet geochemically differentiated. Subsequent convective and other mixing processes may operate over time to obscure geochemical evidence of magma ocean differentiation. On the other hand, core formation is probably the most permanent, irreversible part of planetary differentiation. Hence the geochemical traces of core separation should be the most distinct remnants left behind in the mantle and crust, In the case of the Earth, core formation apparently coincided with a magma ocean that extended to a depth of approximately 1000 km. Evidence for this is found in high pressure element partitioning behavior of Ni and Co between liquid silicate and liquid iron alloy, and with the Ni-Co ratio and the abundance of Ni and Co in the Earth's upper mantle. A terrestrial magma ocean with a depth of 1000 km will solidify from the bottom up and first crystallize in the perovskite stability field. The largest effect of perovskite fractionation on major element distribution is to decrease the Si-Mg ratio in the silicate liquid and increase the Si-Mg ratio in the crystalline cumulate. Therefore, if a magma ocean with perovskite fractionation existed, then one could expect to observe an upper mantle with a lower than chondritic Si-Mg ratio. This is indeed observed in modern upper mantle peridotites. Although more experimental work is needed to fully understand the high-pressure behavior of trace element partitioning, it is likely that Hf is more compatible than Lu in perovskite-silicate liquid pairs. Thus, perovskite fractionation produces a molten mantle with a higher than chondritic Lu-Hf ratio. Arndt and Blichert-Toft measured Hf isotope compositions of Barberton komatiites that seem to require a source region with a long-lived, high Lu-Hf ratio. It is plausible that that these Barberton komatiites were generated within the majorite stability field by remelting a perovskite-depleted part of the upper mantle transition zone.
Regional implications of heat flow of the Snake River Plain, Northwestern United States
NASA Astrophysics Data System (ADS)
Blackwell, D. D.
1989-08-01
The Snake River Plain is a major topographic feature of the Northwestern United States. It marks the track of an upper mantle and crustal melting event that propagated across the area from southwest to northeast at a velocity of about 3.5 cm/yr. The melting event has the same energetics as a large oceanic hotspot or plume and so the area is the continental analog of an oceanic hotspot track such as the Hawaiian Island-Emperor Seamount chain. Thus, the unique features of the area reflect the response of a continental lithosphere to a very energetic hotspot. The crust is extensively modified by basalt magma emplacement into the crust and by the resulting massive rhyolite volcanism from melted crustal material, presently occurring at Yellowstone National Park. The volcanism is associated with little crustal extension. Heat flow values are high along the margins of the Eastern and Western Snake River Plains and there is abundant evidence for low-grade geothermal resources associated with regional groundwater systems. The regional heat flow pattern in the Western Snake River Plains reflects the influence of crustal-scale thermal refraction associated with the large sedimentary basin that has formed there. Heat flow values in shallow holes in the Eastern Snake River Plains are low due to the Snake River Plains aquifer, an extensive basalt aquifer where water flow rates approach 1 km/yr. Below the aquifer, conductive heat flow values are about 100 mW m -2. Deep holes in the region suggest a systematic eastward increase in heat flow in the Snake River Plains from about 75-90 mW m -2 to 90-110 mW m -2. Temperatures in the upper crust do not behave similarly because the thermal conductivity of the Plio-Pleistocene sedimentary rocks in the west is lower than that in the volcanic rocks characteristic of the Eastern Snake River Plains. Extremely high heat loss values (averaging 2500 mW m -2) and upper crustal temperatures are characteristic of the Yellowstone caldera.
Lithospheric Structure across the Alaskan Cordillera from Surface Waves and Receiver Functions
NASA Astrophysics Data System (ADS)
Ward, K. M.; Lin, F. C.
2017-12-01
The long awaited Transportable Array (TA) deployment in Alaska and western Canada is nearing its final deployment stage. With only one more deployment season, most of the TA station locations have been occupied and begun providing data. These TA stations combined with upgraded existing locations have provided enough high-quality data to begin investigating the crustal and upper mantle structure across the entire Alaskan Cordillera. From a tectonic standpoint, many interesting questions remain unanswered. For example, how does the transition from oceanic-oceanic subduction to continental-oceanic normal subduction to continental-oceanic "flat-slab" subduction to strike-slip conservative plate motion affect the deformation/uplift of the overriding plate and mantle geodynamic characteristics? How does the long and completed terrene accretion process partition stress/strain in the crust? On more local scales, are there any significant mid-crustal magmatic systems as observed in other sections of the American Cordillera, and if so, what is there role in uplift and crustal deformation? Our approach to investigating these questions is though surface wave imaging from ambient noise and earthquake generated sources along with Rayleigh wave ellipticity paired with Ps receiver functions. Our preliminary tomography results agree with previous studies but expand the spatial coverage showing additional detail. Our ellipticity results show a heterogeneous but spatially consistent anisotropic shallow crust. Although the complete TA data set has not yet been collected, we have jointly inverted surface waves with receiver functions for a 3-D shear-wave velocity model across the entire Alaskan Cordillera. Key features of our velocity model include a high-velocity feature in the upper mantle associated with the subducting Pacific plate that extends north of the seismicity used to contour the geometry of the slab and mid-crustal low-velocity zones associated with the active volcanics in the Wrangell mountains and along the Aleutian arc.
Crustal structure of central Lake Baikal: Insights into intracontinental rifting
ten Brink, Uri S.; Taylor, M.H.
2002-01-01
The Cenozoic rift system of Baikal, located in the interior of the largest continental mass on Earth, is thought to represent a potential analog of the early stage of breakup of supercontinents. We present a detailed P wave velocity structure of the crust and sediments beneath the Central Basin, the deepest basin in the Baikal rift system. The structure is characterized by a Moho depth of 39-42.5 km; an 8-km-thick, laterally continuous high-velocity (7.05-7.4 km/s) lower crust, normal upper mantle velocity (8 km/s), a sedimentary section reaching maximum depths of 9 km, and a gradual increase of sediment velocity with depth. We interpret the high-velocity lower crust to be part of the Siberian Platform that was not thinned or altered significantly during rifting. In comparison to published results from the Siberian Platform, Moho under the basin is elevated by <3 km. On the basis of these results we propose that the basin was formed by upper crustal extension, possibly reactivating structures in an ancient fold-and-thrust belt. The extent and location of upper mantle extension are not revealed by our data, and it may be offset from the rift. We believe that the Baikal rift structure is similar in many respects to the Mesozoic Atlantic rift system, the precursor to the formation of the North Atlantic Ocean. We also propose that the Central Baikal rift evolved by episodic fault propagation and basin enlargement, rather than by two-stage rift evolution as is commonly assumed.
Hydrogenetic Ferromanganese Crusts of the California Continental Margin
NASA Astrophysics Data System (ADS)
Conrad, Tracey A.
Hydrogenetic Ferromanganese (Fe-Mn) crusts grow from seawater and in doing so sequester elements of economic interest and serve as archives of past seawater chemistry. Ferromanganese crusts have been extensively studied in open-ocean environments. However, few studies have examined continent-proximal Fe-Mn crusts especially from the northeast Pacific. This thesis addresses Fe-Mn crusts within the northeast Pacific California continental margin (CCM), which is a dynamic geological and oceanographic environment. In the first of three studies, I analyzed the chemical and mineralogical composition of Fe-Mn crusts and show that continental-proximal processes greatly influence the chemistry and mineralogy of CCM Fe-Mn crusts. When compared to global open-ocean Fe-Mn crusts, CCM crusts have higher concentrations of iron, silica, and thorium with lower concentrations of many elements of economic interest including manganese, cobalt, and tellurium, among other elements. The mineralogy of CCM Fe-Mn crusts is also unique with more birnessite and todorokite present than found in open-ocean samples. Unlike open-ocean Fe-Mn crusts, carbonate-fluorapatite is not present in CCM crusts. This lack of phosphatization makes CCM Fe-Mn crusts excellent candidates for robust paleoceanography records. The second and third studies in this thesis use isotope geochemistry on select CCM Fe-Mn crusts from four seamounts in the CCM to study past terrestrial inputs into the CCM and sources and behavior of Pb and Nd isotopes over the past 7 million years along the northeast Pacific margin. The second study focuses on riverine inputs into the Monterey Submarine Canyon System and sources of the continental material. Osmium isotopes in the crusts are compared to the Cenozoic Os seawater curve to develop an age model for the samples that show the crusts range in age of initiation of crust growth from approximately 20 to 6 Myr. Lead and neodymium isotopes measured in select Fe-Mn crusts show that large amounts of terrestrial material entered the CCM via the Monterey Canyon from prior to 6.8+/-0.5 until 4.5 +/-0.5 Myr ago. These data combined with reconstructions of the paleo-coastline indicate that incision of the modern Monterey Canyon started around 7 Myr ago. Isotope plots of potential source regions indicate that the source of the material is the border of the southern Sierra Nevada and western Basin and Range. This answers a long-standing and fundamental question about the timing and formation of the Monterey Canyon, the dominant feature of the Monterey Bay. The third study presented here uses the differences in lead and neodymium isotopic values in CCM Fe-Mn crusts over time compared to open-ocean Pacific, North Pacific, and Arctic Ocean Fe-Mn crusts to identify regional time-series trends and sources for these important oceanographic tracers. I found that sediment fluxes and inputs of terrestrial material from North American rivers effects the lead and neodymium isotope composition of regional seawater.
NASA Astrophysics Data System (ADS)
Cowie, L.; Kusznir, N. J.
2012-12-01
It has been proposed that some continental rifted margins have anomalous subsidence histories and that at breakup they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn or post breakup subsidence of this form would have important implications for our understanding of the geodynamics of continental breakup and rifted continental margin formation, margin subsidence history and the evolution of syn and post breakup depositional systems. We have investigated three rifted continental margins; the Gulf of Aden, Galicia Bank and the Gulf of Lions, to determine whether the oceanic crust in the ocean-continent transition of these margins has present day anomalous subsidence and if so, whether it is caused by mantle dynamic topography or anomalous oceanic crustal thickness. Residual depth anomalies (RDA) corrected for sediment loading, using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous oceanic bathymetry and subsidence at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average, or from mantle dynamic uplift. Positive RDAs may result from thicker than average oceanic crust or mantle dynamic uplift; negative RDAs may result from thinner than average oceanic crust or mantle dynamic subsidence. Gravity inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic data has been used to determine Moho depth and oceanic crustal basement thickness. The reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a "synthetic" gravity derived RDA. Sediment corrected RDA for oceanic crust in the Gulf of Aden are positive (+750m) indicating anomalous uplift with respect to normal subsidence. Gravity inversion predicts normal thickness oceanic crust and a zero "synthetic" gravity derived RDA in the oceanic domain. The difference between the positive sediment corrected RDA and the zero "synthetic" gravity derived RDA, implies that the anomalous subsidence reported in the Gulf of Aden is the result of mantle dynamic uplift. For the oceanic crust outboard of Galicia Bank both the sediment corrected RDA and the "synthetic" gravity derived RDA are negative (-800m) and of similar magnitude, indicating anomalous subsidence, which is the result of anomalously thin oceanic crust, not mantle dynamic topography. We conclude that there is negligible mantle dynamic topography influencing the Galicia Bank region. In the Gulf of Lions, gravity inversion predicts thinner than average oceanic crust. Both sediment corrected RDA (-1km) and "synthetic" gravity derived RDA (-500m) are negative. The more negative sediment corrected RDA compared with the "synthetic" gravity derived RDA implies that the anomalous subsidence in the Gulf of Lions is the result of mantle dynamic subsidence as well as thinner than average oceanic crust.
New Insight Into the Crustal Structure of the Continental Margin offshore NW Sabah/Borneo
NASA Astrophysics Data System (ADS)
Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.
2002-12-01
The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. The focus of investigations was on the deep water areas. The margin looks like a typical accretionary margin and was presumably formed during the subduction of a proto South China Sea. Presently, no horizontal movements between the two plates are being observed. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere which is characterised by a pattern of rotated fault blocks and half grabens and a carbonate platform of Early Oligocene to Early Miocene age. We found evidence that the continental crust also underlies the Sabah Trough and the adjacent continental slope, a fact that raises many questions about the tectonic history and development of this margin. The tectonic pattern of the Dangerous Grounds' extended continental crust can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anomalies. Based on the new data we propose the following scenario for the development of the NW Sabah continental margin: Seafloor spreading in the present South China Sea started at about 30 Ma in the Late Oligocene. The spreading process separated the Dangerous Grounds area from the SE Asian continent and ceased in late Early Miocene when the oceanic crust of the proto South China Sea was fully subducted in eastward direction along the Borneo-Palawan Trough. During Lower and/or Middle Miocene, Borneo rotated counterclockwise and was thrusted onto the edge of the rifted continental block of the Dangerous Grounds. The subducted oceanic crust of the proto South China Sea must today be located below the Eastern part of Sabah and not along the present NW Sabah Trough.
The source of marine magnetic anomalies
NASA Technical Reports Server (NTRS)
Harrison, Christopher G. A.
1987-01-01
The Vine-Matthews hypothesis (1963) is examined. This hypothesis suggests that oceanic rocks become polarized in the direction of the magnetic field at the time of their formation, thus recording the polarity history of the earth's magnetic field. This produces the lineated magnetic anomalies on either side of the midoceanic ridge crests. The strength of these magnetic anomalies is studied to determine the strength of magnetization. Indirect determinations of the magnetization intensity of the oceanic crust and direct observations of the oceanic crust are compared. It is found that the average magnetization of a 6-km thick oceanic crust is 1.18 A/m.
Contraction or expansion of the Moon's crust during magma ocean freezing?
Elkins-Tanton, Linda T.; Bercovici, David
2014-01-01
The lack of contraction features on the Moon has been used to argue that the Moon underwent limited secular cooling, and thus had a relatively cool initial state. A cool early state in turn limits the depth of the lunar magma ocean. Recent GRAIL gravity measurements, however, suggest that dikes were emplaced in the lower crust, requiring global lunar expansion. Starting from the magma ocean state, we show that solidification of the lunar magma ocean would most likely result in expansion of the young lunar crust, and that viscous relaxation of the crust would prevent early tectonic features of contraction or expansion from being recorded permanently. The most likely process for creating the expansion recorded by the dikes is melting during cumulate overturn of the newly solidified lunar mantle. PMID:25114310
NASA Astrophysics Data System (ADS)
Diehl, Alexander; Bieseler, Bastian; Bach, Wolfgang
2017-04-01
Determining the depth, extent, and timing of high-temperature hydrothermal alteration in the ocean crust is key to understanding how the lower oceanic crust is cooled. We report data from 18 epidote veins from the Wadi Gideah section in the Wadi Tayin block, which is a reference section for alteration of the lower crust formed at a fast oceanic spreading center. 87Sr/86Sr ratios feature a narrow range from 0.70429 to 0.70512, while O isotope compositions vary between - 0.7 and +4.9‰ in δ18OSMOW. These compositions indicate uniform water-rock ratios between 1 and 2 and formation temperatures in the range of 300 to 450˚ C. There is no systematic trend in Sr and O isotope compositions down section. Fluid inclusion entrapment temperatures for a subset of four samples linearly increase from 338˚ C to 465˚ C in lowermost 3 km of crust of the Wadi Gideah section. Salinities are uniform throughout and scatter closely around seawater values. We developed a numerical cooling model to assign possible crustal ages to the thermal gradients observed. For pure conductive cooling, these ages range between 4 and 20 Ma. Our thermal model runs with a high Nusselt number (Nu) of 20 down to the base of the crust indicate that the epidote veins may record this near-axial deep circulation in crust of only 0.1 Ma (5-7 km off axis). When off-axis circulation is shut off in the more distal flanks, however, massive conductive reheating of the lower crust by as much as 200˚ C is predicted to take place. But there is no evidence for prograde metamorphic reactions in the samples we studied (or other hydrothermally altered oceanic gabbros). An intermediate model, in which Nu is 20 down to 2 km for the first 0.1 Ma and Nu is then 4 down to 6.5 km depth off axis to 1 Ma, is consistent with the permeability distribution within the ocean crust and predicts a thermal gradient for the lower crust that matches the observed one for ages between 1 and 3 Ma. The most plausible explanation for the origin of the epidote veins is that they formed in off-axial hydrothermal systems that reach the base of the crust within 50-150 km off the axis. This deep circulation provides an efficient mechanism for mining heat that escapes the crust in the young flanks of mid-ocean ridges where a sizeable fraction of the global oceanic hydrothermal heat flux is expected to take place.
Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere.
Schlindwein, Vera; Schmid, Florian
2016-07-14
Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere-asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation.
The origin of oceanic crust and metabasic rocks protolith, the Luk Ulo Mélange Complex, Indonesia
NASA Astrophysics Data System (ADS)
Permana, H.; Munasri; Mukti, Maruf M.; Nurhidayati, A. U.; Aribowo, S.
2018-02-01
The Luk Ulo Mélange Complex (LUMC) is composed of tectonic slices of rocks that surrounded by scaly clay matrix. These rocks consist of serpentinite, gabbro, diabase, and basalt, eclogite, blueschist, amphibolite, schist, gneiss, phylite and slate, granite, chert, red limestone, claystone and sandstone. The LUMC was formed since Paleocene to Eocene, gradually uplifted of HP-UHP metabasic-metapelite (P: 20-27kbar; T: 410-628°C) to near surface mixed with hemipelagic sedimentary rocks. The metamorphic rocks were formed during 101-125 Ma (Early Cretaceous) within 70 to 100 km depth and ∼6°C/km thermal gradient. It took about 50-57 Myr for these rocks to reach the near surface during Paleocene-Eocene, with an uplift rate at ∼1.4-1.8 km/year to form the mélange complex. The low thermal gradient was due to subduction of old and cold oceanic crust. The subducted oceanic crust (MORB) as protolith of Cretaceous metabasic rocks must be older than Cretaceous. The data show that the basalt of oceanic crust is Cretaceous (130-81 Ma) comparable to the age of the cherts (Early to Late Cretaceous). Therefore, we consider that neither oceanic crust exposed in LUMC nor all of part of the old oceanic crust is the protolith of LUMC metabasic subducted beneath the Eurasian Plate. These oceanic rocks possibly originated or part of the edge of micro-continental that merged as a part of the LUMC during the collision with the Eurasian margin.
Effects of Canary hotspot volcanism on structure of oceanic crust off Morocco
NASA Astrophysics Data System (ADS)
Holik, James S.; Rabinowitz, Philip D.; Austin, James A., Jr.
1991-07-01
Analysis of over 6400 km of multichannel seismics (MCS) and 50 sonobuoy reflection and refraction experiments reduced both in the domain of X-T and tau-p shows that a region within the Jurassic Quiet Zone off Morocco underwent dramatic changes as a result of the passage of the lithosphere over the Canary hotspot commencing approximately 60 Ma. A seismic unit (UCF), interpreted as volcanic in origin, is observed within the sediments in a region characterized by a broad bathymetric swell. It shows diffractions from its upper surface and an internally chaotic seismic facies and pinches out between sedimentary units of continuous, subparallel facies. A velocity inversion is noted between the UCF (4.7km/s) and the underlying sediment (3.1 km/s). The UCF is time transgressive; it lies near the Cretaceous/s Tertiary boundary in the northern portion of the study area and is younger to the south. Kinematic studies of the movement of the Canary hotspot relative to Africa show that the hotspot first appeared off NW Africa about 60 Ma and was located beneath oceanic crust in the region where the UCF is observed. Depth-to-basement measurements in areas not effected by the hotspot show a consistent linear trend of increased depth with age. In areas effected by the hotspot the thermal rejuvenation is evident as basement depths shoal with increased proximity to the present hotspot. The reheating of the crust resets the thermal age of the lithosphere with many of the properties of crust of a younger age. Subsidence curves of the reheated crust off Morocco show good correlation to subsidence curves of other reheated crust on a global basis. A zone characterized by high crustal velocities, (7.1-7.4 km/s) and greater crustal thicknesses (by ˜1-2 km) is observed in an area that corresponds to the bathymetric swell, the region of the UCF, and the reelevated basement. The high velocities and increased crustal thickness are interpreted to be the result of underplating and assimilation of existing oceanic crust caused by the Canary thermal anomaly. The presence of high crustal velocities coupled with a thickened crustal section has been noted on various passive margins of the world. They have generally been attributed to the thermal processes associated with continental rifting. Off Morocco, we believe that similar, thermally induced phenomena have occurred but that here; the heat anomaly was the midplate volcanism associated with the Canary hotspot.
New Synthesis of Ocean Crust Velocity Structure From Two-Dimensional Profiles
NASA Astrophysics Data System (ADS)
Christeson, G. L.; Goff, J.; Carlson, R. L.; Reece, R.
2017-12-01
The velocity structure of typical oceanic crust consists of Layer 2, where velocities increase rapidly with depth from seafloor, and Layer 3, which is thicker and has a lower velocity gradient. Previous syntheses have found no correlation of velocity structure with spreading rate, even though we know that magmatic processes differ between slow-spreading and fast-spreading crust. We present a new synthesis of ocean crust velocity structure, compiling observations from two-dimensional studies in the Atlantic, Pacific, and Indian ocean basins. The Layer 2/3 boundary was picked from each publication at a change in gradient either on velocity-depth functions or contour plots (with at least 0.5 km/s contour interval), or from the appropriate layer boundary for layered models. We picked multiple locations at each seismic refraction profile if warranted by model variability. Preliminary results show statistically significant differences in average Layer 2 and Layer 3 thicknesses between slow-spreading and superfast-spreading crust, with Layer 2 thinner and Layer 3 thicker for the higher spreading rate crust. The thickness changes are about equivalent, resulting in no change in mean crustal thickness. The Layer 2/3 boundary is often interpreted as the top of the gabbros; however, a comparison with mapped magma lens depths at the ridge axis shows that the boundary is typically deeper than average axial melt lens depth at superfast-spreading crust, and shallower at intermediate-spreading crust.
A new model of lunar crust: asymmetry in crustal composition and evolution
NASA Astrophysics Data System (ADS)
Arai, Tomoko; Takeda, Hiroshi; Yamaguchi, Akira; Ohtake, Makiko
2008-04-01
Earlier models of lunar crustal formation as a simple flotation of ferroan anorthosites (FAN) do not account for the diverse crustal composition revealed by feldspathic lunar meteorites and granulites in the Apollo samples. Based on the integrated results of recent studies of lunar meteorites and global chemical and mineralogical maps, we propose a novel asymmetric crust model with a ferroan, noritic, nearside crust and a magnesian, troctolitic farside crust. Asymmetric crystallization of a primordial magma ocean can be one possibility to produce a crust with an asymmetric composition. A post-magma-ocean origin for a portion of the lunar crust is also possible and would account for the positive eNd value for FAN and phase equilibria. The formation of giant basins, such as the South Pole-Aitken (SPA) basin may have significant effects on resurfacing of the early lunar crust. Thus, the observed surface composition of the feldspathic highland terrane (FHT) represents the combined results of magma ocean crystallization, post-magma-ocean magmatism and resurfacing by basin formation. The Mg/(Mg+Fe) ratios, rock types, and mineral compositions of the FHT and the South Pole-Aitken basin Terrane (SPAT) obtained from the KAGUYA mission, coupled with further mineralogical and isotopic studies of lunar meteorites, will facilitate an assessment of the feasibility of the proposed crust model and improve understanding of lunar crustal genesis and evolution.
NASA Astrophysics Data System (ADS)
An, Kaixuan; Chen, Hanlin; Lin, Xiubin; Wang, Fang; Yang, Shufeng; Wen, Zhixin; Wang, Zhaoming; Zhang, Guangya; Tong, Xiaoguang
2017-12-01
The global rise in sea level during the Late Cretaceous has been an issue under discussion by the international geological community. Despite the significance, its impact on the deposition of continental basins is not well known. This paper presents the systematic review on stratigraphy and sedimentary facies compiled from 22 continental basins in northern Africa. The results indicate that the region was dominated by sediments of continental facies during Early Cretaceous, which were replaced by deposits of marine facies in Late Cretaceous. The spatio-temporal distribution of sedimentary facies suggests marine facies deposition reached as far south as Taoudeni-Iullemmeden-Chad-Al Kufra-Upper Egypt basins during Turonian to Campanian. These results indicate that northern Africa underwent significant transgression during Late Cretaceous reaching its peak during Turonian to Coniacian. This significant transgression has been attributed to the global high sea-level during this time. Previous studies show that global rise in sea level in Late Cretaceous may have been driven by an increase in the volume of ocean water (attributed to high CO2 concentration and subsequently warm climate) and a decrease in the volume of the ocean basin (attributed to rapid production of oceanic crust and seamounts). Tectonic mechanism of rapid production of oceanic crust and seamounts could play a fundamental role in driving the global rise in sea level and subsequent transgression in northern Africa during Late Cretaceous.
NASA Astrophysics Data System (ADS)
Gilbert, Lisa A.; Salisbury, Matthew H.
2011-09-01
Drilling and logging of Integrated Ocean Drilling Program (IODP) Hole 1256D have provided a unique opportunity for systematically studying a fundamental problem in marine geophysics: What influences the seismic structure of oceanic crust, porosity or composition? Compressional wave velocities (Vp) logged in open hole or from regional refraction measurements integrate both the host rock and cracks in the crust. To determine the influence of cracks on Vp at several scales, we first need an accurate ground truth in the form of laboratory Vp on crack-free, or nearly crack-free samples. We measured Vp on 46 water-saturated samples at in situ pressures to determine the baseline velocities of the host rock. These new results match or exceed Vp logs throughout most of the hole, especially in the lower dikes and gabbros, where porosities are low. In contrast, samples measured at sea under ambient laboratory conditions, had consistently lower Vp than the Vp logs, even after correction to in situ pressures. Crack-free Vp calculated from simple models of logging and laboratory porosity data for different lithologies and facies suggest that crustal velocities in the lavas and upper dikes are controlled by porosity. In particular, the models demonstrate significant large-scale porosity in the lavas, especially in the sections identified as fractured flows and breccias. However, crustal velocities in the lower dikes and gabbros are increasingly controlled by petrology as the layer 2-3 boundary is approached.
Large-scale subduction of continental crust implied by India-Asia mass-balance calculation
NASA Astrophysics Data System (ADS)
Ingalls, Miquela; Rowley, David B.; Currie, Brian; Colman, Albert S.
2016-11-01
Continental crust is buoyant compared with its oceanic counterpart and resists subduction into the mantle. When two continents collide, the mass balance for the continental crust is therefore assumed to be maintained. Here we use estimates of pre-collisional crustal thickness and convergence history derived from plate kinematic models to calculate the crustal mass balance in the India-Asia collisional system. Using the current best estimates for the timing of the diachronous onset of collision between India and Eurasia, we find that about 50% of the pre-collisional continental crustal mass cannot be accounted for in the crustal reservoir preserved at Earth's surface today--represented by the mass preserved in the thickened crust that makes up the Himalaya, Tibet and much of adjacent Asia, as well as southeast Asian tectonic escape and exported eroded sediments. This implies large-scale subduction of continental crust during the collision, with a mass equivalent to about 15% of the total oceanic crustal subduction flux since 56 million years ago. We suggest that similar contamination of the mantle by direct input of radiogenic continental crustal materials during past continent-continent collisions is reflected in some ocean crust and ocean island basalt geochemistry. The subduction of continental crust may therefore contribute significantly to the evolution of mantle geochemistry.
From a collage of microplates to stable continental crust - an example from Precambrian Europe
NASA Astrophysics Data System (ADS)
Korja, Annakaisa
2013-04-01
Svecofennian orogen (2.0-1.7 Ga) comprises the oldest undispersed orogenic belt on Baltica and Eurasian plate. Svecofennian orogenic belt evolved from a series of short-lived terrane accretions around Baltica's Archean nucleus during the formation of the Precambrian Nuna supercontinent. Geological and geophysical datasets indicate W-SW growth of Baltica with NE-ward dipping subduction zones. The data suggest a long-lived retreating subduction system in the southwestern parts whereas in the northern and central parts the northeasterly transport of continental fragments or microplates towards the continental nucleus is also documented. The geotectonic environment resembles that of the early stages of the Alpine-Himalayan or Indonesian orogenic system, in which dispersed continental fragments, arcs and microplates have been attached to the Eurasian plate margin. Thus the Svecofennian orogeny can be viewed as proxy for the initial stages of an internal orogenic system. Svecofennian orogeny is a Paleoproterozoic analogue of an evolved orogenic system where terrane accretion is followed by lateral spreading or collapse induced by change in the plate architecture. The exposed parts are composed of granitoid intrusions as well as highly deformed supracrustal units. Supracrustal rocks have been metamorphosed in LP-HT conditions in either paleo-lower-upper crust or paleo-upper-middle crust. Large scale seismic reflection profiles (BABEL and FIRE) across Baltica image the crust as a collage of terranes suggesting that the bedrock has been formed and thickened in sequential accretions. The profiles also image three fold layering of the thickened crust (>55 km) to transect old terrane boundaries, suggesting that the over-thickened bedrock structures have been rearranged in post-collisional spreading and/or collapse processes. The middle crust displays typical large scale flow structures: herringbone and anticlinal ramps, rooted onto large scale listric surfaces also suggestive of spreading. Close to the original ocean-continent plate boundary, in the core of the Svecofennian orogen, the thickened accretionary crust carries pervasive stretching lineations at surface and seismic vp-velocity anisotropy in the crust. The direction of spreading and crustal flow seems to be diverted by shapes of the pre-existing boundaries. It is concluded that lateral spreading and midcrustal flow not only rearrange the bedrock architecture but also stabilize the young accreted continental crust in emerging internal orogenic systems. Pre-existing microplate/terrane boundaries will affect the final architecture of the orogenic belt.
NASA Astrophysics Data System (ADS)
Saito, S.; Ishikawa, M.; Shibata, S.; Akizuki, R.; Arima, M.; Tatsumi, Y.; Arai, S.
2010-12-01
Evaluation of rock velocities and comparison with velocity profiles defined by seismic refraction experiments are a crucial approach for understanding the petrological structure of the crust. In this study, we calculated the seismic wave velocities of various types of rocks from the Oman ophiolite in order to constrain a petrological structure of the oceanic crust. Christensen & Smewing (1981, JGR) have reported experimental elastic velocities of rocks from the Oman ophiolite under oceanic crust-mantle conditions (6-430 MPa). However, in their relatively low-pressure experiments, internal pore-spaces might affect the velocity and resulted in lower values than the intrinsic velocity of sample. In this study we calculated the velocities of samples based on their modal proportions and chemical compositions of mineral constituents. Our calculated velocities represent the ‘pore-space-free’ intrinsic velocities of the sample. We calculated seismic velocities of rocks from the Oman ophiolite including pillow lavas, dolerites, plagiogranites, gabbros and peridotites at high-pressure-temperature conditions with an Excel macro (Hacker & Avers 2004, G-cubed). The minerals used for calculations for pillow lavas, dolerites and plagiogranites were Qtz, Pl, Prh, Pmp, Chl, Ep, Act, Hbl, Cpx and Mag. Pl, Hbl, Cpx, Opx and Ol were used for the calculations for gabbros and peridotites. Assuming thermal gradient of 20° C/km and pressure gradient of 25 MPa/km, the velocities were calculated in the ranges from the atmospheric pressure (0° C) to 200 MPa (160° C). The calculation yielded P-wave velocities (Vp) of 6.5-6.7 km/s for the pillow lavas, 6.6-6.8 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6.9-7.5 km/s for the gabbros and 8.1-8.2 km/s for the peridotites. On the other hand, experimental results reported by Christensen & Smewing (1981, JGR) were 4.5-5.9 km/s for the pillow lavas, 5.5-6.3 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6.5-7.7 km/s for the gabbros and 6.3-7.9 km/s for the peridotites. Although the two results are broadly comparable to each other for plagiogranites and gabbros, the calculated velocities are considerably higher than the experimental ones for pillow lavas, dolerites and peridotites. The discrepancy for the pillow lavas and dolerites can be attributed to the presence of pore-spaces in the experimental samples. On the other hand, serpentinization of peridotite samples likely resulted in lower velocities in experiments than in calculation. We compared our results with Vp structure of the oceanic crust and mantle (White et al. 1992, JGR). The calculated Vp of peridotites and gabbros are comparable to those of mantle and layer-3, respectively. The calculated Vp of dolerites is comparable to layer-3 and considerably higher than layer-2 velocities. However, recent deep drilling results (Holes 504B and 1256D) indicate the seismic layer-2 of oceanic crust mainly composed of dolerites, which is consistent with the experimental P-wave velocities of dolerites (Christensen & Smewing, 1981, JGR). These results imply that the velocity structure of seismic layer-2 reflects the distribution of pore-spaces in the upper oceanic crust.
Scholl, D. W.; von Huene, Roland E.
2009-01-01
Arc magmatism at subduction zones (SZs) most voluminously supplies juvenile igneous material to build rafts of continental and intra-oceanic or island arc (CIA) crust. Return or recycling of accumulated CIA material to the mantle is also most vigorous at SZs. Recycling is effected by the processes of sediment subduction, subduction erosion, and detachment and sinking of deeply underthrust sectors of CIA crust. Long-term (>10-20 Ma) rates of additions and losses can be estimated from observational data gathered where oceanic crust underruns modern, long-running (Cenozoic to mid-Mesozoic) ocean-margin subduction zones (OMSZs, e.g. Aleutian and South America SZs). Long-term rates can also be observationally assessed at Mesozoic and older crust-suturing subduction zone (CSSZs) where thick bodies of CIA crust collided in tectonic contact (e.g. Wopmay and Appalachian orogens, India and SE Asia). At modern OMSZs arc magmatic additions at intra-oceanic arcs and at continental margins are globally estimated at c. 1.5 AU and c. 1.0 AU, respectively (1 AU, or Armstrong Unit,= 1 km3 a-1 of solid material). During collisional suturing at fossil CSSZs, global arc magmatic addition is estimated at 0.2 AU. This assessment presumes that in the past the global length of crustal collision zones averaged c. 6000 km, which is one-half that under way since the early Tertiary. The average long-term rate of arc magmatic additions extracted from modern OMSZs and older CSSZs is thus evaluated at 2.7 AU. Crustal recycling at Mesozoic and younger OMSZs is assessed at c. 60 km3 Ma-1 km-1 (c. 60% by subduction erosion). The corresponding global recycling rate is c. 2.5 AU. At CSSZs of Mesozoic, Palaeozoic and Proterozoic age, the combined upper and lower plate losses of CIA crust via subduction erosion, sediment subduction, and lower plate crustal detachment and sinking are assessed far less securely at c. 115 km3 Ma-1 km-1. At a global length of 6000 km, recycling at CSSZs is accordingly c. 0.7 AU. The collective loss of CIA crust estimated for modern OMSZs and for older CSSZs is thus estimated at c. 3.2 AU. SZ additions (2.7 AU) and subtractions (23.2 AU) are similar. Because many uncertainties and assumptions are involved in assessing and applying them to the deep past, the net growth of CIA crust during at least Phanerozoic time is viewed as effectively nil. With increasing uncertainty, the long-term balance can be applied to the Proterozoic, but not before the initiation of the present style of subduction at c. 3 Ga. Allowing that since this time a rounded-down rate of recycling of 3 AU is applicable, a startlingly high volume of CIA crust equal to that existing now has been recycled to the mantle. Although the recycled volume (c. 9 ?? 109 km3) is small (c. 1%) compared with that of the mantle, it is large enough to impart to the mantle the signature of recycled CIA crust. Because subduction zones are not spatially fixed, and their average global lengths have episodically been less or greater than at present, recycling must have contributed significantly to creating recognized heterogeneities in mantle geochemistry. ?? The Geological Society of London 2009.
Scales of Heterogeneities in the Continental Crust and Upper Mantle
NASA Astrophysics Data System (ADS)
Tittgemeyer, M.; Wenzel, F.; Ryberg, T.; Fuchs, K.
1999-09-01
A seismological characterization of crust and upper mantle can refer to large-scale averages of seismic velocities or to fluctuations of elastic parameters. Large is understood here relative to the wavelength used to probe the earth.¶In this paper we try to characterize crust and upper mantle by the fluctuations in media properties rather than by their average velocities. As such it becomes evident that different scales of heterogeneities prevail in different layers of crust and mantle. Although we cannot provide final models and an explanation of why these different scales exist, we believe that scales of inhomogeneities carry significant information regarding the tectonic processes that have affected the lower crust, the lithospheric and the sublithospheric upper mantle.¶We focus on four different types of small-scale inhomogeneities (1) the characteristics of the lower crust, (2) velocity fluctuations in the uppermost mantle, (3) scattering in the lowermost lithosphere and on (4) heterogeneities in the mantle transition zone.
Masterlark, Timothy
2003-01-01
Dislocation models can simulate static deformation caused by slip along a fault. These models usually take the form of a dislocation embedded in a homogeneous, isotropic, Poisson-solid half-space (HIPSHS). However, the widely accepted HIPSHS assumptions poorly approximate subduction zone systems of converging oceanic and continental crust. This study uses three-dimensional finite element models (FEMs) that allow for any combination (including none) of the HIPSHS assumptions to compute synthetic Green's functions for displacement. Using the 1995 Mw = 8.0 Jalisco-Colima, Mexico, subduction zone earthquake and associated measurements from a nearby GPS array as an example, FEM-generated synthetic Green's functions are combined with standard linear inverse methods to estimate dislocation distributions along the subduction interface. Loading a forward HIPSHS model with dislocation distributions, estimated from FEMs that sequentially relax the HIPSHS assumptions, yields the sensitivity of predicted displacements to each of the HIPSHS assumptions. For the subduction zone models tested and the specific field situation considered, sensitivities to the individual Poisson-solid, isotropy, and homogeneity assumptions can be substantially greater than GPS. measurement uncertainties. Forward modeling quantifies stress coupling between the Mw = 8.0 earthquake and a nearby Mw = 6.3 earthquake that occurred 63 days later. Coulomb stress changes predicted from static HIPSHS models cannot account for the 63-day lag time between events. Alternatively, an FEM that includes a poroelastic oceanic crust, which allows for postseismic pore fluid pressure recovery, can account for the lag time. The pore fluid pressure recovery rate puts an upper limit of 10-17 m2 on the bulk permeability of the oceanic crust. Copyright 2003 by the American Geophysical Union.
Gulick, S.P.S.; Meltzer, A.M.; Clarke, S.H.
1998-01-01
Four multichannel-seismic reflection profiles, collected as part of the Mendocino triple junction seismic experiment, image the toe of the southern Cascadia accretionary prism. Today, 250-600 m of sediment is subducting with the Gorda plate, and 1500-3200 m is accreting to the northern California margin. Faults imaged west and east of the deformation front show mixed structural vergence. A north-south trending, 20 km long portion of the central margin is landward vergent for the outer 6-8 km of the toe of the prism. This region of landward vergence exhibits no frontal thrust, is unusually steep and narrow, and is likely caused by a seaward-dipping backstop close to the deformation front. The lack of margin-wide preferred seaward vergence and wedge-taper analysis suggests the prism has low basal shear stress. The three southern lines image wedge-shaped fragments of oceanic crust 1.1-7.3 km in width and 250-700 m thick near the deformation front. These wedges suggest shortening and thickening of the upper oceanic crust. Discontinuities in the seafloor west of the prism provide evidence for mass wasting in the form of slump blocks and debris fans. The southernmost profile extends 75 km west of the prism imaging numerous faults that offset both the Gorda basin oceanic crust and overlying sediments. These high-angle faults, bounding basement highs, are interpreted as strike-slip faults reactivating structures originally formed at the spreading ridge. Northeast or northwest trending strike-slip faults within the basin are consistent with published focal mechanism solutions and are likely caused by north-south Gorda-Pacific plate convergence. Copyright 1998 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Kashubin, S.
2013-12-01
Integrated geological and geophysical studies of the Earth's crust and upper mantle (the Russian project 'Arctic-2012') were carried out in 2012 in the Mendeleev Rise, central Arctic. The set of studies included wide-angle seismic observations along the line crossing the Mendeleev Rise in its southern part. The DSS seismic survey was aimed at the determination of the Mendeleev Rise crust type. A high-power air gun (120 liters or 7320 cu.in) and ocean stations with multi-component recording (X, Y, Z geophone components and a hydrophone) were used for the DSS. The line was studied using a dense system of observation: bottom station spacing was from 10 to 20 km, excitation point spacing (seismic traces interval) was 315 m. Observation data were obtained in 27 location points of bottom stations, the distance between the first and the last stations was 480 km, the length of the excitation line was 740 km. In DSS wave fields, in the first and later arrivals, there are refracted and reflected waves associated with boundaries in the sedimentary cover, with the top of the basement, and with boundaries in the consolidated crust, including its bottom (Moho discontinuity). The waves could be traced for offsets up to 170-240 km. The DSS line coincides with the near-vertical CMP line worked out with the use of a 4500-m-long seismic streamer and with a 50 m shot point interval that allowed essential detalization of the upper part of the section and taking it into account in the construction of a deep crust model. The deep velocity model was constructed using ray-trace modeling of compressional, shear, and converted waves with the use of the SeisWide program. Estimates were obtained for Vp/Vs velocity ratios, which played an important role in determining the type of crust. The results of the interpretation show that the Mendeleev Rise section corresponds to sections of a thin continental crust of shelf seas and a thinned continental crust of submarine ridges and rises.
Tectonic slicing of subducting oceanic crust along plate interfaces: Numerical modeling
NASA Astrophysics Data System (ADS)
Ruh, J. B.; Le Pourhiet, L.; Agard, Ph.; Burov, E.; Gerya, T.
2015-10-01
Multikilometer-sized slivers of high-pressure low-temperature metamorphic oceanic crust and mantle are observed in many mountain belts. These blueschist and eclogite units were detached from the descending plate during subduction. Large-scale thermo-mechanical numerical models based on finite difference marker-in-cell staggered grid technique are implemented to investigate slicing processes that lead to the detachment of oceanic slivers and their exhumation before the onset of the continental collision phase. In particular, we investigate the role of the serpentinized subcrustal slab mantle in the mechanisms of shallow and deep crustal slicing. Results show that spatially homogeneous serpentinization of the sub-Moho slab mantle leads to complete accretion of oceanic crust within the accretionary wedge. Spatially discontinuous serpentinization of the slab mantle in form of unconnected patches can lead to shallow slicing of the oceanic crust below the accretionary wedge and to its deep slicing at mantle depths depending on the patch length, slab angle, convergence velocity and continental geothermal gradient. P-T paths obtained in this study are compared to natural examples of shallow slicing of the Crescent Terrane below Vancouver Island and deeply sliced crust of the Lago Superiore and Saas-Zermatt units in the Western Alps.
Mooney, W.D.; Gettings, M.E.; Blank, H.R.; Healy, J.H.
1985-01-01
The crustal and upper mantle compressional-wave velocity structure across the southwestern Arabian Shield has been investigated by a 1000-km-long seismic refraction profile. The profile begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, trends southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan, and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, and six shot points were used, including one in the Red Sea. Two-dimensional ray-tracing techniques, used to analyze amplitude-normalized record sections indicate that the Arabian Shield is composed, to first order, of two layers, each about 20 km thick, with average velocities of about 6.3 km/s and 7.0 km/s, respectively. West of the Shield-Red Sea margin, the crust thins to a total thickness of less than 20 km, beyond which the Red Sea shelf and coastal plain are interpreted to be underlain by oceanic crust. A major crustal inhomogeneity at the northeast end of the profile probably represents the suture zone between two crustal blocks of different composition. Elsewhere along the profile, several high-velocity anomalies in the upper crust correlate with mapped gneiss domes, the most prominent of which is the Khamis Mushayt gneiss. Based on their velocities, these domes may constitute areas where lower crustal rocks have been raised some 20 km. Two intracrustal reflectors in the center of the Shield at 13 km depth probably represent the tops of mafic intrusives. The Mohorovic??ic?? discontinuity beneath the Shield varies from a depth of 43 km and mantle velocity of 8.2 km/s in the northeast to a depth of 38 km and mantle velocity of 8.0 km/s depth in the southwest near the Shield-Red Sea transition. Two velocity discontinuities occur in the upper mantle, at 59 and 70 km depth. The crustal and upper mantle velocity structure of the Arabian Shield is interpreted as revealing a complex crust derived from the suturing of island arcs in the Precarnbrian. The Shield is currently flanked by the active spreading boundary in the Red Sea. ?? 1985.
NASA Astrophysics Data System (ADS)
Christeson, G. L.; Morgan, S.; Kodaira, S.; Yamashita, M.
