Sample records for upper ocean properties

  1. Understanding the dimensional and mechanical properties of coastal Langmuir Circulations

    NASA Astrophysics Data System (ADS)

    Shrestha, Kalyan; Kuehl, Joseph; Anderson, William

    2017-11-01

    Non-linear interaction of surface waves and wind-driven shear instability in the upper ocean mixed layer form counter-rotating vortical structures called Langmuir Circulations. This oceanic microscale turbulence is one of the key contributors of mixing and vertical transport in the upper ocean mixed layer. Langmuir turbulence in the open (deep) ocean has already been the topic of a large research effort. However, coastal Langmuir cells are distinctly different from Langmuir cells in open-ocean regions, where additional bottom-boundary layer shear alters the kinematic properties of Langmuir cells. For this study, we have conducted a wide-ranging numerical study (solving the grid-filtered Craik-Leibovich equations) of coastal Langmuir turbulence, assessing which parameters affect Langmuir cells and defining the parametric hierarchy. The Stokes profile (aggregate velocity due to orbital wave motion) is functionally dependent on Stokes drift velocity and wavenumber of the surface waves. We explain that these parameters, which correspond to the environmental forcing variables, control the horizontal and vertical length scales of Langmuir cell respectively. This result is important in understanding the transport and dispersion of materials in the upper mixed layer of coastal ocean. We argue that wind stress is a parameter governing the strength of Langmuir cells.

  2. Rayleigh Wave Phase Velocity in the Upper Mantle Beneath the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Godfrey, K. E.; Dalton, C. A.; Ritsema, J.

    2016-12-01

    Most of what is currently understood about the seismic properties of oceanic upper mantle is based on either global studies or regional studies of the upper mantle beneath the Pacific Ocean. However, global seismic models and geochemical studies of mid-ocean ridge basalts indicate differences in the properties of the upper mantle beneath the Pacific, Atlantic, and Indian oceans. Though the Indian Ocean is not as well studied seismically, it is host to a number of geologically interesting features including 16,000 km of mid-ocean ridge with a range of spreading rates from 14 mm/yr along the Southwest Indian Ridge to 55-75 mm/yr along the Southeast Indian Ridge. The Indian Ocean also contains multiple volcanic hotspots, the Australian-Antarctic Discordance, and a low geoid anomaly south of India, and it overlies a portion of a large low-shear-velocity province. We are using Rayleigh waves to construct a high-resolution seismic velocity model of the Indian Ocean upper mantle. We utilize a global dataset of phase delays measured at 20 periods, between 37 and 375 seconds; the dataset includes between 700 and 20,000 that traverse our study region exclusively, with a larger number of paths at shorter periods. We explore variations in phase velocity using two separate approaches. One, we allow phase velocity to vary only as a function of seafloor age. Two, we perform a damped least-squares inversion to solve for 2-D phase velocity maps at each period. Preliminary results indicate low velocities along the Southeast Indian Ridge and Central Indian Ridge, but the expected low velocities are less apparent along the slow-spreading Southwest Indian Ridge. We observe a region of fast velocities extending from Antarctica northward between the Kerguelen and Crozet hotspots, and lower than expected velocities beneath the Reunion hotspot. Additionally, we find low velocities associated with a region of extinct seafloor spreading in the Wharton basin.

  3. Multi-model attribution of upper-ocean temperature changes using an isothermal approach.

    PubMed

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  4. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    NASA Astrophysics Data System (ADS)

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  5. Overview of the Frontal Air-Sea Interaction Experiment (FASINEX) - A study of air-sea interaction in a region of strong oceanic gradients

    NASA Technical Reports Server (NTRS)

    Weller, Robert A.

    1991-01-01

    From 1984 to 1986 the cooperative Frontal Air-Sea Interaction Experiment (FASINEX) was conducted in the subtropical convergence zone southwest of Bermuda. The overall objective of the experiment was to study air-sea interaction on 1- to 100-km horizontal scales in a region of the open ocean characterized by strong horizontal gradients in upper ocean and sea surface properties. Ocean fronts provided both large spatial gradients in sea surface temperature and strong jetlike flows in the upper ocean. The motivation for and detailed objectives of FASINEX are reviewed. Then the components of the field program are summarized. Finally, selected results are presented in order to provide an overview of the outcome of FASINEX.

  6. Characterizing the chaotic nature of ocean ventilation

    NASA Astrophysics Data System (ADS)

    MacGilchrist, Graeme A.; Marshall, David P.; Johnson, Helen L.; Lique, Camille; Thomas, Matthew

    2017-09-01

    Ventilation of the upper ocean plays an important role in climate variability on interannual to decadal timescales by influencing the exchange of heat and carbon dioxide between the atmosphere and ocean. The turbulent nature of ocean circulation, manifest in a vigorous mesoscale eddy field, means that pathways of ventilation, once thought to be quasi-laminar, are in fact highly chaotic. We characterize the chaotic nature of ventilation pathways according to a nondimensional "filamentation number," which estimates the reduction in filament width of a ventilated fluid parcel due to mesoscale strain. In the subtropical North Atlantic of an eddy-permitting ocean model, the filamentation number is large everywhere across three upper ocean density surfaces—implying highly chaotic ventilation pathways—and increases with depth. By mapping surface ocean properties onto these density surfaces, we directly resolve the highly filamented structure and confirm that the filamentation number captures its spatial variability. These results have implications for the spreading of atmospherically-derived tracers into the ocean interior.

  7. Variability of upper ocean thermohaline structure during a MJO event from DYNAMO aircraft observations

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Wang, Qing; Kalogiros, John; Guy, Nick; Jorgensen, David P.

    2017-02-01

    This paper reports upper ocean thermohaline structure and variability observed during the life cycle of an intense Madden Julian Oscillation (MJO) event occurred in the southern tropical Indian Ocean (14°S-Eq, 70°E-81°E). Water column measurements for this study were collected using airborne expendable probes deployed from NOAA's WP-3D Orion aircraft operated as a part of Dynamics of MJO field experiment conducted during November-December 2011. Purpose of the study is twofold; (1) to provide a statistical analysis of the upper ocean properties observed during different phases of MJO and, (2) to investigate how the upper ocean thermohaline structure evolved in the study region in response to the MJO induced perturbation. During the active phase of MJO, mixed layer depth (MLD) had a characteristic bimodal distribution. Primary and secondary modes were at ˜34 m and ˜65 m, respectively. Spatial heterogeneity of the upper ocean response to the MJO forcing was the plausible reason for bimodal distribution. Thermocline and isothermal layer depth deepened, respectively, by 13 and 19 m from the suppressed through the restoring phase of MJO. Thicker (>30 m) barrier layers were found to occur more frequently in the active phase of MJO, associated with convective rainfalls. Additionally, the water mass analysis indicated that, in the active phase of this MJO event the subsurface was dominated by Indonesian throughflow, nonetheless intrusion of Arabian Sea high saline water was also noted near the equator.

  8. Asthenosphere rheology inferred from observations of the 2012 Indian Ocean earthquake.

    PubMed

    Hu, Yan; Bürgmann, Roland; Banerjee, Paramesh; Feng, Lujia; Hill, Emma M; Ito, Takeo; Tabei, Takao; Wang, Kelin

    2016-10-20

    The concept of a weak asthenospheric layer underlying Earth's mobile tectonic plates is fundamental to our understanding of mantle convection and plate tectonics. However, little is known about the mechanical properties of the asthenosphere (the part of the upper mantle below the lithosphere) underlying the oceanic crust, which covers about 60 per cent of Earth's surface. Great earthquakes cause large coseismic crustal deformation in areas hundreds of kilometres away from and below the rupture area. Subsequent relaxation of the earthquake-induced stresses in the viscoelastic upper mantle leads to prolonged postseismic crustal deformation that may last several decades and can be recorded with geodetic methods. The observed postseismic deformation helps us to understand the rheological properties of the upper mantle, but so far such measurements have been limited to continental-plate boundary zones. Here we consider the postseismic deformation of the very large (moment magnitude 8.6) 2012 Indian Ocean earthquake to provide by far the most direct constraint on the structure of oceanic mantle rheology. In the first three years after the Indian Ocean earthquake, 37 continuous Global Navigation Satellite Systems stations in the region underwent horizontal northeastward displacements of up to 17 centimetres in a direction similar to that of the coseismic offsets. However, a few stations close to the rupture area that had experienced subsidence of up to about 4 centimetres during the earthquake rose by nearly 7 centimetres after the earthquake. Our three-dimensional viscoelastic finite-element models of the post-earthquake deformation show that a thin (30-200 kilometres), low-viscosity (having a steady-state Maxwell viscosity of (0.5-10) × 10 18 pascal seconds) asthenospheric layer beneath the elastic oceanic lithosphere is required to produce the observed postseismic uplift.

  9. Lateral variation in upper mantle temperature and composition beneath mid-ocean ridges inferred from shear-wave propagation, geoid, and bathymetry. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sheehan, Anne Francis

    1991-01-01

    Resolution of both the extent and mechanism of lateral heterogeneity in the upper mantle constraints the nature and scales of mantle convection. Oceanic regions are of particular interest as they are likely to provide the closest glimpse at the patterns of temperature anomalies and convective flow in the upper mantle because of their young age and simple crustal structure relative to continental regions. Lateral variations were determined in the seismic velocity and attenuation structure of the lithosphere and astenosphere beneath the oceans, and these seismological observations were combined with the data and theory of geoid and bathymetry anomalies in order to test and improve current models for seafloor spreading and mantle convection. Variations were determined in mantle properties on a scale of about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity, geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density, and inversions were formulated to combine quantitatively these different data and to search for a common origin. Variations in mantle density can be either of thermal or compositional origin and are related to mantle convection or differentiation.

  10. Tidal Impacts on Oceanographic and Sea-ice Processes in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Padman, L.; Muench, R. D.; Howard, S.; Mueller, R.

    2008-12-01

    We review recent field and modeling results that demonstrate the importance of tides in establishing the oceanographic and sea-ice conditions in the boundary regions of the Southern Ocean. The tidal component dominates the total oceanic kinetic energy throughout much of the circum-Antarctic seas. This domination is especially pronounced over the continental slope and shelf including the sub-ice-shelf cavities. Tides provide most of the energy that forces diapycnal mixing under ice shelves and thereby contributes to basal melting. The resulting Ice Shelf Water is a significant component of the Antarctic Bottom Water (AABW) filling much of the deep global ocean. Tides exert significant divergent forcing on sea ice along glacial ice fronts and coastal regions, contributing to creation and maintenance of the coastal polynyas where much of the High Salinity Shelf Water component of AABW is formed. Additional tidally forced ice divergence along the shelf break and upper slope significantly impacts area-averaged ice growth and upper-ocean salinity. Tidally forced cross- slope advection, and mixing by the benthic stress associated with tidal currents along the shelf break and upper slope, strongly influence the paths, volume fluxes and hydrographic properties of benthic outflows of dense water leaving the continental shelf. These outflows provide primary source waters for the AABW. These results confirm that general ocean circulation and coupled ocean/ice/atmosphere climate models must incorporate the impacts of tides.

  11. Langmuir cells and mixing in the upper ocean

    NASA Astrophysics Data System (ADS)

    Carniel, S.; Sclavo, M.; Kantha, L. H.; Clayson, C. A.

    2005-01-01

    The presence of surface gravity waves at the ocean surface has two important effects on turbulence in the oceanic mixed layer (ML): the wave breaking and the Langmuir cells (LC). Both these effects act as additional sources of turbulent kinetic energy (TKE) in the oceanic ML, and hence are important to mixing in the upper ocean. The breaking of high wave-number components of the wind wave spectrum provides an intense but sporadic source of turbulence in the upper surface; turbulence thus injected diffuses downward, while decaying rapidly, modifying oceanic near-surface properties which in turn could affect the air-sea transfer of heat and dissolved gases. LC provide another source of additional turbulence in the water column; they are counter-rotating cells inside the ML, with their axes roughly aligned in the direction of the wind (Langmuir I., Science871938119). These structures are usually made evident by the presence of debris and foam in the convergence area of the cells, and are generated by the interaction of the wave-field-induced Stokes drift with the wind-induced shear stress. LC have long been thought to have a substantial influence on mixing in the upper ocean, but the difficulty in their parameterization have made ML modelers consistently ignore them in the past. However, recent Large Eddy Simulations (LES) studies suggest that it is possible to include their effect on mixing by simply adding additional production terms in the turbulence equations, thus enabling even 1D models to incorporate LC-driven turbulence. Since LC also modify the Coriolis terms in the mean momentum equations by the addition of a term involving the Stokes drift, their effect on the velocity structure in the ML is also quite significant and could have a major impact on the drift of objects and spilled oil in the upper ocean. In this paper we examine the effect of surface gravity waves on mixing in the upper ocean, focusing on Langmuir circulations, which is by far the dominant part of the surface wave contribution to mixing. Oceanic ML models incorporating these effects are applied to an observation station in the Northern Adriatic Sea to see what the extent of these effects might be. It is shown that the surface wave effects can indeed be significant; in particular, the modification of the velocity profile due to LC-generated turbulence can be large under certain conditions. However, the surface wave effects on the bulk properties of the ML, such as the associated temperature, while significant, are generally speaking well within the errors introduced by uncertainties in the external forcing of the models. This seems to be the reason why ML models, though pretty much ignoring surface wave effects until recently, have been reasonably successful in depicting the evolution of the mixed layer temperature (MLT) at various timescales.

  12. Lambert-Beer law in ocean waters: optical properties of water and of dissolved/suspended material, optical energy budgets.

    PubMed

    Stavn, R H

    1988-01-15

    The role of the Lambert-Beer law in ocean optics is critically examined. The Lambert-Beer law and the three-parameter model of the submarine light field are used to construct an optical energy budget for any hydrosol. It is further applied to the analytical exponential decay coefficient of the light field and used to estimate the optical properties and effects of the dissolved/suspended component in upper ocean layers. The concepts of the empirical exponential decay coefficient (diffuse attenuation coefficient) of the light field and a constant exponential decay coefficient for molecular water are analyzed quantitatively. A constant exponential decay coefficient for water is rejected. The analytical exponential decay coefficient is used to analyze optical gradients in ocean waters.

  13. Uppermost oceanic crust structure and properties from multichannel seismic data at the Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Becel, A.; Carton, H. D.; Shillington, D. J.

    2017-12-01

    The most heterogeneous, porous and permeable layer within a subducting oceanic crust is the uppermost layer called Layer 2A. This layer, made of extrusive basalts, forms at the ridge axis and persists as a thin ( 600 m) low-velocity cap in old crust. Nearing the trench axis, when oceanic plate bends, normal faults can be formed or reactivated at the outer-rise allowing a more vigorous hydrothermal circulation to resume within this layer. Porosity and heterogeneity within this layer are important to assess because these parameters might have a profound impact on subduction zone processes. However, conventional refraction data quality is rarely good enough to look into detail into the properties of the uppermost oceanic layer. Here we use 2D marine long-offset multi-channel seismic (MCS) reflection data collected offshore of the Alaska Peninsula during the ALEUT Program. The dataset was acquired aboard the R/V Marcus Langseth with a 636-channels, 8-km long streamer. We present initial results from three 140 km long profiles across the 52-56Myr old incoming Pacific oceanic crust formed at fast spreading rate: two perpendicular margin and one parallel margin profiles. Those profiles are located outboard of the Shumagin gaps. Outboard of this subduction zone segment, abundant bending related normal faults are imaged and concentrated within 50-60 km of the trench. Long-offset MCS data exhibit a prominent triplication that includes postcritical reflections and turning waves within the upper crust at offsets larger than 3 km. The triplication suggests the presence of a velocity discontinuity within the upper oceanic crust. We follow a systematic and uniform approach to extract upper crustal post-critical reflections and add them to them to the vertical incidence MCS images. Images reveal small-scale variations in the thickness of the Layer 2A and the strength of its base along the profiles. The second step consists of the downward continuation followed by travel-time modeling of the long streamer data. The downward continuation of the shots and receivers appears to be essential to unravel the refracted energy in the upper crust and is used to determine the detailed velocity-depth structure.

  14. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the Goddard Institute for Space Studies (GISS) 8 deg x lO deg atmospheric General Circulation Model (GCM) to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  15. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the GISS 8 deg x lO deg atmospheric GCM to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  16. Global Ocean Vertical Velocity From a Dynamically Consistent Ocean State Estimate

    NASA Astrophysics Data System (ADS)

    Liang, Xinfeng; Spall, Michael; Wunsch, Carl

    2017-10-01

    Estimates of the global ocean vertical velocities (Eulerian, eddy-induced, and residual) from a dynamically consistent and data-constrained ocean state estimate are presented and analyzed. Conventional patterns of vertical velocity, Ekman pumping, appear in the upper ocean, with topographic dominance at depth. Intense and vertically coherent upwelling and downwelling occur in the Southern Ocean, which are likely due to the interaction of the Antarctic Circumpolar Current and large-scale topographic features and are generally canceled out in the conventional zonally averaged results. These "elevators" at high latitudes connect the upper to the deep and abyssal oceans and working together with isopycnal mixing are likely a mechanism, in addition to the formation of deep and abyssal waters, for fast responses of the deep and abyssal oceans to the changing climate. Also, Eulerian and parameterized eddy-induced components are of opposite signs in numerous regions around the global ocean, particularly in the ocean interior away from surface and bottom. Nevertheless, residual vertical velocity is primarily determined by the Eulerian component, and related to winds and large-scale topographic features. The current estimates of vertical velocities can serve as a useful reference for investigating the vertical exchange of ocean properties and tracers, and its complex spatial structure ultimately permits regional tests of basic oceanographic concepts such as Sverdrup balance and coastal upwelling/downwelling.

  17. Upper Ocean Circulation in the Glacial Northeast Atlantic during Heinrich Stadials Ice-Sheet Retreat

    NASA Astrophysics Data System (ADS)

    Toucanne, S.; Soulet, G.; Bosq, M.; Marjolaine, S.; Zaragosi, S.; Bourillet, J. F.; Bayon, G.

    2016-12-01

    Intermediate ocean water variability is involved in climate changes over geological timescales. As a prominent example, changes in North Atlantic subsurface water properties (including warming) during Heinrich Stadials may have triggered the so-called Heinrich events through ice-shelf loss and attendant ice-stream acceleration. While the origin of Heinrich Stadials and subsequent iceberg calving remains controversial, paleoceanographic research efforts mainly focus on the deep Atlantic overturning, leaving the upper ocean largely unexplored. To further evaluate variability in upper ocean circulation and its possible relationship with ice-sheet instabilities, a depth-transect of eight cores (BOBGEO and GITAN-TANDEM cruises) from the Northeast Atlantic (down to 2 km water depth) have been used to investigate kinematic and chemical changes in the upper ocean during the last glacial period. Our results reveal that near-bottom flow speeds (reconstructed by using sortable silt mean grain-size and X-ray fluorescence core-scanner Zr/Rb ratio) and water-masses chemistry (carbon and neodymium isotopes performed on foraminifera) substantially changed in phase with the millennial-scale climate changes recognized in the ice-core records. Our results are compared with paleoceanographic reconstructions of the 'Western Boundary Undercurrent' in order to discuss regional hydrographic differences at both sides of the North Atlantic, as well as with the fluctuations of both the marine- (through ice-rafted debris) and terrestrial-terminating ice-streams (through meltwater discharges) of the circum-Atlantic ice-sheets. Particular attention will be given to the Heinrich Stadials and concomitant Channel River meltwater discharges into the Northeast Atlantic in response to the melting of the European Ice-Sheet. This comparison helps to disentangle the cryosphere-ocean interactions throughout the last ice age, and the sequence of events occurring in the course of the Heinrich Stadials.

  18. Quantifying the Bering Strait Oceanic Fluxes and their Impacts on Sea-Ice and Water Properties in the Chukchi and Beaufort Seas and Western Arctic Ocean for 2013-2014

    DTIC Science & Technology

    2014-09-30

    Right) Sea Surface Temperature (SST) MODIS/Aqua level 1 image from 26th August 2004 (courtesy of Ocean Color Data Processing Archive, NASA/Goddard...was extremely good. The ADCPs and lower level temperature and salinity sensors all returned complete records. All 3 moorings also carried upper... Pavlov , and M. Kulakov (1999), The Siberian Coastal Current: a wind- and buoyancy-forced Arctic coastal current, J. Geophys. Res., 104(C12), 29697

  19. Garnet Signatures in Geophysical and Geochemical Observations: Insights into the Thermo-Petrological Structure of Oceanic Upper Mantle

    NASA Astrophysics Data System (ADS)

    Grose, C. J.; Afonso, J. C.

    2013-12-01

    We have developed new physically comprehensive thermal plate models of the oceanic lithosphere which incorporate temperature- and pressure-dependent heat transport properties and thermal expansivity, melting beneath ridges, hydrothermal circulation near ridge axes, and insulating oceanic crust. These models provide good fits to global databases of seafloor topography and heat flow, and seismic evidence of thermal structure near ridge axes. We couple these thermal plate models with thermodynamic models to predict the petrology of oceanic lithosphere. Geoid height predictions from our models suggest that there is a strong anomaly in geoid slope (over age) above ~25 Ma lithosphere due to the topography of garnet-field mantle. A similar anomaly is also present in geoid data over fracture zones. In addition, we show that a new assessment of a large database of ocean island basalt Sm/Yb systematics indicates that there is an unmistakable step-like increase in Sm/Yb values around 15-20 Ma, indicating the presence of garnet. To explain this feature, we have attempted to couple our thermo-petrological models of oceanic upper mantle with an open system, non-modal, dynamic melting model with diffusion kinetics to investigate trace element partitioning in an ascending mantle column.

  20. Aircraft Measurements for Understanding Air-Sea Coupling and Improving Coupled Model Predictions

    DTIC Science & Technology

    2014-09-30

    layer thermodynamic properties across the DYNAMO domain during the suppressed and active phase of MJO; and 3) variability and distribution of upper ocean...structure during suppressed, active and restoring phase of MJO. One of the unique aspects of LASP/ DYNAMO WP-3D project was to supplement the point...observations by probing the atmospheric and oceanic variability across the DYNAMO domain. Adhering to this aspect, vertical cross section of lower

  1. Climatology and seasonality of upper ocean salinity: a three-dimensional view from argo floats

    NASA Astrophysics Data System (ADS)

    Chen, Ge; Peng, Lin; Ma, Chunyong

    2018-03-01

    Primarily due to the constraints of observation technologies (both field and satellite measurements), our understanding of ocean salinity is much less mature compared to ocean temperature. As a result, the characterizations of the two most important properties of the ocean are unfortunately out of step: the former is one generation behind the latter in terms of data availability and applicability. This situation has been substantially changed with the advent of the Argo floats which measure the two variables simultaneously on a global scale since early this century. The first decade of Argo-acquired salinity data are analyzed here in the context of climatology and seasonality, yielding the following main findings for the global upper oceans. First, the six well-defined "salty pools" observed around ±20° in each hemisphere of the Pacific, Atlantic and Indian Oceans are found to tilt westward vertically from the sea surface to about 600 m depth, forming six saline cores within the subsurface oceans. Second, while potential temperature climatology decreases monotonically to the bottom in most places of the ocean, the vertical distribution of salinity can be classified into two categories: A double-halocline type forming immediately above and below the local salinity maximum around 100-150 m depths in the tropical and subtropical oceans, and a single halocline type existing at about 100 m depth in the extratropical oceans. Third, in contrast to the midlatitude dominance for temperature, seasonal variability of salinity in the oceanic mixed layer has a clear tropical dominance. Meanwhile, it is found that a two-mode structure with annual and semiannual periodicities can effectively penetrate through the upper ocean into a depth of 2000 m. Fourth, signature of Rossby waves is identified in the annual phase map of ocean salinity within 200-600 m depths in the tropical oceans, revealing a strongly co-varying nature of ocean temperature and salinity at specific depths. These results serve as significant contributions to improving our knowledge on the haline aspect of the ocean climate.

  2. Turbulent properties of oceanic near-surface stable boundary layers subject to wind, fresh water, and thermal forcing.

    NASA Astrophysics Data System (ADS)

    St. Laurent, Louis; Clayson, Carol Anne

    2015-04-01

    The near-surface oceanic boundary layer is generally regarded as convectively unstable due to the effects of wind, evaporation, and cooling. However, stable conditions also occur often, when rain or low-winds and diurnal warming provide buoyancy to a thin surface layer. These conditions are prevalent in the tropical and subtropical latitude bands, and are underrepresented in model simulations. Here, we evaluate cases of oceanic stable boundary layers and their turbulent processes using a combination of measurements and process modeling. We focus on the temperature, salinity and density changes with depth from the surface to the upper thermocline, subject to the influence of turbulent processes causing mixing. The stabilizing effects of freshwater from rain as contrasted to conditions of high solar radiation and low winds will be shown, with observations providing surprising new insights into upper ocean mixing in these regimes. Previous observations of freshwater lenses have demonstrated a maximum of dissipation near the bottom of the stable layer; our observations provide a first demonstration of a similar maximum near the bottom of the solar heating-induced stable layer and a fresh-water induced barrier layer. Examples are drawn from recent studies in the tropical Atlantic and Indian oceans, where ocean gliders equipped with microstructure sensors were used to measure high resolution hydrographic properties and turbulence levels. The limitations of current mixing models will be demonstrated. Our findings suggest that parameterizations of near-surface mixing rates during stable stratification and low-wind conditions require considerable revision, in the direction of larger diffusivities.

  3. Seasonal evolution of the upper-ocean adjacent to the South Orkney Islands, Southern Ocean: Results from a “lazy biological mooring”

    NASA Astrophysics Data System (ADS)

    Meredith, Michael P.; Nicholls, Keith W.; Renfrew, Ian A.; Boehme, Lars; Biuw, Martin; Fedak, Mike

    2011-07-01

    A serendipitous >8-month time series of hydrographic properties was obtained from the vicinity of the South Orkney Islands, Southern Ocean, by tagging a southern elephant seal ( Mirounga leonina) on Signy Island with a Conductivity-Temperature-Depth/Satellite-Relay Data Logger (CTD-SRDL) in March 2007. Such a time series (including data from the austral autumn and winter) would have been extremely difficult to obtain via other means, and it illustrates with unprecedented temporal resolution the seasonal progression of upper-ocean water mass properties and stratification at this location. Sea ice production values of around 0.15-0.4 m month -1 for April to July were inferred from the progression of salinity, with significant levels still in September (around 0.2 m month -1). However, these values presume that advective processes have negligible effect on the salinity changes observed locally; this presumption is seen to be inappropriate in this case, and it is argued that the ice production rates inferred are better considered as "smeared averages" for the region of the northwestern Weddell Sea upstream from the South Orkneys. The impact of such advective effects is illustrated by contrasting the observed hydrographic series with the output of a one-dimensional model of the upper-ocean forced with local fluxes. It is found that the difference in magnitude between local (modelled) and regional (inferred) ice production is significant, with estimates differing by around a factor of two. A halo of markedly low sea ice concentration around the South Orkneys during the austral winter offers at least a partial explanation for this, since it enabled stronger atmosphere/ocean fluxes to persist and hence stronger ice production to prevail locally compared with the upstream region. The year of data collection was an El Niño year, and it is well-established that this phenomenon can impact strongly on the surface ocean and ice field in this sector of the Southern Ocean, thus the possibility of our time series being atypical cannot be ruled out. Longer-term collection of in situ ocean data from this locality would be desirable, to address issues relating to interannual variability and long-term change.

  4. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust

    PubMed Central

    Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.

    2015-01-01

    The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212

  5. Under-ice turbulent microstructure and upper ocean vertical fluxes in the Makarov and Eurasian basins, Arctic Ocean, during late spring and late summer / autumn in 2015

    NASA Astrophysics Data System (ADS)

    Rabe, Benjamin; Janout, Markus; Graupner, Rainer; Hoelemann, Jens; Hampe, Hendrik; Hoppmann, Mario; Horn, Myriel; Juhls, Bennet; Korhonen, Meri; Nikolopoulos, Anna; Pisarev, Sergey; Randelhoff, Achim; Savy, Jean-Philippe; Villacieros Robineau, Nicolas

    2017-04-01

    The Arctic Ocean is generally assumed to be fairly quiescent when compared to many other oceans. The sea-ice cover, a strong halocline and a shallow, cold mixed-layer prevents much of the ocean to be affected by atmospheric conditions and properties of the ocean mixed-layer. In turn, the mixed-layer and the sea-ice is largely isolated from the warm layer of Atlantic origin below by the lower halocline. Yet, the content of heat, freshwater and biologically important nutrients differs strongly between these different layers. Hence, it is crucial to be able to estimate vertical fluxes of salt, heat and nutrients to understand variability in the upper Arctic Ocean and the sea-ice, including the ecosystem. Yet, it is difficult to obtain direct flux measurements, and estimates are sparse. We present several sets of under-ice turbulent microstructure profiles in the Eurasian and Makarov Basin of the Arctic Ocean from two expeditions, in 2015. These cover melt during late spring north of Svalbard and freeze-up during late summer / autumn across the Eurasian and Makarov basins. Our results are presented against a background of the anomalously warm atmospheric conditions during summer 2015 followed by unusually low temperatures in September. 4 - 24 h averages of the measurements generally show elevated dissipation rates at the base of the mixed-layer. We found highest levels of dissipation near the Eurasian continental slope and smaller peaks in the profiles where Bering Sea Summer Water (sBSW) lead to additional stratification within the upper halocline in the Makarov Basin. The elevated levels of dissipation associated with sBSW and the base of the mixed-layer were associated with the relatively low levels of vertical eddy diffusivity. We discuss these findings in the light of the anomalous conditions in the upper ocean, sea-ice and the atmosphere during 2015 and present estimates of vertical fluxes of heat, salt and other dissolved substances measured in water samples.

  6. Hydrographic changes in the Lincoln Sea in the Arctic Ocean with focus on an upper ocean freshwater anomaly between 2007 and 2010

    NASA Astrophysics Data System (ADS)

    de Steur, L.; Steele, M.; Hansen, E.; Morison, J.; Polyakov, I.; Olsen, S. M.; Melling, H.; McLaughlin, F. A.; Kwok, R.; Smethie, W. M.; Schlosser, P.

    2013-09-01

    Hydrographic data from the Arctic Ocean show that freshwater content in the Lincoln Sea, north of Greenland, increased significantly from 2007 to 2010, slightly lagging changes in the eastern and central Arctic. The anomaly was primarily caused by a decrease in the upper ocean salinity. In 2011 upper ocean salinities in the Lincoln Sea returned to values similar to those prior to 2007. Throughout 2008-2010, the freshest surface waters in the western Lincoln Sea show water mass properties similar to fresh Canada Basin waters north of the Canadian Arctic Archipelago. In the northeastern Lincoln Sea fresh surface waters showed a strong link with those observed in the Makarov Basin near the North Pole. The freshening in the Lincoln Sea was associated with a return of a subsurface Pacific Water temperature signal although this was not as strong as observed in the early 1990s. Comparison of repeat stations from the 2000s with the data from the 1990s at 65°W showed an increase of the Atlantic temperature maximum which was associated with the arrival of warmer Atlantic water from the Eurasian Basin. Satellite-derived dynamic ocean topography of winter 2009 showed a ridge extending parallel to the Canadian Archipelago shelf as far as the Lincoln Sea, causing a strong flow toward Nares Strait and likely Fram Strait. The total volume of anomalous freshwater observed in the Lincoln Sea and exported by 2011 was close to 1100±250km3, approximately 13% of the total estimated FW increase in the Arctic in 2008.

  7. Upper Oceanic Energy Response to Tropical Cyclone Passage

    DTIC Science & Technology

    2013-04-15

    insolation, and the upper ocean stratification . The importance of the upper ocean energy content to TCs, particularly their intensification, has been...similar to those of Shay and Brewster (2010), who showed that the stable stratification of the east Pacific also makes the 100-m mixed layer depth a poor... The upper oceanic temporal response to tropical cyclone (TC) passage is investigated using a 6-yr daily record of data-driven analyses of two

  8. Impact of effective ocean optical properties on the Pacific subtropical cell: a CGCM study

    NASA Astrophysics Data System (ADS)

    Yamanaka, G.; Tsujino, H.; Ishizaki, H.; Nakano, H.; Hirabara, M.

    2012-12-01

    The choice of ocean radiant scheme is important for modeling the upper ocean. According to the ocean-only simulation (Yamanaka et al., 2012), introduction of the chlorophyll-a dependent ocean radiant scheme results in the decreased mixed layer depth (MLD), the enhanced subtropical cell (STC), and the cooling of the eastern tropical Pacific sea surface temperature (SST). They also found that the enhanced STC results from the velocity profile change associated with the decreased Ekman boundary layer. However, the impact is not well understood when the air-sea feedback process is at work. This study examines the impact of the effective ocean optical properties on the Pacific mean fields, especially focusing on the STC, using a coupled general circulation model (CGCM). The CGCM we employed is the Meteorological Research Institute Earth System Model (MRI-ESM1). The atmospheric model is TL159L48, and the ocean model has a horizontal resolution of 1 x 0.5 deg. with 51 levels in vertical. Experimental design basically follows the CMIP5 protocol. Two experiments (CTL and SLR runs) are performed to investigate the impact of the effective ocean optical properties. In the CTL run, a conventional ocean radiant heating scheme (Paul and Simpson, 1977) is used, whereas a new ocean radiant heating scheme is used in the SLR run, where the satellite-derived chlorophyll-a distribution is taken into consideration based on Morel and Antoine (1994) as well as the effect of the varying solar angle (Ishizaki and Yamanaka, 2010). Each experiment is integrated during the period from 1985 to 2005. It is found that introduction of the new ocean radiant scheme (SLR run) changes the long-term mean wind pattern in the Pacific: easterly winds are strengthened in the equatorial Pacific, but weakened in the off-equatorial region. In the tropical Pacific, the enhanced equatorial upwelling cools the equatorial SST and the MLD becomes shallower. This is similar to the ocean-only simulation, but is more reinforced due to the Bjerknes feedback. On the other hand, unlike the ocean-only simulation, the STC is enhanced only in the equatorial band from 5 S to 5 N. Analysis of meridional volume transport in the upper 300 m indicates that poleward Ekman transport forced by the enhanced trade winds is balanced by the interior flow in the equatorial region. Apart from the equatorial region, the decreased Ekman transport due to the decreased easterly wind weakens the increased poleward transport associated with the velocity profile change in the Ekman boundary layer.

  9. Vertical Redistribution of Ocean Salt Content

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, C.; Ponte, R. M.; Piecuch, C. G.

    2017-12-01

    Ocean salinity is an important proxy for change and variability in the global water cycle. Multi-decadal trends have been observed in both surface and subsurface salinity in the past decades, and are usually attributed to the change in air-sea freshwater flux. Although air-sea freshwater flux, a major component of the global water cycle, certainly contributes to the change in surface and upper ocean salinity, the salt redistribution inside the ocean can affect the surface and upper ocean salinity as well. Also, the mechanisms controlling the surface and upper ocean salinity changes likely depend on timescales. Here we examined the ocean salinity changes as well as the contribution of the vertical redistribution of salt with a 20-year dynamically consistent and data-constrained ocean state estimate (ECCO: Estimating Circulation and Climate of the Ocean). A decrease in the spatial mean upper ocean salinity and an upward salt flux inside the ocean were observed. These findings indicate that over 1992-2011, surface freshwater fluxes contribute to the decrease in spatial mean upper ocean salinity and are partly compensated by the vertical redistribution of salt inside the ocean. Between advection and diffusion, the two major processes determining the vertical exchange of salt, the advective term at different depths shows a downward transport, while the diffusive term is the dominant upward transport contributor. These results suggest that the salt transport in the ocean interior should be considered in interpreting the observed surface and upper ocean salinity changes, as well as inferring information about the changes in the global water cycle.

  10. Spatial and Temporal Variability of Surface Energy Fluxes During Autumn Ice Advance: Observations and Model Validation

    NASA Astrophysics Data System (ADS)

    Persson, O. P. G.; Blomquist, B.; Grachev, A. A.; Guest, P. S.; Stammerjohn, S. E.; Solomon, A.; Cox, C. J.; Capotondi, A.; Fairall, C. W.; Intrieri, J. M.

    2016-12-01

    From Oct 4 to Nov 5, 2015, the Office of Naval Research - sponsored Sea State cruise in the Beaufort Sea with the new National Science Foundation R/V Sikuliaq obtained extensive in-situ and remote sensing observations of the lower troposphere, the advancing sea ice, wave state, and upper ocean conditions. In addition, a coupled atmosphere, sea ice, upper-ocean model, based on the RASM model, was run at NOAA/PSD in a hindcast mode for this same time period, providing a 10-day simulation of the atmosphere/ice/ocean evolution. Surface energy fluxes quantitatively represent the air-ice, air-ocean, and ice-ocean interaction processes, determining the cooling (warming) rate of the upper ocean and the growth (melting) rate of sea ice. These fluxes also impact the stratification of the lower troposphere and the upper ocean. In this presentation, both direct and indirect measurements of the energy fluxes during Sea State will be used to explore the spatial and temporal variability of these fluxes and the impacts of this variability on the upper ocean, ice, and lower atmosphere during the autumn ice advance. Analyses have suggested that these fluxes are impacted by atmospheric synoptic evolution, proximity to existing ice, ice-relative wind direction, ice thickness and snow depth. In turn, these fluxes impact upper-ocean heat loss and timing of ice formation, as well as stability in the lower troposphere and upper ocean, and hence heat transport to the free troposphere and ocean mixed-layer. Therefore, the atmospheric structure over the advancing first-year ice differs from that over the nearby open water. Finally, these observational analyses will be used to provide a preliminary validation of the spatial and temporal variability of the surface energy fluxes and the associated lower-tropospheric and upper-ocean structures in the simulations.

  11. Application of normal mode theory to seismic source and structure problems: Seismic investigations of upper mantle lateral heterogeneity. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Okal, E. A.

    1978-01-01

    The theory of the normal modes of the earth is investigated and used to build synthetic seismograms in order to solve source and structural problems. A study is made of the physical properties of spheroidal modes leading to a rational classification. Two problems addressed are the observability of deep isotropic seismic sources and the investigation of the physical properties of the earth in the neighborhood of the Core-Mantle boundary, using SH waves diffracted at the core's surface. Data sets of seismic body and surface waves are used in a search for possible deep lateral heterogeneities in the mantle. In both cases, it is found that seismic data do not require structural differences between oceans and continents to extend deeper than 250 km. In general, differences between oceans and continents are found to be on the same order of magnitude as the intrinsic lateral heterogeneity in the oceanic plate brought about by the aging of the oceanic lithosphere.

  12. One-dimensional evolution of the upper water column in the Atlantic sector of the Arctic Ocean in winter

    NASA Astrophysics Data System (ADS)

    Fer, Ilker; Peterson, Algot K.; Randelhoff, Achim; Meyer, Amelie

    2017-03-01

    A one-dimensional model is employed to reproduce the observed time evolution of hydrographic properties in the upper water column during winter, between 26 January and 11 March 2015, in a region north of Svalbard in the Nansen Basin of the Arctic Ocean. From an observed initial state, vertical diffusion equations for temperature and salinity give the hydrographic conditions at a later stage. Observations of microstructure are used to synthesize profiles of vertical diffusivity, K, representative of varying wind forcing conditions. The ice-ocean heat and salt fluxes at the ice-ocean interface are implemented as external source terms, estimated from the salt and enthalpy budgets, using friction velocity from the Rossby similarity drag relation, and the ice core temperature profiles. We are able to reproduce the temporal evolution of hydrography satisfactorily for two pairs of measured profiles, suggesting that the vertical processes dominated the observed changes. Sensitivity tests reveal a significant dependence on K. Variation in other variables, such as the temperature gradient of the sea ice, the fraction of heat going to ice melt, and the turbulent exchange coefficient for heat, are relatively less important. The increase in salinity as a result of freezing and brine release is approximately 10%, significantly less than that due to entrainment (90%) from beneath the mixed layer. Entrainment was elevated during episodic storm events, leading to melting. The results highlight the contribution of storms to mixing in the upper Arctic Ocean and its impact on ice melt and mixed-layer salt and nutrient budgets.

  13. Electromagnetic exploration of the oceanic mantle

    PubMed Central

    UTADA, Hisashi

    2015-01-01

    Electromagnetic exploration is a geophysical method for examining the Earth’s interior through observations of natural or artificial electromagnetic field fluctuations. The method has been in practice for more than 70 years, and 40 years ago it was first applied to ocean areas. During the past few decades, there has been noticeable progress in the methods of instrumentation, data acquisition (observation), data processing and inversion. Due to this progress, applications of this method to oceanic regions have revealed electrical features of the oceanic upper mantle down to depths of several hundred kilometers for different geologic and tectonic environments such as areas around mid-oceanic ridges, areas around hot-spot volcanoes, subduction zones, and normal ocean areas between mid-oceanic ridges and subduction zones. All these results estimate the distribution of the electrical conductivity in the oceanic mantle, which is key for understanding the dynamics and evolution of the Earth together with different physical properties obtained through other geophysical methods such as seismological techniques. PMID:26062736

  14. Effects of an Arctic under-ice phytoplankton bloom on bio-optical properties of surface waters during the Norwegian Young Sea Ice Cruise (N-ICE2015)

    NASA Astrophysics Data System (ADS)

    Pavlov, A. K.; Granskog, M. A.; Hudson, S. R.; Taskjelle, T.; Kauko, H.; Hamre, B.; Assmy, P.; Mundy, C. J.; Nicolaus, M.; Kowalczuk, P.; Stedmon, C. A.; Fernandez Mendez, M.

    2016-02-01

    A thinner and younger Arctic sea-ice cover has led to an increase in solar light transmission into the surface ocean, especially during late spring and summer. A description of the seasonal evolution of polar surface water optical properties is essential, in order to understand how changes are affecting light availability for photosynthetic organisms and the surface ocean energy budget. The development of the bio-optical properties of Arctic surface waters under predominantly first-year sea ice in the southern Nansen Basin were studied from January to June 2015 during the Norwegian Young Sea Ice Cruise (N-ICE2015). Observations included inherent optical properties, absorption by colored dissolved organic matter and particles, as well as radiometric measurements. We documented a rapid transition from relatively clear and transparent waters in winter to turbid waters in late May and June. This transition was associated with a strong under-ice phytoplankton bloom detected first under the compact ice pack and then monitored during drift across the marginal ice zone. We discuss potential implications of underwater light availability for photosynthesis, heat redistribution in the upper ocean layer, and energy budget of the sea-ice - ocean system.

  15. Intraseasonal variability of upper-ocean currents and photosynthetic primary production along the U.S. west coast associated with the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Barrett, B.; Davies, A. R.; Steppe, C. N.; Hackbarth, C.

    2017-12-01

    In the first part of this study, time-lagged composites of upper-ocean currents from February to May of 1993-2016 were binned by active phase of the leading atmospheric mode of intraseasonal variability, the Madden-Julian Oscillation (MJO). Seven days after the convectively active phase of the MJO enters the tropical Indian Ocean, anomalously strong south-southeastward upper-ocean currents are observed along the majority of U.S. west coast. Seven days after the convectively active phase enters the tropical western Pacific Ocean, upper-ocean current anomalies reverse along the U.S. west coast, with weaker southward flow. A physical pathway to the ocean was found for both of these: (a) tropical MJO convection modulates upper-tropospheric heights and circulation over the Pacific Ocean; (b) those anomalous atmospheric heights adjust the strength and position of the Aleutian Low and Hawaiian High; (c) surface winds change in response to the adjusted atmospheric pressure patterns; and (d) those surface winds project onto upper-ocean currents. In the second part of this study, we investigated if the MJO modulated intraseasonal variability of surface wind forcing and upper-ocean currents projected onto phytoplankton abundance along the U.S. west coast. Following a similar methodology, time-lagged, level 3 chlorophyll-a satellite products (a proxy for photosynthetic primary production) were binned by active MJO phase and analyzed for statistical significance using the Student's t test. Results suggest that intraseasonal variability of biological production along the U.S. west coast may be linked to the MJO, particularly since the time scale of the life cycle of phytoplankton is similar to the time scale of the MJO.

  16. Observations of Equatorial Kelvin Waves and their Convective Coupling with the Atmosphere/Ocean Surface Layer

    NASA Astrophysics Data System (ADS)

    Conry, Patrick; Fernando, H. J. S.; Leo, Laura; Blomquist, Byron; Amelie, Vincent; Lalande, Nelson; Creegan, Ed; Hocut, Chris; MacCall, Ben; Wang, Yansen; Jinadasa, S. U. P.; Wang, Chien; Yeo, Lik-Khian

    2016-11-01

    Intraseasonal disturbances with their genesis in the equatorial Indian Ocean (IO) are an important component of global climate. The disturbances, which include Madden-Julian Oscillation and equatorial Kelvin and Rossby waves in the atmosphere and ocean, carry energy which affects El Niño, cyclogenesis, and monsoons. A recent field experiment in IO (ASIRI-RAWI) observed disturbances at three sites across IO with arrays of instruments probing from surface layer to lower stratosphere. During the field campaign the most pronounced planetary-scale disturbances were Kelvin waves in tropical tropopause layer. In Seychelles, quasi-biweekly westerly wind bursts were documented and linked to the Kelvin waves aloft, which breakdown in the upper troposphere due to internal shear instabilities. Convective coupling between waves' phase in upper troposphere and surface initiates rapid (turbulent) vertical transport and resultant wind bursts at surface. Such phenomena reveal linkages between planetary-scale waves and small-scale turbulence in the surface layer that can affect air-sea property exchanges and should be parameterized in atmosphere-ocean general circulation models. Funded by ONR Grants N00014-14-1-0279 and N00014-13-1-0199.

  17. Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part 1. Ocean Features and the Category 5 Typhoons’ Intensification

    DTIC Science & Technology

    2008-09-01

    Structure and the Western North Pacific Category 5 Typhoons. Part 1: Ocean Features and the Category 5 Typhoons’ Intensification 5a. CONTRACT NUMBER...intensification of category 5 cyclones. Based on 13 yr of satellite altimetry data, in situ &climatological upper-ocean thermal structure data, best-track...Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 3288 MONTHLY WEATHER REVIEW VOLUME 136 Upper-Ocean Thermal Structure and the Western North

  18. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders

    NASA Astrophysics Data System (ADS)

    Lee, Craig; Rainville, Luc; Perry, Mary Jane

    2016-04-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.

  19. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders

    NASA Astrophysics Data System (ADS)

    Lee, C.; Rainville, L.; Perry, M. J.

    2016-02-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.

  20. Semiannual progress report, April - September 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Research conducted during the past year in the climate and modeling programs has concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols, and the solar constant on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree by 1 degree resolution has now been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method has been developed to simulate the hydraulic behavior of the soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water throughout the planet.

  1. The Effect of Large Scale Salinity Gradient on Langmuir Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.

    2017-12-01

    Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by large fresh water inflow due to flooding from the Mississippi river. Model results indicate that the strong salinity gradient can reduce the mean flow in the ML and inhibit the turbulence in the planetary boundary layer. The Langmuir cells are also rotated clockwise by the pressure gradient.

  2. NASA Tropical Rainfall Measurement Mission (TRMM): Effects of tropical rainfall on upper ocean dynamics, air-sea coupling and hydrologic cycle

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary; Busalacchi, Antonio J.; Liu, W. Timothy; Lukas, Roger B.; Niiler, Pern P.; Swift, Calvin T.

    1995-01-01

    This was a Tropical Rainfall Measurement Mission (TRMM) modeling, analysis and applications research project. Our broad scientific goals addressed three of the seven TRMM Priority Science Questions, specifically: What is the monthly average rainfall over the tropical ocean areas of about 10(exp 5) sq km, and how does this rain and its variability affect the structure and circulation of the tropical oceans? What is the relationship between precipitation and changes in the boundary conditions at the Earth's surface (e.g., sea surface temperature, soil properties, vegetation)? How can improved documentation of rainfall improve understanding of the hydrological cycle in the tropics?

  3. Imaging the seismic structure beneath oceanic spreading centers using ocean bottom geophysical techniques

    NASA Astrophysics Data System (ADS)

    Zha, Yang

    This dissertation focuses on imaging the crustal and upper mantle seismic velocity structure beneath oceanic spreading centers. The goals are to provide a better understanding of the crustal magmatic system and the relationship between mantle melting processes, crustal architecture and ridge characteristics. To address these questions I have analyzed ocean bottom geophysical data collected from the fast-spreading East Pacific Rise and the back-arc Eastern Lau Spreading Center using a combination of ambient noise tomography and seafloor compliance analysis. To characterize the crustal melt distribution at fast spreading ridges, I analyze seafloor compliance - the deformation under long period ocean wave forcing - measured during multiple expeditions between 1994 and 2007 at the East Pacific Rise 9º - 10ºN segment. A 3D numerical modeling technique is developed and used to estimate the effects of low shear velocity zones on compliance measurements. The forward modeling suggests strong variations of lower crustal shear velocity along the ridge axis, with zones of possible high melt fractions beneath certain segments. Analysis of repeated compliance measurements at 9º48'N indicates a decrease of crustal melt fraction following the 2005 - 2006 eruption. This temporal variability provides direct evidence for short-term variations of the magmatic system at a fast spreading ridge. To understand the relationship between mantle melting processes and crustal properties, I apply ambient noise tomography of ocean bottom seismograph (OBS) data to image the upper mantle seismic structure beneath the Eastern Lau Spreading Center (ELSC). The seismic images reveal an asymmetric upper mantle low velocity zone (LVZ) beneath the ELSC, representing a zone of partial melt. As the ridge migrates away from the volcanic arc, the LVZ becomes increasingly offset and separated from the sub-arc low velocity zone. The separation of the ridge and arc low velocity zones is spatially coincident with the abrupt transition in crustal composition and ridge morphology. Therefore these results confirm a previous prediction that the changing interaction between the arc and back-arc magmatic systems is responsible for the abrupt change in crustal properties along the ELSC. I further investigate the crustal structure along and across the ELSC using seafloor compliance. Compliance measurements are inverted for local crustal shear velocity structure as well as sediment thickness at 30 OBS locations using a Monte Carlo method. Sediment increases asymmetrically with seafloor age, with much a higher rate to the east of the ridge. Along the ELSC, upper crustal velocities increase from south to north as the ridge migrates away from the volcanic arc front, consistent with a less porous upper crust with possibly less subduction input. Furthermore, average upper crust shear velocities for crust produced at past ELSC when it was near the volcanic arc are considerably slower than crust produced at present day northern ELSC. I show that the implications of previous active seismic studies in the axial ELSC can be extended much farther off-axis and back in time. I also address a challenge of ocean bottom seismology and develop a new method for determining OBS horizontal orientations using multi-component ambient noise correlation. I demonstrate that the OBS orientations can be robustly estimated through maximizing the correlation between the diagonal and cross terms of the noise correlation function. This method is applied to the ELSC OBS experiment dataset and the obtained orientations are consistent with results from a conventional teleseismic method. The new method is promising for a wide range of applications.

  4. Near-Inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean

    DTIC Science & Technology

    2010-06-01

    meridional transport of heat (Hoskins and Valdes, 1990). Formation of North Atlantic Subtropical Mode Water is thought to take place during the...North Atlantic Ocean MIT/WHOI Joint Program in Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole...Oceanographic Institution MITIWHOI 2010-16 Near-inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean by

  5. Atmospheric Blocking and Atlantic Multi-Decadal Ocean Variability

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa; Rhines, Peter B.; Worthlen, Denise L.

    2011-01-01

    Based on the 20th century atmospheric reanalysis, winters with more frequent blocking, in a band of blocked latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean, in-phase with Atlantic multi-decadal ocean variability. Atmospheric blocking over the northern North Atlantic, which involves isolation of large regions of air from the westerly circulation for 5 days or more, influences fundamentally the ocean circulation and upper ocean properties by impacting wind patterns. Winters with clusters of more frequent blocking between Greenland and western Europe correspond to a warmer, more saline subpolar ocean. The correspondence between blocked westerly winds and warm ocean holds in recent decadal episodes (especially, 1996-2010). It also describes much longer-timescale Atlantic multidecadal ocean variability (AMV), including the extreme, pre-greenhouse-gas, northern warming of the 1930s-1960s. The space-time structure of the wind forcing associated with a blocked regime leads to weaker ocean gyres and weaker heat-exchange, both of which contribute to the warm phase of AMV.

  6. Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations

    NASA Astrophysics Data System (ADS)

    Domingues, Ricardo; Goni, Gustavo; Bringas, Francis; Lee, Sang-Ki; Kim, Hyun-Sook; Halliwell, George; Dong, Jili; Morell, Julio; Pomales, Luis

    2015-09-01

    During October 2014, Hurricane Gonzalo traveled within 85 km from the location of an underwater glider situated north of Puerto Rico. Observations collected before, during, and after the passage of this hurricane were analyzed to improve our understanding of the upper ocean response to hurricane winds. The main finding in this study is that salinity potentially played an important role on changes observed in the upper ocean; a near-surface barrier layer likely suppressed the hurricane-induced upper ocean cooling, leading to smaller than expected temperature changes. Poststorm observations also revealed a partial recovery of the ocean to prestorm conditions 11 days after the hurricane. Comparison with a coupled ocean-atmosphere hurricane model indicates that model-observations discrepancies are largely linked to salinity effects described. Results presented in this study emphasize the value of underwater glider observations for improving our knowledge of how the ocean responds to tropical cyclone winds and for tropical cyclone intensification studies and forecasts.

  7. Global warming-induced upper-ocean freshening and the intensification of super typhoons

    PubMed Central

    Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby; Emanuel, Kerry A.

    2016-01-01

    Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall in places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961–2008 is ∼53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes. PMID:27886199

  8. Global warming-induced upper-ocean freshening and the intensification of super typhoons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby

    Here, super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall inmore » places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961–2008 is ~53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.« less

  9. Global warming-induced upper-ocean freshening and the intensification of super typhoons.

    PubMed

    Balaguru, Karthik; Foltz, Gregory R; Leung, L Ruby; Emanuel, Kerry A

    2016-11-25

    Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall in places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961-2008 is ∼53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.

  10. Global warming-induced upper-ocean freshening and the intensification of super typhoons

    DOE PAGES

    Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby; ...

    2016-11-25

    Here, super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall inmore » places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961–2008 is ~53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.« less

  11. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large-scale processes

    NASA Astrophysics Data System (ADS)

    Hickey-Vargas, Rosemary

    1998-09-01

    Basalts erupted from spreading centers on the Philippine Sea plate between 50 Ma and the present have the distinctive isotopic characteristics of Indian Ocean mid-ocean ridge basalt (MORB), such as high 208Pb/204Pb and low 143Nd/144Nd for a given 206Pb/204Pb compared with Pacific and Atlantic Ocean MORB. This feature may indicate that the upper mantle of the Philippine Sea plate originated as part of the existing Indian Ocean upper mantle domain, or, alternatively, that local processes duplicated these isotopic characteristics within the sub-Philippine Sea plate upper mantle. Synthesis of new and published isotopic data for Philippine Sea plate basin basalts and island arc volcanic rocks, radiometric ages, and tectonic reconstructions of the plate indicates that local processes, such as contamination of the upper mantle by subducted materials or by western Pacific mantle plumes, did not produce the Indian Ocean-type signature in Philippine Sea plate MORB. It is more likely that the plate originated over a rapidly growing Indian Ocean upper mantle domain that had spread into the area between Australia/New Guinea and southeast Asia before 50 Ma.

  12. The role of vertical shear on the horizontal oceanic dispersion

    NASA Astrophysics Data System (ADS)

    Lanotte, A. S.; Corrado, R.; Lacorata, G.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.

    2015-09-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of South Mediterranean is investigated by means of observative and model data. In-situ current measurements reveal that vertical velocity gradients in the upper mixed layer decorrelate quite fast (∼ 1 day), whereas basin-scale ocean circulation models tend to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion simulated by an eddy-permitting ocean model, like, e.g., the Mediterranean Forecasting System, is mosty affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out; (2) poorly resolved time variability of vertical velocity profiles in the upper layer. For the case study we have analysed, we show that a suitable use of kinematic parameterisations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.

  13. SST Control by Subsurface Mixing During Indian Ocean Monsoons

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. SST Control by Subsurface Mixing during Indian Ocean ...quantify the variability in upper ocean mixing associated with changes in barrier layer thickness and strength across the BoB and under different...These objectives directly target the fundamental role that upper ocean dynamics play in the complex air-sea interactions of the northern Indian Ocean

  14. Recent changes in the summer monsoon circulation and their impact on dynamics and thermodynamics of the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Pratik, Kad; Parekh, Anant; Karmakar, Ananya; Chowdary, Jasti S.; Gnanaseelan, C.

    2018-05-01

    The present study examines changes in the low-level summer monsoon circulation over the Arabian Sea and their impact on the ocean dynamics using reanalysis data. The study confirms intensification and northward migration of low-level jet during 1979 to 2015. Further during the study period, an increase in the Arabian Sea upper ocean heat content is found in spite of a decreasing trend in the net surface heat flux, indicating the possible role of ocean dynamics in the upper ocean warming. Increase in the anti-cyclonic wind stress curl associated with the change in the monsoon circulation induces downwelling over the central Arabian Sea, favoring upper ocean warming. The decreasing trend of southward Ekman transport, a mechanism transporting heat from the land-locked north Indian Ocean to southern latitudes, also supports increasing trend of the upper ocean heat content. To reinstate and quantify the role of changing monsoon circulation in increasing the heat content over the Arabian Sea, sensitivity experiment is carried out using ocean general circulation model. In this experiment, the model is forced by inter-annual momentum forcing while rest of the forcing is climatological. Experiment reveals that the changing monsoon circulation increases the upper ocean heat content, effectively by enhancing downwelling processes and reducing southward heat transport, which strongly endorses our hypothesis that changing ocean dynamics associated with low-level monsoon circulation is causing the increasing trend in the heat content of the Arabian Sea.

  15. Influences of Ocean Thermohaline Stratification on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Toole, J. M.; Timmermans, M.-L.; Perovich, D. K.; Krishfield, R. A.; Proshutinsky, A.; Richter-Menge, J. A.