2015-12-01
Most of the well-preserved ophiolite complexes are believed to form in supra-subduction zone settings. One of the goals of IODP Expedition 352 was to test the supra-subduction zone ophiolite model by drilling forearc crust at the northern Izu-Bonin-Mariana (IBM) system. IBM forearc drilling successfully cored 1.22 km of volcanic lavas and underlying dikes at four sites. A surprising observation is that basement compressional velocities measured from downhole logging average ~3.0 km/s, compared to values of 5 km/s at similar basement depths at oceanic crust sites 504B and 1256D. Typically there is an inverse relationship in extrusive lavas between velocity and porosity, but downhole logging shows similar porosities for the IBM and oceanic crust sites, despite the large difference in measured compressional velocities. These observations can be explained by a difference in crack morphologies between IBM forearc and oceanic crust, with a smaller fractional area of asperity contact across cracks at EXP 352 sites than at sites 504B and 1256D. Seismic profiles at the IBM forearc image many faults, which may be related to the crack population.
NASA Astrophysics Data System (ADS)
Lee, C.; Chin, E. J.; Erdman, M.; Gaschnig, R. M.; Lederer, G. W.; Savage, P. S.; Zhong, S.; Zincone, S.
2013-12-01
Most Archean cratons are underlain by long-lived 200-300 km thick thermal boundary layers, significantly thicker than oceanic boundary layers, which eventually subduct. The longevity of cratons is perplexing because cold thermal boundary layers should be gravitationally unstable or should thermally erode with time. However, it is agreed that thermal contraction of the cratonic root is compensated by intrinsic compositional buoyancy due to extreme melt depletion. This melt depletion is also thought to have dehydrated the peridotitic residue, strengthening the cratonic mantle, making it resistant to thermo-mechanical erosion. Exactly how cratonic mantle arrives at this chemically buoyant and dehydrated state is unknown. Possible scenarios include formation by melting within a large plume head, accretion of oceanic lithosphere, and accretion of sub-arc mantle. The high degrees of melting would seem to imply formation in hot plume heads, but low Al and heavy rare earth element contents suggest formation in the spinel stability field, implying formation at shallower depths than their current equilibration pressures. We present a new thermobarometer designed to estimate the average melting pressures and temperatures of residual peridotites using whole rock major element compositions. We find that the average melting pressures and temperatures of cratonic peridotites range between 3-4 GPa and 1600 °C. If cratonic peridotites melted via adiabatic decompression, these average pressures represent maximum bounds on the final pressures of melt extraction. Currently, cratonic peridotites derive from 4-7 GPa, implying that the building blocks of peridotites experienced an increase of 1-3 GPa, equivalent to 30-90 km of overburden. Our results thus imply that cratonic mantle most likely formed by tectonic thickening of oceanic or arc lithospheres. But because both arc and oceanic lithospheres might be expected to be wet due to hydrous flux melting and serpentinization, respectively, cratons should be weak. This dilemma can be reconciled by considering the thermal and magmatic evolution of juvenile crust formed in the Archean. Thickening of juvenile crust increases total heat production within the upper part of the nascent lithosphere. With higher heat production in the past, such thickening causes the crust to heat up on timescales of 100 Myr, resulting in a post-orogenic thermal pulse that generates a wave of crustal anatexis and downward heating of the lithospheric mantle, driving off residual water and increasing the kinetics of grain growth, both of which strengthen the lithosphere. Crustal melting will also advectively concentrate radiogenics towards the surface with no observable change in surface heat flow. This upward migration of radiogenics will be followed by cooling of the lower crust and lithospheric mantle, causing further strengthening. With secular cooling of the ambient convecting mantle over much longer timescales, cratons emerge in elevation, leading to erosion of the radiogenically enriched upper crust and leaving behind a continental block with the low surface heat flow characteristic of cratons today. In summary, cratons form by tectonic thickening of cold building blocks, followed by a thermal pulse that further dehydrates and anneals the cratonic mantle. The last step requires sufficient radiogenics to operate, which may explain why cratons formed early in Earth's history.
NASA Astrophysics Data System (ADS)
Laureijs, C. T.; Coogan, L. A.
2016-12-01
It is generally accepted that the composition of seawater has varied through the Phanerzoic and that the variation is linked to changes in the same global fluxes that control the long-term carbon cycle. However, K is observed to be stable at a value of 10 mmol/L despite variable river and hydrothermal fluxes [1]. Secondary K-bearing phases are widely observed in altered upper oceanic crust, suggesting that reactions between seawater and basalt in low-temperature, off-axis, oceanic hydrothermal systems could buffer the K concentration of seawater [2]. As K-feldspar is a common secondary K-bearing mineral in Cretaceous and rare in Cenozoic oceanic crust, the formation of K-feldspar by breakdown of plagioclase reacting with a model Cretaceous seawater was modeled at 15 ºC using the PhreeqC code (version 3.2) and the associated llnl.dat database. A fluid with a K-content of 11 mmol/L in equilibrium with K-feldspar and calcite was generated, consistent with K-feldspar acting as a buffer for the K-content in Cretaceous seawater and the production of alkalinity stabilizing atmospheric CO2 levels on the long-term timescales. A compilation of the K2O content of lavas from DSDP and ODP drill cores (from: http://www.earthchem.org/petdb) shows that the average K-content of altered crust was higher in the Cretaceous than the Cenozoic. This data is inconsistent with the model for the composition of seawater presented in [2], but is consistent with an updated and modified version of this model, that uses more realistic fluxes [3]. We conclude that oceanic off-axis hydrothermal systems probably do buffer the K-content of seawater. [1] Timofeeff et al. (2006), Geochim. Cosmochim. Acta. 70, 1977-1994; [2] Demicco et al. (2005), Geology 33, 877-880. [3] Coogan & Dosso (2012), Earth Planet. Sci. Lett. 323-324, 92-101.
Chapman Conference on Generation of the Oceanic Lithosphere
NASA Astrophysics Data System (ADS)
Presnall, D. C.; Hales, A. L.; Frey, F. A.
On April 6-10, 1981, the Chapman conference on Generation of the Oceanic Lithosphere was held at Airlie House, Warrenton, Virginia. It was convened by D.C. Presnall, A.L. Hales (both at the University of Texas at Dallas), and F.A. Frey (Massachusetts Institute of Technology). The purpose of the conference was to bring together scientists with diverse specialties to develop a better understanding of the constraints imposed by geophysics, geochemistry, petrology, and tectonics on processes of oceanic lithosphere generation. Sessions were held on the nature of the crust and upper mantle at spreading centers; trace elements and isotopes; experimental petrology; magma chamber dynamics, melt migration, and mantle flow; slow versus fast spreading ridges; Atlantic spreading centers; Pacific spreading centers; and hydrothermal activity, metasomatism, and metamorphism. Fifty-four oral papers and 47 poster papers were presented. One hundred twenty-eight scientists attended from Australia, Canada, Cyprus, Denmark, France, Iceland, Japan, Mexico, United Kingdom, United States, and the USSR.
Worldwide occurrence of silica-rich melts in sub-continental and sub-oceanic mantle minerals
NASA Astrophysics Data System (ADS)
Schiano, P.; Clocchiatti, R.
1994-04-01
ROCK samples derived from the Earth's upper mantle commonly show indirect evidence for chemical modification. Such modification, or 'metasomatism', can be recognized by the precipitation of exotic minerals such as phlogopite, amphibole or apatite1, and by the overprinting of the bulk compositions of the mantle rocks by a chemical signature involving the enrichment of potassium and other 'incompatible' elements2. Here we study the composition of the metasomatic agents more directly by examining melt and fluid inclusions trapped in mantle minerals. These inclusions are secondary, forming trails along healed fracture planes. A systematic study of the chemical compositions and entrapment temperatures and pressures of inclusions from 14 ultramaflc peridotites from both continental and oceanic intraplate regions shows that volatile- and silica-rich metasomatic melts are present throughout the litho-sphere. Their compositions, which differ dramatically from those of erupted, mantle-derived magmas, are more akin to continental than to oceanic crust.
Evolution of the Upper Lithosphere in the ENAM Area from 3-D Wide-Angle Seismic Data
NASA Astrophysics Data System (ADS)
Shuck, B.; Van Avendonk, H. J.
2016-12-01
Located offshore North Carolina, the ENAM study area contains the geologic record of the transition from continental rifting to seafloor spreading. In this study we analyze 2-D and 3-D marine wide-angle seismic data from the ENAM experiment with the goal of understanding the interaction between mantle melts and extension in the lithosphere during continental breakup. It is often assumed that magnetic anomalies are associated with continental breakup magmatism. These magnetic anomalies are formed when mantle melts penetrate thinned continental lithosphere leaving basalt flows on the surface. The typical magnetic anomalies of this system are the East Coast Magnetic Anomaly (ECMA) and the West African Coastal Magnetic Anomaly (WACMA). However, there also exists the Blake Spur Magnetic Anomaly (BSMA) which lies 200 km eastward of the ECMA. The BSMA has no mirror counterpart on the African side if rifting was symmetric in nature. This leads us to formulate two alternative hypotheses: 1) Oceanic crust exists between the ECMA and BSMA, or 2) The ECMA and BSMA form a wide volcanic margin. The first hypothesis would suggest the BSMA represents a sliver of West-African crust that was later transferred to the Atlantic plate by a mid-ocean ridge jump eastward. The second hypothesis would suggest asymmetric rifting accompanied by magmatism off North Carolina. Analysis of ENAM seismic refraction data will give insight into how the ECMA and BSMA are related to structure of the crust and mantle. We construct seismic velocity models (P and S-wave) along ENAM lines parallel and perpendicular to the margin to help determine the seismic anisotropy of the study area. Based on a preliminary analysis of the data, the seismic compressional velocity is 8% higher parallel to the margin and suggests the BSMA represents rifted continental lithosphere formed from mantle melt percolation which created a shape-preferred orientation of crystals in the upper mantle.
NASA Astrophysics Data System (ADS)
Harmon, N.; Rychert, C.
2013-12-01
Billions of years ago primary mantle magmas evolved to form the continental crust, although no simple magmatic differentiation process explains the progression to average andesitic crustal compositions observed today. A multiple stage process is often invoked, involving subduction and or oceanic plumes, to explain the strong depletion observed in Archean xenoliths and as well as pervasive tonalite-trondhjemite-granodiorite and komatiite protoliths in the greenstone belts in the crust in the cratons. Studying modern day analogues of oceanic plateaus that are currently interacting with subductions zones can provide insights into continental crust formation. Here we use surface waves to image crustal isotropic and radially anisotropic shear velocity structure above the central American subduction system in Nicaragua and Costa Rica, which juxtaposes thickened ocean island plateau crust in Costa Rica with continental/normal oceanic crust in Nicaragua. We find low velocities beneath the active arc regions (3-6% slower than the surrounding region) and up to 6% radially anisotropic structures within the oceanic crust of the Caribbean Large Igneous Province beneath Costa Rica. The low velocities and radial anisotropy suggest the anomalies are due to pervasive deep crustal magma sills. The inferred sill structures correlate spatially with increased silicic outputs in northern Costa Rica, indicating that deep differentiation of primary magmas is more efficient beneath Costa Rica relative to Nicaragua. Subduction zone alteration of large igneous provinces promotes efficient, deep processing of primary basalts to continental crust. This scenario can explain the formation of continental lithosphere and crust, by both providing strongly depleted mantle lithosphere and a means for rapidly generating a silicic crustal composition.
NASA Astrophysics Data System (ADS)
Christeson, G. L.; Morgan, S.; Kodaira, S.; Yamashita, M.; Almeev, R. R.; Michibayashi, K.; Sakuyama, T.; Ferré, E. C.; Kurz, W.
2016-12-01
Most of the well-preserved ophiolite complexes are believed to form in suprasubduction zone (SSZ) settings. We compare physical properties and seismic structure of SSZ crust at the Izu-Bonin-Mariana (IBM) fore arc with oceanic crust drilled at Holes 504B and 1256D to evaluate the similarities of SSZ and oceanic crust. Expedition 352 basement consists of fore-arc basalt (FAB) and boninite lavas and dikes. P-wave sonic log velocities are substantially lower for the IBM fore arc (mean values 3.1-3.4 km/s) compared to Holes 504B and 1256D (mean values 5.0-5.2 km/s) at depths of 0-300 m below the sediment-basement interface. For similar porosities, lower P-wave sonic log velocities are observed at the IBM fore arc than at Holes 504B and 1256D. We use a theoretical asperity compression model to calculate the fractional area of asperity contact Af across cracks. Af values are 0.021-0.025 at the IBM fore arc and 0.074-0.080 at Holes 504B and 1256D for similar depth intervals (0-300 m within basement). The Af values indicate more open (but not necessarily wider) cracks in the IBM fore arc than for the oceanic crust at Holes 504B and 1256D, which is consistent with observations of fracturing and alteration at the Expedition 352 sites. Seismic refraction data constrain a crustal thickness of 10-15 km along the IBM fore arc. Implications and inferences are that crust-composing ophiolites formed at SSZ settings could be thick and modified after accretion, and these processes should be considered when using ophiolites as an analog for oceanic crust.
Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge
NASA Astrophysics Data System (ADS)
Zhang, Chao; Koepke, Juergen; Kirchner, Clemens; Götze, Niko; Behrens, Harald
2014-09-01
Axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences at fast-spreading mid-ocean ridges are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed ``gabbro glacier'' model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, leading to partial crystallization and crystal-melt mush subsiding down to lower crust. These processes are believed to be controlled by periodical magma replenishment and hydrothermal circulation above the melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes drilled from the East Pacific at the Integrated Ocean Drilling Program Hole 1256D. We estimate the cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that cooling from the peak thermal overprint at 1000-1050°C to 600°C are yielded within about 10-30 years as a result of hydrothermal circulation above melt lens during magma starvation. The estimated rapid hydrothermal cooling explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges.
Acoustic gravity microseismic pressure signal at shallow stations
NASA Astrophysics Data System (ADS)
Peureux, Charles; Ardhuin, Fabrice; Royer, Jean-Yves
2017-04-01
It has been known for decades that the background permanent seismic noise, the so-called microseimic signal, is generated by the nonlinear interaction of oppositely travelling ocean surface waves [Longuet-Higgins 1951]. It can especially be used to infer the time variability of short ocean waves statistics [Peureux and Ardhuin 2016]. However, better quantitative estimates of the latter are made difficult due to a poor knowledge of the Earth's crust characteristics, whose coupling with acoustic modes can affect large uncertainties to the frequency response at the bottom of the ocean. The pressure field at depths less than an acoustic wave length to the surface is made of evanescent acoustic-gravity modes [Cox and Jacobs 1989]. For this reason, they are less affected by the ocean bottom composition. This near field is recorded and analyzed in the frequency range 0.1 to 0.5 Hz approximately, at two locations : at a shallow site in the North-East Atlantic continental shelf and a deep water site in the Southern Indian ocean, at the ocean bottom and 100 m below sea-surface and in the upper part of the water column respectively. Evanescent and propagating Rayleigh modes are compared against theoretical predictions. Comparisons against surface waves hindcast based on WAVEWATCH(R) III modelling framework help assessing its performances and can be used to help future model improvements. References Longuet-Higgins, M. S., A Theory of the Origin of Microseisms, Philos. Trans. Royal Soc. A, The Royal Society, 1950, 243, 1-3. Peureux, C. and Ardhuin, F., Ocean bottom pressure records from the Cascadia array and short surface gravity waves, J. Geophys. Res. Oceans, 2016, 121, 2862-2873. Cox, C. S. & Jacobs, D. C., Cartesian diver observations of double frequency pressure fluctuations in the upper levels of the ocean, Geophys. Res. Lett., 1989, 16, 807-810.
NASA Technical Reports Server (NTRS)
Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred
2015-01-01
The 2012 Indian Ocean earthquake sequence (M(sub w) 8.6, 8.2) is a rare example of great strike slip earthquakes in an intra-oceanic setting. With over a decade of GRACE data, we were able to measure and model the unanticipated large co-, and post-seismic gravity changes of these events. Using the approach of normal mode decomposition and spatial localization, we computed the gravity changes corresponding to five moment tensor components. Our analysis revealed that the gravity changes are produced predominantly by coseismic compression and dilatation within the oceanic crust and upper mantle and by post-seismic vertical motion. Our results suggest that the post-seismic positive gravity and the post-seismic uplift measured with GPS within the coseismic compressional quadrant are best fit by ongoing uplift associated with viscoelastic mantle relaxation. Our study demonstrates that the GRACE data are suitable for analyzing strike-slip earthquakes as small as M(sub w) 8.2 with the noise characteristics of this region.
Regional magnetic anomaly constraints on continental breakup
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Frese, R.R.B.; Hinze, W.J.; Olivier, R.
1986-01-01
Continental lithosphere magnetic anomalies mapped by the Magsat satellite are related to tectonic features associated with regional compositional variations of the crust and upper mantle and crustal thickness and thermal perturbations. These continental-scale anomaly patterns when corrected for varying observation elevation and the global change in the direction and intensity of the geomagnetic field show remarkable correlation of regional lithospheric magnetic sources across rifted continental margins when plotted on a reconstruction of Pangea. Accordingly, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans.
NASA Astrophysics Data System (ADS)
Halpaap, Felix; Rondenay, Stéphane; Ottemöller, Lars
2018-04-01
The Western Hellenic Subduction Zone is characterized by a transition from oceanic to continental subduction. In the southern oceanic portion of the system, abundant seismicity reaches depths of 100 km to 190 km, while the northern continental portion rarely exhibits deep earthquakes. Our study investigates how this oceanic-continental transition affects fluid release and related seismicity along strike. We present results from local earthquake tomography and double-difference relocation in conjunction with published images based on scattered teleseismic waves. Our tomographic images recover both subducting oceanic and continental crusts as low-velocity layers on top of high-velocity mantle. Although the northern and southern trenches are offset along the Kephalonia Transform Fault, continental and oceanic subducting crusts appear to align at depth. This suggests a smooth transition between slab retreat in the south and slab convergence in the north. Relocated hypocenters outline a single-planed Wadati-Benioff Zone with significant along-strike variability in the south. Seismicity terminates abruptly north of the Kephalonia Transform Fault, likely reflecting the transition from oceanic to continental subducted crust. Near 90 km depth, the low-velocity signature of the subducting crust fades out and the Wadati-Benioff Zone thins and steepens, marking the outline of the basalt-eclogite transition. Subarc melting of the mantle is only observed in the southernmost sector of the oceanic subduction, below the volcanic part of the arc. Beneath the nonvolcanic part, the overriding crust appears to have undergone large-scale silica enrichment. This enrichment is observed as an anomalously low Vp/Vs ratio and requires massive transport of dehydration-derived fluids updip through the subducting crust.
Contraction or expansion of the Moon's crust during magma ocean freezing?
Elkins-Tanton, Linda T; Bercovici, David
2014-09-13
The lack of contraction features on the Moon has been used to argue that the Moon underwent limited secular cooling, and thus had a relatively cool initial state. A cool early state in turn limits the depth of the lunar magma ocean. Recent GRAIL gravity measurements, however, suggest that dikes were emplaced in the lower crust, requiring global lunar expansion. Starting from the magma ocean state, we show that solidification of the lunar magma ocean would most likely result in expansion of the young lunar crust, and that viscous relaxation of the crust would prevent early tectonic features of contraction or expansion from being recorded permanently. The most likely process for creating the expansion recorded by the dikes is melting during cumulate overturn of the newly solidified lunar mantle. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
The magma ocean as an impediment to lunar plate tectonics
NASA Technical Reports Server (NTRS)
Warren, Paul H.
1993-01-01
The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.
Advent of Continents: A New Hypothesis
Tamura, Yoshihiko; Sato, Takeshi; Fujiwara, Toshiya; Kodaira, Shuichi; Nichols, Alexander
2016-01-01
The straightforward but unexpected relationship presented here relates crustal thickness to magma type in the Izu-Ogasawara (Bonin) and Aleutian oceanic arcs. Volcanoes along the southern segment of the Izu-Ogasawara arc and the western Aleutian arc (west of Adak) are underlain by thin crust (10–20 km). In contrast those along the northern segment of the Izu-Ogasawara arc and eastern Aleutian arc are underlain by crust ~35 km thick. Interestingly, andesite magmas dominate eruptive products from the former volcanoes and mostly basaltic lavas erupt from the latter. According to the hypothesis presented here, rising mantle diapirs stall near the base of the oceanic crust at depths controlled by the thickness of the overlying crust. Where the crust is thin, melting occurs at relatively low pressures in the mantle wedge producing andesitic magmas. Where the crust is thick, melting pressures are higher and only basaltic magmas tend to be produced. The implications of this hypothesis are: (1) the rate of continental crust accumulation, which is andesitic in composition, would have been greatest soon after subduction initiated on Earth, when most crust was thin; and (2) most andesite magmas erupted on continental crust could be recycled from “primary” andesite originally produced in oceanic arcs. PMID:27669662
Constraining formation of the Eggvin Bank (West of Jan Mayen, N. Atlantic) from OBS data
NASA Astrophysics Data System (ADS)
Tan, P.; Breivik, A. J.; Mjelde, R.; Azuma, R.
2015-12-01
The anomalously high magma flux in the Eggvin Bank area has triggered new research efforts to better understand the crustal development in this area. The Eggvin Bank is located between the Jan Mayen Island and the west coast of Greenland. Some proposed origins of the Eggvin Bank are: a distinct plume located beneath Jan Mayen; an extension of the Iceland plume; minor spreading or leakage along West Jan Mayen Fracture Zone (WJMFZ); intruded continental crust extending from Jan Mayen Microcontinent (JMMC); and rifted Greenland sub-continental lithospheric mantle. In this first modern refraction seismic study of the Eggvin Bank, we present a 2D velocity model based on OBS data. The OBSs were deployed approx. N-S over the Eggvin Bank with good data quality constrained by 4 OBSs. The air-gun array used during OBS shooting produced good quality reflection data. Three distinct seamounts are observed along the profile: the northern seamount (water depth 730m), has a flat top with a thin sedimentary veneer on top, which indicates it has been eroded at sea surface; while the southern two seamounts, one (water depth 550m) is less flat with around 100m thick sedimentary units on top, another one is rounded with tiny sedimentary veneer on top having the shallowest water depth (460m). This could suggest that the southern seamounts are younger, since they are shallower but without obvious signs that they were subaerially exposed. However, increased cooling of the lithosphere across the WJMFZ in the north may also contribute to depth differences. A normal fault offsetting sedimentary strata (~300 m) in the Greenland Basin indicates recent tectonic activity north of the Eggvin Bank. The velocity modeling shows crustal thickness with large variations, ranging from 8 km to 14 km, where crustal thickness changes of 4-5 km are associated with 20-30 km wide segments with thick crust under the seamounts. The crust consists of three oceanic crustal layers: upper crust (2.8km/s-4.8km/s); middle crust (5.5 km/s -6.5 km/s); lower crust (6.7 km/s - 7.35 km/s). The high crustal thickness and crustal morphology differ from the more uniform Kolbeinsey Ridge crust to the south, and it may represent oceanic crust with multiphase off-axis volcanic activity.
NASA Astrophysics Data System (ADS)
Alinaghi, Alireza; Koulakov, Ivan; Thybo, Hans
2007-06-01
The inverse tomography method has been used to study the P- and S-waves velocity structure of the crust and upper mantle underneath Iran. The method, based on the principle of source-receiver reciprocity, allows for tomographic studies of regions with sparse distribution of seismic stations if the region has sufficient seismicity. The arrival times of body waves from earthquakes in the study area as reported in the ISC catalogue (1964-1996) at all available epicentral distances are used for calculation of residual arrival times. Prior to inversion we have relocated hypocentres based on a 1-D spherical earth's model taking into account variable crustal thickness and surface topography. During the inversion seismic sources are further relocated simultaneously with the calculation of velocity perturbations. With a series of synthetic tests we demonstrate the power of the algorithm and the data to reconstruct introduced anomalies using the ray paths of the real data set and taking into account the measurement errors and outliers. The velocity anomalies show that the crust and upper mantle beneath the Iranian Plateau comprises a low velocity domain between the Arabian Plate and the Caspian Block. This is in agreement with global tomographic models, and also tectonic models, in which active Iranian plateau is trapped between the stable Turan plate in the north and the Arabian shield in the south. Our results show clear evidence of the mainly aseismic subduction of the oceanic crust of the Oman Sea underneath the Iranian Plateau. However, along the Zagros suture zone, the subduction pattern is more complex than at Makran where the collision of the two plates is highly seismic.
NASA Astrophysics Data System (ADS)
Abe, Y.; Ohkura, T.; Hirahara, K.; Shibutani, T.
2013-12-01
The Kyushu district, Japan, under which the Philippine Sea (PHS) plate is subducting in a WNW direction, has several active volcanoes. On the volcanic front in Kyushu, a 110 km long gap in volcanism exists in the central part of Kyushu and volcanic rocks with various degrees of contamination by slab-derived fluid are distributed. To reveal the causes of the gap in volcanism and the chemical properties of volcanic rocks and to understand the process of magma genesis and water transportation, we should reveal along-arc variation in water distribution beneath Kyushu. We investigated the seismic velocity discontinuities in the upper mantle beneath Kyushu, with seismic waveform data from 65 stations of Hi-net, which are established by National Research Institute for Earth Science and Disaster Prevention, and 55 stations of the J-array, which are established by Japan Meteorological Agency, Kyushu University, Kagoshima University and Kyoto University. We used receiver function analyses developed especially for discontinuities with high dipping angles (Abe et al., 2011, GJI). We obtained the geometry and velocity contrasts of the continental Moho, the oceanic Moho, and the upper boundary of the PHS slab. From the geometry of these discontinuities and contrast in S wave velocities, we interpreted that the oceanic crust of the PHS slab has a low S wave velocity and is hydrated to a depth of 70 km beneath south Kyushu, to a depth of 80-90 km beneath central Kyushu, and to a depth of no more than 50 km beneath north Kyushu. We also interpreted that the fore-arc mantle beneath central Kyushu has a low velocity region (Vs < 3.2 km/s) that can contain hydrated materials and free aqueous fluid. Such a low velocity fore-arc mantle does not exist beneath north and south Kyushu. Beneath north Kyushu, the oceanic crust does not appear to convey much water in the mantle wedge. Beneath south Kyushu, water dehydrated from the slab could move to the back-arc side and cause arc volcanism, while it could move to the fore-arc side and cause a gap in volcanism and hydration of the fore-arc mantle materials.
Rocks of the early lunar crust
NASA Technical Reports Server (NTRS)
James, O. B.
1980-01-01
Data are summarized which suggest a model for the early evolution of the lunar crust. According to the model, during the final stages of accretion, the outer part of the moon melted to form a magma ocean approximately 300 km deep. This ocean fractionated to form mafic and ultramafic cumulates at depth and an overlying anorthositic crust made up of ferroan anorthosites. Subsequent partial melting in the primitive mantle underlying the crystallized magma ocean produced melts which segregated, moved upward, intruded the primordial crust, and crystallized to form layered plutons consisting of Mg-rich plutonic rocks. Intense impact bombardment at the lunar surface mixed and melted the rocks of the two suites to form a thick layer of granulated debris, granulitic breccias, and impact-melt rocks.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Laurencin, M.; Marcaillou, B.; Graindorge, D.; Evain, M.; Lebrun, J. F.
2016-12-01
One of the goals of the Antithesis cruises (2013 and 2016) was investigating the deep structure of the Lesser Antilles subduction zone in order to: 1) constrain the possible along-strike variations of deep margin structures and slab geometry, 2) assess the nature of the crust and 3) discuss the potential impact of these structures on seismic hazard. Four combined wide-angle and multichannel seismic profiles were acquired between Barbuda and the Virgin Islands using 66 ocean bottom seismometers, a 4.5 km digital streamer and a 7200 cu inch seismic source. Along every line, we performed forward modelling of the wide-angle seismic data, gravity models and synthetic data calculations. The 5-7-km-thick subducting Atlantic oceanic plate is modelled with a single layer along every profile. The sedimentary prism fill is globally thin with maximal 5 km thick and 20-30 km wide. The 18-km-thick Caribbean crust is subdivided in 2 or 3 layers interpreted, from top to bottom, as following. A 2 to 4 km thick upper layer with velocity ranging from 2.5 to 3.5 km/s possibly consists of consolidate sediments or a carbonate platform. The underlying 4 to 6 km thick layer, with velocity ranging from 4.7 to 6.15 km/s might correspond to volcanic products. The lower 15 km thick lower crustal layer shows velocity up to 7.4 km/s, typical of basal velocities in oceanic crust. The structure and velocity model is thus closely consistent with a possibly overthickened oceanic crust. Our southernmost model, offshore of Barbuda, reveal a general crust structure and slab geometry which appear very to those described South of Guadeloupe along a line proposed by Kopp et al. (2011). It suggests an overall homogeneity for these structural features within the central segment of the Lesser Antilles (Martinique - Antigua). When the overall structure of the Caribbean plate is stable, the deep structure of the frontal margin and slab geometry is evolving from south to north. The wideness and thickness of the prism decrease toward the north as a consequence of the presence of blocking ridges and less sediment inputs. Frontal bending of the slab is also decreasing toward the north leading to a less steep slab within the first 30 kilometers as a consequence of increasing obliquity of subduction in the northern Antilles. This phenomena may increase the wideness of a seismogenic zone?
NASA Astrophysics Data System (ADS)
Singh, B. P.; Rajaram, Mita; Bapat, V. J.
1991-06-01
Magsat studies over the Indian region and adjoining areas show that the continental-oceanic contrasts appear more distinctly in the equivalent magnetization solution than in the anomaly maps. The vertical component ( Z) is found to be more useful for the equatorial regions. It is also noted that, in general, the continental crust has a higher magnetization than the oceanic crust. Further, the continental crust seems to extend into the Arabian Sea across a part of the west coast. A similar continuation is seen in the northern part of the Bay of Bengal. The west coast result is corroborated using land and marine Bouguer gravity anomalies.
NASA Astrophysics Data System (ADS)
Yulaeva, E.; Fan, Y.; Moosdorf, N.; Richard, S. M.; Bristol, S.; Peters, S. E.; Zaslavsky, I.; Ingebritsen, S.
2015-12-01
The Digital Crust EarthCube building block creates a framework for integrating disparate 3D/4D information from multiple sources into a comprehensive model of the structure and composition of the Earth's upper crust, and to demonstrate the utility of this model in several research scenarios. One of such scenarios is estimation of various crustal properties related to fluid dynamics (e.g. permeability and porosity) at each node of any arbitrary unstructured 3D grid to support continental-scale numerical models of fluid flow and transport. Starting from Macrostrat, an existing 4D database of 33,903 chronostratigraphic units, and employing GeoDeepDive, a software system for extracting structured information from unstructured documents, we construct 3D gridded fields of sediment/rock porosity, permeability and geochemistry for large sedimentary basins of North America, which will be used to improve our understanding of large-scale fluid flow, chemical weathering rates, and geochemical fluxes into the ocean. In this talk, we discuss the methods, data gaps (particularly in geologically complex terrain), and various physical and geological constraints on interpolation and uncertainty estimation.
NASA Astrophysics Data System (ADS)
Rouxel, O. J.; Gueguen, B.
2016-12-01
Ferromanganese (Fe-Mn) crusts are potential archive of the Fe isotope composition of deep seawater through time. Here, we report Fe isotope composition of two pairs of Fe-Mn crusts collected on two volcanic seamounts from the Northern Pacific Ocean (Apuupuu Seamount, Hawaii) and the Southern Pacific Ocean (near Rurutu Island, Austral archipelago of French Polynesia). This approach allows (a) a direct comparison of the Fe isotope record in Fe-Mn crusts from the same seamount in order to address local effects, and (b) a comparison of geochemical composition of crusts between North and South Pacific in order to address the effect of more global geochemical processes. The results show that, despite different growth rates, diagenetic history, textures and geochemical patterns, Fe-Mn crusts from both North and South Pacific Oceans have fairly homogenous Fe isotope compositions over the last 17 Ma, yielding average δ56Fe values of -0.22 ± 0.20‰ (1sd, n = 54). The results also show striking correlations between Fe and Pb isotope ratios, indicating that local mixing between water masses is the main factor controlling Fe isotope composition in FeMn crusts. Recently, Horner et al. (2015) reported a range of δ56Fe values from -1.12‰ to 1.54‰ along a 76 Ma-old FeMn crust from the central pacific. However, secular variations of Fe isotopes inferred from other FeMn crusts in the Central North Pacific and Western Pacific (Yang and Rouxel, unpublished) show different patterns over the last 40 Ma, with δ56Fe ranging from -0.07 to -0.61‰ (n=81). Hence, the application of Fe isotopes as paleoceanographic proxies to trace deeply sourced iron at the scale of oceanic basins should be used with caution, prompting for an integrative approach combining diverse yet complimentary geochemical proxies.
NASA Astrophysics Data System (ADS)
Heyde, I.; Girolami, C.; Barckhausen, U.; Freitag, R.
2017-12-01
Hydrothermal vent fields along mid-ocean ridges can be metal-rich and thus of great importance for the industries in the future. By order of the German Federal Ministry of Economics and in coordination with the International Seabed Authority (ISA), BGR explores potential areas of the active spreading system in the Indian Ocean. A main goal is the identification of inactive seafloor massive sulfides (SMS) with the aid of modern exploration techniques. Important contributions could be expected from bathymetric, magnetic, and gravity datasets, which can be acquired simultaneously time from the sea surface within relatively short ship time. The area of interest is located between 21°S and 28°S and includes the southern Central Indian Ridge (CIR) and the northern Southeast Indian Ridge (SEIR). In this study we analyzed the marine gravity and bathymetric data acquired during six research cruises. The profiles running perpendicular to the ridge axis have a mean length of 60 km. Magnetic studies reveal that the parts of the ridges covered are geologically very young with the oldest crust dating back to about 1 Ma. To extend the area outside the ridges, the shipboard data were complemented with data derived from satellite radar altimeter measurements. We analyzed the gravity anomalies along sections which cross particular geologic features (uplifted areas, accommodation zones, hydrothermal fields, and areas with hints for extensional processes e.g. oceanic core complexes) to establish a correlation between the gravity anomalies and the surface geology. Subsequently, for both ridge segments 3D density models were developed. We started with simple horizontally layered models, which, however, do not explain the measured anomalies satisfyingly. The density values of the crust and the upper mantle in the ridge areas had to be reduced. Finally, the models show the lateral heterogeneity and the variations in the thickness of the oceanic crust. There are areas characterized by crustal thickening related to magmatic accretion and areas of crustal thinning related to depleted accretion and exposure of OCCs.
Lunar mare volcanism: Mixing of distinct, mantle source regions with KREEP-like component
NASA Technical Reports Server (NTRS)
Shervais, John W.; Vetter, Scott K.
1993-01-01
Mare basalts comprise less than 1% of the lunar crust, but they constitute our primary source of information on the moon's upper mantle. Compositional variations between mare basalt suites reflect variations in the mineralogical and geochemical composition of the lunar mantle which formed during early lunar differentiation (4.5-4.4 AE). Three broad suites of mare basalt are recognized: very low-Ti (VLT) basalts with TiO2 less than 1 wt%, low-Ti basalts with TiO2 = 2-4 wt%, and high-Ti basalts with TiO2 = 10-14 wt%. Important subgroups include the Apollo 12 ilmenite basalts (TiO2 = 5-6 wt%), aluminous low-Ti mare basalts (TiO2 = 2-4 wt%, Al2O3 = 10-14 wt%), and the newly discovered Very High potassium (VHK) aluminous low-Ti basalts, with K2O = 0.4-1.5 wt%. The mare basalt source region has geochemical characteristics complementary to the highlands crust and is generally thought to consist of mafic cumulates from the magma ocean which formed the felsic crust by feldspar flotation. The progressive enrichment of mare basalts in Fe/Mg, alkalis, and incompatible trace elements in the sequence VLT basalt yields low-Ti basalt yields high-Ti basalt is explained by the remelting of mafic cumulates formed at progressively shallower depths in the evolving magma ocean. This model is also consistent with the observed decrease in compatible element concentrations and the progressive increase in negative Eu anomalies.
Origin of the earth's ocean basins
NASA Technical Reports Server (NTRS)
Frex, H.
1977-01-01
The earth's original ocean basins were mare-type basins produced 4 billion years ago by the flux of asteroid-sized objects responsible for the lunar mare basins. Scaling upwards from the observed number of lunar basins for the greater capture cross-section and impact velocity of the Earth indicates that at least 50 percent of an original global crust would have been converted to basin topography. These basins were flooded by basaltic liquids in times short compared to the isostatic adjustment time for the basin. The modern crustal dichotomy (60 percent oceanic, 40 percent continental crust) was established early in the history of the earth, making possible the later onset of plate tectonic processes. These later processes have subsequently reworked, in several cycles, principally the oceanic parts of the earth's crust, changing the configuration of the continents in the process. Ocean basins (and oceans themselves) may be rare occurrences on planets in other star systems.
Archean upper crust transition from mafic to felsic marks the onset of plate tectonics.
Tang, Ming; Chen, Kang; Rudnick, Roberta L
2016-01-22
The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Jian, Ping; Kröner, Alfred; Shi, Yuruo; Zhang, Wei; Liu, Yaran; Windley, Brian F.; Jahn, Bor-ming; Zhang, Liqao; Liu, Dunyi
2016-06-01
We present 110 ages and 51 in-situ δ18O values for zircon xenocrysts from a post-99 Ma intraplate basaltic rock suite hosted in a subduction-accretion complex of the southern Central Asian Orogenic Belt in order to constrain a seismic profile across the Paleozoic Southern Orogen of Inner Mongolia and the northern margin of the North China Craton. Two zircon populations are recognized, namely a Phanerozoic group of 70 zircons comprising granitoid-derived (ca. 431-99 Ma; n = 31; peak at 256 Ma), meta-granitoid-derived (ca. 449-113 Ma; n = 24; peak at 251 Ma) and gabbro-derived (436-242 Ma; n = 15; peaks at 264 and 244 Ma) grains. Each textural type is characterized by a distinct zircon oxygen isotope composition and is thus endowed with a genetic connotation. The Precambrian population (2605-741 Ma; n = 40) exhibits a prominent age peak at 2520 Ma (granulite-facies metamorphism) and four small peaks at ca. 1900, 1600, and 800 Ma. Our new data, together with literature zircon ages, significantly constrain models of three seismically-determined deep crustal layers beneath the fossil subduction zone-forearc along the active northern margin of the North China Craton, namely: (1) an upper arc crust of early to mid-Paleozoic age, intruded by a major Permian-Triassic composite granitoid-gabbroic pluton (8-20 km depth); (2) a middle crust, predominantly consisting of mid-Meso- to Neoproterozoic felsic and mafic gneisses; and (3) a lower crust composed predominantly of late Archean granulite-facies rocks. We conclude that the Paleozoic orogenic crust is limited to the upper crustal level, and the middle to lower crust has a North China Craton affinity. Furthermore, integrating our data with surface geological, petrological and geochronological constraints, we present a new conceptual model of orogenic uplift, lithospheric delamination and crustal underthrusting for this key ocean-continent convergent margin.
NASA Astrophysics Data System (ADS)
Robertson, A. H. F.
2012-04-01
The objective here is to use the geology and tectonics of a critical part of the Tethyan orogen, represented by Greece and Albania, to shed light on the tectonic development of Tethys on a regional, to global scale, particularly the history of convergence during Late Palaeozoic to Cenozoic time. For Carboniferous time much evidence suggests that the Korabi-Pelagonian crustal unit as exposed in Albania and Greece formed above a northward-dipping subduction zone along the Eurasia continental margin, with Palaeotethys to the south. However, there is also some evidence of southward subduction beneath Gondwana especially from southern Greece and central southern Turkey. Palaeotethys is inferred to have closed in Europe as far to the east as the longitude of Libya, while remaining open beyond this. There is still uncertainty about the Pangea A-type reconstruction that would restore all of the present units in the area to within the E Mediterranean region, versus the Pangea B-type reconstruction that would require right-lateral displacement of exotic terranes, by up to 3,500 km eastwards. In either reconstruction, fragments of the Variscan collisional orogen are likely to have been displaced eastwards (variable distances) in the Balkan region prior to Late Permian-Early Triassic time. From ~Late Permian, the Greece-Albania crustal units were located in their present relative position within Tethys as a whole. From the mid-Permian, onwards the northern margin of Gondwana was affected by crustal extension. A Mesozoic ocean (Pindos-Mirdita ocean) then rifted during Early-Middle Triassic time, culminating in final continental break-up and seafloor spreading during the Late Triassic (Carnian-Norian). Subduction-influenced volcanics of mainly Early-Middle Triassic age probably reflect the extraction of magma from sub-continental lithosphere that was enriched in subduction-related fluids and volatiles during an earlier, ?Variscan subduction event. The existence of Upper Triassic mid-ocean ridge-type igneous rocks, known locally in Albania and Greece, points to rifting of a Red Sea-type oceanic basin rather than a back-arc basin related to contemporaneous subduction. After initial, inferred slow spreading at an Upper Triassic, rifted ocean ridge and spreading during the Early Jurassic, the ocean basin underwent regional convergence. Subduction was initiated at, or near, a spreading axis perhaps adjacent to an oceanic fracture zone. The Jurassic supra-subduction zone-type ophiolites of both Greece and Albania largely relate to melting of rising asthenosphere in the presence of volatiles (water) that originated from subducting oceanic lithosphere. High-magnesian boninite-type magmas that are present in both the Albanian and Greece ophiolites and some underlying melanges reflect remelting of previously depleted oceanic upper mantle. Localised MOR-type ophiolites of Late Middle Jurassic age, mainly exposed in NE Albania, were created at a rifted spreading axis. The amphibolite-facies metamorphic sole of the ophiolites was mainly derived from oceanic crust (including within-plate type seamounts), whereas the underlying lower-grade, greenschist facies sole was mainly sourced from the rifted continental margin. The melange, dismembered thrust sheets and polymict debris flows ("olistostromes") beneath the ophiolites formed by accretion and gravity reworking of continental margin units. The in situ radiolarian chert cover of the ophiolites in northern Albania is overlain by polymict debris flows ("olistostromes"). Pelagic carbonate deposition followed during Tithonian-Berriasian time and then restoration of a regional carbonate platform during the Cretaceous. Exhumation of deeply buried parts of the over-ridden continental margin probably took place during the Early Cretaceous. Structural evidence, mainly from northern Greece (Vourinos, Pindos and Othris areas), indicates that the ophiolites, the metamorphic sole, the accretionary melange, and the underlying continental margin units were all deformed by top-to-the-northeast thrusting during Late Middle-Early Late Jurassic time. However, such kinematic evidence is not obviously replicated in Albania, where there are reports of ~southwest-directed (or variable) emplacement. Remaining Pindos-Mirdita oceanic crust subducted ~southwestwards during Late Cretaceous-Eocene time, while oceanic crust continued to form in the south-Aegean region at least locally during Late Cretaceous time. During Early Cenozoic time the Pindos-Mirdita ocean closed progressively southwards, triggering mainly southward progradation of turbidites derived from the over-riding Korabi-Pelagonian microcontinent. Smaller volumes of sediment were also derived from the Apulia (Adria) continent. The Mesohellenic Trough of Greece and its counterpart in Albania evolved from an Eocene fore-arc-type basin above subducting oceanic lithosphere to a thrust-top basin as continental crust continued to underthrust during the Oligocene after final closure of the Pindos-Mirdita ocean. Miocene and Plio-Quaternary successor flexural foredeeps developed in response to continuing regional plate convergence. The preferred tectonic alternatives are assembled into a new overall tectonic model, which in turn needs to be tested and developed in the light of future studies. Reference: Robertson, A.H.F. Tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region during Late Palaeozoic-Cenozoic time. International Geological Review, in press.