    2009-04-01

    The Arctic Ocean's surface mixed layer constitutes the dynamical and thermodynamical link between the sea ice and the underlying waters. Wind stress, acting directly on the surface mixed layer or via wind-forced ice motion, produce surface currents that can in turn drive deep ocean flow. Mixed layer temperature is intimately related to basal sea ice growth and melting. Heat fluxes into or out of the surface mixed layer can occur at both its upper and lower interfaces: the former via air-sea exchange at leads and conduction through the ice, the latter via turbulent mixing and entrainment at the layer base. Variations in Arctic Ocean mixed layer properties are documented based on more than 16,000 temperature and salinity profiles acquired by Ice-Tethered Profilers since summer 2004 and analyzed in conjunction with sea ice observations from Ice Mass Balance Buoys and atmospheric heat flux estimates. Guidance interpreting the observations is provided by a one-dimensional ocean mixed layer model. The study focuses attention on the very strong density stratification about the mixed layer base in the Arctic that, in regions of sea ice melting, is increasing with time. The intense stratification greatly impedes mixed layer deepening by vertical convection and shear mixing, and thus limits the flux of deep ocean heat to the surface that could influence sea ice growth/decay. Consistent with previous work, this study demonstrates that the Arctic sea ice is most sensitive to changes in ocean mixed layer heat resulting from fluxes across its upper (air-sea and/or ice-water) interface.

  16. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing

    NASA Astrophysics Data System (ADS)

    Werdell, P. Jeremy; McKinna, Lachlan I. W.; Boss, Emmanuel; Ackleson, Steven G.; Craig, Susanne E.; Gregg, Watson W.; Lee, Zhongping; Maritorena, Stéphane; Roesler, Collin S.; Rousseaux, Cécile S.; Stramski, Dariusz; Sullivan, James M.; Twardowski, Michael S.; Tzortziou, Maria; Zhang, Xiaodong

    2018-01-01

    Ocean color measured from satellites provides daily global, synoptic views of spectral water-leaving reflectances that can be used to generate estimates of marine inherent optical properties (IOPs). These reflectances, namely the ratio of spectral upwelled radiances to spectral downwelled irradiances, describe the light exiting a water mass that defines its color. IOPs are the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents. Because of their dependence on the concentration and composition of marine constituents, IOPs can be used to describe the contents of the upper ocean mixed layer. This information is critical to further our scientific understanding of biogeochemical oceanic processes, such as organic carbon production and export, phytoplankton dynamics, and responses to climatic disturbances. Given their importance, the international ocean color community has invested significant effort in improving the quality of satellite-derived IOP products, both regionally and globally. Recognizing the current influx of data products into the community and the need to improve current algorithms in anticipation of new satellite instruments (e.g., the global, hyperspectral spectroradiometer of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission), we present a synopsis of the current state of the art in the retrieval of these core optical properties. Contemporary approaches for obtaining IOPs from satellite ocean color are reviewed and, for clarity, separated based their inversion methodology or the type of IOPs sought. Summaries of known uncertainties associated with each approach are provided, as well as common performance metrics used to evaluate them. We discuss current knowledge gaps and make recommendations for future investment for upcoming missions whose instrument characteristics diverge sufficiently from heritage and existing sensors to warrant reassessing current approaches.

  17. Formation of a CliC/CLIVAR Northern Oceans Regional Panel to advance the understanding of the role of the Arctic in global climate

    NASA Astrophysics Data System (ADS)

    Solomon, A.

    2017-12-01

    The Arctic climate is rapidly transitioning into a new regime with lower sea ice extent and increasingly younger and thinner sea ice pack. The emergent properties of this new regime are yet to be determined since altered feedback processes between ice, ocean, and atmosphere will further impact upper ocean heat content, atmospheric circulation, atmospheric and oceanic stratification, the interactions between subsurface/intermediate warm waters and surface cold and fresh layer, cloud cover, ice growth, among other properties. This emergent new climate regime needs to be understood in terms of the two-way feedback between the Arctic and lower-latitudes (both in the ocean and atmosphere), as well as the local coupling between ocean-sea ice-atmosphere. The net result of these feedbacks will determine the magnitude of future Arctic amplification and potential impacts on mid-latitude weather extremes, among other impacts. A new international panel, the CliC/CLIVAR Northern Oceans Regional Panel, has been established to coordinate efforts that will enhance our ability to monitor the coupled system, understand the driving mechanisms of the system change from a coupled process perspective, and predict the evolution of the emerging "New Arctic" climate. This talk will discuss the scientific motivation for this new panel, the near-term objectives, and plans for deliverables.

  18. Glider Observations of Upper Ocean Structure in the Bay of Bengal

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Glider Observations of Upper Ocean Structure in the Bay...using gliders and floats • Improve glider technology to overcome fresh, buoyant surface layers • Establish a new technology to observe turbulence...with profiling floats APPROACH We use two approaches to observe the upper ocean in the BoB. First, we deploy Spray underwater gliders to resolve

  19. Seismic structure of oceanic crust at ODP borehole 504B: Investigating anisotropy and layer 2 characteristics

    NASA Astrophysics Data System (ADS)

    Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.

    2015-12-01

    Fracture and fault networks in the upper oceanic crust influence the circulation of hydrothermal fluids and heat transfer between crust and ocean. These fractures form by extensional stresses, with a predominant orientation parallel to the ridge axis, creating porosity- and permeability-derived anisotropy that can be measured in terms of seismic velocity. These properties change as the crust ages and evolves through cooling, alteration and sedimentation. The rate at which these changes occur and their effects on oceanic crustal structure and hydrothermal flow patterns are currently not well constrained. The NERC-funded OSCAR project aims to understand the development of upper oceanic crust, the extent and influence of hydrothermal circulation on the crust, and the behavior of fluids flowing in fractured rock. We show P-wave velocity models centered on DSDP/ODP Hole 504B, located ~200 km south of the Costa Rica Rift, derived from data acquired during a recent integrated geophysics and oceanography survey of the Panama Basin. The data were recorded by 25 four-component OBSs deployed in a grid, that recorded ~10,000 full azimuthal coverage shots fired by a combined high- and low-frequency seismic source. Both reflection and refraction data are integrated to reveal the seismic velocity structure of the crust within the 25 km by 25 km grid. The down-hole geological structure of 6 Ma crust at 504B comprises 571.5 m of extrusive basalts overlying a 209 m transition zone of mixed pillows and dikes containing a clear alteration boundary, which grades to >1050 m of sheeted dikes. Our model results are compared with this lithological structure and other previously published results to better understand the nature of velocity changes within seismic layer 2. The data provide a 3D framework, which together with analysis of the S-wave arrivals and particle motion studies, constrain estimates of the seismic anisotropy and permeability structure of the upper oceanic crust as it ages.

  20. The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012-2013

    NASA Astrophysics Data System (ADS)

    Damerell, Gillian M.; Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan

    2016-05-01

    This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre-scale water mass changes. Below ˜150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode-1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ˜415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700-900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques.

  1. Upper-Ocean Variability in the Arctic’s Amundsen and Nansen Basins

    DTIC Science & Technology

    2017-05-01

    collect vertical profiles of ocean temperature, salinity and horizontal velocity at few- hour interval as well as sample for specified time periods...deployed for the MIZ program - specifically, vertical temperature, salinity and velocity profiles were collected every 3 hours in the upper 250m of the...the system), this ITP-V returned 5+ months of upper ocean temperature, salinity , velocity and turbulence data from the Makarov Basin, a region of

  2. Upper Ocean Measurements from Profiling Floats in the Arabian Sea During NASCar

    DTIC Science & Technology

    2015-09-30

    top-level goals] OBJECTIVES The work proposed here is designed to examine the seasonal evolution of the upper ocean in the northern Arabian...Sea over several seasonal cycles, with the specific objectives of (1) Documenting the spatial variations in the seasonal cycle of the upper ocean...circulation of the Arabian Sea and the seasonal and spatial evolution of the surface mixed layer, and would be used in conjunction with HYCOM model

  3. Evaluating the Sonic Layer Depth Relative to the Mixed Layer Depth

    DTIC Science & Technology

    2008-07-24

    upper ocean to trap acoustic energy in a surface duct while MLD characterizes upper ocean mixing. The SLD is computed from temperature and salinity...and compared over the annual cycle. The SLD characterizes the potential of the upper ocean to trap acoustic energy in a surface duct while MLD...exists a tropical cyclone formation [e.g., Mao et al., 2000], to Minimum acoustic Cutoff Frequency (MCF) above which phytoplankton bloom critical depth

  4. Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean.

    PubMed

    Ma, Lanxin; Wang, Fuqiang; Wang, Chengan; Wang, Chengchao; Tan, Jianyu

    2015-09-21

    The presence of bubbles can significantly change the radiative properties of seawater and these changes will affect remote sensing and underwater target detection. In this work, the spectral reflectance and bidirectional reflectance characteristics of the bubble layer in the upper ocean are investigated using the Monte Carlo method. The Hall-Novarini (HN) bubble population model, which considers the effect of wind speed and depth on the bubble size distribution, is used. The scattering coefficients and the scattering phase functions of bubbles in seawater are calculated using Mie theory, and the inherent optical properties of seawater for wavelengths between 300 nm and 800 nm are related to chlorophyll concentration (Chl). The effects of bubble coating, Chl, and bubble number density on the spectral reflectance of the bubble layer are studied. The bidirectional reflectance distribution function (BRDF) of the bubble layer for both normal and oblique incidence is also investigated. The results show that bubble populations in clear waters under high wind speed conditions significantly influence the reflection characteristics of the bubble layer. Furthermore, the contribution of bubble populations to the reflection characteristics is mainly due to the strong backscattering of bubbles that are coated with an organic film.

  5. Deep Ocean Warming Assessed from Altimeters, GRACE, 3 In-situ Measurements, and a Non-Boussinesq OGCM

    NASA Technical Reports Server (NTRS)

    Song, Y. Tony; Colberg, Frank

    2011-01-01

    Observational surveys have shown significant oceanic bottom water warming, but they are too spatially and temporally sporadic to quantify the deep ocean contribution to the present-day sea level rise (SLR). In this study, altimetry sea surface height (SSH), Gravity Recovery and Climate Experiment (GRACE) ocean mass, and in situ upper ocean (0-700 m) steric height have been assessed for their seasonal variability and trend maps. It is shown that neither the global mean nor the regional trends of altimetry SLR can be explained by the upper ocean steric height plus the GRACE ocean mass. A non-Boussinesq ocean general circulation model (OGCM), allowing the sea level to rise as a direct response to the heat added into the ocean, is then used to diagnose the deep ocean steric height. Constrained by sea surface temperature data and the top of atmosphere (TOA) radiation measurements, the model reproduces the observed upper ocean heat content well. Combining the modeled deep ocean steric height with observational upper ocean data gives the full depth steric height. Adding a GRACE-estimated mass trend, the data-model combination explains not only the altimetry global mean SLR but also its regional trends fairly well. The deep ocean warming is mostly prevalent in the Atlantic and Indian oceans, and along the Antarctic Circumpolar Current, suggesting a strong relation to the oceanic circulation and dynamics. Its comparison with available bottom water measurements shows reasonably good agreement, indicating that deep ocean warming below 700 m might have contributed 1.1 mm/yr to the global mean SLR or one-third of the altimeter-observed rate of 3.11 +/- 0.6 mm/yr over 1993-2008.

  6. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-05

    A sensor-laden buoy is lifted onboard the Woods Hole Oceanographic Institution's research vessel Knorr on wednesday, Sept. 5, 2012, in Woods Hole, Mass. The buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  7. Spatial scales of light transmission through Antarctic pack ice: Surface flooding vs. floe-size distribution

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.

    2016-12-01

    Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.

  8. Basin-scale variability in plankton biomass and community metabolism in the sub-tropical North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Harrison, W. G.; Arístegui, J.; Head, E. J. H.; Li, W. K. W.; Longhurst, A. R.; Sameoto, D. D.

    Three trans-Atlantic oceanographic surveys (Nova Scotia to Canary Islands) were carried out during fall 1992 and spring 1993 to describe the large-scale variability in hydrographic, chemical and biological properties of the upper water column of the subtropical gyre and adjacent waters. Significant spatial and temporal variability characterized a number of the biological pools and rate processes whereas others were relatively invariant. Systematic patterns were observed in the zonal distribution of some properties. Most notable were increases (eastward) in mixed-layer temperature and salinity, depths of the nitracline and chlorophyll- a maximum, regenerated production (NH 4 uptake) and bacterial production. Dissolved inorganic carbon (DIC) concentrations, phytoplankton biomass, mesozooplankton biomass and new production (NO 3 uptake) decreased (eastward). Bacterial biomass, primary production, and community respiration exhibited no discernible zonal distribution patterns. Seasonal variability was most evident in hydrography (cooler/fresher mixed-layer in spring), and chemistry (mixed-layer DIC concentration higher and nitracline shallower in spring) although primary production and bacterial production were significantly higher in spring than in fall. In general, seasonal variability was greater in the west than in the east; seasonality in most properties was absent west of Canary Islands (˜20°W). The distribution of autotrophs could be reasonably well explained by hydrography and nutrient structure, independent of location or season. Processes underlying the distribution of the microheterophs, however, were less clear. Heterotrophic biomass and metabolism was less variable than autotrophs and appeared to dominate the upper ocean carbon balance of the subtropical North Atlantic in both fall and spring. Geographical patterns in distribution are considered in the light of recent efforts to partition the ocean into distinct "biogeochemical provinces".

  9. The Southern Ocean in the Coupled Model Intercomparison Project phase 5

    PubMed Central

    Meijers, A. J. S.

    2014-01-01

    The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear. PMID:24891395

  10. A Self-Powered Fast-Sampling Profiling Float in support of a Mesoscale Ocean Observing System in the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Valdez, T.; Chao, Y.; Davis, R. E.; Jones, J.

    2012-12-01

    This talk will describe a new self-powered profiling float that can perform fast sampling over the upper ocean for long durations in support of a mesoscale ocean observing system in the Western North Pacific. The current state-of-the-art profiling floats can provide several hundreds profiles for the upper ocean every ten days. To quantify the role of the upper ocean in modulating the development of Typhoons requires at least an order of magnitude reduction for the sampling interval. With today's profiling float and battery technology, a fast sampling of one day or even a few hours will reduce the typical lifetime of profiling floats from years to months. Interactions between the ocean and typhoons often involves mesoscale eddies and fronts, which require a dense array of floats to reveal the 3-dimensional structure. To measure the mesoscale ocean over a large area like the Western North Pacific therefore requires a new technology that enables fast sampling and long duration at the same time. Harvesting the ocean renewable energy associated with the vertical temperature differentials has the potential to power profiling floats with fast sampling over long durations. Results from the development and deployment of a prototype self-powered profiling float (known as SOLO-TREC) will be presented. With eight hours sampling in the upper 500 meters, the upper ocean temperature and salinity reveal pronounced high frequency variations. Plans to use the SOLO-TREC technology in support of a dense array of fast sampling profiling floats in the Western North Pacific will be discussed.

  11. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.

    2016-12-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong lateral gradients at the MIZ. This presentation will discuss the evolution of the Arctic upper ocean over the summer to the start of freeze up and the relationship of its variability to sea ice extent and atmospheric forcing.

  12. On the relationship between satellite-estimated bio-optical and thermal properties in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Jolliff, Jason K.; Kindle, John C.; Penta, Bradley; Helber, Robert; Lee, Zhongping; Shulman, Igor; Arnone, Robert; Rowley, Clark D.

    2008-03-01

    Three years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data were combined with three-dimensional thermal fields generated by the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) in order to examine the interdependencies between bio-optical fields and their relationship to seasonal and mesoscale changes in upper ocean thermal structure. The combined data set suggests that the oceanic boundary layer within the Gulf of Mexico may be broadly defined by two seasonally occurring bio-thermal periods. A winter mixing period, characterized by net heat losses to the atmosphere, deepening of the isothermal layer depth, and annual maxima of satellite-estimated colored detrital matter (CDM) absorption coefficients and surface pigment concentration, was followed by a thermally stratified period characterized by net surface ocean heating, reduced isothermal layer depths, and annual minima in surface bio-optical fields. Variability in the interdependencies of ocean color products was used to diagnose an attendant shift in the size-structure of surface phytoplankton communities as well as identify CDM as the constituent responsible for the majority of blue-light absorption in Gulf of Mexico surface waters. The mesoscale circulation, as resolved by MODAS thermal fields into cold and warm-core eddies, appears to significantly modulate the seasonal bio-optical cycle of CDM absorption and surface pigment concentration. An empirical model was developed to describe CDM absorption as a function of upper ocean thermal energy. The model accounted for nearly half the variance in the satellite-estimate of this bio-optical variable. Large mismatches between the model and satellite data implied episodes of shelf water export to the deep Gulf of Mexico.

  13. In situ observations of ocean productivity using the SeaCycler mooring in the central Labrador Sea

    NASA Astrophysics Data System (ADS)

    Atamanchuk, Dariia; Koelling, Jannes; Devred, Emmanuel; Siddall, Greg; Send, Uwe; Wallace, Douglas

    2017-04-01

    The Central Labrador Sea is a major deep-convection region in the NW Atlantic which is the most intense sink for anthropogenic carbon in the global ocean (de Vries et al, 2013). CO2 enters the ocean by air-sea exchange and is transported into the ocean's interior mainly though the biological pump (Longhurst et al., 1989). Despite its important role for CO2 uptake and high natural variability, the Labrador Sea is undersampled due to rough conditions and an overall lack of volunteer observing ship (VOS) transits. The SeaCycler moored profiler is currently providing year-round data from the central Labrador Sea and resolves daily changes of inorganic carbon and related properties from the upper 150m of the water column. SeaCycler's sensor float is equipped with 13 physical, chemical and biooptical sensors which measure temperature, salinity, dissolved gases, nutrients and optical properties of seawater. A combination of Pro-CV (Pro-Oceanus Inc, Canada) and CO2 optode (Aanderaa, Norway) sensors in profiling mode provides a detailed description of Dissolved Inorganic Carbon (DIC) dynamics in the upper 150m over the productive season. This allows, for the first time, high-resolution carbon-based estimates of ocean productivity from throughout the euphotic zone over an annual cycle which can be compared to estimates derived from simultaneous oxygen and nitrate (Deep SUNA, Satlantic LP, Canada) profiles. These in situ carbon, nitrogen and oxygen-based estimates of using in-situ data are further compared with remotely-sensed estimates from MODIS satellite data. The SeaCycler data allow estimation of the annual cycle of the air-sea CO2 flux and carbon export. Concurrently recorded in-situ bio-optical data allow direct comparison of optical measurements of biomass change and reveal key patterns in the seasonal succession of phytoplankton groups responsible for carbon drawdown.

  14. Numerical Investigations of Subduction of Eighteen Degree Water in the Subtropical Northwest Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Zhai, P.; He, R.

    2016-02-01

    Mode waters are upper-ocean water masses with nearly uniform water properties over a thickness of a few hundred meters. Subduction of mode waters plays an important role in changing atmospheric and oceanic long-term variability because they store "memory" of wintertime air-sea interaction. In this study, we investigated dynamic processes associated with subduction of the Eighteen Degree Water (EDW, the principal mode water) in the subtropical Northwest Atlantic during January to June 2007. Numerical simulations of the temporal and spatial evolutions of EDW were performed using both uncoupled (ocean only) and air-sea coupled configurations and results were contrasted. We find the coupled simulation produced deeper mixed layer depth, stronger eddy kinetic energy, and larger subduction areas than their counterparts in the uncoupled ocean simulation. In both configurations, mesoscale eddies enhance the total subduction and eddy-induced subduction has the same order as the mean component. Resolving strong air-sea coupling and mesoscale eddies is therefore important for understanding EDW dynamics.

  15. Increasing Climate Literacy in Introductory Oceanography Classes Using Ocean Observation Data from Project Dynamo

    NASA Astrophysics Data System (ADS)

    Hams, J. E.

    2015-12-01

    This session will present educational activities developed for an introductory Oceanography lecture and laboratory class by NOAA Teacher-at-Sea Jacquelyn Hams following participation in Leg 3 of Project DYNAMO (Dynamics of the Madden-Julian Oscillation) in November-December 2011. The Madden-Julian Oscillation (MJO) is an important tropical weather phenomenon with origins in the Indian Ocean that impacts many other global climate patterns such as the El Nino Southern Oscillation (ENSO), Northern Hemisphere monsoons, tropical storm development, and pineapple express events. The educational activities presented include a series of lessons based on the observational data collected during Project DYNAMO which include atmospheric conditions, wind speeds and direction, surface energy flux, and upper ocean turbulence and mixing. The lessons can be incorporated into any introductory Oceanography class discussion on ocean properties such as conductivity, temperature, and density, ocean circulation, and layers of the atmosphere. A variety of hands-on lessons will be presented ranging from short activities used to complement a lecture to complete laboratory exercises.

  16. Simulation of the ocean's spectral radiant thermal source and boundary conditions

    NASA Astrophysics Data System (ADS)

    Merzlikin, Vladimir; Krass, Maxim; Cheranev, Svyatoslav; Aloric, Aleksandra

    2013-05-01

    This article considers the analysis of radiant heat transfer for semitransparent natural and polluted seawaters and its physical interpretations. Technogenic or natural pollutions are considered as ensembles of selective scattering, absorbing and emitting particles with complex refractive indices in difference spectral ranges of external radiation. Simulation of spectral radiant thermal sources within short wavelength of solar penetrating radiation for upper oceanic depth was carried out for deep seawater on regions from ˜ 300 to ˜ 600 nm and for subsurface layers (not more ˜ 1 m) - on one ˜ 600 - 1200 nm. Model boundary conditions on exposed oceanic surface are defined by (1) emittance of atmosphere and seawater within long wavelength radiation ˜ 9000 nm, (2) convection, and (3) thermal losses due to evaporation. Spatial and temporal variability of inherent optical properties, temperature distributions of the upper overheated layer of seawater, the appearance of a subsurface temperature maximum and a cool surface skin layer in response to penetrating solar radiation are explained first of all by the effects of volumetric scattering (absorption) and surface cooling of polluted seawater. The suggested analysis can become an important and useful subject of research for oceanographers and climatologists.

  17. Numerical Investigations of Wave-Induced Mixing in Upper Ocean Layer

    NASA Astrophysics Data System (ADS)

    Guan, Changlong

    2017-04-01

    The upper ocean layer is playing an important role in ocean-atmosphere interaction. The typical characteristics depicting the upper ocean layer are the sea surface temperature (SST) and the mixed layer depth (MLD). So far, the existing ocean models tend to over-estimate SST and to under-estimate MLD, due to the inadequate mixing in the mixing layer, which is owing to that several processes related mixing in physics are ignored in these ocean models. The mixing induced by surface gravity wave is expected to be able to enhance the mixing in the upper ocean layer, and therefore the over-estimation of SST and the under-estimate of MLD could be improved by including wave-induced mixing. The wave-induced mixing could be accomplished by the physical mechanisms, such as wave breaking (WB), wave-induced Reynolds stress (WR), and wave-turbulence interaction (WT). The General Ocean Turbulence Model (GOTM) is employed to investigate the effects of the three mechanisms concerning wave-induced mixing. The numerical investigation is carried out for three turbulence closure schemes, say, k-epsilon, k-omega and Mellor-Yamada (1982), with the observational data from OSC Papa station and wave data from ECMWF. The mixing enhancement by various waved-induced mixing mechanisms is investigated and verified.

  18. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    A full suite of instruments are seen onboard the the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The various instruments will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  19. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Autonomous wave gliders are seen onboard the the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The autonomous gliders will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  20. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    University of Washington Graduate Student Jesse Anderson settles into her cabin onboard the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Anderson will work with the Argo Floats instruments in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  1. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    CTD instruments used to measure Conductivity, Temperature, and Depth, are seen onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The CTDs will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  2. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Autonomous wave gliders, right, are seen onboard the the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The autonomous gliders will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  3. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    A sensor-laden buoy is seen prior to being loaded onboard the Woods Hole Oceanographic Institution's vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  4. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Ken Decoteau, left, and Chip Beniot, both of the Woods Hole Oceanographic Institution, move scientific instruments to the research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The instruments will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  5. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Chip Beniot, left, and Ken Decoteau, both of the Woods Hole Oceanographic Institution, move scientific instruments to the research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The instruments will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  6. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    NASA Physical Oceanography Program Scientist Eric Lindstrom talks about the instruments onboard the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Various scientific instruments will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  7. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    NASA Physical Oceanography Program Scientist Eric Lindstrom inspects an autonomous wave glider onboard the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The autonomous gliders will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  8. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Woods Hole Oceanographic Institution Scientist Dave Fratantoni works on the EcoMapper AUVs (autonomous underwater vehicles) onboard the Institute's research vessel Knorr, Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The EcoMappers will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  9. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Two EcoMapper AUVs (autonomous underwater vehicles) are seen onboard the the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The EcoMappers will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  10. The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012–2013

    PubMed Central

    Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan

    2016-01-01

    Abstract This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre‐scale water mass changes. Below ∼150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode‐1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ∼415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700–900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques. PMID:27840785

  11. Long-term Variation of Ventilation System in the East Sea (Japan Sea) Revealed by Heat Content Change and Water Mass Analysis

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Chang, K. I.; Kim, K. R.; Lobanov, V. B.

    2016-02-01

    The semi-enclosed East Sea (ES) is called a miniature ocean with its own thermohaline circulation characterized by the formation of deep and intermediate water masses in the Japan Basin, southward discharge of those subsurface water masses towards the Ulleung and Yamato basins, and northward heat transport by the Tsushima Warm Current in the upper layer. Reports have been given of rapid changes of physical and biogeochemical properties associated with its ventilation system. We present results on upper ocean heat content variations and changes in water mass structure and properties from the analysis of historical and most recent hydrographic data. The analysis of non-seasonal heat content (HCA) variations in the upper 500 m from 1976 to 2007 highlights the 2-year lagged in-phase decadal-scale HCA variations in the eastern and western ES until 1995 followed by uncorrelated variations between two regions thereafter with pronounced interannual variations. Long-term trend of HCA in the entire ES shows an increasing trend, but with a large increase in the eastern part and relatively weaker but statistically significant decrease in the western part. The thickness variation of water warmer than 10°C mainly contributes to the HCA variation. Analyses of upper circulation in conjunction with climate indices suggest the importance of the wind-stress curl pattern represented by the Western Pacific index in the western ES and the influence of the Siberian High in the eastern ES. The thickness and temperature variation of 1-5°C representing the East Sea Intermediate Water (ESIW) is relatively minor contributor to the HCA variation in the upper 500 m. However, the thickness (temperature) of the ESIW has been increased (decreased) in the entire ES since 1992, which implies that the formation of the ESIW has been activated in recent decades. To investigate water mass changes in deeper than 500 m, we use full-depth CTD data obtained from CREAMS expeditions from 1993 to 2015. Temperature deeper than 1000 m has been increased about 0.03°C during 20 years and the depth of deep salinity minimum depth which is the lower (upper) limit of the East Sea Central Water (Deep Water) has been deepened. Other characteristics of water mass structure and property changes will be presented.

  12. North Atlantic Deep Water and the World Ocean

    NASA Technical Reports Server (NTRS)

    Gordon, A. L.

    1984-01-01

    North Atlantic Deep Water (NADW) by being warmer and more saline than the average abyssal water parcel introduces heat and salt into the abyssal ocean. The source of these properties is upper layer or thermocline water considered to occupy the ocean less dense than sigma-theta of 27.6. That NADW convects even though it's warmer than the abyssal ocean is obviously due to the high salinity. In this way, NADW formation may be viewed as saline convection. The counter force removing heat and salinity (or introducing fresh water) is usually considered to to take place in the Southern Ocean where upwelling deep water is converted to cold fresher Antarctic water masses. The Southern ocean convective process is driven by low temperatures and hence may be considered as thermal convection. A significant fresh water source may also occur in the North Pacific where the northward flowing of abyssal water from the Southern circumpolar belt is saltier and denser than the southward flowing, return abyssal water. The source of the low salinity input may be vertical mixing of the low salinity surface water or the low salinity intermediate water.

  13. One hundred years of Arctic ice cover variations as simulated by a one-dimensional, ice-ocean model

    NASA Astrophysics Data System (ADS)

    Hakkinen, S.; Mellor, G. L.

    1990-09-01

    A one-dimensional ice-ocean model consisting of a second moment, turbulent closure, mixed layer model and a three-layer snow-ice model has been applied to the simulation of Arctic ice mass and mixed layer properties. The results for the climatological seasonal cycle are discussed first and include the salt and heat balance in the upper ocean. The coupled model is then applied to the period 1880-1985, using the surface air temperature fluctuations from Hansen et al. (1983) and from Wigley et al. (1981). The analysis of the simulated large variations of the Arctic ice mass during this period (with similar changes in the mixed layer salinity) shows that the variability in the summer melt determines to a high degree the variability in the average ice thickness. The annual oceanic heat flux from the deep ocean and the maximum freezing rate and associated nearly constant minimum surface salinity flux did not vary significantly interannually. This also implies that the oceanic influence on the Arctic ice mass is minimal for the range of atmospheric variability tested.

  14. Insights into magmatic processes and hydrothermal alteration of in situ superfast spreading ocean crust at ODP/IODP site 1256 from a cluster analysis of rock magnetic properties

    NASA Astrophysics Data System (ADS)

    Dekkers, Mark J.; Heslop, David; Herrero-Bervera, Emilio; Acton, Gary; Krasa, David

    2014-08-01

    We analyze magnetic properties from Ocean Drilling Program (ODP)/Integrated ODP (IODP) Hole 1256D (6°44.1' N, 91°56.1' W) on the Cocos Plate in ˜15.2 Ma oceanic crust generated by superfast seafloor spreading, the only drill hole that has sampled all three oceanic crust layers in a tectonically undisturbed setting. Fuzzy c-means cluster analysis and nonlinear mapping are utilized to study down-hole trends in the ratio of the saturation remanent magnetization and the saturation magnetization, the coercive force, the ratio of the remanent coercive force and coercive force, the low-field magnetic susceptibility, and the Curie temperature, to evaluate the effects of magmatic and hydrothermal processes on magnetic properties. A statistically robust five cluster solution separates the data predominantly into three clusters that express increasing hydrothermal alteration of the lavas, which differ from two distinct clusters mainly representing the dikes and gabbros. Extensive alteration can obliterate magnetic property differences between lavas, dikes, and gabbros. The imprint of thermochemical alteration on the iron-titanium oxides is only partially related to the porosity of the rocks. Thus, the analysis complements interpretation based on electrofacies analysis. All clusters display rock magnetic characteristics compatible with an ability to retain a stable natural remanent magnetization suggesting that the entire sampled sequence of ocean crust can contribute to marine magnetic anomalies. Paleointensity determination is difficult because of the propensity of oxyexsolution during laboratory heating and/or the presence of intergrowths. The upper part of the extrusive sequence, the granoblastic dikes, and moderately altered gabbros may contain a comparatively uncontaminated thermoremanent magnetization.

  15. SPURS: Salinity Processes in the Upper-Ocean Regional Study: THE NORTH ATLANTIC EXPERIMENT

    NASA Technical Reports Server (NTRS)

    Lindstrom, Eric; Bryan, Frank; Schmitt, Ray

    2015-01-01

    In this special issue of Oceanography, we explore the results of SPURS-1, the first part of the ocean process study Salinity Processes in the Upper-ocean Regional Study (SPURS). The experiment was conducted between August 2012 and October 2013 in the subtropical North Atlantic and was the first of two experiments (SPURS come in pairs!). SPURS-2 is planned for 20162017 in the tropical eastern Pacific Ocean.

  16. Bay of Bengal Surface and Thermocline and the Arabian Sea

    DTIC Science & Technology

    2015-09-30

    oceanographic processes that exchange low salinity surface and upper thermocline water of the Bay of Bengal with the salty Arabian Sea and tropical Indian Ocean ...two northern embayments of the Indian Ocean . OBJECTIVES Two northern Indian Ocean embayments, the Arabian Sea and the Bay of Bengal, are so close...e.g. where do the eddies come from? 2. Investigating advective pathways, and the role of isopycnal mixing, exchanging upper ocean water between the

  17. Seaglider surveys at Ocean Station Papa: Circulation and water mass properties in a meander of the North Pacific Current

    NASA Astrophysics Data System (ADS)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2016-09-01

    A Seaglider autonomous underwater vehicle augmented the Ocean Station Papa (OSP; 50°N, 145°W) surface mooring, measuring spatial structure on scales relevant to the monthly evolution of the moored time series. During each of three missions from June 2008 to January 2010, a Seaglider made biweekly 50 km × 50 km surveys in a bowtie-shaped survey track. Horizontal temperature and salinity gradients measured by these surveys were an order of magnitude stronger than climatological values and sometimes of opposite sign. Geostrophically inferred circulation was corroborated by moored acoustic Doppler current profiler measurements and AVISO satellite altimetry estimates of surface currents, confirming that glider surveys accurately resolved monthly scale mesoscale spatial structure. In contrast to climatological North Pacific Current circulation, upper-ocean flow was modestly northward during the first half of the 18 month survey period, and weakly westward during its latter half, with Rossby number O>(0.01>). This change in circulation coincided with a shift from cool and fresh to warm, saline, oxygen-rich water in the upper-ocean halocline, and an increase in vertical fine structure there and in the lower pycnocline. The anomalous flow and abrupt water mass transition were due to the slow growth of an anticyclonic meander within the North Pacific Current with radius comparable to the scale of the survey pattern, originating to the southeast of OSP.

  18. Proxies of oceanic Lithosphere/Asthenosphere Boundary from Global Seismic Anisotropy Tomography

    NASA Astrophysics Data System (ADS)

    Burgos, Gael; Montagner, Jean-Paul; Beucler, Eric; Trampert, Jeannot; Capdeville, Yann

    2013-04-01

    Surface waves provide essential information on the knowledge of the upper mantle global structure despite their low lateral resolution. This study, based on surface waves data, presents the development of a new anisotropic tomographic model of the upper mantle, a simplified isotropic model and the consequences of these results for the Lithosphere/Asthenosphere Boundary (LAB). As a first step, a large number of data is collected, these data are merged and regionalized in order to derive maps of phase and group velocity for the fundamental mode of Rayleigh and Love waves and their azimuthal dependence (maps of phase velocity are also obtained for the first six overtones). As a second step, a crustal a posteriori model is developped from the Monte-Carlo inversion of the shorter periods of the dataset, in order to take into account the effect of the shallow layers on the upper mantle. With the crustal model, a first Monte-Carlo inversion for the upper mantle structure is realized in a simplified isotropic parameterization to highlight the influence of the LAB properties on the surface waves data. Still using the crustal model, a first order perturbation theory inversion is performed in a fully anisotropic parameterization to build a 3-D tomographic model of the upper mantle (an extended model until the transition zone is also obtained by using the overtone data). Estimates of the LAB depth are derived from the upper mantle models and compared with the predictions of oceanic lithosphere cooling models. Seismic events are simulated using the Spectral Element Method in order to validate the ability of the anisotropic tomographic model of the upper mantle to re- produce observed seismograms.

  19. Magnetization of lower oceanic crust and upper mantle

    NASA Astrophysics Data System (ADS)

    Kikawa, E.

    2004-05-01

    The location of the magnetized rocks of the oceanic crust that are responsible for sea-floor spreading magnetic anomalies has been a long-standing problem in geophysics. The recognition of these anomalies was a key stone in the development of the theory of plate tectonics. Our present concept of oceanic crustal magnetization is much more complex than the original, uniformly magnetized model of Vine-Matthews-Morley Hypothesis. Magnetic inversion studies indicated that the upper oceanic extrusive layer (Layer 2A of 0.5km thick) was the only magnetic layer and that it was not necessary to postulate any contribution from deeper parts of oceanic crust. Direct measurements of the magnetic properties of the rocks recovered from the sea floor, however, have shown that the magnetization of Layer 2A, together with the observations that this layer could record geomagnetic field reversals within a vertical section, is insufficient to give the required size of observed magnetic anomalies and that some contribution from lower intrusive rocks is necessary. Magnetization of oceanic intrusive rocks were observed to be reasonably high enough to contribute to sea-floor spreading magnetic anomalies, but were considered somewhat equivocal until late 1980Os, in part because studies had been conducted on unoriented dredged and ophiolite samples and on intermittent DSDP/ODP cores. Since ODP Leg 118 that cored and recovered continuous 500m of oceanic intrusive layer at Site 735B, Southwest Indian Ridge with an extremely high recovery of 87 percent, there have been several ODP Legs (legs 147, 153, 176, 179 and 209) that were devoted to drilling gabbroic rocks and peridotites. In terms of the magnetization intensities, all of the results obtained from these ODP Legs were supportive of the model that a significant contribution must come from gabbros and peridotites and the source of the lineated magnetic anomalies must reside in most of the oceanic crust as well as crust-mantle boundary. However, it would be wise to note that similar to upper extrusive layer, geomagnetic field reversals were observed for Leg 153 gabbros and that process of magnetization acquisition of mantle peridotites still remains unclear, though we believe mantle peridotites acquire CRM with the formation of magnetite during the process of serpentinization near the ridge axis.

  20. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    University of Washington Graduate Student Jesse Anderson tries to find her cabin onboard the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Anderson will work with the Argo Floats instruments in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  1. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Woods Hole Oceanographic Institution Senior Engineer Steve Faluotico works on the SPURS buoy prior to it being loaded onto the Institute's research vessel Knorr, Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The SPURS buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  2. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-05

    An worker prepares to attached a crane hook onto a sensor-laden buoy so that it may be loaded onboard the Woods Hole Oceanographic Institution's research vessel Knorr on wednesday, Sept. 5, 2012, in Woods Hole, Mass. The buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  3. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Sean Whelan, a Marine Technician for the Woods Hole Oceanographic Institution, prepares CTD instruments used to measure Conductivity, Temperature, and Depth, onboard the Institute's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The CTDs will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  4. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    NASA Physical Oceanography Program Scientist Eric Lindstrom inspects a sensor-laden buoy prior to it being loaded onboard the Woods Hole Oceanographic Institution's vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  5. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    The top bow deck of the Woods Hole Oceanographic Institution's research vessel Knorr is seen on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  6. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Woods Hole Oceanographic Institution workers load scientific instruments onboard the Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  7. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    The Woods Hole Oceanographic Institution's research vessel Knorr is seen docked on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  8. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Scientific instruments are loaded onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  9. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    The Bridge of the Woods Hole Oceanographic Institution's research vessel Knorr is seen on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  10. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Food and supplies are loaded onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  11. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    NASA Physical Oceanography Program Scientist Eric Lindstrom boards the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Lindstrom will depart on Knorr Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  12. Thermal and mechanical structure of the upper mantle: A comparison between continental and oceanic models

    NASA Technical Reports Server (NTRS)

    Froidevaux, C.; Schubert, G.; Yuen, D. A.

    1976-01-01

    Temperature, velocity, and viscosity profiles for coupled thermal and mechanical models of the upper mantle beneath continental shields and old ocean basins show that under the continents, both tectonic plates and the asthenosphere, are thicker than they are beneath the oceans. The minimum value of viscosity in the continental asthenosphere is about an order of magnitude larger than in the shear zone beneath oceans. The shear stress or drag underneath continental plates is also approximately an order of magnitude larger than the drag on oceanic plates. Effects of shear heating may account for flattening of ocean floor topography and heat flux in old ocean basins.

  13. Seasonal cycle of oceanic mixed layer and upper-ocean heat fluxes in the Mediterranean Sea from in-situ observations.

    NASA Astrophysics Data System (ADS)

    Houpert, Loïc; Testor, Pierre; Durrieu de Madron, Xavier; Estournel, Claude; D'Ortenzio, Fabrizio

    2013-04-01

    Heat fluxes across the ocean-atmosphere interface play a crucial role in the upper turbulent mixing. The depth reached by this turbulent mixing is indicated by an homogenization of seawater properties in the surface layer, and is defined as the Mixed Layer Depth (MLD). The thickness of the mixed layer determines also the heat content of the layer that directly interacts with the atmosphere. The seasonal variability of these air-sea fluxes is crucial in the calculation of heat budget. An improvement in the estimate of these fluxes is needed for a better understanding of the Mediterranean ocean circulation and climate, in particular in Regional Climate Models. There are few estimations of surface heat fluxes based on oceanic observations in the Mediterranean, and none of them are based on mixed layer observations. So, we proposed here new estimations of these upper-ocean heat fluxes based on mixed layer. We present high resolution Mediterranean climatology (0.5°) of the mean MLD based on a comprehensive collection of temperature profiles of last 43 years (1969-2012). The database includes more than 150,000 profiles, merging CTD, XBT, ARGO Profiling floats, and gliders observations. This dataset is first used to describe the seasonal cycle of the mixed layer depth on the whole Mediterranean on a monthly climatological basis. Our analysis discriminates several regions with coherent behaviors, in particular the deep water formation sites, characterized by significant differences in the winter mixing intensity. Heat storage rates (HSR) were calculated as the time rate of change of the heat content integrated from the surface down to a specific depth that is defined as the MLD plus an integration constant. Monthly climatology of net heat flux (NHF) from ERA-Interim reanalysis was balanced by the 1°x1° resolution heat storage rate climatology. Local heat budget balance and seasonal variability in the horizontal heat flux are then discussed by taking into account uncertainties, due to errors in monthly value estimation and to intra-annual and inter-annual variability.

  14. The Impacts of Daily Surface Forcing in the Upper Ocean over Tropical Pacific: A Numerical Study

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Rienecker, Michele M.; Li, Xiaofan; Lau, William K.-M.; Laszlo, Istvan; Pinker, Rachel T.

    2001-01-01

    Tropical Pacific Ocean is an important region that affects global climate. How the ocean responds to the atmospheric surface forcing (surface radiative, heat and momentum fluxes) is a major topic in oceanographic research community. The ocean becomes warm when more heat flux puts into the ocean. The monthly mean forcing has been used in the past years since daily forcing was unavailable due to the lack of observations. The daily forcing is now available from the satellite measurements. This study investigates the response of the upper ocean over tropical Pacific to the daily atmospheric surface forcing. The ocean surface heat budgets are calculated to determine the important processes for the oceanic response. The differences of oceanic responses between the eastern and western Pacific are intensively discussed.

  15. Hydrological and Biogeochemical Controls on Absorption and Fluorescence of Dissolved Organic Matter in the Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Guo, Weidong; Li, Yan; Stubbins, Aron; Li, Yizhen; Song, Guodong; Wang, Lei; Cheng, Yuanyue

    2017-12-01

    The Kuroshio intrusion from the West Philippine Sea (WPS) and mesoscale eddies are important hydrological features in the northern South China Sea (SCS). In this study, absorption and fluorescence of dissolved organic matter (CDOM and FDOM) were determined to assess the impact of these hydrological features on DOM dynamics in the SCS. DOM in the upper 100 m of the northern SCS had higher absorption, fluorescence, and degree of humification than in the Kuroshio Current of the WPS. The results of an isopycnal mixing model showed that CDOM and humic-like FDOM inventories in the upper 100 m of the SCS were modulated by the Kuroshio intrusion. However, protein-like FDOM was influenced by in situ processes. This basic trend was modified by mesoscale eddies, three of which were encountered during the fieldwork (one warm eddy and two cold eddies). DOM optical properties inside the warm eddy resembled those of DOM in the WPS, indicating that warm eddies could derive from the Kuroshio Current through Luzon Strait. DOM at the center of cold eddies was enriched in humic-like fluorescence and had lower spectral slopes than in eddy-free waters, suggesting inputs of humic-rich DOM from upwelling and enhanced productivity inside the eddy. Excess CDOM and FDOM in northern SCS intermediate water led to export to the Pacific Ocean interior, potentially delivering refractory carbon to the deep ocean. This study demonstrated that DOM optical properties are promising tools to study active marginal sea-open ocean interactions.

  16. Widespread gas hydrate instability on the upper U.S. Beaufort margin

    NASA Astrophysics Data System (ADS)

    Phrampus, Benjamin J.; Hornbach, Matthew J.; Ruppel, Carolyn D.; Hart, Patrick E.

    2014-12-01

    The most climate-sensitive methane hydrate deposits occur on upper continental slopes at depths close to the minimum pressure and maximum temperature for gas hydrate stability. At these water depths, small perturbations in intermediate ocean water temperatures can lead to gas hydrate dissociation. The Arctic Ocean has experienced more dramatic warming than lower latitudes, but observational data have not been used to study the interplay between upper slope gas hydrates and warming ocean waters. Here we use (a) legacy seismic data that constrain upper slope gas hydrate distributions on the U.S. Beaufort Sea margin, (b) Alaskan North Slope borehole data and offshore thermal gradients determined from gas hydrate stability zone thickness to infer regional heat flow, and (c) 1088 direct measurements to characterize multidecadal intermediate ocean warming in the U.S. Beaufort Sea. Combining these data with a three-dimensional thermal model shows that the observed gas hydrate stability zone is too deep by 100 to 250 m. The disparity can be partially attributed to several processes, but the most important is the reequilibration (thinning) of gas hydrates in response to significant (~0.5°C at 2σ certainty) warming of intermediate ocean temperatures over 39 years in a depth range that brackets the upper slope extent of the gas hydrate stability zone. Even in the absence of additional ocean warming, 0.44 to 2.2 Gt of methane could be released from reequilibrating gas hydrates into the sediments underlying an area of ~5-7.5 × 103 km2 on the U.S. Beaufort Sea upper slope during the next century.

  17. Ocean acidification in a geoengineering context

    PubMed Central

    Williamson, Phillip; Turley, Carol

    2012-01-01

    Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO2) in the atmosphere. Ocean acidity (H+ concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100. Laboratory experiments, observations and projections indicate that such ocean acidification may have ecological and biogeochemical impacts that last for many thousands of years. The future magnitude of such effects will be very closely linked to atmospheric CO2; they will, therefore, depend on the success of emission reduction, and could also be constrained by geoengineering based on most carbon dioxide removal (CDR) techniques. However, some ocean-based CDR approaches would (if deployed on a climatically significant scale) re-locate acidification from the upper ocean to the seafloor or elsewhere in the ocean interior. If solar radiation management were to be the main policy response to counteract global warming, ocean acidification would continue to be driven by increases in atmospheric CO2, although with additional temperature-related effects on CO2 and CaCO3 solubility and terrestrial carbon sequestration. PMID:22869801

  18. Understanding variability of the Southern Ocean overturning circulation in CORE-II models

    NASA Astrophysics Data System (ADS)

    Downes, S. M.; Spence, P.; Hogg, A. M.

    2018-03-01

    The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.

  19. Can we map the interannual variability of the whole upper Southern Ocean with the current database of hydrographic observations?

    NASA Astrophysics Data System (ADS)

    Heuzé, C.; Vivier, F.; Le Sommer, J.; Molines, J.-M.; Penduff, T.

    2015-12-01

    With the advent of Argo floats, it now seems feasible to study the interannual variations of upper ocean hydrographic properties of the historically undersampled Southern Ocean. To do so, scattered hydrographic profiles often first need to be mapped. To investigate biases and errors associated both with the limited space-time distribution of the profiles and with the mapping methods, we colocate the mixed-layer depth (MLD) output from a state-of-the-art 1/12° DRAKKAR simulation onto the latitude, longitude, and date of actual in situ profiles from 2005 to 2014. We compare the results obtained after remapping using a nearest neighbor (NN) interpolation and an objective analysis (OA) with different spatiotemporal grid resolutions and decorrelation scales. NN is improved with a coarser resolution. OA performs best with low decorrelation scales, avoiding too strong a smoothing, but returns values over larger areas with large decorrelation scales and low temporal resolution, as more points are available. For all resolutions OA represents better the annual extreme values than NN. Both methods underestimate the seasonal cycle in MLD. MLD biases are lower than 10 m on average but can exceed 250 m locally in winter. We argue that current Argo data should not be mapped to infer decadal trends in MLD, as all methods are unable to reproduce existing trends without creating unrealistic extra ones. We also show that regions of the subtropical Atlantic, Indian, and Pacific Oceans, and the whole ice-covered Southern Ocean, still cannot be mapped even by the best method because of the lack of observational data.

  20. Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2013-01-01

    Phytoplankton are free-floating algae that grow in the euphotic zone of the upper ocean, converting carbon dioxide, sunlight, and available nutrients into organic carbon through photosynthesis. Despite their microscopic size, these photoautotrophs are responsible for roughly half the net primary production on Earth (NPP; gross primary production minus respiration), fixing atmospheric CO2 into food that fuels our global ocean ecosystems. Phytoplankton thus play a critical role in the global carbon cycle, and their growth patterns are highly sensitive to environmental changes such as increased ocean temperatures that stratify the water column and prohibit the transfer of cold, nutrient richwaters to the upper ocean euphotic zone.

  1. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Crates containing scientific instruments are seen on the stern of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  2. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    The bow of the Woods Hole Oceanographic Institution's research vessel Knorr is seen from the bridge on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  3. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Scientific instruments are seen on the stern of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  4. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Two NOAA Pacific Marine Environmental Laboratory (PMEL) buoys are seen on the stern of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  5. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    An engineer is raised by crane to work on the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  6. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    A Rosette water sampler system that will be used during the Salinity Processes in the Upper Ocean Regional Study (SPURS) is seen onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart for the NASA-sponsored expedition on Sept. 6 and will head into the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  7. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Scientific instruments, buoys, and shipping crates are seen on the stern of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  8. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    International maritime signal flags are seen on the bridge of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  9. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    A sculpture resembling the Roman god Neptune is seen dockside of the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  10. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    NASA Physical Oceanography Program Scientist Eric Lindstrom poses for a photograph next to the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Lindstrom will depart on Knorr Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  11. Adaptive scaling model of the main pycnocline and the associated overturning circulation

    NASA Astrophysics Data System (ADS)

    Fuckar, Neven-Stjepan

    This thesis examines a number of crucial factors and processes that control the structure of the main pycnocline and the associated overturning circulation that maintains the ocean stratification. We construct an adaptive scaling model: a semi-empirical low-order theory based on the total transformation balance that linearly superimposes parameterized transformation rate terms of various mechanisms that participate in the water-mass conversion between the warm water sphere and the cold water sphere. The depth of the main pycnocline separates the light-water domain from the dense-water domain beneath the surface, hence we introduce a new definition in an integral form that is dynamically based on the large-scale potential vorticity (i.e., vertical density gradient is selected for the kernel function of the normalized vertical integral). We exclude the abyssal pycnocline from our consideration and limit our domain of interest to the top 2 km of water column. The goal is to understand the controlling mechanisms, and analytically predict and describe a wide spectrum of ocean steady states in terms of key large-scale indices relevant for understanding the ocean's role in climate. A devised polynomial equation uses the average depth of the main pycnocline as a single unknown (the key vertical scale of the upper ocean stratification) and gives us an estimate for the northern hemisphere deep water production and export across the equator from the parts of this equation. The adaptive scaling model aims to elucidate the roles of a limited number of dominant processes that determine some key upper ocean circulation and stratification properties. Additionally, we use a general circulation model in a series of simplified single-basin ocean configurations and surface forcing fields to confirm the usefulness of our analytical model and further clarify several aspects of the upper ocean structure. An idealized numerical setup, containing all the relevant physical and dynamical properties, is key to obtaining a clear understanding, uncomplicated by the effect of the real world geometry or intricacy of realistic surface radiative and turbulent fluxes. We show that wind-driven transformation processes can be decomposed into two terms separately driven by the mid-latitude westerlies and the low-latitude easterlies. Our analytical model smoothly connects all the classical limits describing different ocean regimes in a single-basin single-hemisphere geometry. The adjective "adaptive" refers to a simple and quantitatively successful adjustment to the description of a single-basin two-hemisphere ocean, with and without a circumpolar channel under the hemispherically symmetric surface buoyancy. For example, our water-mass conversion framework, unifying wind-driven and thermohaline processes, provides us with further insight into the "Drake Passage effect without Drake Passage". The modification of different transformation pathways in the Southern Hemisphere results in the equivalent net conversion changes. The introduction of hemispheric asymmetry in the surface density can lead to significant hemispheric differences in the main pycnocline structure. This demonstrates the limitations of our analytical model based on only one key vertical scale. Also, we show a strong influence of the northern hemisphere surface density change in high latitudes on the southern hemisphere stratification and circumpolar transport.

  12. Underwater Flow Visualization Methods in the Upper Layer of the Ocean.

    DTIC Science & Technology

    1981-05-22

    AD-A107 919 NAVAL RESEARCH LAB WASHINGTON DC F/G 8/3 UNDERWATER FLOW VISUALIZATION METHODS IN T1E UPPER LAYER OF THE-ETC(U) AMAY 81 J R MCGRATH, C M...S.bOti1.) S. TYPE OF REPORT I PERIOD COVERED UNDERWATER FLOW VISUALIZATION METHODS Interim report on a continuingNRL problem. IN THE UPPER LAYER OF THE...56 UNDERWATER FLOW VISUALIZATION METHODS IN THE UPPER LAYER OF THE OCEAN 1. INTRODUCTION a) Purpose This report documents the

  13. Diagnosing oceanic nutrient deficiency

    PubMed Central

    2016-01-01

    The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical–chemical–biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035255

  14. Diagnosing oceanic nutrient deficiency

    NASA Astrophysics Data System (ADS)

    Moore, C. Mark

    2016-11-01

    The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical-chemical-biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  15. Atmospheric resonances of the Rayleigh and tsunami normal modes and its sensitivity to local time and geographical location.

    NASA Astrophysics Data System (ADS)

    Rakoto, V.; Astafyeva, E.; Lognonne, P. H.

    2017-12-01

    It is known that natural hazard events, such as earthquakes, tsunamis, volcano eruptions, etc. can generate atmospheric/ionospheric perturbations. During earthquakes, vertical displacements of the ground or of the ocean floor generate acoustic-gravity waves that further propagate upward in the upper atmosphere and ionosphere. In turn, tsunamis propagating in the open sea, generate gravity waves which propagate obliquely and reach the ionosphere in 45-60 min. The properties of the atmospheric "channel" in the vertical and oblique propagation depend on a variety of factors such as solar and geomagnetic conditions, latitude, local time, season, and their influence on propagation and properties of co-seismic and co-tsunamic perturbations is not well understood yet. In this work, we use present a detailed study of the coupling efficiency between solid earth, ocean and atmosphere. For this purpose, we use the normal mode technique extended to the whole solid Earth-ocean-atmosphere system. In our study, we focus on the Rayleigh modes (solid modes) and tsunami modes (oceanic modes). As the normal modes amplitude are also depending on the spatial and temporal variation of the structure of the atmosphere, we also performed a sensitivity study location of the normal modes amplitude with local time and geographical position.

  16. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE PAGES

    Bowman, D. C.; Lees, J. M.

    2018-04-27

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  17. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, D. C.; Lees, J. M.

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  18. Global Ocean Integrals and Means, with Trend Implications.

    PubMed

    Wunsch, Carl

    2016-01-01

    Understanding the ocean requires determining and explaining global integrals and equivalent average values of temperature (heat), salinity (freshwater and salt content), sea level, energy, and other properties. Attempts to determine means, integrals, and climatologies have been hindered by thinly and poorly distributed historical observations in a system in which both signals and background noise are spatially very inhomogeneous, leading to potentially large temporal bias errors that must be corrected at the 1% level or better. With the exception of the upper ocean in the current altimetric-Argo era, no clear documentation exists on the best methods for estimating means and their changes for quantities such as heat and freshwater at the levels required for anthropogenic signals. Underestimates of trends are as likely as overestimates; for example, recent inferences that multidecadal oceanic heat uptake has been greatly underestimated are plausible. For new or augmented observing systems, calculating the accuracies and precisions of global, multidecadal sampling densities for the full water column is necessary to avoid the irrecoverable loss of scientifically essential information.

  19. Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations.

    PubMed

    Krasnopolsky, Vladimir; Nadiga, Sudhir; Mehra, Avichal; Bayler, Eric; Behringer, David

    2016-01-01

    A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived "ocean color" (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA's operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed--signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN's generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series.

  20. Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations

    PubMed Central

    Nadiga, Sudhir; Mehra, Avichal; Bayler, Eric; Behringer, David

    2016-01-01

    A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA's operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed—signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN's generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series. PMID:26819586

  1. Upper ocean O2 trends: 1958-2015

    NASA Astrophysics Data System (ADS)

    Ito, Takamitsu; Minobe, Shoshiro; Long, Matthew C.; Deutsch, Curtis

    2017-05-01

    Historic observations of dissolved oxygen (O2) in the ocean are analyzed to quantify multidecadal trends and variability from 1958 to 2015. Additional quality control is applied, and the resultant oxygen anomaly field is used to quantify upper ocean O2 trends at global and hemispheric scales. A widespread negative O2 trend is beginning to emerge from the envelope of interannual variability. Ocean reanalysis data are used to evaluate relationships with changes in ocean heat content (OHC) and oxygen solubility (O2,sat). Global O2 decline is evident after the 1980s, accompanied by an increase in global OHC. The global upper ocean O2 inventory (0-1000 m) changed at the rate of -243 ± 124 T mol O2 per decade. Further, the O2 inventory is negatively correlated with the OHC (r = -0.86; 0-1000 m) and the regression coefficient of O2 to OHC is approximately -8.2 ± 0.66 nmol O2 J-1, on the same order of magnitude as the simulated O2-heat relationship typically found in ocean climate models. Variability and trends in the observed upper ocean O2 concentration are dominated by the apparent oxygen utilization component with relatively small contributions from O2,sat. This indicates that changing ocean circulation, mixing, and/or biochemical processes, rather than the direct thermally induced solubility effects, are the primary drivers for the observed O2 changes. The spatial patterns of the multidecadal trend include regions of enhanced ocean deoxygenation including the subpolar North Pacific, eastern boundary upwelling systems, and tropical oxygen minimum zones. Further studies are warranted to understand and attribute the global O2 trends and their regional expressions.

  2. Widespread gas hydrate instability on the upper U.S. Beaufort margin

    USGS Publications Warehouse

    Phrampus, Benjamin J.; Hornbach, Matthew J.; Ruppel, Carolyn D.; Hart, Patrick E.

    2014-01-01

    The most climate-sensitive methane hydrate deposits occur on upper continental slopes at depths close to the minimum pressure and maximum temperature for gas hydrate stability. At these water depths, small perturbations in intermediate ocean water temperatures can lead to gas hydrate dissociation. The Arctic Ocean has experienced more dramatic warming than lower latitudes, but observational data have not been used to study the interplay between upper slope gas hydrates and warming ocean waters. Here we use (a) legacy seismic data that constrain upper slope gas hydrate distributions on the U.S. Beaufort Sea margin, (b) Alaskan North Slope borehole data and offshore thermal gradients determined from gas hydrate stability zone thickness to infer regional heat flow, and (c) 1088 direct measurements to characterize multidecadal intermediate ocean warming in the U.S. Beaufort Sea. Combining these data with a three-dimensional thermal model shows that the observed gas hydrate stability zone is too deep by 100 to 250 m. The disparity can be partially attributed to several processes, but the most important is the reequilibration (thinning) of gas hydrates in response to significant (~0.5°C at 2σ certainty) warming of intermediate ocean temperatures over 39 years in a depth range that brackets the upper slope extent of the gas hydrate stability zone. Even in the absence of additional ocean warming, 0.44 to 2.2 Gt of methane could be released from reequilibrating gas hydrates into the sediments underlying an area of ~5–7.5 × 103 km2 on the U.S. Beaufort Sea upper slope during the next century.