NASA Astrophysics Data System (ADS)
Liu, Wei; Liu, Xiu-Jin; Liu, Li-Juan
2013-10-01
Whole rock major and trace element, Nd-Sr and zircon Hf isotopic compositions and secondary-ion mass spectrometry zircon U-Pb ages of eleven granitoid intrusions and dioritic rocks from the East Junggar (NW China) were analyzed in this study. The East Junggar granitoids were emplaced during terminal Early to Late Carboniferous (325-301 Ma) following volcanic eruption of the Batamayi Formation. Zircons from the East Junggar granitoids yielded 210 concordant 206Pb/238U ages which are all younger than 334 Ma and exhibit ɛHf(t) values distinctly higher than Devonian arc volcanic-rocks. Seismic P-wave velocities of deep crust of the East Junggar proper resemble those of oceanic crust (OC). These characteristics suggest absence of volcanic rock and volcano-sedimentary rock of Devonian and Early Carboniferous from the source region. The East Junggar granitoids show ɛNd(t) and initial 87Sr/86Sr values substantially overlapping those of the Armantai ophiolite in the area. The Early Paleozoic OC with seamount-like composition as the Zhaheba-Armantai ophiolites remained in the lower crust and formed main source rock of the East Junggar granitoids. Based on petrography and geochemistry, the East Junggar granitoids are classified into peralkaline A-type in the northern subarea, I-type (I1 and I2 subgroups) mainly in the north and A-type in the south of the southern subarea. The perthitic or argillated core and oligoclasic rim with an argillated boundary of feldspar phenocrysts and inclusion of perthites or its overgrowth by matrix plagioclase, in the monzogranites (northern subarea), suggest mixing of peralkaline granitic magma with mafic magma. In the north of the southern subarea, the presence of magmatic microdioritic enclaves (MMEs) in the I1 subgroup granitoids, transfer of plagioclase phenocrysts and hornblendes between host granodiorite and the MME across the boundary and a prominent resorption surface in the plagioclase phenocrysts indicate mixing of crustal magma (I2 subgroup granitoids) with mafic magma. Magma mixing shifted (87Sr/86Sr)i of the I1 subgroup granitoids towards the mantle array. Two generations of hornblende with zonal distribution and similar mineral and geochemical compositions of quartz monzodiorite and hosted MME with unfractionated rare earth elements (REE) suggest extended magma mixing with onset probably at or near source region. These observations imply concurrency of mantle input and the crustal melting and, hence, a causal relationship between underplating/intraplating and the lower OC/upper OC melting. The I-type granitoids experienced plagioclase and hornblende fractionations, whereas fractionated phases of the two groups of A-type granites were alkali feldspar and albite-oligoclase with significant involvement of F--rich fluid. Granodioritic parent magmas of the I2 subgroup granitoids stemmed from the hydrous upper OC. Parent magmas of the two A-type groups possess syenogranitic or quartz syenitic compositions. The peralkaline A-type granites stemmed from the lower OC, whereas the A-type granites from dehydrated upper OC left behind after extensive partial melting and extraction of I-type granitoids. Based on comparison in the ternary system Mg2SiO4-CaAl2SiO6-SiO2, most of the Batamayi volcanic rocks with affinity to ocean-island basalts were derived from asthenospheric upwelling. The gabbro-dioritic rocks with higher light to heavy REE ratios stemmed from metasomatized lithospheric mantle. Both of the above mafic rocks contain subducted slab component.
NASA Astrophysics Data System (ADS)
Chappell, A.; Kusznir, N. J.
2005-05-01
The southern Rockall Trough south of 57 N has previously been interpreted as either an intra-continental rift floored with highly extended continental crust, or a failed oceanic rift formed by Cretaceous sea floor spreading. Satellite gravity, bathymetry data and seismic estimates of sediment thickness are used to derive crustal basement thickness for the southern Rockall Trough and adjacent regions using a gravity inversion method incorporating a correction for the large negative thermal gravity component present in oceanic and stretched continental lithosphere. The marine Bouguer anomaly, derived from satellite free air gravity (Sandwell & Smith 1997) and Gebco 2003 bathymetry data, is inverted using the method of Oldenberg (1974), incorporating an iteratively applied thermal anomaly correction, to give Moho depth. For oceanic crust the thermal anomaly correction is calculated using isochron ages (Muller et al. 1997) and for continental crust from the beta stretching factors resulting from gravity derived crustal basement thickness and an assumed rift age. When sediment thickness and volcanic addition are assumed to be zero, the resulting upper bound of crustal thickness from the gravity inversion is as little as 10 km in the southern Rockall Trough. A segmented axial thickening of the crust at the centre of the Rockall Trough is predicted, between the Barra volcanic ridge and the Anton Dohrn seamount and is interpreted as having a volcanic origin. Inclusion of a sediment thickness correction in the gravity inversion further reduces predicted crustal thickness. A pseudo-sediment-thickness map has been constructed from the available wide-angle data and incorporated in the gravity inversion. The addition of up to 5.5 km of sediment in the gravity inversion reduces the upper bound of crustal thickness to less than 3 km in some locations. The segmented axial thickening and thin crust shown by the gravity inversion, the lack of intra-basinal faulting, and the volcanic origin for the axis shown by normal incidence seismic data, are consistent with a sea-floor spreading origin for the southern Rockall Trough and not formation by intra-continental rifting. We investigate the formation of the southern Rockall Trough using SfMargin, a new model of continental lithosphere thinning leading to continental breakup and sea-floor spreading initiation. Comparisons of the geometry of the southern Rockall Trough predicted by SfMargin with that observed are consistent with a short period (20Ma) of slow Cretaceous sea-floor spreading, followed by thermal subsidence to present day. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, ConocoPhillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.
Svecofennian orogeny in an evolving convergent margin setting
NASA Astrophysics Data System (ADS)
Korja, Annakaisa
2015-04-01
The dominant tectonic mode changes from extension to convergence at around 1.9 Ga in Fennoscandian. The lithological record suggests short lived subduction-related magmatic events followed by deformation and low-pressure high temperature metamorphism. At around 1.8 Ga the subduction systems seem to have stabilized implying continuous supply of oceanic lithosphere. The evolution of the convergent margin is recorded in the rock record and crustal architecture of the long lived Svecofennian orogeny (1.9-1.7 Ga). A closer look at the internal structure of the Svecofennian orogen reveals distinct regional differences. The northern and central parts of the Svecofennian orogen that have been formed during the initial accretionary phase - or compilation of the nucleus - have a thick three-layer crust and with thick mafic lower crust (10-30 km) and block-like internal architecture. Reflection profiles (FIRE1-3) image listric structures flattening on crustal scale décollement zones at the upper-middle crust and middle-upper crust boundaries. The crustal architecture together with large volumes of exposed granitoid rocks suggests spreading of the orogen and the development of an orogenic plateau west of the continental convergence boundary. The architecture is reminiscent of a large hot orogen. Within the western and southwestern part of the Svecofennian orogen (BABEL B, 1, 2, 3&4), which have been envisioned to have formed during continuous subduction phase, the crust is thinner (45-50 km) and it is hosting crustal blocks having one to two crustal layers. Layering is poorly developed in crustal blocks that are found S-SW of NE-dipping mantle reflections previously interpreted as paleo-subduction zones. Within these blocks, the crustal scale reflective structures dip NE (prowedge) or form pop-up wedges (uplifted plug) above the paleo-subduction zones. Crustal blocks with well-developed two-layer crust are located NE of the paleo-subduction zone. The architecture can be interpreted to image a series of abandoned accretion zones where the orogenic structure has developed from a young and cold orogen (BABEL 2,3&4) to a transitional (BABEL 1,6,B) one as the plate boundary is retreating during SW wards. The fast retreating rate of the subduction zone may not only have formed continental back-arc environment but may have restricted the thickening of the upper plate and the growth rate of the orogen. Altogether the architecture suggests a long-lived southwesterly retreating subduction system, with continental back-arc formation in its rear parts and well developed system of prowedge-retrowedge-uplifted plug close to a subduction conduit. Changes in the relative velocities of the upper and lower plate may have resulted in repetitive extensional and compressional phases of the orogeny as has been previously suggested for the southern part of the Svecofennian orogen.
NASA Astrophysics Data System (ADS)
Jeanniot, L.; Kusznir, N. J.; Manatschal, G.; Mohn, G.; Beltrando, M.
2013-12-01
Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history and OCT architecture, resulting in hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust before continental breakup and seafloor spreading. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single kinematic lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events, using forward modelling of crustal thickness, subsidence and P-T-t history calibrated against observations on the present-day Iberia-Newfoundland and the fossil analogue Alpine Tethys margins. Lithosphere deformation modes, represented by flow fields, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost upper lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling is also included in the kinematic model as predicted by Braun et al (2000). We predict melt generation by decompressional melting using the parameterization and methodology of Katz et al., 2003. We use a series of numerical experiments, tested and calibrated against crustal thicknesses and subsidence observations, to determine the distribution of lithosphere deformation, the contribution of buoyancy driven upwelling and their spatial and temporal evolution including lateral migration. Particle tracking is used to predict P-T-t histories for both Iberia-Newfoundland and the Alpine Tethys conjugate margin transects. The lateral migration of the deformation flow axis has an important control on the rupture of continental crust and lithosphere, melt initiation, their relative timing, the resulting OCT architecture and conjugate margin asymmetry. Initial continental crust thickness and lithosphere temperature structure are important in controlling initial elevation and subsequent subsidence and depositional histories. Numerical models are used to examine the possible isostatic responses of the present-day and fossil analogue rifted margins.
NASA Astrophysics Data System (ADS)
Lallemand, Serge
2016-12-01
We compiled the most relevant data acquired throughout the Philippine Sea Plate (PSP) from the early expeditions to the most recent. We also analyzed the various explanatory models in light of this updated dataset. The following main conclusions are discussed in this study. (1) The Izanagi slab detachment beneath the East Asia margin around 60-55 Ma likely triggered the Oki-Daito plume occurrence, Mesozoic proto-PSP splitting, shortening and then failure across the paleo-transform boundary between the proto-PSP and the Pacific Plate, Izu-Bonin-Mariana subduction initiation and ultimately PSP inception. (2) The initial splitting phase of the composite proto-PSP under the plume influence at ˜54-48 Ma led to the formation of the long-lived West Philippine Basin and short-lived oceanic basins, part of whose crust has been ambiguously called "fore-arc basalts" (FABs). (3) Shortening across the paleo-transform boundary evolved into thrusting within the Pacific Plate at ˜52-50 Ma, allowing it to subduct beneath the newly formed PSP, which was composed of an alternance of thick Mesozoic terranes and thin oceanic lithosphere. (4) The first magmas rising from the shallow mantle corner, after being hydrated by the subducting Pacific crust beneath the young oceanic crust near the upper plate spreading centers at ˜49-48 Ma were boninites. Both the so-called FABs and the boninites formed at a significant distance from the incipient trench, not in a fore-arc position as previously claimed. The magmas erupted for 15 m.y. in some places, probably near the intersections between back-arc spreading centers and the arc. (5) As the Pacific crust reached greater depths and the oceanic basins cooled and thickened at ˜44-45 Ma, the composition of the lavas evolved into high-Mg andesites and then arc tholeiites and calc-alkaline andesites. (6) Tectonic erosion processes removed about 150-200 km of frontal margin during the Neogene, consuming most or all of the Pacific ophiolite initially accreted to the PSP. The result was exposure of the FABs, boninites, and early volcanics that are near the trench today. (7) Serpentinite mud volcanoes observed in the Mariana fore-arc may have formed above the remnants of the paleo-transform boundary between the proto-PSP and the Pacific Plate.
NASA Astrophysics Data System (ADS)
Coogan, L. A.; Dosso, S. E.; Higgins, J. A.
2014-12-01
There are sharp rises in the Sr- and Li-isotopic composition of seawater at the Eocene-Oligocene boundary that are generally thought to be associated with Himalayan uplift and associated climatic changes and continental weathering variability. In modeling such data the norm is to hold the chemical fluxes associated with off-axis hydrothermal circulation through the oceanic crust constant while varying the river fluxes (and/or isotopic ratios). There is, however, no a priori reason to assume the chemical fluxes (or isotopic compositions) associated with off-axis hydrothermal systems should stay constant. Instead, changing environmental conditions (e.g. seawater composition and bottom water temperature) will lead to changes in these fluxes. An alternative model to explain the sharp rise in the Sr- and Li-isotopic composition of seawater at the Eocene-Oligocene boundary is cooling of the deep ocean. Decreased reaction rates in the oceanic crust, due to decreasing temperature, can be shown to lead to a decrease in the flux of unradiogenic Sr into the ocean. The magnitude matches, within uncertainty, that required to explain the increase in seawater Sr-isotopic composition [Coogan and Dosso, in review]. The story for Li is more uncertain. Two factors may lead to smaller effective fractionation factors between seawater and the (large) Li sink in the oceanic crust when bottom water is warmer: (i) higher temperature will decrease the isotopic fractionation factor; (ii) the more extensive fluid-rock reaction in the ocean crust when bottom water is warmer will make Li uptake by the oceanic crust more efficient. All other things being equal this will lead to a lower Li content of seawater. In turn, a lower Li content in seawater will mean that for a given Li-uptake rate by the crust the effective fractionation factor is smaller, due to Rayleigh distillation of Li-isotopes during fluid-rock reaction in the oceanic crust. In combination these factors predict a significant (many per mil), but poorly constrained, increase in the Li-isotopic composition of the ocean due to cooling bottom water. Models of many geochemical species, including carbon [Coogan and Gillis, 2013], should include environmentally dependent fluxes from off-axis hydrothermal systems.
NASA Astrophysics Data System (ADS)
Li, Xian-Hua; Abd El-Rahman, Yasser; Abu Anbar, Mohamed; Li, Jiao; Ling, Xiao-Xiao; Wu, Li-Guang; Masoud, Ahmed E.
2018-04-01
The Neoproterozoic Arabian-Nubian Shield (ANS) is the best preserved and the largest exposed Neoproterozoic juvenile crust on Earth. While the lithology and early Sr and Nd isotopic data demonstrate that the ANS crust is overwhelmingly juvenile, pre-ANS old zircon crystals have been increasingly recognized in the ANS igneous and sedimentary rocks, casting doubt on the "juvenility" of the ANS crust. In order to understand the origin of the old continental materials in the ANS and its roles in generation of juvenile oceanic arcs, we carry out for the first time an integrated in situ analysis of zircon U-Pb age and Hf-O isotopes for greywacke and felsic volcanic cobble samples from the Atud Formation in the Eastern Desert of northwestern part of the ANS. Our data indicate that the Atud Formation was deposited between ca. 720 and 700 Ma, concurrent with the production of oceanic arcs in the ANS. The Atud greywacke was derived from the erosion of a proximal arc terrane that contains numerous old continental crust materials. We identify for the first time a 755-Ma felsic volcanic cobble from the Atud Formation that is derived from old continental materials during juvenile crust production, suggesting presence of an old continental crust substrate that underlies the ANS. Our work demonstrates that reworking of old continental crust played important roles in generation of oceanic arcs in the northwestern ANS that is likely much less juvenile than previously thought. Thus, the crustal growth rates calculated based on estimates of temporal island arc development need to be revised.
NASA Astrophysics Data System (ADS)
Gillard, Morgane; Autin, Julia; Manatschal, Gianreto
2015-04-01
The discovery of large domains of hyper-extended continental crust and exhumed mantle along many present-day magma-poor rifted margins questions the processes that play during the lithospheric breakup and the onset of seafloor spreading. In particular, the amount of magma and its relation to tectonic structures is yet little understood. Trying to find answers to these questions asks to work at the most distal parts of rifted margins where the transition from rifting to steady state seafloor spreading occurred. The Australian-Antarctic conjugated margins provide an excellent study area. Indeed, the central sector of the Great Australian Bight/Wilkes Land developed in a magma-poor probably ultra-slow setting and displays a complex and not yet well understood Ocean-Continent Transition (OCT). This distal area is well imaged by numerous high quality seismic lines covering the whole OCT and the steady-state oceanic crust. The deformation recorded in the sedimentary units along these margins highlights a migration of the deformation toward the ocean and a clear polyphase evolution. In particular, the observation that each tectono-sedimentary unit downlaps oceanwards onto the basement suggests that final rifting is associated with the creation of new depositional ground under conditions that are not yet those of a steady state oceanic crust. These observations lead to a model of evolution for these distal margins implying the development of multiple detachment systems organizing out-of-sequence, each new detachment fault developing into the previously exhumed basement. This spatial and temporal organization of fault systems leads to a final symmetry of exhumed domains at both conjugated margins. Magma appears to gradually increase during the margin development and is particularly present in the more distal domain where we can observe clear magma/fault interactions. We propose that the evolution of such rifted margins is linked to cycles of delocalisation/re-localisation of the deformation which could be mainly influenced by magma and by the decoupling between the upper brittle deformation and the asthenospheric uplift. In this context, the lithospheric breakup appears to be triggered by progressive syn-extensional thermal and magmatic weakening. However, the observation of continentward dipping reflectors interpreted as flip-flop detachment systems suggests that the localisation of the spreading centre and the onset of the steady state oceanic spreading will not be necessarily associated with a clear magmatic oceanic crust. In case of a low magmatic budget we can rather observe the onset of steady state amagmatic oceanic spreading, similar to what is expected at ultra-slow spreading ridges. This model of evolution (Gillard, 2014, PhD thesis) could well explain the fact that most magma-poor margins display symmetric exhumed domains on conjugate margins. However it raises the question of the nature of magnetic anomalies in ocean-continent transitions and their value for the interpretation of the kinematic evolution of conjugate rifted margins.
NASA Astrophysics Data System (ADS)
Marcaillou, B.; Laurencin, M.; Graindorge, D.; Klingelhoefer, F.
2017-12-01
In subduction zones, the 3D geometry of the plate interface is thought to be a key parameter for the control of margin tectonic deformation, interplate coupling and seismogenic behavior. In the northern Caribbean subduction, precisely between the Virgin Islands and northern Lesser Antilles, these subjects remain controversial or unresolved. During the ANTITHESIS cruises (2013-2016), we recorded wide-angle seismic, multichannel reflection seismic and bathymetric data along this zone in order to constrain the nature and the geometry of the subducting and upper plate. This experiment results in the following conclusions: 1) The Anegada Passage is a 450-km long structure accross the forearc related to the extension due to the collision with the Bahamas platform. 2) More recently, the tectonic partitioning due to the plate convergence obliquity re-activated the Anegada Passage in the left-lateral strike-slip system. The partitioning also generated the left-lateral strike-slip Bunce Fault, separating the accretionary prism from the forearc. 3) Offshore of the Virgin Islands margin, the subducting plate shows normal faults parallel to the ancient spreading center that correspond to the primary fabric of the oceanic crust. In contrast, offshore of Barbuda Island, the oceanic crust fabric is unresolved (fracture zone?, exhumed mantle? ). 4) In the direction of the plate convergence vector, the slab deepening angle decreases northward. It results in a shallower slab beneath the Virgin Islands Platform compared to the St Martin-Barbuda forearc. In the past, the collision of the Bahamas platform likely changed the geodynamic settings of the northeastern corner of the Caribbean subduction zone and we present a revised geodynamic history of the region. Currently, various features are likely to control the 3D geometry of the slab: the margin convexity, the convergence obliquity, the heterogeneity of the primary fabric of the oceanic crust and the Bahamas docking. We suggest that the slab deepening angle lower beneath the Virgin Islands segment than beneath the St Martin-Barbuda segment possibly generates a northward increasing interplate coupling. As a result, it possibly favors an increase in the seismic activity and the tectonic partitioning beneath the Virgin Islands margin contrary to the St Martin-Barbuda segment.
Study on 3-D velocity structure of crust and upper mantle in Sichuan-yunnan region, China
Wang, C.; Mooney, W.D.; Wang, X.; Wu, J.; Lou, H.; Wang, F.
2002-01-01
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others appear the characteristic of tectonic boundary, indicating that the faults litely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the Indian and the Asian plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal.value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.
NASA Astrophysics Data System (ADS)
Melankholina, E. N.; Sushchevskaya, N. M.
2017-01-01
Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.
Pakiser, L.C.
1964-01-01
The structure of the Earth’s crust (the outer shell of the earth above the M-discontinuity) has been intensively studied in many places by use of geophysical methods. The velocity of seismic compressional waves in the crust and in the upper mantle varies from place to place in the conterminous United States. The average crust is thick in the eastern two-thirds of the United States, in which the crustal and upper-mantle velocities tend to be high. The average crust is thinner in the western one-third of the United States, in which these velocities tend to be low. The concept of eastern and western superprovinces can be used to classify these differences. Crustal and upper-mantle densities probably vary directly with compressional-wave velocity, leading to the conclusion that isostasy is accomplished by the variation in densities of crustal and upper-mantle rocks as well as in crustal thickness, and that there is no single, generally valid isostatic model. The nature of the M-discontinuity is still speculative.
Do supercontinents introvert or extrovert?: Sm-Nd isotope evidence
NASA Astrophysics Data System (ADS)
Brendan Murphy, J.; Damian Nance, R.
2003-10-01
In recent years, two end-member models for the formation of supercontinents have emerged. In the classical Wilson cycle, oceanic crust generated during supercontinent breakup (the interior ocean) is consumed during subsequent amalgamation so that the supercontinent turns “inside in” (introversion). Alternatively, following supercontinent breakup, the exterior margins of the dispersing continental fragments collide during reassembly so that the supercontinent turns “outside in” (extroversion). These end-member models can be distinguished by comparing the Sm-Nd crust-formation ages of accreted mafic complexes (e.g., ophiolites) in the collisional orogens formed during supercontinent assembly with the breakup age of the previous supercontinent. For supercontinents generated by introversion, these crust-formation ages postdate rifting of the previous supercontinent. For supercontinents generated by extroversion, the oceanic lithosphere consumed during reassembly predates breakup of the previous supercontinent, so that crust-formation ages of accreted mafic complexes are older than the age of rifting. In the Paleozoic Appalachian-Caledonide-Variscan orogen, a key collisional orogen in the assembly of Pangea, crust-formation ages of accretionary mafic complexes postdate the formation of the Iapetus Ocean (i.e., are younger than ca. 0.6 Ga), suggesting supercontinent reassembly by introversion. By contrast, the Neoproterozoic East African and Brasiliano orogens, which formed during the amalgamation of Gondwana, are characterized by mafic complexes with crust-formation ages (ca. 0.75 1.2 Ga) that predate the ca. 750 Ma breakup of Rodinia. Hence, these complexes must have formed from lithosphere in the exterior ocean that surrounded Rodinia, implying that this ocean was consumed during the amalgamation of Gondwana. These data indicate that Pangea and Gondwana were formed by introversion and extroversion, respectively, implying that supercontinents can be assembled by fundamentally distinct geodynamic processes.
NASA Astrophysics Data System (ADS)
Neumann, Wladimir Otto; Breuer, Doris; Spohn, Tilman
2016-10-01
Water-rock separation is a major factor in discriminating between models of Ceres' present-day state. We calculate differentiation models of Ceres to investigate how water-rock separation and convection influence its evolution. We expand on the presence of liquids and the possibility of cryovolcanism in order to explain surface features observed by Dawn[1,2].The model[3] includes accretion, reduction of the dust porosity, latent heat of ice melting, compaction driven water-rock separation, accretional heating, hydrothermal circulation, solid-state convection of ice, and convection in a water ocean.Accretion times considered cover 1-10 Ma rel. to CAIs. Compaction of the dust pores starts with ice at T≈180-240 K and proceeds with rock minerals at temperatures of up to 730 K. Sub-surface remains too cold to close these pores. The water-rock separation proceeds by water percolation in a rock matrix. Differentiation timing depends on the matrix deformation and no differentiation occurs in layers with leftover dust porosity. Compaction takes several hundred million years due to a slow temperature increase. The differentiation is extended according to this time scale even though liquid water is produced early. While the radionuclides are concentrated in the core no heat is produced in the ocean. If convection is neglected, the ocean is heated by the core and cooled through the crust, and remains totally liquid until the present day. Convection keeps the ocean cold and results in a colder present-day crust. Only a thin basal part of the ocean remains liquid, while the upper part freezes.In our models, a water ocean starts forming within 10 Ma after CAIs, but its completion is retarded relative to the melting of ice by up to O(0.1 Ga). The differentiation is partial and a porous outer layer is retained. Present-day temperatures calculated indicate that hydrated salts can be mobile at a depth of ≥1.5-5 km implying buoyancy of ice and salt-enriched crustal reservoirs. The impacts Haulani, Ikapati and Occator may have cut into these reservoirs triggering the mobility that formed cryovolcanic features[1,2].[1] Jaumann R et al. (2016) LPSC XLVII [2] Krohn K et al. (2016) LPSC XLVII. [3] Neumann W et al. (2015) A&A 584: A117.
NASA Astrophysics Data System (ADS)
Feng, H.; Lizarralde, D.; Tominaga, M.; Hart, L.; Tivey, M.; Swift, S. A.
2015-12-01
Multi-channel seismic (MCS) images and wide-angle sonobuoy data acquired during a 2011 cruise on the R/V Thomas G. Thompson (TN272) show widespread emplacement of igneous sills and broadly thickened oceanic Layer 2 through hundreds of kilometers of oceanic crust in one of the oldest ocean basins in the western Pacific, a region known as the Jurassic Quiet Zone (JQZ). Oceanic crust from the JQZ has grown through at least two main magmatic phases: It was formed by mid-ocean ridge processes in the Jurassic (at ~170 Ma), and then it was added to by a substantial Cretaceous magmatic event (at ~75-125 Ma). The scale of Cretaceous magmatism is exemplified by massive seafloor features such as the Ontong Java Plateau, Mid-Pacific Mountains, Marshall-Gilbert Islands, Marcus-Wake Seamount Chain, and numerous guyots, seamounts, and volcaniclastic flows observed throughout the region. We use seismic data to image heavily intruded and modified oceanic crust along an 800-km-long transect through the JQZ in order to examine how processes of secondary crustal growth - including magmatic emplacement, transport, and distribution - are expressed in the structure of modified oceanic crust. We also model gravity anomalies to constrain crustal thickness and depth to the Moho. Our observations suggest that western Pacific crust was modified via the following modes of emplacement: (a) extrusive seafloor flows that may or may not have grown into seamounts, (b) seamounts formed through intrusive diking that pushed older sediments aside during their formation, and (c) igneous sills that intruded sediments at varying depths. Emplacement modes (a) and (b) tend to imply a focused, pipe-like mechanism for melt transport through the lithosphere. Such a mechanism does not explain the observed broadly distributed intrusive emplacement of mode (c) however, which may entail successive sill emplacement between igneous basement and sediments thickening oceanic Layer 2 along ~400 km of our seismic line. This mode of crustal growth seems to require broad zones of melt transport through the lithosphere and across the Moho.
Models of a partially hydrated Titan interior with a clathrate crust
NASA Astrophysics Data System (ADS)
Lunine, J. I.; Castillo-Rogez, J. C.; Choukroun, M.; Sotin, C.
2012-04-01
We present a model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan’s history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consists of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the perched liquid water ocean. The most recent version of our model accounts for the likely presence of large amounts of methane in the upper crust invoked to explain methane’s persistence at present and through geologic time (Tobie et al. 2006). The methane-rich crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, the insulating effect of the methane clathrate crust could have delayed the formation of the high-pressure layer, resulting in the interaction of liquid water with the silicate core for extended periods of time. Although a high-pressure ice layer is likely in place today, it is thin enough that plumes of hot water from the dehydrating core probably breach that layer. The implications of such a deep hydrothermal system for the later stages of the evolution of Titan’s interior and surface will be discussed. Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged. References: Castillo-Rogez, J., Lunine, J.: “Evolution of Titan’s rocky core constrained by Cassini observations”. GRL, Vol. 37, L20205, 2010. Iess, L., et al.: “Gravity field, shape, and moment of inertia of Titan”. Science, Vol. 327, 1367-1369. Tobie, G., et al.: “Episodic outgassing as the origin of atmospheric methane on Titan”. Nature 440: 61-64, 2006.
Crustal structure from the Faroes Shelf to the Norwegian Basin
NASA Astrophysics Data System (ADS)
Roberts, A. W.; White, R. S.; Kusznir, N. J.; Christie, P.; Roberts, A. M.; Isimm Team
2003-04-01
We show the crustal structure along a 400km seismic profile extending across a prime example of a volcanically rifted margin, from the Faroes shelf across the continent-ocean boundary northeast of the Faroe Islands, and 100km into oceanic crust of the Norwegian Sea formed immediately after continental break-up. 85 4-component OBS were used for the survey, giving wide-angle arrivals visible to beyond 120km offset. The survey was complemented by a 12 km Q-streamer profile along the same line. Integration of the normal incidence through wide-angle arrivals for the OBS and streamer data allow us to make a constrained velocity model through the active crust and into the upper mantle. We used a large airgun source comprising 14 guns with a total volume of 6,360 cu. in. towed at 20m depth. The resulting output was dominated by low frequencies (peak at 9Hz) to allow improved imaging through the basalts. A thickened oceanic crust is found, indicative of high temperatures caused by the Iceland mantle plume, and the presence of clear seaward dipping reflectors is evidence of extrusive lavas. Underplating is also inferred on the margin from the high seismic velocities in the lower crust. Academia and industry seek to understand magmatic margin evolution for its impact on deep water hydrocarbon prospecting. The NE Atlantic has been chosen as our research area because of its accessibility, wealth of related data and current exploration on the Atlantic margin. The iSIMM programme's long term goals are to characterise volcanically rifted margins and to develop theoretical models of the formation and subsidence of rifted margins. iSIMM investigators are: R.S. White (1), N.J. Kusznir (2), P.A.F. Christie (3), A.M. Roberts (4), N. Hurst (2), Z.C. Lunnon (1,3), C.J. Parkin (1), A.W. Roberts (1), L.K. Smith (1), R. Spitzer (1), V. Tymms (2), A. Davies (1), A. Surendra (1), with funding from NERC, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco.
NASA Astrophysics Data System (ADS)
Robinson, A. H.; Peirce, C.; Funnell, M.; Watts, A. B.; Grevemeyer, I.
2016-12-01
Oceanic intraplate volcanoes (OIVs) represent a record of the modification of the oceanic crust by volcanism related to a range of processes including hot-spots, small scale mantle convection, and localised lithospheric extension. Geophysical studies of OIVs show a diversity in crustal and upper mantle structures, proposed to exist on a spectrum between two end-members where the main control is the age of the lithosphere at the time of volcanism. This hypothesis states that where the lithosphere is older, colder, and thicker it is more resistant to vertical magmatism than younger, hotter, thinner lithosphere. It is suggested that the Moho acts as a density filter, permitting relatively buoyant magma to vertically intrude the crust, but preventing denser magma from ascending to shallow levels. A key control may therefore be the melting depth, known to affect magma composition, and itself related to lithosphere age. Combined geophysical approaches allow us to develop robust models for OIV crustal structures with quantifiable resolution and uncertainty. As a case study, we present results from a multi-approach geophysical experiment at the Louisville Ridge Seamount Chain, believed to have formed on young (<10 Ma) lithosphere, which aimed at characterising the along-ridge crustal structure. The wide-angle seismic crustal model, generated by independent forward and inverse travel-time modelling of picked arrivals, is tested against reflection and gravity data. We compare our observations with studies of other OIVs to test whether lithospheric age controls OIV structure. Comparisons are limited by the temporal and spatial distribution of lithosphere and volcano ages, but suggest the hypothesis does not hold for all OIV features. While age may be the main control on OIV structure, as it determines lithosphere thermal and mechanical properties, other factors such as thermal rejuvenation, mechanical weakening, and volcano load size and distribution, may also come into play.
Sources of osmium to the modern oceans: New evidence from the 190Pt-186Os system
McDaniel, D.K.; Walker, R.J.; Hemming, S.R.; Horan, M.F.; Becker, H.; Grauch, R.I.
2004-01-01
High precision Os isotope analysis of young marine manganese nodules indicate that whereas the composition of modern seawater is radiogenic with respect to 187Os/188Os, it has 186Os/188Os that is within uncertainty of the chondritic value. Marine Mn nodule compositions thus indicate that the average continental source of Os to modern seawater had long-term high Re/Os compared to Pt/Os. Analyses of loess and freshwater Mn nodules support existing evidence that average upper continental crust (UCC) has resolvably suprachondritic 186Os/188Os, as well as radiogenic 187Os/188Os. Modeling the composition of seawater as a two-component mixture of oceanic/cosmic Os with chondritic Os compositions and continentally-derived Os demonstrates that, insofar as estimates for the composition of average UCC are accurate, congruently weathered average UCC cannot be the sole continental source of Os to seawater. Our analysis of four Cambrian black shales confirm that organic-rich sediments can have 187Os/188Os ratios that are much higher than average UCC, but 186Os/188Os compositions that are generally between those of chondrites and average-UCC. Preferential weathering of black shales can result in dissolved Os discharged to the ocean basins that has a much lower 186Os/188Os than does average upper crust. Modeling the available data demonstrates that augmentation of estimated average UCC compositions with less than 0.1% additional black shale and 1.4% additional ultramafic rock can produce a continental end-member Os isotopic composition that satisfies the requirements imposed by the marine Mn nodule data. The interplay of these two sources provides a mechanism by which the 187Os/188Os of seawater can change as sources and weathering conditions change, yet seawater 186Os/188Os varies only minimally. ?? 2004 Elsevier Ltd.
Boron content and isotopic composition of ocean basalts: Geochemical and cosmochemical implications
NASA Astrophysics Data System (ADS)
Chaussidon, Marc; Jambon, Albert
1994-02-01
Ion microprobe determination of boron content and delta B-11 values has been performed for a set of 40 oceanic basalt glasses (N-MORB, E-MORB, BABB and OIB) whose chemical characteristics (major and trace elements and isotopic ratios) are well documented. Boron contents, determined at +/- 10% relative, range from 0.34 to 0.74 ppm in N-MORB, whereas E-MORB, BABB and OIB extend to higher concentrations (0.5-2.4 ppm). After correction for crystal fractionation, this range is reduced to 0.5-1.3 ppm. N-MORB and E-MORB also exhibit different B/K ratios, 1.0 +/- 0.3 x 10(exp -3) and 0.2 to 1.4 x 10(exp -3) respectively. This can be interpreted as resulting from the incorporation into the upper mantle of a K-rich and B-poor component (e.g., subducted oceanic crust having lost most of its initial boron). Delta B-11 values range between -7.40 +/- 2 and +0.6 +/- 2 per mill, with no significant difference between N-MORB, E-MORB, OIB or BABB. The Hawaiian samples define a strong linear correlation between boron contents, delta B-11 values, MgO and water contents and delta D values. This is interpreted as resulting from assimilation-fractionation processes which occurred within a water-rich oceanic crust, and which produced high delta B-11 values associated with high delta D values. The low level of B-11 enrichment in the upper mantle constraints the amount of boron reinjected by subduction to a maximum of about 2% of the boron present in the subducted slab. This in turn corresponds to a maximum net Boron transfer of about 3 x 10(exp 10) g/a towards the surface reservoirs. Finally, a boron content of 0.25 +/- 0.1 ppm is estimated for the bulk silicate Earth (i.e., primitive mantle), corresponding to a depletion factor relative to C1 chondrites of about 0.15 and suggesting that B was moderately volatile upon terrestrial accretion.
NASA Astrophysics Data System (ADS)
Kita, S.; Okada, T.; Nakajima, J.; Matsuzawa, T.; Uchida, N.; Hasegawa, A.
2007-12-01
1. Introduction We found an intraslab seismic belt (upper-plane seismic belt) in the upper plane of the double seismic zone within the Pacific slab, running interface at depths of 70-100km beneath the forearc area. The location of the deeper limits of this belt appears to correspond to one of the facies boundaries (from jadeite lawsonite blueschist to lawsonite amphibole eclogite) in the oceanic crust [Kita et al., 2006, GRL]. In this study, we precisely relocated intraslab earthquakes by using travel time differences calculated by the waveform cross-spectrum analysis to obtain more detailed distribution of the upper plane-seismic belt within the Pacific slab beneath NE Japan. We also discuss the stress field in the slab by examining focal mechanisms of the earthquakes. 2. Data and Method We relocated events at depths of 50-00 km for the period from March 2003 to November 2006 from the JMA earthquake catalog. We applied the double-difference hypocenter location method (DDLM) by Waldhauser and Ellsworth (2000) to the arrival time data of the events. We use relative earthquake arrival times determined both by the waveform cross-spectrum analysis and by the catalog-picking data. We also determine focal mechanisms using the P wave polarity. 3. Spatial distribution of relocated hypocenters In the upper portion of the slab crust, seismicity is very active and distributed relatively homogeneously at depths of about 70-100km parallel to the volcanic front, where the upper-plane seismic belt has been found. In the lower portion of slab crust and/or the uppermost portion of the slab mantle, seismicity is spatially very limited to some small areas (each size is about 20 x 20km) at depths around 65km. Two of them correspond to the aftershock area of the 2003 Miyagi (M7.1) intraslab earthquake and that of the 1987 Iwaizumi (M6.6) intraslab earthquake, respectively. Based on the dehydration embrittelment hypothesis, the difference of the spatial distribution of the seismicity in the slab should correspond to the difference of the spatial distribution of the hydrated minerals and their dehydration reactions. In the upper slab crust, the upper-plane seismic belt is found because the hydrated minerals could be distributed homogeneously and the dehydration reaction (from jadeite lawsonite blueschist to lawsonite amphibole eclogite [Hacker et al., 2003b]) occurs perhaps largely at depth of 70-100km. Our result also suggests that in the lower portion of the slab crust and/or the uppermost portion of the slab mantle, the hydrated minerals could be inhomogeneously distributed and the seismicity occurs at depths around 65km, where another dehydration reaction may exist. 4. Characteristics of the focal mechanisms We examined the stress distribution within the slab by using focal mechanisms of the upper plane, interplane and lower plane events. From the plate interface to about 20 km below it, downdip-compressional (DC) type events are dominant. Below 20km from the plate interface, downdip-tensional (DT) type events are dominant. Many of interplane events have DC type focal mechanisms because of their locations in the uppermost portions of the slab mantle. These results indicate that the stress neutral plane from the DC type to DT type could be located at depth of about 20km from the plate interface.
NASA Astrophysics Data System (ADS)
Behrmann, Jan H.; Planert, Lars; Jokat, Wilfried; Ryberg, Trond; Bialas, Jörg; Jegen, Marion
2013-04-01
The opening of the South Atlantic ocean basin was accompanied by voluminous magmatism on the conjugate continental margins of Africa and South America, including the formation of the Parana and Entendeka large igneous provinces (LIP), the build-up of up to 100 km wide volcanic wedges characterized by seaward dipping reflector sequences (SDR), as well as the formation of paired hotspot tracks on the rifted African and South American plates, the Walvis Ridge and the Rio Grande Rise. The area is considered as type example for hotspot or plume-related continental break-up. However, SDR, and LIP-related features on land are concentrated south of the hotspot tracks. The segmentation of the margins offers a prime opportunity to study the magmatic signal in space and time, and investigate the interrelation with rift-related deformation. A globally significant question we address here is whether magmatism drives continental break-up, or whether even rifting accompanied by abundant magmatism is in response to crustal and lithospheric stretching governed by large-scale plate kinematics. In 2010/11, an amphibious set of wide-angle seismic data was acquired around the landfall of Walvis Ridge at the Namibian passive continental margin. The experiments were designed to provide crustal velocity information and to investigate the structure of the upper mantle. In particular, we aimed at identifying deep fault zones and variations in Moho depth, constrain the velocity signature of SDR sequences, as well as the extent of magmatic addition to the lower crust near the continent-ocean transition. Sediment cover down to the igneous basement was additionally constrained by reflection seismic data. Here, we present tomographic analysis of the seismic data of one long NNW oriented profile parallel to the continental margin across Walvis Ridge, and a second amphibious profile from the Angola Basin across Walvis Ridge and into the continental interior, crossing the area of the Etendeka Plateau basalts. The most striking feature is the sharp transition in crustal structure and thickness across the northern boundary of Walvis Ridge. Thin oceanic crust (6.5 km) of the Angola Basin lies next to the up to 35 km thick igneous crustal root founding the highest elevated northern portions of Walvis Ridge. Both structures are separated by a very large transform fault zone. The velocity structure of Walvis Ridge lower crust is indicative of gabbro, and, in the lowest parts, of cumulate sequences. On the southern side of Walvis Ridge there is a smooth gradation into the adjacent 25-30 km thick crust underlying the ocean-continent boundary, with a velocity structure resembling that of Walvis Ridge The second profile shows a sharp transition from oceanic to rifted continental crust. The transition zone may be underlain by hydrated uppermost mantle. Below the Etendeka Plateau, an extensive high-velocity body, likely representing gabbros and their cumulates at the base of the crust, indicates magmatic underplating. We summarize by stating that rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magmatic-dominated segment to the south, and an amagmatic segment north of Walvis Ridge.
NASA Astrophysics Data System (ADS)
Ildefonse, B.; Teagle, D. A.; Blum, P.; IODP Expedition 335 Scientists
2011-12-01
IODP Expedition 335 "Superfast Spreading Rate Crust 4" returned to ODP Hole 1256D with the intent of deepening this reference penetration of intact ocean crust several hundred meters into cumulate gabbros. This was the fourth cruise of the superfast campaign to understand the formation of oceanic crust accreted at fast spreading ridges, by exploiting the inverse relationship between spreading rate and the depth to low velocity zones seismically imaged at active mid-ocean zones, thought to be magma chambers. Site 1256 is located on 15-million-year-old crust formed at the East Pacific Rise during an episode of superfast ocean spreading (>200 mm/yr full rate). Three earlier cruises to Hole 1256D have drilled through the sediments, lavas and dikes and 100 m into a complex dike-gabbro transition zone. The specific objectives of IODP Expedition 335 were to: (1) test models of magmatic accretion at fast spreading ocean ridges; (2) quantify the vigor of hydrothermal cooling of the lower crust; (3) establish the geological meaning of the seismic Layer 2-3 boundary at Site 1256; and (4) estimate the contribution of lower crustal gabbros to marine magnetic anomalies. It was anticipated that even a shortened IODP Expedition could deepen Hole 1256D a significant distance (300 m) into cumulate gabbros. Operations on IODP Expedition 335 proved challenging from the outset with almost three weeks spent re-opening and securing unstable sections of the Hole. When coring commenced, the destruction of a hard-formation C9 rotary coring bit at the bottom of the hole required further remedial operations to remove junk and huge volumes of accumulated drill cuttings. Hole-cleaning operations using junk baskets returned large samples of a contact-metamorphic aureole between the sheeted dikes and a major heat source below. These large (up to 3.5 kg) irregular samples preserve magmatic, hydrothermal and structural relationships hitherto unseen because of the narrow diameter of drill core and previous poor core recovery. Including the ~60 m-thick zone of granoblastic dikes overlying the uppermost gabbro, the dike-gabbro transition zone at Site 1256 is over 170 m thick, of which more than 100 m are recrystallized granoblastic basalts. This zone records a dynamically evolving thermal boundary layer between the principally hydrothermal domain of the upper crust and a deeper zone of intrusive magmatism. The recovered samples document a sequence of evolving geological conditions and the intimate coupling between temporally and spatially intercalated intrusive, hydrothermal, contact-metamorphic, partial melting and retrogressive processes. Despite the operational challenges, we achieved a minor depth advance to 1522 m, but this was insufficient penetration to complete any of the primary objectives. However, Hole 1256D has been thoroughly cleared of junk and drill cuttings that have hampered operations during this and previous Expeditions. At the end of Expedition 335, we briefly resumed coring and stabilized problematic intervals with cement. Hole 1256D is open to its full depth and ready for further deepening in the near future.
Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust?
NASA Technical Reports Server (NTRS)
Rapp, Jennifer F.; Draper, David S.
2013-01-01
New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization
NASA Astrophysics Data System (ADS)
Gao, Y.; Wang, Q.; SHI, Y.
2017-12-01
There are orogenic belts and strong deformation in northeastern zone of Tibetan Plateau. The media in crust and in the upper mantle are seismic anisotropic there. This study uses seismic records by permanent seismic stations and portable seismic arrays, and adopts analysis techniques on body waves to obtain spatial anisotropic distribution in northeastern front zone of Tibetan Plateau. With seismic records of small local earthquakes, we study shear-wave splitting in the upper crust. The polarization of fast shear wave (PFS) can be obtained, and PFS is considered parallel to the strike of the cracks, as well as the direction of maximum horizontal compressive stress. However, the result shows the strong influence from tectonics, such as faults. It suggests multiple-influence including stress and fault. Spatial distribution of seismic anisotropy in study zone presents the effect in short range. PFS at the station on the strike-slip fault is quite different to PFS at station just hundreds of meters away from the fault. With seismic records of teleseismic waveforms, we obtained seismic anisotropy in the whole crust by receiver functions. The PFS directions from Pms receiver functions show consistency, generally in WNW. The time-delay of slow S phases is significant. With seismic records of SKS, PKS and SKKS phases, we can detect seismic anisotropy in the upper mantle by splitting analysis. The fast directions of these phases also show consistency, generally in WNW, similar to those of receiver functions, but larger time-delays. It suggests significant seismic anisotropy in the crust and crustal deformation is coherent to that in the upper mantle.Seismic anisotropy in the upper crust, in the whole crust and in the upper mantle are discussed both in difference and tectonic implications [Grateful to the support by NSFC Project 41474032].
NASA Astrophysics Data System (ADS)
Siler, Drew Lorenz
2011-12-01
The sub-surface geologic structure of the crust is controlled by the magmatic and tectonic processes that construct the crust during plate spreading. As a result, geologic structure provides constraints on the processes that occur during plate spreading. The crust of the Skagi region of northern Iceland, where this study was focused, was accreted by magmatic construction to Iceland ˜7-10 Ma and subsequently glacially eroded, exhuming ˜1-3 km of structural relief. Continuous spreading-parallel and spreading-orthogonal mountain ranges expose the crust accreted at discrete spreading segments, the fundamental intervals upon which plate spreading and crustal accretion occur. As a result, Skagi is an ideal location to employ geologic structure analysis to study magmatic rifting processes. Within spreading segments structural patterns vary significantly between segment centers and distal fissure swarms. While segment centers are characterized by focused magmatic construction and km-scale sub-volcanic subsidence, fissure swarms are characterized by limited magmatic construction, minor sub-axial subsidence and lateral dike injection. Such along-strike variation indicates that both magma in the upper crust and gabbroic material in the lower crust must be redistributed along-strike within spreading segments during plate spreading. Material flow is directed from beneath segment centers towards distal fissure swarms. At the regional scale, each spreading segment is a structurally discrete interval of Iceland's Neovolcanic Zone. As a result of west-northwestward movement of Iceland relative to the Iceland hotspot, the rift zone axis has progressively relocated to the east-southeast with time, leaving a series of abandoned rift zones throughout western Iceland. A compilation of published K/Ar and 40Ar/39Ar age data and geologic data from across northern Iceland shows that rift relocation occurs via frequent (2-3 Ma), small-scale (˜20 km) rift propagations rather than rare, 100s of km 'rift jumps' as is conventional models suggest. The structure relationships we define in the Icelandic crust are similar to that of other magmatic rift systems including Mid-Ocean Ridges, continental rifts and ancient volcanic rift margins. As such, we suggest that many of the crustal accretion processes we have inferred from Icelandic data may be important in these analogous environments as well.
Crustal Structure and Evidence for a Hales Discontinuity Beneath the Seychelles Microcontinent
NASA Astrophysics Data System (ADS)
Hammond, J.; Kendall, J.; Collier, J.; Rumpker, G.; Pilidou, S.; Stuart, G.
2005-12-01
It is well known that the Seychelles Plateau consists of a sliver of continental crust cast adrift during the formation of the Indian ocean. However the extent of the continental crust beneath the microcontinent and the cause of its isolation is poorly understood. Here we use receiver functions, interstation phase velocities obtained from surface waves, and wide angle reflections from controlled-source seismic data to investigate the lithospheric structure of the region. The H-κ method is used to calculate depths and Poison's ratio at 26 temporary stations distributed across the plateau and Mascarene basin. The Vp/V_s ratios and depths at stations on the plateau are typical of continental crust. To explain the major features of the RFs a simple two layer crust is proposed for the island of Mahé. The islands of Silhouette and Nord display a more complex crust consistent with the islands volcanic history. Praslin and its satellite islands display a simpler crust but display signs of a deeper discontinuity (~40 km) beneath the Moho which is possible evidence for underplating associated with Deccan age volcanism. Bird Island (Moho~18 km) and Desroche (Moho~23 km) show signs of being situated on islands above the transition from continental to oceanic crust. Alphonse, Coetivy and Platte all show receiver functions expected for oceanic crust, with Moho depths ~10 km. Inter-station phase velocity inversions from surface waves support these results with paths sampling the plateau region showing dispersion curves expected for continental crust, and those travelling between stations off the plateau showing evidence for oceanic crust. A deeper arrival is observed on the plateau stations at ~7 s or ~65 km. This feature is also seen in wide-angle controlled source work and the inter-station phase velocity inversions. Candidate interpretion for this Hales discontinuity include a Precambrian suture assoicated with shallow subduction or a shear-zone assoicated with deformation during breakup. Either feature may have influenced plume-related breakup in the region.
Lunar and terrestrial crust formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, D.
1983-11-15
Planetary crusts may be accreted, produced in primordial differentiation, or built up piecemeal by serial magmatism. The existence of old, polygenetic, laterally heterogeneous, partial melt rocks in the lunar highlands suggests that the moon produced its early crust by serial magmatism. This view can be reconciled with lunar Eu anomalies, previously thought to support the magma ocean model of crust formation, if complications in the fractionation of mare basalts are reconized. Phase equilibrium and magmatic density information for mare basalts suggest a model in which plagioclase fractionation can occur even though plagioclase is not a near-liquidus phase. The crytic fractionationmore » of clinopryoxene in MORB provides a precedent for this model. The necessity for a lunar magma ocean is questioned, but a role for a terrestrial magma ocean of sorts at depth is suggested.« less
Osmium isotopes suggest fast and efficient mixing in the oceanic upper mantle.
NASA Astrophysics Data System (ADS)
Bizimis, Michael; Salters, Vincent
2010-05-01
The depleted upper mantle (DUM; the source of MORB) is thought to represent the complementary reservoir of continental crust extraction. Previous studies have calculated the "average" DUM composition based on the geochemistry of MORB. However the Nd isotope compositions of abyssal peridotites have been shown to extend to more depleted compositions than associated MORB. While this argues for the presence of both relatively depleted and enriched material within the upper mantle, the extent of compositional variability, length scales of heterogeneity and timescales of mixing in the upper mantle are not well constrained. Model calculations show that 2Ga is a reasonable mean age of depletion for DUM while Hf - Nd isotopes show the persistence of a depleted terrestrial reservoir by the early Archean (3.5-3.8Ga). U/Pb zircon ages of crustal rocks show three distinct peaks at 1.2, 1.9, and 2.7Ga and these are thought to represent the ages of three major crustal growth events. A fundamental question therefore is whether the present day upper mantle retains a memory of multiple ancient depletion events, or has been effectively homogenized. This has important implications for the nature of convection and time scales of survival of heterogeneities in the upper mantle. Here we compare published Os isotope data from abyssal peridotites and ophiolitic Os-Ir alloys with new data from Hawaiian spinel peridotite xenoliths. The Re-Os isotope system has been shown to yield useful depletion age information in peridotites, so we use it here to investigate the distribution of Re-depletion ages (TRD) in these mantle samples as a proxy for the variability of DUM. The probability density functions (PDF) of TRD from osmiridiums, abyssal and Hawaiian peridotites are all remarkably similar and show a distinct peak at 1.2-1.3 Ga (errors for TRD are set at 0.2Ga to suppress statistically spurious age peaks). The Hawaiian peridotites further show a distinct peak at 1.9-2Ga, but no oceanic mantle samples with TRD older than 2Ga have been reported. The TRD age peaks overlap with two major crustal building events recorded in the U/Pb crustal zircon ages. Therefore, peridotites from the convecting upper mantle can retain some memory of ancient depletion events, and these depletions are perhaps linked to major crustal building or large-scale mantle melting events. In the case of the Hawaiian peridotites, an ancient depletion event is further supported by some extremely radiogenic Hf isotope compositions. However, the vast majority of oceanic mantle samples show a narrow rage of Os isotope compositions (187Os/188Os = 0.123-0.126) with TRDs at 300-600 Ma. If the upper mantle has been produced continuously (or episodically) since at least the early Archean, it is then surprising that almost all oceanic mantle samples record such young depletion ages. We suggest that convective mixing in the mantle is rigorous enough that effectively re-homogenizes and resets the Os isotope composition of previously depleted peridotites within short time scales (<500Ma). Similarly recent ages have been derived from modeling the Sr, Nd, Hf, Pb isotopic composition of MORBs. This resetting and homogenization can be due to re-equilibration of depleted mantle with enriched components, e.g. recycled basaltic crust or more fertile mantle. Ancient depletion events are only effectively preserved in the sublithospheric mantle samples (e.g. Kaapval, Slave, Wyoming cratons) because they remain isolated from the convective mantle.
Effect of Upper Mantle Heterogeneities on Lithosphere Stresses and Topography
NASA Astrophysics Data System (ADS)
Osei Tutu, A.; Steinberger, B.; Rogozhina, I.; Sobolev, S. V.
2016-12-01
The orientation and magnitude of lithosphere stresses give us knowledge about most of the processes within the Earth that are not easy to observe. It has been established (Steinberger, Schmeling, and Marquart 2001) that large contribution of the forces producing lithosphere stresses have their source origination from the buoyancies of both the upper and lower mantle acting beneath the lithosphere. The contribution of the crustal thickness to the stresses has been estimated to be less than 10% (Steinberger et al. 2001) in most region and increases in areas with high gravitational potential energy like the Himalayas. In most of these studies, the effect of the crust was determined separately by computing the gravitational potential energy from the crust (Ghosh et al. 2013) and applied as correction. (Artyushkov 1973) showed that the inhomogeneous nature of the crust contribute to the stresses observed as against using constant lithosphere thickness in most studies, due to the complexities for implementing a variable lithosphere. We seek extend the approach of Ghosh et al. (2013) by coupling the Crust 1.0 (Laske et al. 2013) to a varaible lithosphere thickness in our numerical method. Using a 3D global lithosphere-asthenosphere model (Popov and Sobolev 2008) with visco-elasto-plastic rheology, coupled at 300 km depth to a mantle modeled with a spectral technique (Hager and O'Connell, 1981), we compute lithosphere stresses and topography. we compare our model with observations; the World Stress Map, Global Strain Rate Map and the observed topgraphy. We use S40RTS seismic tomography below 300 km depth, with radial viscosity distribution (Steinberger et al 2006). To account for all the heterogeneities in the upper mantle (300 km) we used different 3D temperatures models setups. The first model is the thermal lithosphere model (Artemieva and Mooney, 2001) in continental regions and assumes half-space cooling of sea floor with age (Müller et al. 2008) for oceans. For the second model we inferred temperatures from seismic tomography SL2013sv (Schaeffer and Lebedev 2013) for separate stress predictions. We investigate the effect of Newtonian and power law rheology on stresse and also look at different deformation mechanisms; diffusion and dislocation creeps in the upper mantle on lithosphere stresses.
NASA Astrophysics Data System (ADS)
Xu, Wei; Qiu, Nansheng; Wang, Ye; Chang, Jian
2018-01-01
The Meso-Cenozoic lithospheric thermal-rheological structure and lithospheric strength evolution of the Jiyang sub-basin were modeled using thermal history, crustal structure, and rheological parameter data. Results indicate that the thermal-rheological structure of the Jiyang sub-basin has exhibited obvious rheological stratification and changes over time. During the Early Mesozoic, the uppermost portion of the upper crust, middle crust, and the top part of the upper mantle had a thick brittle layer. During the early Early Cretaceous, the top of the middle crust's brittle layer thinned because of lithosphere thinning and temperature increase, and the uppermost portion of the upper mantle was almost occupied by a ductile layer. During the late Early Cretaceous, the brittle layer of the middle crust and the upper mantle changed to a ductile one. Then, the uppermost portion of the middle crust changed to a thin brittle layer in the late Cretaceous. During the early Paleogene, the thin brittle layer of the middle crust became even thinner and shallower under the condition of crustal extension. Currently, with the decrease in lithospheric temperature, the top of the upper crust, middle crust, and the uppermost portion of the upper mantle are of a brittle layer. The total lithospheric strength and the effective elastic thickness ( T e) in Meso-Cenozoic indicate that the Jiyang sub-basin experienced two weakened stages: during the late Early Cretaceous and the early Paleogene. The total lithospheric strength (approximately 4-5 × 1013 N m-1) and T e (approximately 50-60 km) during the Early Mesozoic was larger than that after the Late Jurassic (2-7 × 1012 N m-1 and 19-39 km, respectively). The results also reflect the subduction, and rollback of Pacific plate is the geodynamic mechanism of the destruction of the eastern North China Craton.
Crustal structure in Tengchong Volcano-Geothermal Area, western Yunnan, China
NASA Astrophysics Data System (ADS)
Wang, Chun-Yong; Huangfu, Gang
2004-02-01
Based upon the deep seismic sounding profiles carried out in the Tengchong Volcano-Geothermal Area (TVGA), western Yunnan Province of China, a 2-D crustal P velocity structure is obtained by use of finite-difference inversion and forward travel-time fitting method. The crustal model shows that a low-velocity anomaly zone exists in the upper crust, which is related to geothermal activity. Two faults, the Longling-Ruili Fault and Tengchong Fault, on the profile extend from surface to the lower crust and the Tengchong Fault likely penetrates the Moho. Moreover, based on teleseismic receiver functions on a temporary seismic network, S-wave velocity structures beneath the geothermal field show low S-wave velocity in the upper crust. From results of geophysical survey, the crust of TVGA is characterized by low P-wave and S-wave velocities, low resistivity, high heat-flow value and low Q. The upper mantle P-wave velocity is also low. This suggests presence of magma in the crust derived from the upper mantle. The low-velocity anomaly in upper crust may be related to the magma differentiation. The Tengchong volcanic area is located on the northeast edge of the Indian-Eurasian plate collision zone, away from the eastern boundary of the Indian plate by about 450 km. Based on the results of this paper and related studies, the Tengchong volcanoes can be classified as plate boundary volcanoes.
NASA Astrophysics Data System (ADS)
Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel
2016-04-01
The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized spreading center. The interest of that definition is that it does not restrain the term oceanic crust to a basement composition and consequently does not exclude the creation of magma-poor oceanic crust, as observed at slow spreading ridges for example. Indeed, the initiation of steady state oceanic spreading is not necessarily magmatic (e.g. some segments of the Australian-Antarctic margins). In this case, drifting is accommodated by mantle exhumation. However, in this magma-poor transition, and without clear markers of a gradual increase of magmatism, it thus appears difficult to clearly differentiate an exhumed OCT basement and an exhumed oceanic basement. Some theoretical differences can be nevertheless considered: exhumed OCT basement should display a chemical evolution toward the ocean from a subcontinental to an oceanic signature. Moreover, extensional detachment faults are probably long-lived due to the poor influence of the asthenosphere at this stage. On the contrary, exhumed oceanic basement should only display an oceanic signature. In this case, extensional detachment faults are certainly short-lived, due to the strong influence of the asthenosphere, which tends to quickly re-localize the deformation above the spreading center.
The Magmatic Structure of Mid-ocean Ridges: Integrating Geophysical and Petrological Observations
NASA Astrophysics Data System (ADS)
Maclennan, J.; Singh, S.
Geophysical surveys, petrological observations and numerical models have all played an important role in the study of magmatic processes at mid-ocean ridges. However, few studies have attempted to integrate the constraints from both geophysical and geochemical observations in order to develop models of mid-ocean ridges. Composi- tional variation within the oceanic crust must be considered when geophysical models are interpreted in terms of variation in temperature or fluid fraction. Modellers com- monly assume that the crust is compositionally homogeneous and that the relationship between temperature and melt fraction does not vary within the crust. However, the compositions of oceanic crustal rocks collected from the Oman ophiolite vary widely and their predicted solidus temperatures vary from 9901240C and their liquidus temperatures from 12501700C. Compositional variation within the solid part of the oceanic crust causes variation in seismic velocities. At fixed temperature and pressure the compositional variation present in crustal rocks can give P-wave velocity variation of 1 km s-1 or more. This has the same effect as a temperature variation of 1500C in the solid or of a variation of 20% in the melt fraction. The importance of this petrolog- ical framework for the interpretation of the seismic structure of mid-ocean ridges and for the development of thermal models of oceanic crustal accretion is demonstrated using an example from the East Pacific Rise near 9N.
Evidence for a "Wet" Early Moon
NASA Technical Reports Server (NTRS)
Hui, Hejiu; Peslier, Anne H.; Zhang, Youxue; Neal, Clive R.
2013-01-01
The Moon was thought to have lost its volatiles during impact(s) of a Mars-size planetesimal with the proto Earth [1] and during degassing of an early planet-wide magma ocean [2]. This view of an anhydrous Moon, however, has been challenged by recent discoveries of water on its surface [3-5] and in lunar volcanics [6-10] and regoliths [11]. Indigenous water is suggested to be heterogeneously distributed in the lunar interior and some parts of lunar mantle may contain as much water as Earth's upper mantle [6,10]. This water is thought to have been brought in part through solar wind implantation [3-5,8,11] and meteorite/cometary impacts [3,4,8,12] after the formation of the primary crust. Here we measured water in primary products of the Lunar Magma Ocean (LMO) thereby by-passing the processes of later addition of water to the Moon through impact events or during mantle overturn as suggested by previous studies (e.g., [8,12]). So far, ferroan anorthosite (FAN) is the only available lithology that is believed to be a primary product of the LMO [2]. It is generally accepted that plagioclase, after crystallization, floated in the LMO and formed FAN as the original crust [2]. Therefore, any indigenous water preserved in FAN was partitioned from the LMO. These data can be used to estimate the water content of the magma ocean at the time of plagioclase crystallization, as well as that of the mare magma source regions.
The Lunar Magma Ocean: Sharpening the Focus on Process and Composition
NASA Technical Reports Server (NTRS)
Rapp, J. F.; Draper, D. S.
2014-01-01
The currently accepted model for the formation of the lunar anorthositic crust is by flotation from a crystallizing lunar magma ocean (LMO) shortly following lunar accretion. Anorthositic crust is globally distributed and old, whereas the mare basalts are younger and derived from a source region that has experienced plagioclase extraction. Several attempts at modelling such a crystallization sequence have been made [e.g. 1, 2], but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. This abstract presents results from our ongoing ex-periments simulating LMO crystallization and address-ing a range of variables. We investigate two bulk com-positions, which span most of the range of suggested lunar bulk compositions, from the refractory element enriched Taylor Whole Moon (TWM) [3] to the more Earth-like Lunar Primitive Upper Mantle (LPUM) [4]. We also investigate two potential crystallization mod-els: Fully fractional, where crystallizing phases are separated from the magma as they form and sink (or float in the case of plagioclase) throughout magma ocean solidification; and a two-step process suggested by [1, 5] with an initial stage of equilibrium crystalliza-tion, where crystals remain entrained in the magma before the crystal burden increases viscosity enough that convection slows and the crystals settle, followed by fractional crystallization. Here we consider the frac-tional crystallization part of this process; the equilibri-um cumulates having been determined by [6].
Thompson, George A.; Parsons, Thomas E.
2016-01-01
Vertical deformation of extensional provinces varies significantly and in seemingly contradictory ways. Sparse but robust geodetic, seismic, and geologic observations in the Basin and Range province of the western United States indicate that immediately after an earthquake, vertical change primarily occurs as subsidence of the normal fault hanging wall. A few decades later, a ±100 km wide zone is symmetrically uplifted. The preserved topography of long-term rifting shows bent and tilted footwall flanks rising high above deep basins. We develop finite element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. We replicate observations with a model that has a weak upper mantle overlain by a stronger lower crust and a breakable elastic upper crust. A 60° dipping normal fault cuts through the upper crust and extends through the lower crust to simulate an underlying shear zone. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift under the footwall; the breakable upper crust is a necessary model feature to replicate footwall bending over the observed width ( < 10 km), which is predicted to take place within 1-2 decades after each large earthquake. Thus the best-preserved topographic signature of rifting is expected to occur early in the postseismic period. The relatively stronger lower crust in our models is necessary to replicate broader postseismic uplift that is observed geodetically in subsequent decades.
NASA Astrophysics Data System (ADS)
Mittelstaedt, E. L.; Olive, J. A. L.; Barreyre, T.
2016-12-01
Hydrothermal circulation at the axis of mid-ocean ridges has a profound effect on chemical and biological processes in the deep ocean, and influences the thermo-mechanical state of young oceanic lithosphere. Yet, the geometry of fluid pathways beneath the seafloor and its relation to spatial gradients in crustal permeability remain enigmatic. Here we present new laboratory models of hydrothermal circulation aimed at constraining the self-organization of porous convection cells in homogeneous as well as highly heterogeneous crust analogs. Oceanic crust analogs of known permeability are constructed using uniform glass spheres and 3-D printed plastics with a network of mutually perpendicular tubes. These materials are saturated with corn syrup-water mixtures and heated at their base by a resistive silicone strip heater to initiate thermal convection. A layer of pure fluid (i.e., an analog ocean) overlies the porous medium and allows an "open-top" boundary condition. Areas of fluid discharge from the crust into the ocean are identified by illuminating microscopic glass particles carried by the fluid, using laser sheets. Using particle image velocimetry, we estimate fluid discharge rates as well as the location and extent of fluid recharge. Thermo-couples distributed throughout the crust provide insights into the geometry of convection cells at depth, and enable estimates of convective heat flux, which can be compared to the heat supplied at the base of the system. Preliminary results indicate that in homogeneous crust, convection is largely confined to the narrow slot overlying the heat source. Regularly spaced discharge zones appear focused while recharge areas appear diffuse, and qualitatively resemble the along-axis distribution of hydrothermal fields at oceanic spreading centers. By varying the permeability of the crustal analogs, the viscosity of the convecting fluid, and the imposed basal temperature, our experiments span Rayleigh numbers between 10 and 10,000. This allows us to precisely map the conditions of convection initiation, and test scaling relations between the Nusselt and Rayleigh numbers. Finally, we investigate how these scalings and convection geometry change when a slot of high-permeability material (i.e., an analog fault) is introduced in the middle of the porous domain.
Evolution of the Archean Mohorovičić discontinuity from a synaccretionary 4.5 Ga protocrust
NASA Astrophysics Data System (ADS)
Hamilton, Warren B.
2013-12-01
This review evaluates and rejects the currently dominant dogmas of geodynamics and geochemistry, which are based on 1950s-1970s assumptions of a slowly differentiating Earth. Evidence is presented for evolution of mantle, crust, and early Moho that began with fractionation of most crustal components, synchronously with planetary accretion, into mafic protocrust by ~ 4.5 Ga. We know little about Hadean crustal geology (> 3.9 Ga) except that felsic rocks were then forming, but analogy with Venus, and dating from the Moon, indicate great shallow disruption by large and small impact structures, including huge fractionated impact-melt constructs, throughout that era. The mantle sample and Archean (< 3.9 Ga) crustal geology integrate well. The shallow mantle was extremely depleted by early removal of thick mafic protocrust, which was the primary source of the tonalite, trondhjemite, and granodiorite (TTG) that dominate preserved Archean crust to its base, and of the thick mafic volcanic rocks erupted on that crust. Lower TTG crust, kept mobile by its high radioactivity and by insulating upper crust, rose diapirically into the upper crust as dense volcanic rocks sagged synformally. The mobile lower crust simultaneously flowed laterally to maintain subhorizontal base and surface, and dragged overlying brittler granite-and-greenstone upper crust. Petrologically required garnet-rich residual protocrust incrementally delaminated, sank through low-density high-mantle magnesian dunite, and progressively re-enriched upper mantle, mostly metasomatically. Archean and earliest Proterozoic craton stabilization and development of final Mohos followed regionally complete early delamination of residual protocrust, variously between ~ 2.9 and 2.2 Ga. Where some protocrust remained, Proterozoic basins, filled thickly by sedimentary and volcanic rocks, developed on Archean crust, beneath which delamination of later residual protocrust continued top-down enrichment of upper mantle. That reenrichment enabled modern-style plate tectonics after ~ 600 Ma, with a transition regime beginning ~ 850 Ma.
What's the matter with Enceladus' gravity?
NASA Astrophysics Data System (ADS)
Rivoldini, A.; Beuthe, M.; Trinh, A.
2016-12-01
Isostasy is clearly at work on Enceladus: long-wavelength gravity is positively correlated with topography, but also well compensated. If the influence of Enceladus' fast spin is taken into account, Airy isostasy implies a very thick crust (50 km) above a very thin ocean, in flat contradiction of the thin crust (20 km) implied by librations. In a desperate attempt to solve the problem, it was recently proposed to substitute flexural isostasy to Airy isostasy, using librations as a constraint on the crust thickness. However the huge lithospheric stresses required to support the load result in complete lithospheric failure. Here we propose a new isostatic model based on the sound physical principle of minimum crustal stress. We demonstrate that gravity combined with topography predicts a 20 km thick crust agreeing with - but independent from - the libration constraint. A consistent picture finally emerges from gravity-topography analysis, confirming that the south polar crust is only a few kilometres thick. Enceladus' resonant companion, Dione, is in a similar state of minimum stress isostasy. Its gravity and topography can be explained in terms of a 100 km thick isostatic crust overlying a 60 km thick global ocean, thus providing the first clear evidence for a present-day ocean within Dione.
NASA Astrophysics Data System (ADS)
Takahashi, N.; Kodaira, S.; Yamashita, M.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.; Kaneda, Y.
2009-12-01
Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has carried out seismic experiments using a multichannel reflection system and ocean bottom seismographs (OBSs) in the Izu-Ogasawara (Bonin)-Mariana (IBM) arc region since 2002 to understand growth process of continental crust. The source was an airgun array with a total capacity of 12,000 cubic inches and the OBSs as the receiver were deployed with an interval of 5 km for all seismic refraction experiments. As the results, we obtained crustal structures across the whole IBM arc with an interval of 50 km and detected the structural characteristics showing the crustal growth process. The IBM arc is one of typical oceanic island arc, which crustal growth started from subduction of an oceanic crust beneath the other oceanic crust. The arc crust has developed through repeatedly magmatic accretion from subduction slab and backarc opening. The volcanism has activated in Eocene, Oligocene, Miocene and Quaternary (e.g., Taylor, 1992), however, these detailed locations of past volcanic arc has been remained as one of unknown issues. In addition, a role of crustal rifting for the crustal growth has also been still unknown issue yet. Our seismic structures show three rows of past volcanic arc crusts except current arc. A rear arc and a forearc side have one and two, respectively. The first one, which was already reported by Kodaira et al. (2008), distributes in northern side from 27 N of the rear arc region. The second one, which develops in the forearc region next to the recent volcanic front, distributes in whole of the Izu-Ogasawara arc having crustal variation along arc direction. Ones of them sometimes have thicker crust than that beneath current volcanic front and no clear topographic high. Last one in the forearc connects to the Ogasawara Ridge. However, thickest crust is not always located beneath these volcanic arcs. The initial rifting region like the northern end of the Mariana Trough and the Sumisu Rift has thicker crust than that beneath recent volcanic front, although crustal thinning with high velocity lower crust was detected beneath advanced rifted region. This suggests that the magmatic underplating play a role to make open the crust. The magmatic underplating accompanied with the initial rifting is one of important issues to discuss the crustal evolution.
Subduction and dehydration of slow-spread oceanic lithosphere
NASA Astrophysics Data System (ADS)
Paulatto, M.; Laigle, M.; Galve, A.; Charvis, P.
2016-12-01
Water transported by subducting slabs affects the dynamics of subduction zones and is a major gateway in the global geochemical water cycle. During subduction much of the water stored in the slab is released via pore fluid escape and through metamorphic reactions that depend on the thermal regime. The most notable are eclogitization of hydrated basalt and gabbro and breakdown of serpentinite. Most constraints to date have been obtained at Pacific subduction zones, and have contributed to a model of slab dehydration applicable to normal fast-spread oceanic lithosphere with a mafic crust. Slow-spread crust however, is heterogeneous in thickness and composition and has a different water distribution than fast-spread crust. We use P-wave traveltimes from several active source seismic experiments and P- and S-wave traveltimes from shallow and intermediate depth (< 160 km) local earthquakes recorded on a vast amphibious array of OBSs and land seismometers to recover the 3D Vp and Vp/Vs structure of the central Lesser Antilles subduction zone from the surface to 160 km depth. This slab was formed by slow accretion at the Mid-Atlantic ridge and represents the global slow accretion rate end-member. We image the dipping low-Vp layer at the top of the slab corresponding to the hydrated slab crust penetrating to about 100 km depth. High Vp/Vs ratio on the slab top and in the forearc crust is interpreted as evidence of elevated fluid content either as free fluids or as bound water in hydrated minerals. A local minimum in Vp is observed on the slab top at 50 km depth, and forms an elongated trench-parallel anomaly. This anomaly is interrupted at the projection of the Marathon fracture zone. We suggest that this is the result of lateral variations in slab crust composition from normal mafic oceanic crust to tectonized oceanic crust consisting to a large extent of serpentinized peridotite near the fracture zone. Slab regions with normal mafic oceanic crust likely undergo eclogitization, resulting in voluminous water release over a narrow depth range. Serpentinized ultramafic crust, in contrast, may release water at a more constant rate. We infer that subduction of slow-spread lithosphere may result in heterogeneous water transport and release at subduction zones with implications for seismicity, magma generation and the geochemical budget.
NASA Astrophysics Data System (ADS)
Hoke, L.; Poreda, R.; Reay, A.; Weaver, S. D.
2000-07-01
New helium isotope data measured in Cenozoic intraplate basalts and their mantle xenoliths are compared with present-day mantle helium emission on a regional scale from thermal and nonthermal gas discharges on the South Island of New Zealand and the offshore Chatham Islands. Cenozoic intraplate basaltic volcanism in southern New Zealand has ocean island basalt affinities but is restricted to continental areas and absent from adjacent Pacific oceanic crust. Its distribution is diffuse and widespread, it is of intermittent timing and characterised by low magma volumes. Most of the 3He/ 4He ratios measured in fluid inclusions in mantle xenocrysts and basalt phenocrysts such as olivine, garnet, and amphibole fall within the narrow range of 8.5 ± 1.5 Ra (Ra is the atmospheric 3He/ 4He ratio) with a maximum value of 11.5 Ra. This range is characteristic of the relatively homogeneous and degassed upper MORB-mantle helium reservoir. No helium isotope ratios typical of the lower less degassed mantle (>12 Ra), such as exemplified by the modern hot-spot region of Hawaii (with up to 32 Ra) were measured. Helium isotope ratios of less than 8 Ra are interpreted in terms of dilution of upper mantle helium with a radiogenic component, due to either age of crystallisation or small-scale mantle heterogeneities caused by mixing of crustal material into the upper mantle. The crude correlation between age of samples and helium isotopes with generally lower R/Ra values in mantle xenoliths compared with host rock phenocrysts and the in general depleted Nd and Sr isotope ratios and the light rare earth element enrichment of the basalts supports derivation of melts as small melt fractions from a depleted upper mantle, with posteruptive ingrowth of radiogenic helium as a function of lithospheric age. In comparison, the regional helium isotope survey of thermal and nonthermal gas discharges of the South Island of New Zealand shows that mantle 3He anomalies in general do not show an obvious relationship with either age or proximity to the Cenozoic intraplate volcanic centres or with major faults. In general, areas characterised by mantle 3He emission are interpreted to define those regions beneath which mantle melting and basalt magma addition to the crust are recent. The strongest mantle 3He anomaly (equivalent to >80% mantle helium component) is centred over southern Dunedin, measured in magmatic CO 2-rich mineral water springs issuing from crystalline basement rocks which outcrop at the southern extent of Miocene intraplate basaltic volcanism which ceased 9 Ma ago. This mantle helium anomaly overlaps with an area characterised by elevated surface high heat flow, compatible with a long-lived mantle melt/heat input into the crust. In comparison Banks Peninsula, another Miocene intraplate basaltic centre, is characterised by relatively low surface heat flow and a small mantle helium contribution measured in a nitrogen-rich spring. Here the thermal transient induced by the magmatic event has either dissipated or has not reached the surface. In the former case one might be dealing with storage and mixing of magmatic and crustal gases at shallow crustal levels and in the latter with active to recent mantle-melt degassing at depth. Along the most actively deforming part of the plate boundary zone, the transpressional Alpine Fault and Marlborough fault systems, mantle helium is present in gas-rich springs in all those areas underlain by actively subducting oceanic crust (the Australian plate in the south and Pacific plate in the north), whereas the central part of the Alpine transpressional fault is characterised by pure crustal radiogenic helium. Areas where the mantle helium component is negligible are restricted to the centre part of the South Island, extending along its length from Southland to northern Canterbury and Murchison. These areas are interpreted to delineate the extent of thicker and colder lithosphere compared to all other areas where mantle helium release from partial mantle melts at depth is recent to active being added to the lower lithosphere and/or lower crust. Areas characterised by mantle helium anomalies are equated with areas of thermal mantle anomalies, i.e., localised mantle heterogeneities such as upwelling less dense silicate melts in the upper asthenospheric mantle.
Seismic structure and segmentation of the axial valley of the Mid-Cayman Spreading Center
NASA Astrophysics Data System (ADS)
Van Avendonk, Harm J. A.; Hayman, Nicholas W.; Harding, Jennifer L.; Grevemeyer, Ingo; Peirce, Christine; Dannowski, Anke
2017-06-01
We report the results of a two-dimensional tomographic inversion of marine seismic refraction data from an array of ocean-bottom seismographs (OBSs), which produced an image of the crustal structure along the axial valley of the ultraslow spreading Mid-Cayman Spreading Center (MCSC). The seismic velocity model shows variations in the thickness and properties of the young oceanic crust that are consistent with the existence of two magmatic-tectonic segments along the 110 km long spreading center. Seismic wave speeds are consistent with exhumed mantle at the boundary between these two segments, but changes in the vertical gradient of seismic velocity suggest that volcanic crust occupies most of the axial valley seafloor along the seismic transect. The two spreading segments both have a low-velocity zone (LVZ) several kilometers beneath the seafloor, which may indicate the presence of shallow melt. However, the northern segment also has low seismic velocities (3 km/s) in a thick upper crustal layer (1.5-2.0 km), which we interpret as an extrusive volcanic section with high porosity and permeability. This segment hosts the Beebe vent field, the deepest known high-temperature black smoker hydrothermal vent system. In contrast, the southern spreading segment has seismic velocities as high as 4.0 km/s near the seafloor. We suggest that the porosity and permeability of the volcanic crust in the southern segment are much lower, thus limiting deep seawater penetration and hydrothermal recharge. This may explain why no hydrothermal vent system has been found in the southern half of the MCSC.
Anomalous carbonate precipitates: is the Precambrian the key to the Permian?
NASA Technical Reports Server (NTRS)
Grotzinger, J. P.; Knoll, A. H.
1995-01-01
Late Permian reefs of the Capitan complex, west Texas; the Magnesian Limestone, England; Chuenmuping reef, south China; and elsewhere contain anomalously large volumes of aragonite and calcite marine cements and sea-floor crusts, as well as abundant microbial precipitates. These components strongly influenced reef growth and may have been responsible for the construction of rigid, open reefal frames in which bryozoans and sponges became encrusted and structurally reinforced. In some cases, such as the upper biostrome of the Magnesian Limestone, precipitated microbialites and inorganic crusts were the primary constituents of the reef core. These microbial and inorganic reefs do not have modern marine counterparts; on the contrary, their textures and genesis are best understood through comparison with the older rock record, particularly that of the early Precambrian. Early Precambrian reefal facies are interpreted to have formed in a stratified ocean with anoxic deep waters enriched in carbonate alkalinity. Upwelling mixed deep and surface waters, resulting in massive seafloor precipitation of aragonite and calcite. During Mesoproterozoic and early Neoproterozoic time, the ocean became more fully oxidized, and seafloor carbonate precipitation was significantly reduced. However, during the late Neoproterozoic, sizeable volumes of deep ocean water once again became anoxic for protracted intervals; the distinctive "cap carbonates" found above Neoproterozoic tillites attest to renewed upwelling of anoxic bottom water enriched in carbonate alkalinity and 12C. Anomalous late Permian seafloor precipitates are interpreted as the product, at least in part, of similar processes. Massive carbonate precipitation was favored by: 1) reduced shelf space for carbonate precipitation, 2) increased flux of Ca to the oceans during increased continental erosion, 3) deep basinal anoxia that generated upwelling waters with elevated alkalinities, and 4) further evolution of ocean water in the restricted Delaware, Zechstein, and other basins. Temporal coincidence of these processes resulted in surface seawater that was greatly supersaturated by Phanerozoic standards and whose only precedents occurred in Precambrian oceans.
NASA Technical Reports Server (NTRS)
Hayling, Kjell Lennart
1988-01-01
Two aspects of the processing and interpretation of satellite measurements of the geomagnetic field are described. One deals with the extraction of the part of the geomagnetic field that originates from sources in the earth's atmosphere. The other investigates the possibility of using the thermal state of the oceanic lithosphere to further constrain modelling and interpretation of magnetic anomalies. It is shown that some of the magnetic signal in crustal anomaly maps can be an artifact of the mathematical algorithms that have been used to separate the crustal field from the observed data. Strong magnetic anomalies can be distorted but are probably real, but weak magnetic anomalies can arise from leakage of power from short wavelengths, and will also appear in anomaly maps as repetitions of the strong crustal anomaly. The distortion and the ghost anomalies follow the magnetic dip lines in a way that is similar to actual MAGSAT anomaly fields. This phenomenon will also affect the lower degree spherical harmonic terms in the power spectrum of the crustal field. A model of the magnetic properties of the oceanic crust that has been derived from direct measurements of the rock magnetic properties of oceanic rocks is presented. The average intensity of magnetization in the oceanic crust is not strong enough to explain magnetic anomalies observed over oceanic areas. This is the case for both near surface observations (ship and aeromagnetic data) and satellite altitude observations. It is shown that magnetic sources in the part of the upper mantle that is situated above the Curie isotherm, if sufficiently strong, can produce satellite magnetic anomalies that are comparable to MAGSAT data. The method developed for the study of depth to the Curie isotherm and magnetic anomalies can also be used in inverse modelling of satellite magnetic anomalies when the model is to be adjusted with an annihilator.
Luttrell, Karen; Mencin, David; Francis, Oliver; Hurwitz, Shaul
2013-01-01
Seiche waves in Yellowstone Lake with a ~78-minute period and heights 11 Pa s. These strain observations and models provide independent evidence for the presence of partially molten material in the upper crust, consistent with seismic tomography studies that inferred 10%–30% melt fraction in the upper crust.
NASA Technical Reports Server (NTRS)
Frey, H.
1978-01-01
If early degassing of the Earth produced a global ocean several km deep overlying a global sialic crust, then late heavy bombardment of that crust by basin forming impacting bodies would have produced topography such that by 4 billion years ago dry continential landmasses would stand above sea level. From extrapolation of lunar crater statistics, at least 50% of an original global crust on the earth would have been converted into basins averaging 4 km deep after isostatic adjustment. These basins formed the sink into which such a global ocean would drain. If the ocean was initially 2 km deep, then approximately 50% of the early Earth would have stood above sea level when the late heavy bombardment came to a close.
NASA Astrophysics Data System (ADS)
Wu, C.; Tian, X.; Xu, T.; Liang, X.; Chen, Y.; Teng, J.
2017-12-01
Seismic anisotropy that results from deformation of the materials in the Earth is essentially important for understanding the deformation styles at different depths. In the central Tibetan Plateau the shear wave splitting measurements of local S-wave, Pms and SKS phases were calculated applying the broadband seismic data of SANDWICH array, and the anisotropy features of the crust and upper mantle were displayed. SKS splitting results show that the study area is strongly anisotropic as a whole. The average splitting parameters are 65.2°/1.28 s, and there are 17 stations existing individual splitting results larger than 2.0 s. The southeastern part is weakly anisotropic with average splitting parameters 61.0°/0.64 s. Applying spatial coherence technique the optimal depth of the source of anisotropy is 130 160 km, located in the asthenosphere. The subducting Indian plate advancing in NE direction and rigid blocks such as Qaidam basin obstructing in the north cause NEE direction asthenospheric flow which produces the anisotropy. The weak anisotropy of southeastern part is corresponding to the low velocity anomalies in the upper mantle, which may be attributed to local upwelling of asthenosphere from the slab tearing region. The crust media also make contribution to the strong anisotropy. S-wave splitting results which reflect upper crust anisotropy show that the average parameters of three stations in western part are 60.4°/1.53 ms/km, and those of two stations in eastern part are 10.9°/4.64 ms/km. The principle compressive stress controlled by structures varies from NE in the west to nearly NS in the east. Under the assumption that the thickness of upper crust is 20 km, the delay time of upper crust is smaller than 0.1 s. Whole crust anisotropy is obtained by calculating receiver functions and fitting the variation of arrival times of Pms phases with the backazimuths. The fast directions are NE-EW direction with average value 76.4°, nearly consistent with SKS fast directions, and the average delay time is about 0.5 s. The source of crust anisotropy mainly comes from middle-lower crust, which is possibly related to middle-lower crust flow.
Lee, C.-T.A.; Morton, D.M.; Kistler, R.W.; Baird, A.K.
2007-01-01
Mesozoic continental arcs in the North American Cordillera were examined here to establish a baseline model for Phanerozoic continent formation. We combine new trace-element data on lower crustal xenoliths from the Mesozoic Sierra Nevada Batholith with an extensive grid-based geochemical map of the Peninsular Ranges Batholith, the southern equivalent of the Sierras. Collectively, these observations give a three-dimensional view of the crust, which permits the petrogenesis and tectonics of Phanerozoic crust formation to be linked in space and time. Subduction of the Farallon plate beneath North America during the Triassic to early Cretaceous was characterized by trench retreat and slab rollback because old and cold oceanic lithosphere was being subducted. This generated an extensional subduction zone, which created fringing island arcs just off the Paleozoic continental margin. However, as the age of the Farallon plate at the time of subduction decreased, the extensional environment waned, allowing the fringing island arc to accrete onto the continental margin. With continued subduction, a continental arc was born and a progressively more compressional environment developed as the age of subducting slab continued to young. Refinement into a felsic crust occurred after accretion, that is, during the continental arc stage, wherein a thickened crustal and lithospheric column permitted a longer differentiation column. New basaltic arc magmas underplate and intrude the accreted terrane, suture, and former continental margin. Interaction of these basaltic magmas with pre-existing crust and lithospheric mantle created garnet pyroxenitic mafic cumulates by fractional crystallization at depth as well as gabbroic and garnet pyroxenitic restites at shallower levels by melting of pre-existing lower crust. The complementary felsic plutons formed by these deep-seated differentiation processes rose into the upper crust, stitching together the accreted terrane, suture and former continental margin. The mafic cumulates and restites, owing to their high densities, eventually foundered into the mantle, leaving behind a more felsic crust. Our grid-based sampling allows us to estimate an unbiased average upper crustal composition for the Peninsular Ranges Batholith. Major and trace-element compositions are very similar to global continental crust averaged over space and time, but in detail, the Peninsular Ranges are slightly lower in compatible to mildly incompatible elements, MgO, Mg#, V, Sc, Co, and Cr. The compositional similarities suggest a strong arc component in global continental crust, but the slight discrepancies suggest that additional crust formation processes are also important in continent formation as a whole. Finally, the delaminated Sierran garnet pyroxenites have some of the lowest U/Pb ratios ever measured for silicate rocks. Such material, if recycled and stored in the deep mantle, would generate a reservoir with very unradiogenic Pb, providing one solution to the global Pb isotope paradox. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, M.; Wang, Q.; Sibuet, J. C.; Sun, L.; Sun, Z.; Qiu, X.
2017-12-01
The South China Sea (SCS) is one of the largest marginal seas in the western Pacific, which has experienced extension, rifting, breakup, post-spreading magmatism on its northern margin during the Cenozoic era. The complexity of this margin is exacerbated by rifting and seafloor spreading processes, which developed at the expenses of the subducting proto-South China Sea. Based on Sun et al. (2014, 2016) proposals, 6 sites were drilled on the northern SCS margin from February to June 2017, during IODP Expeditions 367/368. The preliminary results indicate that the width of the COT is about 20 km and is different from the typical magma-poor Iberia margin whose width is around 100 km. The combination of three-dimensional (3D) Ocean Bottom Seismometers (OBS) refractive survey with IODP drilling results, will improve the drilling achievement and greatly contribute to the understanding of the specific mechanism of rifting and breakup processes of the northern SCS. In particular, it is expected to constrain: 1) the nature of the crust in the COT, 2) the degree of serpentinization of the upper mantle beneath the COT, and 3) the 3D extension of the COT, the oceanic crust and the serpentinized mantle. We firstly carry out the resolution tests and calculate the interval of OBSs using a ray tracing and travel time modelling software. 7-km interval between OBSs is the optimal interval for the resolution tests and ray coverage, which will provide optimal constraints for the characterization of the 20-km wide COT. The 3D seismic survey will be carried out in 2018. The design of the OBSs arrangement and the location of shooting lines are extremely important. At present, we propose 5 main profiles and 14 shooting lines along the multi-channel seismic lines already acquired in the vicinity of the 6 drilling sites. Any comments and suggestions concerning the OBSs arrangement will be appreciated. This work is supported by the Chinese National Natural Science Foundation (contracts 91428204, 41576070 and 41176053). Key words: Continental-ocean transition zone (COT); 3D refraction survey; IODP Expeditions 367/368; nature of crust.