  3. Dynamics of the Oceanic Surface Mixed Layer. Proceedings of ’Aha Huliko’a Hawaiian Winter Workshop (4th) Held in Manoa, Hawaii on January 14-16, 1987,

    DTIC Science & Technology

    1987-01-01

    the tropical Pacific Ocean . Contribution in Atmospheric Science No. 20, University of California, Davis. Wyrtki, K., 1981: An estimate of... distribution of net E-P and heating in the tropical Pacific determines the vertical T-S relationship of the upper ocean in the western equatorial Pacific... contributing factor. The effect of such impulsive forcing on the western equatorial Pacific upper ocean can be seen in Fig. 11 from the

  4. The leading edge of basement logging science: The detailed in situ volcanic architecture, crustal construction processes, vacancy for water, minerals, and microbes, and beyond

    NASA Astrophysics Data System (ADS)

    Tominaga, M.

    2010-12-01

    Understanding the detailed architecture of the upper ocean crust is one of the key components to advance our knowledge on numerous events occurring in the oceanic lithosphere from spreading ridges to subduction zones. Studies on crustal characterization are limited to either the crustal or hand-specimen scales so far, and little has been done at centimeter - meter scale, which potentially ties those two end-member prospects. The lack of this scale is due mainly to the difficulties in direct sampling and the limited resolution of geophysical experiments; as a consequence, critical questions remain unanswered, e.g., what does the cross-section of actual ocean crust look like and what does it tell us?; where exactly in the lithosphere does fluid exist and promote the deep hydration and biosphere?; to what extent do we average out the heterogeneity in the crustal properties depending on the scale? Ocean Drilling Program (ODP) Hole 1256D is located at the 15 Ma super-fast spreading Cocos Plate and the first drilled hole that successfully penetrate through the intact upper ocean crust. Coring in the Hole 1256D basement is suffered from the low core recovery rates (~ 32 %) and the origins of recovered cores are mostly biased toward formations with minimal fractures. Wire-line logging in this hole becomes, thus, extremely useful for both the physical and chemical characterization of the crust. In particular, Formation MicroScanner (FMS) data acquired from multiple paths during three drilling expeditions have unprecedented lateral coverage of the borehole wall. The FMS images are the first realization of the cross-section of in situ architecture of the intact upper ocean crust with a centimeter-meter scale resolution. A lithostratigraphy model is reconstructed by integrating the analyses on FMS electrofacies, other physical property logs, and recovered cores. The new lithostratigraphy reveals that nearly 50 % of the in situ lithofacies in the Hole 1256D crust consists of either breccias or highly fractured lava flows, inferring that the shipboard stratigraphy with mostly massive flows is inaccurate. The meticulously deciphered lava morphology tie the lava deposition history in Hole 1256D to the East Pacific Rise surface volcanology, and with this, the upper ocean crustal construction processes in the Hole 1256D crust, from the spreading axis to the abyssal plain, can be proposed. Furthermore, the vacancy in the crustal matrix, where water and minerals can be stored and microbes can exist, is determined from the FMS images. The distribution and areas of the surface void calculated by ImageJ image processor reveals that the visible void in the 1256D crust vary 10 to 60 % depending on lithofacies, with the average of 37 %. This downhole distribution of the void areas also shows the positive correlation with previously observed lab-based porosity and 1-D sonic-log based fractional porosity data. Further study is in progress on scaling of the porosity structure from hand-specimen to crustal scales in the Hole 1256D crust: from the lab porosity data, to 1D sonic-log, to the areas of surface void detected observed in the FMS images, and ultimately to the vertical seismic experiments.

  5. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Buoys used to support scientific instruments at sea are seen in the foreground prior to being loaded onboard the Woods Hole Oceanographic Institution's research vessel Knorr, seen in the background, on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  6. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    Woods Hole Oceanographic Institution Senior Scientist Ray Schmitt, left, and NASA Physical Oceanography Program Scientist Eric Lindstrom pose for a photograph in front of the Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  7. Bio-Optical Instrumentation for Mapping of the Upper Ocean Using SeaSoar

    DTIC Science & Technology

    1998-01-01

    Bio-Optical Instrumentation for Mapping of the Upper Ocean Using SeaSoar Burton H. Jones Wrigley Institute of Environmental Science and Department of... Environmental Science and,Department of Biological Sciences,Los Angeles,CA,90089-0371 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING

  8. Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  9. Effects of hypoxia and ocean acidification on the upper thermal niche boundaries of coral reef fishes.

    PubMed

    Ern, Rasmus; Johansen, Jacob L; Rummer, Jodie L; Esbaugh, Andrew J

    2017-07-01

    Rising ocean temperatures are predicted to cause a poleward shift in the distribution of marine fishes occupying the extent of latitudes tolerable within their thermal range boundaries. A prevailing theory suggests that the upper thermal limits of fishes are constrained by hypoxia and ocean acidification. However, some eurythermal fish species do not conform to this theory, and maintain their upper thermal limits in hypoxia. Here we determine if the same is true for stenothermal species. In three coral reef fish species we tested the effect of hypoxia on upper thermal limits, measured as critical thermal maximum (CT max ). In one of these species we also quantified the effect of hypoxia on oxygen supply capacity, measured as aerobic scope (AS). In this species we also tested the effect of elevated CO 2 (simulated ocean acidification) on the hypoxia sensitivity of CT max We found that CT max was unaffected by progressive hypoxia down to approximately 35 mmHg, despite a substantial hypoxia-induced reduction in AS. Below approximately 35 mmHg, CT max declined sharply with water oxygen tension ( P w O 2 ). Furthermore, the hypoxia sensitivity of CT max was unaffected by elevated CO 2 Our findings show that moderate hypoxia and ocean acidification do not constrain the upper thermal limits of these tropical, stenothermal fishes. © 2017 The Author(s).

  10. Upper-ocean Response to Hurricane Gonzalo (2014): Salinity Effects Revealed by Targeted and Sustained Underwater Glider Observation

    NASA Astrophysics Data System (ADS)

    Domingues, R. M.; Goni, G. J.; Bringas, F.; Lee, S. K.; Kim, H. S. S.; Halliwell, G. R., Jr.; Dong, J.; Morell, J. M.; Pomales, L.

    2016-02-01

    In July 2014, two underwater gliders were deployed off Puerto Rico as part of a multi-institutional effort lead by NOAA/AOML funded by the Disaster Appropriations Relief Act of 2013 known as Sandy Supplemental. The goal of this work is to collect ocean observations to: (1) investigate the response of the ocean to tropical cyclone (TC) wind conditions; (2) improve understanding on the role that the ocean plays in the intensification of TCs; and (3) help improve TC seasonal and intensity forecasts. The two gliders were piloted along predetermined tracks in the Caribbean Sea and in the North Atlantic Ocean (Figure 1), where TCs very often travel and intensify. On October 12, 2014, TC Gonzalo developed in the tropical North Atlantic, reaching the status of Category 3 hurricane on October 14 as it travelled 85 km northeast of the location of the glider (site B, Figure 1). The sampling strategy adopted during the passage of Hurricane Gonzalo consisted of carrying out observations: along a repeat section three times between sites A and B, one before and two after the passage of the hurricane; and at a fixed location at site B during the passage of the hurricane. Observations collected before, during, and after the passage of this hurricane were analyzed to improve our understanding of the upper-ocean response to hurricane winds. The main finding in this study is that salinity played an important role on the upper-ocean response to Hurricane Gonzalo; where a near-surface barrier-layer has likely suppressed the hurricane-induced upper-ocean cooling, leading to smaller than expected temperature changes of -0.4°C. Post-storm observations also revealed a partial recovery of the ocean to pre-storm conditions 11 days after the hurricane. Glider observations were further compared with outputs from a numerical coupled atmospheric-ocean model used for hurricane prediction to evaluate the model performance in simulating the upper-ocean response during Hurricane Gonzalo. The comparison revealed that model-observations discrepancies were largely linked to salinity effects. Results presented in this study emphasize the value of underwater glider observations for improving our knowledge of how the ocean responds to tropical cyclone winds and for tropical cyclone intensification studies and forecasts.

  11. Climate-driven basin-scale decadal oscillations of oceanic phytoplankton.

    PubMed

    Martinez, Elodie; Antoine, David; D'Ortenzio, Fabrizio; Gentili, Bernard

    2009-11-27

    Phytoplankton--the microalgae that populate the upper lit layers of the ocean--fuel the oceanic food web and affect oceanic and atmospheric carbon dioxide levels through photosynthetic carbon fixation. Here, we show that multidecadal changes in global phytoplankton abundances are related to basin-scale oscillations of the physical ocean, specifically the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation. This relationship is revealed in approximately 20 years of satellite observations of chlorophyll and sea surface temperature. Interaction between the main pycnocline and the upper ocean seasonal mixed layer is one mechanism behind this correlation. Our findings provide a context for the interpretation of contemporary changes in global phytoplankton and should improve predictions of their future evolution with climate change.

  12. Environmental reconstructions of the upper 500 m of the southern Indian Ocean over the last 40 ka using Radiolarian (Protista) proxies

    NASA Astrophysics Data System (ADS)

    Rogers, John; De Deckker, Patrick

    2011-04-01

    In 2007, we demonstrated that radiolarians are proxies for a wide range of oceanic physico-chemical properties from the surface to depths of up to 500 m below sea level. In this study, our results are refined and Correspondence Analysis (CA) scores derived from census counts of radiolarian subfossils from southern Indian Ocean core-tops are correlated with the physico-chemical properties of the region obtained from the 2005 World Ocean Database. Calibration and regression techniques are employed to reconstruct palaeoenvironmental conditions spanning the last 40 ka for four Indian Ocean cores MD88-769 [46°04'S 90°06'E], MD88-770 [46°01'S 96°27'E], MD94-102 [43°30'S 79°50'E], and MD94-103 [45°35'S 86°31'E], all from close to the Southeast Indian Ridge. For the first time, reconstructions of temperature, salinity, dissolved oxygen, and the silicate, nitrate, and phosphate concentrations for a range of water depths are proved possible. Changes of the oceanic environment and the movement of water masses over the last 40 ka, as suggested by these reconstructions, are discussed. During Marine Isotope Stages 2 and 3 (MIS-2 and MIS-3), the water column at some of the core sites has similar characteristics to the waters south of the Polar Front today. At the MIS-1/MIS-2 transition, the development of the Subantarctic Mode Water is apparent. Temperature reconstructions include evidence of the Antarctic Cold Reversal and the Holocene Optimum.

  13. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  14. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  15. Effects of vertical shear in modelling horizontal oceanic dispersion

    NASA Astrophysics Data System (ADS)

    Lanotte, A. S.; Corrado, R.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.

    2016-02-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of the South Mediterranean is investigated by means of observation and model data. In situ current measurements reveal that vertical gradients of horizontal velocities in the upper mixing layer decorrelate quite fast ( ˜ 1 day), whereas an eddy-permitting ocean model, such as the Mediterranean Forecasting System, tends to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting System, is mostly affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out at scales close to the grid spacing; (2) poorly resolved time variability in the profiles of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a suitable use of deterministic kinematic parametrizations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.

  16. Characteristics of the deep ocean carbon system during the past 150,000 years: ΣCO2 distributions, deep water flow patterns, and abrupt climate change

    PubMed Central

    Boyle, Edward A.

    1997-01-01

    Studies of carbon isotopes and cadmium in bottom-dwelling foraminifera from ocean sediment cores have advanced our knowledge of ocean chemical distributions during the late Pleistocene. Last Glacial Maximum data are consistent with a persistent high-ΣCO2 state for eastern Pacific deep water. Both tracers indicate that the mid-depth North and tropical Atlantic Ocean almost always has lower ΣCO2 levels than those in the Pacific. Upper waters of the Last Glacial Maximum Atlantic are more ΣCO2-depleted and deep waters are ΣCO2-enriched compared with the waters of the present. In the northern Indian Ocean, δ13C and Cd data are consistent with upper water ΣCO2 depletion relative to the present. There is no evident proximate source of this ΣCO2-depleted water, so I suggest that ΣCO2-depleted North Atlantic intermediate/deep water turns northward around the southern tip of Africa and moves toward the equator as a western boundary current. At long periods (>15,000 years), Milankovitch cycle variability is evident in paleochemical time series. But rapid millennial-scale variability can be seen in cores from high accumulation rate series. Atlantic deep water chemical properties are seen to change in as little as a few hundred years or less. An extraordinary new 52.7-m-long core from the Bermuda Rise contains a faithful record of climate variability with century-scale resolution. Sediment composition can be linked in detail with the isotope stage 3 interstadials recorded in Greenland ice cores. This new record shows at least 12 major climate fluctuations within marine isotope stage 5 (about 70,000–130,000 years before the present). PMID:11607737

  17. Can we map the interannual variability of the whole upper Southern Ocean with the current database of hydrographic observations?

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline; Vivier, Frédéric; Le Sommer, Julien; Molines, Jean-Marc; Penduff, Thierry

    2016-04-01

    With the advent of Argo floats, it now seems feasible to study the interannual variations of upper ocean hydrographic properties of the historically undersampled Southern Ocean. To do so, scattered hydrographic profiles often first need to be mapped. To investigate biases and errors associated both with the limited space-time distribution of the profiles and with the mapping methods, we colocate the mixed layer depth (MLD) output from a state-of-the-art 1/12° DRAKKAR simulation onto the latitude, longitude and date of actual in-situ profiles from 2005 to 2014. We compare the results obtained after remapping using a nearest-neighbor (NN) interpolation and an objective analysis (OA) with different spatio-temporal grid resolutions and decorrelation scales. NN is improved with a coarser resolution. OA performs best with low decorrelation scales, avoiding too strong a smoothing, but returns values over larger areas with large decorrelation scales and low temporal resolution, as more points are available. For all resolutions OA represents better the annual extreme values than NN. Both methods underestimate the seasonal cycle in MLD. MLD biases are lower than 10 m on average but can exceed 250 m locally in winter. We argue that current Argo data should not be mapped to infer decadal trends in MLD, as all methods are unable to reproduce existing trends without creating unrealistic extra ones. We also show that regions of the subtropical Atlantic, Indian and Pacific Oceans, and the whole ice-covered Southern Ocean, still cannot be mapped even by the best method because of the lack of observational data. This article is protected by copyright. All rights reserved.

  18. Ocean acidification: Towards a better understanding of calcite dissolution

    NASA Astrophysics Data System (ADS)

    Wilhelmus, Monica M.; Adkins, Jess; Menemenlis, Dimitris

    2016-11-01

    The drastic increase of anthropogenic CO2 emissions over the past two centuries has altered the chemical structure of the ocean, acidifying upper ocean waters. The net impact of this pH decrease on marine ecosystems is still unclear, given the unprecedented rate at which CO2 is being released into the atmosphere. As part of the carbon cycle, calcium carbonate dissolution in sediments neutralizes CO2: phytoplankton at the surface produce carbonate minerals, which sink and reach the seafloor after the organisms die. On time scales of thousands of years, the calcium carbonate in these shells ultimately reacts with CO2 in seawater. Research in this field has been extensive; nevertheless, the dissolution rate law, the impact of boundary layer transport, and the feedback with the global ocean carbon cycle remain controversial. Here, we (i) develop a comprehensive numerical framework via 1D modeling of carbonate dissolution in sediments, (ii) approximate its impact on water column properties by implementing a polynomial approximation to the system's response into a global ocean biogeochemistry general circulation model (OBGCM), and (iii) examine the OBGCM sensitivity response to different formulations of sediment boundary layer properties. We find that, even though the burial equilibration time scales of calcium carbonate are in the order of thousands of years, the formulation of a bottom sediment model along with an improved description of the dissolution rate law can have consequences on multi-year to decadal time scales.

  19. Southern Ocean air-sea heat flux, SST spatial anomalies, and implications for multi-decadal upper ocean heat content trends.

    NASA Astrophysics Data System (ADS)

    Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.

    2014-12-01

    The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.

  20. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures.

    PubMed

    Mei, Wei; Xie, Shang-Ping; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2015-05-01

    Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling. Continued LLNWP upper ocean warming as predicted under a moderate [that is, Representative Concentration Pathway (RCP) 4.5] climate change scenario is expected to further increase the average typhoon intensity by an additional 14% by 2100.

  1. Heat transfer from Atlantic waters to sea ice in the Arctic Ocean: Evidence from dissolved argon

    NASA Astrophysics Data System (ADS)

    Moore, R. M.; Spitzer, W.

    1990-11-01

    In an attempt to determine whether the temperature and salinity properties of Arctic Ocean waters above the Atlantic water temperature maximum are the result of heat transfer to sea-ice, dissolved Ar has been measured as a temperature tracer. Consistent with such a hypothesis, it is found that there is a transition from supersaturation of Ar in the upper waters to undersaturation below a depth of 275m. Using the known dependence of the solubility of Ar on T and S, and assuming that the water was originally equilibrated with the atmosphere at 760mm Hg, it has been calculated that ca. 0.6° C of cooling can be attributed to transfer of heat to sea-ice.

  2. Deployment, release and recovery of ocean riser pipes

    DOEpatents

    Person, Abraham; Wetmore, Sherman B.; McNary, James F.

    1980-11-18

    An ocean thermal energy conversion facility includes a long pipe assembly which is supported at its upper end by the hull of the floating facility. Cold water flows to the facility from deep in the ocean. The pipe assembly comprises an elongate pipe construction and a weight connected to the lower end of the construction by a line of selected length. A floatation collar is connected to the construction at its upper end to cause the construction to have positive buoyancy and a center of buoyancy closer to the upper end of the construction than its center of mass. The weight renders the entire pipe assembly negatively buoyant. In the event that support of the pipe assembly should be lost, as by release of the assembly from the facility hull in an emergency, the assembly sinks to the ocean floor where it is moored by the weight. The pipe construction floats submerged above the ocean floor in a substantially vertical attitude which facilitates recovery of the assembly.

  3. The evolution of water property in the Mackenzie Bay polynya during Antarctic winter

    NASA Astrophysics Data System (ADS)

    Xu, Zhixin; Gao, Guoping; Xu, Jianping; Shi, Maochong

    2017-10-01

    Temperature and salinity profile data, collected by southern elephant seals equipped with autonomous CTD-Satellite Relay Data Loggers (CTD-SRDLs) during the Antarctic wintertime in 2011 and 2012, were used to study the evolution of water property and the resultant formation of the high density water in the Mackenzie Bay polynya (MBP) in front of the Amery Ice Shelf (AIS). In late March the upper 100-200 m layer is characterized by strong halocline and inversion thermocline. The mixed layer keeps deepening up to 250 m by mid-April with potential temperature remaining nearly the surface freezing point and sea surface salinity increasing from 34.00 to 34.21. From then on until mid-May, the whole water column stays isothermally at about -1.90℃ while the surface salinity increases by a further 0.23. Hereafter the temperature increases while salinity decreases along with the increasing depth both by 0.1 order of magnitude vertically. The upper ocean heat content ranging from 120.5 to 2.9 MJ m-2, heat flux with the values of 9.8-287.0 W m-2 loss and the sea ice growth rates of 4.3-11.7 cm d-1 were estimated by using simple 1-D heat and salt budget methods. The MBP exists throughout the whole Antarctic winter (March to October) due to the air-sea-ice interaction, with an average size of about 5.0×103 km2. It can be speculated that the decrease of the salinity of the upper ocean may occur after October each year. The recurring sea-ice production and the associated brine rejection process increase the salinity of the water column in the MBP progressively, resulting in, eventually, the formation of a large body of high density water.

  4. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    University of Washington Applied Physics Laboratory Senior Oceanographer Andrey Shcherbina, left, and University of Washington Applied Physics Laboratory Senior Principal Oceanographer Jason Gobat work one of their instruments onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  5. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    University of Washington Applied Physics Laboratory Senior Oceanographer Andrey Shcherbina, left, and University of Washington Applied Physics Laboratory Senior Principal Oceanographer Jason Gobat carry one of their instruments onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  6. Investigation of upper mantle seismic discontinuities beneath the Indian Ocean using array seismology methods

    NASA Astrophysics Data System (ADS)

    van Driel, J.; Reiss, A. S.; Thomas, C.

    2016-12-01

    The topography of upper mantle seismic discontinuities can be used to constrain regional variations in composition and temperature of the Earths mantle. The 410 km discontinuity is caused by the solid-solid phase transition from olivine to wadsleyite. Due to its positive Clapeyron slope, the discontinuity is depressed in hot regimes. The phase transition from ringwoodite to bridgemanite and magnesiowüstite in contrast has a negative Clapeyron slope and therefore is elevated when hot material is present. Cold material is expected to yield an opposing topographic signature, culminating in an elevated 410 km and a depressed 660 km discontinuity. As part of the RHUM-RUM project (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) we extract relevant geophysical parameters, by investigating the properties of upper mantle seismic discontinuities beneath the Indian Ocean. The topography of the 410 and 660 km discontinuities, which define the upper and lower bounds of the mantle transition zone, have been mapped using PP and SS underside reflections. This study has utilised over 8500 events with Mw ≥ 5.8, distributed over the entire Indian Ocean. Our robust data set yields a dense coverage of points, which are defined by consistently crossing ray paths. Array seismology methods, such as vespagrams and slowness-backazimuth analysis, are used to enhance the signal-to-noise-ratio and detect and identify weak precursor signals. The differential travel times are corrected for crustal features and converted into depth values of the discontinuities by comparing the measured travel times with theoretical ones derived from ray tracing through the 1D reference Earth model ak135. A `travel-time' stacking method has also been applied for 4° radius bins around each of the bounce points. The addition of a secondary method derives greater stability of our results and allows an enhanced error analysis procedure. In order to better constrain the mineralogical processes taking place within the mantle transition zone, amplitude ratios, polarities and velocity gradients have also been investigated.

  7. Evolution of oceanic molybdenum and uranium reservoir size around the Ediacaran-Cambrian transition: Evidence from western Zhejiang, South China

    NASA Astrophysics Data System (ADS)

    Xiang, Lei; Schoepfer, Shane D.; Shen, Shu-zhong; Cao, Chang-qun; Zhang, Hua

    2017-04-01

    The "Cambrian explosion" is one of the most fascinating episodes of diversification in the history of life; however, its relationship to the oxygenation of the oceans and atmosphere around the Ediacaran-Cambrian transition is not fully understood. Marine inventories of redox-sensitive trace elements reflect the relative balance of oxidative weathering on land and deposition in anoxic water masses, and can be used to explore the evolution of oceanic and atmospheric redox conditions. For this study, we conducted a series of geochemical analyses on the upper Lantian, Piyuancun, and Hetang formations in the Chunye-1 well, part of the lower Yangtze Block in western Zhejiang. Iron speciation results indicate that the entire studied interval was deposited under anoxic conditions, with three intervals of persistent euxinia occurring in the uppermost Lantian Fm., the lower Hetang Formation (Fm.), and the upper Hetang Fm. Molybdenum (Mo) and uranium (U) contents and Mo/TOC and U/TOC ratios from the anoxic/euxinic intervals of the Chunye-1 well, combined with published data from the sections in the middle and upper Yangtze Block, suggest that the oceanic Mo reservoir declined consistently from the Ediacaran to Cambrian Stage 3, while the size of the oceanic U reservoir remained relatively constant. Both metals were depleted in the ocean in lower Cambrian Stage 4, before increasing markedly at the end of Stage 4. The lack of an apparent increase in the size of the marine Mo and U reservoir from the upper Ediacaran to Cambrian Stage 3 suggests that oxic water masses did not expand until Cambrian Stage 4. The increase in marine Mo and U availability in the upper Hetang Fm. may have been due to the expansion of oxic water masses in the oceans, associated with oxygenation of the atmosphere during Cambrian Stage 4. This expansion of oxic waters in the global ocean postdates the main phase of Cambrian diversification, suggesting that pervasive oxygenation of the ocean on a large scale was not the primary control on animal diversity following the Ediacaran-Cambrian transition.

  8. Interpreting Underwater Acoustic Images of the Upper Ocean Boundary Layer

    ERIC Educational Resources Information Center

    Ulloa, Marco J.

    2007-01-01

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of…

  9. Temperature-salinity structure of the AMOC in high-resolution ocean simulations and in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wang, F.; Xu, X.; Chassignet, E.

    2017-12-01

    On average, the CMIP5 models represent the AMOC structure, water properties, Heat transport and Freshwater transport reasonably well. For temperature, CMIP5 models exhibit a colder northward upper limb and a warmer southward lower limb. the temperature contrast induces weaker heat transport than observation. For salinity, CMIP5 models exhibit saltier southward lower limb, thus contributes to weaker column freshwater transport. Models have large spread, among them, AMOC strength contributes to Heat transport but not freshwater transport. AMOC structure (the overturning depth) contributes to transport-weighted temperature not transport-weighted salinity in southward lower limb. The salinity contrast in upper and lower limb contributes to freshwater transport, but temperature contrast do not contribute to heat transport.

  10. Tracing Acoustic-Gravity Waves from the Ocean into the Ionosphere

    NASA Astrophysics Data System (ADS)

    Zabotin, N. A.; Godin, O. A.; Bullett, T. W.; Negrea, C.

    2013-12-01

    Ionospheric manifestations of tsunamis provide dramatic evidence of a connection between wave processes in the ocean and in the atmosphere. But tsunamis are only a transient feature of a more general phenomenon, infragravity waves (IGWs). IGWs are permanently present surface gravity waves in the ocean with periods longer than the longest periods (~30 s) of wind-generated waves. IGWs propagate transoceanic distances and, because of their long wavelengths (from ~1 km to hundreds of km), provide a mechanism for coupling wave processes in the ocean, atmosphere, and the solid Earth. The notion that tsunamis may generate waves in the upper atmosphere has existed for a long time but no quantitative coupling theory for the background waves has been proposed. We provide a strict physical justification for the influence of the background IGWs on the upper atmosphere. Taking into account both fluid compressibility and the gravity in a coupled atmosphere-ocean system, we show that there exist two distinct regimes of IGW penetration into the atmosphere. At higher frequencies, one has evanescent waves in the atmosphere propagating horizontally along the ocean surface. At lower frequencies, IGWs continuously radiate their energy into the upper atmosphere in the form of acoustic gravity waves (AGWs). The transition frequency depends on the ocean depth; it varies slowly near 3 mHz for typical depth values and drops to zero sharply only for extremely large depths. Using semi-empirical model of the IGW power spectrum, we derive an estimate of the flux of the mechanical energy and mechanical momentum from the deep ocean into the atmosphere due to background IGWs and predict specific forcing on the atmosphere in coastal regions. We compare spectra of wave processes in the ionosphere measured using Dynasonde technique over Wallops Island, VA and San Juan, PR and interpret the differences in terms of the oceanic effects. We conclude that AGWs of oceanic origin may have an observable impact on the upper atmosphere and describe techniques for experimental verification of this finding.

  11. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    NASA Astrophysics Data System (ADS)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  12. Tropical storm redistribution of Saharan dust to the upper troposphere and ocean surface

    NASA Astrophysics Data System (ADS)

    Herbener, Stephen R.; Saleeby, Stephen M.; Heever, Susan C.; Twohy, Cynthia H.

    2016-10-01

    As a tropical cyclone traverses the Saharan Air Layer (SAL), the storm will spatially redistribute the dust from the SAL. Dust deposited on the surface may affect ocean fertilization, and dust transported to the upper levels of the troposphere may impact radiative forcing. This study explores the relative amounts of dust that are vertically redistributed when a tropical cyclone crosses the SAL. The Regional Atmospheric Modeling System (RAMS) was configured to simulate the passage of Tropical Storm Debby (2006) through the SAL. A dust mass budget approach has been applied, enabled by a novel dust mass tracking capability of the model, to determine the amounts of dust deposited on the ocean surface and transferred aloft. The mass of dust removed to the ocean surface was predicted to be nearly 2 orders of magnitude greater than the amount of dust transported to the upper troposphere.

  13. Observations of Near-Surface Current Shear Help Describe Oceanic Oil and Plastic Transport

    NASA Astrophysics Data System (ADS)

    Laxague, Nathan J. M.; Ö-zgökmen, Tamay M.; Haus, Brian K.; Novelli, Guillaume; Shcherbina, Andrey; Sutherland, Peter; Guigand, Cédric M.; Lund, Björn; Mehta, Sanchit; Alday, Matias; Molemaker, Jeroen

    2018-01-01

    Plastics and spilled oil pose a critical threat to marine life and human health. As a result of wind forcing and wave motions, theoretical and laboratory studies predict very strong velocity variation with depth over the upper few centimeters of the water column, an observational blind spot in the real ocean. Here we present the first-ever ocean measurements of the current vector profile defined to within 1 cm of the free surface. In our illustrative example, the current magnitude averaged over the upper 1 cm of the ocean is shown to be nearly four times the average over the upper 10 m, even for mild forcing. Our findings indicate that this shear will rapidly separate pieces of marine debris which vary in size or buoyancy, making consideration of these dynamics essential to an improved understanding of the pathways along which marine plastics and oil are transported.

  14. Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations

    NASA Astrophysics Data System (ADS)

    Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.

    2017-12-01

    Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.

  15. Arctic Ocean Model Intercomparison Using Sound Speed

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, D. S.; Johnson, M. A.

    2002-05-01

    The monthly and annual means from three Arctic ocean - sea ice climate model simulations are compared for the period 1979-1997. Sound speed is used to integrate model outputs of temperature and salinity along a section between Barrow and Franz Josef Land. A statistical approach is used to test for differences among the three models for two basic data subsets. We integrated and then analyzed an upper layer between 2 m - 50 m, and also a deep layer from 500 m to the bottom. The deep layer is characterized by low time-variability. No high-frequency signals appear in the deep layer having been filtered out in the upper layer. There is no seasonal signal in the deep layer and the monthly means insignificantly oscillate about the long-period mean. For the deep ocean the long-period mean can be considered quasi-constant, at least within the 19 year period of our analysis. Thus we assumed that the deep ocean would be the best choice for comparing the means of the model outputs. The upper (mixed) layer was chosen to contrast the deep layer dynamics. There are distinct seasonal and interannual signals in the sound speed time series in this layer. The mixed layer is a major link in the ocean - air interaction mechanism. Thus, different mean states of the upper layer in the models might cause different responses in other components of the Arctic climate system. The upper layer also strongly reflects any differences in atmosphere forcing. To compare data from the three models we have used a one-way t-test for the population mean, the Wilcoxon one-sample signed-rank test (when the requirement of normality of tested data is violated), and one-way ANOVA method and F-test to verify our hypothesis that the model outputs have the same mean sound speed. The different statistical approaches have shown that all models have different mean characteristics of the deep and upper layers of the Arctic Ocean.

  16. Indian Ocean sources of Agulhas leakage

    NASA Astrophysics Data System (ADS)

    Durgadoo, Jonathan; Rühs, Siren; Biastoch, Arne; Böning, Claus

    2017-04-01

    We examine the mean pathways, transit timescales, and transformation of waters flowing from the Pacific and the marginal seas through the Indian Ocean (IO) on their way toward the South Atlantic within a high-resolution ocean/sea-ice model. The model fields are analysed from a Lagrangian perspective where water volumes are tracked as they enter the IO. The IO contributes 12.6 Sv to Agulhas leakage, which within the model is 14.1 ± 2.2 Sv, the rest originates from the South Atlantic. The Indonesian Through-flow constitutes about half of the IO contribution, is surface bound, cools and salinificates as it leaves the basin within 1-3 decades. Waters entering the IO south of Australia are at intermediate depths and maintain their temperature-salinity properties as they exit the basin within 1.5-3.5 decades. Of these waters, the contribution from Tasman leakage is 1.4 Sv. The rest stem from recirculation of Subantarctic Mode Water formed within the IO. The marginal seas export 1.0 Sv into the Atlantic within 1.5-4 decades, and the waters cool and freshen on-route. However, the model's simulation of waters from the Gulfs of Aden and Oman are too light and hence overly susceptible to upper ocean circulations. In the Cape Basin, Agulhas leakage is well mixed. On-route, temperature-salinity transformations occur predominantly in the Arabian Sea and within the greater Agulhas Current region. Overall, the IO communicates at least 7.9 Sv from the Pacific to the Atlantic, thereby quantifying the strength of the upper cell of the global conveyor belt.

  17. Anomalous Structure of Oceanic Lithosphere in the North Atlantic and Arctic Oceans: A Preliminary Analysis Based on Bathymetry, Gravity and Crustal Structure

    NASA Astrophysics Data System (ADS)

    Barantsrva, O.

    2014-12-01

    We present a preliminary analysis of the crustal and upper mantle structure for off-shore regions in the North Atlantic and Arctic oceans. These regions have anomalous oceanic lithosphere: the upper mantle of the North Atlantic ocean is affected by the Iceland plume, while the Arctic ocean has some of the slowest spreading rates. Our specific goal is to constrain the density structure of the upper mantle in order to understand the links between the deep lithosphere dynamics, ocean spreading, ocean floor bathymetry, heat flow and structure of the oceanic lithosphere in the regions where classical models of evolution of the oceanic lithosphere may not be valid. The major focus is on the oceanic lithosphere, but the Arctic shelves with a sufficient data coverage are also included into the analysis. Out major interest is the density structure of the upper mantle, and the analysis is based on the interpretation of GOCE satellite gravity data. To separate gravity anomalies caused by subcrustal anomalous masses, the gravitational effect of water, crust and the deep mantle is removed from the observed gravity field. For bathymetry we use the global NOAA database ETOPO1. The crustal correction to gravity is based on two crustal models: (1) global model CRUST1.0 (Laske, 2013) and, for a comparison, (2) a regional seismic model EUNAseis (Artemieva and Thybo, 2013). The crustal density structure required for the crustal correction is constrained from Vp data. Previous studies have shown that a large range of density values corresponds to any Vp value. To overcome this problem and to reduce uncertainty associated with the velocity-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007), and apply different Vp-density conversions for different parts of the region. We present preliminary results, which we use to examine factors that control variations in bathymetry, sedimentary and crustal thicknesses in these anomalous oceanic domains.

  18. Genetic relations of oceanic basalts as indicated by lead isotopes

    USGS Publications Warehouse

    Tatsumoto, M.

    1966-01-01

    The isotopic compositions of lead and the concentrations of lead, uranium, and thorium in samples of oceanic tholeiite and alkali suites are determined, and the genetic relations of the oceanic basalts are discussed. Lead of the oceanic tholeiites has a varying lead-206 : lead-204 ratio between 17.8 and 18.8, while leads of the alkali basalt suites from Easter Island and Guadalupe Island are very radiogenic with lead-206 : lead-204 ratios between 19.3 and 20.4. It is concluded that (i) the isotopic composition of lead in oceanic tholeiite suggests that the upper mantle source region of the tholeiite was differentiated from an original mantle material more than 1 billion years ago and that the upper mantle is not homogeneous at the present time, (ii) less than 20 million years was required for the crystal differentiation within the alkali suite from Easter Island, (iii) no crustal contamination was involved in the course of differentiation of rocks from Easter Island; however, some crustal contamination may have affected Guadalupe Island rocks, and (iv) alkali basalt may be produced from the tholeiite in the oceanic region by crystal differentiation. Alternatively the difference in the isotopic composition of lead in oceanic basalts may be produced by partial melting at different depths of a differentiated upper mantle.

  19. The Response of the Ocean Thermal Skin Layer to Variations in Incident Infrared Radiation

    NASA Astrophysics Data System (ADS)

    Wong, Elizabeth W.; Minnett, Peter J.

    2018-04-01

    Ocean warming trends are observed and coincide with the increase in concentrations of greenhouse gases in the atmosphere resulting from human activities. At the ocean surface, most of the incoming infrared (IR) radiation is absorbed within the top micrometers of the ocean's surface where the thermal skin layer (TSL) exists. Thus, the incident IR radiation does not directly heat the upper few meters of the ocean. This paper investigates the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that given the heat lost through the air-sea interface is controlled by the TSL, the TSL adjusts in response to variations in incident IR radiation to maintain the surface heat loss. This modulates the flow of heat from below and hence controls upper ocean heat content. This hypothesis is tested using the increase in incoming longwave radiation from clouds and analyzing vertical temperature profiles in the TSL retrieved from sea-surface emission spectra. The additional energy from the absorption of increasing IR radiation adjusts the curvature of the TSL such that the upward conduction of heat from the bulk of the ocean into the TSL is reduced. The additional energy absorbed within the TSL supports more of the surface heat loss. Thus, more heat beneath the TSL is retained leading to the observed increase in upper ocean heat content.

  20. Interaction of sea water and lava during submarine eruptions at mid-ocean ridges

    USGS Publications Warehouse

    Perfit, M.R.; Cann, J.R.; Fornari, D.J.; Engels, J.; Smith, D.K.; Ridley, W.I.; Edwards, M.H.

    2003-01-01

    Lava erupts into cold sea water on the ocean floor at mid-ocean ridges (at depths of 2,500 m and greater), and the resulting flows make up the upper part of the global oceanic crust. Interactions between heated sea water and molten basaltic lava could exert significant control on the dynamics of lava flows and on their chemistry. But it has been thought that heating sea water at pressures of several hundred bars cannot produce significant amounts of vapour and that a thick crust of chilled glass on the exterior of lava flows minimizes the interaction of lava with sea water. Here we present evidence to the contrary, and show that bubbles of vaporized sea water often rise through the base of lava flows and collect beneath the chilled upper crust. These bubbles of steam at magmatic temperatures may interact both chemically and physically with flowing lava, which could influence our understanding of deep-sea volcanic processes and oceanic crustal construction more generally. We infer that vapour formation plays an important role in creating the collapse features that characterize much of the upper oceanic crust and may accordingly contribute to the measured low seismic velocities in this layer.

  1. Acoustic explorations of the upper ocean boundary layer

    NASA Astrophysics Data System (ADS)

    Vagle, Svein

    2005-04-01

    The upper ocean boundary layer is an important but difficult to probe part of the ocean. A better understanding of small scale processes at the air-sea interface, including the vertical transfer of gases, heat, mass and momentum, are crucial to improving our understanding of the coupling between atmosphere and ocean. Also, this part of the ocean contains a significant part of the total biomass at all trophic levels and is therefore of great interest to researchers in a range of different fields. Innovative measurement plays a critical role in developing our understanding of the processes involved in the boundary layer, and the availability of low-cost, compact, digital signal processors and sonar technology in self-contained and cabled configurations has led to a number of exciting developments. This talk summarizes some recent explorations of this dynamic boundary layer using both active and passive acoustics. The resonant behavior of upper ocean bubbles combined with single and multi-frequency broad band active and passive devices are now giving us invaluable information on air-sea gas transfer, estimation of biological production, marine mammal behavior, wind speed and precipitation, surface and internal waves, turbulence, and acoustic communication in the surf zone.

  2. Climate and atmospheric modeling studies

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The climate and atmosphere modeling research programs have concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global model, and an upper ocean model. Principal applications were the study of the impact of CO2, aerosols, and the solar 'constant' on climate.

  3. Age and microfacies of oceanic Upper Triassic radiolarite components from the Middle Jurassic ophiolitic mélange in the Zlatibor Mountains (Inner Dinarides, Serbia) and their provenance

    NASA Astrophysics Data System (ADS)

    Gawlick, Hans-Jürgen; Djerić, Nevenka; Missoni, Sigrid; Bragin, Nikita Yu.; Lein, Richard; Sudar, Milan; Jovanović, Divna

    2017-08-01

    Oceanic radiolarite components from the Middle Jurassic ophiolitic mélange between Trnava and Rožanstvo in the Zlatibor Mountains (Dinaridic Ophiolite Belt) west of the Drina-Ivanjica unit yield Late Triassic radiolarian ages. The microfacies characteristics of the radiolarites show pure ribbon radiolarites without crinoids or thin-shelled bivalves. Beside their age and the preservation of the radiolarians this points to a deposition of the radiolarites on top of the oceanic crust of the Neo-Tethys, which started to open in the Late Anisian. South of the study area the ophiolitic mélange (Gostilje-Ljubiš-Visoka-Radoševo mélange) contains a mixture of blocks of 1) oceanic crust, 2) Middle and Upper Triassic ribbon radiolarites, and 3) open marine limestones from the continental slope. On the basis of this composition we can conclude that the Upper Triassic radiolarite clasts derive either from 1) the younger parts of the sedimentary succession above the oceanic crust near the continental slope or, more convincingly 2) the sedimentary cover of ophiolites in a higher nappe position, because Upper Triassic ribbon radiolarites are only expected in more distal oceanic areas. The ophiolitic mélange in the study area overlies different carbonate blocks of an underlying carbonate-clastic mélange (Sirogojno mélange). We date and describe three localities with different Upper Triassic radiolarite clasts in a mélange, which occurs A) on top of Upper Triassic fore-reef to reefal limestones (Dachstein reef), B) between an Upper Triassic reefal limestone block and a Lower Carnian reef limestone (Wetterstein reef), and C) in fissures of an Upper Triassic lagoonal to back-reef limestone (Dachstein lagoon). The sedimentary features point to a sedimentary and not to a tectonic emplacement of the ophiolitic mélange (= sedimentary mélange) filling the rough topography of the topmost carbonate-clastic mélange below. The block spectrum of the underlying and slightly older carbonate-clastic mélange points to a deposition of the sedimentary ophiolitic mélange east of or on top of the Drina-Ivanjica unit.

  4. Sources of Arctic Ocean upper halocline and changes in its properties

    NASA Astrophysics Data System (ADS)

    Anderson, L. G.; Andersson, P. S.; Bjvrk, G. M.; Jutterstrom, S.; Wahlstrom, I.

    2011-12-01

    The upper halocline of the Arctic Ocean has a distinct chemical signature by its high nutrient and partial pressure of carbon dioxide as well as low oxygen and pH values. This signature is formed along the bottoms of the Siberian shelf seas, primarily the Chukchi and East Siberian Seas, by a combination of mineralization of organic matter and release of the decay products to the sea ice brine enriched bottom water. In this contribution we use salinity and total alkalinity data to show that the fraction of sea ice brine in the nutrient enriched upper halocline water in the central Arctic Ocean is up to 4%. This water of low pH, and thus also low in calcium carbonate solubility, is found between about 100 and 200 m depth and is thus close to the productive surface water in a future central Arctic Ocean of less summer sea ice cover. In the East Siberian Sea the bottom waters with exceptional high nutrient concentration and low pH have typically between 5 and 10% of sea ice brine as computed form salinity and oxygen-18 vales. On the continental slope, over bottom depths of 15-200 m, the brine contribution was 6% at the nutrient maximum depth (50-100 m). At the same location as well as over deeper waters the silicate maximum was found over a wider salinity range than traditionally, in agreement with observations of Nishino et al (J. Oceanogr, Vol. 65, pp. 871 to 883, 2009) in the area of the deep Arctic Ocean east of the Chukchi Plateau. However, the water with lowest salinity (~32.5) in the silicate maximum had maximum in nitrate deficit expressed as N** (= [NO3] - 16[PO4] + 2.9) and the waters with highest salinity (~34.5) had the lowest oxygen concentration. This pattern is not obvious and point to at least two different biochemical environments within the East Siberian Sea that has not been observed before and could be a sign of a changing marine climate in the East Siberian Sea. One cause could be more open water in the summer season followed by more sea ice formation and brine production in the fall/winter. Strong signals of sea ice brine was also observed in the nutrient rich water found in the Herald Valley of the Chukchi Sea. This water is likely flowing north and has traditionally been assumed to be a significant contributor to the upper halocline in the central Arctic Ocean. A challenging question for the future is; are changing sea ice conditions and biogeochemical processes on the Siberian shelves impacting the composition of the halocline of the central Arctic Ocean. A follow up issue is then what effect this might have on the ecosystem of these waters.

  5. Thermal anomalies and magmatism due to lithospheric doubling and shifting

    NASA Astrophysics Data System (ADS)

    Vlaar, N. J.

    1983-11-01

    We present some thermal and magmatic consequences of the processes of lithospheric doubling and lithospheric shifting. Lithospheric doubling concerns the obduction of a cold continental or old oceanic lithospheric plate over a young and hot oceanic lithosphere/upper mantle system, including an oceanic ridge. Lithospheric shifting concerns the translation and rotation of a lithospheric plate relative to the upper mantle. In both cases the resulting thermal state of the upper mantle below the obducting or shifting lithosphere may be perturbed relative to a "normal" continental or oceanic geothermal situation. The perturbed geothermal state gives rise to a density inversion at depth and thus induces a vertical gravitational instability which favours magmatism. We speculate about the magmatic consequences of this situation and infer that in the case of lithospheric doubling our model may account for the petrology and geochemistry of the resulting magma. The original layering and composition of the overridden young oceanic lithosphere may strongly influence magmatic processes. We dwell shortly on the genesis of kimberlites within the framework of our lithospheric doubling model and on magmatism in general. Lithospheric recycling is inherent to the mechanism of lithospheric doubling.

  6. Trends in Upper-Level Cloud Cover and Surface Divergence Over the Tropical Indo-Pacific Ocean Between 1952 And 1997

    NASA Technical Reports Server (NTRS)

    Norris, Joel R.

    2005-01-01

    This study investigated the spatial pattern of linear trends in surface-observed upper-level (combined mid-level and High-level) cloud cover, precipitation, and surface divergence over the tropical Indo-Pacific Ocean during 1952-1957. Cloud values were obtained from the Extended Edited Cloud Report Archive (EECRA), precipitation values were obtained from the Hulme/Climate Research Unit Data Set, and surface divergence was alternatively calculated from wind reported Comprehensive Ocean-Atmosphere Data Set and from Smith and Reynolds Extended Reconstructed sea level pressure data.

  7. The dynamics of oceanic fronts. I - The Gulf Stream

    NASA Technical Reports Server (NTRS)

    Kao, T. W.

    1980-01-01

    The establishment and maintenance of the mean hydrographic properties of large-scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near-surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density; full time dependent diffusion and Navier-Stokes equations are then used with constant eddy diffusion and viscosity coefficients, together with a constant Coriolis parameter. Scaling analysis reveals three independent scales of the problem including the radius of deformation of the inertial length, buoyancy length, and diffusive length scales. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on the Ekman number alone for problems of oceanic interest. It is concluded that the mean Gulf Stream dynamics can be interpreted in terms of a solution of the Navier-Stokes and diffusion equations, with the cross-stream circulation responsible for the maintenance of the front; this mechanism is suggested for the maintenance of the Gulf Stream dynamics.

  8. Climate and atmospheric modeling studies. Climate applications of Earth and planetary observations. Chemistry of Earth and environment

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The research conducted during the past year in the climate and atmospheric modeling programs concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols and the solar 'constant' on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree x 1 degree resolution has been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method was developed to simulate the hydraulic behavior of soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water (or colored water) throughout the planet. Each isotope or colored water source is a fraction of the climate model's water. It participates in condensation and surface evaporation at different fractionation rates and is transported by the dynamics. A major benefit of this project has been to improve the programming techniques and physical simulation of the water vapor budget of the climate model.

  9. Effects of Langmuir Turbulence on Reactive Tracers in the Upper Ocean

    NASA Astrophysics Data System (ADS)

    Smith, K.; Hamlington, P.; Niemeyer, K.; Fox-Kemper, B.; Lovenduski, N. S.

    2017-12-01

    Reactive tracers such as carbonate chemical species play important roles in the oceanic carbon cycle, allowing the ocean to hold 60 times more carbon than the atmosphere. However, uncertainties in regional ocean sinks for anthropogenic CO2 are still relatively high. Many carbonate species are non-conserved, flux across the air-sea interface, and react on time scales similar to those of ocean turbulent processes, such as small-scale wave-driven Langmuir turbulence. All of this complexity gives rise to heterogeneous tracer distributions that are not fully understood and can greatly affect the rate at which CO2 fluxes across the air-sea interface. In order to more accurately model the biogeochemistry of the ocean in Earth system models (ESMs), a better understanding of the fundamental interactions between these reactive tracers and relevant turbulent processes is required. Research on reacting flows in other contexts has shown that the most significant tracer-flow couplings occur when coherent structures in the flow have timescales that rival reaction time scales. Langmuir turbulence, a 3D, small-scale, wave-driven process, has length and time scales on the order of O(1-100m) and O(1-10min), respectively. Once CO2 transfers across the air-sea interface, it reacts with seawater in a series of reactions whose rate limiting steps have time scales of 10-25s. This similarity in scales warrants further examination into interactions between these small-scale physical and chemical processes. In this presentation, large eddy simulations are used to examine the evolution of reactive tracers in the presence of realistic upper ocean wave- and shear-driven turbulence. The reactive tracers examined are those specifically involved in non-biological carbonate chemistry. The strength of Langmuir turbulence is varied in order to determine a relationship between the degree of enhancement (or reduction) of carbon that is fluxed across the air-sea interface due to the presence of Langmuir turbulence. By examining different reaction chemistry and surface forcing scenarios, the coupled turbulence-reactive tracer dynamics are connected with spatial and statistical properties of the resulting tracer fields. These results, along with implications for development of reduced order reactive tracer models, are discussed.

  10. Planktonic benthonic foraminiferal ratios: Modern patterns and Tertiary applicability

    USGS Publications Warehouse

    Gibson, T.G.

    1989-01-01

    The abundance of planktonic specimens in foraminiferal assemblages was determined in numerous bottom samples from inner neritic to deep oceanic depths along the Atlantic margin of the northeastern United States. The results augment previous studies in other areas that have shown a general increase in percentage of planktonic specimens in total foraminiferal bottom assemblages as water depth increases. The patterns found in this area of complex shelf bathymetry and hydrography illustrate the influence on the planktonic-benthonic percentages of water depth, distance from shore, different water mass properties and downslope movement of tests in high energy areas. The patterns found in the 661 samples from the Atlantic margin were compared with results from 795 stations in the Gulf of Mexico, Pacific Ocean and Red Sea. The relative abundance of planktonic specimens and water depth correlates positively in all open oceanic areas even though taxonomic composition and diversity of the faunas from different areas is variable. The variation of planktonic percentages in bottom samples within most depth intervals is large so that a precise depth determination cannot be made for any given value. However, an approximate upper depth limit for given percentages can be estimated for open ocean environments. A decrease in planktonic percentages is seen in the lower salinity and higher turbidity coastal waters of the Gulf of Maine. Planktonic percentages intermediate between the lower values in the less saline coastal waters and the higher values in the normal open oceanic conditions occur in the transitional area between the Gulf of Maine and the open marine Atlantic Ocean to the east. Similarly lowered values in another area of restricted oceanic circulation occur in the high salinity, clear, but nutrient-poor waters of the Gulf of Aqaba off the Red Sea. A comparison of the similarity of modern planktonic percentage values to those found in earlier Tertiary assemblages was made to confirm the usefulness of this measure in the fossil record. In some stratigraphic sections in upper Paleocene and lower Eocene strata of the eastern Gulf Coastal Plain, water depths inferred from trends and values of planktonic percentages consistently match paleobathymetry constructed from physical stratigraphic characteristics and paleogeographic relationships. ?? 1989.

  11. Scale Closure in Upper Ocean Optical Properties: From Single Particles to Ocean Color

    NASA Technical Reports Server (NTRS)

    Green, Rebecca E.

    2002-01-01

    Predictions of chlorophyll concentration from satellite ocean color are an indicator of primary productivity, with implications for foodwebs, fisheries, and the global carbon cycle. Models describing the relationship between optical properties and chlorophyll do not account for much of the optical variability observed in natural waters, because of the presence of seawater constituents that do not covary with phytoplankton pigments. in order to understand variability in these models, the optical contributions of seawater constituents were investigated. A combination of Mie theory and flow cytometry was used to determine the diameter, complex refractive index, and optical cross-sections of individual particles. In New England continental shelf waters, eukaryotic phytoplankton were the main particle contributors to absorption and scaftering. Minerals were the main contributor to backscattering (bb) in the spring, whereas in the summer both minerals and detritus contributed to bb. Synechococcus and heterotrophic bacteria were relatively unimportant optically. Seasonal differences in the spectral shape of remote sensing reflectance, Rrs, were contributed to approximately equally by eukaryotic phytoplankton absorption, dissolved absorption, and non-phytoplankton bb. Differences between measurements of bb and Prs and modeled values based on chlorophyll concentration were caused by higher dissolved absorption and non-phytoplankton bb than were assumed by the model.

  12. Using altimetry to help explain patchy changes in hydrographic carbon measurements

    NASA Astrophysics Data System (ADS)

    Rodgers, Keith B.; Key, Robert M.; Gnanadesikan, Anand; Sarmiento, Jorge L.; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; Glover, David M.; Ishida, Akio; Ishii, Masao; Jacobson, Andrew R.; Lo Monaco, Claire; Maier-Reimer, Ernst; Mercier, Herlé; Metzl, Nicolas; PéRez, Fiz F.; Rios, Aida F.; Wanninkhof, Rik; Wetzel, Patrick; Winn, Christopher D.; Yamanaka, Yasuhiro

    2009-09-01

    Here we use observations and ocean models to identify mechanisms driving large seasonal to interannual variations in dissolved inorganic carbon (DIC) and dissolved oxygen (O2) in the upper ocean. We begin with observations linking variations in upper ocean DIC and O2 inventories with changes in the physical state of the ocean. Models are subsequently used to address the extent to which the relationships derived from short-timescale (6 months to 2 years) repeat measurements are representative of variations over larger spatial and temporal scales. The main new result is that convergence and divergence (column stretching) attributed to baroclinic Rossby waves can make a first-order contribution to DIC and O2 variability in the upper ocean. This results in a close correspondence between natural variations in DIC and O2 column inventory variations and sea surface height (SSH) variations over much of the ocean. Oceanic Rossby wave activity is an intrinsic part of the natural variability in the climate system and is elevated even in the absence of significant interannual variability in climate mode indices. The close correspondence between SSH and both DIC and O2 column inventories for many regions suggests that SSH changes (inferred from satellite altimetry) may prove useful in reducing uncertainty in separating natural and anthropogenic DIC signals (using measurements from Climate Variability and Predictability's CO2/Repeat Hydrography program).

  13. Long-term variations of SST and heat content in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Huonsou-gbo, Aubains; Servain, Jacques; Caniaux, Guy; Araujo, Moacyr; Bourlès, Bernard; Veleda, Doris

    2015-04-01

    Recent studies (eg. Wen et al. 2010; Servain et al. 2014) suggest that subsurface processes influence the interannual variability of sea surface temperature (SST) in the tropical Atlantic through the Meridional Overturning Circulation (MOC) with time lags of several months. In this study, we used observed SST and Ocean heat content to test such hypothesis during the period 1964-2013. First results indicate great similarities in the positive linear trends of monthly standardized anomalies of SST, upper ocean heat content (0-500m) and deeper ocean heat content (500-2000m) averaged over the whole Atlantic Ocean. Strong positive trends of SST and deeper heat content occurred in the equatorial Atlantic, while a strong positive trend of the upper heat content was observed in the northeast Atlantic. These positive trends were the highest during the last two decades. The lagged positive correlation patterns between upper heat content anomalies over the whole gridded Atlantic Ocean and SST anomalies averaged over the equatorial region (60°W-15°E; 10°N-10°S) show a slow temporal evolution, which is roughly in agreement with the upper MOC. More detailed works about the mechanism, as well as about the origin of the highest positive trend of the deeper heat content in the equatorial region, are presently under investigation. References Servain J., G. Caniaux, Y. K. Kouadio, M. J. McPhaden, M. Araujo (2014). Recent climatic trends in the tropical Atlantic. Climate Dynamics, Vol. 43, 3071-3089, DOI 10.1007/s00382-014-2168-7.

  14. Gas exchange in the ice zone: the role of small waves and big animals

    NASA Astrophysics Data System (ADS)

    Loose, B.; Takahashi, A.; Bigdeli, A.

    2016-12-01

    The balance of air-sea gas exchange and net biological carbon fixation determine the transport and transformation of carbon dioxide and methane in the ocean. Air-sea gas exchange is mostly driven by upper ocean physics, but biology can also play a role. In the open ocean, gas exchange increases proportionate to the square of wind speed. When sea ice is present, this dependence breaks down in part because breaking waves and air bubble entrainment are damped out by interactions between sea ice and the wave field. At the same time, sea ice motions, formation, melt, and even sea ice-associated organisms can act to introduce turbulence and air bubbles into the upper ocean, thereby enhancing air-sea gas exchange. We take advantage of the knowledge advances of upper ocean physics including bubble dynamics to formulate a model for air-sea gas exchange in the sea ice zone. Here, we use the model to examine the role of small-scale waves and diving animals that trap air for insulation, including penguins, seals and polar bears. We compare these processes to existing parameterizations of wave and bubble dynamics in the open ocean, to observe how sea ice both mitigates and locally enhances air-sea gas transfer.

  15. Magnetotellurics with geomagnetic observatory data influenced by the ocean effect: upper mantle conductivity under the islands of Gan and Tristan da Cunha

    NASA Astrophysics Data System (ADS)

    Morschhauser, A.; Grayver, A.; Kuvshinov, A. V.; Samrock, F.; Matzka, J.

    2017-12-01

    The electric conductivity of the oceanic lithosphere and upper mantle is not well constrained, mainly due to logistical challenges in oceanic surveys. However, electric field measurements can easily be added to geomagnetic observatories on islands.Currently, such measurements are available for Tristan da Cunha in the Atlantic Ocean and Gan on the Maldives in the Indian Ocean, and we derive tippers, impedances, and phase tensors for those observatories. The main challenge is that these transfer functions are severely affected by the conductivity contrast between seawater and land, which results in a three-dimensional (3-D) behaviour of the responses. We use an adaptive finite-element MT forward solver in order to properly account for this 3-D effect by including the available bathymetry and topography data into the model. Then, different transfer functions are individually inverted for upper mantle conductivities using a stochastic approach. We observe that tippers are mostly sensitive down to depths of approx. 100 km, and that additional electric field measurements improve the resolution for 100 to 200 km depth. The obtained 1-D conductivity profiles indicate a normal oceanic mantle below GAN and an anomalously conductive mantle below TDC, which may be related to the presence of melt below the island.

  16. Improving Hurricane Heat Content Estimates From Satellite Altimeter Data

    NASA Astrophysics Data System (ADS)

    de Matthaeis, P.; Jacob, S.; Roubert, L. M.; Shay, N.; Black, P.

    2007-12-01

    Hurricanes are amongst the most destructive natural disasters known to mankind. The primary energy source driving these storms is the latent heat release due to the condensation of water vapor, which ultimately comes from the ocean. While the Sea Surface Temperature (SST) has a direct correlation with wind speeds, the oceanic heat content is dependent on the upper ocean vertical structure. Understanding the impact of these factors in the mutual interaction of hurricane-ocean is critical to more accurately forecasting intensity change in land-falling hurricanes. Use of hurricane heat content derived from the satellite radar altimeter measurements of sea surface height has been shown to improve intensity prediction. The general approach of estimating ocean heat content uses a two-layer model representing the ocean with its anomalies derived from altimeter data. Although these estimates compare reasonably well with in-situ measurements, they are generally about 10% under-biased. Additionally, recent studies show that the comparisons are less than satisfactory in the Western North Pacific. Therefore, our objective is to develop a methodology to more accurately represent the upper ocean structure using in-situ data. As part of a NOAA/ USWRP sponsored research, upper ocean observations were acquired in the Gulf of Mexico during the summers of 1999 and 2000. Overall, 260 expendable profilers (XCTD, XBT and XCP) acquired vertical temperature structure in the high heat content regions corresponding to the Loop Current and Warm Core Eddies. Using the temperature and salinity data from the XCTDs, first the Temperature-Salinity relationships in the Loop Current Water and Gulf Common water are derived based on the depth of the 26° C isotherm. These derived T-S relationships compare well with those inferred from climatology. By means of these relationships, estimated salinity values corresponding to the XBT and XCP temperature measurements are calculated, and used to derive continuous profiles of density. Ocean heat content is then estimated from these profiles, and compared to that derived from altimeter data, showing - as mentioned earlier - a consistent bias. Using a procedure that conserves density in the vertical, these density profiles are discretized into five isopycnic layers representative of the upper ocean in the Gulf of Mexico. Statistical correlations are then derived between the altimetric sea surface height anomalies and the thickness of these layers in the region. Using these correlations, a higher resolution upper ocean structure is derived from the altimeter data. Withholding observations from one snapshot of data in the correlations, and comparing the estimated ocean heat content with in-situ values, will allow us to quantify errors in this approach. This methodology will then be extended to the Western Pacific using Argo data, and results will be presented.

  17. Along - Strike Analysis of Contemporary Ocean Temperature Change on the Cascadia Margin and Implications to Upper Slope Hydrate Instability

    NASA Astrophysics Data System (ADS)

    Phrampus, B.; Harris, R. N.; Trehu, A. M.; Embley, R. W.; Merle, S. G.

    2017-12-01

    Gas hydrates are found globally on continental margins and due to the large amount of sequestered carbon in hydrate reservoirs, whether these deposits are dynamic or stable has significant implications for slope stability, ocean/atmosphere carbon budget, and deep-water energy exploration. Recent studies indicate that upper slope hydrate degradation may be relatively widespread on passive margins due to recent ocean temperature warming between 0.012 and 0.033 °C/yr (e.g. Svalbard, North Alaska, and US Atlantic margin). However, the potential and breadth of warming induced hydrate instability remains contentious based on multiple observations including: 1) seep locations not consistent with locations of hydrate dissociation, 2) a lack of hydrate in regions of warming, and 3) evidence for long-lived seepage in regions associated with contemporary warming-induced hydrate dissociation. At the Cascadia margin, a recent study suggests that contemporary warming of intermediate water intersects the hydrate stability zone leading to hydrate dissociation that feeds upper slope seeps. Here, we provide a systematic analysis of along-strike variations in hydrate distribution along the Cascadia margin combined with a multivariable regression of ocean temperatures to characterize the potential of upper slope hydrate instability. Preliminary seep locations reveal upper slope seeps and observed regions of hydrate are correlated spatially between 42.5 and 48.0 °N, outside this region there is a dearth of identified upper slope hydrate and seeps. Between 44.5 and 48.0 °N a contemporary warming trend is as large as 0.006 °C/yr and is collocated with upper slope hydrate and gas seepage. This warming rate is relatively small, 2-5x smaller than warming trends identified in the Arctic where temperature induced hydrate instability remains uncertain. Additionally, we identify a region between 42.5 and 44.5 °N with collocated upper slope seepage and hydrate but no evidence of ocean warming, suggesting upper slope seepage is not driven by temperature induced hydrate instability, but maybe driven by tectonic uplift. These results highlight the absence of temperature driven seepage and slope instability on the Cascadia margin and deemphasize the impact of lower latitude warming on global hydrate dynamics and carbon budget.

  18. The harzburgites-lherzolite cycle: depletion and refertilization processes

    NASA Astrophysics Data System (ADS)

    Dijkstra, A. H.

    2011-12-01

    Lherzolites or clinopyroxene-rich harzburgites sampled at the ocean floor are now generally interpreted as refractory harzburgites refertilized by melt-rock reaction or melt impregnation at the spreading center, rather than as relatively undepleted bulk upper mantle. The key evidence for a melt refertilization origin is often textural. Critically, the refertilization can mask the underlying very refractory character: oceanic peridotites prior to melt refertilization at the ridge are often too refractory to be simple mantle residues of bulk upper mantle that was melted at the ridge. This suggests that the upper mantle contains large domains that record prior melting histories. This is supported by ancient rhenium-depletion ages that are common in oceanic peridotites. In this presentation, I will discuss some key examples (e.g., Macquarie Island [1], Pindos, Totalp, Lanzarote) of refertilized oceanic peridotites, which all have recorded previous, ancient depletions. I will show the textural and geochemical evidence for melt refertilization. It has often been assumed that melt refertilization occurs by interaction with mantle melts. However, there is now evidence for melt refertilization through a reaction with eclogite-derived melts, probably at the base of the melting column underneath the ridge system. These eclogitic mantle heterogeneities themselves do not normally survive the melting underneath the spreading center, but their isotopic signature can be recognized in the reacted peridotites. In summary, we have moved away from the idea that oceanic mantle rocks are simple melting residues of homogeneous bulk upper mantle. The picture that emerges is a rich and complex one, suggesting that oceanic mantle rocks record dynamic histories of melting and refertilization. In particular, the melting event in refertilized peridotites can be much older than the age of the ridge system at which they are sampled. Many oceanic peridotites contain evidence for a Mesoproterozoic melting event of perhaps global significance. Regardless of the nature of these melting events, it is now clear that in their complex overprinting history, oceanic peridotites more and more resemble polygenetic metamorphic rocks.

  19. Predictability of the California Current System

    NASA Technical Reports Server (NTRS)

    Miller, Arthur J.; Chereskin, T.; Cornuelle, B. D.; Niiler, P. P.; Moisan, J. R.; Lindstrom, Eric (Technical Monitor)

    2001-01-01

    The physical and biological oceanography of the Southern California Bight (SCB), a highly productive subregion of the California Current System (CCS) that extends from Point Conception, California, south to Ensenada, Mexico, continues to be extensively studied. For example, the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program has sampled this region for over 50 years, providing an unparalleled time series of physical and biological data. However, our understanding of what physical processes control the large-scale and mesoscale variations in these properties is incomplete. In particular, the non-synoptic and relatively coarse spatial sampling (70km) of the hydrographic grid does not completely resolve the mesoscale eddy field (Figure 1a). Moreover, these unresolved physical variations exert a dominant influence on the evolution of the ecosystem. In recent years, additional datasets that partially sample the SCB have become available. Acoustic Doppler Current Profiler (ADCP) measurements, which now sample upper-ocean velocity between stations, and sea level observations along TOPEX tracks give a more complete picture of the mesoscale variability. However, both TOPEX and ADCP are well-sampled only along the cruise or orbit tracks and coarsely sampled in time and between tracks. Surface Lagrangian drifters also sample the region, although irregularly in time and space. SeaWiFS provides estimates of upper-ocean chlorophyll-a (chl-alpha), usually giving nearly complete coverage for week-long intervals, depending on cloud coverage. Historical ocean color data from the Coastal Zone Color Scanner (CZCS) has been used extensively to determine phytoplankton patterns and variability, characterize the primary production across the SCB coastal fronts, and describe the seasonal and interannual variability in pigment concentrations. As in CalCOFI, these studies described much of the observed structures and their variability over relatively large space and time scales.

  20. Sensitivity of Ocean Reflectance Inversion Models for Identifying and Discriminating Between Phytoplankton Functional Groups

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Ooesler, Collin S.

    2012-01-01

    The daily, synoptic images provided by satellite ocean color instruments provide viable data streams for observing changes in the biogeochemistrY of marine ecosystems. Ocean reflectance inversion models (ORMs) provide a common mechanism for inverting the "color" of the water observed a satellite into marine inherent optical properties (lOPs) through a combination of empiricism and radiative transfer theory. lOPs, namely the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents, describe the contents of the upper ocean, information critical for furthering scientific understanding of biogeochemical oceanic processes. Many recent studies inferred marine particle sizes and discriminated between phytoplankton functional groups using remotely-sensed lOPs. While all demonstrated the viability of their approaches, few described the vertical distributions of the water column constituents under consideration and, thus, failed to report the biophysical conditions under which their model performed (e.g., the depth and thickness of the phytoplankton bloom(s)). We developed an ORM to remotely identifY Noctiluca miliaris and other phytoplankton functional types using satellite ocean color data records collected in the northern Arabian Sea. Here, we present results from analyses designed to evaluate the applicability and sensitivity of the ORM to varied biophysical conditions. Specifically, we: (1) synthesized a series of vertical profiles of spectral inherent optical properties that represent a wide variety of bio-optical conditions for the northern Arabian Sea under aN Miliaris bloom; (2) generated spectral remote-sensing reflectances from these profiles using Hydrolight; and, (3) applied the ORM to the synthesized reflectances to estimate the relative concentrations of diatoms and N Miliaris for each example. By comparing the estimates from the inversion model to those from synthesized vertical profiles, we were able to identifY those bio-optical conditions under which the inversion model performs both well and poorly.

  1. Seasonality of submesoscale dynamics in the Kuroshio Extension

    NASA Astrophysics Data System (ADS)

    Rocha, Cesar B.; Gille, Sarah T.; Chereskin, Teresa K.; Menemenlis, Dimitris

    2016-11-01

    Recent studies show that the vigorous seasonal cycle of the mixed layer modulates upper ocean submesoscale turbulence. Here we provide model-based evidence that the seasonally changing upper ocean stratification in the Kuroshio Extension also modulates submesoscale (here 10-100 km) inertia-gravity waves. Summertime restratification weakens submesoscale turbulence but enhances inertia-gravity waves near the surface. Thus, submesoscale turbulence and inertia-gravity waves undergo vigorous out-of-phase seasonal cycles. These results imply a strong seasonal modulation of the accuracy of geostrophic velocity diagnosed from submesoscale sea surface height delivered by the Surface Water and Ocean Topography satellite mission.

  2. Response of upper ocean cooling off northeastern Taiwan to typhoon passages

    NASA Astrophysics Data System (ADS)

    Zheng, Zhe-Wen; Zheng, Quanan; Gopalakrishnan, Ganesh; Kuo, Yi-Chun; Yeh, Ting-Kuang

    2017-07-01

    A comprehensive investigation of the typhoon induced upper ocean processes and responses off northeastern Taiwan was conducted. Using the Regional Ocean Modeling System, the upper ocean responses of all typhoons striking Taiwan between 2005 and 2013 were simulated. In addition to Kuroshio intrusion, the present study demonstrates another important mechanism of typhoon induced near-inertial currents over the continental shelf of East China Sea, which can also trigger a distinct cooling (through entrainment mixing) within this region. Results indicate that the processes of typhoon inducing distinct cooling off northeastern Taiwan are conditional phenomena (only ∼12% of typhoons passing Taiwan triggered extreme cooling there). Subsequently, by executing a series of sensitivity experiments and systematic analyses on the behaviors and background conditions of all those typhoon cases, key criteria determining the occurrences of cooling through both mechanisms were elucidated. Occurrences of cooling through the Kuroshio intrusion mechanism are determined mainly by the strength of the local wind over northeastern Taiwan. A distinct cooling triggered by enhanced near-inertial currents is shown to be associated with the process of wind-current resonance. Both processes of Kuroshio intrusion and enhanced near-inertial currents are dominated by wind forcing rather than upper oceanic conditions. Based on the recent findings on the possible dynamic linkage between sea surface temperature near northeast Taiwan and local weather systems, the results elucidated in this study lay the foundation for further improvement in the regional weather prediction surrounding northeast Taiwan.

  3. A Profiling Float System for the North Arabian Sea

    DTIC Science & Technology

    2017-11-29

    purpose of this Defense University Research Instrumentation Program grant was to purchase a set of profiling floats to form an upper ocean observing ...purchase a set of profiling floats to form an upper ocean observing system for the Northern Arabian Sea Circulation - autonomous research (NASCar...resolution numerical simulations. To achieve these goals the DRI will utilize new observational methods that do not rely on a traditional ship-based

  4. Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.

    2006-11-01

    To provide more accurate ice cloud microphysical properties, the multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems globally over oceans using combined instrument data from Aqua. The liquid water path (LWP) of lower-layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. The properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by matching simulated radiances from a two-cloud-layer radiative transfer model. The results show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and IWP retrievals for ice-over-water cloud systems. The mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over oceans from Aqua are 7.6 and 146.4 gm-2, respectively, down from the initial single-layer retrievals of 17.3 and 322.3 gm-2. The mean IWP for actual single-layer clouds is 128.2 gm-2.

  5. First results from a new interdisciplinary robotic vehicle for under-ice research

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Katlein, C.; Schiller, M.

    2016-12-01

    Research at the ice-water interface below drifting sea-ice is crucial for the investigation of the fluxes of energy, momentum and matter across the atmosphere-ice-ocean boundary. Transmission of solar energy through the ice and snow layers causes warming of the upper ocean and melting of the ice itself. It is also a key factor for in and under-ice primary production, supplying the ice associated food-chain and causing carbon export to deeper water layers and the sea floor. The complex geometry of sea ice does not only cause a large spatial variability in optical properties of the ice cover, but also influences biomass accumulations and especially the hydrodynamic interaction between the ice cover and the uppermost layers of the ocean. Access to the ice underside is however still sparse, as diving operations are risky and logistically challenging. In the last decade, robotic underwater technologies have evolved significantly and enabled the first targeted large-scale observations by remotely operated and autonomous underwater vehicles. A new remotely operated vehicle was commissioned for under ice research at the Alfred Wegener Institute supported by the FRAM infrastructure program of the Helmholtz-Society. Apart from proven under-ice navigation and operation capabilities, the vehicle provides an extended interdisciplinary sensor platform supporting oceanographic, biological, biogeochemical and physical sea-ice research. Here we present the first preliminary data obtained with the new vehicle during the PS101 expedition of the German icebreaker RV Polarstern to the Central Arctic in September and October 2016. Apart from measurements of spectral light transmittance of sea ice during the autumn freeze-up, we show vertical profiles of the bio-optical and oceanographic properties of the upper water column. This data is combined with under-ice topography obtained from upward-looking multibeam sonar, still imagery and HD-video material.

  6. Variability of Coastal and Ocean Water Temperature in the Upper 700 m along the Western Iberian Peninsula from 1975 to 2006

    PubMed Central

    Santos, Fran; Gómez-Gesteira, Moncho; deCastro, Maite; Álvarez, Inés

    2012-01-01

    Temperature is observed to have different trends at coastal and ocean locations along the western Iberian Peninsula from 1975 to 2006, which corresponds to the last warming period in the area under study. The analysis was carried out by means of the Simple Ocean Data Assimilation (SODA). Reanalysis data are available at monthly scale with a horizontal resolution of 0.5°×0.5° and a vertical resolution of 40 levels, which allows obtaining information beneath the sea surface. Only the first 21 vertical levels (from 5.0 m to 729.35 m) were considered here, since the most important changes in heat content observed for the world ocean during the last decades, correspond to the upper 700 m. Warming was observed to be considerably higher at ocean locations than at coastal ones. Ocean warming ranged from values on the order of 0.3°C dec−1 near surface to less than 0.1°C dec−1 at 500 m, while coastal warming showed values close to 0.2°C dec−1 near surface, decreasing rapidly below 0.1°C dec−1 for depths on the order of 50 m. The heat content anomaly for the upper 700 m, showed a sharp increase from coast (0.46 Wm−2) to ocean (1.59 Wm−2). The difference between coastal and ocean values was related to the presence of coastal upwelling, which partially inhibits the warming from surface of near shore water. PMID:23226533

  7. Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model

    DTIC Science & Technology

    2012-06-01

    atmosphere and ocean (Yu and Weller, 2007 ). Salinities in the upper ocean are set by the difference between evaporation and precipitation at the ocean...surface (Yu, 2007 ; Schmitt, 2008). Because the buoyancy (density) of seawater at the ocean surface is con- trolled by temperature and salinity, the...days, these currents mean- der and generate highly energetic meso- scale eddies (Schmitz, 1996a,b; Stammer , 1997), the spinning oceanic dynamical

  8. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  9. Flexible ocean upwelling pipe

    DOEpatents

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  10. Sources of global warming of the upper ocean on decadal period scales

    USGS Publications Warehouse

    White, Warren B.; Dettinger, M.D.; Cayan, D.R.

    2003-01-01

    Recent studies find global climate variability in the upper ocean and lower atmosphere during the twentieth century dominated by quasi-biennial, interannual, quasi-decadal and interdecadal signals. The quasi-decadal signal in upper ocean temperature undergoes global warming/cooling of ???0.1??C, similar to that occuring with the interannual signal (i.e., El Nin??o-Southern Oscillation), both signals dominated by global warming/cooling in the tropics. From the National Centers for Environmental Prediction troposphere reanalysis and Scripps Institution of Oceanography upper ocean temperature reanalysis we examine the quasi-decadal global tropical diabetic heat storage (DHS) budget from 1975 to 2000. We find the anomalous DHS warming tendency of 0.3-0.9 W m-2 driven principally by a downward global tropical latent-plus-sensible heat flux anomaly into the ocean, overwhelming the tendency by weaker upward shortwave-minus-longwave heat flux anomaly to drive an anomalous DHS cooling tendency. During the peak quasi-decadal warming the estimated dissipation of DHS anomaly of 0.2-0.5 W m-2 into the deep ocean and a similar loss to the overlying atmosphere through air-sea heat flux anomaly are balanced by a decrease in the net poleward Ekman heat advection out of the tropics of 0.4-0.7 W m-2. This scenario is nearly the opposite of that accounting for global tropical warming during the El Nin??o. These diagnostics confirm that even though the global quasi-decadal signal is phase-locked to the 11-year signal in the Sun's surface radiative forcing of ???0.1 W m-2, the anomalous global tropical DHS tendency cannot be driven by it directly.

  11. The hydrography of the Mozambique Channel from six years of continuous temperature, salinity, and velocity observations

    NASA Astrophysics Data System (ADS)

    Ullgren, J. E.; van Aken, H. M.; Ridderinkhof, H.; de Ruijter, W. P. M.

    2012-11-01

    Temperature, salinity and velocity data are presented, along with the estimated volume transport, from seven full-length deep sea moorings placed across the narrowest part of the Mozambique Channel, southwest Indian Ocean, during the period November 2003 to December 2009. The dominant water mass in the upper layer is Sub-Tropical Surface Water (STSW) which overlies South Indian Central Water (SICW), and is normally capped by fresher Tropical Surface Water (TSW). Upper ocean salinity increased through 2005 as a result of saline STSW taking up a relatively larger part of the upper layer, at the expense of TSW. Upper waters are on average warmer and lighter in the central Channel than on the sides. Throughout the upper 1.5 km of the water column there is large hydrographic variability, short-term as well as interannual, and in particular at frequencies (four to seven cycles per year) associated with the southward passage of anticyclonic Mozambique Channel eddies. The eddies have a strong T-S signal, in the upper and central waters as well as on the intermediate level, as the eddies usually carry saline Red Sea Water (RSW) in their core. While the interannual frequency band displays an east-west gradient with higher temperature variance on the western side, the eddy frequency band shows highest variance in the centre of the Channel, where the eddy band contains about 40% of the total isopycnal hydrographic variability. Throughout the >6 years of measurements, the frequency and characteristics of eddies vary between periods, both in terms of strength and vertical structure of eddy T-S signals. These changes contribute to the interannual variability of water mass properties: an increase in central water salinity to a maximum in late 2007 coincided with a period of unusually frequent eddies with strong salinity signals. The warmest and most saline deep water is found within the northward flowing Mozambique Undercurrent, on the western side of the Channel. The Undercurrent has two cores: an intermediate one mainly containing diluted Antarctic Intermediate Water (AAIW), and a deep one consisting of North Atlantic Deep Water (NADW). In the intermediate core, T-S properties are strongly correlated with current velocity, probably because of the strong salinity gradient at the interface between Red Sea Water (RSW) and AAIW. In the deep core, velocity and hydrographic time series do not correlate on a daily basis, but they do at longer time scales.

  12. Ocean Cooling Pattern at the Last Glacial Maximum

    DOE PAGES

    Zhuang, Kelin; Giardino, John R.

    2012-01-01

    Ocean temperature and ocean heat content change are analyzed based on four PMIP3 model results at the Last Glacial Maximum relative to the prehistorical run. Ocean cooling mostly occurs in the upper 1000 m depth and varies spatially in the tropical and temperate zones. The Atlantic Ocean experiences greater cooling than the rest of the ocean basins. Ocean cooling is closely related to the weakening of meridional overturning circulation and enhanced intrusion of Antarctic Bottom Water into the North Atlantic.

  13. Lithosphere/Asthenosphere Boundary depth inferred from global surface wave tomography

    NASA Astrophysics Data System (ADS)

    Burgos, G.; Montagner, J.-P.; Beucler, E.; Trampert, J.; Ritzwoller, M. H.; Capdeville, Y.; Shapiro, N. M.

    2012-04-01

    The coupling between the rigid lithosphere and the weaker underlying asthenosphere is a key point of Plate Tectonics and Mantle dynamics. The characterization of the properties of the Lithosphere/Asthenosphere Boundary (LAB) is essential for understanding the Upper Mantle. Recent studies, using receiver functions for example, provide local constraints. In this study a global view by surface wave tomography is given. A large amount of data from different groups (Harvard, Boulder, Utrecht, Paris) has been collected. There are more than 100,000 phase and group velocities measurements on the fundamental mode of Rayleigh and Love waves. This global scale dataset in the period range 15s-200s, enables us to investigate the LAB with an approximative lateral resolution of 500km. The regionalization of the path-averaged velocities is performed to extract isotropic and azimuthally anisotropic terms of local velocities. We derive our own crustal model (taking account of topography-bathymetry, sediments and crustal thickness) by a MonteCarlo inversion with the shorter periods of the data. A forward estimation of the LAB properties on a global map is provided. We choose a low parametrization (isotropic Vs layers) of the Upper Mantle adjusted with the larger periods of the data by MonteCarlo inversion. Then we present a new tomographic model obtained by inverting the larger periods of phase velocities in the least square sense, including isotropic Vs velocity, radial anisotropy and azimuthal anisotropy. Different proxies for the LAB are builded from this 3D Upper Mantle model, such as the strongest negative Sv velocity gradient or the variation of azimuthal anisotropy fast axis. LAB determination seems consistent in oceanic regions in all of the proxies, presenting a good correlation with ocean floor ages. While the estimated depths beneath continents still unclear depending on the type of parametrizations compared to receiver functions or heat flux studies.

  14. Proxies of Lithosphere/Asthenosphere Boundary from global surface wave tomography

    NASA Astrophysics Data System (ADS)

    Burgos, G.; Montagner, J.; Beucler, E.; Trampert, J.; Ritzwoller, M. H.; Capdeville, Y.; Shapiro, N. M.

    2011-12-01

    The coupling between rigid lithosphere and the weaker underlying asthenosphere is a key point of Plate Tectonics and Mantle dynamics. The characterization of the properties of the Lithosphere/Asthenosphere Boundary (LAB) is essential for understanding the Upper Mantle. Recent studies, using receiver functions for example, provide local constraints. In this study a global view by surface wave tomography is given. A large amount of data from different groups (Harvard, Boulder, Utrecht, Paris) has been collected. There are more than 100,000 phase and group velocities measurements on the fundamental mode of Rayleigh and Love waves. This global scale dataset in the period range 15s-200s, enables us to investigate the LAB with an approximative lateral resolution of 500km. The regionalization of the path-averaged velocities is performed to extract isotropic and azimuthally anisotropic terms of local velocities. We derive our own crustal model (taking account of topography-bathymetry, sediments and crustal thickness) by a MonteCarlo inversion with the shorter periods of the data. A forward estimation of the LAB properties on a global map is provided. We choose a low parametrization (isotropic Vs layers) of the Upper Mantle ajusted with the larger periods of the data by MonteCarlo inversion. Then we present a new tomographic model obtained by inverting the larger periods of phase velocities in the least square sense, including isotropic Vs velocity, radial anisotropy and azimuthal anisotropy. Different proxies for the LAB are builded from this 3D Upper Mantle model, such as the strongest negative Sv velocity gradient or the variation of azimuthal anisotropy fast axis. LAB determination seems consistent in oceanic regions in all of the proxies, presenting a good correlation with ocean floor ages. While the estimated depths beneath continents still unclear depending on the type of parametrizations compared to receiver functions or heat flux studies.

  15. Impacts of sea-surface salinity in an eddy-resolving semi-global OGCM

    NASA Astrophysics Data System (ADS)

    Furue, Ryo; Takatama, Kohei; Sasaki, Hideharu; Schneider, Niklas; Nonaka, Masami; Taguchi, Bunmei

    2018-02-01

    To explore the impacts of sea-surface salinity (SSS) on the interannual variability of upper-ocean state, we compare two 10-year runs of an eddy-resolving ocean general circulation model (OGCM): in one, SSS is strongly restored toward a monthly climatology (World Ocean Atlas '98) and in the other, toward the SSS of a monthly gridded Argo product. The inclusion of the Argo SSS generally improves the interannual variability of the mixed layer depth; particularly so in the western tropical Pacific, where so-called "barrier layers" are reproduced when the Argo SSS is included. The upper-ocean subsurface salinity variability is also improved in the tropics and subtropics even below the mixed layer. To understand the reason for the latter improvement, we separate the salinity difference between the two runs into its "dynamical" and "spiciness" components. The dynamical component is dominated by small-scale noise due to the chaotic nature of mesoscale eddies. The spiciness difference indicates that as expected from the upper-ocean general circulation, SSS variability in the mixed layer is subducted into the thermocline in subtropics; this signal is generally advected downward, equatorward, and westward in the equator-side of the subtropical gyre. The SSS signal subducted in the subtropical North Pacific appears to enter the Indian Ocean through the Indonesian Throughflow, although this signal is weak and probably insignificant in our model.

  16. Intercomparison of Air-Sea Fluxes in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Buckley, J.; Weller, R. A.; Farrar, J. T.; Tandon, A.

    2016-02-01

    Heat and momentum exchange between the air and sea in the Bay of Bengal is an important driver of atmospheric convection during the Asian Monsoon. Warm sea surface temperatures resulting from salinity stratified shallow mixed layers trigger widespread showers and thunderstorms. In this study, we compare atmospheric reanalysis flux products to air-sea flux values calculated from shipboard observations from four cruises and an air-sea flux mooring in the Bay of Bengal as part of the Air-Sea Interactions in the Northern Indian Ocean (ASIRI) experiment. Comparisons with months of mooring data show that most long timescale reanalysis error arises from the overestimation of longwave and shortwave radiation. Ship observations and select data from the air-sea flux mooring reveals significant errors on shorter timescales (2-4 weeks) which are greatly influenced by errors in shortwave radiation and latent and sensible heat. During these shorter periods, the reanalyses fail to properly show sharp decreases in air temperature, humidity, and shortwave radiation associated with mesoscale convective systems. Simulations with the Price-Weller-Pinkel (PWP) model show upper ocean mixing and deepening mixed layers during these events that effect the long term upper ocean stratification. Mesoscale convective systems associated with cloudy skies and cold and dry air can reduce net heat into the ocean for minutes to a few days, significantly effecting air-sea heat transfer, upper ocean stratification, and ocean surface temperature and salinity.

  17. Global warming and ocean stratification: A potential result of large extraterrestrial impacts

    NASA Astrophysics Data System (ADS)

    Joshi, Manoj; von Glasow, Roland; Smith, Robin S.; Paxton, Charles G. M.; Maycock, Amanda C.; Lunt, Daniel J.; Loptson, Claire; Markwick, Paul

    2017-04-01

    The prevailing paradigm for the climatic effects of large asteroid or comet impacts is a reduction in sunlight and significant short-term cooling caused by atmospheric aerosol loading. Here we show, using global climate model experiments, that the large increases in stratospheric water vapor that can occur upon impact with the ocean cause radiative forcings of over +20 W m-2 in the case of 10 km sized bolides. The result of such a positive forcing is rapid climatic warming, increased upper ocean stratification, and potentially disruption of upper ocean ecosystems. Since two thirds of the world's surface is ocean, we suggest that some bolide impacts may actually warm climate overall. For impacts producing both stratospheric water vapor and aerosol loading, radiative forcing by water vapor can reduce or even cancel out aerosol-induced cooling, potentially causing 1-2 decades of increased temperatures in both the upper ocean and on the land surface. Such a response, which depends on the ratio of aerosol to water vapor radiative forcing, is distinct from many previous scenarios for the climatic effects of large bolide impacts, which mostly account for cooling from aerosol loading. Finally, we discuss how water vapor forcing from bolide impacts may have contributed to two well-known phenomena: extinction across the Cretaceous/Paleogene boundary and the deglaciation of the Neoproterozoic snowball Earth.

  18. The Deep Meridional Overturning Circulation in the Indian Ocean Inferred from the GECCO Synthesis

    NASA Astrophysics Data System (ADS)

    Wang, W.; Koehl, A.; Stammer, D.

    2012-04-01

    The meridional overturning circulation in the Indian Ocean and its temporal variability in the GECCO ocean synthesis are being investigated. An analysis of the integrated circulation in different layers suggests that, on time average, 2.1 Sv enter the Indian Ocean in the bottom layer (>3200m) from the south and that 12.3 Sv leave the Indian Ocean in the upper and intermediate layers (<1500m), composed of the up-welled bottom layer inflow water, augmented by 9.6 Sv Indonesian Throughflow (ITF) water. The GECCO time-mean results differ significantly from those obtained by box inverse models, which, being based on individual hydrographic sections, are susceptible to aliasing. The GECCO solution has a large seasonal variation in its meridional overturning caused by the seasonal reversal of monsoon-related wind stress forcing. Associated seasonal variations of the deep meridional overturning range from -7 Sv in boreal winter to 3 Sv in summer. In addition, the upper and bottom transports across 34°S section show pronounced interannual variability with roughly biennial variations superimposed by strong anomalies during each La Niña phase as well as the ITF, which mainly affect the upper layer transports. On decadal and longer timescale, the meridional overturning variability as well as long-term trends differ before and after 1980. Notably, our analysis shows a rather stable trend for the period 1960-1979 and significant changes in the upper and bottom layer for the period 1980-2001. By means of a multivariate EOF analysis, the importance of Ekman dynamics as driving forces of the deep meridional overturning of the Indian Ocean on the interannual timescale is highlighted. The leading modes of the zonal and meridional wind stress favour a basin-wide meridional overturning mode via Ekman upwelling or downwelling mostly in the central and eastern Indian Ocean. Moreover, tropical zonal wind stress along the equator and alongshore wind stress off the Sumatra-Java coast contributes to evolution of IOD events.

  19. The Indian Ocean gravity low - Evidence for an isostatically uncompensated depression in the upper mantle

    NASA Technical Reports Server (NTRS)

    Ihnen, S. M.; Whitcomb, J. H.

    1983-01-01

    The broad gravity low in the equatorial Indian Ocean south of Sri Lanka is the largest and most striking feature in the gravitational field of the earth. The most negative long-wavelength free-air gravity anomalies are found there and the sea surface (geoid) lies more than 100 meters below the best fitting ellipsoid. A model of the lithosphere and upper mantle is proposed which accurately predicts the observed free-air gravity and geoid elevation. This model is consistent with bathymetry and sediment thickness data and suggests that the crust south of India currently floats as much as 600 meters lower than would be expected if the region were isostatically compensated. This residual depression of the crust is apparently confirmed by observations of ocean depth. An uncompensated depression is consistent with the presence of a mechanical wake left in the upper mantle behind India as it traveled toward Asia.

  20. Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary.

    PubMed

    Grayver, Alexander V; Schnepf, Neesha R; Kuvshinov, Alexey V; Sabaka, Terence J; Manoj, Chandrasekharan; Olsen, Nils

    2016-09-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals a ≈72-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.

  1. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions.

    PubMed

    Walter, M J; Kohn, S C; Araujo, D; Bulanova, G P; Smith, C B; Gaillou, E; Wang, J; Steele, A; Shirey, S B

    2011-10-07

    A primary consequence of plate tectonics is that basaltic oceanic crust subducts with lithospheric slabs into the mantle. Seismological studies extend this process to the lower mantle, and geochemical observations indicate return of oceanic crust to the upper mantle in plumes. There has been no direct petrologic evidence, however, of the return of subducted oceanic crustal components from the lower mantle. We analyzed superdeep diamonds from Juina-5 kimberlite, Brazil, which host inclusions with compositions comprising the entire phase assemblage expected to crystallize from basalt under lower-mantle conditions. The inclusion mineralogies require exhumation from the lower to upper mantle. Because the diamond hosts have carbon isotope signatures consistent with surface-derived carbon, we conclude that the deep carbon cycle extends into the lower mantle.

  2. Characteristics of Mesoscale Organization in WRF Simulations of Convection during TWP-ICE

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony D.; Wu, Jingbo; Chen, Yonghua

    2013-01-01

    Compared to satellite-derived heating profiles, the Goddard Institute for Space Studies general circulation model (GCM) convective heating is too deep and its stratiform upper-level heating is too weak. This deficiency highlights the need for GCMs to parameterize the mesoscale organization of convection. Cloud-resolving model simulations of convection near Darwin, Australia, in weak wind shear environments of different humidities are used to characterize mesoscale organization processes and to provide parameterization guidance. Downdraft cold pools appear to stimulate further deep convection both through their effect on eddy size and vertical velocity. Anomalously humid air surrounds updrafts, reducing the efficacy of entrainment. Recovery of cold pool properties to ambient conditions over 5-6 h proceeds differently over land and ocean. Over ocean increased surface fluxes restore the cold pool to prestorm conditions. Over land surface fluxes are suppressed in the cold pool region; temperature decreases and humidity increases, and both then remain nearly constant, while the undisturbed environment cools diurnally. The upper-troposphere stratiform rain region area lags convection by 5-6 h under humid active monsoon conditions but by only 1-2 h during drier break periods, suggesting that mesoscale organization is more readily sustained in a humid environment. Stratiform region hydrometeor mixing ratio lags convection by 0-2 h, suggesting that it is strongly influenced by detrainment from convective updrafts. Small stratiform region temperature anomalies suggest that a mesoscale updraft parameterization initialized with properties of buoyant detrained air and evolving to a balance between diabatic heating and adiabatic cooling might be a plausible approach for GCMs.

  3. Influence of the North Atlantic dipole on climate changes over Eurasia

    NASA Astrophysics Data System (ADS)

    Serykh, I. V.

    2016-11-01

    In this paper, some hydrophysical and meteorological characteristics of negative (1948-1976 and 1999-2015) and positive (1977-1998) phases of the Pacific Decadal Oscillation (PDO) and Interdecadal Pacific Oscillation (IPO) in the North Atlantic and Eurasia are constructed and investigated. Specifically, the near-surface temperature, sea-level atmospheric pressure, wind speed, heat content of the upper 700 m ocean layer, water temperature and salinity at various depths, the latent and sensible heat fluxes from the ocean to the atmosphere are analyzed. The fields obtained are in good agreement and complement each other. This gives important information about the hydrometeorological conditions in the region under study. Analysis of these data has shown that in the upper 1000 m North Atlantic layer there is a thermal dipole which can be interpreted as an oceanic analog of the atmospheric North Atlantic Oscillation (NAO). An index of the North Atlantic Dipole (NAD) as the difference between the mean heat contents in the upper 700 m oceanic layer between the regions (50°-70° N; 60°-10° W) and (20°-40° N; 80°-30° W) is proposed. A possible physical mechanism of the internal oscillations with a quasi-60-year period in the North Atlantics- Eurasia system of ocean-atmosphere interactions is discussed.

  4. Dismembered Archaean ophiolite in the southeastern Wind River Mountains, Wyoming: Remains of Archaean oceanic crust

    NASA Technical Reports Server (NTRS)

    Harper, G. D.

    1986-01-01

    Archean mafic and ultramafic rocks occur in the southeastern Wind River Mountains near Atlantic City, Wyoming and are interpreted to represent a dismembered ophiolite suite. The ophiolitic rocks occur in a thin belt intruded by the 2.6 Ga Louis Lake Batholith on the northwest. On the southeast they are in fault contact with the Miners Delight Formation comprised primarily of metagraywackes with minor calc-alkaline volcanics. The ophiolitic and associated metasedimentry rocks (Goldman Meadows Formation) have been multiply deformed and metamorphosed. The most prominant structures are a pronounced steeply plunging stretching lineation and steeply dipping foliation. These structural data indicate that the ophiolitic and associated metasedimentary rocks have been deformed by simple shear. The ophiolitic rocks are interpreted as the remains of Archean oceanic crust, probably formed at either a mid-ocean ridge or back-arc basin. All the units of a complete ophiolite are present except for upper mantle periodotities. The absence of upper mantle rocks may be the result of detactment within the crust, rather than within the upper mantle, during emplacement. This could have been the result of a steeper geothermal gradient in the Archean oceanic lithosphere, or may have resulted from a thicker oceanic crust in the Archean.

  5. Seaglider surveys at Ocean Station Papa: Diagnosis of upper-ocean heat and salt balances using least squares with inequality constraints

    NASA Astrophysics Data System (ADS)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2017-06-01

    Heat and salt balances in the upper 200 m are examined using data from Seaglider spatial surveys June 2008 to January 2010 surrounding a NOAA surface mooring at Ocean Station Papa (OSP; 50°N, 145°W). A least-squares approach is applied to repeat Seaglider survey and moored measurements to solve for unknown or uncertain monthly three-dimensional circulation and vertical diffusivity. Within the surface boundary layer, the estimated heat and salt balances are dominated throughout the surveys by turbulent flux, vertical advection, and for heat, radiative absorption. When vertically integrated balances are considered, an estimated upwelling of cool water balances the net surface input of heat, while the corresponding large import of salt across the halocline due to upwelling and diffusion is balanced by surface moisture input and horizontal import of fresh water. Measurement of horizontal gradients allows the estimation of unresolved vertical terms over more than one annual cycle; diffusivity in the upper-ocean transition layer decreases rapidly to the depth of the maximum near-surface stratification in all months, with weak seasonal modulation in the rate of decrease and profile amplitude. Vertical velocity is estimated to be on average upward but with important monthly variations. Results support and expand existing evidence concerning the importance of horizontal advection in the balances of heat and salt in the Gulf of Alaska, highlight time and depth variability in difficult-to-measure vertical transports in the upper ocean, and suggest avenues of further study in future observational work at OSP.

  6. Upper-Ocean Processes under the Stratus Cloud Deck in the Southeast Pacific Ocean

    DTIC Science & Technology

    2010-01-01

    resolving Hybrid Coordinate Ocean Model (HYCOM). Both are compared with estimates based on Woods Hole Oceano - graphic Institution (WHOI) Improved...Jason-1 and Jason-2 sea surface heights and geostrophic currents (computed from absolute topography) produced by Segment Sol Multimissions d’Altimétrie

  7. The abiotically driven biological pump in the ocean and short-term fluctuations in atmospheric CO 2 contents

    NASA Astrophysics Data System (ADS)

    Ittekkot, Venugopalan

    1993-07-01

    Current debates on the significance of the oceanic "biological pump" in the removal of atmospheric CO 2 pay more attention to the act of biological carbon-dioxide fixation (primary productivity) in the sea, but pay less or no attention to the equally relevant aspect of the transfer of the fixed carbon to a sink before its oxidation back to CO 2. The upper ocean obviously disqualifies as a sink for biologically fixed CO 2 because of gas-exchange with the atmosphere. The deep ocean, on the other hand, can be a sink at least at time scales of the ocean turnover. Transfer of newly-fixed CO 2 to the deep sea can be accelerated by abiogenic matter introduced to the sea surface from terrestrial sources. This matter acts as ballast and increases the density and settling rates of aggregates of freshly synthesized organic matter thereby facilitating their rapid removal from the upper ocean. Higher supply of abiogenic matter enhances the sequestering of fresh organic matter and in effect shifts the zone of organic matter remineralization from the upper ocean to the deep sea. Consistent with this abiogenic forcing, the rate of organic matter remineralization and the subsequent storage of the remineralized carbon in the deep sea are linked to bulk fluxes (mass accumulation rates) in the deep sea. This mechanism acts as an "abiotic boost" in the workings of the oceanic "biological pump" and results in an increase in deep sea carbon storage; the magnitude of carbon thus stored could have caused the observed short term fluctuations in atmospheric CO 2-contents during the glacial-interglacial cycles.

  8. Recent results on the exchange of physical properties between the Gulf of California and the Pacific.

    NASA Astrophysics Data System (ADS)

    Mascarenhas, A.

    2001-11-01

    The entrance to the Gulf of California, the only evaporative basin on the Pacific, is wide (200 km) and deep (>2.5 km), allowing free exchanges of waters with the Pacific Ocean. Although being comparable to the Mediterranean and Red Seas with respect to evaporation rate (0.61 m/year), the gulf differs from these seas because it actually gains heat at an annual rate of 60 W/m^2. These water loss and heat gain result in modification of water properties, creation of unique water masses, and strong exchanges with the Pacific Ocean. Here the results of the analysis of a recent set of observations is discussed from the point of view of exchange of thermohaline properties and the fluxes of heat, salt and volume. The thermohaline structure at the entrance to the Gulf suggested a thermal (saline) gradient toward Sinaloa (Baja California) shelf. This structure is associated to a cyclonic gyre that is not well defined in the upper layer due to the influence of the wind field. The computed heat flux display an annual cycle with maximum outflow (inflow) during November (May). The salt outflow maximum occurs when the Gulf of California Water is most predominant in the entrance (winter and spring). The volume fluxes appear to have a semiannual signal.

  9. Variations of Oceanic Crust in the Northeastern Gulf of Mexico From Integrated Geophysical Analysis

    NASA Astrophysics Data System (ADS)

    Liu, M.; Filina, I.

    2017-12-01

    Tectonic history of the Gulf of Mexico remains a subject of debate due to structural complexity of the area and lack of geological constraints. In this study, we focus our investigation on oceanic domain of the northeastern Gulf of Mexico to characterize the crustal distribution and structures. We use published satellite derived potential fields (gravity and magnetics), seismic refraction data (GUMBO3 and GUMBO4) and well logs to build the subsurface models that honor all available datasets. In the previous study, we have applied filters to potential fields grids and mapped the segments of an extinct mid-ocean ridge, ocean-continent boundary (OCB) and several transform faults in our study area. We also developed the 2D potential fields model for seismic profile GUMBO3 (Eddy et al., 2014). The objectives of this study are: 1) to develop a similar model for another seismic profile GUMBO 4 (Christeson, 2014) and derive subsurface properties (densities and magnetic susceptibilities), 2) to compare and contrast the two models, 3) to establish spatial relationship between the two crustal domains. Interpreted seismic velocities for the profiles GUMBO 3 and GUMBO 4 show significant differences, suggesting that these two profiles cross different segments of oceanic crust. The total crustal thickness along GUMBO 3 is much thicker (up to 10 km) than the one for GUMBO 4 (5.7 km). The upper crustal velocity along GUMBO 4 (6.0-6.7 km/s) is significantly higher than the one for GUMBO 3 ( 5.8 km/s). Based our 2D potential fields models along both of the GUMBO lines, we summarize physical properties (seismic velocities, densities and magnetic susceptibilities) for different crustal segments, which are proxies for lithologies. We use our filtered potential fields grids to establish the spatial relationship between these two segments of oceanic crust. The results of our integrated geophysical analysis will be used as additional constraints for the future tectonic reconstruction of the Gulf of Mexico.

  10. Heat Flow and Magnetization in the Oceanic Lithosphere. Ph.D. ThesisSemiannual Report, Nov. 1987 - Apr. 1988

    NASA Technical Reports Server (NTRS)

    Hayling, Kjell Lennart

    1988-01-01

    Two aspects of the processing and interpretation of satellite measurements of the geomagnetic field are described. One deals with the extraction of the part of the geomagnetic field that originates from sources in the earth's atmosphere. The other investigates the possibility of using the thermal state of the oceanic lithosphere to further constrain modelling and interpretation of magnetic anomalies. It is shown that some of the magnetic signal in crustal anomaly maps can be an artifact of the mathematical algorithms that have been used to separate the crustal field from the observed data. Strong magnetic anomalies can be distorted but are probably real, but weak magnetic anomalies can arise from leakage of power from short wavelengths, and will also appear in anomaly maps as repetitions of the strong crustal anomaly. The distortion and the ghost anomalies follow the magnetic dip lines in a way that is similar to actual MAGSAT anomaly fields. This phenomenon will also affect the lower degree spherical harmonic terms in the power spectrum of the crustal field. A model of the magnetic properties of the oceanic crust that has been derived from direct measurements of the rock magnetic properties of oceanic rocks is presented. The average intensity of magnetization in the oceanic crust is not strong enough to explain magnetic anomalies observed over oceanic areas. This is the case for both near surface observations (ship and aeromagnetic data) and satellite altitude observations. It is shown that magnetic sources in the part of the upper mantle that is situated above the Curie isotherm, if sufficiently strong, can produce satellite magnetic anomalies that are comparable to MAGSAT data. The method developed for the study of depth to the Curie isotherm and magnetic anomalies can also be used in inverse modelling of satellite magnetic anomalies when the model is to be adjusted with an annihilator.

  11. Pteropods are excellent recorders of surface temperature and carbonate ion concentration.

    PubMed

    Keul, N; Peijnenburg, K T C A; Andersen, N; Kitidis, V; Goetze, E; Schneider, R R

    2017-10-03

    Pteropods are among the first responders to ocean acidification and warming, but have not yet been widely explored as carriers of marine paleoenvironmental signals. In order to characterize the stable isotopic composition of aragonitic pteropod shells and their variation in response to climate change parameters, such as seawater temperature, pteropod shells (Heliconoides inflatus) were collected along a latitudinal transect in the Atlantic Ocean (31° N to 38° S). Comparison of shell oxygen isotopic composition to depth changes in the calculated aragonite equilibrium oxygen isotope values implies shallow calcification depths for H. inflatus (75 m). This species is therefore a good potential proxy carrier for past variations in surface ocean properties. Furthermore, we identified pteropod shells to be excellent recorders of climate change, as carbonate ion concentration and temperature in the upper water column have dominant influences on pteropod shell carbon and oxygen isotopic composition. These results, in combination with a broad distribution and high abundance, make the pteropod species studied here, H. inflatus, a promising new proxy carrier in paleoceanography.

  12. Seasonal to multi-decadal trends in apparent optical properties in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Allen, James G.; Nelson, Norman B.; Siegel, David A.

    2017-01-01

    Multi-decadal, monthly observations of optical and biogeochemical properties, made as part of the Bermuda Bio-Optics Project (BBOP) at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea, allow for the examination of temporal trends in vertical light attenuation and their potential controls. Trends in the magnitude of the diffuse attenuation coefficient, Kd(λ), and a proxy for its spectral shape reflect changes in phytoplankton and chromophoric dissolved organic matter (CDOM) characteristics. The length and methodological consistency of this time series provide an excellent opportunity to extend analyses of seasonal cycles of apparent optical properties to interannual and decadal time scales. Here, we characterize changes in the magnitude and spectral shape proxy of diffuse attenuation coefficient spectra and compare them to available biological and optical data from the BATS time series program. The time series analyses reveal a 1.01%±0.18% annual increase of the magnitude of the diffuse attenuation coefficient at 443 nm over the upper 75 m of the water column while showing no significant change in selected spectral characteristics over the study period. These and other observations indicate that changes in phytoplankton rather than changes in CDOM abundance are the primary driver for the diffuse attenuation trends on multi-year timescales for this region. Our findings are inconsistent with previous decadal-scale global ocean water clarity and global satellite ocean color analyses yet are consistent with recent analyses of the BATS time series and highlight the value of long-term consistent observation at ocean time series sites.

  13. The deep meridional overturning circulation in the Indian Ocean inferred from the GECCO synthesis

    NASA Astrophysics Data System (ADS)

    Wang, Weiqiang; Köhl, Armin; Stammer, Detlef

    2012-11-01

    The deep time-varying meridional overturning circulation (MOC) in the Indian Ocean in the German “Estimating the Circulation and Climate of the Ocean” consortium efforts (GECCO) ocean synthesis is being investigated. An analysis of the integrated circulation suggests that, on time average, 2.1 Sv enter the Indian Ocean in the bottom layer (>3200 m) from the south and that 12.3 Sv leave the Indian Ocean in the upper and intermediate layers (<1500 m), composed of the up-welled bottom layer inflow water, augmented by 9.6 Sv Indonesian Throughflow (ITF) water. The GECCO time-mean results differ substantially from those obtained by inverse box models, which being based on individual hydrographic sections and due to the strong seasonal cycle are susceptible to aliasing. The GECCO solution shows a large seasonal variation in its deep MOC caused by the seasonal reversal of monsoon-related wind stress forcing. The associated seasonal variations of the deep MOC range from -7 Sv in boreal winter to 3 Sv in summer. In addition, the upper and bottom transports across the 34°S section show pronounced interannual variability with roughly biennial variations superimposed by strong anomalies during each La Niña phase as well as the ITF, which mainly affect the upper layer transports. On decadal and longer timescale, the meridional overturning variability as well as long-term trends differs before and after 1980. GECCO shows a stable trend for the period 1960-1979 and substantial changes in the upper and bottom layer for the period 1980-2001. By means of an extended EOF analysis, the importance of Ekman dynamics as driving forces of the deep MOC of the Indian Ocean on the interannual timescale is highlighted. The leading modes of the zonal and meridional wind stress favour a basin-wide meridional overturning mode via Ekman upwelling or downwelling mostly in the central and eastern Indian Ocean. Moreover, tropical zonal wind stress along the equator and alongshore wind stress off the Sumatra-Java coast contribute to the evolution of the Indian Ocean dipole (IOD) events.

  14. Decrease in oceanic crustal thickness since the breakup of Pangaea

    NASA Astrophysics Data System (ADS)

    van Avendonk, Harm J. A.; Davis, Joshua K.; Harding, Jennifer L.; Lawver, Lawrence A.

    2017-01-01

    Earth's mantle has cooled by 6-11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of thicker Jurassic ocean crust, the upper mantle may have cooled by 15-20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent Pangaea due to the effect of continental insulation.

  15. Satellite-based Calibration of Heat Flux at the Ocean Surface

    NASA Astrophysics Data System (ADS)

    Barron, C. N.; Dastugue, J. M.; May, J. C.; Rowley, C. D.; Smith, S. R.; Spence, P. L.; Gremes-Cordero, S.

    2016-02-01

    Model forecasts of upper ocean heat content and variability on diurnal to daily scales are highly dependent on estimates of heat flux through the air-sea interface. Satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. Traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle. Subsequent evolution depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. The COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates) endeavors to correct ocean forecast bias through a responsive error partition among surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using Navy operational global or regional atmospheric forcing. COFFEE addresses satellite-calibration of surface fluxes to estimate surface error covariances and links these to the ocean interior. Experiment cases combine different levels of flux calibration with different assimilation alternatives. The cases may use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger regional domains where a full 4DVAR methodology may be cost-prohibitive.

  16. The role of nutricline depth in regulating the ocean carbon cycle

    PubMed Central

    Cermeño, Pedro; Dutkiewicz, Stephanie; Harris, Roger P.; Follows, Mick; Schofield, Oscar; Falkowski, Paul G.

    2008-01-01

    Carbon uptake by marine phytoplankton, and its export as organic matter to the ocean interior (i.e., the “biological pump”), lowers the partial pressure of carbon dioxide (pCO2) in the upper ocean and facilitates the diffusive drawdown of atmospheric CO2. Conversely, precipitation of calcium carbonate by marine planktonic calcifiers such as coccolithophorids increases pCO2 and promotes its outgassing (i.e., the “alkalinity pump”). Over the past ≈100 million years, these two carbon fluxes have been modulated by the relative abundance of diatoms and coccolithophores, resulting in biological feedback on atmospheric CO2 and Earth's climate; yet, the processes determining the relative distribution of these two phytoplankton taxa remain poorly understood. We analyzed phytoplankton community composition in the Atlantic Ocean and show that the distribution of diatoms and coccolithophorids is correlated with the nutricline depth, a proxy of nutrient supply to the upper mixed layer of the ocean. Using this analysis in conjunction with a coupled atmosphere–ocean intermediate complexity model, we predict a dramatic reduction in the nutrient supply to the euphotic layer in the coming century as a result of increased thermal stratification. Our findings indicate that, by altering phytoplankton community composition, this causal relationship may lead to a decreased efficiency of the biological pump in sequestering atmospheric CO2, implying a positive feedback in the climate system. These results provide a mechanistic basis for understanding the connection between upper ocean dynamics, the calcium carbonate-to-organic C production ratio and atmospheric pCO2 variations on time scales ranging from seasonal cycles to geological transitions. PMID:19075222

  17. The role of nutricline depth in regulating the ocean carbon cycle.

    PubMed

    Cermeño, Pedro; Dutkiewicz, Stephanie; Harris, Roger P; Follows, Mick; Schofield, Oscar; Falkowski, Paul G

    2008-12-23

    Carbon uptake by marine phytoplankton, and its export as organic matter to the ocean interior (i.e., the "biological pump"), lowers the partial pressure of carbon dioxide (pCO(2)) in the upper ocean and facilitates the diffusive drawdown of atmospheric CO(2). Conversely, precipitation of calcium carbonate by marine planktonic calcifiers such as coccolithophorids increases pCO(2) and promotes its outgassing (i.e., the "alkalinity pump"). Over the past approximately 100 million years, these two carbon fluxes have been modulated by the relative abundance of diatoms and coccolithophores, resulting in biological feedback on atmospheric CO(2) and Earth's climate; yet, the processes determining the relative distribution of these two phytoplankton taxa remain poorly understood. We analyzed phytoplankton community composition in the Atlantic Ocean and show that the distribution of diatoms and coccolithophorids is correlated with the nutricline depth, a proxy of nutrient supply to the upper mixed layer of the ocean. Using this analysis in conjunction with a coupled atmosphere-ocean intermediate complexity model, we predict a dramatic reduction in the nutrient supply to the euphotic layer in the coming century as a result of increased thermal stratification. Our findings indicate that, by altering phytoplankton community composition, this causal relationship may lead to a decreased efficiency of the biological pump in sequestering atmospheric CO(2), implying a positive feedback in the climate system. These results provide a mechanistic basis for understanding the connection between upper ocean dynamics, the calcium carbonate-to-organic C production ratio and atmospheric pCO(2) variations on time scales ranging from seasonal cycles to geological transitions.

  18. Mantle discontinuities mapped by inversion of global surface wave data

    NASA Astrophysics Data System (ADS)

    Khan, A.; Boschi, L.; Connolly, J.

    2009-12-01

    We invert global observations of fundamental and higher order Love and Rayleigh surface-wave dispersion data jointly at selected locations for 1D radial profiles of Earth's mantle composition, thermal state and anisotropic structure using a stochastic sampling algorithm. Considering mantle compositions as equilibrium assemblages of basalt and harzburgite, we employ a self-consistent thermodynamic method to compute their phase equilibria and bulk physical properties (P, S wave velocity and density). Combining these with locally varying anisotropy profiles, we determine anisotropic P and S wave velocities to calculate dispersion curves for comparison with observations. Models fitting data within uncertainties, provide us with a range of profiles of composition, temperature and anisotropy. This methodology presents an important complement to conventional seismic tomograpy methods. Our results indicate radial and lateral gradients in basalt fraction, with basalt depletion in the upper and enrichment of the upper part of the lower mantle, in agreement with results from geodynamical calculations, melting processes at mid-ocean ridges and subduction of chemically stratified lithosphere. Compared with PREM and seismic tomography models, our velocity models are generally faster in the upper transition zone (TZ), and slower in the lower TZ, implying a steeper velocity gradient. While less dense than PREM, density gradients in the TZ are also steeper. Mantle geotherms are generally adiabatic in the TZ, whereas in the upper part of the lower mantle stronger lateral variations are observed. The TZ structure, and thus location of the phase transitions in the Olivine system as well as their physical properties, are found to be controlled to a large degree by thermal rather than compositional variations. The retrieved anistropy structure agrees with previous studies indicating positive as well as laterally varying upper mantle anisotropy, while there is little evidence for anisotropy in and below the TZ.

  19. Evaluation and Sensitivity Analysis of an Ocean Model Response to Hurricane Ivan (PREPRINT)

    DTIC Science & Technology

    2009-05-18

    analysis of upper-limb meridional overturning circulation interior ocean pathways in the tropical/subtropical Atlantic . In: Interhemispheric Water...diminishing returns are encountered when either resolution is increased. 3 1. Introduction Coupled ocean-atmosphere general circulation models have become...northwest Caribbean Sea 4 and GOM. Evaluation is difficult because ocean general circulation models incorporate a large suite of numerical algorithms

  20. Satellite Tidal Magnetic Signals Constrain Oceanic Lithosphere-Asthenosphere Boundary Earth Tomography with Tidal Magnetic Signals

    NASA Technical Reports Server (NTRS)

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Chandrasekharan, Manoj; Olsen, Niles

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. Here we use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals an Approximately 72 km thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.

  1. Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary

    PubMed Central

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Manoj, Chandrasekharan; Olsen, Nils

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals a ≈72-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere. PMID:27704045

  2. Initial tsunami signals in the lithosphere-ocean-atmosphere medium

    NASA Astrophysics Data System (ADS)

    Novik, O.; Ershov, S.; Mikhaylovskaya, I.