The heterogeneous ice shell thickness of Enceladus
NASA Astrophysics Data System (ADS)
Lucchetti, Alice; Pozzobon, Riccardo; Mazzarini, Francesco; Cremonese, Gabriele; Massironi, Matteo
2016-10-01
Saturn's moon Enceladus is the smallest Solar System body that presents an intense geologic activity on its surface. Plumes erupting from Enceladus' South Polar terrain (SPT) provide direct evidence of a reservoir of liquid below the surface. Previous analysis of gravity data determined that the ice shell above the liquid ocean must be 30-40 km thick from the South Pole up to 50° S latitude (Iess et al., 2014), however, understand the global or regional nature of the ocean beneath the ice crust is still challenging. To infer the thickness of the outer ice shell and prove the global extent of the ocean, we used the self-similar clustering method (Bonnet et al., 2001; Bour et al., 2002) to analyze the widespread fractures of the Enceladus's surface. The spatial distribution of fractures has been analyzed in terms of their self-similar clustering and a two-point correlation method was used to measure the fractal dimension of the fractures population (Mazzarini, 2004, 2010). A self-similar clustering of fractures is characterized by a correlation coefficient with a size range defined by a lower and upper cut-off, that represent a mechanical discontinuity and the thickness of the fractured icy crust, thus connected to the liquid reservoir. Hence, this method allowed us to estimate the icy shell thickness values in different regions of Enceladus from SPT up to northern regions.We mapped fractures in ESRI ArcGis environment in different regions of the satellite improving the recently published geological map (Crow-Willard and Pappalardo, 2015). On these regions we have taken into account the fractures, such as wide troughs and narrow troughs, located in well-defined geological units. Firstly, we analyzed the distribution of South Polar Region fracture patterns finding an ice shell thickness of ~ 31 km, in agreement with gravity measurements (Iess et al., 2014). Then, we applied the same approach to other four regions of the satellite inferring an increasing of the ice shell thickness from 31 to 70 km from the South Pole to northern regions. By these findings, we prove the global extent of the ocean underneath the ice crust of the satellite.
Can deformation of a polymer film with a rigid coating model geophysical processes?
NASA Astrophysics Data System (ADS)
Volynskii, A. L.; Bazhenov, S. L.
2007-12-01
The structural and mechanical behavior of polymer films with a thin rigid coating is analyzed. The behavior of such systems under applied stress is accompanied by the formation of a regular wavy surface relief and by regular fragmentation of the coating. The above phenomena are shown to be universal. Both phenomena (stress-induced development of a regular wavy surface relief and regular fragmentation of the coating) are provided by the specific features of mechanical stress transfer from a compliant soft support to a rigid thin coating. The above phenomena are associated with a specific structure of the system, which is referred to as “a rigid coating on a soft substratum” system (RCSS). Surface microrelief in RCSS systems is similar to the ocean floor relief in the vicinity of mid-oceanic ridges. Thus, the complex system composed of a young oceanic crust and upper Earth's mantle may be considered as typically “a solid coating on a soft substratum” system. Specific features of the ocean floor relief are analyzed in terms of the approach advanced for the description of the structural mechanical behavior of polymer films with a rigid coating. This analysis allowed to estimate the strength of an ocean floor.
NASA Astrophysics Data System (ADS)
Craig, T. J.; Parnell-Turner, R.
2017-12-01
Extension at slow- and intermediate-spreading mid-ocean ridges is commonly accommodated through slip on long-lived detachment faults. These curved, convex-upward faults consist of a steeply-dipping section thought to be rooted in the lower crust or upper mantle which rotates to progressively shallower dip-angles at shallower depths, resulting in a domed, sub-horizontal oceanic core complex at the seabed. Although it is accepted that detachment faults can accumulate kilometre-scale offsets over millions of years, the mechanism of slip, and their capacity to sustain the shear stresses necessary to produce large earthquakes, remains debated. In this presentation we will show a comprehensive seismological study of an active oceanic detachment fault system on the Mid-Atlantic Ridge near 13o20'N, combining the results from a local ocean-bottom seismograph deployment with waveform inversion of a series of larger, teleseismically-observed earthquakes. The coincidence of these two datasets provides a more complete characterisation of rupture on the fault, from its initial beginnings within the uppermost mantle to its exposure at the surface. Our results demonstrate that although slip on the steeply-dipping portion of detachment fault is accommodated by failure in numerous microearthquakes, the shallower-dipping section of the fault within the upper few kilometres is relatively strong, and is capable of producing large-magnitude earthquakes. Slip on the shallow portion of active detachment faults at relatively low angles may therefore account for many more large-magnitude earthquakes at mid-ocean ridges than previously thought, and suggests that the lithospheric strength at slow-spreading mid-ocean ridges may be concentrated at shallow depths.
The nature of the crust under Cayman Trough from gravity
ten Brink, Uri S.; Coleman, D.F.; Dillon, William P.
2002-01-01
Considerable crustal thickness variations are inferred along Cayman Trough, a slow-spreading ocean basin in the Caribbean Sea, from modeling of the gravity field. The crust to a distance of 50 km from the spreading center is only 2–3 km thick in agreement with dredge and dive results. Crustal thickness increases to ∼5.5 km at distances between 100 and 430 km west of the spreading center and to 3.5–6 km at distances between 60 and 370 km east of the spreading center. The increase in thickness is interpreted to represent serpentinization of the uppermost mantle lithosphere, rather than a true increase in the volume of accreted ocean crust. Serpentinized peridotite rocks have indeed been dredged from the base of escarpments of oceanic crust rocks in Cayman Trough. Laboratory-measured density and P-wave speed of peridotite with 40–50% serpentine are similar to the observed speed in published refraction results and to the inferred density from the model. Crustal thickness gradually increases to 7–8 km at the far ends of the trough partially in areas where sea floor magnetic anomalies were identified. Basement depth becomes gradually shallower starting 250 km west of the rise and 340 km east of the rise, in contrast to the predicted trend of increasing depth to basement from cooling models of the oceanic lithosphere. The gradual increase in apparent crustal thickness and the shallowing trend of basement depth are interpreted to indicate that the deep distal parts of Cayman Trough are underlain by highly attenuated crust, not by a continuously accreted oceanic crust.
NASA Astrophysics Data System (ADS)
Grajales-Nishimura, José Manuel; Ramos-Arias, Mario Alfredo; Solari, Luigi; Murillo-Muñetón, Gustavo; Centeno-García, Elena; Schaaf, Peter; Torres-Vargas, Ricardo
2018-04-01
The Juchatengo complex (JC) suite is located between the Proterozoic Oaxacan complex to the north and the Xolapa complex to the south, and was amalgamated by late Paleozoic magmatism. It consists of mafic and sedimentary rocks that have oceanic affinities, with internal pseudostratigraphic, structural and metamorphic characteristics, which resemble a typical upper-level ophiolite assemblage. New U-Pb zircon and previous hornblende K-Ar analyses yield ages of ca. 291-313 Ma (U-Pb) for plagiogranites and ca. 282-277 Ma for tonalites intruding the entire sequence, including pelagic sediments at the top, with a maximum deposition age of ca. 278 Ma and noteworthy local provenance. These data constrain the age of the JC to the Late Pennsylvanian-Early Permian period. Hf isotopic analyses obtained from zircons in the JC plagiogranite and tonalite show that they come from a similar primitive mantle source (176Hf/177Hf: 0.282539-0.283091; ƐHf(t): + 3.2 to + 15.0). ƐHf(t) values from near 0 to - 2.8 in the tonalites indicate a contribution from the continental crust. Trace elements and REE patterns in whole rock and zircons point to a primitive mantle source for differentiated mafic, plagiogranite dykes and tonalitic plutons. Geochronological and geochemical data address the generation of new oceanic crust above the subduction zone, probably in a backarc setting. In this tectonic scenario, the JC ophiolite originated due to the convergence of the paleo-Pacific plate below the already integrated Oaxacan and Acatlán complexes in western Pangea. The dextral displacement places the deformation in a transtensional regime during the late Paleozoic age.
Depth-varying seismogenesis on an oceanic detachment fault at 13°20‧N on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Craig, Timothy J.; Parnell-Turner, Ross
2017-12-01
Extension at slow- and intermediate-spreading mid-ocean ridges is commonly accommodated through slip on long-lived faults called oceanic detachments. These curved, convex-upward faults consist of a steeply-dipping section thought to be rooted in the lower crust or upper mantle which rotates to progressively shallower dip-angles at shallower depths. The commonly-observed result is a domed, sub-horizontal oceanic core complex at the seabed. Although it is accepted that detachment faults can accumulate kilometre-scale offsets over millions of years, the mechanism of slip, and their capacity to sustain the shear stresses necessary to produce large earthquakes, remains subject to debate. Here we present a comprehensive seismological study of an active oceanic detachment fault system on the Mid-Atlantic Ridge near 13°20‧N, combining the results from a local ocean-bottom seismograph deployment with waveform inversion of a series of larger teleseismically-observed earthquakes. The unique coincidence of these two datasets provides a comprehensive definition of rupture on the fault, from the uppermost mantle to the seabed. Our results demonstrate that although slip on the deep, steeply-dipping portion of detachment faults is accommodated by failure in numerous microearthquakes, the shallow, gently-dipping section of the fault within the upper few kilometres is relatively strong, and is capable of producing large-magnitude earthquakes. This result brings into question the current paradigm that the shallow sections of oceanic detachment faults are dominated by low-friction mineralogies and therefore slip aseismically, but is consistent with observations from continental detachment faults. Slip on the shallow portion of active detachment faults at relatively low angles may therefore account for many more large-magnitude earthquakes at mid-ocean ridges than previously thought, and suggests that the lithospheric strength at slow-spreading mid-ocean ridges may be concentrated at shallow depths.
NASA Astrophysics Data System (ADS)
Zhang, Guo-Liang; Chen, Li-Hui; Li, Shi-Zhen
2013-12-01
A large-scale mantle compositional discontinuity was identified along the East Pacific Rise (EPR) and the Pacific-Antarctic Ridge (PAR) with an inferred transition located at the EPR 23°S-32°S. Because of the EPR-Easter hotspot interactions in this area, the nature of this geochemical discontinuity remains unclear. IODP Sites U1367 and U1368 drilled into the ocean crust that was accreted at ∼33.5 Ma and ∼13.5 Ma, respectively, between 28°S and 30°S on the EPR. We use lavas from Sites U1367 and U1368 to track this mantle discontinuity away from the EPR. The mantle sources for basalts at Sites U1367 and U1368 represent, respectively, northern and southern Pacific mantle sub-domains in terms of Sr-Nd-Pb-Hf isotopes. The significant isotopic differences between the two IODP sites are consistent with addition of ancient subduction-processed ocean crust to the south Pacific mantle sub-domain. Our modeling result shows that a trace element pattern similar to that of U1368 E-MORB can be formed by melting a subduction-processed typical N-MORB. The trace element and isotope compositions for Site U1368 MORBs can be formed by mixing a HIMU mantle end-member with Site U1367 MORBs. Comparison of our data with those from the EPR-PAR shows a geochemical mantle boundary near the Easter microplate that separates the Pacific upper mantle into northern and southern sub-domains. On the basis of reconstruction of initial locations of the ocean crust at the two sites, we find that the mantle boundary has moved northward to the Easter microplate since before 33.5 Ma. A model, in which along-axis asthenospheric flow to where asthenosphere consumption is strongest, explains the movement of the apparent mantle boundary.
NASA Astrophysics Data System (ADS)
Klingelhoefer, Frauke; Yellès, Abdelkarim; Bracène, Rabah; Graindorge, David; Ouabadi, Aziouz; Schnürle, Philippe; Scientific Party, Spiral
2010-05-01
During the second leg of the Algerien - French SPIRAL (Sismique Profonde et Investigation Regionale du Nord de l'ALgerie) cruise conducted on the R/V Atalante in October and November 2009 an extensive wide-angle seismic data-set was acquired on 5 regional transects off Algeria, from Arzew bay to the west, to Annaba to the east. The profiles are between 80 and 180 km in length and around 40 ocean-bottom seismometers were deployed on each profile. A 8350 cu. inch tuned airgun array consisting of 10 Bolt airguns was used to generate of deep frequency to allow for a good penetration. All profiles were extended on land up to 150 km by land-stations to better constrain the structure of the margin and the nature of the ocean-continent transition zone. Coincident reflection seismic, gravity and magnetic data were acquired on all profiles during the first leg of the cruise. The resulting data quality is very good with deep penetrating arrivals on most of the instruments. Only on very few instruments a deep salt layer inhibits deeper penetration of the seismic energy. Two instruments were lost and all other yielded useful information on geophone and hydrophone channels. Instruments located close to the coast show arrivals from thick sedimentary layers. Instruments located on oceanic crust indicate a relatively thin crust overlying a mantle layer characterised by seismic velocities of 8 km/s. Forward and inverse modelling of the wide-angle seismic data will help constrain the deep structure of the margin, the nature of the crust and might help to constrain possible existence of a detached slab in the upper mantle. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will enable us to better understand the tectonic history and the structure of the Algerian margin.
Probing magnetic bottom and crustal temperature variations along the Red Sea margin of Egypt
Ravat, D.; Salem, A.; Abdelaziz, A.M.S.; Elawadi, E.; Morgan, P.
2011-01-01
Over 50 magnetic bottom depths derived from spectra of magnetic anomalies in Eastern Egypt along the Red Sea margin show variable magnetic bottoms ranging from 10 to 34. km. The deep magnetic bottoms correspond more closely to the Moho depth in the region, and not the depth of 580??C, which lies significantly deeper on the steady state geotherms. These results support the idea of Wasilewski and coworkers that the Moho is a magnetic boundary in continental regions. Reduced-to-pole magnetic highs correspond to areas of Younger Granites that were emplaced toward the end of the Precambrian. Other crystalline Precambrian units formed earlier during the closure of ocean basins are not strongly magnetic. In the north, magnetic bottoms are shallow (10-15. km) in regions with a high proportion of these Younger Granites. In the south, the shoaling of the magnetic bottom associated with the Younger Granites appears to be restricted to the Aswan and Ras Banas regions. Complexity in the variation of magnetic bottom depths may arise due to a combination of factors: i) regions of Younger (Precambrian) Granites with high magnetite content in the upper crust, leaving behind low Curie temperature titanomagnetite components in the middle and lower crust, ii) rise in the depth of 580??C isotherm where the crust may have been heated due to initiation of intense magmatism at the time of the Red Sea rifting (~. 20. Ma), and iii) the contrast of the above two factors with respect to the neighboring regions where the Moho and/or Curie temperature truncates lithospheric ferromagnetism. Estimates of fractal and centroid magnetic bottoms in the oceanic regions of the Red Sea are significantly below the Moho in places suggesting that oceanic uppermost mantle may be serpentinized to the depth of 15-30 km in those regions. ?? 2011 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wittwer, A.; Flueh, E.; Rabbel, W.; Wagner, D.
2006-12-01
In this study, offshore wide-angle data acquired by ocean bottom instruments of a combined onshore- offshore investigation of the tectonic framework of central Java will be presented. The joint interdisciplinary project MERAMEX (Merapi Amphibious Experiment) was carried out in order to characterize the subduction of the Indo-Australian plate beneath Eurasia. The interpretation of three wide-angle data profiles, modelled with forward raytracing, indicates that the subduction of the Roo Rise with its thickened oceanic crust strongly influences the subduction zone. The dip angle of the downgoing oceanic plate is 10° and its crustal thickness increases to the east from 8 km to 9 km between both dip profiles off central Java. Large scale forearc uplift is manifested in isolated forearc highs, reaching water depths of only 1000 m compared to 2000 m water depth off western Java, and results from oceanic basement relief subduction. A broad band of seamounts trends E-W at approximately 10°S. Its incipient subduction off central Java causes frontal erosion of the margin here and leads to mass wasting due to oversteepening of the upper trench wall. A suite of wide-angle profiles off southern Sumatra to central Java indicates a clear change in the tectonic environment between longitude 108°E and 109°E. The well-developed accretionary wedge off southern Sumatra and western Java changes into a small frontal prism with steep slope angles of the upper plate off central Java.
NASA Astrophysics Data System (ADS)
Tozer, B.; Stern, T. A.; Lamb, S. L.; Henrys, S. A.
2017-11-01
Wide-angle reflection and refraction data recorded during the Seismic Array HiKurangi Experiment (SAHKE) are used to constrain the crustal P-wave velocity (Vp) structure along two profiles spanning the length and width of Wanganui Basin, located landwards of the southern Hikurangi subduction margin, New Zealand. These models provide high-resolution constraints on the structure and crustal thickness of the overlying Australian and subducted Pacific plates and plate interface geometry. Wide-angle reflections are modelled to show that the subducted oceanic Pacific plate crust is anomalously thick (∼10 km) below southern North Island and is overlain by a ∼1.5-4.0 km thick, low Vp (4.8-5.4 km s-1) layer, interpreted as a channel of sedimentary material, that persists landwards at least as far as Kapiti Island. Distinct near vertical reflections from onshore shots identify a ∼4 km high mound of low-velocity sedimentary material that appears to underplate the overlying Australian plate crust and is likely to contribute to local rock uplift along the Axial ranges. The overriding Australian plate Moho beneath Wanganui Basin is imaged as deepening southwards and reaches a depth of at least 36.4 km. The Moho shape approximately mirrors the thickening of the basin sediments, suggestive of crustal downwarping. However, the observed crustal thickness variation is insufficient to explain the large negative Bouguer gravity anomaly (-160 mGal) centred over the basin. Partial serpentinization within the upper mantle with a concomitant density decrease is one possible way of reconciling this anomaly.
NASA Astrophysics Data System (ADS)
Villinger, H. W.; Pichler, T.; Kaul, N.; Stephan, S.; Pälike, H.; Stephan, F.
2017-01-01
We acquired seismic and heat flow data and collected sediment cores in three areas in the Guatemala Basin (Cocos Plate, Eastern Pacific) to investigate the process by which depressions (pits) in the sedimentary cover on young oceanic crust were formed. Median heat flow of 55 mW/m2 for the three areas is about half of the expected conductive cooling value. The heat deficit is caused by massive recharge of cold seawater into the upper crust through seamounts which is inferred from depressed heat flow in the vicinity of seamounts. Heat flow inside of pits is always elevated, in some cases up to three times (max. 300 mW/m2) relative to background. None of the geochemical pore water profiles from cores inside and outside of the pits show any evidence of active fluid flow inside the pits. All three areas originated within the high productivity equatorial zone and moved northwest over the past 15 to 18 Ma. Pits found in the working areas are likely relict dissolution structures formed by diffuse hydrothermal venting in a zone of high biogenic carbonate production which were sealed when they moved north. It is likely that these pits were discharge sites of "hydrothermal siphons" where recharging seamounts could feed cold seawater via the upper crust to several discharging pits. Probably pit density on the whole Cocos Plate is similar to the three working areas and which may explain the huge heat deficit of the Cocos Plate.
Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones
Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.
2014-01-01
Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8 Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.
Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life
Kargel, J.S.; Kaye, J.Z.; Head, J. W.; Marion, G.M.; Sassen, R.; Crowley, J.K.; Ballesteros, O.P.; Grant, S.A.; Hogenboom, D.L.
2000-01-01
We have considered a wide array of scenarios for Europa's chemical evolution in an attempt to explain the presence of ice and hydrated materials on its surface and to understand the physical and chemical nature of any ocean that may lie below. We postulate that, following formation of the jovian system, the europan evolutionary sequence has as its major links: (a) initial carbonaceous chondrite rock, (b) global primordial aqueous differentiation and formation of an impure primordial hydrous crust, (c) brine evolution and intracrustal differentiation, (d) degassing of Europa's mantle and gas venting, (e) hydrothermal processes, and (f) chemical surface alteration. Our models were developed in the context of constraints provided by Galileo imaging, near infrared reflectance spectroscopy, and gravity and magnetometer data. Low-temperature aqueous differentiation from a carbonaceous CI or CM chondrite precursor, without further chemical processing, would result in a crust/ocean enriched in magnesium sulfate and sodium sulfate, consistent with Galileo spectroscopy. Within the bounds of this simple model, a wide range of possible layered structures may result; the final state depends on the details of intracrustal differentiation. Devolatilization of the rocky mantle and hydrothermal brine reactions could have produced very different ocean/crust compositions, e.g., an ocean/crust of sodium carbonate or sulfuric acid, or a crust containing abundant clathrate hydrates. Realistic chemical-physical evolution scenarios differ greatly in detailed predictions, but they generally call for a highly impure and chemically layered crust. Some of these models could lead also to lateral chemical heterogeneities by diapiric upwellings and/or cryovolcanism. We describe some plausible geological consequences of the physical-chemical structures predicted from these scenarios. These predicted consequences and observed aspects of Europa's geology may serve as a basis for further analys is and discrimination among several alternative scenarios. Most chemical pathways could support viable ecosystems based on analogy with the metabolic and physiological versatility of terrestrial microorganisms. ?? 2000 Academic Press.
NASA Astrophysics Data System (ADS)
Dilek, Y.; Furnes, H.; Schoenberg, R.
2009-12-01
The continental-oceanic crust boundary and an incipient oceanic crust of the Red Sea opening are exposed within the Arabian plate along a narrow zone of the Tihama Asir coastal plain in SW Saudi Arabia. Dike swarms, layered gabbros, granophyres and basalts of the 22 Ma Tihama Asir (TA) continental margin ophiolite represent products of magmatic differentiation formed during the initial stages of rifting between the African and Arabian plates. Nearly 4-km-wide zone of NW-trending sheeted dikes are the first products of mafic magmatism associated with incipient oceanic crust formation following the initial continental breakup. Gabbro intrusions are composed of cpx-ol-gabbro, cpx-gabbro, and norite/troctolite, and are crosscut by fine-grained basaltic dikes. Granophyre bodies intrude the sheeted dike swarms and are locally intrusive into the gabbros. Regional Bouger gravity anomalies suggest that the Miocene mafic crust represented by the TA complex extends westward beneath the coastal plain sedimentary rocks and the main trough of the Red Sea. The TA complex marks an incipient Red Sea oceanic crust that was accreted to the NE side of the newly formed continental rift in the earliest stages of seafloor spreading. Its basaltic to trachyandesitic lavas and dikes straddle the subalkaline-mildly alkaline boundary. Incompatible trace element relationships (e.g. Zr-Ti, Zr-P) indicate two distinct populations. The REE concentrations show an overall enrichment compared to N-MORB; light REEs are enriched over the heavy ones ((La/Yb)n > 1), pointing to an E-MORB influence. Nd-isotope data show ɛNd values ranging from +4 to +8, supporting an E-MORB melt source. The relatively large variations in ɛNd values also suggest various degrees of involvement of continental crust during ascent and emplacement, or by mixing of another mantle source.
NASA Astrophysics Data System (ADS)
Tani, Kenichiro; Dunkley, Daniel J.; Chang, Qing; Nichols, Alexander R. L.; Shukuno, Hiroshi; Hirahara, Yuka; Ishizuka, Osamu; Arima, Makoto; Tatsumi, Yoshiyuki
2015-08-01
A widely held hypothesis is that modern continental crust of an intermediate (i.e. andesitic) bulk composition forms at intra-oceanic arcs through subduction zone magmatism. However, there is a critical paradox in this hypothesis: to date, the dominant granitic rocks discovered in these arcs are tonalite, rocks that are significantly depleted in incompatible (i.e. magma-preferred) elements and do not geochemically and petrographically represent those of the continents. Here we describe the discovery of a submarine knoll, the Daisan-West Sumisu Knoll, situated in the rear-arc region of the intra-oceanic Izu-Bonin-Mariana Arc. Remotely-operated vehicle surveys reveal that this knoll is made up entirely of a 2.6 million year old porphyritic to equigranular granodiorite intrusion with a geochemical signature typical of continental crust. We present a model of granodiorite magma formation that involves partial remelting of enriched mafic rear-arc crust during the initial phase of back-arc rifting, which is supported by the preservation of relic cores inherited from initial rear-arc source rocks within magmatic zircon crystals. The strong extensional tectonic regime at the time of intrusion may have allowed the granodioritic magma to be emplaced at an extremely shallow level, with later erosion of sediment and volcanic covers exposing the internal plutonic body. These findings suggest that rear-arc regions could be the potential sites of continental crust formation in intra-oceanic convergent margins.
The Flemish Cap - Goban Spur conjugate margins: New evidence of asymmetry
NASA Astrophysics Data System (ADS)
Gerlings, J.; Louden, K. E.; Minshull, T. A.; Nedimović, M. R.
2011-12-01
The combined results of deep multichannel seismic (MCS) and refraction/wide-angle reflection seismic (R/WAR) profiles across the Flemish Cap-Goban Spur conjugate margin pair will be presented to help constrain rifting and breakup processes. Both profiles cross magnetic anomaly 34 and extend into oceanic crust, which makes it possible to observe the complete extensional history from continental rifting through the formation of initial oceanic crust. Kirchhoff poststack time and prestack time and depth migration images of the Flemish Cap MCS data are produced using a velocity model constructed from the MCS and R/WAR data. These new images show improved continuity of the Moho under the thick continental crust of Flemish Cap. The basement morphology image is sharper and reflections observed in the thin crust of the transition zone are more coherent. A basement high at the seaward-most end of the transition zone now displays clear diapiric features. To compare the two margins, the existing migrated MCS data across Goban Spur has been time-to-depth converted using the R/WAR velocity model of the margin. These reimaged seismic profiles demonstrate asymmetries in continental rifting and breakup with a complex transition to oceanic spreading: (1) During initial phases of rifting, the Flemish Cap margin displays a sharper necking profile than that of the Goban Spur margin. (2) Within the ocean-continent-transition zone, constraints from S-wave velocities on both margins indentifies previously interpreted oceanic crust as thinned continental crust offshore Flemish Cap in contrast with primarily serpentinized mantle offshore Goban Spur. (3) Continental breakup and initial seafloor spreading occur in a complex, asymmetric manner where the initial ~50 km of oceanic crust appears different on the two margins. Offshore Flemish Cap, both R/WAR and MCS results indicate a sharp boundary immediately seaward of a ridge feature, where the basement morphology becomes typical of slow seafloor spreading. There are no significant changes in either reflectivity or velocity seaward toward magnetic anomaly 34. On the Goban Spur margin in marked contrast, the basement morphology landward of magnetic anomaly 34 is shallower and has lower relief, and the velocity model indicates a diffuse change between the transitional crust and seafloor spreading. The results from these two very different conjugate margins emphasize the importance of having both types of seismic data from both conjugate margins when interpreting the geodynamic processes.
NASA Astrophysics Data System (ADS)
Shi, W.; Mitchell, N. C.; Kalnins, L. M.; A Y, I.
2017-12-01
The Red Sea is considered an important example of a rifted continental shield proceeding to a seafloor spreading stage of development, and the transition of crustal types there from stretched continental to oceanic should mark the onset of significant mantle melting. However, whether the crust in the central Red Sea is continental or oceanic has been controversial. To contribute to this debate, we assessed the geometry of the basement from potential fields and seismic reflection data. Prior interpretations of basement in deep seismic reflection profiles were first verified using Werner deconvolution of marine magnetic data. The seismic depths were then used to reconstruct basement depth corrected for evaporite and other sediment loading. We found that the basement deepening with distance is similar to that of oceanic crust near mantle plumes such as the Reykjanes Ridge. In both cases, the data show a 35-80 km wide axial plateau followed by a steep 0.4-1.7 km deepening over 30-50 km distance. It has also been suggested that the variability of free-air anomalies observed in lines parallel to the axis is due to crossing oceanic short-offset fracture zones. We assessed this idea by inverting the gravity anomalies for basement relief. Using densities appropriate for oceanic crust and a modified slab formula, we found values for root-mean square (RMS) relief that are comparable to those of weakly sedimented regions of the Mid-Atlantic Ridge. Forward calculations using 2D modelling revealed that the errors in RMS basement relief caused by the slab approximation are 30%, leaving true RMS basement relief still within the range of values for oceanic crust. While these observations by themselves do not rule out an extremely extended continental crust interpretation, combined with previous analysis of refraction velocities, which are oceanic-like, they are supportive of an oceanic crustal interpretation. Additionally, the RMS values and the cross-axis basement relief both suggest a change in basement rugosity from near the coast to around the axial trough, perhaps supporting a transition in crustal type from stretched continental to predominantly oceanic, or supporting that the low RMS value areas near the coast are covered by widespread lava flows.
Switching from pure- into simple-shear mode during uplift of the Altiplano plateau (Central Andes)
NASA Astrophysics Data System (ADS)
Babeyko, A. Yu.; Sobolev, S. V.
2003-04-01
The Altiplano plateau of the Central Andes is the second greatest plateau in the world after Tibet with an average elevation of about 4 km formed as a result of ocean-continent collision between subducting Nasca plate on the west and Brazilian shield on the east. According to the well known Isacks (1988) scenario, the Cenozoic evolution of the plateau started ca. 30 Ma in response to the retreat of the flat-subducted Nasca plate. Astenospheric material, which replaced the retreated plate, thermally thinned and softened the overlying lithosphere. The Altiplano crust, being pushed by the Brazilian shield from the east, was first shortened in a pure-shear mode and reached 60-70 km in thickness. At ca. 8-10 Ma deformation changed to a simple-shear mode: it was ceased in the upper crust of the plateau and migrated eastwards, into the Subandean, while the plateau itself continued to grow due to ongoing shortening in the lower crust. We employ numerical 2D thermomechanical modelling to test the above scenario and to evaluate the key parameters, which account for the transition from pure- to simple- shear style of the lithosphere-scale deformation under pure-shear boundary condition. As a numerical tool we use explicit finite difference/finite element lagrangian code with markers tracking material properties. The model contains rheologically different layers representing sediments, felsic and mafic crust, lithospheric mantle, and astenosphere. Rheological laws are Mohr-Coloumb elasto-plastic with softening and Maxwell visco-elastic with nonlinear power-law creep. Initial and boundary conditions simulate thermal activation of the Altiplano lithosphere by upwelling astenosphere as well as its westward pushing by the cold Brazilian shield with constant velocity. We found that model shortening always occurs in a pure-shear mode unless the uppermost crust of the Brazilian shield becomes during the deformation considerably weaker than the Altiplano upper crust (drop of friction coefficient down to 0.05-0.1). This weakening may be attributed to more pronounced plastic softening in thick layer of the Paleozoic sediments covering the shield. Another nessesary condition is formation of a prominent (2-3 km) topographic step between the plateau and foreland before the beginning of the second phase. This topographic step is explained by initial localization of the pure-shear-type deformation under the Altiplano, where the crust is hotter and more felsic than the crust of the Brazilian shield.
Tectonic overprint on magnetic fabric of the Ordovician Thetford Mines Ophiolite (Canada)
NASA Astrophysics Data System (ADS)
Di Chiara, Anita; Morris, Antony; Anderson, Mark W.; Menegon, Luca
2017-04-01
Studies in modern oceanic settings suggest locally along low-spreading ridges both lower crust and upper mantle peridotites may be exhumed to the seafloor in features known as oceanic core complexes (OCC). Examples of OCC on geological record can be preserved in ophiolites, relict of oceanic crust obducted onto continental margins, as for example the Jurassic Mirdita Ophiolite (Albania), suggesting that this spreading mode was active in the past. In order to understand such dynamics further, we investigated the OCC preserved in the Thetford Mines Ophiolite (TMO). TMO is part of the Southern Quebec ophiolites in the Canadian Appalachians (Quebec region), divided into three lithotectonic assemblages: The Humber Zone, a remnant of the Laurentian continental margin; The Cambrian-Ordovician Dunnage Zone, a remnant of the Iapetus Ocean and including the TMO and other ophiolites; and Silurian-Devonian Gaspé Belt, the sedimentary cover sequence. These were subjected to polyphase deformation, experiencing two Paleozoic orogenies: The Ordovician Taconian Orogeny (the Humber and Dunnage zones were amalgamated) and the Devonian Acadian orogeny which deformed and metamorphosed both the Dunnage Zone and the overlying Gaspe Belt. Here we present results from 12 paleomagnetic sites sampled on Humber zone on pillow lavas, dykes, layered gabbros and serpentinized dunites. Our results from AMS experiments show that these rocks, formed by fundamentally different magmatic processes, share a common magnetic fabric, with a kmin axis NW-SE orientated and the kmax steeply plunging to the NE. Additional processing of acquired BSE images and chemical mapping analyses at the SEM show that the kmax of the magnetic fabric is parallel to the elongation of magnetic particles (Iron rich minerals). This remarkably consistent fabric has a tectonic origin and is consistent with shortening perpendicular to the regional trend of fold axes.
NASA Astrophysics Data System (ADS)
Momoh, Ekeabino; Cannat, Mathilde; Watremez, Louise; Leroy, Sylvie; Singh, Satish C.
2017-12-01
We present results from 3-D processing of 2-D seismic data shot along 100 m spaced profiles in a 1.8 km wide by 24 km long box during the SISMOSMOOTH 2014 cruise. The study is aimed at understanding the oceanic crust formed at an end-member mid-ocean ridge environment of nearly zero melt supply. Three distinct packages of reflectors are imaged: (1) south facing reflectors, which we propose correspond to the damage zone induced by the active axial detachment fault: reflectors in the damage zone have dips up to 60° and are visible down to 5 km below the seafloor; (2) series of north dipping reflectors in the hanging wall of the detachment fault: these reflectors may correspond to damage zone inherited from a previous, north dipping detachment fault, or small offset recent faults, conjugate from the active detachment fault, that served as conduits for isolated magmatic dykes; and (3) discontinuous but coherent flat-lying reflectors at shallow depths (<1.5 km below the seafloor), and at depths between 4 and 5 km below the seafloor. Comparing these deeper flat-lying reflectors with the wide-angle velocity model obtained from ocean-bottom seismometers data next to the 3-D box shows that they correspond to parts of the model with P wave velocity of 6.5-8 km/s, suggesting that they occur in the transition between lower crust and upper mantle. The 4-5 km layer with crustal P wave velocities is interpreted as primarily due to serpentinization and fracturation of the exhumed mantle-derived peridotites in the footwall of active and past detachment faults.
Dry Sources of Plume Emissions on Enceladus
NASA Astrophysics Data System (ADS)
Zolotov, M. Y.
2009-12-01
Salt-bearing icy particles [1], inorganic gases [2] and organic species [2,3] emitted from Enceladus could originate in the heterogeneous icy shell that captured oceanic water and primordial solids earlier in history. A major trapping could have occurred during sinking of a dense (1.6 g/cm3) primordial rock-ice crust [4] into an early salt-, gas- and organic-bearing ocean [5]. The lack of spectral and geological signs for rocky components at the surface is consistent with the submergence of primordial crust that has not been affected by initial water-rock differentiation. The sinking could have been triggered by impacts and/or volume changes in the interior. A rapid submergence could have caused vigorous boiling and freezing of oceanic water that appeared at the surface. The low temperature of submerged crust, and cooling of surface waters may have limited major melting of sunken rock-ice blocks. Some primary spices (e.g. HCN [2]), if released from sunken rock-ice debris, could have been re-captured in ice, which limited their chemical interactions. After formation of a thin icy shell, diking events and impacts caused further trapping of salty oceanic water in multiple disrupted areas, as occurred on Europa. Condensed and soluble organic compounds, and at least some CO2, N2, CH4 and light hydrocarbons released via oceanic degassing were trapped as well. The concentration of salts in rapidly frozen oceanic water reflected oceanic composition, and the salt/water ratio in Na-rich E-ring particles [1] may represent salinity of the early ocean. In fact, the salinity inferred from the composition of salt-rich particles (4-20 g/kg H2O [1]) and salt composition matches models for the early ocean [5]. The Na-poor E-ring particles [1] may originate from a middle part of the icy shell that formed through slow downward freezing and expelling impurities into solution. The dominance of Na-poor E-ring icy grains (~93%, [1]) implies a low volume of salty ice that represents rapidly frozen early oceanic water. A lack of highly saline particles in E ring that are expected to form due to significant evaporation of an aqueous reservoir also argues for dry sources. The E-ring grains [1,3] may represent neither thick salt deposits at the core-ice boundary nor brines that may exist at that boundary today [5]. A low upper limit for atomic Na content at Enceladus [6] is consistent with Na emission in salt particles from dry sources. A low (far from eutectic) NH3/H2O ratio in plumes [2] implies dry sources as well. If present, primary species (e.g. NH3, HCN) in plums [2] and Mg silicates in E-ring particles [3] could originate from unmelted fragments of sunken primordial crust that have been incorporated into the formed icy shell. The structural heterogeneity of current icy shell may account for the chemical diversity of gases [2] and solids [1,3] emitted from Enceladus. Refs.: [1] Portberg F. et al. (2009) Nature 459, 1098-1101. [2] Waite J. et al. et al. (2009) Nature 460, 487-490. [3] Postberg F. et al. (2008) Icarus 193, 438-454. [4] Schubert G. et al. (2007) Icarus 188, 335-345. [5] Zolotov M. (2007) GRL 34, L23203. [6] Schneider N. et al. (2009) Nature 459, 1098-1101.
Anaerobic Fungi: A Potential Source of Biological H2 in the Oceanic Crust
Ivarsson, Magnus; Schnürer, Anna; Bengtson, Stefan; Neubeck, Anna
2016-01-01
The recent recognition of fungi in the oceanic igneous crust challenges the understanding of this environment as being exclusively prokaryotic and forces reconsiderations of the ecology of the deep biosphere. Anoxic provinces in the igneous crust are abundant and increase with age and depth of the crust. The presence of anaerobic fungi in deep-sea sediments and on the seafloor introduces a type of organism with attributes of geobiological significance not previously accounted for. Anaerobic fungi are best known from the rumen of herbivores where they produce molecular hydrogen, which in turn stimulates the growth of methanogens. The symbiotic cooperation between anaerobic fungi and methanogens in the rumen enhance the metabolic rate and growth of both. Methanogens and other hydrogen-consuming anaerobic archaea are known from subseafloor basalt; however, the abiotic production of hydrogen is questioned to be sufficient to support such communities. Alternatively, biologically produced hydrogen could serve as a continuous source. Here, we propose anaerobic fungi as a source of bioavailable hydrogen in the oceanic crust, and a close interplay between anaerobic fungi and hydrogen-driven prokaryotes. PMID:27433154
Magnetization of the oceanic crust: TRM or CRM?
NASA Technical Reports Server (NTRS)
Raymond, C. A.; Labrecque, J. L.
1987-01-01
A model was proposed in which chemical remanent magnetization (CRM) acquired within the first 20 Ma of crustal evolution may account for 80% of the bulk natural remanent magnetization (NRM) of older basalts. The CRM of the crust is acquired as the original thermoremanent magnetization (TRM) is lost through low temperature alteration. The CRM intensity and direction are controlled by the post-emplacement polarity history. This model explains several independent observations concerning the magnetization of the oceanic crust. The model accounts for amplitude and skewness discrepancies observed in both the intermediate wavelength satellite field and the short wavelength sea surface magnetic anomaly pattern. It also explains the decay of magnetization away from the spreading axis, and the enhanced magnetization of the Cretaceous Quiet Zones while predicting other systematic variations with age in the bulk magnetization of the oceanic crust. The model also explains discrepancies in the anomaly skewness parameter observed for anomalies of Cretaceous age. Further studies indicate varying rates of TRM decay in very young crust which depicts the advance of low temperature alteration through the magnetized layer.
NASA Technical Reports Server (NTRS)
Raymond, C. A.; Labrecque, J. L.
1987-01-01
A model was proposed in which chemical remanent magnetization (CRM) acquired within the first 20 Ma of crustal evolution may account for 80 percent of the bulk natural remanent magnetization (NRM) of older basalts. The CRM of the crust is acquired as the original thermoremanent magnetization (TRM) is lost through low temperature alteration. The CRM intensity and direction are controlled by the post-emplacement polarity history. This model explains several independent observations concerning the magnetization of the oceanic crust. The model accounts for amplitude and skewness dicrepancies observed in both the intermediate wavelength satellite field and the short wavelength sea surface magnetic anomaly pattern. It also explains the decay of magnetization away from the spreading axis, and the enhanced magnetization of the Cretaceous Quiet Zones while predicting other systematic variations with age in the bulk magnetization of the oceanic crust. The model also explains discrepancies in the anomaly skewness parameter observed for anomalies of Cretaceous age. Further studies indicate varying rates of TRM decay in very young crust which depicts the advance of low temperature alteration through the magnetized layer.
NASA Astrophysics Data System (ADS)
Nonn, Chloé; Leroy, Sylvie; Khanbari, Khaled; Ahmed, Abdulhakim
2017-11-01
Here, we focus on the yet unexplored eastern Gulf of Aden, on Socotra Island (Yemen), Southeastern Oman and offshore conjugate passive margins between the Socotra-Hadbeen (SHFZ) and the eastern Gulf of Aden fracture zones. Our interpretation leads to onshore-offshore stratigraphic correlation between the passive margins. We present a new map reflecting the boundaries between the crustal domains (proximal, necking, hyper-extended, exhumed mantle, proto-oceanic and oceanic domains) and structures using bathymetry, magnetic surveys and seismic reflection data. The most striking result is that the magma-poor conjugate margins exhibit asymmetrical architecture since the thinning phase (Upper Rupelian-Burdigalian). Their necking domains are sharp ( 40-10 km wide) and their hyper-extended domains are narrow and asymmetric ( 10-40 km wide on the Socotra margin and 50-80 km wide on the Omani margin). We suggest that this asymmetry is related to the migration of the rift center producing significant lower crustal flow and sequential faulting in the hyper-extended domain. Throughout the Oligo-Miocene rifting, far-field forces dominate and the deformation is accommodated along EW to N110°E northward-dipping low angle normal faults. Convection in the mantle near the SHFZ may be responsible of change in fault dip polarity in the Omani hyper-extended domain. We show the existence of a northward-dipping detachment fault formed at the beginning of the exhumation phase (Burdigalien). It separates the northern upper plate (Oman) from southern lower plate (Socotra Island) and may have generated rift-induced decompression melting and volcanism affecting the upper plate. We highlight multiple generations of detachment faults exhuming serpentinized subcontinental mantle in the ocean-continent transition. Associated to significant decompression melting, final detachment fault may have triggered the formation of a proto-oceanic crust at 17.6 Ma and induced late volcanism up to 10 Ma. Finally, the setting up of a steady-state oceanic spreading center occurs at 17 Ma.
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Gozzard, Simon; Alvey, Andy
2016-04-01
The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins are highly asymmetric and have several striking features such as the Macclesfield Bank, Xisha Trough, Reed Bank and Dangerous Grounds. Thin continental crust is predicted extending westwards from thin oceanic crust north of Macclesfield Bank into the Quiondongnan (QDN) basin and is interpreted as being generated ahead of westward propagating sea-floor spreading most in the Oligocene. Further south, highly thinned continental crust or possibly serpentinised exhumed mantle is predicted in the Phu Khanh Basin. Ahead of the failed propagating tip of seafloor spreading, offshore southern Vietnam, thinned continental crust is predicted for the Cuu Long and Nam Con Son Basins. Crustal thicknesses from gravity inversion confirms that the southern margin of the SCS consists of fragmented blocks of thinned continental crust separated by thinner regions of continental crust that have undergone higher degrees of stretching and thinning. The Reed Bank is predicted to have a crustal thickness of 20 to 25km, similar to that of Macclesfield Bank. The Dangerous Grounds, west of the Reed Bank, are also predicted to consist of continental crust. This region has been thinned to a higher degree than the Reed Bank, with continental crustal thickness ranging between 10 and 20km thick.
Riding, R; Liang, L; Braga, J C
2014-09-01
Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21,000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14,000 years with largest reduction occurring 12,000-10,000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects. © 2014 John Wiley & Sons Ltd.
Wei, Wei; Yu, Yun; Chen, Liding
2015-01-01
The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes. PMID:26207757
Wei, Wei; Yu, Yun; Chen, Liding
2015-01-01
The specific bio-species and their spatial patterns play crucial roles in regulating eco-hydrologic process, which is significant for large-scale habitat promotion and vegetation restoration in many dry-land ecosystems. Such effects, however, are not yet fully studied. In this study, 12 micro-plots, each with size of 0.5 m in depth and 1 m in length, were constructed on a gentle grassy hill-slope with a mean gradient of 8° in a semiarid loess hilly area of China. Two major bio-crusts, including mosses and lichens, had been cultivated for two years prior to the field simulation experiments, while physical crusts and non-crusted bare soils were used for comparison. By using rainfall simulation method, four designed micro-patterns (i.e., upper bio-crust and lower bare soil, scattered bio-crust, upper bare soil and lower bio-crust, fully-covered bio-crust) to the soil hydrological response were analyzed. We found that soil surface bio-crusts were more efficient in improving soil structure, water holding capacity and runoff retention particularly at surface 10 cm layers, compared with physical soil crusts and non-crusted bare soils. We re-confirmed that mosses functioned better than lichens, partly due to their higher successional stage and deeper biomass accumulation. Physical crusts were least efficient in water conservation and erosion control, followed by non-crusted bare soils. More importantly, there were marked differences in the efficiency of the different spatial arrangements of bio-crusts in controlling runoff and sediment generation. Fully-covered bio-crust pattern provides the best option for soil loss reduction and runoff retention, while a combination of upper bio-crust and lower bare soil pattern is the least one. These findings are suggested to be significant for surface-cover protection, rainwater infiltration, runoff retention, and erosion control in water-restricted and degraded natural slopes.