    Satellite and ground based instrumentations for monitoring of dynamical processes under the Ocean floor 3 4 of the Earth surface and resulting catastrophic events should be adapted to unknown physical nature of transformation of the oceanic lithosphere s energy of seismogenic deformations into measurable acoustic electromagnetic EM temperature and hydrodynamic tsunami waves To describe the initial up to a tsunami wave far from a shore stage of this transformation and to understand mechanism of EM signals arising above the Ocean during seismic activation we formulate a nonlinear mathematical model of seismo-hydro-EM geophysical field interaction in the lithosphere-Ocean-atmosphere medium from the upper mantle under the Ocean up to the ionosphere domain D The model is based on the theory of elasticity electrodynamics fluid dynamics thermodynamics and geophysical data On the basis of this model and its mathematical investigation we calculate generation and propagation of different see above waves in the basin of a model marginal sea the data on the central part of the Sea of Japan were used At the moment t 0 the dynamic interaction process is supposed to be caused by weak may be precursory sub-vertical elastic displacements with the amplitude duration and main frequency of the order of a few cm sec and tenth of Hz respectively at the depth of 37 km under the sea level i e in the upper mantle Other seismic excitations may be considered as well The lithosphere EM signal is generated in the upper mantle conductive

  3. What electrical measurements can say about changes in fault systems.

    PubMed Central

    Madden, T R; Mackie, R L

    1996-01-01

    Earthquake zones in the upper crust are usually more conductive than the surrounding rocks, and electrical geophysical measurements can be used to map these zones. Magnetotelluric (MT) measurements across fault zones that are parallel to the coast and not too far away can also give some important information about the lower crustal zone. This is because the long-period electric currents coming from the ocean gradually leak into the mantle, but the lower crust is usually very resistive and very little leakage takes place. If a lower crustal zone is less resistive it will be a leakage zone, and this can be seen because the MT phase will change as the ocean currents leave the upper crust. The San Andreas Fault is parallel to the ocean boundary and close enough to have a lot of extra ocean currents crossing the zone. The Loma Prieta zone, after the earthquake, showed a lot of ocean electric current leakage, suggesting that the lower crust under the fault zone was much more conductive than normal. It is hard to believe that water, which is responsible for the conductivity, had time to get into the lower crustal zone, so it was probably always there, but not well connected. If this is true, then the poorly connected water would be at a pressure close to the rock pressure, and it may play a role in modifying the fluid pressure in the upper crust fault zone. We also have telluric measurements across the San Andreas Fault near Palmdale from 1979 to 1990, and beginning in 1985 we saw changes in the telluric signals on the fault zone and east of the fault zone compared with the signals west of the fault zone. These measurements were probably seeing a better connection of the lower crust fluids taking place, and this may result in a fluid flow from the lower crust to the upper crust. This could be a factor in changing the strength of the upper crust fault zone. PMID:11607664

  4. Physical Mechanisms for the Maintenance of GCM-Simulated Madden-Julian Oscillation over the Indian Ocean and Pacific

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liping; Wu, Xiaoqing

    2011-05-05

    The kinetic energy budget is conducted to analyze the physical processes responsible for the improved Madden-Julian Oscillation (MJO) simulated by the Iowa State University general circulation models (ISUGCM). The modified deep convection scheme that includes the revised convection closure, convection trigger condition and convective momentum transport (CMT) enhances the equatorial (10oS-10oN) MJO-related perturbation kinetic energy (PKE) in the upper troposphere and leads to more robust and coherent eastward propagating MJO signal. In the MJO source region-the Indian Ocean (45oE-120oE), the upper-tropospheric MJO PKE is maintained by the vertical convergence of wave energy flux and the barotropic conversion through the horizontalmore » shear of mean flow. In the convectively active region-the western Pacific (120oE-180o), the upper-tropospheric MJO PKE is supported by the convergence of horizontal and vertical wave energy fluxes. Over the central-eastern Pacific (180o-120oW), where convection is suppressed, the upper-tropospheric MJO PKE is mainly due to the horizontal convergence of wave energy flux. The deep convection trigger condition produces stronger convective heating which enhances the perturbation available potential energy (PAPE) production and the upward wave energy fluxes, and leads to the increased MJO PKE over the Indian Ocean and western Pacific. The trigger condition also enhances the MJO PKE over the central-eastern Pacific through the increased convergence of meridional wave energy flux from the subtropical latitudes of both hemispheres. The revised convection closure affects the response of mean zonal wind shear to the convective heating over the Indian Ocean and leads to the enhanced upper-tropospheric MJO PKE through the barotropic conversion. The stronger eastward wave energy flux due to the increase of convective heating over the Indian Ocean and western Pacific by the revised closure is favorable to the eastward propagation of MJO and the convergence of horizontal wave energy flux over the central-eastern Pacific. The convection-induced momentum tendency tends to decelerate the upper-tropospheric wind which results in a negative work to the PKE budget in the upper troposphere. However, the convection momentum tendency accelerates the westerly wind below 800 hPa over the western Pacific, which is partially responsible for the improved MJO simulation.« less

  5. Aerial laser sensing of ocean upper layer

    NASA Technical Reports Server (NTRS)

    Vlasov, D. V.

    1985-01-01

    Applications of laser sensing of the ocean, such as deep bathymetry; determination of the luminescence spectrum of phytoplankton as a sensitive indicator of changes in the external physical parameters of the studied region; monitoring the state of underwater pipelines; conducting search and rescue missions; monitoring pollution; biological observations of the state of algae; searching for schools of fish, etc., are discussed. The Chayka apparatus for laser sensing is discussed. A block diagram is given which is used in describing functioning of this unit. Particular attention is given to the time structure of an echo signal appearing when sensing the upper ocean layer by a short laser pulse propagating through the wave-covered surface.

  6. Pigment biomarkers and particulate carbon in the upper water column compared to the ocean interior of the northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Llewellyn, C. A.; Mantoura, R. F. C.

    1996-08-01

    In situ pumps (SAPs) were used to collect particulates from the upper and interior of the ocean at 47, 56 and 60°N along the 20°W meridian in the northeast Atlantic during 1989. The particulates were analysed for carbon, chlorophylls, chlorophyll degradation products and carotenoids covering a four order of magnitude change in concentration. There was a logarithmic decline in pigment and carbon concentrations from the surface to 1000 m, below which concentrations remained constant. The gradient of the decline for chlorophyll a (chl a) appeared to be directly related to the flux of organic matter from the upper ocean. 19'-Hexanoyloxyfucoxanthin (prymnesiophtyes) and fucoxanthin (diatoms) persisted throughout the water column revealing the importance of prymnesiophytes as well as diatoms in the transfer of biogenic material into the ocean interior. At 60°N there was a two order of magnitude decrease in chl a concentrations in the ocean interior compared to the surface (1 μg chl a l -1). At 47°N, surface chl a concentrations were similar to those 60°N, but in the ocean interior there was a three order of magnitude decrease. Chlorophyll a concentrations throughout the water column and differences in the type of assessory pigment present at the four latitudes were consistent with the timing of the spring bloom at each latitude. At 60°N, we sampled at the end of the spring bloom, and fucoxanthin dominated. At 47°N, the spring bloom was over, and 19'-hexanoyloxyfucoxanthin dominated. Pheophorbide a and pyropheophorbide a were the dominant chlorophyll degradation products, with highest concentrations in the north. Pyropheophorbide a became increasingly important with depth and towards the south. At least 50% of the organic carbon in the upper ocean could not be accounted for in terms of phytoplankton, zooplankton or bacteria, and we speculate that some of the unidentified carbon is related to microzooplankton faecal material. Carbon vertical profiles did not show the large latitudinal variation of the pigments, resulting in carbon/chl a ratios in the ocean interior at 47°N (1855) being 6-fold greater than those at 60°N. The ratios reflected the more highly degraded nature of the biogenic material in the ocean interior at 47°N compared to 60°N.

  7. Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model

    DTIC Science & Technology

    2012-05-31

    heat between the atmosphere and ocean (Yu and Weller, 2007 ). Salinities in the upper ocean are set by the difference between evaporation and...precipitation at the ocean surface (Yu, 2007 ; Schmitt, 2008). Because the buoyancy (density) of seawater at the ocean surface is con- trolled by...timescales of about 10–200 days, these currents mean- der and generate highly energetic meso- scale eddies (Schmitz, 1996a,b; Stammer , 1997), the spinning

  8. Tests of Parameterized Langmuir Circulation Mixing in the Oceans Surface Mixed Layer II

    DTIC Science & Technology

    2017-08-11

    inertial oscillations in the ocean are governed by three-dimensional processes that are not accounted for in a one-dimensional simulation , and it was...Unlimited 52 Paul Martin (228) 688-5447 Recent large-eddy simulations (LES) of Langmuir circulation (LC) within the surface mixed layer (SML) of...used in the Navy Coastal Ocean Model (NCOM) and tested for (a) a simple wind-mixing case, (b) simulations of the upper ocean thermal structure at Ocean

  9. Impact of Targeted Ocean Observations for Improving Ocean Model Initialization for Coupled Hurricane Forecasting

    NASA Astrophysics Data System (ADS)

    Halliwell, G. R.; Srinivasan, A.; Kourafalou, V. H.; Yang, H.; Le Henaff, M.; Atlas, R. M.

    2012-12-01

    The accuracy of hurricane intensity forecasts produced by coupled forecast models is influenced by errors and biases in SST forecasts produced by the ocean model component and the resulting impact on the enthalpy flux from ocean to atmosphere that powers the storm. Errors and biases in fields used to initialize the ocean model seriously degrade SST forecast accuracy. One strategy for improving ocean model initialization is to design a targeted observing program using airplanes and in-situ devices such as floats and drifters so that assimilation of the additional data substantially reduces errors in the ocean analysis system that provides the initial fields. Given the complexity and expense of obtaining these additional observations, observing system design methods such as OSSEs are attractive for designing efficient observing strategies. A new fraternal-twin ocean OSSE system based on the HYbrid Coordinate Ocean Model (HYCOM) is used to assess the impact of targeted ocean profiles observed by hurricane research aircraft, and also by in-situ float and drifter deployments, on reducing errors in initial ocean fields. A 0.04-degree HYCOM simulation of the Gulf of Mexico is evaluated as the nature run by determining that important ocean circulation features such as the Loop Current and synoptic cyclones and anticyclones are realistically simulated. The data-assimilation system is run on a 0.08-degree HYCOM mesh with substantially different model configuration than the nature run, and it uses a new ENsemble Kalman Filter (ENKF) algorithm optimized for the ocean model's hybrid vertical coordinates. The OSSE system is evaluated and calibrated by first running Observing System Experiments (OSEs) to evaluate existing observing systems, specifically quantifying the impact of assimilating more than one satellite altimeter, and also the impact of assimilating targeted ocean profiles taken by the NOAA WP-3D hurricane research aircraft in the Gulf of Mexico during the Deepwater Horizon oil spill. OSSE evaluation and calibration is then performed by repeating these two OSEs with synthetic observations and comparing the resulting observing system impact to determine if it differs from the OSE results. OSSEs are first run to evaluate different airborne sampling strategies with respect to temporal frequency of flights and the horizontal separation of upper-ocean profiles during each flight. They are then run to assess the impact of releasing multiple floats and gliders. Evaluation strategy focuses on error reduction in fields important for hurricane forecasting such as the structure of ocean currents and eddies, upper ocean heat content distribution, and upper-ocean stratification.

  10. The Gulf Stream Pathway and the Impacts of the Eddy-Driven Abyssal Circulation and the Deep Western Boundary Current

    DTIC Science & Technology

    2008-07-06

    bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The...small values below the sill depth in all of the simulations. e The upper ocean northward flow of the meridional overturning circulation (MOC) is...plus the northward upper ocean flow (14 Sv) of the meridional overturning circulation (MOC). The mean Gulf Stream IR northwall pathway ±lrr from

  11. Impact of errors in short wave radiation and its attenuation on modeled upper ocean heat content

    DTIC Science & Technology

    Photosynthetically available radiation (PAR) and its attenuation with the depth represent a forcing (source) term in the governing equation for the...and vertical attenuation of PAR have on the upper ocean model heat content. In the Monterey Bay area, we show that with a decrease in water clarity...attenuation coefficient. For Jerlov’s type IA water (attenuation coefficient is 0.049 m1), the relative error in surface PAR introduces an error

  12. Relationship between diversity and the vertical structure of the upper ocean

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan R.

    1985-12-01

    The sources of diversity in the plankton ecosystem of the upper 250 m in the eastern tropical Pacific Ocean are explored in the data from LHPR plankton profiles. Though there is good evidence for resource partitioning among feeding guilds of congeners, and for specialization in predation—both known to create diversity in simple aquatic ecosystems—the existence of a stable vertical structure, including a thermocline, may be one of the more important causes of variation in regional plankton diversity in the euphotic zone.

  13. Observations of upper ocean stability and heat fluxes in the Antarctic from under-ice Argo float profile data.

    NASA Astrophysics Data System (ADS)

    Wilson, E. A.; Riser, S.

    2016-12-01

    Sea ice growth around Antarctica is intimately linked to the stability and thermohaline structure of the underlying ocean. As sea ice grows, the resulting brine triggers convective instabilities that deepen the mixed layer and entrain warm water from the weakly stratified pycnocline. The heat released from this process acts as a strong negative feedback to ice growth which, under the right scenarios, can exceed the initial atmospheric heat loss. Much of our current understanding of this ice-ocean interaction comes from a handful of relatively short field campaigns in the Weddell Sea. Here, we supplement those observations with an analysis of over 9000 under-ice Argo float profiles, collected between 2006-2015. These profiles provide an unprecedented view of the temporal and spatial variability of the upper ocean structure throughout the Antarctic region. With these observations and a theoretical understanding of the coupled ice-ocean system, we assess the ocean's potential to limit thermodynamic ice growth as well as its susceptibility to deep convection in different regions. Using these results, we infer how recent climatic changes may influence Antarctic sea ice growth and deep ocean ventilation in the near future.

  14. Upper Ocean Meso-Submesoscale Eddy Variability in the Northwestern Pacific from Repeat ADCP Measurements and 1/48-deg MITgcm Simulation

    NASA Astrophysics Data System (ADS)

    Qiu, B.; Nakano, T.; Chen, S.; Wang, J.; Fu, L. L.; Klein, P.

    2016-12-01

    With the use of Ka-band radar interferometry, the Surface Water and Ocean Topography (SWOT) satellite will improve the measured sea surface height (SSH) resolution down to the spectral wavelength of 15km, allowing us to investigate for the first time the upper oceancirculation variability at the submesoscale range on the global scale. By analyzing repeat shipboardAcoustic Doppler Current Profiler (ADCP) measurements along 137°E, as well as the 1/48-deg MITgcm simulation output, in the northwest Pacific, we demonstrate that the observed/modeled upper ocean velocities are comprised of balanced geostrophic motions and unbalanced ageostrophic wave motions. The length scale, Lc, that separates the dominance between these two types of motions is found to depend sensitively on the energy level of local mesoscale eddy variability. In the eddy-abundant western boundary current region of Kuroshio, Lc can be shorter than 15km, whereas Lc exceeds 200km along the path of relatively stable North Equatorial Current. Judicious separation between the balanced and unbalanced surface ocean signals will both be a challenge and opportunity for the SWOT mission.

  15. Did Irving Langmuir Observe Langmuir Circulations?

    NASA Astrophysics Data System (ADS)

    D'Asaro, E. A.; Harcourt, R. R.; Shcherbina, A.; Thomson, J. M.; Fox-Kemper, B.

    2012-12-01

    Although surface waves are known to play an important role in mixing the upper ocean, the current generation of upper ocean boundary layer parameterizations does not include the explicit effects of surface waves. Detailed simulations using LES models which include the Craik-Leibovich wave-current interactions, now provide quantitative predictions of the enhancement of boundary layer mixing by waves. Here, using parallel experiments in Lake Washington and at Ocean Station Papa, we show a clear enhancement of vertical kinetic energy across the entire upper ocean boundary layer which can be attributed to surface wave effects. The magnitude of this effect is close to that predicted by LES models, but is not large, less than a factor of 2 on average, and increased by large Stokes drift and shallow mixed layers. Global estimates show the largest wave enhancements occur on the equatorial side of the westerlies in late Spring, due to the combination of large waves, shallow mixed layers and weak winds. In Lakes, however, the waves and the Craik-Leibovich interactions are weak, making it likely that the counter-rotating vortices famously observed by Irving Langmuir in Lake George were not driven by wave-current interactions.

  16. Identifying and Investigating the Late-1960s Interhemispheric SST Shift

    NASA Astrophysics Data System (ADS)

    Friedman, A. R.; Lee, S. Y.; Liu, Y.; Chiang, J. C. H.

    2014-12-01

    The global north-south interhemispheric sea surface temperature (SST) difference experienced a pronounced and rapid decrease in the late 1960s, which has been linked to drying in the Sahel, South Asia, and East Asia. However, some basic questions about the interhemispheric SST shift remain unresolved, including its scale and whether the constituent changes in different basins were coordinated. In this study, we systematically investigate the spatial and temporal behavior of the late-1960s interhemispheric SST shift using ocean surface and subsurface observations. We also evaluate potential mechanisms using control and specific-forcing CMIP5 simulations. Using a regime shift detection technique, we identify the late-1960s shift as the most prominent in the historical observational SST record. We additionally examine the corresponding changes in upper-ocean heat content and salinity associated with the shift. We find that there were coordinated upper-ocean cooling and freshening in the subpolar North Atlantic, the region of the largest-magnitude SST decrease during the interhemispheric shift. These upper-ocean changes correspond to a weakened North Atlantic thermohaline circulation (THC). However, the THC decrease does not fully account for the rapid global interhemispheric SST shift, particularly the warming in the extratropical Southern Hemisphere.

  17. Saharan dust, convective lofting, aerosol enhancement zones, and potential impacts on ice nucleation in the tropical upper troposphere

    NASA Astrophysics Data System (ADS)

    Twohy, C. H.; Anderson, B. E.; Ferrare, R. A.; Sauter, K. E.; L'Ecuyer, T. S.; van den Heever, S. C.; Heymsfield, A. J.; Ismail, S.; Diskin, G. S.

    2017-08-01

    Dry aerosol size distributions and scattering coefficients were measured on 10 flights in 32 clear-air regions adjacent to tropical storm anvils over the eastern Atlantic Ocean. Aerosol properties in these regions were compared with those from background air in the upper troposphere at least 40 km from clouds. Median values for aerosol scattering coefficient and particle number concentration >0.3 μm diameter were higher at the anvil edges than in background air, showing that convective clouds loft particles from the lower troposphere to the upper troposphere. These differences are statistically significant. The aerosol enhancement zones extended 10-15 km horizontally and 0.25 km vertically below anvil cloud edges but were not due to hygroscopic growth since particles were measured under dry conditions. Number concentrations of particles >0.3 μm diameter were enhanced more for the cases where Saharan dust layers were identified below the clouds with airborne lidar. Median number concentrations in this size range increased from 100 l-1 in background air to 400 l-1 adjacent to cloud edges with dust below, with larger enhancements for stronger storm systems. Integration with satellite cloud frequency data indicates that this transfer of large particles from low to high altitudes by convection has little impact on dust concentrations within the Saharan Air Layer itself. However, it can lead to substantial enhancement in large dust particles and, therefore, heterogeneous ice nuclei in the upper troposphere over the Atlantic. This may induce a cloud/aerosol feedback effect that could impact cloud properties in the region and downwind.

  18. Investigation of shortcomings in simulated aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Park, S.; Allen, R.

    2017-12-01

    The vertical distribution of aerosols is one important factor for aerosol radiative forcing. Previous studies show that climate models poorly reproduce the aerosol vertical profile, with too much aerosol aloft in the upper troposphere. This bias may be related to several factors, including excessive convective mass flux and wet removal. In this study, we evaluate the aerosol vertical profile from several Coupled Model Intercomparison Project 5 (CMIP5) models, as well as the Community Atmosphere Model 5 (CAM5), relative to the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO). The results show that all models significantly underestimate extinction coefficient in the lower troposphere, while overestimating extinction coefficient in the upper troposphere. In addition, the majority of models indicate a land-ocean dependence in the relationship between aerosol extinction coefficient in the upper troposphere and convective mass flux. Over the continents, more convective mass flux is related to more aerosol aloft; over the ocean, more convective mass flux is associated with less aerosol in upper troposphere. Sensitivity experiments are conducted to investigate the role that convection and wet deposition have in contributing to the deficient simulation of the vertical aerosol profile, including the land-ocean dependence.

  19. Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode.

    PubMed

    Hauck, J; Völker, C; Wang, T; Hoppema, M; Losch, M; Wolf-Gladrow, D A

    2013-12-01

    Stratospheric ozone depletion and emission of greenhouse gases lead to a trend of the southern annular mode (SAM) toward its high-index polarity. The positive phase of the SAM is characterized by stronger than usual westerly winds that induce changes in the physical carbon transport. Changes in the natural carbon budget of the upper 100 m of the Southern Ocean in response to a positive SAM phase are explored with a coupled ecosystem-general circulation model and regression analysis. Previously overlooked processes that are important for the upper ocean carbon budget during a positive SAM period are identified, namely, export production and downward transport of carbon north of the polar front (PF) as large as the upwelling in the south. The limiting micronutrient iron is brought into the surface layer by upwelling and stimulates phytoplankton growth and export production but only in summer. This leads to a drawdown of carbon and less summertime outgassing (or more uptake) of natural CO 2 . In winter, biological mechanisms are inactive, and the surface ocean equilibrates with the atmosphere by releasing CO 2 . In the annual mean, the upper ocean region south of the PF loses more carbon by additional export production than by the release of CO 2 into the atmosphere, highlighting the role of the biological carbon pump in response to a positive SAM event.

  20. The oceanic influence on the rainy season of Peninsular Florida

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu; Mishra, Akhilesh

    2016-07-01

    In this study we show that the robust surface ocean currents around Peninsular Florida, namely, the Loop and the Florida Currents, affect the terrestrial wet season of Peninsular Florida. We show this through two novel regional coupled ocean-atmosphere models with different bathymetries that dislocate and modulate the strength of these currents and thereby affect the overlying sea surface temperature (SST) and upper ocean heat content. This study show that a weaker current system produces colder coastal SSTs along the Atlantic coast of Florida that reduces the length of the wet season and the total seasonal accumulation of precipitation over Peninsular Florida relative to the regional climate model simulation, in which these currents are stronger. The moisture budget reveals that as a result of these forced changes to the temperature of the upper coastal Atlantic Ocean, overlying surface evaporation and atmospheric convection is modulated. This consequently changes the moisture flux convergence leading to the modulation of the terrestrial wet season rainfall over Peninsular Florida that manifests in changes in the length and distribution of daily rain rate of the wet season. The results of this study have implications on interpreting future changes to hydroclimate of Peninsular Florida owing to climate change and low-frequency changes to the Atlantic meridional overturning circulation that comprises the Loop and the Florida Currents as part of its upper branch.

  1. Geochemical Evidence for a Terrestrial Magma Ocean

    NASA Technical Reports Server (NTRS)

    Agee, Carl B.

    1999-01-01

    The aftermath of phase separation and crystal-liquid fractionation in a magma ocean should leave a planet geochemically differentiated. Subsequent convective and other mixing processes may operate over time to obscure geochemical evidence of magma ocean differentiation. On the other hand, core formation is probably the most permanent, irreversible part of planetary differentiation. Hence the geochemical traces of core separation should be the most distinct remnants left behind in the mantle and crust, In the case of the Earth, core formation apparently coincided with a magma ocean that extended to a depth of approximately 1000 km. Evidence for this is found in high pressure element partitioning behavior of Ni and Co between liquid silicate and liquid iron alloy, and with the Ni-Co ratio and the abundance of Ni and Co in the Earth's upper mantle. A terrestrial magma ocean with a depth of 1000 km will solidify from the bottom up and first crystallize in the perovskite stability field. The largest effect of perovskite fractionation on major element distribution is to decrease the Si-Mg ratio in the silicate liquid and increase the Si-Mg ratio in the crystalline cumulate. Therefore, if a magma ocean with perovskite fractionation existed, then one could expect to observe an upper mantle with a lower than chondritic Si-Mg ratio. This is indeed observed in modern upper mantle peridotites. Although more experimental work is needed to fully understand the high-pressure behavior of trace element partitioning, it is likely that Hf is more compatible than Lu in perovskite-silicate liquid pairs. Thus, perovskite fractionation produces a molten mantle with a higher than chondritic Lu-Hf ratio. Arndt and Blichert-Toft measured Hf isotope compositions of Barberton komatiites that seem to require a source region with a long-lived, high Lu-Hf ratio. It is plausible that that these Barberton komatiites were generated within the majorite stability field by remelting a perovskite-depleted part of the upper mantle transition zone.

  2. Mid-ocean ridges produced thicker crust in the Jurassic than in Recent times

    NASA Astrophysics Data System (ADS)

    Van Avendonk, H. J.; Harding, J.; Davis, J. K.; Lawver, L. A.

    2016-12-01

    We present a compilation of published marine seismic refraction data to show that oceanic crust was 1.7 km thicker on average in the mid-Jurassic (170 Ma) than along the present-day mid-ocean ridge system. Plate reconstructions in a fixed hotspot framework show that the thickness of oceanic crust does not correlate with proximity to mantle hotspots, so it is likely that mid-plate volcanism is not the cause of this global trend. We propose that more melt was extracted from the upper mantle beneath mid-ocean ridges in the Jurassic than in recent times. Numerical studies show that temperature increase of 1 degree C in the mantle can lead to approximately 50-70 m thicker crust, so the upper mantle may have cooled 15-20 degrees C/100 Myr since 170 Ma. This average temperature decrease is larger than the secular cooling rate of the Earth's mantle, which is roughly 10 degrees C/100 Myr since the Archean. Apparently, the present-day configuration and dynamics of continental and oceanic plates removes heat more efficiently from the Earth's mantle than in its earlier history. The increase of ocean crustal thickness with plate age is also stronger in the Indian and Atlantic oceans than in the Pacific Ocean basin. This confirms that thermal insulation by the supercontinent Pangaea raised the temperature of the underlying asthenospheric mantle, which in turn led to more magmatic output at the Jurassic mid-ocean ridges of the Indian and Atlantic oceans.

  3. Geophysical constraints on geodynamic processes at convergent margins: A global perspective

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-04-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean-ocean, ocean-continent, and continent-continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M N 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent-continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent-ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean-ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high convergence rate. (4) Local isostasy is not satisfied at the convergent margins as evidenced by strong free air gravity anomalies of positive and negative signs. However, near-isostatic equilibrium may exist in broad zones of distributed deformation such as Tibet. (5) No systematic patterns are recognized in heat flow data due to strong heterogeneity of measured values which are strongly affected by hydrothermal circulation, magmatic activity, crustal faulting, horizontal heat transfer, and also due to low number of heat flow measurements across many margins. (6) Low upper mantle Vs seismic velocities beneath the convergent margins are restricted to the upper 150 km and may be related to mantle wedge melting which is confined to shallow mantle levels. Artemieva, I.M., Thybo, H., and Shulgin, A., 2015. Geophysical constraints on geodynamic processes at convergent margins: A global perspective. Gondwana Research, http://dx.doi.org/10.1016/j.gr.2015.06.010

  4. Multi-Decadal Oscillations of the Ocean Active Upper-Layer Heat Content

    NASA Astrophysics Data System (ADS)

    Byshev, Vladimir I.; Neiman, Victor G.; Anisimov, Mikhail V.; Gusev, Anatoly V.; Serykh, Ilya V.; Sidorova, Alexandra N.; Figurkin, Alexander L.; Anisimov, Ivan M.

    2017-07-01

    Spatial patterns in multi-decadal variability in upper ocean heat content for the last 60 years are examined using a numerical model developed at the Institute of Numerical Mathematics of Russia (INM Model) and sea water temperature-salinity data from the World Ocean Database (in: Levitus, NOAA Atlas NESDIS 66, U.S. Wash.: Gov. Printing Office, 2009). Both the model and the observational data show that the heat content of the Active Upper Layer (AUL) in particular regions of the Atlantic, Pacific and Southern oceans have experienced prominent simultaneous variations on multi-decadal (25-35 years) time scales. These variations are compared earlier revealed climatic alternations in the Northern Atlantic region during the last century (Byshev et al. in Doklady Earth Sci 438(2):887-892, 2011). We found that from the middle of 1970s to the end of 1990s the AUL heat content decreased in several oceanic regions, while the mean surface temperature increased on Northern Hemisphere continents according to IPCC (in: Stocker et al. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, 2013). This means that the climate-forcing effect of the ocean-atmosphere interaction in certain energy-active areas determines not only local climatic processes, but also have an influence on global-scale climate phenomena. Here we show that specific regional features of the AUL thermal structure are in a good agreement with climatic conditions on the adjacent continents. Further, the ocean AUL in the five distinctive regions identified in our study have resumed warming in the first decade of this century. By analogy inference from previous climate scenarios, this may signal the onset of more continental climate over mainlands.

  5. Upper ocean moored current and density profiler applied to winter conditions near Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.

    1982-09-20

    A new moored instrument which makes repeated high vertical resolution profiles of current, temperature, and salinity in the upper ocean over extended periods was used to observe midwinter conditions near Bermuda. The operation and performance of the instrument, called the profiling current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM profiles along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from vertical motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible profile range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 profiles in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda observations. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. Vertical coherence of onshore current and temperature suggest that internal wave vertical wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range profiles) to unity, where it remains while shear and stratification disappear together.« less

  6. Water Distribution in the Continental and Oceanic Upper Mantle

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.

    2015-01-01

    Nominally anhydrous minerals such as olivine, pyroxene and garnet can accommodate tens to hundreds of ppm H2O in the form of hydrogen bonded to structural oxygen in lattice defects. Although in seemingly small amounts, this water can significantly alter chemical and physical properties of the minerals and rocks. Water in particular can modify their rheological properties and its distribution in the mantle derives from melting and metasomatic processes and lithology repartition (pyroxenite vs peridotite). These effects will be examined here using Fourier transform infrared spectrometry (FTIR) water analyses on minerals from mantle xenoliths from cratons, plume-influenced cratons and oceanic settings. In particular, our results on xenoliths from three different cratons will be compared. Each craton has a different water distribution and only the mantle root of Kaapvaal has evidence for dry olivine at its base. This challenges the link between olivine water content and survival of Archean cratonic mantle, and questions whether xenoliths are representative of the whole cratonic mantle. We will also present our latest data on Hawaii and Tanzanian craton xenoliths which both suggest the intriguing result that mantle lithosphere is not enriched in water when it interacts with melts from deep mantle upwellings (plumes).

  7. Experimental constraints on the damp peridotite solidus and oceanic mantle potential temperature

    NASA Astrophysics Data System (ADS)

    Sarafian, Emily; Gaetani, Glenn A.; Hauri, Erik H.; Sarafian, Adam R.

    2017-03-01

    Decompression of hot mantle rock upwelling beneath oceanic spreading centers causes it to exceed the melting point (solidus), producing magmas that ascend to form basaltic crust ~6 to 7 kilometers thick. The oceanic upper mantle contains ~50 to 200 micrograms per gram of water (H2O) dissolved in nominally anhydrous minerals, which—relative to its low concentration—has a disproportionate effect on the solidus that has not been quantified experimentally. Here, we present results from an experimental determination of the peridotite solidus containing known amounts of dissolved hydrogen. Our data reveal that the H2O-undersaturated peridotite solidus is hotter than previously thought. Reconciling geophysical observations of the melting regime beneath the East Pacific Rise with our experimental results requires that existing estimates for the oceanic upper mantle potential temperature be adjusted upward by about 60°C.

  8. A Numerical Study of Tropical Sea-Air Interactions Using a Cloud Resolving Model Coupled with an Ocean Mixed-Layer Model

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.

  9. Crustal volumes of the continents and of oceanic and continental submarine plateaus

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Sandwell, D.

    1989-01-01

    Using global topographic data and the assumption of Airy isostasy, it is estimated that the crustal volume of the continents is 7182 X 10 to the 6th cu km. The crustal volumes of the oceanic and continental submarine plateaus are calculated at 369 X 10 to the 6th cu km and 242 X 10 to the 6th cu km, respectively. The total continental crustal volume is found to be 7581 X 10 to the 6th cu km, 3.2 percent of which is comprised of continental submarine plateaus on the seafloor. An upper bound on the contintental crust addition rate by the accretion of oceanic plateaus is set at 3.7 cu km/yr. Subduction of continental submarine plateaus with the oceanic lithosphere on a 100 Myr time scale yields an upper bound to the continental crustal subtraction rate of 2.4 cu km/yr.

  10. Evidence for a Slow Spreading Ocean Ridge in the Southern Rockall Trough From Satellite Gravity Inversion and Seismic Data

    NASA Astrophysics Data System (ADS)

    Chappell, A. R.; Kusznir, N. J.

    2005-12-01

    The southern Rockall Trough, located to the west of Ireland and the UK in the NE Atlantic, has been interpreted as both a Mesozoic intra-continental rift basin (O'Reilly 1995) and a mid Cretaceous ocean basin (e.g. Roberts et al. 1980). The continental rift hypothesis (O'Reilly 1995) requires differential stretching of the upper and lower crust and syn-tectonic cooling to mechanically explain the formation of 5-6km thick continental crust and allow serpentinisation of the upper mantle. In this model serpentinisation of the upper mantle is needed to explain low upper mantle seismic velocities. The serpentinisation has also been required to fit gravity modelling of seismic transects to the observed gravity (e.g. Shannon 1999). We use satellite gravity inversion to map Moho depth and crustal thickness (Chappell & Kusznir 2005) for the Rockall Trough area. The satellite gravity inversion is a 3D spectral method incorporating a correction for the residual lithosphere thermal gravity anomaly present in continental rifted margin lithosphere and oceanic lithosphere. The gravity inversion predicts Moho depth and geometry in agreement with wide-angle seismic estimates without invoking the extensive serpentinisation of the upper-mantle needed by the intra-continental rift hypothesis (O'Reilly 1995). Recent seismic modelling (Morewood 2005) suggests that the thin crust in the southern Rockall Trough does not have the seismic layering associated with oceanic crust formed at intermediate or fast spreading rates. Also, wide-angle seismic data shows low upper mantle seismic velocities are present and spatially associated with the thin 5-6km crust (Shannon 1999). These observations are consistent with models and observations of oceanic crust formed at slow spreading ocean ridges (Cannat 1996, Jokat 2003). Such models are based on a proportion of melt being retained in the upper mantle, producing low seismic velocities, and a reduced supply of melt to the crust, resulting in thin seismic crust with some serpentinised mantle material included. We propose that the southern Rockall Trough was formed by continental break-up and a period of slow mid Cretaceous sea floor spreading rather than as an intra- continental rift basin. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco-Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, AR Chappell, J Eccles, RJ Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, VJ Tymms & R Spitzer.

  11. Airborne dust transport to the eastern Pacific Ocean off southern California: Evidence from San Clemente Island

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.

    2007-01-01

    Islands are natural dust traps, and San Clemente Island, California, is a good example. Soils on marine terraces cut into Miocene andesite on this island are clay-rich Vertisols or Alfisols with vertic properties. These soils are overlain by silt-rich mantles, 5-20 cm thick, that contrast sharply with the underlying clay-rich subsoils. The silt mantles have a mineralogy that is distinct from the island bedrock. Silt mantles are rich in quartz, which is rare in the island andesite. The clay fraction of the silt mantles is dominated by mica, also absent from local andesite, and contrasts with the subsoils, dominated by smectite. Ternary plots of immobile trace elements (Sc-Th-La and Ta-Nd-Cr) show that the island andesite has a composition intermediate between average upper continental crust and average oceanic crust. In contrast, the silt and, to a lesser extent, clay fractions of the silt mantles have compositions closer to average upper continental crust. The silt mantles have particle size distributions similar to loess and Mojave Desert dust, but are coarser than long-range-transported Asian dust. We infer from these observations that the silt mantles are derived from airborne dust from the North American mainland, probably river valleys in the coastal mountains of southern California and/or the Mojave Desert. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. Examination of satellite imagery shows that easterly Santa Ana winds carry abundant dust to the eastern Pacific Ocean and the California Channel Islands. Airborne dust from mainland North America may be an important component of the offshore sediment budget in the easternmost Pacific Ocean, a finding of potential biogeochemical and climatic significance.

  12. Anomalous behaviors of Wyrtki Jets in the equatorial Indian Ocean during 2013

    PubMed Central

    Duan, Yongliang; Liu, Lin; Han, Guoqing; Liu, Hongwei; Yu, Weidong; Yang, Guang; Wang, Huiwu; Wang, Haiyuan; Liu, Yanliang; Zahid; Waheed, Hussain

    2016-01-01

    In-situ measurement of the upper ocean velocity discloses significant abnormal behaviors of two Wyrtki Jets (WJs) respectively in boreal spring and fall, over the tropical Indian Ocean in 2013. The two WJs both occurred within upper 130 m depth and persisted more than one month. The exceptional spring jet in May was unusually stronger than its counterpart in fall, which is clearly against the previous understanding. Furthermore, the fall WJ in 2013 unexpectedly peaked in December, one month later than its climatology. Data analysis and numerical experiments illustrate that the anomalous changes in the equatorial zonal wind, associated with the strong intra-seasonal oscillation events, are most likely the primary reason for such anomalous WJs activities. PMID:27436723

  13. Heterogeneity of the North Atlantic oceanic lithosphere based on integrated analysis of GOCE satellite gravity and geological data

    NASA Astrophysics Data System (ADS)

    Barantseva, Olga; Artemieva, Irina; Thybo, Hans; Herceg, Matija

    2015-04-01

    We present the results from modelling the gravity and density structure of the upper mantle for the off-shore area of the North Atlantic region. The crust and upper mantle of the region is expected to be anomalous: Part of the region affected by the Icelandic plume has an anomalously shallow bathymetry, whereas the northern part of the region is characterized by ultraslow spreading. In order to understand the links between deep geodynamical processes that control the spreading rate, on one hand, and their manifestations such as oceanic floor bathymetry and heat flow, on the other hand, we model the gravity and density structure of the upper mantle from satellite gravity data. The calculations are based on interpretation of GOCE gravity satellite data for the North Atlantics. To separate the gravity signal responsible for density anomalies within the crust and upper mantle, we subtract the lower harmonics caused by deep density structure of the Earth (the core and the lower mantle). The gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crust for two crustal models. We use a recent regional seismic model for the crustal structure (Artemieva and Thybo, 2013) based om seismic data together with borehole data for sediments. For comparison, similar results are presented for the global CRUST 1.0 model as well (Laske, 2013). The conversion of seismic velocity data for the crustal structure to crustal density structure is crucial for the final results. We use a combination of Vp-to-density conversion based on published laboratory measurements for the crystalline basement (Ludwig, Nafe, Drake, 1970; Christensen and Mooney, 1995) and for oceanic sediments and oceanic crust based on laboratory measurements for serpentinites and gabbros from the Mid-Atlantic Ridge (Kelemen et al., 2004). Also, to overcome the high degree of uncertainty in Vp-to-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007). The results demonstrate the presence of strong gravity and density heterogeneity of the upper mantle in the North Atlantic region. In particular, there is a sharp contrast at the continent-ocean transition, which also allows for recognising mantle gravity anomalies associated with continental fragments and with anomalous oceanic lithosphere.

  14. The origins of the anomalous warming in the California coastal ocean and San Francisco Bay during 2014-2016

    NASA Astrophysics Data System (ADS)

    Chao, Yi; Farrara, John D.; Bjorkstedt, Eric; Chai, Fei; Chavez, Francisco; Rudnick, Daniel L.; Enright, Wendy; Fisher, Jennifer L.; Peterson, William T.; Welch, Gregory F.; Davis, Curtiss O.; Dugdale, Richard C.; Wilkerson, Frances P.; Zhang, Hongchun; Zhang, Yinglong; Ateljevich, Eli

    2017-09-01

    During 2014 exceptionally warm water temperatures developed across a wide area off the California coast and within San Francisco Bay (SFB) and persisted into 2016. Observations and numerical model output are used to document this warming and determine its origins. The coastal warming was mostly confined to the upper 100 m of the ocean and was manifested strongly in the two leading modes of upper ocean (0-100 m) temperature variability in the extratropical eastern Pacific. Observations suggest that the coastal warming in 2014 propagated into nearshore regions from the west while later indicating a warming influence that propagated from south to north into the region associated with the 2015-2016 El Niño event. An analysis of the upper ocean (0-100 m) heat budget in a Regional Ocean Modeling System (ROMS) simulation confirmed this scenario. The results from a set of sensitivity runs with the model in which the lateral boundary conditions varied supported the conclusions drawn from the heat budget analysis. Concerning the warming in the SFB, an examination of the observations and the heat budget in an unstructured-grid numerical model simulation suggested that the warming during the second half of 2014 and early 2016 originated in the adjacent California coastal ocean and propagated through the Golden Gate into the Bay. The finding that the coastal and Bay warming are due to the relatively slow propagation of signals from remote sources raises the possibility that such warming events may be predictable many months or even several seasons in advance.

  15. Water mass characteristic in the outflow region of the Indonesian throughflow during and post 2016 negative Indian ocean dipole event

    NASA Astrophysics Data System (ADS)

    Bayhaqi, A.; Iskandar, I.; Surinati, D.; Budiman, A. S.; Wardhana, A. K.; Dirhamsyah; Yuan, D.; Lestari, D. O.

    2018-05-01

    Strong El Niño and positive Indian Ocean Dipole (pIOD) events in 2015/2016 followed by relatively strong negative Indian Ocean Dipole (nIOD) and weak La Niña in 2016 events have affected hydrography conditions in the Indonesian Throughflow (ITF) region. Two research cruises were conducted using RV Baruna Jaya VIII in August and November 2016. These cruises aim to evaluate possible impact of those two climate mode events on the water mass characteristic in the outflow region of the ITF. Hydrographic data from those two cruises were combined with the sea surface temperature (SST) from the Advanced Very High Resolution Radiometer (AVHRR) and surface wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF). The results showed that in the 2016 anomaly year, the cooler sea surface temperature was observed during the negative IOD (nIOD) event while the warmer temperature was found in the post of nIOD event. The observed water mass characteristics in the outflow region of the ITF revealed that the upper layer was dominated by the Indian Ocean water mass, while the Pacific Ocean water mass was observed in the deeper layer. The observed current data across the Sumba Strait showed that the South Java Coastal Current (SJCC) was observed in the upper layer, propagating eastward toward the Savu Sea. A few days later, the observed currents in the upper layer of the Ombai Strait revealed the ITF flow towards the Indian Ocean. Meanwhile, the lower layer showed an eastward flow towards the Ombai Strait.

  16. From SYNOP to AMOC: Stirring by deep cyclones and the evolution of Denmark Strait Overflow Water observed at Line W

    NASA Astrophysics Data System (ADS)

    Andres, M.; Toole, J. M.; Torres, D. J.; Smethie, W. M., Jr.; Joyce, T. M.; Curry, R. G.

    2016-02-01

    Shipboard velocity and property data from 18 transects across the North Atlantic Deep Western Boundary Current (DWBC) near 40˚N are analyzed to study the evolution of the Denmark Strait Overflow Water (DSOW) component of the DWBC and its mixing with the interior. The transects were made between 1994 and 2014 and lie along Line W, which reaches from the continental shelf south of New England to Bermuda. Measurements comprise velocity from lowered acoustic Doppler current profilers (LADCPs), CTD profiles, and trace gas chlorofluorocarbon (CFC) concentrations from bottle samples at discrete depths at 26 regular stations or a subset of these stations. In each transect, DSOW exhibits a distinct CFC concentration maximum in the abyssal ocean (> 3000 m depth) along the sloped western boundary. Sea surface height (SSH) maps from satellite altimetry indicate that quasi-stationary meander troughs of the Gulf Stream path in the upper ocean were present at Line W during 5 of the 18 sections. For these 5 sections, the LADCP velocity sections suggest the upper ocean trough is accompanied by a large cyclone in the deep ocean in the DSOW density layer. The occurrence of deep cyclones in conjunction with Gulf Stream troughs as inferred from the LADCP sections along Line W is consistent with previous observations (from 1988 to 1990) in the region from a moored array in the Synoptic Ocean Prediction (SYNOP) experiment. The SYNOP array suggested deep cyclones are present here about 35% of the time. The composite velocity section produced from the 5 Line W transects sampling through a Gulf Stream trough suggests that a typical cyclone reaches swirl speeds of greater than 30 cm/s at 3400 m depth and has a radius (distance between the center and the maximum velocity) of 75 km. The tracer data suggest that these cyclones affect not only the deep velocity structure along Line W, but also provide a mechanism for water exchange between the DWBC and the interior.

  17. The thermodynamic balance of the Weddell Gyre

    NASA Astrophysics Data System (ADS)

    Naveira Garabato, Alberto C.; Zika, Jan D.; Jullion, Loïc.; Brown, Peter J.; Holland, Paul R.; Meredith, Michael P.; Bacon, Sheldon

    2016-01-01

    The thermodynamic balance of the Weddell Gyre is assessed from an inverse estimate of the circulation across the gyre's rim. The gyre experiences a weak net buoyancy gain that arises from a leading-order cancelation between two opposing contributions, linked to two cells of water mass transformation and diapycnal overturning. The lower cell involves a cooling-driven densification of 8.4 ± 2.0 Sv of Circumpolar Deep Water and Antarctic Bottom Water near the gyre's southern and western margins. The upper cell entails a freshening-driven conversion of 4.9 ± 2.0 Sv of Circumpolar Deep Water into lighter upper ocean waters within the gyre interior. The distinct role of salinity between the two cells stems from opposing salinity changes induced by sea ice production, meteoric sources, and admixture of fresh upper ocean waters in the lower cell, which contrasts with coherent reductions in salinity associated with sea ice melting and meteoric sources in the upper cell.

  18. Southern Africa as seen from STS-61 Shuttle Endeavour

    NASA Image and Video Library

    1993-12-09

    STS061-106-091 (December 1993) --- The entire southern tip of Africa is shown in this high altitude 50mm photograph. The center of the photograph is at approximately 28.0 degrees south and 24.0 degrees east Cape Columbine is at the upper right with Durban at the lower center. The Orange River is at the upper center of the frame. Cape Agulas is the southernmost part of the African continent and is visible toward the upper right corner with the great bays of South Africa trending toward the bottom right. Continuing clockwise along the coast, Durban projects out into the Indian Ocean. The oceanic clouds on the right side of the photograph probably depict a current boundary. The Drakensberg Range on the east, the great Karoo Range to the south and the Karas Mountains on the west surround the drier central plateau. The southern Kalahari Desert is at the upper left of the photograph.

  19. Toward a multivariate reanalysis of the North Atlantic ocean biogeochemistry during 1998-2006 based on the assimilation of SeaWiFS chlorophyll data

    NASA Astrophysics Data System (ADS)

    Fontana, C.; Brasseur, P.; Brankart, J.-M.

    2012-04-01

    Today, the routine assimilation of satellite data into operational models of the ocean circulation is mature enough to enable the production of global reanalyses describing the ocean circulation variability during the past decades. The expansion of the "reanalysis" concept from ocean physics to biogeochemistry is a timely challenge that motivates the present study. The objective of this paper is to investigate the potential benefits of assimilating satellite-estimated chlorophyll data into a basin-scale three-dimensional coupled physical-biogeochemical model of the North-Atlantic. The aim is on one hand to improve forecasts of ocean biogeochemical properties and on the other hand to define a methodology for producing data-driven climatologies based on coupled physical-biogeochemical modelling. A simplified variant of the Kalman filter is used to assimilate ocean color data during a 9 year-long period. In this frame, two experiences are carried out, with and without anamorphic transformations of the state vector variables. Data assimilation efficiency is assessed with respect to the assimilated data set, the nitrate World Ocean Atlas database and a derived climatology. Along the simulation period, the non-linear assimilation scheme clearly improves the surface chlorophyll concentrations analysis and forecast, especially in the North Atlantic bloom region. Nitrate concentration forecasts are also improved thanks to the assimilation of ocean color data while this improvement is limited to the upper layer of the water column, in agreement with recent related litterature. This feature is explained by the weak correlation taken into account by the assimilation between surface phytoplankton and nitrate concentration deeper than 50 m. The assessement of the non-linear assimilation experiments indicates that the proposed methodology provides the skeleton of an assimilative system suitable for reanalysing the ocean biogeochemistry based on ocean color data.

  20. Toward a multivariate reanalysis of the North Atlantic Ocean biogeochemistry during 1998-2006 based on the assimilation of SeaWiFS chlorophyll data

    NASA Astrophysics Data System (ADS)

    Fontana, C.; Brasseur, P.; Brankart, J.-M.

    2013-01-01

    Today, the routine assimilation of satellite data into operational models of ocean circulation is mature enough to enable the production of global reanalyses describing the ocean circulation variability during the past decades. The expansion of the "reanalysis" concept from ocean physics to biogeochemistry is a timely challenge that motivates the present study. The objective of this paper is to investigate the potential benefits of assimilating satellite-estimated chlorophyll data into a basin-scale three-dimensional coupled physical-biogeochemical model of the North Atlantic. The aim is on the one hand to improve forecasts of ocean biogeochemical properties and on the other hand to define a methodology for producing data-driven climatologies based on coupled physical-biogeochemical modeling. A simplified variant of the Kalman filter is used to assimilate ocean color data during a 9-year period. In this frame, two experiments are carried out, with and without anamorphic transformations of the state vector variables. Data assimilation efficiency is assessed with respect to the assimilated data set, nitrate of the World Ocean Atlas database and a derived climatology. Along the simulation period, the non-linear assimilation scheme clearly improves the surface analysis and forecast chlorophyll concentrations, especially in the North Atlantic bloom region. Nitrate concentration forecasts are also improved thanks to the assimilation of ocean color data while this improvement is limited to the upper layer of the water column, in agreement with recent related literature. This feature is explained by the weak correlation taken into account by the assimilation between surface phytoplankton and nitrate concentrations deeper than 50 meters. The assessment of the non-linear assimilation experiments indicates that the proposed methodology provides the skeleton of an assimilative system suitable for reanalyzing the ocean biogeochemistry based on ocean color data.

  1. Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR

    USGS Publications Warehouse

    Boss, E.S.; Collier, R.; Larson, G.; Fennel, K.; Pegau, W.S.

    2007-01-01

    Spectral inherent optical properties (IOPs) have been measured at Crater Lake, OR, an extremely clear sub-alpine lake. Indeed Pure water IOPs are major contributors to the total IOPs, and thus to the color of the lake. Variations in the spatial distribution of IOPs were observed in June and September 2001, and reflect biogeochemical processes in the lake. Absorption by colored dissolved organic material increases with depth and between June and September in the upper 300 m. This pattern is consistent with a net release of dissolved organic materials from primary and secondary production through the summer and its photo-oxidation near the surface. Waters fed by a tributary near the lake's rim exhibited low levels of absorption by dissolved organic materials. Scattering is mostly dominated by organic particulate material, though inorganic material is found to enter the lake from the rim following a rain storm. Several similarities to oceanic oligotrophic regions are observed: (a) The Beam attenuation correlates well with particulate organic material (POM) and the relationship is similar to that observed in the open ocean. (b) The specific absorption of colored dissolved organic material has a value similar to that of open ocean humic material. (c) The distribution of chlorophyll with depth does not follow the distribution of particulate organic material due to photo-acclimation resulting in a subsurface pigment maximum located about 50 m below the POM maximum. ?? 2007 Springer Science+Business Media B.V.

  2. Magmatic densities control erupted volumes in Icelandic volcanic systems

    NASA Astrophysics Data System (ADS)

    Hartley, Margaret; Maclennan, John

    2018-04-01

    Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ). By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallisation under Iceland.

  3. Origin and Distribution of Water Contents in Continental and Oceanic Lithospheric Mantle

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.

    2013-01-01

    The water content distribution of the upper mantle will be reviewed as based on the peridotite record. The amount of water in cratonic xenoliths appears controlled by metasomatism while that of the oceanic mantle retains in part the signature of melting events. In both cases, the water distribution is heterogeneous both with depth and laterally, depending on localized water re-enrichments next to melt/fluid channels. The consequence of the water distribution on the rheology of the upper mantle and the location of the lithosphere-asthenosphere boundary will also be discussed.

  4. Upper Ocean Workshop, held Timberline Lodge, Oregon - 3-5 March 1980.

    DTIC Science & Technology

    1980-04-10

    7 A095G 518 WASHINGTON UNIV SEATTLE APPLIED PHYSICS LAB F/6 8/37 PER OCEAN WORKSHOP, HELD TIMBERLINE LODGE , OREGON - 3-5 MARCHN-ETC(U) APR 80 M C...5 March 1980 at Timberline Lodge , Oregon. The emphasis was on ideas for future research, including that work concerned with the direct i response of...Dete Oftelgi K9 I Upper Qcean Workshop Timberline Lodge , Oregon - 3-5 March 1980. I2 I |" ..~..,,)Summary Re ,t •- April 10918 I ... I I.Prepared by

  5. A non-hydrostatic flat-bottom ocean model entirely based on Fourier expansion

    NASA Astrophysics Data System (ADS)

    Wirth, A.

    2005-01-01

    We show how to implement free-slip and no-slip boundary conditions in a three dimensional Boussinesq flat-bottom ocean model based on Fourier expansion. Our method is inspired by the immersed or virtual boundary technique in which the effect of boundaries on the flow field is modeled by a virtual force field. Our method, however, explicitly depletes the velocity on the boundary induced by the pressure, while at the same time respecting the incompressibility of the flow field. Spurious spatial oscillations remain at a negligible level in the simulated flow field when using our technique and no filtering of the flow field is necessary. We furthermore show that by using the method presented here the residual velocities at the boundaries are easily reduced to a negligible value. This stands in contradistinction to previous calculations using the immersed or virtual boundary technique. The efficiency is demonstrated by simulating a Rayleigh impulsive flow, for which the time evolution of the simulated flow is compared to an analytic solution, and a three dimensional Boussinesq simulation of ocean convection. The second instance is taken form a well studied oceanographic context: A free slip boundary condition is applied on the upper surface, the modeled sea surface, and a no-slip boundary condition to the lower boundary, the modeled ocean floor. Convergence properties of the method are investigated by solving a two dimensional stationary problem at different spatial resolutions. The work presented here is restricted to a flat ocean floor. Extensions of our method to ocean models with a realistic topography are discussed.

  6. Aircraft Surveys of the Beaufort Sea Seasonal Ice Zone

    NASA Astrophysics Data System (ADS)

    Morison, J.

    2016-02-01

    The Seasonal Ice Zone Reconnaissance Surveys (SIZRS) is a program of repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. The SIZ is the region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. The increasing size and changing air-ice-ocean properties of the SIZ are central to recent reductions in Arctic sea ice extent. The changes in the interplay among the atmosphere, ice, and ocean require a systematic SIZ observational effort of coordinated atmosphere, ice, and ocean observations covering up to interannual time-scales, Therefore, every year beginning in late Spring and continuing to early Fall, SIZRS makes monthly flights across the Beaufort Sea SIZ aboard Coast Guard C-130H aircraft from USCG Air Station Kodiak dropping Aircraft eXpendable CTDs (AXCTD) and Aircraft eXpendable Current Profilers (AXCP) for profiles of ocean temperature, salinity and shear, dropsondes for atmospheric temperature, humidity, and velocity profiles, and buoys for atmosphere and upper ocean time series. Enroute measurements include IR imaging, radiometer and lidar measurements of the sea surface and cloud tops. SIZRS also cooperates with the International Arctic Buoy Program for buoy deployments and with the NOAA Earth System Research Laboratory atmospheric chemistry sampling program on board the aircraft. Since 2012, SIZRS has found that even as SIZ extent, ice character, and atmospheric forcing varies year-to-year, the pattern of ocean freshening and radiative warming south of the ice edge is consistent. The experimental approach, observations and extensions to other projects will be discussed.

  7. Upper Ocean Inertial Currents Forced by a Strong Storm. I: Mixed Layer. II: Propagation into the Thermocline

    DTIC Science & Technology

    1993-12-20

    inertial waves during OCEAN STORMS. (this volume) Sanford, T. B., P. G. Black, J. R. Haustein , J. W. Feeney, G. Z. Forristall, and J. F. Price, 1987...J. R. Haustein , J. W. Feeney, G.Z. Forristall, J. F. Price, 1987: Ocean response to a hurricane, Part I: Observations. J. Phys. Oceanogr., 17, 2065

  8. Fluids in Convergent Margins: What do We Know about their Composition, Origin, Role in Diagenesis and Importance for Oceanic Chemical Fluxes?

    NASA Astrophysics Data System (ADS)

    Kastner, M.; Elderfield, H.; Martin, J. B.

    1991-05-01

    The nature and origin of fluids in convergent margins can be inferred from geochemical and isotopic studies of the venting and pore fluids, and is attempted here for the Barbados Ridge, Nankai Trough and the convergent margin off Peru. Venting and pore fluids with lower than seawater Cl- concentrations characterize all these margins. Fluids have two types of source: internal and external. The three most important internal sources are: (1) porosity reduction; (2) diagenetic and metamorphic dehydration; and (3) the breakdown of hydrous minerals. Gas hydrate formation and dissociation, authigenesis of hydrous minerals and the alteration of volcanic ash and/or the upper oceanic crust lead to a redistribution of the internal fluids and gases in vertical and lateral directions. The maximum amount of expelled water calculated can be ca. 7 m3 a-1 m-1, which is much less than the tens to more than 100 m3 a-1 m-1 of fluid expulsion which has been observed. The difference between these figures must be attributed to external fluid sources, mainly by transport of meteoric water enhanced by mixing with seawater. The most important diagenetic reactions which modify the fluid compositions, and concurrently the physical and even the thermal properties of the solids through which they flow are: (1) carbonate recrystallization, and more importantly precipitation; (2) bacterial and thermal degradation of organic matter; (3) formation and dissociation of gas hydrates; (4) dehydration and transformation of hydrous minerals, especially of clay minerals and opal-A; and (5) alteration, principally zeolitization and clay mineral formation, of volcanic ash and the upper oceanic crust.

  9. Mapping the Earth's thermochemical and anisotropic structure using global surface wave data

    NASA Astrophysics Data System (ADS)

    Khan, A.; Boschi, L.; Connolly, J. A. D.

    2011-01-01

    We have inverted global fundamental mode and higher-order Love and Rayleigh wave dispersion data jointly, to find global maps of temperature, composition, and radial seismic anisotropy of the Earth's mantle as well as their uncertainties via a stochastic sampling-based approach. We apply a self-consistent thermodynamic method to systematically compute phase equilibria and physical properties (P and S wave velocity, density) that depend only on composition (in the Na2-CaO-FeO-MgO-Al2O3-SiO2 model system), pressure, and temperature. Our 3-D maps are defined horizontally by 27 different tectonic regions and vertically by a number of layers. We find thermochemical differences between oceans and continents to extend down to ˜250 km depth, with continents and cratons appearing chemically depleted (high magnesium number (Mg #) and Mg/Si ratio) and colder (>100°C) relative to oceans, while young oceanic lithosphere is hotter than its intermediate age and old counterparts. We find what appears to be strong radial S wave anisotropy in the upper mantle down to ˜200 km, while there seems to be little evidence for shear anisotropy at greater depths. At and beneath the transition zone, 3-D heterogeneity is likely uncorrelated with surface tectonics; as a result, our tectonics-based parameterization is tenuous. Despite this weakness, constraints on the gross average thermochemical and anisotropic structure to ˜1300 km depth can be inferred, which appear to indicate that the compositions of the upper (low Mg# and high Mg/Si ratio) and lower mantle (high Mg# and low Mg/Si ratio) might possibly be distinct.

  10. Climate-driven trends in contemporary ocean productivity.

    PubMed

    Behrenfeld, Michael J; O'Malley, Robert T; Siegel, David A; McClain, Charles R; Sarmiento, Jorge L; Feldman, Gene C; Milligan, Allen J; Falkowski, Paul G; Letelier, Ricardo M; Boss, Emmanuel S

    2006-12-07

    Contributing roughly half of the biosphere's net primary production (NPP), photosynthesis by oceanic phytoplankton is a vital link in the cycling of carbon between living and inorganic stocks. Each day, more than a hundred million tons of carbon in the form of CO2 are fixed into organic material by these ubiquitous, microscopic plants of the upper ocean, and each day a similar amount of organic carbon is transferred into marine ecosystems by sinking and grazing. The distribution of phytoplankton biomass and NPP is defined by the availability of light and nutrients (nitrogen, phosphate, iron). These growth-limiting factors are in turn regulated by physical processes of ocean circulation, mixed-layer dynamics, upwelling, atmospheric dust deposition, and the solar cycle. Satellite measurements of ocean colour provide a means of quantifying ocean productivity on a global scale and linking its variability to environmental factors. Here we describe global ocean NPP changes detected from space over the past decade. The period is dominated by an initial increase in NPP of 1,930 teragrams of carbon a year (Tg C yr(-1)), followed by a prolonged decrease averaging 190 Tg C yr(-1). These trends are driven by changes occurring in the expansive stratified low-latitude oceans and are tightly coupled to coincident climate variability. This link between the physical environment and ocean biology functions through changes in upper-ocean temperature and stratification, which influence the availability of nutrients for phytoplankton growth. The observed reductions in ocean productivity during the recent post-1999 warming period provide insight on how future climate change can alter marine food webs.

  11. Transformation of Deep Water Masses Along Lagrangian Upwelling Pathways in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Tamsitt, V.; Abernathey, R. P.; Mazloff, M. R.; Wang, J.; Talley, L. D.

    2018-03-01

    Upwelling of northern deep waters in the Southern Ocean is fundamentally important for the closure of the global meridional overturning circulation and delivers carbon and nutrient-rich deep waters to the sea surface. We quantify water mass transformation along upwelling pathways originating in the Atlantic, Indian, and Pacific and ending at the surface of the Southern Ocean using Lagrangian trajectories in an eddy-permitting ocean state estimate. Recent related work shows that upwelling in the interior below about 400 m depth is localized at hot spots associated with major topographic features in the path of the Antarctic Circumpolar Current, while upwelling through the surface layer is more broadly distributed. In the ocean interior upwelling is largely isopycnal; Atlantic and to a lesser extent Indian Deep Waters cool and freshen while Pacific deep waters are more stable, leading to a homogenization of water mass properties. As upwelling water approaches the mixed layer, there is net strong transformation toward lighter densities due to mixing of freshwater, but there is a divergence in the density distribution as Upper Circumpolar Deep Water tends become lighter and dense Lower Circumpolar Deep Water tends to become denser. The spatial distribution of transformation shows more rapid transformation at eddy hot spots associated with major topography where density gradients are enhanced; however, the majority of cumulative density change along trajectories is achieved by background mixing. We compare the Lagrangian analysis to diagnosed Eulerian water mass transformation to attribute the mechanisms leading to the observed transformation.

  12. Assessing Atmospheric Water Injection from Oceanic Impacts

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.

    2005-01-01

    Collisions of asteroids and comets with the Earth s surface are rare events that punctuate the geologic record. Due to the vastness of Earth s oceans, oceanic impacts of asteroids or comets are expected to be about 4 times more frequent than land impacts. The resulting injections of oceanic water into the upper atmosphere can have important repercussions on Earth s climate and atmospheric circulation. However, the duration and overall effect of these large injections are still unconstrained. This work addresses atmospheric injections of large amounts of water in oceanic impacts.

  13. A numerical investigation of the Southern Gyre using ROMS

    NASA Astrophysics Data System (ADS)

    Gamoyo, Majambo; Reason, Chris J. C.; Collins, Charine

    2017-05-01

    A numerical model (The Regional Ocean Modelling System-ROMS), configured over the western Indian Ocean and driven by monthly climatology winds and heat fluxes, is applied to examine the Southern Gyre in the Somali Current system during the Southwest Monsoon. Despite the Southern Gyre playing a role in transporting water masses and other properties northwards across the equator, it has not been much studied. The model results indicate that the Southern Gyre appears in early June in the upper ocean as a result of instability in the northward flowing Somali Current. The arrival of downwelling Rossby wave energy at the East African coast intensifies the recirculation of the Southern Gyre and causes its northward movement. The Southern Gyre is characterized as a shallow feature which deepens from 100 m in June to 300 m in July-August. The average spatial scale of the gyre is about 400 km with subsequent development of positive vorticity bursts which are identified as potential contributors to the decay of the Southern Gyre. Cool and fresh waters observed in the gyre resulted from advection via the South Equatorial Current and then through the Somali Current (SC).

  14. Seismic structure of the lithosphere and upper mantle beneath the ocean islands near mid-oceanic ridges

    NASA Astrophysics Data System (ADS)

    Haldar, C.; Kumar, P.; Kumar, M. Ravi

    2014-05-01

    Deciphering the seismic character of the young lithosphere near mid-oceanic ridges (MORs) is a challenging endeavor. In this study, we determine the seismic structure of the oceanic plate near the MORs using the P-to-S conversions isolated from quality data recorded at five broadband seismological stations situated on ocean islands in their vicinity. Estimates of the crustal and lithospheric thickness values from waveform inversion of the P-receiver function stacks at individual stations reveal that the Moho depth varies between ~ 10 ± 1 km and ~ 20 ± 1 km with the depths of the lithosphere-asthenosphere boundary (LAB) varying between ~ 40 ± 4 and ~ 65 ± 7 km. We found evidence for an additional low-velocity layer below the expected LAB depths at stations on Ascension, São Jorge and Easter islands. The layer probably relates to the presence of a hot spot corresponding to a magma chamber. Further, thinning of the upper mantle transition zone suggests a hotter mantle transition zone due to the possible presence of plumes in the mantle beneath the stations.

  15. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  16. Pb sbnd Sr sbnd Nd isotopic data of Indian Ocean ridges: new evidence of large-scale mapping of mantle heterogeneities

    NASA Astrophysics Data System (ADS)

    Hamelin, Bruno; Dupré, Bernard; Allègre, Claude J.

    1986-01-01

    A Pb sbnd Sr sbnd Nd isotope study of South West and East Indian Ridges confirms that the Indian Ocean belongs to a specific regional isotopic domain, as previously suggested by the results from islands of this ocean. The isotopic domain defined by the Indian MORB is indeed different from that of the North Atlantic and East Pacific Oceans. This demonstrates that the convective circulation of the upper mantle does not allow a rapid homogenization from one region to the other. The isotopic data of the Indian ridges can be interpreted by a contamination model, in which the depleted upper mantle (identical to that under the North Atlantic) is contaminated by two different types of contaminant, one corresponding to the source of the "central Indian Ocean" islands (Amsterdam, St. Paul, Marion, Prince Edward, Réunion, Rodriguez, Mauritius), and the other to a source similar to that of Walvis or Ninety East aseismic ridges. These two contaminants would have contributed to the ridge volcanism in different proportions over time.

  17. Neodymium isotope evolution of NW Tethyan upper ocean waters throughout the Cretaceous

    NASA Astrophysics Data System (ADS)

    Pucéat, Emmanuelle; Lécuyer, Christophe; Reisberg, Laurie

    2005-08-01

    Neodymium isotope compositions of twenty-four fish teeth, nineteen from the NW Tethys and five from different locations within the Tethys, are interpreted to reflect the evolution of Tethyan upper ocean water composition during the Cretaceous and used to track changes in erosional inputs to the NW Tethys and in oceanic circulation throughout the Cretaceous. The rather high ɛNd (up to - 7.6) of the NW Tethyan upper ocean waters recorded from the Late Berriasian to the Early Aptian and the absence of negative excursions during this interval support the presence of a permanent westward flowing Tethys Circumglobal Current (TCC). This implies that temperature variations during this time period, inferred from the oxygen isotope analysis of fish tooth enamel, were not driven by changes in surface oceanic currents, but rather by global climatic changes. The results presented here represent a significant advance over previously published Cretaceous seawater Nd isotope records. Our newly acquired data now allow the identification of two stages of low ɛNd values in the NW Tethys, during the Early Albian-Middle Albian interval (down to - 10) and the Santonian-Early Campanian (down to - 11.4), which alternate with two stages of higher ɛNd values (up to - 9) during the Late Albian-Turonian interval and the Maastrichtian. Used in conjunction with the oxygen isotope record, the fluctuations of ɛNd values can be related to major climatic, oceanographic, and tectonic events that appeared in the western Tethyan domain.

  18. Water content within the oceanic upper mantle of the Southwest Indian Ridge: a FTIR analysis of orthopyroxenes of abyssal peridotites

    NASA Astrophysics Data System (ADS)

    Li, W.; Li, H.; Tao, C.; Jin, Z.

    2013-12-01

    Water can be present in the oceanic upper mantle as structural OH in nominally anhydrous minerals. Such water has marked effects on manlte melting and rheology properties. However, the water content of MORB source is mainly inferred from MORB glass data that the water budget of oceanic upper mantle is poorly constrained. Here we present water analysis of peridotites from different sites on the Southwest Indian Ridge. The mineral assemblages of these peridotites are olivine, orthopyroxene, clinopyroxene and spinel. As the peridotites have been serpentinized to different degrees, only water contents in orthopyroxnene can be better determined by FTIR spectrometry. The IR absorption bands of all measured orthopyroxenes can be devided into four different groups: (1)3562-3596 cm-1, (2)3515-3520 cm-1, (3)3415-3420 cm-1, (4)3200-3210 cm-1. The positions of these absorption bands are in good agreement with perivious reports. Hydrogen profile measurements performed on larger opx grains in each suite of samples show no obvious variations between core and rims regions, indicating that diffusion of H in orthopyroxene is insignificant. Preliminary measured water contents of orthopyroxene differ by up to one order of magnitude. Opx water contents (80-220 ppm) of most samples are within the range of those found in mantle xenoliths of contentinal settings [1]. Opx water contents of one sample (VM-21V-S9-D5-2: 38-64 ppm) are similar to those from Gakkel Ridge abyssal peridotites (25-60 ppm) [2] but higher than those from Mid-Atlantic Ridge ODP-Leg 209(~15 ppm) [3]. Two other samples show high water concentrations (VM-19ΙΙΙ-S3-TVG2-4: 260-275 ppm, Wb-18-b: 190-265 ppm) which compare well with those from Mid-Atlantic Ridge ODP-Leg 153(160-270 ppm) [4]. Most opx water contents decrease with increasing depletion degree (spl Cr#) consistent with an incompatible behavior of water during partial melting. Recalculated bulk water contents (27-117 ppm) of these peridotites overlap estimates for MORB source. However, estimated original bulk water contents prior to partial melting of some samples are very high (e.g. wb-18-b: 540-770 ppm) and can not simply be explained by melt extraction. Our data suggest that the water contents in the oceanic upper mantle of SWIR are heterogeneous or different post-melt depletion histories are involved. Reference [1] Peslier (2010) JVGR 197, 239-258. [2] Peslier et al. (2007) Goldschmidt. [3] Gose et al. (2009) Geology 37,543-546 [4] Schmädicke et al. (2011) Lithos 125, 308-320.

  19. Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Norris, Joel

    2005-01-01

    The first paper was Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, by J. R. Norris (2005, J. Geophys. Res. - Atmos., 110, D08206, doi: lO.l029/2004JD005600). This study examined variability in zonal mean surface-observed upper-level (combined midlevel and high-level) and low-level cloud cover over land during 1971-1 996 and over ocean during 1952-1997. These data were averaged from individual synoptic reports in the Extended Edited Cloud Report Archive (EECRA). Although substantial interdecadal variability is present in the time series, long-term decreases in upper-level cloud cover occur over land and ocean at low and middle latitudes in both hemispheres. Near-global upper-level cloud cover declined by 1.5%-sky-cover over land between 1971 and 1996 and by 1.3%-sky-cover over ocean between 1952 and 1997. Consistency between EECRA upper-level cloud cover anomalies and those from the International Satellite Cloud Climatology Project (ISCCP) during 1984-1 997 suggests the surface-observed trends are real. The reduction in surface-observed upper-level cloud cover between the 1980s and 1990s is also consistent with the decadal increase in all-sky outgoing longwave radiation reported by the Earth Radiation Budget Satellite (EMS). Discrepancies occur between time series of EECRA and ISCCP low-level cloud cover due to identified and probable artifacts in satellite and surface cloud data. Radiative effects of surface-observed cloud cover anomalies, called "cloud cover radiative forcing (CCRF) anomalies," are estimated based on a linear relationship to climatological cloud radiative forcing per unit cloud cover. Zonal mean estimated longwave CCRF has decreased over most of the globe. Estimated shortwave CCRF has become slightly stronger over northern midlatitude oceans and slightly weaker over northern midlatitude land areas. A long-term decline in the magnitude of estimated shortwave CCRF occurs over low-latitude land and ocean, but comparison with EMS all-sky reflected shortwave radiation during 1985-1997 suggests this decrease may be underestimated.

  20. Elemental mercury concentrations and fluxes in the tropical atmosphere and ocean.

    PubMed

    Soerensen, Anne L; Mason, Robert P; Balcom, Prentiss H; Jacob, Daniel J; Zhang, Yanxu; Kuss, Joachim; Sunderland, Elsie M

    2014-10-07

    Air-sea exchange of elemental mercury (Hg(0)) is a critical component of the global biogeochemical Hg cycle. To better understand variability in atmospheric and oceanic Hg(0), we collected high-resolution measurements across large gradients in seawater temperature, salinity, and productivity in the Pacific Ocean (20°N-15°S). We modeled surface ocean Hg inputs and losses using an ocean general circulation model (MITgcm) and an atmospheric chemical transport model (GEOS-Chem). Observed surface seawater Hg(0) was much more variable than atmospheric concentrations. Peak seawater Hg(0) concentrations (∼ 130 fM) observed in the Pacific intertropical convergence zone (ITCZ) were ∼ 3-fold greater than surrounding areas (∼ 50 fM). This is similar to observations from the Atlantic Ocean. Peak evasion in the northern Pacific ITCZ was four times higher than surrounding regions and located at the intersection of high wind speeds and elevated seawater Hg(0). Modeling results show that high Hg inputs from enhanced precipitation in the ITCZ combined with the shallow ocean mixed layer in this region drive elevated seawater Hg(0) concentrations. Modeled seawater Hg(0) concentrations reproduce observed peaks in the ITCZ of both the Atlantic and Pacific Oceans but underestimate its magnitude, likely due to insufficient deep convective scavenging of oxidized Hg from the upper troposphere. Our results demonstrate the importance of scavenging of reactive mercury in the upper atmosphere driving variability in seawater Hg(0) and net Hg inputs to biologically productive regions of the tropical ocean.

  1. Upper-mantle water stratification inferred from observations of the 2012 Indian Ocean earthquake.

    PubMed

    Masuti, Sagar; Barbot, Sylvain D; Karato, Shun-Ichiro; Feng, Lujia; Banerjee, Paramesh

    2016-10-20

    Water, the most abundant volatile in Earth's interior, preserves the young surface of our planet by catalysing mantle convection, lubricating plate tectonics and feeding arc volcanism. Since planetary accretion, water has been exchanged between the hydrosphere and the geosphere, but its depth distribution in the mantle remains elusive. Water drastically reduces the strength of olivine and this effect can be exploited to estimate the water content of olivine from the mechanical response of the asthenosphere to stress perturbations such as the ones following large earthquakes. Here, we exploit the sensitivity to water of the strength of olivine, the weakest and most abundant mineral in the upper mantle, and observations of the exceptionally large (moment magnitude 8.6) 2012 Indian Ocean earthquake to constrain the stratification of water content in the upper mantle. Taking into account a wide range of temperature conditions and the transient creep of olivine, we explain the transient deformation in the aftermath of the earthquake that was recorded by continuous geodetic stations along Sumatra as the result of water- and stress-activated creep of olivine. This implies a minimum water content of about 0.01 per cent by weight-or 1,600 H atoms per million Si atoms-in the asthenosphere (the part of the upper mantle below the lithosphere). The earthquake ruptured conjugate faults down to great depths, compatible with dry olivine in the oceanic lithosphere. We attribute the steep rheological contrast to dehydration across the lithosphere-asthenosphere boundary, presumably by buoyant melt migration to form the oceanic crust.

  2. Lateral variations in upper-mantle seismic anisotropy in the Pacific from inversion of a surface-wave dispersion dataset

    NASA Astrophysics Data System (ADS)

    Eddy, C. L.; Ekstrom, G.; Nettles, M.; Gaherty, J. B.

    2017-12-01

    We present a three-dimensional model of the anisotropic velocity structure of the Pacific lithosphere and asthenosphere. The presence of seismic anisotropy in the oceanic upper mantle provides information about the geometry of flow in the mantle, the nature of the lithosphere-asthenosphere boundary, and the possible presence of partial melt in the asthenosphere. Our dataset consists of fundamental-mode dispersion for Rayleigh and Love waves measured between 25-250 s with paths crossing the Pacific Ocean. We invert the phase anomaly measurements directly for three-dimensional anisotropic velocity structure. Our models are radially anisotropic and include the full set of elastic parameters that describe azimuthal variations in velocity (e.g. Gc, Gs). We investigate the age dependence of seismic velocity and radial anisotropy and find that there are significant deviations from the velocities predicted by a simple oceanic plate cooling model. We observe strong radial anisotropy with vsh > vsv in the asthenosphere of the central Pacific. We investigate the radial anisotropy in the shallow lithosphere, where previous models have reported conflicting results. There is a contrast in both upper-mantle isotropic velocities and radial anisotropy between the Pacific and Nazca plates, across the East Pacific Rise. We also investigate lateral variations in azimuthal anisotropy throughout the Pacific upper mantle and find that there are large areas over which the anisotropy fast axis does not align with absolute plate motion, suggesting the presence of small-scale convection or pressure-driven flow beneath the base of the oceanic plate.

  3. Mercury Biogeochemical Cycling in the Ocean and Policy Implications

    PubMed Central

    Mason, Robert P.; Choi, Anna L.; Fitzgerald, William F.; Hammerschmidt, Chad R.; Lamborg, Carl H.; Soerensen, Anne L.; Sunderland, Elsie M.

    2012-01-01

    Anthropogenic activities have enriched mercury in the biosphere by at least a factor of three, leading to increases in total mercury (Hg) in the surface ocean. However, the impacts on ocean fish and associated trends in human exposure as a result of such changes are less clear. Here we review our understanding of global mass budgets for both inorganic and methylated Hg species in ocean seawater. We consider external inputs from atmospheric deposition and rivers as well as internal production of monomethylmercury (CH3Hg) and dimethylmercury ((CH3)2Hg). Impacts of large-scale ocean circulation and vertical transport processes on Hg distribution throughout the water column and how this influences bioaccumulation into ocean food chains are also discussed. Our analysis suggests that while atmospheric deposition is the main source of inorganic Hg to open ocean systems, most of the CH3Hg accumulating in ocean fish is derived from in situ production within the upper waters (<1000 m). An analysis of the available data suggests that concentrations in the various ocean basins are changing at different rates due to differences in atmospheric loading and that the deeper waters of the oceans are responding slowly to changes in atmospheric Hg inputs. Most biological exposures occur in the upper ocean and therefore should respond over years to decades to changes in atmospheric mercury inputs achieved by regulatory control strategies. Migratory pelagic fish such as tuna and swordfish are an important component of CH3Hg exposure for many human populations and therefore any reduction in anthropogenic releases of Hg and associated deposition to the ocean will result in a decline in human exposure and risk. PMID:22559948

  4. Mercury biogeochemical cycling in the ocean and policy implications.

    PubMed

    Mason, Robert P; Choi, Anna L; Fitzgerald, William F; Hammerschmidt, Chad R; Lamborg, Carl H; Soerensen, Anne L; Sunderland, Elsie M

    2012-11-01

    Anthropogenic activities have enriched mercury in the biosphere by at least a factor of three, leading to increases in total mercury (Hg) in the surface ocean. However, the impacts on ocean fish and associated trends in human exposure as a result of such changes are less clear. Here we review our understanding of global mass budgets for both inorganic and methylated Hg species in ocean seawater. We consider external inputs from atmospheric deposition and rivers as well as internal production of monomethylmercury (CH₃Hg) and dimethylmercury ((CH₃)₂Hg). Impacts of large-scale ocean circulation and vertical transport processes on Hg distribution throughout the water column and how this influences bioaccumulation into ocean food chains are also discussed. Our analysis suggests that while atmospheric deposition is the main source of inorganic Hg to open ocean systems, most of the CH₃Hg accumulating in ocean fish is derived from in situ production within the upper waters (<1000 m). An analysis of the available data suggests that concentrations in the various ocean basins are changing at different rates due to differences in atmospheric loading and that the deeper waters of the oceans are responding slowly to changes in atmospheric Hg inputs. Most biological exposures occur in the upper ocean and therefore should respond over years to decades to changes in atmospheric mercury inputs achieved by regulatory control strategies. Migratory pelagic fish such as tuna and swordfish are an important component of CH₃Hg exposure for many human populations and therefore any reduction in anthropogenic releases of Hg and associated deposition to the ocean will result in a decline in human exposure and risk. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Continuous Spectrum of Crustal Structures and Spreading Processes from Volcanic Rifted Margins to Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2016-12-01

    Structures generated by seafloor spreading in oceanic crust (and ophiolites) and thick oceanic crust of Iceland show a continuous spectrum of features that formed by similar mechanisms but at different scales. A high magma budget near the Iceland hotspot generates thick (40-25 km) mafic crust in a plate boundary zone about 50 km wide. The upper crust ( 10 km thick) is constructed by the subaxial subsidence and thickening of lavas fed by dense dike swarms over a hot, weak lower crust to produce structures analogous to seaward-dipping reflectors of volcanic rifted margins. Segmented rift zones propagate away from the hotspot creating migrating transform fault zones, microplate-like crustal blocks and rift-parallel strike-slip faults. These structures are decoupled from the underlying lower crustal gabbroic rocks that thin by along-axis flow that reduces the overall crustal thickness and smooths-out local crustal thickness variations. Spreading on mid-ocean ridges with high magma budgets have much thinner crust (10-5 km) generated at a much narrower (few km) plate boundary zone. Subaxial subsidence accommodates the thickening of the upper crust of inward-dipping lavas and outward-dipping dikes about 1-2 km thick over a hot weak lower crust. Along-axis (high-temperature ductile and magmatic) flow of lower crustal material may help account for the relatively uniform seismic thickness of oceanic crust worldwide. Spreading along even slow-spreading mid-ocean ridges near hotspots (e.g., the Reykjanes Ridge) probably have similar features that are transitional between these extremes. In all of these settings, upper crustal and lower crustal structures are decoupled near the plate boundary but eventually welded together as the crust ages and cools. Similar processes are likely to occur along volcanic rifted margins as spreading begins.

  6. Geophysical evidence for the extent of crustal types and the type of margin along a profile in the northeastern Baffin Bay

    NASA Astrophysics Data System (ADS)

    Altenbernd, Tabea; Jokat, Wilfried; Heyde, Ingo; Damm, Volkmar

    2015-11-01

    Investigating the crust of northern Baffin Bay provides valuable indications for the still debated evolution of this area. The crust of the southern Melville Bay is examined based on wide-angle seismic and gravity data. The resulting P wave velocity, density, and geological models give insights into the crustal structure. A stretched and rifted continental crust underneath southern Melville Bay is up to 30 km thick, with crustal velocities ranging between 5.5 and 6.9 km/s. The deep Melville Bay Graben contains a 9 km thick infill with velocities of 4 to 5.2 km/s in its lowermost part. West of the Melville Bay Ridge, a ~80 km wide and partly only 5 km thick Continent-Ocean Transition (COT) is present. West of the COT, up to 5 km thick sedimentary layers cover a 4.3 to 7 km thick, two-layered oceanic crust. The upper oceanic layer 2 has velocities of 5.2 to 6.0 km/s; the oceanic layer 3 has been modeled with rather low velocities of 6.3 to 6.9 km/s. Low velocities of 7.8 km/s characterize the probably serpentinized upper mantle underneath the thin crust. The serpentinized upper mantle and low thickness of the oceanic crust are another indication for slow or ultraslow spreading during the formation of the oceanic part of the Baffin Bay. By comparing our results on the crustal structure with other wide-angle seismic profiles recently published, differences in the geometry and structure of the crust and the overlying sedimentary cover are revealed. Moreover, the type of margin and the extent of crustal types in the Melville Bay area are discussed.

  7. Global ocean monitoring for the World Climate Research Programme.

    PubMed

    Revelle, R; Bretherton, F

    1986-07-01

    Oceanic research and modelling for the World Climate Research Program will utilize several recently-developed instruments and measuring techniques as well as well-tested, long-used instruments. Ocean-scanning satellites will map the component of the ocean-surface topography related to ocean currents and mesoscale eddies and to fluctuating water volumes caused by ocean warming and cooling. Other satellite instruments will measure the direction and magnitude of wind stress on the sea surface, surface water temperatures, the distribution of chlorophyll and other photosynthetic pigments, the characteristics of internal waves, and possible precipitation over the ocean. Networks of acoustic transponders will obtain a three-dimensional picture of the distribution of temperature from the surface down to mid-depth and of long-term changes in temperature at depth. Ocean research vessels will determine the distribution and fate of geochemical tracers and will also make high-precision, deep hydrographic casts. Ships of opportunity, using expendable instruments, will measure temperature, salinity and currents in the upper water layers. Drifting and anchored buoys will also measure these properties as well as those of the air above the sea surface. Tide gauges installed on islands and exposed coastal locations will measure variations in monthly and shorter-period mean sea level. These tide gauges will provide 'ground truth' for the satellite maps of sea-surface topography, and will also determine variations in ocean currents and temperature.All these instruments will be used in several major programs, the most ambitious of which is the World Ocean Circulation Experiment (WOCE) designed to obtain global measurements of major currents throughout the world ocean, greater understanding of the transformation of water masses, and the role of advective, convective, and turbulent processes in exchange of properties between surface and deep-ocean layers.A five- to ten-year experiment-"Tropical Oceans and Global Atmosphere (TOGA)"-will be undertaken to sudy the sequence of events of air-sea interactions in the tropical oceans and their impact on climatic variations on land-for example, variations in the strength and location of the Indian Ocean monsoon, droughts in low latitudes, and climatic fluctuations in temperate latitudes.Experimental and continuing time series will be taken at fixed locations to obtain a better picture of the magnitude and causes of ocean climate variability. National and multinational systematic repeated measurements along selected ocean transects or in specific ocean areas will be taken to determine oceanic variability and teleconnections between oceanic and atmospheric processes. Examples are the long Japanese section along the meridian of 137° E and the 'Sections' program of the USSR and several other countries in Energy-Active zones.The results from this wide range of observations and experiments will be used to guide and define mathematical models of the ocean circulation and its interactions with the atmosphere.It can be shown that biogeochemical processes in the ocean play an important role in determining the carbon dioxide content of the atmosphere and thus in causing long-term climatic changes. Variations in the biological productivity of sub-surface waters cause variations in the effectveness of the biological pump which carries organic carbon down into deeper waters where it is oxidized. Studies of ice cores from 20 000 to 30 000 yr before the present indicate that atmospheric carbon dioxide varied by a factor of 2 within times of the order of 100 yr, and these variations were accompanied by large excursions in atmospheric temperature. Thus, ocean climatic monitoring must take into account measurements of both biological and physical variations in the ocean.

  8. Observational/Numerical Study of the Upper Ocean Response to Hurricanes.

    DTIC Science & Technology

    1987-12-01

    current variance within 30-60 km of the storm center. The effect of the stress divergence and Eknan terms on the ocean current response rapidly...observed current variance within 30-60 km of the storm center. The effect of the stress divergence and Ekman terms on the ocean current response rapidly...110 2. M ode Splitting ....................................... IIl 3. M ixing Effects ....................................... 112 4

  9. Along-arc variation in water distribution in the upper mantle beneath Kyushu, Japan, as derived from receiver function analyses

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Ohkura, T.; Hirahara, K.; Shibutani, T.

    2013-12-01

    The Kyushu district, Japan, under which the Philippine Sea (PHS) plate is subducting in a WNW direction, has several active volcanoes. On the volcanic front in Kyushu, a 110 km long gap in volcanism exists in the central part of Kyushu and volcanic rocks with various degrees of contamination by slab-derived fluid are distributed. To reveal the causes of the gap in volcanism and the chemical properties of volcanic rocks and to understand the process of magma genesis and water transportation, we should reveal along-arc variation in water distribution beneath Kyushu. We investigated the seismic velocity discontinuities in the upper mantle beneath Kyushu, with seismic waveform data from 65 stations of Hi-net, which are established by National Research Institute for Earth Science and Disaster Prevention, and 55 stations of the J-array, which are established by Japan Meteorological Agency, Kyushu University, Kagoshima University and Kyoto University. We used receiver function analyses developed especially for discontinuities with high dipping angles (Abe et al., 2011, GJI). We obtained the geometry and velocity contrasts of the continental Moho, the oceanic Moho, and the upper boundary of the PHS slab. From the geometry of these discontinuities and contrast in S wave velocities, we interpreted that the oceanic crust of the PHS slab has a low S wave velocity and is hydrated to a depth of 70 km beneath south Kyushu, to a depth of 80-90 km beneath central Kyushu, and to a depth of no more than 50 km beneath north Kyushu. We also interpreted that the fore-arc mantle beneath central Kyushu has a low velocity region (Vs < 3.2 km/s) that can contain hydrated materials and free aqueous fluid. Such a low velocity fore-arc mantle does not exist beneath north and south Kyushu. Beneath north Kyushu, the oceanic crust does not appear to convey much water in the mantle wedge. Beneath south Kyushu, water dehydrated from the slab could move to the back-arc side and cause arc volcanism, while it could move to the fore-arc side and cause a gap in volcanism and hydration of the fore-arc mantle materials.

  10. Insights into particle cycling in the Sargasso Sea from lipid biomarkers in suspended particles: Seasonality and physical forcing

    NASA Astrophysics Data System (ADS)

    Pedrosa Pàmies, R.; Conte, M. H.; Weber, J.

    2017-12-01

    Lipid biomarkers elucidate organic material (OM) sources and cycling within the water column. Biomarker composition and bulk properties (organic carbon (OC), nitrogen (N), OC/N ratio, CaCO3 and stable isotopes) were determined in suspended particles (30-4400 m, 100 mab) collected at Oceanic Flux Program site offshore Bermuda in April/November 2015 and October 2016, three periods of contrasting oceanographic conditions. Key lipid biomarkers were used to evaluate the relative importance of phytoplankton-, bacterial- and zooplankton-OM sources, diagenetic reprocessing, and the impact of upper ocean environmental forcing on the carbon pump. Additionally, we assessed benthic remineralization by comparing particles above and within the nepheloid layer (4400 m). N-fatty acids, n-alcohols and sterols comprise up to 85%, 12% and 7%, respectively, of total extractable lipids. Higher lipid concentrations in April vs November 2015 mirror seasonality in primary production, while change in sterol composition reflect shifts in phytoplankton community structure. In the mesopelagic zone, increased cholesterol/phytosterol ratios and percentages of C16 and C18 n-alcohols, odd-chain and branched n-fatty acids document a transition from algal to animal OM sources as well as bacterial reprocessing of labile OM. The impact of Hurricane Nicole (October 2016) on the mixed layer and subsequent increases in production/flux was evident in higher concentrations as well as greater depth penetration of particulate N and fresh/labile algal biomarkers (e.g. 18:5 ω3 and 22:6 ω3 polyunsaturated fatty acids) in the upper 1000 m. Suspended particles in the nepheloid layer had higher concentrations of OC and N and were more depleted in d13C than particles at 4200 m for all dates. While nepheloid lipid composition was similar for all dates, lipid concentrations in April 2015 (seasonal production peak) and October 2016 (hurricane physical forcing) were higher than in November 2015, consistent with the increases observed in the mesopelagic layer. Our results demonstrate that episodic physical forcing of the upper ocean, such as observed during Hurricane Nicole, can trigger an episodic export of labile materials and have a large effect on the OM composition throughout the water column.

  11. Ocean wave electric generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, H.R.

    This patent describes an apparatus for generating electricity from ocean waves. It consists of: 1.) a hollow buoyant duck positioned in the path of waves including a core about the center axis of which the duck rotates, a lower chamber portion having liquid therein and an upper chamber portion having air therein. The air is alternately compressed and expanded by the liquid in the chamber during the rotational motion of the duck caused by waves. A turbine mounted in the upper portion of the duck is driven by the compressed and expanded air. A generator is coupled to the turbinemore » and operated to produce electrical energy and an air bulb; 2.) a spine having a transverse axial shaft anchoring the spine to the ocean floor. The upper portion of the spine engages the duck to maintain the duck in position. The spine has a curved configuration to concentrate and direct wave energy. The spine configuration acts as a scoop to increase the height of wave peaks and as a foil to increase the depth of wave troughs.« less

  12. Chronostratigraphy and paleoenvironmental change in the Makarov Basin of the western Arctic Ocean during the last 1 Ma

    NASA Astrophysics Data System (ADS)

    Park, K.; Nam, S. I.; Khim, B. K.; Kong, G. S.; Schreck, M.; Mackensen, A.; Niessen, F.

    2017-12-01

    Establishing an accurate chronostratigraphy is essential in reconstructing paleoenvironmental changes in the Arctic Ocean. This requisition, however, has been impeded by the lack of biogenic remnants such as calcareous and siliceous microfossils, as well as alteration of paleomagnetic properties by post-depositional processes. Consequently, foundation of chronostratigraphy in the Arctic Ocean has been mostly relying on stratigraphic correlations. This study examines lithological features and physical properties of sediments of gravity core ARA03B-41GC02 collected in the Makarov Basin and correlates with previously studied cores from the western Arctic Ocean, in order to establish an age model that could eventually facilitate a precise reconstruction of paleoenvironmental changes in the western Arctic Ocean. Age control in the uppermost part was determined by AMS 14C dating of planktonic foraminifera and inter-core correlation was conducted in the upper ca. 3.8 m of the core which corresponded to MIS 15. Age constraints older than MIS 15 were treated using cyclostratigraphic model based on Mn-δ18O stack comparison, assuming that brown and high Mn concentration layers represent generally interglacial or interstadial periods. Based on our result, the core bottom corresponds to MIS 28 with an average sedimentation rate of ca. 0.5 cm/ky. The first appearance of detrital carbonate, planktonic foraminifera, and benthic foraminifera occurred during MIS 16, 11, and 7, respectively. MIS 16 is known as the coldest glacial period when δ18O of the LR04 stack first becomes heavier than 5‰; the occurrence of detrital carbonate likely transported from the Canadian Arctic indicates the initial buildup of the large ice sheets in the North America during this time. Since MIS 11 which is known as the warmest interglacial period during the late Pleistocene in the Northern Hemisphere, the appearance of planktonic foraminifera represents the warmer condition during interglacial periods in the western central Arctic Ocean. Additional geochemical and mineralogical proxies need to be conducted for better understanding of depositional environments and sediment provenance as well as transport pathways.

  13. How do Greenhouse Gases Warm the Ocean? Investigation of the Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes.

    NASA Astrophysics Data System (ADS)

    Wong, E.; Minnett, P. J.

    2016-12-01

    There is much evidence that the ocean is heating due to an increase in concentrations of greenhouse gases (GHG) in the atmosphere from human activities. GHGs absorbs infrared (IR) radiation and re-emits the radiation back to the ocean's surface which is subsequently absorbed resulting in a rise in the ocean heat content. However, the incoming longwave radiation, LWin, is absorbed within the top micrometers of the ocean's surface, where the thermal skin layer (TSL) exists and does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the TSL, which is directly influenced by the absorption and emission of IR radiation, the heat flow through the TSL adjusts to maintain the surface heat loss, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in LWin and analyzing retrieved TSL vertical profiles from a shipboard IR spectrometer from two research cruises. The data is limited to night-time, no precipitation and low winds of < 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of TSL disruption. The results show independence between the turbulent fluxes and radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation. Instead, we observe the surplus energy, from absorbing increasing levels of LWin, adjusts the curvature of the TSL such that there is a lower gradient at the interface between the TSL and the mixed layer. The release of heat stored within the mixed layer is therefore hindered while the additional energy within the TSL is cycled back into the atmosphere. This results in heat beneath the TSL, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content.

  14. Monitoring abnormal bio-optical and physical properties in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Arnone, Robert; Jones, Brooke

    2017-05-01

    The dynamic bio-optical and physical ocean properties within the Gulf of Mexico (GoM) have been identified by the Ocean Weather Laboratory. Ocean properties from VIIRS satellite (Chlorophyll and Bio-Optics and SST) and ocean-circulation models (currents, SST and salinity) were used to identify regions of dynamic changing properties. The degree of environmental change is defined by the dynamic anomaly of bio-optical and physical environmental properties (DAP). A Mississippi River plume event (Aug 2015) that extended to Key West was used to demonstrate the anomaly products. Locations where normal and abnormal ocean properties occur determine ecological and physical hotspots in the GoM, which can be used for adaptive sampling of ocean processes. Methods are described to characterize the weekly abnormal environmental properties using differences with a previous baseline 8 week mean with a 2 week lag. The intensity of anomaly is quantified using levels of standard deviation of the baseline and can be used to recognize ocean events and provide decision support for adaptive sampling. The similarities of the locations of different environmental property anomalies suggest interaction between the bio-optical and physical properties. A coral bleaching event at the Flower Garden Banks Marine Protected Area is represented by the salinity anomaly. Results identify ocean regions for sampling to reduce data gaps and improve monitoring of bio-optical and physical properties.

  15. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  16. Development of an Integrated ISFET pH Sensor for High Pressure Applications in the Deep-Sea

    DTIC Science & Technology

    2012-09-30

    Measurements in the upper ocean suggest that sensor precision is comparable to the annual pH change due to ocean acidification (Fig. 2). An array of...profiling floats equipped with pH sensors would be capable of directly monitoring the process of ocean acidification . Further refinement of the sensor...Quality of Life The high pressure pH sensor will have direct applications to our understanding of ocean acidification and the impacts on ecosystem

  17. Structure, porosity and stress regime of the upper oceanic crust: Sonic and ultrasonic logging of DSDP Hole 504B

    USGS Publications Warehouse

    Newmark, R.L.; Anderson, R.N.; Moos, D.; Zoback, M.D.

    1985-01-01

    The layered structure of the oceanic crust is characterized by changes in geophysical gradients rather than by abrupt layer boundaries. Correlation of geophysical logs and cores recovered from DSDP Hole 504B provides some insight into the physical properties which control these gradient changes. Borehole televiewer logging in Hole 504B provides a continuous image of wellbore reflectivity into the oceanic crust, revealing detailed structures not apparent otherwise, due to the low percentage of core recovery. Physical characteristics of the crustal layers 2A, 2B and 2C such as the detailed sonic velocity and lithostratigraphic structure are obtained through analysis of the sonic, borehole televiewer and electrical resistivity logs. A prediction of bulk hydrated mineral content, consistent with comparison to the recovered material, suggests a change in the nature of the alteration with depth. Data from the sonic, borehole televiewer, electrical resistivity and other porosity-sensitive logs are used to calculate the variation of porosity in the crustal layers 2A, 2B and 2C. Several of the well logs which are sensitive to the presence of fractures and open porosity in the formation indicate many zones of intense fracturing. Interpretation of these observations suggests that there may be a fundamental pattern of cooling-induced structure in the oceanic crust. ?? 1985.

  18. Britle failure of non-Newtonian, floating, extensional flows

    NASA Astrophysics Data System (ADS)

    Sayag, Roiy; Worster, Michael

    2011-11-01

    Glacier ice is driven by gravity to flow from the land, where it is under shear, into the ocean, where it floats and extends. Owing to its non-Newtonian rheology, the ice can flow axisymmetrically over the bed but undergo brittle failure once it is floating on the ocean, as observed for example in crevassing of ice shelves. We model this coupled flow as an intrusion of a viscous gravity current into a denser ocean and study it both theoretically and experimentally. We have conducted laboratory experiments using a shear-thinning suspension that represents ice, and a denser inviscid fluid that represents an ocean. The non-Newtonian fluid was released at a constant flux through a cylindrical nozzle over a horizontal plane. The grounded, shear-dominated region of the flow was axisymmetric throughout the experiment, while past the transition line axisymmetry broke down into a seemingly ordered set of finger-like extensions (floating shelves) that demonstrated brittle behaviour. We have found that the width of the fingers as well as their radial extent increase with the flux. We attempt to explain these observations through a fingering instability that is driven by the dynamical differences between the two flow domains and by the material rheology, and we project that analysis to formulate a linkage between the material properties of ice and an upper bound on the width of ice shelves. NERC

  19. Method and apparatus for flash evaporation of liquids

    DOEpatents

    Bharathan, Desikan

    1984-01-01

    A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  20. Method and apparatus for flash evaporation of liquids

    DOEpatents

    Bharathan, D.

    1984-01-01

    A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  1. Upper Ocean Boundary Layer Studies

    DTIC Science & Technology

    1991-10-16

    of this study has been the demonstration of the extreme sensitivity of our acoustic current meter / vorticity sensor . The instrument performance has... Tiltmeters on the Arctic Ocean were used to measure flexure of the ice forced by an energetic packet of internal waves riding the crest of diurnal

  2. Can We Probe the Conductivity of the Lithosphere and Upper Mantle Using Satellite Tidal Magnetic Signals?

    NASA Technical Reports Server (NTRS)

    Schnepf, N. R.; Kuvshinov, A.; Sabaka, T.

    2015-01-01

    A few studies convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in satellite observations. This result encourages using M2 satellite magnetic data to constrain subsurface electrical conductivity in oceanic regions. Traditional satellite-based induction studies using signals of magnetospheric origin are mostly sensitive to conducting structures because of the inductive coupling between primary and induced sources. In contrast, galvanic coupling from the oceanic tidal signal allows for studying less conductive, shallower structures. We perform global 3-D electromagnetic numerical simulations to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of our sensitivity analysis suggest it will be promising to use M2 oceanic signals detected at satellite altitude for probing lithospheric and upper mantle conductivity. Our simulations also suggest that M2 seafloor electric and magnetic field data may provide complementary details to better constrain lithospheric conductivity.

  3. Seasonality of eddy kinetic energy in an eddy permitting global climate model

    NASA Astrophysics Data System (ADS)

    Uchida, Takaya; Abernathey, Ryan; Smith, Shafer

    2017-10-01

    We examine the seasonal cycle of upper-ocean mesoscale turbulence in a high resolution CESM climate simulation. The ocean model component (POP) has 0.1° resolution, mesoscale resolving at low and middle latitudes. Seasonally and regionally resolved wavenumber power spectra are calculated for sea-surface eddy kinetic energy (EKE). Although the interpretation of the spectral slopes in terms of turbulence theory is complicated by the strong presence of dissipation and the narrow inertial range, the EKE spectra consistently show higher power at small scales during winter throughout the ocean. Potential hypotheses for this seasonality are investigated. Diagnostics of baroclinc energy conversion rates and evidence from linear quasigeostrophic stability analysis indicate that seasonally varying mixed-layer instability is responsible for the seasonality in EKE. The ability of this climate model, which is not considered submesoscale resolving, to produce mixed layer instability although damped by dissipation, demonstrates the ubiquity and robustness of this process for modulating upper ocean EKE.

  4. 78 FR 66914 - Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... upper reservoir having a total/usable storage capacity of 5,399 acre-feet at normal maximum operation... penstocks connecting the upper reservoir to the Pacific Ocean; (4) a 500-foot-long, 250-foot-diameter...

  5. Stress Drops for Oceanic Crust and Mantle Intraplate Earthquakes in the Subduction Zone of Northeastern Japan Inferred from the Spectral Inversion Analysis

    NASA Astrophysics Data System (ADS)

    Si, H.; Ishikawa, K.; Arai, T.; Ibrahim, R.

    2017-12-01

    Understanding stress drop related to intraplate earthquakes in the subducting plate is very important for seismic hazard mitigation. In previous studies, Kita et al. (2015) analyzed stress drops for intraplate earthquakes under Hokkaido, Northern Japan, using S-coda wave spectral ratio analysis methods, and found that the stress drop for events occurring more than 10 km beneath the upper surface of the subducting plate (within the oceanic mantle) was larger than the stress drop for events occurring within 10 km of the upper surface of the subducting plate (in the oceanic crust). In this study, we focus on intraplate earthquakes that occur under Tohoku, Northeastern Japan, to determine whether similar stress drop differences may exist between earthquakes occurring within the upper 10 km of the subducting plate (within the oceanic crust) and those occurring deeper than 10 km (within the oceanic mantle), based on spectral inversion analysis of seismic waveforms recorded during the earthquakes. We selected 64 earthquakes with focal depths between 49-76 km and Mw 3.5-5.0 that occurred in the source area of the 2003 Miyagi-ken-oki earthquake (Mw 7.0) (region 1), and 82 earthquakes with focal depths between 49-67 km and Mw 3.5-5.5 in the source area of the 2011 Miyagi- ken-oki earthquake (Mw 7.1) (region 2). Records from the target earthquakes at 24 stations in region 1 and 21 stations in region 2 were used in the analysis. A 5-sec time window following S-wave onset was used for each station record. Borehole records of KiK-net station (MYGH04) was used as a reference station for both regions 1 and 2. We applied the spectral inversion analysis method of Matsunami et al. (2003) separately to regions 1 and 2. Our results show that stress drop generally increases with focal depth and that the stress drop for events occurring deeper than 10 km in the plate (within the oceanic mantle) were larger than the stress drop for events occurring within 10 km of the upper surface of the plate (within the oceanic crust). These results are consistent with previous studies.

  6. Mesozoic units in SE Rhodope (Bulgaria): new structural and petrologic data and geodynamic implications for the Early Jurassic to Mid-Cretaceous evolution of the Vardar ocean basin

    NASA Astrophysics Data System (ADS)

    Bonev, N.; Stampfli, G.

    2003-04-01

    In the southeastern Rhodope, both in southern Bulgaria and northern Greece, Mesozoic low-grade to non-metamorphic units, together with similar units in the eastern Vardar zone, were designated as the Circum-Rhodope Belt (CRB) that fringes the Rhodope high-grade metamorphic complex. In the Bulgarian southeastern Rhodope, Mesozoic units show a complicated tectono-stratigraphy underlaid by amphibolite-facies basement units. The basement sequence includes a lower orthogneiss unit with eclogite and meta-ophiolite lenses overlain by an upper marble-schist unit, presumably along a SSW-directed detachment fault as indicated by shear sense indicators. The Mesozoic sequence starts with greenschist units at the base, overlaying the basement along the tectonic contact. Mineral assemblages such as actinolite-chlorite-white mica ± garnet in schists and phyllites indicate medium greenschist facies metamorphism. Kinematic indicators in the same unit demonstrate a top-to-the NNW and NNE shear deformation coeval with metamorphism, subparallel to NW-SE to NE-SW trending mineral elongation lineation and axis of NW vergent small-scale folds. The greenschist unit is overlain by tectonic or depositional contact of melange-like unit that consists of diabases with Lower Jurassic radiolarian chert interlayers, Upper Permian siliciclastics and Middle-Upper Triassic limestones found as blocks in olistostromic member, embedded in Jurassic-Lower Cretaceous turbiditic matrix. The uppermost sedimentary-volcanogenic unit is represented by andesito-basalt lavas and gabbro-diorites, interbedded with terrigeneous-marl and tufaceous sediments that yield Upper Cretaceous (Campanian) fossils, related to the Late Cretaceous back-arc magmatic activity to the north in Sredna Gora zone. Petrologic and geochemical data indicates sub-alkaline and tholeiitic character of the greenschists and ophiolitic basaltic lavas, and the latter are classified as low-K and very low-Ti basalts with some boninitic affinity. Immobile trace element discrimination of both rock types constrains the volcanic (oceanic)-arc origin. They generally show low total REE concentrations (LREE>HREE) with enrichment of LIL elements relative to the HFS elements, and also very low Nb and relatively high Ce content consistent with an island-arc tectonic setting. We consider that the Meliata-Maliac ocean northern passive margin could be the source provenance for the Upper Permian clastics and Middle-Upper Triassic limestone blocks within the olistostromic melange-like unit, whereas turbidites and magmatic blocks may originate in an island arc-accretionary complex that relates to the southward subduction of the Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. These new structural and petrologic data allow to precise the tectonic setting of the Mesozoic units and their geodynamic context in the frame of the Early Jurassic to Late Cretaceous evolution of the Vardar ocean.

  7. Estimates of Gelatinous Zooplankton Carbon Flux in the Global Oceans

    NASA Astrophysics Data System (ADS)

    Luo, J. Y.; Condon, R.; Cowen, R. K.

    2016-02-01

    Gelatinous zooplankton (GZ), which include the cnidarians, ctenophores, and pelagic tunicates, are a common feature of marine ecosystems worldwide, but their contribution to global biogeochemical fluxes has never been assessed. We constructed a carbon-cycle model with a single, annual time-step and resolved to a 5° spatial grid for the three major GZ groups in order to evaluate the GZ-mediated carbon fluxes and export to depth. Biomass inputs (totaling 0.149 Pg C) were based off of Lucas et al. (2014) and updated using the JeDI database (Condon et al. 2015). From the upper ocean, biomass export flux from cnidarians, ctenophores, and tunicates totaled 2.96 ± 2.82 Pg C y-1, though only 0.199 ± 0.023 Pg C y-1 of GZ carbon were transferred to upper trophic levels, roughly amounting to one-quarter of all mesozooplankton production flux. In contrast, GZ fluxes to DOC only comprised ca. 2% of labile DOC flux. Egestion flux from the upper ocean totaled 2.56 ± 3.35 Pg C y-1, with over 80% being fast-sinking tunicate fecal pellets. Due to fast sinking rates of carcasses and fecal pellets, 26% of all C export from the upper ocean reached the seafloor, such that GZ fecal matter is estimated to comprise between 20-30% of global POC surface export and 11-30% of POC seafloor deposition. Finally, results from sensitivity analyses showed no increase in cnidarian and ctenophore export fluxes with increased temperature and jelly biomass, though tunicate export fluxes showed some increase with both temperature and biomass. These results suggest that current estimates of global POC flux from the surface oceans, which range between 8.6 - 12.9 Pg C y-1, may be underestimated by as much as 20 - 25%, implying a definite need to incorporate GZ mediated flux in estimating the biological pump transfer efficiency. Our study represents the first effort to quantify the role of gelatinous zooplankton in the global marine carbon cycle.

  8. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalaacchi, Antonio J.

    1998-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL- FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few shiptracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  9. Insights into the crustal structure of the transition between Nares Strait and Baffin Bay

    NASA Astrophysics Data System (ADS)

    Altenbernd, Tabea; Jokat, Wilfried; Heyde, Ingo; Damm, Volkmar

    2016-11-01

    The crustal structure and continental margin between southern Nares Strait and northern Baffin Bay were studied based on seismic refraction and gravity data acquired in 2010. We present the resulting P wave velocity, density and geological models of the crustal structure of a profile, which extends from the Greenlandic margin of the Nares Strait into the deep basin of central northern Baffin Bay. For the first time, the crustal structure of the continent-ocean transition of the very northern part of Baffin Bay could be imaged. We divide the profile into three parts: continental, thin oceanic, and transitional crust. On top of the three-layered continental crust, a low-velocity zone characterizes the lowermost layer of the three-layered Thule Supergroup underneath Steensby Basin. The 4.3-6.3 km thick oceanic crust in the southern part of the profile can be divided into a northern and southern section, more or less separated by a fracture zone. The oceanic crust adjacent to the continent-ocean transition is composed of 3 layers and characterized by oceanic layer 3 velocities of 6.7-7.3 km/s. Toward the south only two oceanic crustal layers are necessary to model the travel time curves. Here, the lower oceanic crust has lower seismic velocities (6.4-6.8 km/s) than in the north. Rather low velocities of 7.7 km/s characterize the upper mantle underneath the oceanic crust, which we interpret as an indication for the presence of upper mantle serpentinization. In the continent-ocean transition zone, the velocities are lower than in the adjacent continental and oceanic crustal units. There are no signs for massive magmatism or the existence of a transform margin in our study area.

  10. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalacchi, Antonio J.

    1999-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL-FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few ship-tracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  11. Crustal accretion along the global mid-ocean ridge system based on basaltic glass and olivine-hosted melt inclusion compositions

    NASA Astrophysics Data System (ADS)

    Wanless, V. D.; Behn, M. D.

    2015-12-01

    The depth and distribution of crystallization at mid-ocean ridges controls the overall architecture of the oceanic crust, influences hydrothermal circulation, and determines geothermal gradients in the crust and uppermost mantle. Despite this, there is no overall consensus on how crystallization is distributed within the crust/upper mantle or how this varies with spreading rate. Here, we examine crustal accretion at mid-ocean ridges by combining crystallization pressures calculated from major element barometers on mid-ocean ridge basalt (MORB) glasses with vapor-saturation pressures from melt inclusions to produce a detailed map of crystallization depths and distributions along the global ridge system. We calculate pressures of crystallization from >11,500 MORB glasses from the global ridge system using two established major element barometers (1,2). Additionally, we use vapor-saturation pressures from >400 olivine-hosted melt inclusions from five ridges with variable spreading rates to constrain pressures and distributions of crystallization along the global ridge system. We show that (i) crystallization depths from MORB glasses increase and become less focused with decreasing spreading rate, (ii) maximum glass pressures are greater than the maximum melt inclusion pressure, which indicates that the melt inclusions do not record the deepest crystallization at mid-ocean ridges, and (iii) crystallization occurs in the lower crust/upper mantle at all ridges, indicating accretion is distributed throughout the crust at all spreading rates, including those with a steady-state magma lens. Finally, we suggest that the remarkably similar maximum vapor-saturation pressures (~ 3000 bars) in melt inclusion from all spreading rates reflects the CO2 content of the depleted upper mantle feeding the global mid-ocean ridge system. (1) Michael, P. & W. Cornell (1998), Journal of Geophysical Research, 103(B8), 18325-18356; (2) Herzberg, C. (2004), Journal of Petrology, 45(12), 2389.

  12. Turbulence Observations in the Upper Ocean During the Surface Wave Processes Program in the Northeast Pacific, February to March 1990

    DTIC Science & Technology

    1992-01-01

    AD-A283 895 S cientific Excellence • Resource Protection & Conservation • Benefits for Canadians Excellence scientifique • Protection et conservation...V8L 4B2 . 1992 Thi- :lci,,-nrit has been approved1 Icr P’--1iC •Lae•_se and sole; its J dIt:isbution is tuoni-ited. Canadian Data Report of...Hydrography and Ocean Sciences No. 106 94-27566 • 94 8 26 116 I I Fisheries Pdches and Oceans et Oceans Ca adc Canadian Data Report Of II’.drographý and Ocean

  13. Thermal Aging of Oceanic Asthenosphere

    NASA Astrophysics Data System (ADS)

    Paulson, E.; Jordan, T. H.

    2013-12-01

    To investigate the depth extent of mantle thermal aging beneath ocean basins, we project 3D Voigt-averaged S-velocity variations from an ensemble of global tomographic models onto a 1x1 degree age-based regionalization and average over bins delineated by equal increments in the square-root of crustal age. From comparisons among the bin-averaged S-wave profiles, we estimate age-dependent convergence depths (minimum depths where the age variations become statistically insignificant) as well as S travel times from these depths to a shallow reference surface. Using recently published techniques (Jordan & Paulson, JGR, doi:10.1002/jgrb.50263, 2013), we account for the aleatory variability in the bin-averaged S-wave profiles using the angular correlation functions of the individual tomographic models, we correct the convergence depths for vertical-smearing bias using their radial correlation functions, and we account for epistemic uncertainties through Bayesian averaging over the tomographic model ensemble. From this probabilistic analysis, we can assert with 90% confidence that the age-correlated variations in Voigt-averaged S velocities persist to depths greater than 170 km; i.e., more than 100 km below the mean depth of the G discontinuity (~70 km). Moreover, the S travel time above the convergence depth decays almost linearly with the square-root of crustal age out to 200 Ma, consistent with a half-space cooling model. Given the strong evidence that the G discontinuity approximates the lithosphere-asthenosphere boundary (LAB) beneath ocean basins, we conclude that the upper (and probably weakest) part of the oceanic asthenosphere, like the oceanic lithosphere, participates in the cooling that forms the kinematic plates, or tectosphere. In other words, the thermal boundary layer of a mature oceanic plate appears to be more than twice the thickness of its mechanical boundary layer. We do not discount the possibility that small-scale convection creates heterogeneities in the oceanic upper mantle; however, the large-scale flow evidently advects these small-scale heterogeneities along with the plates, allowing the upper part of the asthenosphere to continue cooling with lithospheric age. The dominance of this large-scale horizontal flow may be related to the high stresses associated with its channelization in a thin (~100 km) asthenosphere, as well as the possible focusing of the subtectospheric strain in a low-viscosity channel immediately above the 410-km discontinuity. These speculations aside, the observed thermal aging of oceanic asthenosphere is inconsistent with a tenet of plate tectonics, the LAB hypothesis, which states that lithospheric plates are decoupled from deeper mantle flow by a shear zone in the upper part of the asthenosphere.

  14. Atmospheric mercury speciation dynamics at the high-altitude Pic du Midi Observatory, southern France

    NASA Astrophysics Data System (ADS)

    Fu, Xuewu; Marusczak, Nicolas; Heimbürger, Lars-Eric; Sauvage, Bastien; Gheusi, François; Prestbo, Eric M.; Sonke, Jeroen E.