NASA Astrophysics Data System (ADS)
Kurtz, N.; Marks, N.; Cooper, S. K.
2014-12-01
Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.
NASA Astrophysics Data System (ADS)
Stern, R. J.; Mooney, W. D.
2011-12-01
We review evidence that the lower crust of Arabia - and by implication, that beneath much of Africa was formed at the same time as the upper crust, rather than being a product of Cenozoic magmatic underplating. Arabia is a recent orphan of Africa, separated by opening of the Red Sea ~20 Ma, so our understanding of its lower crust provides insights into that of Africa. Arabian Shield (exposed in W. Arabia) is mostly Neoproterozoic (880-540 Ma) reflecting a 300-million year process of continental crustal growth due to amalgamated juvenile magmatic arcs welded together by granitoid intrusions that make up as much as 50% of the Shield's surface. Seismic refraction studies of SW Arabia (Mooney et al., 1985) reveal two layers, each ~20 km thick, separated by a well-defined Conrad discontinuity. The upper crust has average Vp ~6.3 km/sec whereas the lower crust has average Vp ~7.0 km/sec, corresponding to a granitic upper crust and gabbroic lower crust. Neogene (<30 ma) lava fields in Arabia (harrats) extend over 2500 km, from Yemen to Syria. Many of these lavas contain xenoliths, providing a remarkable glimpse of the lower-crustal and upper-mantle lithosphere beneath W. Arabia. Lower crustal xenoliths brought up in 8 harrats in Saudi Arabia, Jordan, and Syria are mostly 2-pyroxene granulites of igneous (gabbroic, anorthositic, and dioritic) origin. They contain plagioclase, orthopyroxene, and clinopyroxene, and a few contain garnet and rare amphibole and yield mineral-equilibrium temperatures of 700-900°C. Pyroxene-rich and plagioclase-rich suites have mean Al2O3 contents of 13% and 19%, respectively: otherwise the two groups have similar elemental compositions, with ~50% SiO2 and ~1% TiO2, with low K2O (<0.5%) and Na2O (1-3%). Both groups show tholeiitic affinities, unrelated to their alkali basalt hosts. Mean pyroxene-rich and plagioclase-rich suites show distinct mean MgO contents (11% vs. 7%), Mg# (67 vs. 55), and contents of compatible elements Ni (169 vs. 66 ppm) and Cr (435 vs. 117 ppm). Despite high Mg# in pyroxene-rich xenoliths, mineral compositions of labradoritic plagioclase (mean ~An64) and relatively Fe-rich pyroxenes (mean OPX ~En63; mean CPX~ WO48 En35 Fs17) indicate that these are somewhat fractionated. Trace element patterns are similar to those expected for convergent-margin magmatic suites. Nd-model ages define a mean of 0.76±0.08 Ga, similar to the age of exposed Arabian Shield upper crust. An isochron plot (147Sm/144Nd vs. 143Nd/144Nd) is consistent with formation in Neoproterozoic time. Lower crust of Arabia clearly formed during Neoproterozoic time, about the same time as its upper crust complement; a similar origin for the lower crust beneath the broad expanses of Neoproterozoic crust in N and E Africa is likely. There is no evidence that any of the mafic lower crust of Arabia formed due to underplating by Cenozoic magmas, which may also be true for NE Africa and perhaps mafic lower crust on the flanks of the East African Rift. Such an interpretation predicts a strong lower crust for those regions underlain by anhydrous mafic lower crust of Neoproterozoic age.
Revisiting the Mesozoic opening of the Southeastern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Marton, G.; Pascoe, R. P.
2016-12-01
The Southeastern Gulf of Mexico (SEGOM) is defined here as the seaway between Yucatan and Florida, south of the Tampa Embayment. This area is regarded as a southward propagating rift in the Gulf of Mexico. There is an overwhelming amount of previous evidence that the Yucatan block rotated counterclockwise about 42 degrees around a pole located just north of present-day Cuba (23oN, 84oW) during the Late Jurassic to Earliest Cretaceous oceanic spreading phase. North of the pole in the SEGOM the rotational movement of Yucatan was accommodated by a uniformly increasing amount of SW-NE extension. The degree of extension north of 25oN was large enough to result in rifting and oceanic spreading. Lack of salt in the area south of the Tampa embayment indicates that the SEGOM was not affected by the large amount of NW-SE continental extension as observed in the rest of the Gulf of Mexico. Thus, the area between Yucatan and the Sarasota arch remained a land bridge between the proto- GOM and the Proto-Caribbean and formed a barrier to salt deposition. During the period of late Jurassic oceanic crust formation (and Yucatan rotation), the southern tip of the oceanic spreading center propagated south from 27oN to 25oN, or about 220 km. In the 220 km long zone from 25oN to the pole (23oN) the rotation of Yucatan was accommodated by continental rifting only. The validity of the above outlined propagating rift model in the SEGOM is also supported by the age differences in the observed post-rift unconformities along its margins. At the edge of the salt basin to the north, the post-rift unconformity in the upper crust occurs at the base of the Louann salt and thus is Callovian in age. In the southern continental rift segment of the SEGOM, a seismic to well tie at the DSDP Site 535 shows that the post-rift unconformity is no younger than Late Berriasian to Early Valanginian. This latter age bracket constrains a) the cessation of continental rifting in the SEGOM, b) the time when the Yucatan block docked in its present day location relative to North America, and c) the time when oceanic crust formation ceased in the Gulf of Mexico.
NASA Astrophysics Data System (ADS)
Osmaston, Miles F.
2014-05-01
Introduction. The plate tectonics paradigm currently posits that the Earth has only two kinds of crust - continental and oceanic - and that the former may be stretched to form sedimentary basins or the latter may be modified by arc or collision until it looks continental. But global analysis of the dynamics of actual plate motions for the past 150 Ma indicates [1 - 3] that continental tectospheres must be immensely thicker and rheologically stiffer than previously thought; almost certainly too thick to be stretched with the forces available. In the extreme case of cratons, these tectospheric keels evidently extend to 600 km or more [2, 3]. This thick-plate behaviour is attributable, not to cooling but to a petrological 'stiffening' effect, associated with a loss of water-weakening of the mineral crystals, which also applies to the hitherto supposedly mobile LVZ below MORs [4, 5]. The corresponding thick-plate version of the mid-ocean ridge (MOR) process [6 - 8], replacing the divergent mantle flow model, has a deep, narrow wall-accreting axial crack which not only provides the seismic anisotropy beneath the flanks but also brings two outstanding additional benefits:- (i) why, at medium to fast spreading rates, MOR axes become straight and orthogonally segmented [6], (ii) not being driven by body forces, it can achieve the sudden jumps of axis, spreading-rate and direction widely present in the ocean-floor record. Furthermore, as we will illustrate, the crack walls push themselves apart at depth by a thermodynamic mechanism, so the plates are not being pulled apart. So the presence of this process at a continental edge would not imply the application of extensional force to the margin. Intermediate Crust (IC). In seeking to resolve the paradox that superficially extensional structures are often seen at margins we will first consider how this MOR process would be affected by the heavy concurrent sedimentation to be expected when splitting a mature continent. I reason that, by blocking the hydrothermal cooling widely seen along MOR axes this must inhibit the freezing-in of diagnostic spreading-type magnetic anomalies and would prolong magmagenesis to give a thicker-than-oceanic mafic crust. I have called this Intermediate Crust (IC) [9, 10], to distinguish it from Mature Continental Crust (MCC). Plate separation will continue to generate IC along the margins for as long/far as the sedimentation input is sufficient to have this effect. Transition to the MOR process will then follow. But if, contrary to the general plate tectonics assumption, based on body forces, plate separation ceases after a limited separation (or perhaps several in differing directions), without proceeding to the oceanic condition, the resulting IC areas will be incorporated within the continent [11]. Where does this lead us? With examples drawn from 40 years' study, I will contend that this is indeed the way the Earth has worked and that it offers potential plate kinematic explanation of the origin of the block-and-sedimentary basin layouts abundantly present in the non-craton areas of continents. I will show that in some cases the intricacy of block outlines and the precision with which they can be fitted together in a kinematically consistent manner rules out that this was purely by chance. The evidently meaningful character of those outlines means that they have been drawn by a narrow-crack separative mechanism which reflects that of our new MOR model. To provide a basis for such Plate Kinematic Analysis (PKA) we now link and compare some features of IC-formation at continental edges and of the crust of sedimentary basins. Characteristics of IC and of sedimentary basin crust (SBC). 1. IC basement, with expected seismic Vp around 6km/s, must look deceptively like that assigned to supposedly stretched MCC. 2. For thermodynamic reasons, the hydrous metamorphic content of deep MCC and of deeply subducted UHP slices of it gives them a big thermal epeirogenic sensitivity which IC lacks. Calculation [8, 9] shows that this type of process yields some 12-30 times more column density reduction per joule than does pure thermal expansivity. So IC and MCC are clearly distinguishable epeirogenically. 3. The mantle below forming IC will be similar thermally to that at under young oceanic crust (OC), which habitually subsides under water about 3km with age. If the water + OC is replaced with IC and isostasy is applied we get an IC thickness of around 27km, typical of SBC. 4. The magmatic generation of IC basement will incorporate many interlayers of (now dry) HT-metamorphosed sediment. At the sediment-deprived transition to the formation of OC with its intense hydrothermal cooling and rapid off-axis subsidence, this IC basement structure could be what we see as 'steeply dipping reflectors' (SDRs). 5. Multiple horizontal seismic reflectors, first extensively observed during the BIRPs programme in the British Isles region, were noted [10] as characteristic of the basement of SBC of western Europe, but were interpreted as shear zones denoting extension. Geologically it is unlikely that shear zones would be thick enough to cause such reflections. The layered structure of IC basement is the preferred interpretation. 6. In near-margin places where the sub-MCC mantle had a hydrous content, this, combined with the thermal volume-increase (2, above) of the MCC lower crust, can cause an oceanward-directed laccolith of both, beneath the upper crust of the margin, which therefore undergoes extensional tectonics, but which is not plate extension. This phenomenon has been recorded offshore Gabon and Galicia. In Gabon this laccolith is seen in seismics to have overthrust existing OC, showing that this was a thermally delayed response, some time after plate separation had got going. In conclusion. Intermediate crust (IC) is the product of the gross modification of the MOR process by the heavy sedimentation to be expected for a time after the onset of plate separation. IC areas thus created by limited plate separation events that did not proceed to oceans then become the floors of sedimentary basins, thus extending very precisely the study of plate relative motions - Plate Kinematic Analysis (PKA) - to much further into the past than is obtainable from the present ocean floor. Concurrent flood magmatism is induced where thermal upwarping at a fresh margin also splits the deep tectosphere of near-by craton. [1] Osmaston MF (2006) Global tectonic actions emanating from Arctic opening in the circumstances of a two-layer mantle and a thick-plate paradigm involving deep cratonic tectospheres: the Eurekan (Eocene) compressive motion of Greenland and other examples. In ICAM IV, Proc. 4th Internat. Conf. on Arctic Margins, 2003 (ed. R Scott & D Thurston). OCS Study MMS 2006-003, pp.105-124: Also on: http://www.mms.gov/alaska/icam. [2]Osmaston MF (2009) Deep cratonic keels and a 2-layer mantle? Tectonic basis for some far-reaching new insights on the dynamical properties of the Earth's mantle: example motions from Mediterranean, Atlantic-Arctic and India. EGU Gen. Assy 2009, GRA 11, EGU2009-6359 Session SM 6.2 (Solicited). [3] Osmaston MF (2012) Did clockwise rotation of Antarctica cause the break-up of Gondwanaland? An investigation in the 'deep-keeled cratons' frame for global dynamics. GRA 14, EGU2012-2170-1. [4] Karato S (1986) Does partial melting reduce the creep strength of the upper mantle? Nature 319, 309-310. [5] Hirth G & Kohlstedt DL (1996) Water in the oceanic upper mantle: implication for rheology, melt extraction, and the evolution of the lithosphere. EPSL 144, 93-108. [6] Osmaston MF (1995) A straightness mechanism for MORs: a new view of ocean plate genesis and evolution. In IUGG XXI , Boulder, Colorado. Abstracts A472. [7] Osmaston MF (2000) What goes on beneath MORs? A reassessment. In 31st IGC, Rio de Janeiro.Abstracts CD-ROM. General Symposium 4-1. [8] Osmaston M (2014 (submitted)) Mantle properties and the MOR process: a new and versatile model for mid-ocean ridges. GRA 16, EGU2014-1750 - Submitted to Session GD3.5. [9] Osmaston MF (2008) Basal subduction tectonic erosion (STE), butter mélanges and the construction and exhumation of HP-UHP belts: the Alps example and some comparisons. International Geology Review 50(8), 685-754 DOI: 10.2747/00206814.50.8.685. [10] Osmaston MF (2011) An introduction to Intermediate Crust (IC): its formation, epeirogenic character, and plate tectonics significance. TSG Ann. Mtg 2011, Durham University, Technical Programme p.45. [11] Osmaston MF (1973) Limited lithosphere separation as a main cause of continental basins, continental growth and epeirogeny. In Implications of continental drift to the Earth Sciences, Vol. 2 (ed. DH Tarling & SK Runcorn), pp. 649-674. Academic Press. [12] Meissner R et al (2006) Seismic lamination and anisotropy of the Lower Continental Crust. Tectonophysics 416, 81-99.
NASA Astrophysics Data System (ADS)
Madrigal Quesada, P.; Gazel, E.
2017-12-01
Monogenetic seamounts related to non-plume intraplate magmatism provide a window into the composition of upper mantle heterogeneities, nevertheless, the origin of these heterogeneities are still not well constrained. Radiogenic isotopes (Sr-Nd-Pb) from present-day ocean island basalts (OIB) produced by this type of magmatism can help establish the source compositions of these chemically and isotopically enriched reservoirs. Here we present evidence that suggests that a highly enriched mantle reservoir can originate from OIB-type subducted material that gets incorporated and stirred throughout the upper mantle. We explore this hypothesis using data from non-plume related OIB volcanism; focusing on isolated monogenetic seamounts with no apparent age progression and interpreted to be related to either plate flexure, shear driven convection and/or edge convection. The isotopic record compiled, added to new results obtained from accreted petit-spot seamounts from Santa Elena Peninsula in Costa Rica, suggest that a highly radiogenic mantle reservoir originated from recycled seamount materials can be formed in a shorter time scale than ancient subducted oceanic crust (>1 Ga), thought to be the forming agent of the HIMU mantle "flavor" found in some of these small-scale seamounts. The implications of these results entail that the recycling of already enriched materials in short time scales and in restricted depths within the Upper Mantle may play an important role in the source of OIBs (plume and non-plume related), as well as, the most enriched suites of EMORBs.
Towards Understanding the Sunda and Banda Arcs
NASA Astrophysics Data System (ADS)
Hall, R.
2014-12-01
The present change from oceanic subduction beneath the Sunda Arc to arc-continent collision east of Sumba is merely the latest stage in a complex collision history that began more than 20 million years ago. Understanding present-day tectonics requires restoring the pre-collisional margins and unravelling the history of the entire Sunda-Banda Arc, not just a segment centred on Sumba. Seismic tomography displays a single folded slab beneath the Banda Arc around which mantle has flowed. Above this is a wide actively deforming zone of complex geology. Australian crust was first added to the Sunda margin in the Cretaceous. Early Miocene closure of the oceanic gap north of Australia led to further additions of continental crust during collision of the Sula Spur. Few microcontinental fragments were sliced from New Guinea as commonly interpreted. Most are parts of the Sula Spur fragmented by extension and strike-slip faulting during development of subduction zones and rollback into the Banda embayment. Many metamorphic 'basement' rocks are significantly younger than expected. They were metamorphosed during multiple episodes of extension which also exhumed the sub-lithospheric mantle, melted the deep continental crust, created new ocean basins, and dispersed continental crust throughout the inner and outer arc, and forearc, so that in places Australian crust is colliding with Australian crust. Thus, many of the arc volcanoes are built on continental not oceanic crust, and sediment eroded from recently emergent islands is compositionally different to subducted sediment that contributed to arc magmas. The published literature is inadequate. New fieldwork and data are required, particularly in remote areas, with integration of information from a variety of sources (e.g. industry seismic and multibeam bathymetry, remotely acquired imagery) and sub-disciplines (e.g. geochronology, geochemistry, seismology, modelling). No single methodology can provide a complete solution.
Geophysical and geochemical evolution of the lunar magma ocean
NASA Technical Reports Server (NTRS)
Herbert, F.; Drake, M. J.; Sonett, C. P.
1978-01-01
There is increasing evidence that at least the outer few hundred kilometers of the moon were melted immediately following accretion. This paper studies the evolution of this lunar magma ocean. The long time scale for solidification leads to the inference that the plagioclase-rich (ANT) lunar crust began forming, perhaps preceded by local accumulations termed 'rockbergs', at the very beginning of the magma ocean epoch. In this view the cooling and solidification of the magma ocean was primarily controlled by the rate at which heat could be conducted across the floating ANT crust. Thus the thickness of the crust was the factor controlling the lunar solidification time. Heat arising from enthalpy of crystallization was transported in the magma by convection. Mixing length theory is used to deduce the principal flow velocity (typically several cm/s) during convection. The magma ocean is deduced to have been turbulent down to a characteristic length scale of the order of 100 m, and to have overturned on a time scale of the order of 1 yr for most of the magma ocean epoch.
NASA Astrophysics Data System (ADS)
Peterson, D. E.; Keranen, K. M.
2017-12-01
Differences in fluid pressure and mechanical properties at megathrust boundaries in subduction zones have been proposed to create varying seismogenic behavior. In Cascadia, where large ruptures are possible but little seismicity occurs presently, new seismic transects across the deformation front (COAST cruise; Holbrook et al., 2012) image an unusually high-wavespeed sedimentary unit directly overlying oceanic crust. Wavespeed increases before sediments reach the deformation front, and the well-laminated unit, consistently of 1 km thickness, can be traced for 50 km beneath the accretionary prism before imaging quality declines. Wavespeed is modeled via iterative prestack time migration (PSTM) imaging and increases from 3.5 km/sec on the seaward end of the profile to >5.0 km/s near the deformation front. Landward of the deformation front, wavespeed is low along seaward-dipping thrust faults in the Quaternary accretionary prism, indicative of rapid dewatering along faults. The observed wavespeed of 5.5 km/sec just above subducting crust is consistent with porosity <5% (Erickson and Jarrard, 1998), possibly reflecting enhanced consolidation, cementation, and diagenesis as the sediments encounter the deformation front. Beneath the sediment, the compressional wavespeed of uppermost oceanic crust is 3-4 km/sec, likely reduced by alteration and/or fluids, lowest within a propagator wake. The propagator wake intersects the plate boundary at an oblique angle and changes the degree of hydration of the oceanic plate as it subducts within our area. Fluid flow out of oceanic crust is likely impeded by the low-porosity basal sediment package except along the focused thrust faults. Decollements are present at the top of oceanic basement, at the top of the high-wavespeed basal unit, and within sedimentary strata at higher levels; the decollement at the top of oceanic crust is active at the toe of the deformation front. The basal sedimentary unit appears to be mechanically strong, similar to observations from offshore Sumatra, where strongly consolidated sediments at the deformation front are interpreted to facilitate megathrust rupture to the trench (Hupers et al., 2017). A uniformly strong plate interface at Cascadia may inhibit microseismicity while building stress that is released in great earthquakes.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Biari, Y.; Sahabi, M.; Funck, T.; Benabdellouahed, M.; Schnabel, M.; Reichert, C. J.; Gutscher, M. A.; Bronner, A.; Austin, J. A., Jr.
2017-12-01
The structure of conjugate passive margins provides information about rifting styles, the initial phases of the opening of an ocean and the formation of its associated sedimentary basins. The study of the deep structure of conjugate passive continental margins combined with precise plate kinematic reconstructions can provide constraints on the mechanisms of rifting and formation of initial oceanic crust. In this study the Central Atlantic conjugate margins are compared, based on compilation of wide-angle seismic profiles from the NW-Africa Nova Scotian and US passive margins. Plate cinematic reconstructions were used to place the profiles in the position at opening and at the M25 magnetic anomaly. The patterns of volcanism, crustal thickness, geometry, and seismic velocities in the transition zone. suggest symmetric rifting followed by asymmetric oceanic crustal accretion. Conjugate profiles in the southern Central Atlantic image differences in the continental crustal thickness. While profiles on the eastern US margin are characterized by thick layers of magmatic underplating, no such underplate was imaged along the NW-African continental margin. It has been proposed that these volcanic products form part of the CAMP (Central Atlantic Magmatic Province). In the north, two wide-angle seismic profiles acquired in exactly conjugate positions show that the crustal geometry of the unthinned continental crust and the necking zone are nearly symmetric. A region including seismic velocities too high to be explained by either continental or oceanic crust is imaged along the Nova Scotia margin off Eastern Canada, corresponding on the African side to an oceanic crust with slightly elevated velocities. These might result from asymmetric spreading creating seafloor by faulting the existing lithosphere on the Canadian side and the emplacement of magmatic oceanic crust including pockets of serpentinite on the Moroccan margin. A slightly elevated crustal thickness along the African margin can be explained by the influence of the Canary hotspot between 60 and 30 Ma in the study region. After isochron M25, a large-scale plate reorganization may then have led to an increase in spreading velocity and the production of a more typical but thin magmatic crust on both sides.
NASA Astrophysics Data System (ADS)
Wan, Kuiyuan; Xia, Shaohong; Cao, Jinghe; Sun, Jinlong; Xu, Huilong
2017-04-01
We present a 2-D seismic tomographic image of the crustal structure along the OBS2012 profile, which delineates the Moho morphology and magmatic features of the northeastern South China Sea margin. The image was created by forward modeling (RayInvr) and traveltime tomographic inversion (Tomo2D). Overall, the continental crust thins seaward from 27 km to 21 km within the continental shelf across the Zhu I Depression and Dongsha Rise, with slight local thickening beneath the Dongsha Rise accompanying the increase in the Moho depth. The Dongsha Rise is also characterized by 4-7 km thick high-velocity layer (HVL) ( 7.0-7.6 km/s) in the lower crust and exhibits a relatively high velocity ( 5.5-6.4 km/s) in the upper crust with a velocity gradient lower than those of the Zhu I Depression and Tainan Basin. Across the continental slope and continent-ocean transition (COT), which contain the Tainan Basin, the crust sharply thins from 20 km to 10 km seaward and a 2-3 km thick HVL is imaged in the lower crust. We observed that volcanoes are located only within the COT, but none exist in the continental shelf; the Dongsha Rise exhibits a high magnetic anomaly zone and different geochemical characteristics from the COT. Based on those observations, we conclude that the HVL underlying the COT is probably extension related resulting from the decompression melting in the Cenozoic, whereas the HVL beneath the Dongsha Rise is probably arc related and associated with the subduction of the paleo-Pacific plate. These findings are inconsistent with those of some previous studies.
40K-(40)Ar constraints on recycling continental crust into the mantle
Coltice; Albarede; Gillet
2000-05-05
Extraction of potassium into magmas and outgassing of argon during melting constrain the relative amounts of potassium in the crust with respect to those of argon in the atmosphere. No more than 30% of the modern mass of the continents was subducted back into the mantle during Earth's history. It is estimated that 50 to 70% of the subducted sediments are reincorporated into the deep continental crust. A consequence of the limited exchange between the continental crust and the upper mantle is that the chemistry of the upper mantle is driven by exchange of material with the deep mantle.
Low-Temperature Alteration of the Seafloor: Impacts on Ocean Chemistry
NASA Astrophysics Data System (ADS)
Coogan, Laurence A.; Gillis, Kathryn M.
2018-05-01
Over 50% of Earth is covered by oceanic crust, the uppermost portion of which is a high-permeability layer of basaltic lavas through which seawater continuously circulates. Fluid flow is driven by heat lost from the oceanic lithosphere; the global fluid flux is dependent on plate creation rates and the thickness and distribution of overlying sediment, which acts as a low-permeability layer impeding seawater access to the crust. Fluid-rock reactions in the crust, and global chemical fluxes, depend on the average temperature in the aquifer, the fluid flux, and the composition of seawater. The average temperature in the aquifer depends largely on bottom water temperature and, to a lesser extent, on the average seafloor sediment thickness. Feedbacks between off-axis chemical fluxes and their controls may play an important role in modulating ocean chemistry and planetary climate on long timescales, but more work is needed to quantify these feedbacks.
NASA Astrophysics Data System (ADS)
Li, Chusi; Zhang, Mingjie; Fu, Piaoer; Qian, Zhuangzhi; Hu, Peiqing; Ripley, Edward M.
2012-01-01
The Permian Kalatongke Ni-Cu deposits in the Central Asian Orogenic Belt are among the most important Ni-Cu deposits in northern Xinjiang, western China. The deposits are hosted by three small mafic intrusions comprising mainly norite and diorite. Its tectonic context, petrogenesis, and ore genesis have been highly contested. In this paper, we present a new model involving slab window magmatism for the Kalatongke intrusions. The origin of the associated sulfide ores is explained in the context of this new model. Minor amounts of olivine in the intrusions have Fo contents varying between 71 and 81.5 mol%, which are similar to the predicted values for olivine crystallizing from coeval basalts in the region. Analytic modeling based on major element concentrations suggests that the parental magma of the Kalatongke intrusions and the coeval basalts represent fractionated liquids produced by ˜15% of olivine crystallization from a primary magma, itself produced by 7-8% partial melting of depleted mantle peridotite. Positive ɛ Nd values (+4 to +10) and significant negative Nb anomalies for both intrusive and extrusive rocks can be explained by the mixing of magma derived from depleted mantle with 6-18% of a partial melt derived from the lower part of a juvenile arc crust with a composition similar to coeval A-type granites in the region, plus up to 10% contamination with the upper continental crust. Our model suggests that a slab window was created due to slab break-off during a transition from oceanic subduction to arc-arc or arc-continent collision in the region in the Early Permian. Decompression melting in the upwelling oceanic asthenosphere produced the primary magma. When this magma ascended to pond in the lower parts of a juvenile arc crust, it underwent olivine crystallization and at the same time triggered partial melting of the arc crust. Mixing between these two magmas followed by contamination with the upper crust after the magma ascended to higher crustal levels formed the parental magma of the Kalatongke intrusions. The parental magma of the Kalatongke intrusions was saturated with sulfide upon arrival primarily due to olivine fractional crystallization and selective assimilation of crustal sulfur. Sulfide mineralization in the Kalatongke intrusions can be explained by accumulation of immiscible sulfide droplets by flow differentiation, gravitational settling, and downward percolation which operated in different parts of the intrusions. Platinum-group element (PGE) depletion in the bulk sulfide ores of the Kalatongke deposits was due to depletion in the parental magma which in turn was likely due to depletion in the primary magma. PGE depletion in the primary magma can be explained by a relatively low degree of partial melting of the mantle and retention of coexisting sulfide liquid in the mantle.
NASA Astrophysics Data System (ADS)
Hoang, Thi Hong Anh; Choi, Sung Hi; Yu, Yongjae; Pham, Trung Hieu; Nguyen, Kim Hoang; Ryu, Jong-Sik
2018-01-01
This study presents a comprehensive analysis of the major and trace element, mineral, and Sr, Nd, Pb and Mg isotopic compositions of late Cenozoic intraplate basaltic rocks from central and southern Vietnam. The Sr, Nd, and Pb isotopic compositions of these basalts define a tight linear array between Indian mid-ocean-ridge basalt (MORB)-like mantle and enriched mantle type 2 (EM2) components. These basaltic rocks contain low concentrations of CaO (6.4-9.7 wt%) and have high Fe/Mn ratios (> 60) and FeO/CaO-3MgO/SiO2 values (> 0.54), similar to partial melts derived from pyroxenite/eclogite sources. This similarity is also supported by the composition of olivine within these samples, which contains low concentration of Ca and high concentrations of Ni, and shows high Fe/Mn ratios. The basaltic rocks have elevated Dy/Yb ratios that fall within the range of melts derived from garnet lherzolite material, although their Yb contents are much higher than those of modeled melts derived from only garnet lherzolite material and instead plot near the modeled composition of eclogite-derived melts. The Vietnamese basaltic rocks have lighter δ26Mg values (- 0.38 ± 0.06‰) than is expected for the normal mantle (- 0.25 ± 0.07‰), and these values decrease with decreasing Hf/Hf* and Ti/Ti* ratios, indicating that these basalts were derived from a source containing carbonate material. On primitive mantle-normalized multi-element variation diagrams, the central Vietnamese basalts are characterized by positive Sr, Eu, and Ba anomalies. These basalts also plot within the pelagic sediment field in Pbsbnd Pb isotopic space. This suggests that the mantle source of the basalts contained both garnet peridotite and recycled oceanic crust. A systematic analysis of variations in geochemical composition in basalts from southern to central Vietnam indicates that the recycled oceanic crust (possibly the paleo-Pacific slab) source material contains varying proportions of gabbro, basalt, and sediment. The basalts from south-central Vietnam (12°N-14°N) may be dominated by the lowest portion of the residual slab that contains rutile-bearing plagioclase-rich gabbroic eclogite, whereas the uppermost portion of the recycled slab, including sediment and basaltic material with small amounts of gabbro, may be a major constituent of the source for the basalts within the central region of Vietnam (14°N-16°N). Finally, the southern region (10°N-12°N) contains basalts sourced mainly from recycled upper oceanic crust that is basalt-rich and contains little or no sediment.
Seismic imaging of a transform segment of the Maranhão-Barreirinhas-Ceará margin, NW Brazil
NASA Astrophysics Data System (ADS)
Schnurle, Philippe; Moulin, Maryline; Gallais, Flora; Afilhado, Alexandra; Afonso Dias, Nuno; Soares, José; Loureiro, Afonso; Fuck, Reinhardt; Cupertino, José; Viana, Adriano; Matias, Luís; Evain, Mikael; Aslanian, Daniel
2017-04-01
The structure of the North-East equatorial Brazilian margin was investigated during the MAGIC (Margins of brAzil, Ghana and Ivory Coast) seismic experiment, a project conducted by IFREMER (Institut Francais de Recherche pour l'Exploration de la Mer), UnB (University of Brasilia), FCUL (Faculdade de Ciências da Universidade de Lisboa) and Petrobras. The survey consists of 5 deep seismic profiles totaling 1900 km of marine multi-channel seismic reflection and wide angle acquisition with 143 deployments of short-period OBS's from the IFREMER pool. Three of the profiles were extended into land using Land Seismic Stations (LSS) from the Brazilian pool at a total of 50 points. This study focuses on the MC1 and MC5 wide-angle profiles: MC5 spans NW-SE 720 km in length, from the São Paulo Double Fracture Zone to the Borborema-Cearà margin. MC-1 spans parallel east of MC5, 360 km in length, in the presumed oceanic domain. Our main objective is to understand the fundamental processes which lead to the thinning and finally to the breakup of the continental crust in a specific context of a pull-apart system with two strike-slip borders. The experiment was devised to obtain the 2D structure along the profiles from joint pre-stack depth migration of the reflection data, and tomography and forward modeling of the OBS records. Along the MC1/MC5 wide-angle transects, 5 major sectors are identified: - the São Paulo Double Fracture Zone and the volcanic line associated to the southern São Paulo strike-slip zone presenting a 4.5 km thick volcano-sedimentary basin on top of a 5.5 km thick basement; - the intermediate domain, formed by the 4.5 km thick Basin III, the 7.5 km thick Basin II (interleaved by a 0.5-1 km thick volcanic layer), and the 5.5 km thick Basin I composing the continental slope. While the crust remains about 6 km thick, its acoustic velocity evolves from two-layer typical (4.8-6 km/s and 6.1-6.8 km/s) beneath Basin III to two-layer high velocity (6.1-6.8 km/s and 7.2-7.4 km/s) beneath Basin II and I, interpreted as exhumed lower continental crust; - to the east, the oceanic crust, evolves to an 2 layers crust 5 km thick, characterized by typical oceanic crustal velocities and also overlain by 5.5 km of sedimentary deposits, spanning between the two main fracture zones that fringe the Maranhão-Barreirinhas-Ceará segment; - the 50 km wide necking zone, forming the Parnaiba Platform and associated Ceará Basins, where the upper and lower crust thin abruptly; - the Medio Coreaù and Ceará Central thrust belt, where the unthinned continental crust thickness reaches 32 km. Keywords: North-East equatorial Brazil, transform margin, deep seismic structure
Ambient noise tomography reveals upper crustal structure of Icelandic rifts
NASA Astrophysics Data System (ADS)
Green, Robert G.; Priestley, Keith F.; White, Robert S.
2017-05-01
The structure of oceanic spreading centres and subsurface melt distribution within newly formed crust is largely understood from marine seismic experiments. In Iceland, however, sub-aerial rift elevation allows both accurate surface mapping and the installation of large broadband seismic arrays. We present a study using ambient noise Rayleigh wave tomography to image the volcanic spreading centres across Iceland. Our high resolution model images a continuous band of low seismic velocities, parallelling all three segments of the branched rift in Iceland. The upper 10 km contains strong velocity variations, with shear wave velocities 0.5 km s-1 faster in the older non-volcanically active regions compared to the active rifts. Slow velocities correlate very closely with geological surface mapping, with contours of the anomalies parallelling the edges of the neo-volcanic zones. The low-velocity band extends to the full 50 km width of the neo-volcanic zones, demonstrating a significant contrast with the narrow (8 km wide) magmatic zone seen at fast spreading ridges, where the rate of melt supply is similarly high. Within the seismically slow rift band, the lowest velocity cores of the anomalies occur above the centre of the mantle plume under the Vatnajökull icecap, and in the Eastern Volcanic Zone under the central volcano Katla. This suggests localisation of melt accumulation at these specific volcanic centres, demonstrating variability in melt supply into the shallow crust along the rift axis. Shear velocity inversions with depth show that the strongest velocity contrasts are found in the upper 8 km, and show a slight depression in the shear velocity through the mid crust (10-20 km) in the rifts. Our model also shows less intensity to the slow rift anomaly in the Western Volcanic Zone, supporting the notion that rift activity here is decreasing as the ridge jumps to the Eastern Volcanic Zone.
The Electrical Resistivity Structure of the Eastern Anatolian Collision Zone, Northeastern Anatolia
NASA Astrophysics Data System (ADS)
Cengiz, Özlem; Tuǧrul Başokur, Ahmet; Tolak Çiftçi, Elif
2016-04-01
The Northeastern Anatolia is located at the intensely deformed Eastern Anatolian Collision Zone (EACZ), and its tectonic framework is characterized by the collision of the Arabian plate with Eurasian. Although extensive attention is given to understand the crustal and upper mantle processes at this convergent boundary, there is still an ongoing debate over the geodynamic processes of the region. In this study, we were specifically interested in the geoelectric properties and thus geodynamics of the crust beneath the EACZ. Magnetotelluric (MT) measurements were made on two profiles across the north of the EACZ in 1998 as part of a national project undertaken by the Turkish Petroleum Corporation (TPAO). MT data in the frequency range of 300-0.001 Hz were collected from 168 stations located along 78 km north to south and 47 km west to east profiles where direct convergence occurs between Arabian and Eurasian plates. Two and three-dimensional inversion algorithms were used to obtain resistivity models of the study area. According to these models, the upper crust consists of low resistivity sedimentary rocks (<30 Ωm) that are underlain by highly resistive (~500-1000 Ωm) crystalline basement rocks of the Eastern Anatolian Accretionary Complex and Pontides. While the upper and lower crustal resistivity at the northern part of the study area shows a layered structure, significant horizontal and vertical variations for the rest of the EACZ exists on resistivity models. The broad low resistivity zones (<50 Ωm) observed at mid and lower crustal levels throughout the EACZ. These fluid-rich regions along with high temperatures could indicate weak zones representing the locations of active deformation induced by continent-continent collision and correlate with volcanic centers in the region. The variation in the resistivity structure supports the southward subduction model with the resistive continental block and the deep conductive zones presumably corresponding to the oceanic crust.
Nielsen, S.G.; Rehkamper, M.; Porcelli, D.; Andersson, P.; Halliday, A.N.; Swarzenski, P.W.; Latkoczy, C.; Gunther, D.
2005-01-01
The thallium (Tl) concentrations and isotope compositions of various river and estuarine waters, suspended riverine particulates and loess have been determined. These data are used to evaluate whether weathering reactions are associated with significant Tl isotope fractionation and to estimate the average Tl isotope composition of the upper continental crust as well as the mean Tl concentration and isotope composition of river water. Such parameters provide key constraints on the dissolved Tl fluxes to the oceans from rivers and mineral aerosols. The Tl isotope data for loess and suspended riverine detritus are relatively uniform with a mean of ??205Tl = -2.0 ?? 0.3 (??205Tl represents the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). For waters from four major and eight smaller rivers, the majority were found to have Tl concentrations between 1 and 7 ng/kg. Most have Tl isotope compositions very similar (within ??1.5 ??205Tl) to that deduced for the upper continental crust, which indicates that no significant Tl isotope fractionation occurs during weathering. Based on these results, it is estimated that rivers have a mean natural Tl concentration and isotope composition of 6 ?? 4 ng/kg and ??205Tl = -2.5 ?? 1.0, respectively. In the Amazon estuary, both additions and losses of Tl were observed, and these correlate with variations in Fe and Mn contents. The changes in Tl concentrations have much lower amplitudes, however, and are not associated with significant Tl isotope effects. In the Kalix estuary, the Tl concentrations and isotope compositions can be explained by two-component mixing between river water and a high-salinity end member that is enriched in Tl relative to seawater. These results indicate that Tl can display variable behavior in estuarine systems but large additions and losses of Tl were not observed in the present study. Copyright ?? 2005 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Brown, T. C.; Cheadle, M. J.; John, B. E.; Coogan, L. A.; Gee, J. S.; Karson, J. A.; Meyer, R.; Ceuleneer, G.; Swapp, S.
2014-12-01
Few examples of in situ fast-spread lower ocean crust exist for sampling. Here we present detailed textural analyses of two sample sets that formed at the East Pacific Rise, collected from tectonic windows at Pito (PD) and Hess (HD) deeps. PD samples (collected by ROV) span the upper ~900 m of lower crust. HD samples (collected by seafloor drilling during IODP Exp. 345) come from >1500 m below the sheeted dike gabbro transition (mbsd). PD gabbroic rock textures are consistent with a gabbro glacier flow model generating the uppermost plutonic crust. Shallow samples (41-72 mbsd) likely formed at the distal edge of the magma lens, analogous to similar rocks from Oman. These gabbros are relatively evolved (cpx Mg#75-77, An53-61 and 1-4% Fe-Ti oxides), and have elongate plagioclase grains (aspect ratios up to 1:2:10) exhibiting a strong shape preferred orientation (SPO) with <40% of grains showing dislocation creep textures. Deeper samples (177-876 mbsd) likely began crystallizing in the magma lens then subsided and 'flowed' through the underlying mush zone. These gabbros are more primitive below 386 mbsd (Fo83-88, cpx Mg# 85-89 and An70-82), and plagioclase grains have more equilibrated morphologies (aspect ratios < 1:2:6) that define ~vertical SPOs which increase in strength with depth. Plagioclase exhibits magmatic crystal-lattice preferred orientations (CPOs) which are also vertical. Significantly, the proportion of grains showing dislocation creep textures increases with depth, and plagioclase grain size distributions show a smaller range of sizes at depth; observations that perhaps reflect the effect of increasing strain with depth. IODP Hole U1415I at HD recovered gabbros and troctolitic gabbros from the mid lower crust that show distinctive cm-dm scale modal layering. Strong plagioclase SPOs parallel layering and magmatic CPOs vary dramatically in strength over just 4.5 m of core. Plagioclase grains are relatively equant (aspect ratios < 1:2:4), wrap around large cpx oikocrysts, and exhibit fewer dislocation creep textures than the PD gabbros. These observations perhaps suggest primary crystal accumulation rather than bulk strain/flow. The similar mineralogy and textures of these samples to those from the Rum layered intrusion suggest HD U1415I gabbros may have formed by mid-crust sill injection.
NASA Astrophysics Data System (ADS)
Monsalve, G.; Cardona, A.; Yarce, J.; Alvira, D.; Poveda, E.
2013-05-01
A number of seismological observations, among which we can mention teleseismic travel time residuals, P to S receiver functions and Pn velocity quantification, suggest a clear distinction between the seismic structure of the crust and uppermost mantle between the plains on the Caribbean coast of Colombia and the mountains at the Northern Andean region. Absolute and relative travel time residuals indicate the presence of a seismically fast material in the upper mantle beneath northern Colombia; preliminary results of Pn studies show a region of relatively slow Pn velocities (between 7.8 and 7.9 km/s) underneath the Caribbean coast, contrasting with values greater than 8 km/s beneath the Central and Western cordilleras of Colombia, and the Pacific coast; receiver functions suggest a significantly thinner crust beneath the Caribbean coast, with a crustal thickness between 25 and 30 km, than beneath the Northern Andean zone at the cordilleras of Colombia, where it exceeds 40 km and reaches about 57 km at the location of Bogota. Besides the obviuos discrepancies that appear in response to different topography, we think that the seismological observations are a consequence of the presence of two very distinct slab segments beneath Colombia and contrasting behaviors of the upper plate, which correspond to Caribbean and Nazca subductions. Our seismic observations can be explained by a shallowly subducting Caribbean Plate, in the absence of an asthenospheric wedge, that steepens at about the location of the Bucaramanga nest, and a thinned continental crust that reflects an extensional component linked to oblique convergence of the Caribbean, which contrasts with the crustal thickening in the Andean Cordillera linked to crustal shortening and Nazca plate subuction. These new data are consistent with the idea of of a relatively warm Nazca slab of Neogene age which seems to have a relatively frontal convergence, and a colder, more buoyant Caribbean slab which represents an oceanic plateau of Cretaceous age that is characterized by an oblique convergence relation that has promoted extensional tectonics in the upper plate.
Possible emplacement of crustal rocks into the forearc mantle of the Cascadia Subduction Zone
Calvert, A.J.; Fisher, M.A.; Ramachandran, K.; Trehu, A.M.
2003-01-01
Seismic reflection profiles shot across the Cascadia forearc show that a 5-15 km thick band of reflections, previously interpreted as a lower crustal shear zone above the subducting Juan de Fuca plate, extends into the upper mantle of the North American plate, reaching depths of at least 50 km. In the extreme western corner of the mantle wedge, these reflectors occur in rocks with P wave velocities of 6750-7000 ms-1. Elsewhere, the forearc mantle, which is probably partially serpentinized, exhibits velocities of approximately 7500 ms-1. The rocks with velocities of 6750-7000 ms-1 are anomalous with respect to the surrounding mantle, and may represent either: (1) locally high mantle serpentinization, (2) oceanic crust trapped by backstepping of the subduction zone, or (3) rocks from the lower continental crust that have been transported into the uppermost mantle by subduction erosion. The association of subparallel seismic reflectors with these anomalously low velocities favours the tectonic emplacement of crustal rocks. Copyright 2003 by the American Geophysical Union.
Cooling of the Earth in the Archaean: Consequences of pressure-release melting in a hotter mantle
NASA Astrophysics Data System (ADS)
Vlaar, N. J.; van Keken, P. E.; van den Berg, A. P.
1994-01-01
A model is presented to describe the cooling of the Earth in the Archaean. At the higher Archaean mantle temperatures pressure-release melting starts deeper and generates a thicker basaltic or komatiitic crust and depleted harzburgite layer compared with the present-day situation. Intrinsic compositional stability and lack of mechanical coherency renders the mechanism of plate tectonics ineffective. It is proposed that the Archaean continents stabilised early on top of a compositionally stratified root. In the Archaean oceanic lithosphere, hydrated upper crust can founder and recycle through its high-pressure phase eclogite. Eclogite remelting and new pressure-release melting generates new crustal material. Migration of magma and latent heat release by solidification at the surface provides an efficient mechanism to cool the mantle by several hundreds of degrees during the Archaean. This can satisfactorily explain the occurrence of high extrusion temperature komatiites and lower extrusion temperature basalts in greenstone belts as being derived from the same source by different mechanisms.
Upper crustal structure of the Hawaiian Swell from seafloor compliance measurements
NASA Astrophysics Data System (ADS)
Doran, A. K.; Laske, G.
2017-12-01
We present new constraints on elastic properties of the marine sediments and crust surrounding the Hawaiian Islands derived from seafloor compliance measurements. We analyze long-period seismic and pressure data collected during the Plume-Lithosphere Undersea Mantle Experiment [Laske et al, 2009], a deployment consisting of nearly 70 broadband ocean-bottom seismometers with an array aperture of over 1000 kilometers. Our results are supported by previous reflection & refraction studies and by direct sampling of the crust from regional drilling logs. We demonstrate the importance of simultaneously modeling density, compressional velocity, and shear velocity, the former two of which are often ignored during compliance investigations. We find variable sediment thickness and composition across the Hawaiian Swell, with the thickest sediments located within the Hawaiian Moat. Improved resolution of near-surface structure of the Hawaiian Swell is crucially important to improve tomographic images of the underlying lithosphere and asthenosphere and to address outstanding questions regarding the size, source, and location of the hypothesized mantle plume.
NASA Astrophysics Data System (ADS)
Tseng, T.; Jian, P.; Liang, W.
2012-12-01
Taiwan is formed by oblique convergence between NW moving Philippine Sea Plate and NE striking Eurasia continental margin. The central part of Taiwan still under active collision, but south of the island seismicity already shows eastward subdcution along the Mania Trench. Southwestern Taiwan is a unique location to observe this transition. In this study, we analyze the focal mechanisms earthquakes with ML greater than 3.5 that occurred in the southwestern Taiwan since 1996 (including 2010 M6.4 Jiashian and 2012 M6.1 Wutai earthquakes). The best moment tensor solutions and centroidal depths are constrained by modeling of regional waveform data. The results show detail variations of stress pattern. The Jiashan sequence and those thrusting earthquakes nearby to the south occur mainly at depth of 20-25 km in the mid-lower crust with average ENE-WSW principal compression, which is almost perpendicular to the direction of convergence. It can be distinguished from the shallower thrust events with ESE-WNW compression right north of Jiashan where the upper crust (10-20 km) is more seismically active and seismic stress is consistent with the geodetic stress. Further west near the deformation front, a group of strike-slip events at depth ~15 km shows average compression similar to Jiashan group, suggesting a possible link between them in the middle crust. Interestingly, the crust southwest of Jiasian has much lower seismic rate, however, several deep (>30km) earthquakes beneath Pingtung foredeep basin clearly show E-W extension, which is inconsistent with the E-W compression from present geodetic and Quaternary stress. Surface extrusion proposed by several studies may still exist, although the lower crust and upper mantle beneath this region is probably decoupled from above. These normal events can be explained by the plate bending as the leading South China Sea subducts beneath Philippine Sea. The Jiashian and Wutai earthquakes may be related to the continent-ocean boundary which is buckled at the corner east of Chaochu fault during the onset of collision.
NASA Astrophysics Data System (ADS)
Dufréchou, G.; Tiberi, C.; Martin, R.; Bonvalot, S.; Chevrot, S.; Seoane, L.
2018-04-01
We present a new model of the lithosphere and asthenosphere structure down to 300 km depth beneath the Pyrenees from the joint inversion of recent gravity and teleseismic data. Unlike previous studies, crustal correction were not applied on teleseismic data in order (i) to preserve the consistency between gravity data, which are mainly sensitive to the density structure of the crust.lithosphere, and travel time data, and (ii) to avoid the introduction of biases resulting from crustal reductions. The density model down to 100 km depth is preferentially used here to discuss the lithospheric structure of the Pyrenees, whereas the asthenospheric structure from 100 km to 300 km depth is discussed from our velocity model. The absence of a high density anomaly in our model between 30-100 km depth (except the Labourd density anomaly) in the northern part of the Pyrenees seems to preclude eclogitization of the subducted Iberian crust at the scale of the entire Pyrenean range. Local eclogitization of the deep Pyrenean crust beneath the western part of the Axial Zone (West of Andorra) associated with the positive Central density anomaly is proposed. The Pyrenean lithosphere in density and velocity models appears segmented from East to West. No clear relation between the along-strike segmentation and mapped major faults is visible in our models. The Pyrenees' lithosphere segments are associated to different seismicity pattern in the Pyrenees suggesting a possible relation between the deep structure of the Pyrenees and its seismicity in the upper crust. The concentration of earthquakes localized just straight up the Central density anomaly can result of the subsidence and/or delamination of an eclogitized Pyrenean deep root. The velocity model in the asthenosphere is similar to previous studies. The absence of a high-velocity anomaly in the upper mantle and transition zone (i.e. 125 to 225 km depth) seems to preclude the presence of a detached oceanic lithosphere beneath the European lithosphere.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie; Manatshal, Gianreto
2013-04-01
Knowledge and understanding of the ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, the distribution of thinned continental crust and lithosphere, its distal extent and the start of unequivocal oceanic crust are of critical importance in evaluating rifted continental margin formation and evolution. In order to determine the OCT structure and COB location for the eastern Gulf of Aden, along the Oman margin, we use a combination of gravity inversion, subsidence analysis and residual depth anomaly (RDA) analysis. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning; subsidence analysis has been used to determine the distribution of continental lithosphere thinning; and RDAs have been used to investigate the OCT bathymetric anomalies with respect to expected oceanic bathymetries at rifted margins. The gravity inversion method, which is carried out in the 3D spectral domain, incorporates a lithosphere thermal gravity anomaly and includes a correction for volcanic addition due to decompression melting. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. RDAs have been calculated by comparing observed and age predicted oceanic bathymetries, using the thermal plate model predictions from Crosby and McKenzie (2009). RDAs have been computed along profiles and have been corrected for sediment loading using flexural back-stripping and decompaction. In addition, gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a synthetic RDA. The RDA results show a change in RDA signature and may be used to estimate the distal extent of thinned continental crust and where oceanic crust begins. Continental lithosphere thinning has been determined using flexural back-stripping and subsidence analysis assuming the classical rift model of McKenzie (1978) with a correction for volcanic addition due to decompression melting based on White & McKenzie (1989). Gravity inversion and the "synthetic" gravity derived RDA both show generally normal thickness oceanic crust, with some localised thin oceanic crust. Continental lithosphere thinning factors determined from gravity inversion and subsidence analysis are in good agreement and have been used to constrain COB location along the profile lines. These techniques show that the OCT in the eastern Gulf of Aden, is relatively narrow, with the distance between the COB and the margin hinge measuring less than 100km.
Hydrothermal Alteration of the Lower Oceanic Crust: Insight from OmanDP Holes GT1A and GT2A.
NASA Astrophysics Data System (ADS)
Harris, M.; Zihlmann, B.; Mock, D.; Akitou, T.; Teagle, D. A. H.; Kondo, K.; Deans, J. R.; Crispini, L.; Takazawa, E.; Coggon, J. A.; Kelemen, P. B.
2017-12-01
Hydrothermal circulation is a fundamental Earth process that is responsible for the cooling of newly formed ocean crust at mid ocean ridges and imparts a chemical signature on both the crust and the oceans. Despite decades of study, the critical samples necessary to resolve the role of hydrothermal circulation during the formation of the lower ocean crust have remained poorly sampled in the ocean basins. The Oman Drilling Project successfully cored 3 boreholes into the lower crust of the Semail ophiolite (Holes GT1A layered gabbros, GT2A foliated gabbros and GT3A dike/gabbro transition). These boreholes have exceptionally high recovery ( 100%) compared to rotary coring in the oceans and provide an unrivalled opportunity to quantitatively characterise the hydrothermal system in the lower oceanic crust. Hydrothermal alteration in Holes GT1A and GT2A is ubiquitous and manifests as secondary minerals replacing primary igneous phases and secondary minerals precipitated in hydrothermal veins and hydrothermal fault zones. Hole GT1A is characterised by total alteration intensities between 10 -100%, with a mean alteration intensity of 60%, and shows no overall trend downhole. However, there are discrete depth intervals (on the scale of 30 -100 m) where the total alteration intensity increases with depth. Alteration assemblages are dominated by chlorite + albite + amphibole, with variable abundances of epidote, clinozoisite and quartz. Hole GT1A intersected several hydrothermal fault zones, these range from 2-3 cm up to >1m in size and are associated with more complex secondary mineral assemblages. Hydrothermal veins are abundant throughout Hole GT1A, with a mean density of 37 vein/m. Hole GT2A is characterised by total alteration intensities between 6-100%, with a mean alteration intensity of 45%, and is highly variable downhole. Alteration halos and patches are slightly more abundant than in Hole GT1A. The secondary mineral assemblage is similar to Hole GT1A, but Hole GT2A has higher abundances of epidote, clinozoisite, quartz, laumontite and iron-oxydroxides. Vein density in Hole GT2A is 61 veins/m. In both holes, cross cutting vein relationships indicate a relative timing from earliest to latest of: amphibole; epidote + zoisite + qtz; chlorite + prehnite + qtz, calcite-laumontite-anhydrite; gypsum.
In Situ Analysis of Orthopyroxene in Diogenites Using Laser Ablation ICP-MS
NASA Technical Reports Server (NTRS)
Elk, Mattias; Quinn, J. E.; Mittlefehldt, D. W.
2012-01-01
Howardites, eucrites and diogenites (HED) form a suit of igneous achondrite meteorites that are thought to have formed on a single asteroidal body. While there have been many different models proposed for the formation of the HED parent asteroid they can be generalized into two end member models. One is the magma ocean model (e.g. [1]) in which the entire HED parent body was continuously fractionated from a planet wide magma ocean with diogenites representing the lower crust and eucrites being upper crustal rocks. The second model hypothesizes that diogenites and eucrites were formed as a series of intrusions and/or extrusions of partial melts of a primitive proto-Vesta [2]. We use in situ trace element analysis together with major and minor element analysis to try and distinguish between these different hypotheses for the evolution of the HED parent body.
NASA Astrophysics Data System (ADS)
Kaneda, Kentaro; Kodaira, Shuichi; Nishizawa, Azusa; Morishita, Taisei; Takahashi, Narumi
2010-10-01
Multichannel seismic reflection studies and seismic refraction surveys with ocean bottom seismographs in the Marcus-Wake seamount chain in the northwestern Pacific Ocean reveal P wave velocity structures of hot spot-origin seamounts and adjacent oceanic crust. Inside the seamounts are central high-velocity (>6.5 km/s) structures extending nearly to the top that may indicate intrusive cores. Thick sediment layers (up to 4 km) with P wave velocities of 4-5 km/s have accumulated on seafloor that predates seamount formation. Downward crustal thickening of up to 2 km was documented beneath a large seamount cluster, but thickening was not confirmed below a small seamount cluster. Volume ratios of an intrusive core to a seamount body are 15-20%, indicating that most of the supplied magma was consumed in forming the thick sedimentary and volcaniclastic layer constituting the seamount flanks. Underplating and downward crustal thickening may tend to occur when second or later intrusive cores are formed in a seamount. P wave velocities in the lowest crust and in the uppermost mantle below the seamount chain are 0.1-0.2 km/s higher and 0.3-0.5 km/s lower, respectively, than velocities below oceanic crust. We explain this difference as a result of sill-like intrusion of magma into the lower crust and uppermost mantle. Reflected waves observed at offsets >200 km are from mantle reflectors at depths of 30-45 km and 55-70 km. The shallower reflectors may indicate structures formed by intraplate igneous activities, and the deeper reflectors may correspond to the lithosphere-asthenosphere boundary.
Heat flow in eastern Egypt - The thermal signature of a continental breakup
NASA Technical Reports Server (NTRS)
Morgan, P.; Boulos, F. K.; Hennin, S. F.; El-Sherif, A. A.; El-Sayed, A. A.
1985-01-01
It is noted that the Red Sea is a modern example of continental fragmentation and incipient ocean formation. A consistent pattern of high heat flow in the Red Sea margins and coastal zone, including Precambrian terrane up to at least 30 km from the Red Sea, has emerged from the existing data. It is noted that this pattern has important implications for the mode and mechanism of Red Sea opening. High heat flow in the Red Sea shelf requires either a high extension of the crust in this zone (probably with major basic magmatic activity) or young oceanic crust beneath this zone. High heat flow in the coastal thermal anomaly zone may be caused by lateral conduction from the offshore lithosphere and/or from high mantle heat flow. It is suggested that new oceanic crust and highly extended continental crust would be essentially indistinguishable with the available data in the Red Sea margins, and are for many purposes essentially identical.
Did the Chicxulub meteorite impact trigger eruptions at mid-ocean ridges globally?
NASA Astrophysics Data System (ADS)
Byrnes, J. S.; Karlstrom, L.
2017-12-01
Are there causal links between the eruption of large igneous provinces, meteorite impacts, and mass extinctions? Recent dating suggests that state shifts in Deccan Traps eruptions, including erupted volumes, feeder dike orientations, and magma chemistry, occurred shortly after the Chicxulub impact. A proposed explanation for this observation is an increase in upper mantle permeability following the Chicxulub impact that accelerated the pace of Deccan volcanism [Richards et al., 2015]. If such triggering occurred, at global distances not associated with the impact antipode, it is reasonable to hypothesize that other reservoirs of stored melt may have been perturbed as well. We present evidence that mid-ocean ridge activity increased globally following the impact. Anomalously concentrated free-air gravity and sea-floor topographic roughness suggest volumes of excess oceanic ridge magmatism in the range of 2 x 105 to 106 km3 within 1 Myrs of the Chicxulub impact. This signal is only clearly observed for half-spreading rates above 35 mm/yr, possibly because crust formed at slower spreading rates is too complex to preserve the signal. Because similar anomalies are observed separately in the Indian and Pacific Oceans, and because the timing of the signal does not clearly align with changes in spreading rates, we do not favor plume activity as an explanation. Widespread mobilization of existing mantle melt by post-impact seismic radiation, and subsequent emplacement of melt as crustal intrusions and eruptions, can explain the volume and distribution of anomalous crust without invoking impact-induced melt production. Although the mechanism for increasing permeability is not clear at either Deccan or mid-ocean ridges, these results support the hypothesis that the causes and consequences of the Deccan Traps, Chicxulub impact, and K-Pg mass extinction should not be considered in isolation. We conclude by discussing several enigmatic observations from K-Pg time that heightened marine volcanism may explain, whether at Deccan or mid-ocean ridges, including the recovery time of carbon isotopes to pre-K-Pg values, a perturbation to the lithium isotopes in seawater, and the hypothesized acidification of the oceans.
Terrane accretion: Insights from numerical modelling
NASA Astrophysics Data System (ADS)
Vogt, Katharina; Gerya, Taras
2016-04-01
The oceanic crust is not homogenous, but contains significantly thicker crust than norm, i.e. extinct arcs, spreading ridges, detached continental fragments, volcanic piles or oceanic swells. These (crustal) fragments may collide with continental crust and form accretionary complexes, contributing to its growth. We analyse this process using a thermo-mechanical computer model (i2vis) of an ocean-continent subduction zone. In this model the oceanic plate can bend spontaneously under the control of visco-plastic rheologies. It moreover incorporates effects such as mineralogical phase changes, fluid release and consumption, partial melting and melt extraction. Based on our 2-D experiments we suggest that the lithospheric buoyancy of the downgoing slab and the rheological strength of crustal material may result in a variety of accretionary processes. In addition to terrane subduction, we are able to identify three distinct modes of terrane accretion: frontal accretion, basal accretion and underplating plateaus. We show that crustal fragments may dock onto continental crust and cease subduction, be scrapped off the downgoing plate, or subduct to greater depth prior to slab break off and subsequent exhumation. Direct consequences of these processes include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes, partial melting and crustal growth.
Formation of Continental Fragments: The Tamayo Bank, Gulf of California
NASA Astrophysics Data System (ADS)
van Wijk, J.; Abera, R.; Axen, G. J.
2015-12-01
Potential field data are used to construct a two-dimensional crustal model along a profile through the Tamayo Trough and Bank in the Gulf of California. The model is constrained by seismic reflection and refraction data, and field observations. The potential field data do not fit a model where the crust of the Tamayo trough is continental, but they fit well with a model where the Tamayo trough crust is oceanic. This implies that the Tamayo Bank is entirely bounded by oceanic crust and is a microcontinent. The oceanic crust of the Tamayo trough that separates the Tamayo Bank from the mainland of Mexico is thin (~4 km), so oceanic spreading was probably magma-starved before it ceased. This led us to come up with a model that explains the formation of microcontinents that are smaller in size and are not found in the proximity of hotspots. At first, seafloor spreading commences following continental breakup. When the magma supply to the ridge slows down, the plate boundary strengthens. Hence, the ridge may be abandoned while tectonic extension begins elsewhere, or slow spreading may continue while a new ridge starts to develop. The old spreading ridge becomes extinct. An asymmetric ocean basin forms if the ridge jumps within oceanic lithosphere; a microcontinent forms if the ridge jumps into a continental margin. This model for formation of continental fragments is applicable to other regions as well, eliminating the need of mantle plume impingement to facilitate rifting of a young continental margin and microcontinent formation.
Three-dimensional mapping of extrusive layer at the East Pacific Rise 9°50'N
NASA Astrophysics Data System (ADS)
Marjanovic, M.; Stopin, A.; Plessix, R. E.; Singh, S. C.
2017-12-01
The East Pacific Rise (EPR) is one of the most active portion of Mid-Ocean Ridge system along which 6 km thick oceanic crust has been forming. The upper part of thus formed crust is represented by basalts (layer 2A) and dikes (layer 2B). In velocity models, the layer 2A/2B boundary is characterized by a velocity gradient, which is attributed to change in porosity. The geologic nature of the gradient is debated, with the two prevailing explanations: lithological contact between basalts and dikes, or alteration front due to hydrothermal circulation. In addition, 2D seismic sections suggested rapid thickening of the topmost layer within a few km from the ridge axis. Due to limited information on the upper crustal velocities it has been unclear if this observation is due to physical thickening of the extrusive layer or it is a result of downward propagating, hydrothermally driven, cracking front. To add some of the missing constrains, we apply elastic 3D full waveform inversion technique to 3D seismic dataset collected at the EPR. The final 3D velocity model of the upper crust covers area 44x55 km2, and is obtained after 15, multiparameter inversions of low frequencies. The layer 2A/2B boundary is clearly identified in the resulting model as the base of high velocity gradient and can be followed throughout the entire area included in the inversion; consistency in character of the gradient zone and distinct velocity anomaly near active hydrothermal discharge zones, where the most of the alteration is expected to take place, argue that this boundary is predominantly lithological and that the layer 2A thickening is due to emplacement of lava off the innermost axial zone. The transition from thin (150-200 m) to thick (300-550 m) layer 2A occurs within a narrow band around the ridge axis (0.5-2.5 km). This band is wider between 9º48-53', and highly asymmetric, with almost vertical side on the Pacific and gentle dipping side on the Cocos Plate, terminating at the contact with ridge parallel, inward facing faults. Beyond the faults, layer 2A attains almost constant thickness. By combining the available observables and results of our analyses we suggest that the emplacement of extrusives, variation in their thickness, and rate of dike subsidence are predominantly controlled by tectono-magmatic features and processes operating near the ridge axis.
NASA Astrophysics Data System (ADS)
Faber, Carly; Stünitz, Holger; Jeřábek, Petr; Gasser, Deta; Konopásek, Jiří; Kraus, Katrin
2017-04-01
The debate about how and why continental crust is subducted is ongoing (Ingalls et al., 2016). This work uses the tectonmetamorphic history of a the Nordmannvik nappe in the northern Scandinavian Caledonides to discuss mid- to lower-crustal processes involved in the subduction of continental crust during the Caledonian Orogeny. The Nordmannvik Nappe, together with the underlying Kåfjord and Vaddas nappes, constitutes the Reisa Nappe Complex (RNC). The RNC overlies continental rocks of the Kalak Nappe Complex (KNC), and a clear oceanic suture between Baltican basement, the KNC and the RNC is missing. The RNC consists mainly of paragneisses of mostly unknown depositional age. Rare fossils in the Vaddas Nappe indicate that it at least partly consists of Ordovician-Silurian (>460 Ma) metasediments (Binns and Gayer, 1980). Both the Nordmannvik and Vaddas Nappes were intruded by gabbroic melt around 439 Ma at 9 kbar (c. 30 km) (Getsinger et al., 2013). Therefore, the host and intrusive rocks were already buried to positions far deeper than oceanic crust prior to nappe stacking. Nordmannvik nappe rocks show at least two distinct metamorphic fabrics; 1) an early high-grade kyanite-present migmatitic fabric and 2) a pervasive mylonitic fabric. Based on microstructural observations and pseudosection modeling these two fabrics are estimated to have formed at 770-800 °C and 9.4-11 kbar and 580-630 °C and 8-9.8 kbar, respectively. The presence of sillimanite in garnet cores (confirmed by Raman spectra) and garnet core compositions also suggest that an earlier, less well constrained, history exists with metamorphism around 815 °C and 8.7 kbar, similar to that recognized in the KNC, where it is dated to be pre-Caledonian. The lack of ocean floor rocks between the Nordmannvik Nappe and the Baltica basement suggests that the Nordmannvik Nappe and nappe units below were fairly proximal to Baltica prior to the Caledonian Orogeny. Their position below the Lyngen Nappe (Iapetus ocean floor) indicates they may even have been the leading edge of a pre-Scandian Baltica continent connected to Baltica-proper underneath an extensional but continental basin hosting Vaddas and Kåfjord sediments. If this is the case it may explain the lack of UHP Baltica basement rocks in northern Norway, commonly seen in the mid- and southern- Caledonian segments. The rheological weakening as a result of partial melting in these fertile rocks at the Baltica continent edge may have caused them to be obducted rather than subducted beyond c. 40 km depth. Binns, R.E., and Gayer, R.A., 1980. Silurian or Upper Ordovician fossils at Guoolasjav'ri Troms, Norway, Nature, 284, 53-55 Getsinger, A.J., Hirth, G., Stünitz, H., and Georgen, E.T., 2013. Influence of water on rheology and strain localization in the lower continental crust, Geochemistry, Geophysics, Geosystems, 14, 2247-2264 Ingalls, M., Rowley, D.B., Currie, B., and Colman, A.S. 2016. Large-scale subduction of continental crust implied by India-Asia mass balance calculation, Nature Geoscience 9, 848-853, doi:10.1038/ngeo2806
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dygert, Nick; Lin, Jung-Fu; Marshall, Edward W.
Much of the lunar crust is monomineralic, comprising >98% plagioclase. The prevailing model argues the crust accumulated as plagioclase floated to the surface of a solidifying lunar magma ocean (LMO). Whether >98% pure anorthosites can form in a flotation scenario is debated. An important determinant of the efficiency of plagioclase fractionation is the viscosity of the LMO liquid, which was unconstrained. Here we present results from new experiments conducted on a late LMO-relevant ferrobasaltic melt. The liquid has an exceptionally low viscosity of 0.22more » $$+0.11\\atop{-0.19}$$to 1.45 $$+0.46\\atop{-0.82}$$ Pa s at experimental conditions (1,300–1,600°C; 0.1–4.4 GPa) and can be modeled by an Arrhenius relation. Extrapolating to LMO-relevant temperatures, our analysis suggests a low viscosity LMO would form a stratified flotation crust, with the oldest units containing a mafic component and with very pure younger units. Old, impure crust may have been buried by lower crustal diapirs of pure anorthosite in a serial magmatism scenario.« less
Chulick, G.S.; Mooney, W.D.
2002-01-01
We present a new set of contour maps of the seismic structure of North America and the surrounding ocean basins. These maps include the crustal thickness, whole-crustal average P-wave and S-wave velocity, and seismic velocity of the uppermost mantle, that is, Pn and Sn. We found the following: (1) The average thickness of the crust under North America is 36.7 km (standard deviation [s.d.] ??8.4 km), which is 2.5 km thinner than the world average of 39.2 km (s.d. ?? 8.5) for continental crust; (2) Histograms of whole-crustal P- and S-wave velocities for the North American crust are bimodal, with the lower peak occurring for crust without a high-velocity (6.9-7.3 km/sec) lower crustal layer; (3) Regions with anomalously high average crustal P-wave velocities correlate with Precambrian and Paleozoic orogens; low average crustal velocities are correlated with modern extensional regimes; (4) The average Pn velocity beneath North America is 8.03 km/sec (s.d. ?? 0.19 km/sec); (5) the well-known thin crust beneath the western United States extends into northwest Canada; (6) the average P-wave velocity of layer 3 of oceanic crust is 6.61 km/ sec (s.d. ?? 0.47 km/sec). However, the average crustal P-wave velocity under the eastern Pacific seafloor is higher than the western Atlantic seafloor due to the thicker sediment layer on the older Atlantic seafloor.
NASA Astrophysics Data System (ADS)
Welford, J. Kim; Dehler, Sonya; Funck, Thomas
2017-04-01
The SIGNAL (Seismic Investigations off Greenland, Newfoundland and Labrador) 2009 cruise was undertaken by the Geological Survey of Canada (GSC) and the Geological Survey of Denmark and Greenland (GEUS), with scientific contributions from Dalhousie University, to collect refraction/wide-angle reflection (RWAR) profiles as part of each country's continental shelf program under UNCLOS (United Nations Convention on the Law of the Sea) Article 76. Line 1 extended from the Bonavista Platform off Newfoundland, across the Orphan Basin, to Orphan Knoll and beyond into oceanic crust. The line followed the same track as an earlier seismic refraction line and ocean-bottom seismometer (OBS) locations were chosen to complement and to extend the original station coverage. The final crustal velocity model across Orphan Basin shows thinned continental crust (15 to 20 km thick) beneath most of the basin with thinner crust (10 km thick) immediately outboard of the Bonavista Platform, interpreted as a failed rift zone. Seaward of the failed rift, the velocity structure of the thinned continental crust is generally uniform over 250 km toward Orphan Knoll. Immediately outboard of Orphan Knoll, the crust thins to 8 km and exhibits a velocity structure consistent with oceanic crust. The results from modelling of the combined refraction/wide-angle reflection dataset support an extension of Canada's continental shelf beyond the seaward limits of the Orphan Basin.
Millennial-scale ocean acidification and late Quaternary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riding, Dr Robert E; Liang, Liyuan; Braga, Dr Juan Carlos
Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21 000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thicknessmore » over the past 14 000 years with largest reduction occurring 12 000 10 000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects.« less
NASA Astrophysics Data System (ADS)
Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy
2014-05-01
Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the contribution of buoyancy driven upwelling and their spatial and temporal evolution including lateral migration are determined by using a series of numerical experiments, tested and calibrated against observations of crustal thicknesses and water-loaded subsidence. Pure-shear widths exert a strong control on the timing of crustal rupture and melt initiation; to satisfy OCT architecture, subsidence and mantle exhumation, we need to focus the deformation from a broad to a narrow region. The lateral migration of the deformation flow axis has an important control on the rupture of continental crust and lithosphere, melt initiation, their relative timing, the resulting OCT architecture and conjugate margin asymmetry. The numerical models are used to predict margin isostatic response and subsidence history.
NASA Astrophysics Data System (ADS)
Markus Schmalholz, Stefan; Jaquet, Yoann
2016-04-01
We study the formation of an orogenic wedge during lithospheric shortening with 2D numerical simulations. We consider a viscoelastoplastic rheology, thermo-mechanical coupling by shear heating and temperature-dependent viscosities, gravity and erosion. In the initial model configuration there is either a lateral temperature variation at the model base or a lateral variation in crustal thickness to generate slight stress variations during lithospheric shortening. These stress variations can trigger the formation of shear zones which are caused by thermal softening associated with shear heating. We do not apply any kind of strain softening, such as reduction of friction angle with progressive plastic strain. The first major shear zone that appears during shortening crosscuts the entire crust and initiates the asymmetric subduction/underthrusting of mainly the mechanically strong lower crust. After some deformation, the first shear zone in the upper crust is abandoned, the deformation propagates towards the foreland and a new shear zone forms only in the upper crust. The shear zone propagation occurs several times where new shear zones form in the upper crust and the mechanically strong top of the lower crust acts as detachment horizon. We calculate the magnitudes of the maximal and minimal principal stresses and of the mean stress (or dynamic pressure), and we record also the temperature for several marker points in the upper and lower crust. We analyse the evolution of stresses and temperature with burial depth and time. Deviatoric stresses (half the differential stress) in the upper crust are up to 200 MPa and associated shear heating in shear zones ranges between 40 - 80 °C. Lower crustal rocks remain either at the base of the orogenic wedge at depths of around 50 km or are subducted to depths of up to 120 km, depending on their position when the first shear zone formed. Largest deviatotric stresses in the strong part of the lower crust are about 1000 MPa and maximal shear heating in shear zones is approximately 200 °C. Marker points can migrate through the main shear zone in the lower crust which remains active throughout lithospheric shortening. Some pressure-temperature paths show an anti-clockwise evolution. The impact of various model parameters on the results is discussed as well as applications of the results to geological data.
Role of upper-most crustal composition in the evolution of the Precambrian ocean-atmosphere system
NASA Astrophysics Data System (ADS)
Large, R. R.; Mukherjee, I.; Zhukova, I.; Corkrey, R.; Stepanov, A.; Danyushevsky, L. V.
2018-04-01
Recent research has emphasized the potential relationships between supercontinent cycles, mountain building, nutrient flux, ocean-atmosphere chemistry and the origin of life. The composition of the Upper-Most Continental Crust (UMCC) also figures prominently in these relationships, and yet little detailed data on each component of this complex relationship has been available for assessment. Here we provide a new set of data on the trace element concentrations, including the Rare Earth Elements (REE), in the matrix of 52 marine black shale formations spread globally through the Archean and Proterozoic. The data support previous studies on the temporal geochemistry of shales, but with some important differences. Results indicate a change in provenance of the black shales (upper-most crustal composition), from more mafic in the Archean prior to 2700 Ma, to more felsic from 2700 to 2200 Ma, followed by a return to mafic compositions from 2200 to 1850 Ma. Around 1850 to 1800 Ma there is a rapid change to uniform felsic compositions, which remained for a billion years to 800 Ma. The shale matrix geochemistry supports the assertion that the average upper-most continental source rocks for the shales changed from a mix of felsic, mafic and ultramafic prior to 2700 Ma to more felsic after 1850 Ma, with an extended transition period between. The return to more mafic UMCC from 2200 to 1850 Ma is supported by the frequency of Large Igneous Provinces (LIPs) and banded iron formations, which suggest a peak in major mantle-connected plume events and associated Fe-rich hydrothermal activity over this period. Support for the change to felsic UMCC around 1850 Ma is provided by previous geological data which shows that felsic magmas, including, A-type granites and K-Th-U-rich granites intruded vast areas of the continental crust, peaking around 1850 Ma and declining to 1000 Ma. The implications of this change in UMCC are far reaching and may go some way to explain the distinct features of the Boring Billion (1800-800 Ma). Firstly, because mafic-ultramafic rocks contain significantly higher levels of the bio-essential nutrient elements (e.g. Fe, P, Ni, Cr, Co, Cu, Se, Mn, Zn) compared with felsic rocks, the flux of macro- and micro-nutrients to the ocean would have decreased significantly post 1850 Ma. This would have contributed to a drop in productivity and a drop in atmosphere O2 as suggested by the marine pyrite proxy. In addition, a change from mafic to felsic dominant composition of the UMCC post 1850 Ma, would have led to a decrease in the erosive flux of Ca and Mg to the ocean, affecting the oceanic carbonate equilibrium and likely contributing to a rise in atmosphere CO2. On this basis, we speculate that the commencement of the middle Proterozoic, commonly known as the Boring Billion period from 1800 to 800 Ma, marks the start of an extended time in Earth's evolution when the UMCC became dominated by felsic rocks, particularly K-U-Th-anorogenic granites. This led to a period of anomalously low concentrations of bio-essential trace elements, but elevated REE, U, Th, Pb, Tl, Rb/Al and K/Na in the oceans.
NASA Astrophysics Data System (ADS)
Zhao, M.; Wang, J.; Qiu, X.; Sibuet, J. C.; He, E.; Zhang, J.
2015-12-01
The post-spreading volcanic ridge (PSVR) is oriented approximately E-W in its western part called the Zhenbei-Huangyan seamount chain. Where is the extinct spreading ridge (ESR) of the East Sub-basin located? beneath the PSVR (Li et al., 2014)? Or intersecting with the PSVR by N055° orientation (Sibuet et al., submitted)? A three-dimensional Ocean Bottom Seismometer (OBS) survey covered both the central extinct spreading ridge and the Zhenbei-Huangyan seamount chain, the IODP Site U1431 (Li et al., 2014) being located just north of the chain. The results of this experiment will provide the essential information to understand the emplacement of the PSVR within the previously formed oceanic crust. The comprehensive seismic record sections of 39 OBSs are of high quality and show clear and reliable P-wave seismic phases, such as Pg, Pn and PmP. These seismic arrivals provide strong constrains for modeling the detailed three-dimensional velocity structure. We will show that the crust is oceanic on each side of the Zhenbei-Huangyan seamount chain, where is the location of the ESR and what is the genetic relationship between the magma chambers and the overlying Zhenbei-Huangyan seamount chain. We suggest that the large thickness of the upper crust is possibly due to volcanic extrusions and the thickened lower crust to magmatic underplating. Combining previous geochemical study of PSVR outcropping samples, the formation mechanism of the seamount chain might be explained by a buoyancy decompression melting mechanism (Castillo et al., 2010). This research was granted by the Natural Science Foundation of China (91028002, 91428204, 41176053). ReferencesSibuet J.-C., Yeh Y.-C. and Lee C.-S., 2015 submitted. Geodynamics of the South China Sea: A review with emphasis on solved and unsolved questions. Tectonophysics. Li, C. F., et al. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15, 4958-4983. Castillo, P. R., Clague, D. A., Davis, A. S., Lonsdale, P. F., 2010. Petrogenesis of Davidson Seamount lavas and its implications for fossil spreading center and intraplate magmatism in the eastern Pacific. Geochemistry, Geophysics, Geosystems, 11, Q02005, doi:10.1029/2009GC002992.
Biological Sulfate Reduction Rates in Hydrothermal Recharge Zones
NASA Astrophysics Data System (ADS)
Crowell, B.; Lowell, R. P.
2007-12-01
We develop a model to determine the rate of removal of seawater sulfate in the recharge regions of deep-sea hydrothermal systems as a result of biogenic sulfate reduction. The rate of sulfate reduction as a function of temperature derived from laboratory measurements on cores from the Guaymas Basin in Mexico [Jorgensen et al., 1992] is incorporated into a steady state 1-D advection-diffusion temperature equation, and a 1-D, steady- state, advection dominated conservation of solute equation. The diffusivity of sulfate in seawater is on the order of ~ 10-10 m2/s, and unless the flow speeds are < 10-12 m/s, the effects of diffusion are negligible, except within thin diffusive boundary layers. This model is then compared with a model that utilizes Gibbs free energy to quantify biogenic sulfate reduction [Bach and Edwards, 2003] in the upper oceanic crust of aging lithosphere. Using the high rates determined by Jorgensen et al. [1992], our model indicates that biological activity would reduce all seawater sulfate transported into the system within the upper 10 meters or less of the crust, which is inconsistent with the estimates of Bach and Edwards [2003]. Sulfate concentrations from ODP borehole Legs 64 and 168, at the sedimented Guaymas Basin and Juan de Fuca Ridge, respectively, show that most of the seawater sulfate is removed in the upper 100 meters. If the sulfate is assumed to all be reduced biogenically, the sulfate reduction rates at the ODP sites are at least 2 orders of magnitude less than the laboratory estimates of Jorgenson et al. [1992]. Finally, we compare the rate of seawater sulfate removal as a result of the precipitation of anhydrite, with the rate of biogenic sulfate reduction. We find that if hydrothermal recharge occurs rapidly through highly permeable faults, that biogenic sulfate reduction is negligible and that anhydrite precipitation would rapidly clog the recharge zone [Lowell and Yao, 2002]. If recharge occurs through broad zones of slow downwelling (u
NASA Astrophysics Data System (ADS)
Kato, A.; Iidaka, T.; Ikuta, R.; Yoshida, Y.; Katsumata, K.; Iwasaki, T.; Sakai, S.; Yamaoka, K.; Watanabe, T.; Kunitomo, T.; Yamazaki, F.; Tsumura, N.; Nozaki, K.; Okubo, M.; Suzuki, S.; Hirata, N.; Zhang, H.; Thurber, C. H.
2009-12-01
Most slow slips have occurred in the deep transition zone from an unstable- to stable-slip regime. Detailed knowledge about a deep transition zone is essentially important to understand the mechanism of the slow slips, and the stress concentration process to the source region of the megathrust interplate earthquake. We have conducted a very dense seismic observation in the Tokai-region from the April to the August in 2008 through a linear deployment of 75 portable stations, in Japan. The array extended from the bottom part of the source region of the Tokai earthquake to deep low-frequency earthquakes (LFE, ~ 35 km depth) including the long-term slow-slip region (~ 25 km depth). Here we present a high-resolution tomographic imaging of seismic velocities and highly-accurate hypocenters including LFEs, using first arrival data from the dense seismograph deployment. We manually picked the first arrivals of P- and S- waves from each waveform for about 700 earthquakes including about 20 LFEs observed by the dense array. Then, we applied the TomoDD-code [Zhang and Thurber, 2003] to the arrival data set, adding an accurate double-difference data estimated by a waveform cross-correlation technique. A low velocity (Vp, Vs) layer with high Poisson’s ratio is clearly imaged, and tilts to the northwestward with a low dip angle, which corresponds to the subducting oceanic crust of the Philippine Sea Slab. Although seismicity within the oceanic crust is significantly low, few earthquakes occur within the oceanic crust. The LFEs are linearly aligned along the top surface of the subducting oceanic crust at depths from 30 to 40 km. The Poisson’s ratio within the oceanic crust does not show significant depth-dependent increase beneath the linear alignment of LFEs. This result argues against a depth section of Poisson’s ratio obtained in the SW Japan [Shelly et al., 2006]. Beneath the LFEs, active cluster of slab earthquakes are horizontally distributed. At the depths greater than the slab seismicity, the oceanic crust (low velocity layer with high Poisson’s ratio) rapidly changes to a high velocity layer with low Poisson’s ratio. This transition of the oceanic crust corresponds to the MORB phase transition to amphibolites. Most interestingly, we found out that the long-term slow-slip region shows a high-Vp, but low-Vs values, which led to higher Poisson’s ratio than the surrounding oceanic crust. It is interpreted that the long-term slow-slip could be caused by a fluid-rich subducted ridge undeplated beneath the island arc. Since the Philippine Sea Slab is also subducting beneath the Kanto-region, understanding of the deep transition zone contributes to a study of seismic hazard assessments utilizing MeSO-net (Metropolitan Seismic Observation network in Japan).
Basin Excavation, Lower Crust, Composition, and Bulk Moon Mass balance in Light of a Thin Crust
NASA Technical Reports Server (NTRS)
Jolliff, B. L.; Korotev, R. L.; Ziegler, R. A.
2013-01-01
New lunar gravity results from GRAIL have been interpreted to reflect an overall thin and low-density lunar crust. Accordingly, crustal thickness has been modeled as ranging from 0 to 60 km, with thinnest crust at the locations of Crisium and Moscoviense basins and thickest crust in the central farside highlands. The thin crust has cosmochemical significance, namely in terms of implications for the Moon s bulk composition, especially refractory lithophile elements that are strongly concentrated in the crust. Wieczorek et al. concluded that the bulk Moon need not be enriched compared to Earth in refractory lithophile elements such as Al. Less Al in the crust means less Al has been extracted from the mantle, permitting relatively low bulk lunar mantle Al contents and low pre- and post-crust-extraction values for the mantle (or the upper mantle if only the upper mantle underwent LMO melting). Simple mass-balance calculations using the method of [4] suggests that the same conclusion might hold for Th and the entire suite of refractory lithophile elements that are incompatible in olivine and pyroxene, including the KREEP elements, that are likewise concentrated in the crust.
NASA Astrophysics Data System (ADS)
Dick, H. J.; Kvassnes, A. J.; Kinoshita, H.; MacLeod, C. J.; Robinson, P. T.
2017-12-01
Until the discovery of oceanic core complexes little was known and much inferred about the lower ocean crust at slow-spreading ridges. Their study shows the ocean crust isn't simply a uniform layer-cake of pillow lavas, sheeted dikes and gabbros, but is highly variable in thickness, composition and architecture, and even absent over large regions. The 660 km2 Atlantis Bank Gabbro Massif in the rift-mountains of the SW Indian Ridge flanking the Atlantis II Transform is the magmatic end member for ocean core complexes, and best approximates `average' slow-spread crust. Thus it has been a focus for drilling since its discovery in 1986, leading to the current attempt to drill to Moho there (Project SloMo). There are 3 ODP and IODP drill holes on its crest: 1508-m deep Hole 735B, 158-m deep Hole 1105A, and 809.4-m deep Hole U1473. These provide a 200 Kyr view of lower crustal accretion at a slow-spread ocean ridge. Here we extend this view to 2.7 Myr. Mapping and sampling shows the gabbro massif extends nearly the length of a single 2nd order magmatic ridge segment. With numerous inliers of the dike-gabbro transition at numerous locations, and a crust-mantle boundary, traced for 30-km along the transform wall, it would appear to represent a full section of the lower crust. As Moho is at 5.5 ± 1 km mbsf near Hole 735B, and 4.5 km beneath the transform, it is likely a serpentinization front. The crust-mantle boundary was crossed by dives at 4 locations. In each case gabbros at the base of the crust crystallized from melt that had previously fractionated 50% or more from a likely parent. Thus the gabbro massif must be laterally zoned, and the parental mantle melts had to have been emplaced at the center of the paleo-ridge segment, before intruding laterally to the distal end of the complex. Gabbros on a lithospheric flow line down the center of the massif closely resemble those from the drill holes. This shows that while lateral variations in crustal composition and thickness exist at Atlantis Bank, we can extend the conclusions derived from drilling at Hole U1473 that there is a continuum of accretionary magmatic and tectonic processes for 2.7 Myr, and a centrally located deep hole through the lower crust and mantle there will likely be representative of the 660-km2 Atlantis Bank gabbro massif as a whole.
Comparision between crustal density and velocity variations in Southern California
Langenheim, V.E.; Hauksson, E.
2001-01-01
We predict gravity from a three-dimensional Vp model of the upper crust and compare it to the observed isostatic residual gravity field. In general this comparison shows that the isostatic residual gravity field reflects the density variations in the upper to middle crust. Both data sets show similar density variations for the upper crust in areas such as the Peninsular Ranges and the Los Angeles basin. Both show similar variations across major faults, such as the San Andreas and Garlock faults in the Mojave Desert. The difference between the two data sets in regions such as the Salton Trough, the Eastern California Shear Zone, and the eastern Ventura basin (where depth to Moho is <30 km), however, suggests high-density middle to lower crust beneath these regions. Hence the joint interpretation of these data sets improves the depth constraints of crustal density variations.
NASA Astrophysics Data System (ADS)
Herrero-Bervera, E.; Acton, G.
2005-12-01
We investigate the magnetic mineralogy and absolute paleointensity of oceanic basalt samples from Hole 1256D, cored during Ocean Drilling Program (ODP) Leg 206. Hole 1256D is located on the Cocos Plate about 5 km east of the transition zone between marine magnetic anomalies 5Bn.2n and 5Br (~15 Ma). During Leg 206, the hole penetrated 502 m into basalts of the upper oceanic crust that was generated by superfast seafloor spreading (>200 mm/yr) along the East Pacific Rise. Rock magnetic investigations included continuous low field (k-T) thermomagnetic analyses, alternating field (AF) and thermal demagnetization, optical microscopy, saturation isothermal remanent magnetization (SIRM), and magnetic grain size analyses. Following the removal of a drilling overprint, AF and thermal demagnetization paths for most samples decay linearly to the origin on orthogonal vector end point diagrams, suggesting that a stable characteristic remanent magnetization component can be resolved. Optical microscopy and k-T (Curie points) identified titanomagnetites and titanomaghemites as the main magnetic carriers and grain size studies indicate that the carriers are either single domain (SD) and/or pseudosingle domain (PSD) in nature. Using the modified Thellier-Coe double heating method, we determined absolute paleointensity determinations for 51 specimens sampled from different ``stratigraphic'' levels of the core. pTRM checks were performed systematically one temperature step down the last pTRM acquisition in order to document magnetomineralogical changes during heating. The temperature was incremented by steps of 50°C between room temperature and 500°C and every 25-30°C for higher temperatures. The paleointensity determinations were obtained from the slope of the Arai diagrams. Special care was taken to interpret the Arai diagrams within the same range of temperatures lower than 300°C unless a clear and unique slope was present over a higher range of temperatures. Only about 10 percent of the samples yielded acceptable results. The paleofield estimated from these samples ranges between 28 to 16 micro Teslas (i.e., VADM of 6 to 4 x 1022 A/m2), which is concordant with the average paleofield intensity for the period between 0-160 Myr (4 ± 2 x1022 A/m2) and half of the strength of the present field (~8x1022 A/m2).