    2016-05-01

    Continuous measurements of atmospheric gaseous elemental mercury (GEM), particulate bound mercury (PBM) and gaseous oxidized mercury (GOM) at the high-altitude Pic du Midi Observatory (PDM Observatory, 2877 m a.s.l.) in southern France were made from November 2011 to November 2012. The mean GEM, PBM and GOM concentrations were 1.86 ng m-3, 14 pg m-3 and 27 pg m-3, respectively and we observed 44 high PBM (peak PBM values of 33-98 pg m-3) and 61 high GOM (peak GOM values of 91-295 pg m-3) events. The high PBM events occurred mainly in cold seasons (winter and spring) whereas high GOM events were mainly observed in the warm seasons (summer and autumn). In cold seasons the maximum air mass residence times (ARTs) associated with high PBM events were observed in the upper troposphere over North America. The ratios of high PBM ARTs to total ARTs over North America, Europe, the Arctic region and Atlantic Ocean were all elevated in the cold season compared to the warm season, indicating that the middle and upper free troposphere of the Northern Hemisphere may be more enriched in PBM in cold seasons. PBM concentrations and PBM / GOM ratios during the high PBM events were significantly anti-correlated with atmospheric aerosol concentrations, air temperature and solar radiation, suggesting in situ formation of PBM in the middle and upper troposphere. We identified two distinct types of high GOM events with the GOM concentrations positively and negatively correlated with atmospheric ozone concentrations, respectively. High GOM events positively correlated with ozone were mainly related to air masses from the upper troposphere over the Arctic region and middle troposphere over the temperate North Atlantic Ocean, whereas high GOM events anti-correlated with ozone were mainly related to air masses from the lower free troposphere over the subtropical North Atlantic Ocean. The ARTs analysis demonstrates that the lower and middle free troposphere over the North Atlantic Ocean was the largest source region of atmospheric GOM at the PDM Observatory. The ratios of high GOM ARTs to total ARTs over the subtropical North Atlantic Ocean in summer were significantly higher than those over the temperate and sub-arctic North Atlantic Ocean as well as that over the North Atlantic Ocean in other seasons, indicating abundant in situ oxidation of GEM to GOM in the lower free troposphere over the subtropical North Atlantic Ocean in summer.

  15. The Pattern and Dynamics of the Meridional Overturning Circulation in the Upper Ocean

    DTIC Science & Technology

    2008-09-01

    Atlantic . Figure 4a shows that the center of meridional overturning circulation occurs at a level of about one kilometer. Circulation is weak at...maintenance of the meridional overturning circulation in the Atlantic Ocean. 5. Global Simulation The most exciting experiment would be to fully model the...mechanisms responsible for the strength and maintenance of the meridional overturning circulation in the Atlantic Ocean are not

  16. Oceanic crust recycling and the formation of lower mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    van Keken, Peter E.; Ritsema, Jeroen; Haugland, Sam; Goes, Saskia; Kaneshima, Satoshi

    2016-04-01

    The Earth's lower mantle is heterogeneous at multiple scales as demonstrated for example by the degree-2 distribution of LLSVPs seen in global tomography and widespread distribution of small scale heterogeneity as seen in seismic scattering. The origin of this heterogeneity is generally attributed to leftovers from Earth's formation, the recycling of oceanic crust, or a combination thereof. Here we will explore the consequences of long-term oceanic crust extraction and recycling by plate tectonics. We use geodynamical models of mantle convection that simulate plates in an energetically consistent manner. The recycling of oceanic crust over the age of the Earth produces persistent lower mantle heterogeneity while the upper mantle tends to be significantly more homogeneous. We quantitatively compare the predicted heterogeneity to that of the present day Earth by tomographic filtering of the geodynamical models and comparison with S40RTS. We also predict the scattering characteristics from S-P conversions and compare these to global scattering observations. The geophysical comparison shows that lower mantle heterogeneity is likely dominated by long-term oceanic crust recycling. The models also demonstrate reasonable agreement with the geochemically observed spread between HIMU-EM1-DMM in ocean island basalts as well as the long-term gradual depletion of the upper mantle as observed in Lu-Hf systematics.

  17. Chemical oceanography. Increasing anthropogenic nitrogen in the North Pacific Ocean.

    PubMed

    Kim, Il-Nam; Lee, Kitack; Gruber, Nicolas; Karl, David M; Bullister, John L; Yang, Simon; Kim, Tae-Wook

    2014-11-28

    The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (~0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited. Copyright © 2014, American Association for the Advancement of Science.

  18. Photochemical production of ozone in the upper troposphere in association with cumulus convection over Indonesia

    NASA Astrophysics Data System (ADS)

    Kita, K.; Kawakami, S.; Miyazaki, Y.; Higashi, Y.; Kondo, Y.; Nishi, N.; Koike, M.; Blake, D. R.; Machida, T.; Sano, T.; Hu, W.; Ko, M.; Ogawa, T.

    2002-02-01

    The Biomass Burning and Lightning Experiment phase A (BIBLE-A) aircraft observation campaign was conducted from 24 September to 10 October 1998, during a La Niña period. During this campaign, distributions of ozone and its precursors (NO, CO, and nonmethane hydrocarbons (NMHCs)) were observed over the tropical Pacific Ocean, Indonesia, and northern Australia. Mixing ratios of ozone and its precursors were very low at altitudes between 0 and 13.5 km over the tropical Pacific Ocean. The mixing ratios of ozone precursors above 8 km over Indonesia were often significantly higher than those over the tropical Pacific Ocean, even though the prevailing easterlies carried the air from the tropical Pacific Ocean to over Indonesia within several days. For example, median NO and CO mixing ratios in the upper troposphere were 12 parts per trillion (pptv) and 72 parts per billion (ppbv) over the tropical Pacific Ocean and were 83 pptv and 85 ppbv over western Indonesia, respectively. Meteorological analyses and high ethene (C2H4) mixing ratios indicate that the increase of the ozone precursors was caused by active convection over Indonesia through upward transport of polluted air, mixing, and lightning all within the few days prior to observation. Sources of ozone precursors are discussed by comparing correlations of some NMHCs and CH3Cl concentrations with CO between the lower and upper troposphere. Biomass burning in Indonesia was nearly inactive during BIBLE-A and was not a dominant source of the ozone precursors, but urban pollution and lightning contributed importantly to their increases. The increase in ozone precursors raised net ozone production rates over western Indonesia in the upper troposphere, as shown by a photochemical model calculation. However, the ozone mixing ratio (˜20 ppbv) did not increase significantly over Indonesia because photochemical production of ozone did not have sufficient time since the augmentation of ozone precursors. Backward trajectories show that many air masses sampled over the ocean south of Indonesia and over northern Australia passed over western Indonesia 4-9 days prior to being measured. In these air masses the mixing ratios of ozone precursors, except for short-lived species, were similar to those over western Indonesia. In contrast, the ozone mixing ratio was higher by about 10 ppbv than that over Indonesia, indicating that photochemical production of ozone occurred during transport from Indonesia. The average rate of ozone increase (1.8 ppbv/d) during this transport is similar to the net ozone formation rate calculated by the photochemical model. This study shows that active convection over Indonesia carried polluted air upward from the surface and had a discernable influence on the distribution of ozone in the upper troposphere over the Indian Ocean, northern Australia, and the south subtropical Pacific Ocean, combined with NO production by lightning.

  19. Photochemical production of ozone in the upper troposphere in association with cumulus convection over Indonesia

    NASA Astrophysics Data System (ADS)

    Kita, K.; Kawakami, S.; Miyazaki, Y.; Higashi, Y.; Kondo, Y.; Nishi, N.; Koike, M.; Blake, D. R.; Machida, T.; Sano, T.; Hu, W.; Ko, M.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment phase A (BIBLE-A) aircraft observation campaign was conducted from 24 September to 10 October 1998, during a La Niña period. During this campaign, distributions of ozone and its precursors (NO, CO, and nonmethane hydrocarbons (NMHCs)) were observed over the tropical Pacific Ocean, Indonesia, and northern Australia. Mixing ratios of ozone and its precursors were very low at altitudes between 0 and 13.5 km over the tropical Pacific Ocean. The mixing ratios of ozone precursors above 8 km over Indonesia were often significantly higher than those over the tropical Pacific Ocean, even though the prevailing easterlies carried the air from the tropical Pacific Ocean to over Indonesia within several days. For example, median NO and CO mixing ratios in the upper troposphere were 12 parts per trillion (pptv) and 72 parts per billion (ppbv) over the tropical Pacific Ocean and were 83 pptv and 85 ppbv over western Indonesia, respectively. Meteorological analyses and high ethene (C2H4) mixing ratios indicate that the increase of the ozone precursors was caused by active convection over Indonesia through upward transport of polluted air, mixing, and lightning all within the few days prior to observation. Sources of ozone precursors are discussed by comparing correlations of some NMHCs and CH3Cl concentrations with CO between the lower and upper troposphere. Biomass burning in Indonesia was nearly inactive during BIBLE-A and was not a dominant source of the ozone precursors, but urban pollution and lightning contributed importantly to their increases. The increase in ozone precursors raised net ozone production rates over western Indonesia in the upper troposphere, as shown by a photochemical model calculation. However, the ozone mixing ratio (~20 ppbv) did not increase significantly over Indonesia because photochemical production of ozone did not have sufficient time since the augmentation of ozone precursors. Backward trajectories show that many air masses sampled over the ocean south of Indonesia and over northern Australia passed over western Indonesia 4-9 days prior to being measured. In these air masses the mixing ratios of ozone precursors, except for short-lived species, were similar to those over western Indonesia. In contrast, the ozone mixing ratio was higher by about 10 ppbv than that over Indonesia, indicating that photochemical production of ozone occurred during transport from Indonesia. The average rate of ozone increase (1.8 ppbv/d) during this transport is similar to the net ozone formation rate calculated by the photochemical model. This study shows that active convection over Indonesia carried polluted air upward from the surface and had a discernable influence on the distribution of ozone in the upper troposphere over the Indian Ocean, northern Australia, and the south subtropical Pacific Ocean, combined with NO production by lightning.

  20. The record of mantle heterogeneity preserved in Earth's oceanic crust

    NASA Astrophysics Data System (ADS)

    Burton, K. W.; Parkinson, I. J.; Schiano, P.; Gannoun, A.; Laubier, M.

    2017-12-01

    Earth's oceanic crust is produced by melting of the upper mantle where it upwells beneath mid-ocean ridges, and provides a geographically widespread elemental and isotopic `sample' of Earth's mantle. The chemistry of mid-ocean ridge basalts (MORB), therefore, holds key information on the compositional diversity of the upper mantle, but the problem remains that mixing and reaction during melt ascent acts to homogenise the chemical variations they acquire. Nearly all isotope and elemental data obtained thus far are for measurements of MORB glass, and this represents the final melt to crystallise, evolving in an open system. However, the crystals that are present are often not in equilibrium with their glass host. Melts trapped in these minerals indicate that they crystallised from primitive magmas that possess diverse compositions compared to the glass. Therefore, these melt inclusions preserve information on the true extent of the mantle that sources MORB, but are rarely amenable to precise isotope measurement. An alternative approach is to measure the isotope composition of the primitive minerals themselves. Our new isotope data indicates that these minerals crystallised from melts with significantly different isotope compositions to their glass host, pointing to a mantle source that has experienced extreme melt depletion. These primitive minerals largely crystallised in the lower oceanic crust, and our preliminary data for lower crustal rocks and minerals shows that they preserve a remarkable range of isotope compositions. Taken together, these results indicate that the upper mantle sampled by MORB is extremely heterogeneous, reflecting depletion and enrichment over much of Earth's geological history.

  1. Determination of Ice Water Path in Ice-over-Water Cloud Systems Using Combined MODIS and AMSR-E Measurements

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.

    2006-01-01

    To provide more accurate ice cloud properties for evaluating climate models, the updated version of multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems over global ocean using combined instrument data from the Aqua satellite. The liquid water path (LWP) of lower layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. With the lower layer LWP known, the properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer measurements by matching simulated radiances from a two-cloud layer radiative transfer model. Comparisons with single-layer cirrus systems and surface-based radar retrievals show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and ice water path retrievals for ice over-water cloud systems. During the period from December 2004 through February 2005, the mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over ocean from Aqua are 7.6 and 146.4 gm(sup -2), respectively, significantly less than the initial single layer retrievals of 17.3 and 322.3 gm(sup -2). The mean IWP for actual single-layer clouds was 128.2 gm(sup -2).

  2. A distributed atmosphere-sea ice-ocean observatory in the central Arctic Ocean: concept and first results

    NASA Astrophysics Data System (ADS)

    Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel; Valcic, Lovro

    2017-04-01

    To understand the current evolution of the Arctic Ocean towards a less extensive, thinner and younger sea ice cover is one of the biggest challenges in climate research. Especially the lack of simultaneous in-situ observations of sea ice, ocean and atmospheric properties leads to significant knowledge gaps in their complex interactions, and how the associated processes impact the polar marine ecosystem. Here we present a concept for the implementation of a long-term strategy to monitor the most essential climate- and ecosystem parameters in the central Arctic Ocean, year round and synchronously. The basis of this strategy is the development and enhancement of a number of innovative autonomous observational platforms, such as rugged weather stations, ice mass balance buoys, ice-tethered bio-optical buoys and upper ocean profilers. The deployment of those complementing platforms in a distributed network enables the simultaneous collection of physical and biogeochemical in-situ data on basin scales and year round, including the largely undersampled winter periods. A key advantage over other observatory systems is that the data is sent via satellite in near-real time, contributing to numerical weather predictions through the Global Telecommunication System (GTS) and to the International Arctic Buoy Programme (IABP). The first instruments were installed on ice floes in the Eurasian Basin in spring 2015 and 2016, yielding exceptional records of essential climate- and ecosystem-relevant parameters in one of the most inaccessible regions of this planet. Over the next 4 years, and including the observational periods of the Year of Polar Prediction (YOPP, 2017-2019) and the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC, 2020), the distributed observatory will be maintained by deployment of additional instruments in the central Arctic each year, benefitting from international logistical efforts.

  3. The Canada Basin compared to the southwest South China Sea: Two marginal ocean basins with hyper-extended continent-ocean transitions

    NASA Astrophysics Data System (ADS)

    Li, Lu; Stephenson, Randell; Clift, Peter D.

    2016-11-01

    Both the Canada Basin (a sub-basin within the Amerasia Basin) and southwest (SW) South China Sea preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the SW South China Sea but our results for the Canada Basin are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow and, accordingly, a lower crust that extends far more the upper crust are suggested for both basins. Extension in the COT may have continued even after seafloor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.

  4. Climate, carbon cycling, and deep-ocean ecosystems.

    PubMed

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  5. Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol A.

    2012-01-01

    The Eastern tropical ocean basins are regions of significant atmosphere-ocean interaction and are important to variability across subseasonal to decadal time scales. The numerous physical processes at play in these areas strain the abilities of coupled general circulation models to accurately reproduce observed upper ocean variability. Furthermore, limitations in the observing system of important terms in the surface temperature balance (e.g., turbulent and radiative heat fluxes, advection) introduce uncertainty into the analyses of processes controlling sea surface temperature variability. This study presents recent efforts to close the surface temperature balance through estimation of the terms in the mixed layer temperature budget using state-of-the-art remotely sensed and model-reanalysis derived products. A set of twelve net heat flux estimates constructed using combinations of radiative and turbulent heat flux products - including GEWEX-SRB, ISCCP-SRF, OAFlux, SeaFlux, among several others - are used with estimates of oceanic advection, entrainment, and mixed layer depth variability to investigate the seasonal variability of ocean surface temperatures. Particular emphasis is placed on how well the upper ocean temperature balance is, or is not, closed on these scales using the current generation of observational and model reanalysis products. That is, the magnitudes and spatial variability of residual imbalances are addressed. These residuals are placed into context within the current uncertainties of the surface net heat fluxes and the role of the mixed layer depth variability in scaling the impact of those uncertainties, particularly in the shallow mixed layers of the Eastern tropical ocean basins.

  6. Modelling Biogenic Carbon Cycling and Remineralization In The Mesopelagic. 2. Rates and Patterns.

    NASA Astrophysics Data System (ADS)

    Rivkin, R. B.; Legendre, L.; Nagata, T.; Bussey, H.; Matthews, P.; Churchill, D.

    Both dissolved (DOC) and particulate organic carbon (POC) are exported from the surface ocean into the mesopelagic layer (i.e. twilight zone; ~100 to 1000 m). Rela- tively little is known about processes controlling the fate and loss rates of this biogenic carbon (BC). Trap studies suggest that about 90% of the POC that is exported from the euphotic zone is remineralized between 100 and 1000m, however the remineral- ization of DOC is largely uncharacterized. The BC that is transferred or buried below the permanent pycnocline (i.e. sequestration, S) is isolated from the atmosphere for long periods (from hundred to million years) and is therefore of significance to global climate. The sequestration of BC can be computed from euphotic zone export (E) and the subsequent remineralization (R) of BC in the mesopelagic layer. Since both POC and DOC are respired, sequestration can be estimated as S = E - R. Unfortunately there are very few direct measurements of R in the mesopelagic layer. We therefore estimated this property, at the global scale, from a meta-analysis of the distributions of physical, chemical and bacterial properties in the mesopelagic layer. We computed heterotrophic respiration from empirical relationships among temperature, DOC, and bacterial biomass, production and growth efficiency. Preliminary estimates of R are 11 to 35 (mean = 22) Gt C/year for the World Ocean. These values are 28 to 88% of the computed upper ocean respiration of ~40 Gt C/y. These data suggest that global dissolved and particulate primary production may be >75 Gt/y.

  7. Transformation of juvenile Izu-Bonin-Mariana oceanic arc into mature continental crust: An example from the Neogene Izu collision zone granitoid plutons, Central Japan

    NASA Astrophysics Data System (ADS)

    Saito, Satoshi; Tani, Kenichiro

    2017-04-01

    Granitic rocks (sensulato) are major constituents of upper continental crust. Recent reviews reveal that the average composition of Phanerozoic upper continental crust is granodioritic. Although oceanic arcs are regarded as a site producing continental crust material in an oceanic setting, intermediate to felsic igneous rocks occurring in modern oceanic arcs are dominantly tonalitic to trondhjemitic in composition and have lower incompatible element contents than the average upper continental crust. Therefore, juvenile oceanic arcs require additional processes in order to get transformed into mature continental crust enriched in incompatible elements. Neogene granitoid plutons are widely exposed in the Izu Collision Zone in central Japan, where the northern end of the Izu-Bonin-Mariana (IBM) arc (juvenile oceanic arc) has been colliding with the Honshu arc (mature island arc) since Middle Miocene. The plutons in this area are composed of various types of granitoids ranging from tonalite to trondhjemite, granodiorite, monzogranite and granite. Three main granitoid plutons are distributed in this area: Tanzawa plutonic complex, Kofu granitic complex, and Kaikomagatake granitoid pluton. Tanzawa plutonic complex is dominantly composed of tonalite and trondhjemite and characterized by low concentration of incompatible elements and shows geochemical similarity with modern juvenile oceanic arcs. In contrast, Kofu granitic complex and Kaikomagatake granitoid pluton consists mainly of granodiorite, monzogranite and granite and their incompatible element abundances are comparable to the average upper continental crust. Previous petrogenetic studies on these plutons suggested that (1) the Tanzawa plutonic complex formed by lower crustal anatexis of juvenile basaltic rocks occurring in the IBM arc, (2) the Kofu granitic complex formed by anatexis of 'hybrid lower crust' comprising of both basaltic rocks of the IBM arc and metasedimentary rocks of the Honshu arc, and (3) the Kaikomagatake granitoid pluton formed by anatexis of 'hybrid lower crust' consisting of K-rich rear-arc crust of the IBM arc and metasedimentary rocks of the Honshu arc. These studies collectively suggest that the chemical diversity within the Izu Collision Zone granitoid plutons reflects the chemical variation of basaltic sources (i.e., across-arc chemical variation in the IBM arc) as well as variable contribution of the metasedimentary component in the source region. The petrogenetic models of the Izu Collision Zone granitoid plutons suggest that collision with another mature arc/continent, hybrid lower crust formation and subsequent hybrid source anatexis are required for juvenile oceanic arcs to produce granitoid magmas with enriched compositions. The Izu Collision Zone granitoid plutons provide an exceptional example of the collision-induced transformation from a juvenile oceanic arc to the mature continental crust.

  8. Harvesting the Ocean: 3. Using the Sea Wisely.

    ERIC Educational Resources Information Center

    Caton, Albert, Ed.; And Others

    This booklet contains the third in a series of three interdisciplinary units which focus specifically on the Pacific Ocean and its surrounding countries. The unit, intended primarily for upper secondary students, consists of readings and interdisciplinary activities (science, art, social studies, English, and home economics) presented in four…

  9. Hazardous Waste Cleanup: Military Ocean Terminal in Bayonne, New Jersey

    EPA Pesticide Factsheets

    The Military Ocean Terminal Bayonne (MOTBY) is a 652 acre, approximately 1/3-mile wide, 2-mile long, manmade peninsula that extends into the upper New York Harbor. It is located on Port Terminal Road adjacent to (west of) the City of Bayonne. Site use as

  10. 40 CFR 81.331 - New Jersey.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Area Somerset County (part) Borough of Somerville 2/5/96 Attainment Toms River Area Ocean County (part) City of Toms River 2/5/96 Attainment Trenton Area Mercer County (part) City of Trenton 2/5/96... Ocean County (part) Area outside Toms River AQCR 151 NE PA—Upper Delaware Valley Unclassifiable...

  11. Inversion of gravity and bathymetry in oceanic regions for long-wavelength variations in upper mantle temperature and composition

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Jordan, Thomas H.

    1993-01-01

    Long-wavelength variations in geoid height, bathymetry, and SS-S travel times are all relatable to lateral variations in the characteristic temperature and bulk composition of the upper mantle. The temperature and composition are in turn relatable to mantle convection and the degree of melt extraction from the upper mantle residuum. Thus the combined inversion of the geoid or gravity field, residual bathymetry, and seismic velocity information offers the promise of resolving fundamental aspects of the pattern of mantle dynamics. The use of differential body wave travel times as a measure of seismic velocity information, in particular, permits resolution of lateral variations at scales not resolvable by conventional global or regional-scale seismic tomography with long-period surface waves. These intermediate scale lengths, well resolved in global gravity field models, are crucial for understanding the details of any chemical or physical layering in the mantle and of the characteristics of so-called 'small-scale' convection beneath oceanic lithosphere. In 1991 a three-year project to the NASA Geophysics Program was proposed to carry out a systematic inversion of long-wavelength geoid anomalies, residual bathymetric anomalies, and differential SS-S travel time delays for the lateral variation in characteristic temperature and bulk composition of the oceanic upper mantle. The project was funded as a three-year award, beginning on 1 Jan. 1992.

  12. Ocean barrier layers' effect on tropical cyclone intensification.

    PubMed

    Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  13. Ocean barrier layers’ effect on tropical cyclone intensification

    PubMed Central

    Balaguru, Karthik; Chang, Ping; Saravanan, R.; Leung, L. Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-01-01

    Improving a tropical cyclone’s forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone’s path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are “quasi-permanent” features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity. PMID:22891298

  14. Ocean heat content and ocean energy budget: make better use of historical global subsurface temperature dataset

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Zhu, J.

    2016-02-01

    Ocean heat content (OHC) change contributes substantially to global sea level rise, also is a key metric of the ocean/global energy budget, so it is a vital task for the climate research community to estimate historical OHC. While there are large uncertainties regarding its value, here we review the OHC calculation by using the historical global subsurface temperature dataset, and discuss the sources of its uncertainty. The presentation briefly introduces how to correct to the systematic biases in expendable bathythermograph (XBT) data, a alternative way of filling data gaps (which is main focus of this talk), and how to choose a proper climatology. A new reconstruction of historical upper (0-700 m) OHC change will be presented, which is the Institute of Atmospheric Physics (IAP) version of historical upper OHC assessment. The authors also want to highlight the impact of observation system change on OHC calculation, which could lead to bias in OHC estimates. Furthermore, we will compare the updated observational-based estimates on ocean heat content change since 1970s with CMIP5 results. This comparison shows good agreement, increasing the confidence of the climate models in representing the climate history.

  15. Ocean Barrier Layers’ Effect on Tropical Cyclone Intensification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Chang, P.; Saravanan, R.

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropicalmore » cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.« less

  16. Temporal variability of dissolved iron species in the mesopelagic zone at Ocean Station PAPA

    NASA Astrophysics Data System (ADS)

    Schallenberg, Christina; Ross, Andrew R. S.; Davidson, Ashley B.; Stewart, Gillian M.; Cullen, Jay T.

    2017-08-01

    Deposition of atmospheric aerosols to the surface ocean is considered an important mechanism for the supply of iron (Fe) to remote ocean regions, but direct observations of the oceanic response to aerosol deposition are sparse. In the high nutrient, low chlorophyll (HNLC) subarctic Pacific Ocean we observed a dissolved Fe and Fe(II) anomaly at depth that is best explained as the result of aerosol deposition from Siberian forest fires in May 2012. Interestingly, there was no evidence of enhanced dFe concentrations in surface waters, nor was there a detectable phytoplankton bloom in response to the suspected aerosol deposition. Dissolved Fe (dFe) and Fe(II) showed the strongest enhancement in the subsurface oxygen deficient zone (ODZ), where oxygen concentrations <50 μmol kg-1 are prevalent. In the upper 200 m, dFe concentrations were at or below historic background levels, consistent with a short residence time of aerosol particles in surface waters and possible scavenging loss of dFe. Aerosol toxicity and/or dominance of particle scavenging over dissolution of Fe in the upper water column may have contributed to the lack of a strong phytoplankton response.

  17. 76 FR 52317 - Endangered and Threatened Species; Recovery Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... authority. Recovery of Upper Willamette salmon and steelhead will require a long-term effort in cooperation... and Threatened Species; Recovery Plans AGENCY: National Marine Fisheries Service, National Oceanic and... Service (NMFS) announces the adoption of an Endangered Species Act (ESA) recovery plan for the Upper...

  18. Osmium isotopes and mantle convection.

    PubMed

    Hauri, Erik H

    2002-11-15

    The decay of (187)Re to (187)Os (with a half-life of 42 billion years) provides a unique isotopic fingerprint for tracing the evolution of crustal materials and mantle residues in the convecting mantle. Ancient subcontinental mantle lithosphere has uniquely low Re/Os and (187)Os/(188)Os ratios due to large-degree melt extraction, recording ancient melt-depletion events as old as 3.2 billion years. Partial melts have Re/Os ratios that are orders of magnitude higher than their sources, and the subduction of oceanic or continental crust introduces into the mantle materials that rapidly accumulate radiogenic (187)Os. Eclogites from the subcontinental lithosphere have extremely high (187)Os/(188)Os ratios, and record ages as old as the oldest peridotites. The data show a near-perfect partitioning of Re/Os and (187)Os/(188)Os ratios between peridotites (low) and eclogites (high). The convecting mantle retains a degree of Os-isotopic heterogeneity similar to the lithospheric mantle, although its amplitude is modulated by convective mixing. Abyssal peridotites from the ocean ridges have low Os isotope ratios, indicating that the upper mantle had undergone episodes of melt depletion prior to the most recent melting events to produce mid-ocean-ridge basalt. The amount of rhenium estimated to be depleted from the upper mantle is 10 times greater than the rhenium budget of the continental crust, requiring a separate reservoir to close the mass balance. A reservoir consisting of 5-10% of the mantle with a rhenium concentration similar to mid-ocean-ridge basalt would balance the rhenium depletion of the upper mantle. This reservoir most likely consists of mafic oceanic crust recycled into the mantle over Earth's history and provides the material that melts at oceanic hotspots to produce ocean-island basalts (OIBs). The ubiquity of high Os isotope ratios in OIB, coupled with other geochemical tracers, indicates that the mantle sources of hotspots contain significant quantities (greater than 10%) of lithologically distinct mafic material which represents ancient oceanic lithosphere cycled through the convecting mantle on a time-scale of 800 million years or more.

  19. Structure of the Sumatra wedge affected by the 26th December 2004 :Effects of the lower plate volcanic ridges.

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Sibuet, J. C.; Lin, J. Y.; Le Pichon, X.

    2009-04-01

    Detailed swath-bathymetry, coupled with echo-sounder data were collected offshore the northern tip of Sumatra over the rupture area of the 26th December 2004 Mw=9.2 earthquake during the Sumatra aftershock cruise. 20 ocean bottom seismometers were also deployed in the northern Sumatra area., and more than 1000 events were identified during the 12 days recording period. We mapped recently active steeply dipping thrust fault zone within the western termination of the Sunda accreted wedge. Main N10°W trending out of sequence thrust fault zones with a discrete westward vergency and some component of dextral strike-slip motion were continuously mapped within the wedge, on the basis of bathymetry and low frequency sounder profiles. The interplate boundary does not appear to extend into the frontal part of the wedge but most probably merges in its central part along these major faults, the Lower and Upper Splay Faults. After relocation, the seismicity shows different pattern in each side of this Upper Splay Fault. East of this boundary, beneath the Aceh basin, the earthquake depths ranged from 30 to 60 km allow us to illustrate the subducted plate. In the western part, the aftershock distribution is strongly influenced by the N-S orientated oceanic fracture zones. Two clusters of earthquakes between 10 and 50 km in depth trending along N-S direction are observed in the lower wedge that we interpret to be reactive fracture zones. The lower wedge is interpreted as the northern prolongation below the wedge of the lower plate NS oceanic fracture zone ridges affected by NS trending left lateral strike-slip faults. This wedge outer ridge is in the process of being transferred to the upper plate. On the other hand the central ridge is interpreted as possible stacked volcanic ridge slivers already incorporated into the upper plate along the subduction buttress (the inner ridge of the wedge). We propose that the tectonic interaction of the volcanic Indian Ocean fracture ridges of the subducted plate with the leading edge of the upper Sunda plate subduction zone is an active tectonic transfer process of oceanic material to the upper plate. The proposed emergence of the interplate boundary into the middle part of the wedge along the Lower Splay Fault, could have favoured the formation of the giant Sumatra tsunami at moderate water depth. This docking and temporary stacking of these volcanic ridges before their subduction at depth, is favoured by the strong oblique convergence that prevails up to the Bengal basin into the north.

  20. Carbon flux from bio-optical profiling floats: Calibrating transmissometers for use as optical sediment traps

    NASA Astrophysics Data System (ADS)

    Estapa, Meg; Durkin, Colleen; Buesseler, Ken; Johnson, Rod; Feen, Melanie

    2017-02-01

    Our mechanistic understanding of the processes controlling the ocean's biological pump is limited, in part, by our lack of observational data at appropriate timescales. The "optical sediment trap" (OST) technique utilizes a transmissometer on a quasi-Lagrangian platform to collect sedimenting particles. This method could help fill the observational gap by providing autonomous measurements of particulate carbon (PC) flux in the upper mesopelagic ocean at high spatiotemporal resolution. Here, we used a combination of field measurements and laboratory experiments to test hydrodynamic and zooplankton-swimmer effects on the OST method, and we quantitatively calibrated this method against PC flux measured directly in same-platform, neutrally buoyant sediment traps (NBSTs) during 5 monthly cruises at the Bermuda Atlantic Time-series Study (BATS) site. We found a well-correlated, positive relationship (R2=0.66, n=15) between the OST proxy, and the PC flux measured directly using NBSTs. Laboratory tests showed that scattering of light from multiple particles between the source and detector was unlikely to affect OST proxy results. We found that the carbon-specific attenuance of sinking particles was larger than literature values for smaller, suspended particles in the ocean, and consistent with variable carbon: size relationships reported in the literature for sinking particles. We also found evidence for variability in PC flux at high spatiotemporal resolution. Our results are consistent with the literature on particle carbon content and optical properties in the ocean, and support more widespread use of the OST proxy, with proper site-specific and platform-specific calibration, to better understand variability in the ocean biological pump.

  1. Inter comparison of Tropical Indian Ocean features in different ocean reanalysis products

    NASA Astrophysics Data System (ADS)

    Karmakar, Ananya; Parekh, Anant; Chowdary, J. S.; Gnanaseelan, C.

    2017-09-01

    This study makes an inter comparison of ocean state of the Tropical Indian Ocean (TIO) in different ocean reanalyses such as global ocean data assimilation system (GODAS), ensemble coupled data assimilation (ECDA), ocean reanalysis system 4 (ORAS4) and simple ocean data assimilation (SODA) with reference to the in-situ buoy observations, satellite observed sea surface temperature (SST), EN4 analysis and ocean surface current analysis real time (OSCAR). Analysis of mean state of SST and sea surface salinity (SSS) reveals that ORAS4 is better comparable with satellite observations as well as EN4 analysis, and is followed by SODA, ECDA and GODAS. The surface circulation in ORAS4 is closer to OSCAR compared to the other reanalyses. However mixed layer depth (MLD) is better simulated by SODA, followed by ECDA, ORAS4 and GODAS. Seasonal evolution of error indicates that the highest deviation in SST and MLD over the TIO exists during spring and summer in GODAS. Statistical analysis with concurrent data of EN4 for the period of 1980-2010 supports that the difference and standard deviation (variability strength) ratio for SSS and MLD is mostly greater than one. In general the strength of variability is overestimated by all the reanalyses. Further comparison with in-situ buoy observations supports that MLD errors over the equatorial Indian Ocean (EIO) and the Bay of Bengal are higher than with EN4 analysis. Overall ORAS4 displays higher correlation and lower error among all reanalyses with respect to both EN4 analysis and buoy observations. Major issues in the reanalyses are the underestimation of upper ocean stability in the TIO, underestimation of surface current in the EIO, overestimation of vertical shear of current and improper variability in different oceanic variables. To improve the skill of reanalyses over the TIO, salinity vertical structure and upper ocean circulation need to be better represented in reanalyses.

  2. Cosmogenic 32P and 33P in the Atmosphere and Oligotrophic Ocean and Applications to the Study of Phosphorus Cycling

    DTIC Science & Technology

    1993-02-01

    Ed.) , pp53-82. Poet, S.E., Moore H.E., and EA. Martell, 1972. Lead- 210 , bismuth 210 and polonium 210 in the atmosphere: accurate ratio measurement...in the ocean food web. The residence time of P in macrozooplankton was estimated to range from 40 to 60 days. A grazing rate of macrozooplankton of...cycles in the upper ocean remains a central issue for a com- 3 plete understanding of the biological pump and its effect on the deep ocean. There is

  3. Exploring the southern ocean response to climate change

    NASA Technical Reports Server (NTRS)

    Martinson, Douglas G.; Rind, David; Parkinson, Claire

    1993-01-01

    The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.

  4. Coupling of Waves, Turbulence and Thermodynamics Across the Marginal Ice Zone

    DTIC Science & Technology

    2013-09-30

    under-predict the observed trend of declining sea ice area over the last decade. A potential explanation for this under-prediction is that models...are missing important feedbacks within the ocean- ice system. Results from the proposed research will contribute to improving the upper ocean and sea ...and solar-radiation-driven thermodynamic forcing in the marginal ice zone. Within the MIZ, the ocean- ice - albedo feedback mechanism is coupled to ice

  5. Optimal Spectral Decomposition (OSD) for Ocean Data Assimilation

    DTIC Science & Technology

    2015-01-01

    tropical North Atlantic from the Argo float data (Chu et al. 2007 ), and temporal and spatial variability of global upper-ocean heat content (Chu 2011...O. V. Melnichenko, and N. C. Wells, 2007 : Long baro- clinic Rossby waves in the tropical North Atlantic observed fromprofiling floats. J...Harrison, and D. Stammer , D., Eds., Vol. 2, ESA Publ. WPP- 306, doi:10.5270/OceanObs09.cwp.86. Tang, Y., and R. Kleeman, 2004: SST assimilation

  6. Collision-induced tectonism along the northwestern margin of the Indian subcontinent as recorded in the Upper Paleocene to Middle Eocene strata of central Pakistan (Kirthar and Sulaiman Ranges)

    USGS Publications Warehouse

    Warwick, Peter D.; Johnson, Edward A.; Khan, Intizar H.

    1998-01-01

    Outcrop data from the Upper Paleocene to Middle Eocene Ghazij Formation of central Pakistan provide information about the depositional environments, source areas, and paleogeographic and tectonic settings along the northwestern margin of the Indian subcontinent during the closing of the Tethys Ocean. In this region, in the lower part of the exposed stratigraphic sequence, are various marine carbonate-shelf deposits (Jurassic to Upper Paleocene). Overlying these strata is the Ghazij, which consists of marine mudstone (lower part), paralic sandstone and mudstone (middle part), and terrestrial mudstone and conglomerate (upper part). Petrographic examination of sandstone samples from the middle and upper parts reveals that rock fragments of the underlying carbonate-shelf deposits are dominant; also present are volcanic rock fragments and chromite grains. Paleocurrent measurements from the middle and upper parts suggest that source areas were located northwest of the study area. We postulate that the source areas were uplifted by the collision of the subcontinent with a landmass during the final stages of the closing of the Tethys Ocean. Middle Eocene carbonate-shelf deposits that overlie the Ghazij record a return to marine conditions prior to the Miocene to Pleistocene sediment influx denoting the main collision with Eurasia.

  7. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Dajun; Wang, Guiqiu; Wang, Yaochuan

    2018-01-01

    Based on the Huygens-Fresnel integral and the relationship of Lorentz distribution and Hermite-Gauss function, the average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence have been investigated by using numerical examples. The influences of beam parameters and oceanic turbulence on the propagation properties are also discussed in details. It is shown that the partially coherent Lorentz-Gauss beam with smaller coherence length will spread faster in oceanic turbulence, and the stronger oceanic turbulence will accelerate the spreading of partially coherent Lorentz-Gauss beam in oceanic turbulence.

  8. Global Attenuation Tomography and Implications for Upper-Mantle Thermal Structure

    NASA Astrophysics Data System (ADS)

    Dalton, C. A.; Ekström, G.; Dziewonski, A. M.

    2007-12-01

    Observation of seismic-wave attenuation provides a direct measure of the Earth's anelasticity. The sensitivity of attenuation to temperature, composition, partial melt, and water content is different from that of seismic velocity, and joint interpretation of elastic and anelastic models may be used to improve constraints on these properties throughout the Earth. Historically, the development of attenuation models has lagged behind velocity models. However, the availability of large seismic datasets and improved techniques to treat these data have recently led to better and higher-resolution attenuation models. We have developed a new 3-D global model of shear attenuation in the upper mantle. This new model, QRFSI12, is derived from > 30,000 fundamental-mode Rayleigh wave amplitude measurements at each period (period range 50-250 s). The amplitudes are inverted simultaneously for the coefficients of the 3-D model as well as frequency-dependent amplitude correction factors for each source and receiver. We have found that focusing by elastic heterogeneity can significantly influence surface-wave amplitudes and that this effect can be modeled at long periods using ray-theoretical approximations. We therefore subtract focusing effects from the data prior to inversion by using phase-velocity maps determined from jointly inverting amplitude and phase-delay datasets. In the shallow mantle, QRFSI12 exhibits a strong correlation with tectonic features, and different tectonic provinces are characterized by distinct attenuative properties. At depths > 250 km, the model is dominated by high attenuation beneath the southeastern Pacific and eastern Africa and low attenuation associated with subduction zones in the western Pacific. Comparison of QRFSI12 with global shear-velocity models shows a strong anti-correlation throughout the upper mantle. At 100-km depth, a clear trend of increasing velocity and decreasing attenuation with increasing age of the seafloor is apparent, and tectonically active continental areas are associated with slower velocities and higher attenuation than stable continental interiors. At depths of 150 and 200 km, oceanic regions exhibit a larger decrease in attenuation per fractional increase in velocity than stable continental regions do, suggesting differences in the mechanisms that influence the seismic properties within these two regions. Comparison with recent laboratory measurements (Faul and Jackson, 2005) of attenuation and velocity for olivine helps to quantify the extent to which temperature alone can explain the observed variability. We find that the mineral-physics predictions agree well with the global seismic models for the oceanic regions between 150- and 250-km depth, but that the cratonic areas cannot be fit.

  9. Ocean deoxygenation in a warming world.

    PubMed

    Keeling, Ralph E; Körtzinger, Arne; Gruber, Nicolas

    2010-01-01

    Ocean warming and increased stratification of the upper ocean caused by global climate change will likely lead to declines in dissolved O2 in the ocean interior (ocean deoxygenation) with implications for ocean productivity, nutrient cycling, carbon cycling, and marine habitat. Ocean models predict declines of 1 to 7% in the global ocean O2 inventory over the next century, with declines continuing for a thousand years or more into the future. An important consequence may be an expansion in the area and volume of so-called oxygen minimum zones, where O2 levels are too low to support many macrofauna and profound changes in biogeochemical cycling occur. Significant deoxygenation has occurred over the past 50 years in the North Pacific and tropical oceans, suggesting larger changes are looming. The potential for larger O2 declines in the future suggests the need for an improved observing system for tracking ocean 02 changes.

  10. A global geochemical model for the evolution of the mantle

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1979-01-01

    It is proposed that the upper mantle transition region, 220 to 670 km, is composed of eclogite which has been derived from primitive mantle by about 20 percent partial melting and that this is the source and sink of oceanic crust. The remainder of the upper mantle is garnet peridotite which is the source of continental basalts and hotspot magmas. This region is enriched in incompatible elements by hydrous and CO2 rich metasomatic fluids which have depleted the underlying layers in the L.I.L. elements and L.R.E.E. The volatiles make this a low-velocity, high attenuation, low viscosity region. The eclogite layer is internally heated and its controls the convection pattern in the upper mantle. Plate tectonics is intermittent. The continental thermal anomaly at a depth of 150-220 km triggers kimberlite and carbonatite activity, alkali and flood basalt volcanism, vertical tectonics and continental breakup. Hot spots remain active after the continents leave and build the oceanic islands. Mantle plumes rise from a depth of about 220 km. Midocean ridge basalts rise from the depleted layer below this depth. Material from this layer can also be displaced upwards by subducted oceanic lithosphere to form back-arc basins.

  11. An IODP proposal to drill the Godzilla Megamullion as a step to Mohole

    NASA Astrophysics Data System (ADS)

    Ohara, Y.; Michibayashi, K.; Dick, H. J. B.; Snow, J. E.; Ono, S.

    2017-12-01

    The year 2017 represents the 60th anniversary of the "original" project Mohole, which was coined by Walter Munk in 1957. Although the project Mohole has not yet been realized, the hard-rock community is now striving hard to understand the upper mantle in a variety of ways. Firstly, the present-day project Mohole, M2M (Moho-to-Mantle) project, will move forward in this September, conducting multi-channel seismic profiling off Hawaii as a site survey. Oman Drilling Project has started last December, and the drilled cores are being described aboard D/V Chikyu from July, this year. Furthermore, the forearc M2M proposal to drill the Bonin Trench forearc mantle was submitted to IODP in April 2016. Being a part of these efforts, we are preparing an IODP proposal to drill the Godzilla Megamullion, the largest known oceanic core complex on the Earth, located in the Parece Vela Basin in the Philippine Sea. A significant fraction of the ocean floor is created in backarc basins, while there have been no single long core of backarc basin lower ocean crust, from which to understand the likely differences in magmatic evolution and crustal structure in this key setting. The opportunity to explore the formation of the backarc basin lower crust and upper mantle is, therefore, an important contribution to understanding the ocean basins. At the same time, a better understanding of the architecture of backarc basin lower crust and upper mantle will greatly aid in the interpretation of the results of ophiolite study, since much of our understanding of the architecture of oceanic lower crust and upper mantle comes from ophiolites, most of which are thought to have at least some arc and/or backarc component. The Godzilla Megamullion is unique in its huge size as well as its development in a backarc basin, a rare tectonic window to study backarc basin lithosphere. The Godzilla Megamullion is prepared for full drilling proposal, with complete bathymetric data, multiple bottom samplings, and multi-channel seismic profilings as well as P-wave velocity structures. We will propose substantial riserless drilling at Godzilla Megamullion that will provide an excellent opportunity to understand backarc basin lower crust and upper mantle. In this contribution, we will make use of this opportunity to share the general scheme of the proposal with the community.

  12. Tropical Convective Responses to Microphysical and Radiative Processes: A Sensitivity Study With a 2D Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.

    2004-01-01

    Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.

  13. Modeling the bloom evolution and carbon flows during SOIREE: Implications for future in situ iron-enrichments in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Hannon, E.; Boyd, P. W.; Silvoso, M.; Lancelot, C.

    The impact of a mesoscale in situ iron-enrichment experiment (SOIREE) on the planktonic ecosystem and biological pump in the Australasian-Pacific sector of the Southern Ocean was investigated through model simulations over a period of 60-d following an initial iron infusion. For this purpose we used a revised version of the biogeochemical SWAMCO model ( Lancelot et al., 2000), which describes the cycling of C, N, P, Si, Fe through aggregated chemical and biological components of the planktonic ecosystem in the high nitrate low chlorophyll (HNLC) waters of the Southern Ocean. Model runs were conducted for both the iron-fertilized waters and the surrounding HNLC waters, using in situ meteorological forcing. Validation was performed by comparing model predictions with observations recorded during the 13-d site occupation of SOIREE. Considerable agreement was found for the magnitude and temporal trends in most chemical and biological variables (the microbial food web excepted). Comparison of simulations run for 13- and 60-d showed that the effects of iron fertilization on the biota were incomplete over the 13-d monitoring of the SOIREE bloom. The model results indicate that after the vessel departed the SOIREE site there were further iron-mediated increases in properties such as phytoplankton biomass, production, export production, and uptake of atmospheric CO 2, which peaked 20-30 days after the initial iron infusion. Based on model simulations, the increase in net carbon production at the scale of the fertilized patch (assuming an area of 150 km2) was estimated to 9725 t C by day 60. Much of this production accumulated in the upper ocean, so that the predicted downward export of particulate organic carbon (POC) only represented 22% of the accumulated C in the upper ocean. Further model runs that implemented improved parameterization of diatom sedimentation (i.e. including iron-mediated diatom sinking rate, diatom chain-forming and aggregation) suggested that the downward POC flux predicted by the standard run might have been underestimated by a factor of up to 3. Finally, a sensitivity analysis of the biological response to iron-enrichment at locales with different initial oceanographic conditions (such as mixed-layer depth) or using different iron fertilization strategies (single vs. pulsed additions) was conducted. The outcomes of this analysis offer insights in the design and location of future in situ iron-enrichments.

  14. Metal-silicate thermochemistry at high temperature - Magma oceans and the 'excess siderophile element' problem of the earth's upper mantle

    NASA Technical Reports Server (NTRS)

    Capobianco, Christopher J.; Jones, John H.; Drake, Michael J.

    1993-01-01

    Low-temperature metal-silicate partition coefficients are extrapolated to magma ocean temperatures. If the low-temperature chemistry data is found to be applicable at high temperatures, an important assumption, then the results indicate that high temperature alone cannot account for the excess siderophile element problem of the upper mantle. For most elements, a rise in temperature will result in a modest increase in siderophile behavior if an iron-wuestite redox buffer is paralleled. However, long-range extrapolation of experimental data is hazardous when the data contains even modest experimental errors. For a given element, extrapolated high-temperature partition coefficients can differ by orders of magnitude, even when data from independent studies is consistent within quoted errors. In order to accurately assess siderophile element behavior in a magma ocean, it will be necessary to obtain direct experimental measurements for at least some of the siderophile elements.

  15. Oceanic sources of predictability for MJO propagation across the Maritime Continent in a subset of S2S forecast models

    NASA Astrophysics Data System (ADS)

    DeMott, C. A.; Klingaman, N. P.

    2017-12-01

    Skillful prediction of the Madden-Julian oscillation (MJO) passage across the Maritime Continent (MC) has important implications for global forecasts of high-impact weather events, such as atmospheric rivers and heat waves. The North American teleconnection response to the MJO is strongest when MJO convection is located in the western Pacific Ocean, but many climate and forecast models are deficient in their simulation of MC-crossing MJO events. Compared to atmosphere-only general circulation models (AGCMs), MJO simulation skill generally improves with the addition of ocean feedbacks in coupled GCMs (CGCMs). Using observations, previous studies have noted that the degree of ocean coupling may vary considerably from one MJO event to the next. The coupling mechanisms may be linked to the presence of ocean Equatorial Rossby waves, the sign and amplitude of Equatorial surface currents, and the upper ocean temperature and salinity profiles. In this study, we assess the role of ocean feedbacks to MJO prediction skill using a subset of CGCMs participating in the Subseasonal-to-Seasonal (S2S) Project database. Oceanic observational and reanalysis datasets are used to characterize the upper ocean background state for observed MJO events that do and do not propagate beyond the MC. The ability of forecast models to capture the oceanic influence on the MJO is first assessed by quantifying SST forecast skill. Next, a set of previously developed air-sea interaction diagnostics is applied to model output to measure the role of SST perturbations on the forecast MJO. The "SST effect" in forecast MJO events is compared to that obtained from reanalysis data. Leveraging all ensemble members of a given forecast helps disentangle oceanic model biases from atmospheric model biases, both of which can influence the expression of ocean feedbacks in coupled forecast systems. Results of this study will help identify areas of needed model improvement for improved MJO forecasts.

  16. Altimeter Observations of Wave Climate in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Babanin, A. V.; Liu, Q.; Zieger, S.

    2016-02-01

    Wind waves are a new physical phenomenon to the Arctic Seas, which in the past were covered with ice. Now, over summer months, ice coverage retreats up to high latitudes and waves are generated. The marginal open seas provide new opportunities and new problems. Navigation and other maritime activities become possible, but wave heights, storm surges and coastal erosion will likely increase. Air-sea interactions enter a completely new regime, with momentum, energy, heat, gas and moisture fluxes being moderated or produced by the waves, and impacting on upper-ocean mixing. All these issues require knowledge of the wave climate. We will report results of investigation of wave climate and its trends by means of satellite altimetry. This is a challenging, but important topic. On one hand, no statistical approach is possible since in the past for most of the Arctic Ocean there was limited wave activity. Extrapolations of the current observations into the future are not feasible, because ice cover and wind patterns in the Arctic are changing. On the other hand, information on the mean and extreme wave properties, such as wave height, period, direction, on the frequency of occurrence and duration of the storms is of great importance for oceanographic, meteorological, climate, naval and maritime applications in the Arctic Seas.

  17. Non-Rayleigh control of upper-ocean Cd isotope fractionation in the western South Atlantic

    NASA Astrophysics Data System (ADS)

    Xie, Ruifang C.; Galer, Stephen J. G.; Abouchami, Wafa; Rijkenberg, Micha J. A.; de Baar, Hein J. W.; De Jong, Jeroen; Andreae, Meinrat O.

    2017-08-01

    We present seawater Cd isotopic compositions in five depth profiles and a continuous surface water transect, from 50°S to the Equator, in the western South Atlantic, sampled during GEOTRACES cruise 74JC057 (GA02 section, Leg 3), and investigate the mechanisms governing Cd isotope cycling in the upper and deep ocean. The depth profiles generally display high ε 112 / 110Cd at the surface and decrease with increasing depth toward values typical of Antarctic Bottom Water (AABW). However, at stations north of the Subantarctic Front, the decrease in ε 112 / 110Cd is interrupted by a shift to values intermediate between those of surface and bottom waters, which occurs at depths occupied by North Atlantic Deep Water (NADW). This pattern is associated with variations in Cd concentration from low surface values to a maximum at mid-depths and is attributed to preferential utilization of light Cd by phytoplankton in the surface ocean. Our new results show that in this region Cd-deficient waters do not display the extreme, highly fractionated ε 112 / 110Cd reported in some earlier studies from other oceanic regions. Instead, in the surface and subsurface southwest (SW) Atlantic, when [Cd] drops below 0.1 nmol kg-1, ε 112 / 110Cd are relatively homogeneous and cluster around a value of +3.7, in agreement with the mean value of 3.8 ± 3.3 (2SD, n = 164) obtained from a statistical evaluation of the global ocean Cd isotope dataset. We suggest that Cd-deficient surface waters may acquire their Cd isotope signature via sorption of Cd onto organic ligands, colloids or bacterial/picoplankton extracellular functional groups. Alternatively, we show that an open system, steady-state model is in good accord with the observed Cd isotope systematics in the upper ocean north of the Southern Ocean. The distribution of ε 112 / 110Cd in intermediate and deep waters is consistent with the water mass distribution, with the north-south variations reflecting changes in the mixing proportion of NADW and either AABW or AAIW depending on the depth. Overall, the SW Atlantic Cd isotope dataset demonstrates that the large-scale ocean circulation exerts the primary control on ε 112 / 110Cd cycling in the global deep ocean.

  18. Assessment of upper-ocean variability and the Madden-Julian Oscillation in extended-range air-ocean coupled mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Hong, Xiaodong; Reynolds, Carolyn A.; Doyle, James D.; May, Paul; O'Neill, Larry

    2017-06-01

    Atmosphere-ocean interaction, particular the ocean response to strong atmospheric forcing, is a fundamental component of the Madden-Julian Oscillation (MJO). In this paper, we examine how model errors in previous Madden-Julian Oscillation (MJO) events can affect the simulation of subsequent MJO events due to increased errors that develop in the upper-ocean before the MJO initiation stage. Two fully coupled numerical simulations with 45-km and 27-km horizontal resolutions were integrated for a two-month period from November to December 2011 using the Navy's limited area Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). There are three MJO events that occurred subsequently in early November, mid-November, and mid-December during the simulations. The 45-km simulation shows an excessive warming of the SSTs during the suppressed phase that occurs before the initiation of the second MJO event due to erroneously strong surface net heat fluxes. The simulated second MJO event stalls over the Maritime Continent which prevents the recovery of the deep mixed layer and associated barrier layer. Cross-wavelet analysis of solar radiation and SSTs reveals that the diurnal warming is absent during the second suppressed phase after the second MJO event. The mixed layer heat budget indicates that the cooling is primarily caused by horizontal advection associated with the stalling of the second MJO event and the cool SSTs fail to initiate the third MJO event. When the horizontal resolution is increased to 27-km, three MJOs are simulated and compare well with observations on multi-month timescales. The higher-resolution simulation of the second MJO event and more-realistic upper-ocean response promote the onset of the third MJO event. Simulations performed with analyzed SSTs indicate that the stalling of the second MJO in the 45-km run is a robust feature, regardless of ocean forcing, while the diurnal cycle analysis indicates that both 45-km and 27-km ocean resolutions respond realistically when provided with realistic atmospheric forcing. Thus, the problem in the 45-km simulation appears to originate in the atmosphere. Additional simulations show that while the details of the simulations are sensitive to small changes in the initial integration time, the large differences between the 45-km and 27-km runs during the suppressed phase in early December are robust.

  19. Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics

    NASA Astrophysics Data System (ADS)

    Gardner, Wilford D.; Richardson, Mary Jo; Mishonov, Alexey V.

    2018-01-01

    Global maps of the maximum bottom concentration, thickness, and integrated particle mass in benthic nepheloid layers are published here to support collaborations to understand deep ocean sediment dynamics, linkage with upper ocean dynamics, and assessing the potential for scavenging of adsorption-prone elements near the deep ocean seafloor. Mapping the intensity of benthic particle concentrations from natural oceanic processes also provides a baseline that will aid in quantifying the industrial impact of current and future deep-sea mining. Benthic nepheloid layers have been mapped using 6,392 full-depth profiles made during 64 cruises using our transmissometers mounted on CTDs in multiple national/international programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and GO-SHIP during the last four decades. Intense benthic nepheloid layers are found in areas where eddy kinetic energy in overlying waters, mean kinetic energy 50 m above bottom (mab), and energy dissipation in the bottom boundary layer are near the highest values in the ocean. Areas of intense benthic nepheloid layers include the Western North Atlantic, Argentine Basin in the South Atlantic, parts of the Southern Ocean and areas around South Africa. Benthic nepheloid layers are weak or absent in most of the Pacific, Indian, and Atlantic basins away from continental margins. High surface eddy kinetic energy is associated with the Kuroshio Current east of Japan. Data south of the Kuroshio show weak nepheloid layers, but no transmissometer data exist beneath the Kuroshio, a deficiency that should be remedied to increase understanding of eddy dynamics in un-sampled and under-sampled oceanic areas.

  20. Linkages between life history type and migration pathways in freshwater and marine environments for Chinook salmon, Oncorhynchus tshawytscha

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi; Quinn, Thomas P.

    2012-05-01

    Chinook salmon, Oncorhynchus tshawytscha, are commonly categorized as ocean-type (migrating to the ocean in their first year of life) or stream-type (migrating after a full year in freshwater). These two forms have been hypothesized to display different ocean migration pathways; the former are hypothesized to migrate primarily on the continental shelf whereas the latter are hypothesized to migrate off the shelf to the open ocean. These differences in migration patterns have important implications for management, as fishing mortality rates are strongly influenced by ocean migration. Ocean-type Chinook salmon predominate in coastal rivers in the southern part of the species' range, whereas stream-type predominate in the interior and northerly rivers. This latitudinal gradient has confounded previous efforts to test the hypothesis regarding ocean migration pathways. To address this problem, we used a pair-wise design based on coded wire tagging data to compare the marine distributions of stream- and ocean-type Chinook salmon from a suite of rivers producing both forms. Both forms of Chinook salmon from the lower Columbia River, Oregon coast, lower Fraser River, and northern British Columbia rivers followed similar migration paths, contradicting the hypothesis. In contrast, recoveries of tagged Chinook salmon from the upper Columbia River, Snake River, and the upper Fraser River revealed migration patterns consistent with the hypothesis. These findings have important implications for our understanding of these life history types, and also for the conservation and management of declining, threatened, or endangered stream-type Chinook salmon populations in the US and Canada.

  1. Global patterns of organic carbon export and sequestration in the ocean (Arne Richter Award for Outstanding Young Scientists)

    NASA Astrophysics Data System (ADS)

    Henson, S.; Sanders, R.; Madsen, E.; Le Moigne, F.; Quartly, G.

    2012-04-01

    A major term in the global carbon cycle is the ocean's biological carbon pump which is dominated by sinking of small organic particles from the surface ocean to its interior. Here we examine global patterns in particle export efficiency (PEeff), the proportion of primary production that is exported from the surface ocean, and transfer efficiency (Teff), the fraction of exported organic matter that reaches the deep ocean. This is achieved through extrapolating from in situ estimates of particulate organic carbon export to the global scale using satellite-derived data. Global scale estimates derived from satellite data show, in keeping with earlier studies, that PEeff is high at high latitudes and low at low latitudes, but that Teff is low at high latitudes and high at low latitudes. However, in contrast to the relationship observed for deep biomineral fluxes in previous studies, we find that Teff is strongly negatively correlated with opal export flux from the upper ocean, but uncorrelated with calcium carbonate export flux. We hypothesise that the underlying factor governing the spatial patterns observed in Teff is ecosystem function, specifically the degree of recycling occurring in the upper ocean, rather than the availability of calcium carbonate for ballasting. Finally, our estimate of global integrated carbon export is only 50% of previous estimates. The lack of consensus amongst different methodologies on the strength of the biological carbon pump emphasises that our knowledge of a major planetary carbon flux remains incomplete.