NASA Astrophysics Data System (ADS)
Tominaga, M.; Beinlich, A.; Tivey, M.; Andrade Lima, E.; Weiss, B. P.
2012-12-01
The contribution of lower oceanic crust and upper mantle to marine magnetic anomalies has long been recognized, but the detailed magnetic character of this non-volcanic source layer remains to be fully defined. Here, we report preliminary results of a magnetic survey and source characterization of a "carbonated" oceanic Moho (petrological "Mohorovicic discontinuity") sequence observed at the Linnajavri Serpentinite Complex (LSC), northern Norway. The LSC is located at 67° 36'N and 16° 24'E within the upper Allochthon of the Norwegian Caledonides and represents a dismembered ophiolite. Particularly in the southern ("Ridoalggicohkka") area of the LSC, gabbro, serpentinite and its talc-carbonate (soapstone) and quartz-carbonate (listvenite) altered equivalents are extraordinarily well-exposed [1]. An intact oceanic Moho is exposed here, despite its complex tectonic setting. The small degree of arctic rock weathering (≤ 2 mm weathering surface) allowed for detailed regional-scale surface magnetic mapping across alteration fronts (serpentinite-soapstone; soapstone-listvenite) and lithological contacts (soapstone-gabbro). Magnetic mapping was conducted using a handheld 3-axis magnetometer, surface-towed resistivity meter and Teka surface magnetic susceptometer with sample spacing of 1 m. Geophysical field mapping was combined with petrological observations and scanning SQUID microscopy (SM) mapping conducted on thin sections from rock samples that were drilled along the survey lines. Regional scale magnetic mapping indicates that the total magnetic field across both the "carbonated" Moho and the soapstone-serpentinite interfaces show higher frequency changes in their magnetic anomaly character and amplitudes than the surface-towed resistivity data. SQUID microscopy mapping of both natural remanence magnetization (NRM) and anhysteretic remanence magnetization (ARM) on gabbro, serpentinite, soapstone, and listvenite samples, with a sensor-sample separation of ˜190 μm, show that the distribution of microscopically measurable ferromagnetic and possibly sulfide minerals produces a different bulk intensity for each of the rock types. SM vector magnetic field maps of these samples also reveal that the magnetization associated with these grains (observed as dipole-like fields in SM maps) is variable in direction from grain to grain, which may result from different alteration histories for each grain. These complex magnetization patterns acquired through thermal and chemical alteration history may explain the short wavelength magnetic anomalies observed along our traverse lines. [1] Beinlich, A., Plümper, O., Hövelmann, J., Austrheim, H. and Jamtveit, B. (2012), Terra Nova, in press.
NASA Astrophysics Data System (ADS)
Wen, Y.; Li, C.
2017-12-01
Dispute remains on the process of continental rifting to subsequent seafloor spreading in the South China Sea (SCS). Several crust-scale multi-channel seismic reflection profiles acquired in the continent-ocean transition zone (COT) of the SCS provide a detailed overview of Moho and deep crustal reflectors and give key information on rifting-to-drifting transition of the area. Moho has strong but discontinuous seismic reflection in COT. These discontinuities are mainly located in the landward side of continent-ocean boundary (COB), and may own to upwelling of lower crustal materials during initial continental extension, leading to numerous volcanic edifices and volcanic ridges. The continental crust in COT shows discontinuous Moho reflections at 11-8.5 s in two-way travel time (twtt), and thins from 18-20.5 km under the uppermost slope to 6-7 km under the lower slope, assuming an average crustal velocity of 6.0 km/s. The oceanic crust has Moho reflections of moderate to high continuity mostly at 1.8-2.2 s twtt below the top of the igneous basement, which means that the crustal thickness excluding sediment layer in COT is 5.4-6.6 km. Subhorizontal Moho reflections are often abruptly interrupted by large seaward dipping normal faults in southern COT but are more continuous compared with the fluctuant and very discontinuous Moho reflections in northern COT. The thickness of thinned continental crust (4.2-4.8 km) is smaller than that of oceanic crust (5.4-6.0 km) near southern COB, indicating that the continental crust has experienced a long period of rifting before seafloor spreading started. The smaller width of northern COT (0-40 km) than in southern COT (0-60 km), and thinner continental crust in southern COT, all indicate that the continental margin rifting and extension was asymmetric. The COT width in the SCS is narrower than that found in other magma-poor continental margins, indicating a swift transition from the final stage of rifting to the inception of normal seafloor spreading.
NASA Astrophysics Data System (ADS)
Planert, Lars; Behrmann, Jan; Jokat, Wilfried; Fromm, Tanja; Ryberg, Trond; Weber, Michael; Haberland, Christian
2017-10-01
Voluminous magmatism during the South Atlantic opening has been considered as a classical example for plume related continental breakup. We present a study of the crustal structure around Walvis Ridge, near the intersection with the African margin. Two wide-angle seismic profiles were acquired. One is oriented NNW-SSE, following the continent-ocean transition and crossing Walvis Ridge. A second amphibious profile runs NW-SE from the Angola Basin into continental Namibia. At the continent-ocean boundary (COB) the mafic crust beneath Walvis Ridge is up to 33 km thick, with a pronounced high-velocity lower crustal body. Towards the south there is a smooth transition to 20-25 km thick crust underlying the COB in the Walvis Basin, with a similar velocity structure, indicating a gabbroic lower crust with associated cumulates at the base. The northern boundary of Walvis Ridge towards the Angola Basin shows a sudden change to oceanic crust only 4-6 km thick, coincident with the projection of the Florianopolis Fracture Zone, one of the most prominent tectonic features of the South Atlantic ocean basin. In the amphibious profile the COB is defined by a sharp transition from oceanic to rifted continental crust, with a magmatic overprint landward of the intersection of Walvis Ridge with the Namibian margin. The continental crust beneath the Congo Craton is 40 km thick, shoaling to 35 km further SE. The velocity models show that massive high-velocity gabbroic intrusives are restricted to a narrow zone directly underneath Walvis Ridge and the COB in the south. This distribution of rift-related magmatism is not easily reconciled with models of continental breakup following the establishment of a large, axially symmetric plume in the Earth's mantle. Rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magma-dominated southern and an essentially amagmatic northern segment.
Multi-stage mixing in subduction zone: Application to Merapi volcano, Indonesia
NASA Astrophysics Data System (ADS)
Debaille, V.; Doucelance, R.; Weis, D.; Schiano, P.
2003-04-01
Basalts sampling subduction zone volcanism (IAB) often show binary mixing relationship in classical Sr-Nd, Pb-Pb, Sr-Pb isotopic diagrams, generally interpreted as reflecting the involvement of two components in their source. However, several authors have highlighted the presence of minimum three components in such a geodynamical context: mantle wedge, subducted and altered oceanic crust and subducted sediments. The overlying continental crust can also contribute by contamination and assimilation in magma chambers and/or during magma ascent. Here we present a multi-stage model to obtain a two end-member mixing from three components (mantle wedge, altered oceanic crust and sediments). The first stage of the model considers the metasomatism of the mantle wedge by fluids and/or melts released by subducted materials (altered oceanic crust and associated sediments), considering mobility and partition coefficient of trace elements in hydrated fluids and silicate melts. This results in the generation of two distinct end-members, reducing the number of components (mantle wedge, oceanic crust, sediments) from three to two. The second stage of the model concerns the binary mixing of the two end-members thus defined: mantle wedge metasomatized by slab-derived fluids and mantle wedge metasomatized by sediment-derived fluids. This model has been applied on a new isotopic data set (Sr, Nd and Pb, analyzed by TIMS and MC-ICP-MS) of Merapi volcano (Java island, Indonesia). Previous studies have suggested three distinct components in the source of indonesian lavas: mantle wedge, subducted sediments and altered oceanic crust. Moreover, it has been shown that crustal contamination does not significantly affect isotopic ratios of lavas. The multi-stage model proposed here is able to reproduce the binary mixing observed in lavas of Merapi, and a set of numerical values of bulk partition coefficient is given that accounts for the genesis of lavas.
NASA Astrophysics Data System (ADS)
Heft, Kerri L.; Gillis, Kathryn M.; Pollock, Megan A.; Karson, Jeffery A.; Klein, Emily M.
2008-05-01
Alteration of sheeted dikes exposed along submarine escarpments at the Pito Deep Rift (NE edge of the Easter microplate) provides constraints on the crustal component of axial hydrothermal systems at fast spreading mid-ocean ridges. Samples from vertical transects through the upper crust constrain the temporal and spatial scales of hydrothermal fluid flow and fluid-rock reaction. The dikes are relatively fresh (average extent of alteration is 27%), with the extent of alteration ranging from 0 to >80%. Alteration is heterogeneous on scales of tens to hundreds of meters and displays few systematic spatial trends. Background alteration is amphibole-dominated, with chlorite-rich dikes sporadically distributed throughout the dike complex, indicating that peak temperatures ranged from <300°C to >450°C and did not vary systematically with depth. Dikes locally show substantial metal mobility, with Zn and Cu depletion and Mn enrichment. Amphibole and chlorite fill fractures throughout the dike complex, whereas quartz-filled fractures and faults are only locally present. Regional variability in alteration characteristics is found on a scale of <1-2 km, illustrating the diversity of fluid-rock interaction that can be expected in fast spreading crust. We propose that much of the alteration in sheeted dike complexes develops within broad, hot upwelling zones, as the inferred conditions of alteration cannot be achieved in downwelling zones, particularly in the shallow dikes. Migration of circulating cells along rides axes and local evolution of fluid compositions produce sections of the upper crust with a distinctive character of alteration, on a scale of <1-2 km and <5-20 ka.
The silicon isotope composition of the upper continental crust
NASA Astrophysics Data System (ADS)
Savage, Paul S.; Georg, R. Bastian; Williams, Helen M.; Halliday, Alex N.
2013-05-01
The upper continental crust (UCC) is the major source of silicon (Si) to the oceans and yet its isotopic composition is not well constrained. In an effort to investigate the degree of heterogeneity and provide a robust estimate for the average Si isotopic composition of the UCC, a representative selection of well-characterised, continentally-derived clastic sediments have been analysed using high-precision MC-ICPMS. Analyses of loess samples define a narrow range of Si isotopic compositions (δ30Si = -0.28‰ to -0.15‰). This is thought to reflect the primary igneous mineralogy and predominance of mechanical weathering in the formation of such samples. The average loess δ30Si is -0.22 ± 0.07‰ (2 s.d.), identical to average granite and felsic igneous compositions. Therefore, minor chemical weathering does not resolvably affect bulk rock δ30Si, and loess is a good proxy for the Si isotopic composition of unweathered, crystalline, continental crust. The Si isotopic compositions of shales display much more variability (δ30Si = -0.82‰ to 0.00‰). Shale Si isotope compositions do not correlate well with canonical proxies for chemical weathering, such as CIA values, but do correlate negatively with insoluble element concentrations and Al/Si ratios. This implies that more intensive or prolonged chemical weathering of a sedimentary source, with attendant desilicification, is required before resolvable negative Si isotopic fractionation occurs. Shale δ30Si values that are more positive than those of felsic igneous rocks most likely indicate the presence of marine-derived silica in such samples. Using the data gathered in this study, combined with already published granite Si isotope analyses, a weighted average composition of δ30Si = -0.25 ± 0.16‰ (2 s.d.) for the UCC has been calculated.
NASA Astrophysics Data System (ADS)
Dunn, Robert A.; Arai, Ryuta; Eason, Deborah E.; Canales, J. Pablo; Sohn, Robert A.
2017-12-01
To test models of tectonic, magmatic, and hydrothermal processes along slow-spreading mid-ocean ridges, we analyzed seismic refraction data from the Mid-Atlantic Ridge INtegrated Experiments at Rainbow (MARINER) seismic and geophysical mapping experiment. Centered at the Rainbow area of the Mid-Atlantic Ridge (36°14'N), this study examines a section of ridge with volcanically active segments and a relatively amagmatic ridge offset that hosts the ultramafic Rainbow massif and its high-temperature hydrothermal vent field. Tomographic images of the crust and upper mantle show segment-scale variations in crustal structure, thickness, and the crust-mantle transition, which forms a vertical gradient rather than a sharp boundary. There is little definitive evidence for large regions of sustained high temperatures and melt in the lower crust or upper mantle along the ridge axes, suggesting that melts rising from the mantle intrude as small intermittent magma bodies at crustal and subcrustal levels. The images reveal large rotated crustal blocks, which extend to mantle depths in some places, corresponding to off-axis normal fault locations. Low velocities cap the Rainbow massif, suggesting an extensive near-surface alteration zone due to low-temperature fluid-rock reactions. Within the interior of the massif, seismic images suggest a mixture of peridotite and gabbroic intrusions, with little serpentinization. Here diffuse microearthquake activity indicates a brittle deformation regime supporting a broad network of cracks. Beneath the Rainbow hydrothermal vent field, fluid circulation is largely driven by the heat of small cooling melt bodies intruded into the base of the massif and channeled by the crack network and shallow faults.
Body wave tomography of Iranian Plateau
NASA Astrophysics Data System (ADS)
Alinaghi, A.; Koulakov, I.; Thybo, H.
2004-12-01
The inverse teleseismic tomography approach has been adopted to study the P and S velocity structure of the crust and upper mantle across the Iranian Plateau. The method uses phase readings from earthquakes in a study area as reported by stations at teleseismic and regional distances to compute the velocity anomalies in the area. This use of source-receiver reciprocity allows tomographic studies of regions with sparse distribution of seismic stations, if only the region has sufficient seismicity. The input data for the algorithm are the arrival times of events located in Iran which were taken from the ISC catalogue (1964-1996). All the sources were located anew using a 1D spherical Earth model taking into account variable Moho depth and topography. The inversion provides relocation of events which is done simultaneously with calculation of velocity perturbations. With a series of synthetic tests we demonstrate the power of the algorithm to resolve both fancy and realistic anomalies using available earthquake sources and introducing measurement errors and outliers. The velocity anomalies show that the crust and upper mantle below the Iranian Plateau comprises a low velocity domain between the Arabian Plate and the Caspian Block, in agreement with models of the active Iranian plate trapped between the stable Turan plate in the north and the Arabian shield in the south. Our results show clear evidence of subduction at Makran in the southeastern corner of Iran where the oceanic crust of the Oman Sea subducts underneath the Iranian Plateau, a movement which is mainly aseismic. On the other hand, the subduction and collision of the two plates along the Zagros suture zone is highly seismic and in our images appear less consistent than the Makran region.
Earth Observations taken by the Expedition 20 crew
2009-08-05
ISS020-E-028123 (5 Aug. 2009) --- Mount Hood, Oregon is featured in this image photographed by an Expedition 20 crew member on the International Space Station. Mount Hood is located within the Cascade Range of the western United States, and is the highest peak (3,426 m) in Oregon. The Cascade Range is characterized by a line of volcanoes associated with a slab of oceanic crust that is subducting, or descending underneath, the westward moving continental crust of North America. Magma generated by the subduction process rises upward through the crust and feeds a line of active volcanoes that extends from northern California in the United States to southern British Columbia in Canada. While hot springs and steam vents are still active on Mount Hood, the last eruption from the volcano occurred in 1866. The volcano is considered dormant, but still actively monitored. Separate phases of eruptive activity produced pyroclastic flows and lahars ? mudflows ? that carried erupted materials down all of the major rivers draining the volcano. Gray volcanic deposits extend southwards along the banks of the White River (upper right), and form several prominent ridges along the southeast to southwest flanks of the volcano. The deposits contrast sharply with the green vegetated lower flanks of the volcano. The Mount Hood stratovolcano ? a typically cone-shaped volcanic structure formed by interlayered lava flows and explosive eruption deposits ? hosts twelve mapped glaciers along its upper flanks (center). Like other glaciers in the Pacific Northwest, the Hood glaciers have been receding due to global warming, and have lost an estimated 61 percent of their volume over the past century. The predicted loss of glacial meltwater under future warming scenarios will have significant effects on regional hydrology and water supplies.
Recycling Seamounts: Implications for Mantle Source Heterogeneities
NASA Astrophysics Data System (ADS)
Madrigal, P.; Gazel, E.
2016-12-01
Isolated seamounts formed away from plate boundaries and/or known hotspot tracks are widely distributed in the Earth's oceanic plates. Despite their pervasiveness, the origin and composition of the magmatic sources that create these seamounts are still unknown. Moreover, as the seamount provinces travel along with the oceanic plate towards subduction trenches these volcanic edifices become subducted materials that are later recycled into the mantle. Using radiogenic isotopes (Sr-Nd-Pb) from present-day non-plume ocean island basalts (OIB) sampled by drilling and dredging as well as by normal processes of accretion to subduction margins, we modeled the isotopic evolution of these enriched reservoirs to assess their role as discrete components contributing to upper mantle heterogeneity. Our evidence suggests that a highly enriched mantle reservoir can originate from OIB-type subducted material that gets incorporated and stirred throughout the upper mantle in a shorter time period ( 200 Ma-500 Ma) than other highly enriched components like ancient subducted oceanic crust (>1 Ga), thought to be the forming agent of the HIMU mantle reservoir endmember. Enriched signatures from intraplate volcanism can be described by mixing of a depleted component like DMM and an enriched reservoir like non-plume related seamounts. Our data suggests that the isotopic evolution in time of a seamount-province type of reservoir can acquire sufficiently enriched compositions to resemble some of the most enriched magmas on Earth. This "fast-forming" (between 200 and 500 Ma) enriched reservoir could also explain some of the enriched signatures commonly present in intraplate and EMORB magmas unrelated to deep mantle plume upwellings.
Lithospheric strength across the ocean-continent transition in the NW of the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Martín-Velázquez, Silvia; Martín-González, Fidel
2014-05-01
The main objective of this work is to investigate the relation between the strength of the lithosphere and the observed pattern of seismicity across the ocean-continent transition in the NW margin of the Iberian Peninsula. The seismicity is diffuse in this intraplate area, far from the seismically active margin of the plate: the Eurasia-African plate boundary, where convergence occurs at a rate of 4-5mm/year. The earthquake epicentres are mainly limited to an E-W trending zone (onshore seismicity is more abundant than offshore), and most earthquakes occur at depths less than 30 km, however, offshore depths are up to 150 km). Moreover, one of the problems to unravel in this area is that the seismotectonic interpretations of the anomalous seismicity in the NW peninsular are contradictory. The temperature and strength profiles have been modelled in three domains along the non-volcanic rifted West Iberian Margin: 1) the oceanic lithosphere of the Iberian Abyssal Plain, 2) the oceanic lithosphere near the ocean-continent transition of the Galicia Bank, and 3) the continental lithosphere of the NW Iberian Massif. The average bathymetry and topography have been used to fit the thermal structures of the three types of lithospheres, given that the heat flow and heat production values show a varied range. The geotherms, together with the brittle and ductile rheological laws, have been used to calculate the strength envelopes in different stress regimes (compression, shear and tensile). The continental lithosphere-asthenosphere boundary is located at 123 km and several brittle-ductile transitions appear in the crust and the mantle. However, the oceanic lithospheres are thinner (110 km near the Galicia Bank and 87 km in the Iberian Abbysal Plain) and more simple (brittle behaviour in the crust and upper mantle). The earthquake distribution is best explained by lithospheres with dry compositions and shear or tensile stress regimes. These results are similar can be compared to those of the Gulf of Cadiz oceanic-continental transition near the Eurasia-African plate boundary (Neves and Neves, 2009), and they contribute to complete the knowledge about seismicity and lithospheric strength in the ocean-continent transition of the Iberian Peninsula. References Neves M.C., Neves, R.G.M., 2009. Flexure and seismicity across the ocean-continent transition in the Gulf of Cadiz. Journal of Geodynamics, 47, 119-129.
NASA Astrophysics Data System (ADS)
Rani, Sunita; Rani, Sunita
2017-11-01
The axisymmetric deformation of a homogeneous, isotropic, poroelastic layer of uniform thickness overlying a homogeneous, isotropic, elastic half-space due to surface loads has been obtained. The fluid and the solid constituents of the porous layer are compressible and the permeability in vertical direction is different from its permeability in horizontal direction. The displacements and pore-pressure are taken as basic state variables. An analytical solution for the pore-pressure, displacements and stresses has been obtained using the Laplace-Hankel transform technique. The case of normal disc loading is discussed in detail. Diffusion of pore-pressure is obtained in the space-time domain. The Laplace inversion is evaluated using the fixed Talbot algorithm and the Hankel inversion using the extended Simpson's rule. Two different models of the Earth have been considered: continental crust model and oceanic crust model. For continental crust model, the layer is assumed to be of Westerly Granite and for the oceanic crust model of Hanford Basalt. The effect of the compressibilities of the fluid as well as solid constituents and anisotropy in permeability has been studied on the diffusion of pore-pressure. Contour maps have been plotted for the diffusion of pore-pressure for both models. It is observed that the pore-pressure changes to compression for the continental crust model with time, which is not true for the oceanic crust.
NASA Astrophysics Data System (ADS)
Gans, Christine R.; Beck, Susan L.; Zandt, George; Gilbert, Hersh; Alvarado, Patricia; Anderson, Megan; Linkimer, Lepolt
2011-07-01
The Pampean flat slab of central Chile and Argentina (30°-32°S) has strongly influenced Cenozoic tectonics in western Argentina, which contains both the thick-skinned, basement-cored uplifts of the Sierras Pampeanas and the thin-skinned Andean Precordillera fold and thrust belt. In this region of South America, the Nazca Plate is subducting nearly horizontally beneath the South American Plate at ˜100 km depth. To gain a better understanding of the deeper structure of this region, including the transition from flat to 'normal' subduction to the south, three IRIS-PASSCAL arrays of broad-band seismic stations have been deployed in central Argentina. Using the dense SIEMBRA array, combined with the broader CHARGE and ESP arrays, the flat slab is imaged for the first time in 3-D detail using receiver function (RF) analysis. A distinct pair of RF arrivals consisting of a negative pulse that marks the top of the oceanic crust, followed by a positive pulse, which indicates the base of the oceanic crust, can be used to map the slab's structure. Depths to Moho and oceanic crustal thicknesses estimated from RF results provide new, more detailed regional maps. An improved depth to continental Moho map shows depths of more than 70 km in the main Cordillera and ˜50 km in the western Sierras Pampeanas, that shallow to ˜35 km in the eastern Sierras Pampeanas. Depth to Moho contours roughly follow terrane boundaries. Offshore, the hotspot seamount chain of the Juan Fernández Ridge (JFR) is thought to create overthickened oceanic crust, providing a mechanism for flat slab subduction. By comparing synthetic RFs, based on various structures, to the observed RF signal we determine that the thickness of the oceanic crust at the top of the slab averages at least ˜13-19 km, supporting the idea of a moderately overthickened crust to provide the additional buoyancy for the slab to remain flat. The overthickened region is broader than the area directly aligned with the path of the JFR, however, and indicates, along with the slab earthquake locations, that the flat slab area is wider than the JFR volcanic chain observed in the offshore bathymetry. Further, RFs indicate that the subducted oceanic crust in the region directly along the path of the subducted ridge is broken by trench-parallel faults. One explanation for these faults is that they are older structures within the oceanic crust that were created when the slab subducted. Alternatively, it is possible that faults formed recently from tectonic underplating caused by increased interplate coupling in the flat slab region.
Seismic imaging of extended crust with emphasis on the western United States
McCarthy, J.; Thompson, G.A.
1988-01-01
Understanding of the crust has improved dramatically following the application of seismic reflection and refraction techniques to studies of the deep crust. This is particularly true in areas where the last tectonic event was extensional, such as the Basin and Range province of the western United States and much of western Europe. In these regions, a characteristic reflective pattern has emerged, whereby the lower crust is highly reflective and the upper crust and upper mantle are either poorly reflective or strikingly nonreflective. In the metamorphic-core-complex belt in the western United States, where extension can be as much as an order of magnitude greater than in the more classic continental rift zones, the lower crustal reflectivity thickens and rises, yielding a picture of a crust that is reflective throughout. If metamorphic core complexes are representative of extended continental crust world-wide, then these results suggest that magmatism and ductile flow have also contributed to the evolution of the middle and lower crust in many other areas around the world. -from Authors
Subduction starts by stripping slabs
NASA Astrophysics Data System (ADS)
Soret, Mathieu; Agard, Philippe; Dubacq, Benoît; Prigent, Cécile; Plunder, Alexis; Yamato, Philippe; Guillot, Stéphane
2017-04-01
Metamorphic soles correspond to tectonic slices welded beneath most large-scale ophiolites. These slivers of oceanic crust metamorphosed up to granulite facies conditions are interpreted as having formed during the first My of intra-oceanic subduction from heat transfer from the incipient mantle wedge towards the top of the subducting plate. Our study reappraises the formation of metamorphic sole through detailed field and petrological work on three classical key sections across the Semail ophiolite (Oman and United Arab Emirates). Geothermobarometry and thermodynamic modelling show that metamorphic soles do not record a continuous temperature gradient, as expected from simple heating by the upper plate or by shear heating and proposed by previous studies. The upper, high-temperature metamorphic sole is subdivided in at least two units, testifying to the stepwise formation, detachment and accretion of successive slices from the downgoing slab to the mylonitic base of the ophiolite. Estimated peak pressure-temperature conditions through the metamorphic sole are, from top to bottom, 850˚C - 1GPa, 725°C - 0.8 GPa and 530°C - 0.5 GPa. These estimates appear constant within each unit but separated by a gap of 100 to 200˚C and 0.2 GPa. Despite being separated by hundreds of kilometres below the Semail ophiolite and having contrasting locations with respect to the ophiolite ridge axis, metamorphic soles show no evidence for significant petrological variations along strike. These constraints allow to refine the tectonic-petrological model for the genesis of metamorphic soles, formed through the stepwise stacking of several homogeneous slivers of oceanic crust and its sedimentary cover. Metamorphic soles do not so much result from downward heat transfer (ironing effect) but rather from progressive metamorphism during strain localization and cooling of the plate interface. The successive thrusts are the result of rheological contrasts between the sole (initially at the subducting slab) and the peridotite above as the plate interface progressively cools down. These findings have implications for the thickness, the scale and the coupling state at the plate interface during the early history of subduction/obduction systems.
Seismic Evidence for Widespread Serpentinized Forearc Mantle Along the Mariana Convergence Margin
NASA Astrophysics Data System (ADS)
Tibi, R.; Wiens, D. A.
2007-12-01
We use P-to-S converted phases from teleseisms recorded at broadband stations in the Mariana Islands to image the forearc and arc regions of the Mariana convergence margin. The Moho in the subducting Pacific plate is observed at depths between 75 and 110 km beneath the region extending from Rota to Saipan. The S-wave velocity in the subducting crust is inferred to be ~10% slower than the surrounding mantle. This demonstrates that the crust has not yet undergone conversion to eclogite at these depths, in agreement with observations made for other arcs. A low velocity zone (LVZ), approximately 10--25 km thick, whose upper boundary is imaged at about 40--55 km depth, is detected in the forearc region of the mantle wedge along the entire margin. The anomaly is located too shallow to represent subducted oceanic crust. We interpret the LVZ as a serpentinized region in the forearc mantle, resulting from hydration by slab-expelled water. The occurrence of the serpentinized zone along the entire margin suggests that serpentinization of the forearc mantle is a widespread phenomenon in the Mariana arc. The inferred S wave velocity in the LVZ of as low as ~3.6 km/s represents a level of serpentinization of 30--50%, corresponding to a water content of about 4--6 wt%.
NASA Astrophysics Data System (ADS)
Rodkin, Mikhail; Punanova, Svetlana
2016-04-01
The goal of this research was to estimate, based on the content of Trace Elements, the level of contribution of the lower and the upper crust as well as the organic matter into ontogenesis of hydrocarbons. The analysis of degree of similarity of the main and trace element (TE) content among the upper and lower continental crust, clays, organic matter, and different caustobioliths (oil, coal, oil-and-black shales) is performed by calculating coefficients of correlation of logarithms of concentrations of a large number of different chemical elements. Different oils from a number of oil bearing provinces in Russia and from the volcanic caldera Uzon (Kamchatka, Russia) were examined. It has been shown that the content of main elements and TEs of coals and oil-and-black shales is better correlated with the chemical composition of the upper crust, while the TE content of oils correlates better with the composition of the lower continental crust. The TE content of oils correlates with the chemical content of living organisms but the correlation in the most cases is weaker than the one with the lower crust. The results of the examination of different samples from the same oil-bearing province were found to be similar. The mean results for different oil-bearing provinces can vary considerably. The results of the examination of young oil from the Uzon volcanic caldera were found to be rather specific and different from the other oils. We also suggest a set of a small number of "characteristic" elements (Cs, Rb, K, U, V, Cr and Ni), which allows to compare the degree of similarity between an oil sample and upper or lower continental crust using only a few chemical elements. Some interpretation of the results is presented.
NASA Astrophysics Data System (ADS)
Comeau, Matthew J.; Käufl, Johannes S.; Becken, Michael; Kuvshinov, Alexey; Grayver, Alexander V.; Kamm, Jochen; Demberel, Sodnomsambuu; Sukhbaatar, Usnikh; Batmagnai, Erdenechimeg
2018-04-01
The Hangai Dome, Mongolia, is an unusual high-elevation, intra-continental plateau characterized by dispersed, low-volume, intraplate volcanism. Its subsurface structure and its origin remains unexplained, due in part to a lack of high-resolution geophysical data. Magnetotelluric data along a ∼610 km profile crossing the Hangai Dome were used to generate electrical resistivity models of the crust and upper mantle. The crust is found to be unexpectedly heterogeneous. The upper crust is highly resistive but contains several features interpreted as ancient fluid pathways and fault zones, including the South Hangai fault system and ophiolite belt that is revealed to be a major crustal boundary. South of the Hangai Dome a clear transition in crustal properties is observed which reflects the rheological differences across accreted terranes. The lower crust contains discrete zones of low-resistivity material that indicate the presence of fluids and a weakened lower crust. The upper mantle contains a large low-resistivity zone that is consistent with the presence of partial melt within an asthenospheric upwelling, believed to be driving intraplate volcanism and supporting uplift.
NASA Astrophysics Data System (ADS)
Lewis, M.; Bucholz, C. E.; Jagoutz, O. E.; Eddy, M. P.
2017-12-01
Magmatic differentiation in arc settings is likely a polybaric process, with crystallization of primitive basalts occurring primarily in the lower crust and more evolved melts in the upper crust. The general lack of mafic-ultramafic cumulates in the silicic paleo-arc upper crust supports this model. However, the Sierra Nevada Batholith preserves numerous mafic intrusions up to 25 km2, suggesting that significant volumes of mafic magma may differentiate at shallow crustal levels. Previous studies on several such intrusions report ages contemporaneous with Cretaceous batholith emplacement (Coleman et al., 1995), but only a few have investigated their chemistry and relationship to arc magmatism (Frost, 1987; Frost & Mahood, 1987; Sisson et al., 1996). We present field observations, petrography, mineral chemistry, and bulk rock compositional data for the Hidden Lakes Mafic Complex (HLMC), located in the Central Sierra Nevada Batholith. Preliminary CA-ID-TIMS U-Pb zircon ages constrain crystallization between 90 and 95 Ma, slightly older than the surrounding Cretaceous felsic plutons (89-90 Ma) and younger than adjacent Jurassic granodiorites (172 Ma). This 2.2 km2 complex consists of biotite+amphibole gabbros through qtz-monzonites, in gradational contact, and contains local pods of biotite- and amphibole-bearing olivine-orthopyroxenites and gabbronorites. Mineral compositions and field relations suggest that these lithologies were derived from a common crystallization sequence. The most primitive olivine-pyroxenite contains olivine and orthopyroxene in equilibrium with a melt with Mg# 54. Subsequent crystallization over a temperature range of 1025 to 700°C produced more evolved lithologies up to qtz-monzonites. Al-in-hornblende calculations for HLMC qtz-monzonites indicate a crystallization depth of 9-10 km, well into the upper crust. The early crystallization of amphibole requires a parental basalt with >6 wt% H2O, which may have enabled it to ascend into the upper crust due to decreased density and viscosity. However, the estimated parental melt is not primitive (rather than Mg# 70), suggesting that differentiation of a more mafic precursor parental melt in the lower crust modified the chemistry and rheological properties of the melt prior to its ascent into the upper crust.
NASA Astrophysics Data System (ADS)
Tekin, U. Kagan; Bedi, Yavuz; Okuyucu, Cengiz; Göncüoglu, M. Cemal; Sayit, Kaan
2016-12-01
The Mersin Ophiolitic Complex located in southern Turkey comprises two main structural units; the Mersin Mélange, and a well-developed ophiolite succession with its metamorphic sole. The Mersin Mélange is a sedimentary complex including blocks and tectonic slices of oceanic litosphere and continental crust in different sizes. Based on different fossil groups (Radiolaria, Conodonta, Foraminifera and Ammonoidea), the age of these blocks ranges from Early Carboniferous to early Late Cretaceous. Detailed fieldwork in the central part of the Mersin Mélange resulted in identification of a number of peculiar blocks of thick basaltic pillow-and massive lava sequences alternating with pelagic-clastic sediments and radiolarian cherts. The oldest ages obtained from the radiolarian assemblages from the pelagic sediments transitional to the volcano-sedimentary succession in some blocks are middle to late Late Anisian. These pelagic sediments are overlain by thick sandstones of latest Anisian to middle Early Ladinian age. In some blocks, sandstones are overlain by clastic and pelagic sediments with lower Upper to middle Upper Ladinian radiolarian fauna. Considering the litho- and biostratigraphical data from Middle Triassic successions in several blocks in the Mersin Mélange, it is concluded that they correspond mainly to the blocks/slices of the Beysehir-Hoyran Nappes, which were originated from the southern margin of the Neotethyan Izmir-Ankara Ocean. As the pre-Upper Anisian basic volcanics are geochemically evaluated as back-arc basalts, this new age finding suggest that a segment of the Izmir-Ankara branch of the Neotethys was already open prior to Middle Triassic and was the site of intraoceanic subduction.
NASA Astrophysics Data System (ADS)
Tetreault, J. L.; Buiter, S. J. H.
2012-08-01
Crustal growth at convergent margins can occur by the accretion of future allochthonous terranes (FATs), such as island arcs, oceanic plateaus, submarine ridges, and continental fragments. Using geodynamic numerical experiments, we demonstrate how crustal properties of FATs impact the amount of FAT crust that is accreted or subducted, the type of accretionary process, and the style of deformation on the overriding plate. Our results show that (1) accretion of crustal units occurs when there is a weak detachment layer within the FAT, (2) the depth of detachment controls the amount of crust accreted onto the overriding plate, and (3) lithospheric buoyancy does not prevent FAT subduction during constant convergence. Island arcs, oceanic plateaus, and continental fragments will completely subduct, despite having buoyant lithospheric densities, if they have rheologically strong crusts. Weak basal layers, representing pre-existing weaknesses or detachment layers, will either lead to underplating of faulted blocks of FAT crust to the overriding plate or collision and suturing of an unbroken FAT crust. Our experiments show that the weak, ultramafic layer found at the base of island arcs and oceanic plateaus plays a significant role in terrane accretion. The different types of accretionary processes also affect deformation and uplift patterns in the overriding plate, trench migration and jumping, and the dip of the plate interface. The resulting accreted terranes produced from our numerical experiments resemble observed accreted terranes, such as the Wrangellia Terrane and Klamath Mountain terranes in the North American Cordilleran Belt.
Howard, K.A.
2003-01-01
The deep crustal rocks exposed in the Ruby-East Humboldt metamorphic core complex, northeastern Nevada, provide a guide for reconstructing Eocene crustal structure ~50 km to the west near the Carlin trend of gold deposits. The deep crustal rocks, in the footwall of a west-dipping normal-sense shear system, may have underlain the Pinon and Adobe Ranges about 50 km to the west before Tertiary extension, close to or under part of the Carlin trend. Eocene lakes formed on the hanging wall of the fault system during an early phase of extension and may have been linked to a fluid reservoir for hydrothermal circulation. The magnitude and timing of Paleogene extension remain indistinct, but dikes and tilt axes in the upper crust indicate that spreading was east-west to northwest-southeast, perpendicular to a Paleozoic and Mesozoic orogen that the spreading overprinted. High geothermal gradients associated with Eocene or older crustal thinning may have contributed to hydrothermal circulation in the upper crust. Late Eocene eruptions, upper crustal dike intrusion, and gold mineralization approximately coincided temporally with deep intrusion of Eocene sills of granite and quartz diorite and shallower intrusion of the Harrison Pass pluton into the core-complex rocks. Stacked Mesozoic nappes of metamorphosed Paleozoic and Precambrian rocks in the core complex lay at least 13 to 20 km deep in Eocene time, on the basis of geobarometry studies. In the northern part of the complex, the presently exposed rocks had been even deeper in the late Mesozoic, to >30 km depths, before losing part of their cover by Eocene time. Nappes in the core plunge northward beneath the originally thicker Mesozoic tectonic cover in the north part of the core complex. Mesozoic nappes and tectonic wedging likely occupied the thickened midlevel crustal section between the deep crustal core-complex intrusions and nappes and the overlying upper crust. These structures, as well as the subsequent large-displacement Cenozoic extensional faulting and flow in the deep crust, would be expected to blur the expression of any regional structural roots that could correlate with mineral belts. Structural mismatch of the mineralized upper crust and the tectonically complex middle crust suggests that the Carlin trend relates not to subjacent deeply penetrating rooted structures but to favorable upper crustal host rocks aligned within a relatively coherent regional block of upper crust.
Arctic and N Atlantic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Alvey, Andy
2014-05-01
The ocean basins of the Arctic and N. Atlantic formed during the Mesozoic and Cenozoic as a series of distinct ocean basins, both small and large, leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. The plate tectonic framework of this region was demonstrated by the pioneering work of Peter Ziegler in AAPG Memoir 43 " Evolution of the Arctic-North Atlantic and the Western Tethys" published in 1988. The spatial evolution of Arctic Ocean and N Atlantic ocean basin geometry and bathymetry are critical not only for hydrocarbon exploration but also for understanding regional palaeo-oceanography and ocean gateway connectivity, and its influence on global climate. Mapping crustal thickness and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. Using gravity anomaly inversion we have produced comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic and N Atlantic region, We determine Moho depth, crustal basement thickness, continental lithosphere thinning and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). Gravity anomaly and bathymetry data used in the gravity inversion are from the NGA (U) Arctic Gravity Project and IBCAO respectively; sediment thickness is from a new regional compilation. The resulting maps of crustal thickness and continental lithosphere thinning factor are used to determine continent-ocean boundary location and the distribution of oceanic lithosphere. Crustal cross-sections using Moho depth from the gravity inversion allow continent-ocean transition structure to be determined and magmatic type (magma poor, "normal" or magma rich). Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Eurasia, Canada, Makarov, Podvodnikov and Baffin Basins consistent with these basins being oceanic. Larger crustal thicknesses, in the range 20 - 30 km, are predicted for the Lomonosov, Alpha and Mendeleev Ridges. Crustal basement thicknesses of 10-15 km are predicted under the Laptev Sea which is interpreted as highly thinned continental crust formed at the eastward continuation of Eurasia Basin sea-floor spreading. Thin continental or oceanic crust of thickness 7 km or less is predicted under the North Chukchi Basin and has major implications for understanding the Mesozoic and Cenozoic plate tectonic history of the Siberian and Chukchi Amerasia Basin margins. Restoration of crustal thickness and continent-ocean boundary location from gravity inversion may be used to test and refine plate tectonic reconstructions. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory within the Arctic and N Atlantic basins. By restoring crustal thickness & continental lithosphere thinning maps of the Eurasia Basin & NE Atlantic to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. We interpret gravity inversion crustal thicknesses underneath Morris Jessop Rise & Yermak Plateau as continental crust which provided a barrier to the tectonic and palaeo-oceanic linkage between the Arctic & North Atlantic until the Oligocene. Before this time, we link the seafloor spreading within the Eurasia Basin to that in Baffin Bay.
In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.
Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J
2015-01-01
The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.
NASA Astrophysics Data System (ADS)
Scherwath, M.; Kopp, H.; Flueh, E. R.; Henrys, S. A.; Sutherland, R.
2008-12-01
The Hikurangi-Kermadec subduction zone northeast of New Zealand represents an ideal target to study lateral variations of subduction zone processes. The incoming Pacific plate changes from being a large igneous province, called the Hikurangi Plateau, in the south to normal oceanic plate north of the Rapuhia Scarp. The overriding Australian plate of continental character in the south, forming the North Island of New Zealand, and changes to an island arc in the north. Further lateral variability exists in changes in volcanic and hydro-thermal activity, transitions from accretion to subduction erosion, backarc spreading and rifting, and is accompanied by northward increasing seismicity. As part of the MANGO project (Marine Geoscientific Investigations on the Input and Output of the Kermadec Subduction Zone), four marine geophysical transects of largely seismic reflection and refraction data provide constraints on the upper lithospheric structures across the Hikurangi-Kermadec Trench between 29-38 deg S. On MANGO profile 1 in the south, the initially shallow subduction of the incoming plateau coincides with crustal underplating beneath the East Cape ridge. To the west lies the 100 km wide and over 10 km deep Raukumara Basin. Seismic velocities of the upper mantle of both plates are around 8 km/s and are considered normal. In contrast, on MANGO profile 4, about 1000 km to the north around the volcanically active Raoul Island, the incoming oceanic crust appears to bend considerably steeper and thus causes a 50 km narrower forearc with a smaller forearc basin. Furthermore, the upper mantle velocities in both plates are relatively low (7.4-7.7 km/s), likely indicating strong bending related deformation of the incoming plate and thermal activity within the arc possibly due to spreading. The central two transects MANGO 2 and 3, though without data coverage of the structure of the incoming plate, are more similar to MANGO 4. The arc regions appear to be strongly affected by the activity of the arc. The arc crust of the northern MANGO 3 becomes significantly thinner in the backarc region due to extension, whereas the data from MANGO 2 likely show thermal activity from the adjacent arc volcanism.
NASA Astrophysics Data System (ADS)
Grevemeyer, Ingo; Kodaira, Shuichi; Fujie, Gou; Takahashi, Narumi
2017-04-01
The proto Izu-Ogasawara (Bonin)-Mariana (IBM) Island arc was created when subduction of the Pacific plate began during the Eocene. Today, the Kyushu-Palau Ridge (KPR) at the centre of the Philippine Sea and the western Mariana Ridge (WMR) are considered to be a remnant of the proto IBM Island arc. The KPR and WMR were separated when back-arc spreading began at 30 to 29 Ma in the Shikoku Basin and ParceVela Basin (PVB). Volcanic activity along the arcs diminished at 27 Ma and there is little evidence of volcanic activity between 23-17 Ma. Arc volcanism was reactivated at 15 Ma, when the opening of the Shikoku Basin and PVB ceased. At about 5 Ma the Mariana Basin opened, rifting the WMR from the Mariana arc. Here, we report results from the seismic refraction and wide-angle profile MR101c shot in summer of 2003 by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) aboard the RV KAIYO during the cruise KY03-06, extending from the PVB across the WMR and terminating just to the east of the WMR. Along MR101c 46 OBS recorded shots from an airgun array of 12,000 cubic inches (197 litres); 44 OBS provided excellent P-wave data, including arrivals sampling the crust (Pg), the crust/mantle boundary (PmP), the uppermost mantle (Pn) and a deep reflection (PnP) under the WMR. To yield the seismic velocity structure, we used a joint reflection and refraction tomography, revealing the crustal and mantle P-wave velocity structure, the seismic Moho, and a deep-seated reflector. Distinct features are a 14 km thick crust forming the WMR, a high-velocity lower crust in both transition zones to the ParceVela Basin and Mariana Basin, and a reflector at 24 km depth, which shallows to 18 km in the transition zone to the Mariana Basin, perhaps reflecting rifting-related thinning of the entire lithosphere. The deep-reflector, however, did not occur under the PVB. Upper mantle velocity below the WMR is <7.5 km/s. High velocities of the lower crust of the WMR flanking the adjacent basins mimic the structure found in the Lau Basin - Tonga Arc system, perhaps indicating entrainment of hydrous melts from the adjacent arc governing early seafloor spreading when the spreading centre was at close distant to the volcanic arc. Upper mantle below the PVB shows typical mantle properties, supporting a P-wave velocity of >8 km/s. However, with respect to oceanic crust sampled in the Pacific Basin, PVB crust is with 5 km thinner and seismic velocities in the lower crust are with 6.7 km/s much lower.