  2. Island of the Sharks Activity Guide To Accompany the Large-Format Film.

    ERIC Educational Resources Information Center

    Gowell, Elizabeth Tayntor

    This document targets upper elementary and middle school students and provides activities to understand what the ocean floor looks like, the interactions of ocean communities, and the true nature of sharks. The activities are developed at three levels: beginner, intermediate, and advanced. The twelve activities include: (1) "Ocean…

  3. PHOTOBIOGEOCHEMISTRY OF SARGASSUM: A POTENTIALLY IMPORTANT SOURCE OF CHROMOPHORIC DISSOLVED ORGANIC MATTER IN THE UPPER OCEAN

    EPA Science Inventory

    Sargassum is a genus of widely distributed, generally planktonic macroalgae that often is found near the surface of the ocean. Here we report that a consortium of commonly occurring species in the Gulf of Mexico, Caribbean Sea and North Atlantic, Sargassum natans and Sa...

  4. Upper-Ocean Processed Under the Stratus Cloud Deck in the Southeast Pacific Ocean

    DTIC Science & Technology

    2010-01-19

    based on Woods Hole Oceano - graphic Institution (WHOI) Improved Meteorological (IMET) buoy observations at 20°S, 85°W. Net surface heat fluxes are...Jason-1 and Jason-2 sea surface heights and geostrophic currents (computed from absolute topography) produced by Segment Sol Multimissions d’Altimetrie

  5. Thorium-uranium fractionation by garnet - Evidence for a deep source and rapid rise of oceanic basalts

    NASA Technical Reports Server (NTRS)

    Latourrette, T. Z.; Kennedy, A. K.; Wasserburg, G. J.

    1993-01-01

    Mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) are derived by partial melting of the upper mantle and are marked by systematic excesses of thorium-230 activity relative to the activity of its parent, uranium-238. Experimental measurements of the distribution of thorium and uranium between the melt and solid residue show that, of the major phases in the upper mantle, only garnet will retain uranium over thorium. This sense of fractionation, which is opposite to that caused by clinopyroxene-melt partitioning, is consistent with the thorium-230 excesses observed in young oceanic basalts. Thus, both MORBs and OIBs must begin partial melting in the garnet stability field or below about 70 kilometers. A calculation shows that the thorium-230-uranium-238 disequilibrium in MORBs can be attributed to dynamic partial melting beginning at 80 kilometers with a melt porosity of 0.2 percent or more. This result requires that melting beneath ridges occurs in a wide region and that the magma rises to the surface at a velocity of at least 0.9 meter per year.

  6. Acoustic gravity microseismic pressure signal at shallow stations

    NASA Astrophysics Data System (ADS)

    Peureux, Charles; Ardhuin, Fabrice; Royer, Jean-Yves

    2017-04-01

    It has been known for decades that the background permanent seismic noise, the so-called microseimic signal, is generated by the nonlinear interaction of oppositely travelling ocean surface waves [Longuet-Higgins 1951]. It can especially be used to infer the time variability of short ocean waves statistics [Peureux and Ardhuin 2016]. However, better quantitative estimates of the latter are made difficult due to a poor knowledge of the Earth's crust characteristics, whose coupling with acoustic modes can affect large uncertainties to the frequency response at the bottom of the ocean. The pressure field at depths less than an acoustic wave length to the surface is made of evanescent acoustic-gravity modes [Cox and Jacobs 1989]. For this reason, they are less affected by the ocean bottom composition. This near field is recorded and analyzed in the frequency range 0.1 to 0.5 Hz approximately, at two locations : at a shallow site in the North-East Atlantic continental shelf and a deep water site in the Southern Indian ocean, at the ocean bottom and 100 m below sea-surface and in the upper part of the water column respectively. Evanescent and propagating Rayleigh modes are compared against theoretical predictions. Comparisons against surface waves hindcast based on WAVEWATCH(R) III modelling framework help assessing its performances and can be used to help future model improvements. References Longuet-Higgins, M. S., A Theory of the Origin of Microseisms, Philos. Trans. Royal Soc. A, The Royal Society, 1950, 243, 1-3. Peureux, C. and Ardhuin, F., Ocean bottom pressure records from the Cascadia array and short surface gravity waves, J. Geophys. Res. Oceans, 2016, 121, 2862-2873. Cox, C. S. & Jacobs, D. C., Cartesian diver observations of double frequency pressure fluctuations in the upper levels of the ocean, Geophys. Res. Lett., 1989, 16, 807-810.

  7. The freshwater export from the Arctic Ocean and the circulation of liquid freshwater around Greenland - constraints, interactions & consequences

    NASA Astrophysics Data System (ADS)

    Rudels, Bert

    2010-05-01

    The freshwater added to the Arctic Ocean is stored as sea ice and as liquid freshwater residing primarily in the upper layers. This allows for simple zero order estimates of the liquid freshwater content and export based on rotationally controlled baroclinic flow. At present the freshwater outflow occurs on both sides of Greenland. In Fram Strait the sea ice export in the East Greenland Current is significantly larger than the liquid freshwater outflow, while the liquid freshwater export dominates in the Canadian Arctic Archipelago. Although the outflow in the upper layer and the freshwater export respond to short periodic wind events and longer periodic atmospheric circulation patterns, the long-term trend is controlled by the net freshwater supply - the freshwater input minus the ice export. As the ice formation and ice export are expected to diminish in a warmer climate the Canadian Arctic Archipelago, comprising several passages, should gradually carry more of the total Arctic Ocean freshwater outflow. However, the channels in the Canadian Arctic Archipelago discharge into the restricted Baffin, which also receives a part of the Fram Strait freshwater export via the West Greenland Current. In a situation with increased glacial melting and freshwater discharge from Greenland the density of the upper layer in Baffin Bay may decrease considerably. This would reduce the sea level difference between the Arctic Ocean and Baffin Bay and thus weaken the outflow through the Canadian Arctic Archipelago, in extreme cases perhaps even reverse the flow. This would shift the main Arctic Ocean liquid freshwater export from The Canadian Arctic Archipelago to Fram Strait. The zero order dynamics of the exchanges through the Canadian Arctic Archipelago and Baffin Bay are described and the possibility for a weakening of the outflow is examined.

  8. Observations of rapid changes in N:P ratio associated with non-Redfield nutrient utilization in mesoscale eddies in the upper ocean

    NASA Astrophysics Data System (ADS)

    Dai, M.; Xu, Y.; Kao, S. J.; Huang, B.; Sun, J.; Sun, Z.

    2016-02-01

    The concept of Redfield Ratio,or the ocean's nutrient stoichiometry has been fundamental to understanding the ocean biogeochemistry, reflecting the balance of elements between the organisms and the chemical environment and thereby modulating to a large extent the metabolic status of an ecosystem as well as the ecosystem structure. Nutrient stoichiometry of the deep ocean as a consequence of the organic matter regeneration therein is very much homogeneous worldwide while at the upper ocean, changes in nutrient stoichiometryas being frequently observed are to be better understood in terms of their mechanism. Here we report direct observations of fast on a weekly time scale and large fluctuations of nitrate+nitrite (N+N) to soluble reactive phosphorus (SRP) ratios in the ambient seawater in responding to development of meso-scale eddies in an oligotrophic sea, the South China Sea. At the spin up and/or matured stages of eddies, the N:P ratio fluctuated up to 44 in the upper 100 m water column. Along the decay of theeddy, N:P ratio declined back to 3- 20; similar to a "no eddy" condition of 4-22. Along with the fluctuations of N:P ratio was the diatom dominance with the eddy development, while the community structure of the region in typical or non-eddy conditions was predominated by the pico-/nano-plankton as revealed by both the taxa identification and biogenic silicate measurements. This fast growing diatom group apparently had lower nutrient utilization of nitrogenrelative to silicate and/or phosphorus, augmenting the ambient seawater N:P and N:Si. Such preferential P utilization therefore by the fast growing diatomsresulted in significant variations during the different stages of the eddy development.

  9. Effect of the Barrier Layer on the Upper Ocean Response to MJO Forcing

    NASA Astrophysics Data System (ADS)

    Bulusu, S.

    2014-12-01

    Recently, attention has been given to an upper ocean feature known as the Barrier Layer, which has been shown to impact meteorological phenomena from ENSO to tropical cyclones by suppressing vertical mixing, which reduces sea surface cooling and enhances surface heat fluxes. The calculation defines the Barrier Layer as the difference between the Isothermal Layer Depth (ILD) and Mixed Layer Depth (MLD). Proper representation of these features relies on precise observations of SSS to attain accurate measurements of the MLD and subsequently, the BLT. Compared to the many available in situ SSS measurements, the NASA Aquarius salinity mission currently obtains the closest observations to the true SSS. The role of subsurface features will be better understood through increased accuracy of SSS measurements. In this study BLT estimates are derived from satellite measurements using a multilinear regression model (MRM) in the Indian Ocean. The MRM relates BLT to satellite derived SSS, sea surface temperature (SST) and sea surface height anomalies (SSHA). Besides being a variable that responds passively to atmospheric conditions, SSS significantly controls upper ocean density and therefore the MLD. The formation of a Barrier Layer can lead to possible feedbacks that impact the atmospheric component of the Madden-Julian Oscillation (MJO), as stated as one of the three major hypotheses of the DYNAMO field campaign. This layer produces a stable stratification, reducing vertical mixing, which influences surface heat fluxes and thus could possibly impact atmospheric conditions during the MJO. Establishing the magnitude and extent of SSS variations during the MJO will be a useful tool for data assimilation into models to correctly represent both oceanic thermodynamic characteristics and atmospheric processes during intraseasonal variations.

  10. Late Pliocene paleoeco­logic reconstructions based on ostracode assemblages from the Sagavanirktok and Gubik formations, Alaskan North Slope

    USGS Publications Warehouse

    Brouwers, Elisabeth M.

    1994-01-01

    Shallow-marine ostracode assemblages from upper Pliocene sediments of the upper part of the Sagavanirktok Formation and lower part of the Gubik Formation record the last warm period that occurred before the onset of significant cooling of the Arctic Ocean and the initiation of Northern Hemisphere continental glaciation. The informally named Colvillian and Bigbendian transgressions represent the oldest deposits of the Gubik Formation and are dated, based on various lines of evidence, between 2.48 and 3 Ma. Ostracode faunas from the lower part of the Gubik Formation indicate a cold-temperate to subfrigid marine climate with summer bottom temperatures 1-4 C warmer than today. Deposits of the upper part of the Sagavanirktok Formation at Manning Point and Barter Island are older than Colvillian sediments but are believed to be late Pliocene in age and contain an ostracode fauna that has many species in common with the lower part of the Gubik Formation. The Sagavanirktok ostracode faunas indicate a cold-temperature to subfrigid marine climate, similar to that inferred for the lower part of the Gubik Formation, with summer bottom temperatures 1-3 C warmer than today. The opening of Bering Strait at about 3 Ma altered Arctic Ocean assemblage composition as Pacific species migrated into the Arctic and North Atlantic oceans. The admixture of evolutionarily distinct faunas from the Atlantic and Pacific oceans identifies Colvillian (and younger) faunas and provides a convenient reference horizon in the Alaskan fossil record. The marine climatic deterioration that followed the Bigbendian appears to have been abrupt and is documented by biotic turnover, with large numbers of species extinctions and first appearances of new species. The change in species composition can be attributed to the cooling of the Arctic Ocean during the late Pliocene.

  11. Evaluation of Global Ocean Data Assimilation Experiment Products on South Florida Nested Simulations with the Hybrid Coordinate Ocean Model

    DTIC Science & Technology

    2009-01-01

    Ocean Model 7:285-322 Halliwell GR Jr, Weisberg RH, Mayer DA (2003) A synthetic float analysis of upper-limb meridional overturning circulation ...encompasses a variety of coastal regions (the broad Southwest Florida shelf, the narrow Atlantic Keys shelf, the shallow Florida Bay, and Biscayne...products. The results indicate that the successful hindcasting of circulation patterns in a coastal area that is characterized by complex topography and

  12. Carbon fixation in oceanic crust: Does it happen, and is it important?

    NASA Astrophysics Data System (ADS)

    Orcutt, B.; Sylvan, J. B.; Rogers, D.; Lee, R.; Girguis, P. R.; Carr, S. A.; Jungbluth, S.; Rappe, M. S.

    2014-12-01

    The carbon sources supporting a deep biosphere in igneous oceanic crust, and furthermore the balance of heterotrophy and autotrophy, are poorly understood. When the large reservoir size of oceanic crust is considered, carbon transformations in this environment have the potential to significantly impact the global carbon cycle. Furthermore, igneous oceanic crust is the most massive potential habitat for life on Earth, so understanding the carbon sources for this potential biosphere are important for understanding life on Earth. Geochemical evidence suggests that warm and anoxic upper basement is net heterotrophic, but the balance of these processes in cooler and potentially oxic oceanic crust are poorly known. Here, we present data from stable carbon isotope tracer incubations to examine carbon fixation in basalts collected from the Loihi Seamount, the Juan de Fuca Ridge, and the western flank of the Mid-Atlantic Ridge, to provide a first order constraint on the rates of carbon fixation on basalts. These data will be compared to recently available assessments of carbon cycling rates in fluids from upper basement to synthesize our current state of understanding of the potential for carbon fixation and respiration in oceanic crust. Moreover, we will present new genomic data of carbon fixation genes observed in the basalt enrichments as well as from the subsurface of the Juan de Fuca Ridge flank, enabling identification of the microbes and metabolic pathways involved in carbon fixation in these systems.

  13. Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes

    NASA Astrophysics Data System (ADS)

    Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.

    2016-09-01

    The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (<1000 m) between 15° and ˜32°S, largely related to a weakening of the wind stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.

  14. History and evolution of Subduction in the Precambrium

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2013-12-01

    Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g. Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic subduction is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further subduction history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction changes to shallow underplating and buckling. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere starts to delaminate and drip-off. But the subduction style is not only a function of upper-mantle temperature but also strongly depends on the thickness of the subducting plate. If thinner present day oceanic plates are used in the Precambrian models, no shallow underplating is observed but steep subduction can be found up to an upper-mantle temperature of 200 K above present day values. Increasing oceanic plate thickness introduces a transition from steep to flat subduction at lower temperatures of around 150 K. Thicker oceanic plates in the Precambrium also agree with results from earlier studies, e.g. Abbott (1994). References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370. Subduction depends strongly on upper-mantle temperature. (a) Modern subduction with present day temperature gradients in upper-mantle and lithosphere. (b) Increase of temperature by 100 K at the lithosphere-asthenosphere boundary (LAB) leads to melting and drip-off of the of the slab-tip. (c) A temperature increase of 200 K leads to buckling of the subducting slab and Rayleigh-Taylor instabilities not only at the slab-tip but the whole LAB. At this stage subduction is no longer possible as the slab melts or breaks before it can be subducted into the mantle.

  15. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    PubMed

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  16. SAR imaging and hydrodynamic analysis of ocean bottom topographic waves

    NASA Astrophysics Data System (ADS)

    Zheng, Quanan; Li, Li; Guo, Xiaogang; Ge, Yong; Zhu, Dayong; Li, Chunyan

    2006-09-01

    The satellite synthetic aperture radar (SAR) images display wave-like patterns of the ocean bottom topographic features at the south outlet of Taiwan Strait (TS). Field measurements indicate that the most TS water body is vertically stratified. However, SAR imaging models available were developed for homogeneous waters. Hence explaining SAR imaging mechanisms of bottom features in a stratified ocean is beyond the scope of those models. In order to explore these mechanisms and to determine the quantitative relations between the SAR imagery and the bottom features, a two-dimensional, three-layer ocean model with sinusoidal bottom topographic features is developed. Analytical solutions and inferences of the momentum equations of the ocean model lead to the following conditions. (1) In the lower layer, the topography-induced waves (topographic waves hereafter) exist in the form of stationary waves, which satisfy a lower boundary resonance condition σ = kC0, here σ is an angular frequency of the stationary waves, k is a wavenumber of bottom topographic corrugation, and C0 is a background current speed. (2) As internal waves, the topographic waves may propagate vertically to the upper layer with an unchanged wavenumber k, if a frequency relation N3 < σ < N2 is satisfied, here N2 and N3 are the Brunt-Wäisälä frequencies of middle layer and upper layer, respectively. (3) The topographic waves are extremely amplified if an upper layer resonance condition is satisfied. The SAR image of topographic waves is derived on the basis of current-modulated small wave spectra. The results indicate that the topographic waves on SAR images have the same wavelength of bottom topographic corrugation, and the imagery brightness peaks are either inphase or antiphase with respect to the topographic corrugation, depending on a sign of a coupling factor. These theoretical predictions are verified by field observations. The results of this study provide a physical basis for quantitative interpretation of SAR images of bottom topographic waves in the stratified ocean.

  17. Rain Impact Model Assessment of Near-Surface Salinity Stratification Following Rainfall

    NASA Astrophysics Data System (ADS)

    Drushka, K.; Jones, L.; Jacob, M. M.; Asher, W.; Santos-Garcia, A.

    2016-12-01

    Rainfall over oceans produces a layer of fresher surface water, which can have a significant effect on the exchanges between the surface and the bulk mixed layer and also on satellite/in-situ comparisons. For satellite sea surface salinity (SSS) measurements, the standard is the Hybrid Coordinate Ocean Model (HYCOM), but there is a significant difference between the remote sensing sampling depth of 0.01 m and the typical range of 5-10 m of in-situ instruments. Under normal conditions the upper layer of the ocean is well mixed and there is uniform salinity; however, under rainy conditions, there is a dilution of the near-surface salinity that mixes downward by diffusion and by mechanical mixing (gravity waves/wind speed). This significantly modifies the salinity gradient in the upper 1-2 m of the ocean, but these transient salinity stratifications dissipate in a few hours, and the upper layer becomes well mixed at a slightly fresher salinity. Based upon research conducted within the NASA/CONAE Aquarius/SAC-D mission, a rain impact model (RIM) was developed to estimate the change in SSS due to rainfall near the time of the satellite observation, with the objective to identify the probability of salinity stratification. RIM uses HYCOM (which does not include the short-term rain effects) and a NOAA global rainfall product CMORPH to model changes in the near-surface salinity profile in 0.5 h increments. Based upon SPURS-2 experimental near-surface salinity measurements with rain, this paper introduces a term in the RIM model that accounts for the effect of wind speed in the mechanical mixing, which translates into a dynamic vertical diffusivity; whereby a Generalized Ocean Turbulence Model (GOTM) is used to investigate the response to rain events of the upper few meters of the ocean. The objective is to determine how rain and wind forcing control the thickness, stratification strength, and lifetime of fresh lenses and to quantify the impacts of rain-formed fresh lenses on the fresh bias in satellite retrievals of salinity. Results will be presented of comparisons of RIM measurements at depth of a few meters with measurements from in-situ salinity instruments. Also, analytical results will be shown, which assess the accuracy of RIM salinity profiles under a variety of rain rate, wind/wave conditions.

  18. Untangling Magmatic Processes and Hydrothermal Alteration of in situ Superfast Spreading Ocean Crust at ODP/IODP Site 1256 with Fuzzy c-means Cluster Analysis of Rock Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; Heslop, D.; Herrero-Bervera, E.; Acton, G.; Krasa, D.

    2014-12-01

    Ocean Drilling Program (ODP)/Integrated ODP (IODP) Hole 1256D (6.44.1' N, 91.56.1' W) on the Cocos Plate occurs in 15.2 Ma oceanic crust generated by superfast seafloor spreading. Presently, it is the only drill hole that has sampled all three oceanic crust layers in a tectonically undisturbed setting. Here we interpret down-hole trends in several rock-magnetic parameters with fuzzy c-means cluster analysis, a multivariate statistical technique. The parameters include the magnetization ratio, the coercivity ratio, the coercive force, the low-field susceptibility, and the Curie temperature. By their combined, multivariate, analysis the effects of magmatic and hydrothermal processes can be evaluated. The optimal number of clusters - a key point in the analysis because there is no a priori information on this - was determined through a combination of approaches: by calculation of several cluster validity indices, by testing for coherent cluster distributions on non-linear-map plots, and importantly by testing for stability of the cluster solution from all possible starting points. Here, we consider a solution robust if the cluster allocation is independent of the starting configuration. The five-cluster solution appeared to be robust. Three clusters are distinguished in the extrusive segment of the Hole that express increasing hydrothermal alteration of the lavas. The sheeted dike and gabbro portions are characterized by two clusters, both with higher coercivities than in lava samples. Extensive alteration, however, can obliterate magnetic property differences between lavas, dikes, and gabbros. The imprint of thermochemical alteration on the iron-titanium oxides is only partially related to the porosity of the rocks. All clusters display rock magnetic characteristics in line with a stable NRM. This implies that the entire sampled sequence of ocean crust can contribute to marine magnetic anomalies. Determination of the absolute paleointensity with thermal techniques is not straightforward because of the propensity of oxyexsolution during laboratory heating and/or the presence of intergrowths. The upper part of the extrusive sequence, the granoblastic portion of the dikes, and moderately altered gabbros may contain a comparatively uncontaminated thermoremanent magnetization.

  19. Statistics of velocity gradients in two-dimensional Navier-Stokes and ocean turbulence.

    PubMed

    Schorghofer, Norbert; Gille, Sarah T

    2002-02-01

    Probability density functions and conditional averages of velocity gradients derived from upper ocean observations are compared with results from forced simulations of the two-dimensional Navier-Stokes equations. Ocean data are derived from TOPEX satellite altimeter measurements. The simulations use rapid forcing on large scales, characteristic of surface winds. The probability distributions of transverse velocity derivatives from the ocean observations agree with the forced simulations, although they differ from unforced simulations reported elsewhere. The distribution and cross correlation of velocity derivatives provide clear evidence that large coherent eddies play only a minor role in generating the observed statistics.

  20. State of Climate 2011 - Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Siegel, D. A.; Antoine, D.; Behrenfeld, M. J.; d'Andon, O. H. Fanton; Fields, E.; Franz, B. A.; Goryl, P.; Maritorena, S.; McClain, C. R.; Wang, M.; hide

    2012-01-01

    Phytoplankton photosynthesis in the sun lit upper layer of the global ocean is the overwhelmingly dominant source of organic matter that fuels marine ecosystems. Phytoplankton contribute roughly half of the global (land and ocean) net primary production (NPP; gross photosynthesis minus plant respiration) and phytoplankton carbon fixation is the primary conduit through which atmospheric CO2 concentrations interact with the ocean s carbon cycle. Phytoplankton productivity depends on the availability of sunlight, macronutrients (e.g., nitrogen, phosphorous), and micronutrients (e.g., iron), and thus is sensitive to climate-driven changes in the delivery of these resources to the euphotic zone

  1. Three-dimensional shear wave velocity structure in the Atlantic upper mantle

    NASA Astrophysics Data System (ADS)

    James, Esther Kezia Candace

    Oceanic lithosphere constitutes the upper boundary layer of the Earth's convecting mantle. Its structure and evolution provide a vital window on the dynamics of the mantle and important clues to how the motions of Earth's surface plates are coupled to convection in the mantle below. The three-dimensional shear-velocity structure of the upper mantle beneath the Atlantic Ocean is investigated to gain insight into processes that drive formation of oceanic lithosphere. Travel times are measured for approximately 10,000 fundamental-mode Rayleigh waves, in the period range 30-130 seconds, traversing the Atlantic basin. Paths with >30% of their length through continental upper mantle are excluded to maximize sensitivity to the oceanic upper mantle. The lateral distribution of Rayleigh wave phase velocity in the Atlantic upper mantle is explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Phase velocity shows a strong dependence on seafloor age, and removing age-dependent velocity from the 2-D maps highlights areas of anomalously low velocity, almost all of which are proximal to locations of hotspot volcanism. Depth-dependent variations in vertically-polarized shear velocity (Vsv) are determined with two sets of 3-D models: a layered model that requires constant VSV in each depth layer, and a splined model that allows VSV to vary continuously with depth. At shallow depths (˜75 km) the seismic structure shows the expected dependence on seafloor age. At greater depths (˜200 km) high-velocity lithosphere is found only beneath the oldest seafloor; velocity variations beneath younger seafloor may result from temperature or compositional variations within the asthenosphere. The age-dependent phase velocities are used to constrain temperature in the mantle and show that, in contrast to previous results for the Pacific, phase velocities for the Atlantic are not consistent with a half-space cooling model but are best explained by a plate-cooling model with thickness of 75 km and mantle temperature of 1400°C. Comparison with data such as basalt chemistry and seafloor elevation helps to separate thermal and compositional effects on shear velocity.

  2. Warm ocean processes and carbon cycling in the Eocene.

    PubMed

    John, Eleanor H; Pearson, Paul N; Coxall, Helen K; Birch, Heather; Wade, Bridget S; Foster, Gavin L

    2013-10-28

    Sea surface and subsurface temperatures over large parts of the ocean during the Eocene epoch (55.5-33.7 Ma) exceeded modern values by several degrees, which must have affected a number of oceanic processes. Here, we focus on the effect of elevated water column temperatures on the efficiency of the biological pump, particularly in relation to carbon and nutrient cycling. We use stable isotope values from exceptionally well-preserved planktonic foraminiferal calcite from Tanzania and Mexico to reconstruct vertical carbon isotope gradients in the upper water column, exploiting the fact that individual species lived and calcified at different depths. The oxygen isotope ratios of different species' tests are used to estimate the temperature of calcification, which we converted to absolute depths using Eocene temperature profiles generated by general circulation models. This approach, along with potential pitfalls, is illustrated using data from modern core-top assemblages from the same area. Our results indicate that, during the Early and Middle Eocene, carbon isotope gradients were steeper (and larger) through the upper thermocline than in the modern ocean. This is consistent with a shallower average depth of organic matter remineralization and supports previously proposed hypotheses that invoke high metabolic rates in a warm Eocene ocean, leading to more efficient recycling of organic matter and reduced burial rates of organic carbon.

  3. Study of the Formation and Evolution of Precipitation Induced Sea Surface Salinity Minima in the Tropical Pacific Using HYCOM

    NASA Astrophysics Data System (ADS)

    Gallagher, R. L.

    2016-02-01

    During heavy rain events in the tropics, areas of relatively low salinity water collect on the ocean surface. Rainfall events increase the buoyancy of the ocean surface and impact upper ocean salinity and temperature profiles. This resists downward mixing and as a result can persist (SPURS II planning group, 2012; Oceanography 28(1) 150-159). Salinity at the surface adjusts through advective and diffusive mixing processes (Scott, J. et al, 2013; AGU Fall meeting abstracts). This project investigates the upper ocean salinity response in both advection and diffusion dominated regions. The changes in ocean surface salinity are tracked before, during, and after rainfall events. Data from a standard oceanographic model, HYCOM, are used to identify areas where each surface process is significant. Rainfall events are identified using a TRMM dataset. It provides a tropical rainfall analysis which uses amalgamated satellite data to develop detailed global precipitation grids between 50 o north and south latitude. TRMM is useful due its high temporal and spatial resolutions. The salinity response in HYCOM is tested against simple theoretical advective and diffusive mixing models. The magnitude of sea surface salinity minima, their persistence and the precision by which HYCOM can resolve these phenomena are of interest.

  4. Observing the seasonal cycle of the upper ocean in the Ross Sea, Antarctica, with autonomous profiling floats

    NASA Astrophysics Data System (ADS)

    Porter, D. F.; Springer, S. R.; Padman, L.; Fricker, H. A.; Bell, R. E.

    2017-12-01

    The upper layers of the Southern Ocean where it meets the Antarctic ice sheet undergoes a large seasonal cycle controlled by surface radiation and by freshwater fluxes, both of which are strongly influenced by sea ice. In regions where seasonal sea ice and icebergs limit use of ice-tethered profilers and conventional moorings, autonomous profiling floats can sample the upper ocean. The deployment of seven Apex floats (by sea) and six ALAMO floats (by air) provides unique upper ocean hydrographic data in the Ross Sea close to the Ross Ice Shelf front. A novel choice of mission parameters - setting parking depth deeper than the seabed - limits their drift, allowing us to deploy the floats close to the ice shelf front, while sea ice avoidance algorithms allow the floats to to sample through winter under sea ice. Hydrographic profiles show the detailed development of the seasonal mixed layer close to the Ross front, and interannual variability of the seasonal mixed layer and deeper water masses on the central Ross Sea continental shelf. After the sea ice breakup in spring, a warm and fresh surface mixed layer develops, further warming and deepening throughout the summer. The mixed layer deepens, with maximum temperatures exceeding 0ºC in mid-February. By March, the surface energy budget becomes negative and sea ice begins to form, creating a cold, saline and dense surface layer. Once these processes overcome the stable summer stratification, convection erodes the surface mixed layer, mixing some heat downwards to deeper layers. There is considerable interannual variability in the evolution and strength of the surface mixed layer: summers with shorter ice-free periods result in a cooler and shallower surface mixed layer, which accumulates less heat than the summers with longer ice-free periods. Early ice breakup occurred in all floats in 2016/17 summer, enhancing the absorbed solar flux leading to a warmer surface mixed layer. Together, these unique measurements from autonomous profilers provide insight into the hydrographic state of the Ross Sea at the start of the spring period of sea-ice breakup, and how ocean mixing and sea ice interact to initiate the summer open-water season.

  5. A global ocean climatological atlas of the Turner angle: implications for double-diffusion and water-mass structure

    NASA Astrophysics Data System (ADS)

    You, Yuzhu

    2002-11-01

    The 1994 Levitus climatological atlas is used to calculate the Turner angle (named after J. Stewart Turner) to examine which oceanic water masses are favorable for double-diffusion in the form of diffusive convection or salt-fingering and which are doubly stable. This atlas complements the Levitus climatology. It reveals the major double-diffusive signals associated with large-scale water-mass structure. In total, about 44% of the oceans display double-diffusion, of which 30% is salt-fingering and 14% is diffusive double-diffusion. Results show that various central and deep waters are favorable for salt-fingering. The former is due to positive evaporation minus precipitation, and the latter is due to thermohaline circulation, i.e. the southward spreading of relatively warm, salty North Atlantic Deep Water (NADW) overlying cold, fresh Antarctic Bottom Water. In the northern Indian Ocean and eastern North Atlantic, favorable conditions for salt-fingering are found throughout the water column. The Red Sea (including the Persian Gulf) and Mediterranean Sea are the sources of warm, salty water for the ocean. As consequence, temperature and salinity in these outflow regions both decrease from the sea surface to the bottom. On the other hand, ocean currents are in general sluggish in these regions. In the polar and subpolar regions of Arctic and Antarctic, Okhotsk Sea, Gulf of Alaska, the subpolar gyre of the North Pacific, the Labrador Sea, and the Norwegian Sea, the upper layer water is favorable for diffusive convection because of high latitude surface cooling and ice melting. Weak and shallow diffusive convection is also found throughout tropical regions and the Bay of Bengal. The former is due to excessive precipitation over evaporation and rain cooling, and the latter is due to both precipitation and river runoff. Diffusive convection in the ocean's interior is unique to the South Atlantic between Antarctic Intermediate Water and upper NADW (uNADW). It is the consequence of the intrusive equatorward flow of upper Circumpolar Deep Water, which carries with it the minimum temperature and very low salinity overlying warm, salty uNADW.

  6. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    PubMed Central

    Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K.; Jakuba, Michael V.; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L.; McFarland, Christopher J.; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R.

    2015-01-01

    Abstract The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea‐ice‐melt and under‐ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under‐ice radiance and irradiance using the new Nereid Under‐Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H‐ROV) designed for both remotely piloted and autonomous surveys underneath land‐fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under‐ice optical measurements with three dimensional under‐ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice‐thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under‐ice light field on small scales (<1000 m2), while sea ice‐thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo. PMID:27660738

  7. Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

    PubMed

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m 2 ), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  8. Upper Mantle Discontinuity Structure Beneath the Western Atlantic Ocean and Eastern North America from SS Precursors

    NASA Astrophysics Data System (ADS)

    Schmerr, N. C.; Beghein, C.; Kostic, D.; Baldridge, A. M.; West, J. D.; Nittler, L. R.; Bull, A. L.; Montesi, L.; Byrne, P. K.; Hummer, D. R.; Plescia, J. B.; Elkins-Tanton, L. T.; Lekic, V.; Schmidt, B. E.; Elkins, L. J.; Cooper, C. M.; ten Kate, I. L.; Van Hinsbergen, D. J. J.; Parai, R.; Glass, J. B.; Ni, J.; Fuji, N.; McCubbin, F. M.; Michalski, J. R.; Zhao, C.; Arevalo, R. D., Jr.; Koelemeijer, P.; Courtier, A. M.; Dalton, H.; Waszek, L.; Bahamonde, J.; Schmerr, B.; Gilpin, N.; Rosenshein, E.; Mach, K.; Ostrach, L. R.; Caracas, R.; Craddock, R. A.; Moore-Driskell, M. M.; Du Frane, W. L.; Kellogg, L. H.

    2015-12-01

    Seismic discontinuities within the mantle arise from a wide range of mechanisms, including changes in mineralogy, major element composition, melt content, volatile abundance, anisotropy, or a combination of the above. In particular, the depth and sharpness of upper mantle discontinuities at 410 and 660 km depth are attributed to solid-state phase changes sensitive to both mantle temperature and composition, where regions of thermal heterogeneity produce topography and chemical heterogeneity changes the impedance contrast across the discontinuity. Seismic mapping of this topography and sharpness thus provides constraint on the thermal and compositional state of the mantle. The EarthScope USArray is providing unprecedented access to a wide variety of new regions previously undersampled by the SS precursors. This includes the boundary between the oceanic plate in the western Atlantic Ocean and continental margin of eastern North America. Here we use a seismic array approach to image the depth, sharpness, and topography of the upper mantle discontinuities, as well as other possible upper mantle reflectors beneath this region. This array approach utilizes seismic waves that reflect off the underside of a mantle discontinuity and arrive several hundred seconds prior to the SS seismic phase as precursory energy. In this study, we collected high-quality broadband data SS precursors data from shallow focus (< 30 km deep), mid-Atlantic ridge earthquakes recorded by USArray seismometers in Alaska. We generated 4th root vespagrams to enhance the SS precursors and determine how they sample the mantle. Our data show detection of localized structure on the discontinuity boundaries as well as additional horizons, such as the X-discontinuity and a potential reflection from a discontinuity near the depth of the lithosphere-asthenosphere boundary. These structures are related to the transition from predominantly old ocean lithosphere to underlying continental lithosphere, as while deeper reflectors are associated with the subduction of the ancient Farallon slab. A comparison of the depth of upper mantle discontinuities to changes in seismic velocity and anisotropy will further quantify the relationship to mantle flow, compositional layering, and phases changes.

  9. Global Ocean Forecast System V3.0 Validation Test Report Addendum: Addition of the Diurnal Cycle

    DTIC Science & Technology

    2010-11-05

    upper ocean forming a thin mixed layer and have a profound impact on the sound speed profile and surface duct (e.g. Urick , 1983). When the solar...7320--10-9236. Urick , R.J., 1983: Principles of underwater sound, 3 rd Edition. Peninsula Publishing, Los Altos, California, 423 pp. 11 7.0

  10. Atmosphere, ocean, and land: Critical gaps in Earth system models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Hartley, Dana

    1992-01-01

    We briefly review current knowledge and pinpoint some of the major areas of uncertainty for the following fundamental processes: (1) convection, condensation nuclei, and cloud formation; (2) oceanic circulation and its coupling to the atmosphere and cryosphere; (3) land surface hydrology and hydrology-vegetation coupling; (4) biogeochemistry of greenhouse gases; and (5) upper atmospheric chemistry and circulation.

  11. Surface Wind and Upper-Ocean Variability Associated with the Madden-Julian Oscillation Simulated by the Coupled Ocean-Atmosphere Mesoscale Prediction System

    DTIC Science & Technology

    2013-07-01

    observed data at one location include variability caused by small -scale atmospheric convec- tion and wind variations that cannot be resolved by the... data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this...high-resolution nested grid (9 km) for the atmospheric component is used for the central Indian Ocean. While observational data are assimilated into the

  12. A neural network to retrieve the mesoscale instantaneous latent heat flux over oceans from SSM/I observations

    NASA Technical Reports Server (NTRS)

    Bourras, D.; Eymard, L.; Liu, W. T.

    2000-01-01

    The turbulent latent and sensible heat fluxes are necessary to study heat budget of the upper ocean or initialize ocean general circulation models. In order to retrieve the latent heat flux from satellite observations authors mostly use a bulk approximation of the flux whose parameters are derived from different instrument. In this paper, an approach based on artificial neural networks is proposed and compared to the bulk method on a global data set and 3 local data sets.

  13. Character and dynamics of the Red Sea and Persian Gulf outflows

    NASA Astrophysics Data System (ADS)

    Bower, Amy S.; Hunt, Heather D.; Price, James F.

    2000-03-01

    Historical hydrographic data and a numerical plume model are used to investigate the initial transformation, dynamics, and spreading pathways of Red Sea and Persian Gulf outflow waters where they enter the Indian Ocean. The annual mean transport of these outflows is relatively small (<0.4 Sv), but they have a major impact on the hydrographic properties of the Indian Ocean at the thermocline level because of their high salinity. They are different from other outflows in that they flow over very shallow sills (depth < 200 m) into a highly stratified upper ocean environment and they are located at relatively low latitudes (12°N and 26°N). Furthermore, the Red Sea outflow exhibits strong seasonal variability in transport. The four main results of this study are as follows. First, on the basis of observed temperature-salinity (T-S) characteristics of the outflow source and product waters we estimate that the Red Sea and Persian Gulf outflows are diluted by factors of ˜2.5 and 4, respectively, as they descend from sill depth to their depth of neutral buoyancy. The high-dilution factor for the Persian Gulf outflow results from the combined effects of large initial density difference between the outflow source water and oceanic water and low outflow transport. Second, the combination of low latitude and low outflow transport (and associated low outflow thickness) results in Ekman numbers for both outflows that are O(1). This indicates that they should be thought of as frictional density currents modified by rotation rather than geostrophic density currents modified by friction. Third, different mixing histories along the two channels that direct Red Sea outflow water into the open ocean result in product waters with significantly different densities, which probably contributes to the multilayered structure of the Red Sea product waters. In both outflows, seasonal variations in source water and oceanic properties have some effect on the T-S of the product waters, but they have only a minor impact on equilibrium depth. Fourth, product waters from both outflows are advected away from the sill region in narrow boundary currents, at least during part of the year. At other times, the product water appears more in isolated patches.

  14. Aircraft laser sensing of sound velocity in water - Brillouin scattering

    NASA Technical Reports Server (NTRS)

    Hickman, G. D.; Harding, John M.; Carnes, Michael; Pressman, AL; Kattawar, George W.; Fry, Edward S.

    1991-01-01

    A real-time data source for sound speed in the upper 100 m has been proposed for exploratory development. This data source is planned to be generated via a ship- or aircraft-mounted optical pulsed laser using the spontaneous Brillouin scattering technique. The system should be capable (from a single 10 ns 500 mJ pulse) of yielding range resolved sound speed profiles in water to depths of 75-100 m to an accuracy of 1 m/s. The 100 m profiles will provide the capability of rapidly monitoring the upper-ocean vertical structure. They will also provide an extensive, subsurface-data source for existing real-time, operational ocean nowcast/forecast systems.

  15. Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

    DTIC Science & Technology

    2015-10-08

    Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input...for public release; distribution is unlimited. Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere Sharon

  16. Divergent plate motion drives rapid exhumation of (ultra)high pressure rocks

    NASA Astrophysics Data System (ADS)

    Liao, Jie; Malusà, Marco G.; Zhao, Liang; Baldwin, Suzanne L.; Fitzgerald, Paul G.; Gerya, Taras

    2018-06-01

    Exhumation of (ultra)high pressure [(U)HP] rocks by upper-plate divergent motion above an unbroken slab, first proposed in the Western Alps, has never been tested by numerical methods. We present 2D thermo-mechanical models incorporating subduction of a thinned continental margin beneath either a continental or oceanic upper plate, followed by upper-plate divergent motion away from the lower plate. Results demonstrate how divergent plate motion may trigger rapid exhumation of large volumes of (U)HP rocks directly to the Earth's surface, without the need for significant overburden removal by erosion. Model exhumation paths are fully consistent with natural examples for a wide range of upper-plate divergence rates. Exhumation rates are systematically higher than the divergent rate imposed to the upper plate, and the modeled size of exhumed (U)HP domes is invariant for different rates of upper-plate divergence. Major variations are instead predicted at depth for differing model scenarios, as larger amounts of divergent motion may allow mantle-wedge exhumation to shallow depth under the exhuming domes. The transient temperature increase, due to ascent of mantle-wedge material in the subduction channel, has a limited effect on exhumed continental (U)HP rocks already at the surface. We test two examples, the Cenozoic (U)HP terranes of the Western Alps (continental upper plate) and eastern Papua New Guinea (oceanic upper plate). The good fit between model predictions and the geologic record in these terranes encourages the application of these models globally to pre-Cenozoic (U)HP terranes where the geologic record of exhumation is only partly preserved.

  17. Using Research Data to Stimulate Critical Thinking in Undergraduate Geoscience Courses: Examples and Future Directions

    NASA Astrophysics Data System (ADS)

    Reed, D. L.; Moore, G. F.; Bangs, N. L.; Tobin, H.

    2007-12-01

    The results of major research initiatives, such as NSF-MARGINS, IODP and its predecessors DSDP and ODP, Ridge 2000, and NOAA's Ocean Explorer and Vents Programs provide a rich library of resources for inquiry-based learning in undergraduate classes in the geosciences. These materials are scalable for use in general education courses for the non-science major to upper division major and graduate courses, which are both content-rich and research-based. Examples of these materials include images and animations drawn from computer presentations at research workshops and audio/video clips from web sites, as well as data repositories, which can be accessed through GeoMapApp, a data exploration and visualization tool developed as part of the Marine Geoscience Data System by researchers at the LDEO (http://www.geomapapp.org/). Past efforts have focused on recreating sea-going research experiences by integrating and repurposing these data in web-based virtual environments to stimulate active student participation in laboratory settings and at a distance over the WWW. Virtual expeditions have been created based on multibeam mapping of the seafloor near the Golden Gate, bathymetric transects of the major ocean basins, subduction zone seismicity and related tsunamis, water column mapping and submersible dives at hydrothermal vents, and ocean drilling of deep-sea sediments to explore climate change. Students also make use of multichannel seismic data provided through the Marine Seismic Data Center of UTIG to study subduction zone processes at convergent plate boundaries. We will present the initial stages of development of a web-based virtual expedition for use in undergraduate classes, based on a recent 3-D seismic survey associated with the NanTroSEIZE program of NSF-MARGINS and IODP to study the properties of the plate boundary fault system in the upper limit of the seismogenic zone off Japan.

  18. On the effects of ENSO on ocean biogeochemistry in the Northern Humboldt Current System (NHCS): A modeling study

    NASA Astrophysics Data System (ADS)

    Mogollón, Rodrigo; Calil, Paulo H. R.

    2017-08-01

    The response of the ocean biogeochemistry to intense El Niño Southern Oscillation (ENSO) events in the Northern Humboldt Current System (NHCS) is assessed with an eddy-resolving coupled physical-biogeochemical model. El Niño (EN) 1997-1998 and La Niña (LN) 1999-2000 are well reproduced, inducing large spatial and temporal variability of biogeochemical properties at three coastal upwelling centers along the Peruvian coast (Chimbote 9.4°S, Callao 12.1°S, and Pisco 14°S). During EN, the upper limit of the Oxygen Minimum Zone (OMZ) experiences an offshore displacement of, approximately, 60 km and a deepening of, approximately, 150 m when compared to neutral-ENSO conditions, thus ventilating the upper 100 m of the water column. In contrast, during LN, the OMZ tongue outcrops over the continental shelf deoxygenating the water column at all locations. During LN, at the southernmost location, enhanced Eddy Kinetic Energy (EKE) induces a leaking of the coastal nutrient inventory by horizontally advecting nitrogen from the nearshore region into the oligotrophic ocean. This leads to a reduction of biological production in the coastal zone. During EN, nitrification is an order of magnitude larger than denitrification in supplying the nitrite coastal pool. During LN peak, nitrification is reduced by 80%, while denitrification becomes equally important, evidencing a coupling between these two oxygen-dependent processes. The nitrogen removal due to suboxic activity is mostly controlled by the Anaerobic Ammonium Oxidation (Anammox) in the southern domain during neutral-ENSO conditions. Our results show that during EN, denitrification contributes with 60% of the total nitrogen removal. In contrast, Anammox contributes with 70% during LN. The outgassing of nitrous oxide (N2O), an intermediate product of denitrification, is reduced and enhanced during EN and LN, respectively, and it is strongly modulated by the spatiotemporal variability of oxygen in the environment.

  19. Geophysical Investigations of Crustal and Upper Mantle Structure of Oceanic Intraplate Volcanoes (OIVs)

    NASA Astrophysics Data System (ADS)

    Robinson, A. H.; Peirce, C.; Funnell, M.; Watts, A. B.; Grevemeyer, I.

    2016-12-01

    Oceanic intraplate volcanoes (OIVs) represent a record of the modification of the oceanic crust by volcanism related to a range of processes including hot-spots, small scale mantle convection, and localised lithospheric extension. Geophysical studies of OIVs show a diversity in crustal and upper mantle structures, proposed to exist on a spectrum between two end-members where the main control is the age of the lithosphere at the time of volcanism. This hypothesis states that where the lithosphere is older, colder, and thicker it is more resistant to vertical magmatism than younger, hotter, thinner lithosphere. It is suggested that the Moho acts as a density filter, permitting relatively buoyant magma to vertically intrude the crust, but preventing denser magma from ascending to shallow levels. A key control may therefore be the melting depth, known to affect magma composition, and itself related to lithosphere age. Combined geophysical approaches allow us to develop robust models for OIV crustal structures with quantifiable resolution and uncertainty. As a case study, we present results from a multi-approach geophysical experiment at the Louisville Ridge Seamount Chain, believed to have formed on young (<10 Ma) lithosphere, which aimed at characterising the along-ridge crustal structure. The wide-angle seismic crustal model, generated by independent forward and inverse travel-time modelling of picked arrivals, is tested against reflection and gravity data. We compare our observations with studies of other OIVs to test whether lithospheric age controls OIV structure. Comparisons are limited by the temporal and spatial distribution of lithosphere and volcano ages, but suggest the hypothesis does not hold for all OIV features. While age may be the main control on OIV structure, as it determines lithosphere thermal and mechanical properties, other factors such as thermal rejuvenation, mechanical weakening, and volcano load size and distribution, may also come into play.

  20. Acoustic Observation of Living Organisms Reveals the Upper Limit of the Oxygen Minimum Zone

    PubMed Central

    Bertrand, Arnaud; Ballón, Michael; Chaigneau, Alexis

    2010-01-01

    Background Oxygen minimum zones (OMZs) are expanding in the World Ocean as a result of climate change and direct anthropogenic influence. OMZ expansion greatly affects biogeochemical processes and marine life, especially by constraining the vertical habitat of most marine organisms. Currently, monitoring the variability of the upper limit of the OMZs relies on time intensive sampling protocols, causing poor spatial resolution. Methodology/Principal Findings Using routine underwater acoustic observations of the vertical distribution of marine organisms, we propose a new method that allows determination of the upper limit of the OMZ with a high precision. Applied in the eastern South-Pacific, this original sampling technique provides high-resolution information on the depth of the upper OMZ allowing documentation of mesoscale and submesoscale features (e.g., eddies and filaments) that structure the upper ocean and the marine ecosystems. We also use this information to estimate the habitable volume for the world's most exploited fish, the Peruvian anchovy (Engraulis ringens). Conclusions/Significance This opportunistic method could be implemented on any vessel geared with multi-frequency echosounders to perform comprehensive high-resolution monitoring of the upper limit of the OMZ. Our approach is a novel way of studying the impact of physical processes on marine life and extracting valid information about the pelagic habitat and its spatial structure, a crucial aspect of Ecosystem-based Fisheries Management in the current context of climate change. PMID:20442791

  1. Effects of surface wave breaking on the oceanic boundary layer

    NASA Astrophysics Data System (ADS)

    He, Hailun; Chen, Dake

    2011-04-01

    Existing laboratory studies suggest that surface wave breaking may exert a significant impact on the formation and evolution of oceanic surface boundary layer, which plays an important role in the ocean-atmosphere coupled system. However, present climate models either neglect the effects of wave breaking or treat them implicitly through some crude parameterization. Here we use a one-dimensional ocean model (General Ocean Turbulence Model, GOTM) to investigate the effects of wave breaking on the oceanic boundary layer on diurnal to seasonal time scales. First a set of idealized experiments are carried out to demonstrate the basic physics and the necessity to include wave breaking. Then the model is applied to simulating observations at the northern North Sea and the Ocean Weather Station Papa, which shows that properly accounting for wave breaking effects can improve model performance and help it to successfully capture the observed upper ocean variability.

  2. Craton destruction and related resources

    NASA Astrophysics Data System (ADS)

    Zhu, Rixiang; Zhang, Hongfu; Zhu, Guang; Meng, Qingren; Fan, Hongrui; Yang, Jinhui; Wu, Fuyuan; Zhang, Zhiyong; Zheng, Tianyu

    2017-10-01

    Craton destruction is a dynamic event that plays an important role in Earth's evolution. Based on comprehensive observations of many studies on the North China Craton (NCC) and correlations with the evolution histories of other cratons around the world, craton destruction has be defined as a geological process that results in the total loss of craton stability due to changes in the physical and chemical properties of the involved craton. The mechanisms responsible for craton destruction would be as the follows: (1) oceanic plate subduction; (2) rollback and retreat of a subducting oceanic plate; (3) stagnation and dehydration of a subducting plate in the mantle transition zone; (4) melting of the mantle above the mantle transition zone caused by dehydration of a stagnant slab; (5) non-steady flow in the upper mantle induced by melting, and/or (6) changes in the nature of the lithospheric mantle and consequent craton destruction caused by non-steady flow. Oceanic plate subduction itself does not result in craton destruction. For the NCC, it is documented that westward subduction of the paleo-Pacific plate should have initiated at the transition from the Middle-to-Late Jurassic, and resulted in the change of tectonic regime of eastern China. We propose that subduction, rollback and retreat of oceanic plates and dehydration of stagnant slabs are the main dynamic factors responsible for both craton destruction and concentration of mineral deposits, such as gold, in the overriding continental plate. Based on global distribution of gold deposits, we suggest that convergent plate margins are the most important setting for large gold concentrations. Therefore, decratonic gold deposits appear to occur preferentially in regions with oceanic subduction and overlying continental lithospheric destruction/modification/growth.

  3. The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, R.; Springston, S.; Mechoso, C. R.

    2011-01-21

    The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacificmore » (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument payloads and key mission strategies for these platforms and give a summary of the missions conducted.« less

  4. Axial crustal structure of the Costa Rica Rift: Implications for along-axis hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Tong, V.; Hobbs, R. W.; Peirce, C.; Lowell, R. P.; Haughton, G.; Murton, B. J.; Morales Maqueda, M. A.; Harris, R. N.; Robinson, A. H.

    2017-12-01

    In 2015, a multidisciplinary geophysical cruise surveyed the Costa Rica Rift (CRR) in the Panama Basin of the equatorial East Pacific, acquiring a grid of multichannel seismic and wide-angle profiles to determine the mode of oceanic crustal accretion at intermediate-spreading ridges, and how the crustal structure may be influenced by hydrothermal fluid flow. Analysis of 69,000 P-wave first arrivals recorded by 25 ocean-bottom seismographs deployed over a 20 × 20 km area that straddles the ridge axis, reveals a 3D velocity-depth model of upper crustal structure. In particular, the model shows a low velocity anomaly that extends to 2 km below seabed centred on a small-offset non-transform discontinuity (NTD), and a pattern of increasing velocity with distance off-axis that may reflect changes in porosity and permeability in layer 2 of the crust. Assuming the upper crustal velocity anomalies are linked with porosity and hence represent the ability of fluid to flow, comparison of the tomographic model with the volcanic seabed morphology suggests that the broad low velocity zone beneath the NTD may be a region of extensive fracturing. Hence, we infer that this region may provide a primary pathway for the recharge of seawater into the crust. Further west along the axis, beneath the bathymetric dome, which is the shallowest portion along the axis, the low-velocity anomaly is less pronounced, suggesting that fractures are less open and that fluid-rock interaction has encouraged mineral precipitation and alteration, as a result of a longer established hydrothermal fluid flow driven by the axial magma lens observed beneath it. This interpretation is supported by the presence of a plume from an active hydrothermal vent system. Hence, we infer that the variable velocity structure of the upper crust of the CRR is a proxy that reflects the primary porosity, faulting and fracturing related to phases of magma-driven accretion and/or ridge geometry re-adjustment, and that there is along-axis hydrothermal circulation transferring heat and impacting the properties of newly accreted oceanic crust. This research is part of a major, interdisciplinary NERC-funded collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).

  5. Observed Hydrographic Variability Connecting the Continental Shelf to the Marine-Terminating Glaciers of Uummannaq Bay, West Greenland

    NASA Astrophysics Data System (ADS)

    Sutherland, D.; de Steur, L.; Nash, J. D.; Shroyer, E.; Mickett, J.

    2016-02-01

    Large-scale changes in ocean forcing, such as increased upper ocean heat content or variations in subpolar gyre circulation, are commonly implicated as factors causing the widespread retreat of Greenland's outlet glaciers. A recent surge in observational and modeling studies has shown how temperature increases and a changing subglacial discharge determine melt rates at glacier termini, driving a vigorous buoyancy-driven circulation. However, we still lack knowledge of what controls ambient water properties in the fjords themselves, i.e., how does the subpolar gyre communicate across the continental shelf towards the glacier termini. Here, we present a two-year mooring record of hydrographic variability in the Uummannaq Bay region of west Greenland. We focus on observations inside Rink Isbræ and Kangerlussuup Sermia fjords coupled with an outer mooring located in the submarine trough cutting across the shelf. We show how water properties vary seasonally inside the fjords and how they connect to variability in the trough. The two fjords exhibit large differences in temperature and salinity variability, which is possibly due to differences in the plume circulation driven by the glaciers themselves. We put these limited observations in temporal context by comparing them with observations from the nearby Davis Strait time array, and spatial context by comparing them with recent mooring records from Sermilik Fjord in southeast Greenland.

  6. A comparison of hydrographically and optically derived mixed layer depths

    USGS Publications Warehouse

    Zawada, D.G.; Zaneveld, J.R.V.; Boss, E.; Gardner, W.D.; Richardson, M.J.; Mishonov, A.V.

    2005-01-01

    Efforts to understand and model the dynamics of the upper ocean would be significantly advanced given the ability to rapidly determine mixed layer depths (MLDs) over large regions. Remote sensing technologies are an ideal choice for achieving this goal. This study addresses the feasibility of estimating MLDs from optical properties. These properties are strongly influenced by suspended particle concentrations, which generally reach a maximum at pycnoclines. The premise therefore is to use a gradient in beam attenuation at 660 nm (c660) as a proxy for the depth of a particle-scattering layer. Using a global data set collected during World Ocean Circulation Experiment cruises from 1988-1997, six algorithms were employed to compute MLDs from either density or temperature profiles. Given the absence of published optically based MLD algorithms, two new methods were developed that use c660 profiles to estimate the MLD. Intercomparison of the six hydrographically based algorithms revealed some significant disparities among the resulting MLD values. Comparisons between the hydrographical and optical approaches indicated a first-order agreement between the MLDs based on the depths of gradient maxima for density and c660. When comparing various hydrographically based algorithms, other investigators reported that inherent fluctuations of the mixed layer depth limit the accuracy of its determination to 20 m. Using this benchmark, we found a ???70% agreement between the best hydrographical-optical algorithm pairings. Copyright 2005 by the American Geophysical Union.

  7. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    DOE PAGES

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; ...

    2016-08-01

    Continued oceanic uptake of anthropogenic CO 2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representativemore » Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (Ω Ar) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H +] are most sensitive to parameters that directly affect atmospheric CO 2 concentrations – Q 10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in Ω Ar saturation levels are sensitive to changes in ocean salinity and Q 10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations and large-scale climate models under multiple emission pathways.« less

  8. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit

    Continued oceanic uptake of anthropogenic CO 2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representativemore » Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (Ω Ar) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H +] are most sensitive to parameters that directly affect atmospheric CO 2 concentrations – Q 10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in Ω Ar saturation levels are sensitive to changes in ocean salinity and Q 10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations and large-scale climate models under multiple emission pathways.« less

  9. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit

    Continued oceanic uptake of anthropogenic CO 2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representativemore » Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (Ω Ar) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H +] are most sensitive to parameters that directly affect atmospheric CO 2 concentrations – Q 10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in Ω Ar saturation levels are sensitive to changes in ocean salinity and Q 10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations and large-scale climate models under multiple emission pathways.« less

  10. Role of Ocean Initial Conditions to Diminish Dry Bias in the Seasonal Prediction of Indian Summer Monsoon Rainfall: A Case Study Using Climate Forecast System

    NASA Astrophysics Data System (ADS)

    Koul, Vimal; Parekh, Anant; Srinivas, G.; Kakatkar, Rashmi; Chowdary, Jasti S.; Gnanaseelan, C.

    2018-03-01

    Coupled models tend to underestimate Indian summer monsoon (ISM) rainfall over most of the Indian subcontinent. Present study demonstrates that a part of dry bias is arising from the discrepancies in Oceanic Initial Conditions (OICs). Two hindcast experiments are carried out using Climate Forecast System (CFSv2) for summer monsoons of 2012-2014 in which two different OICs are utilized. With respect to first experiment (CTRL), second experiment (AcSAL) differs by two aspects: usage of high-resolution atmospheric forcing and assimilation of only ARGO observed temperature and salinity profiles for OICs. Assessment of OICs indicates that the quality of OICs is enhanced due to assimilation of actual salinity profiles. Analysis reveals that AcSAL experiment showed 10% reduction in the dry bias over the Indian land region during the ISM compared to CTRL. This improvement is consistently apparent in each month and is highest for June. The better representation of upper ocean thermal structure of tropical oceans at initial stage supports realistic upper ocean stability and mixing. Which in fact reduced the dominant cold bias over the ocean, feedback to air-sea interactions and land sea thermal contrast resulting better representation of monsoon circulation and moisture transport. This reduced bias of tropospheric moisture and temperature over the Indian land mass and also produced better tropospheric temperature gradient over land as well as ocean. These feedback processes reduced the dry bias in the ISM rainfall. Study concludes that initializing the coupled models with realistic OICs can reduce the underestimation of ISM rainfall prediction.

  11. Evaluation of Oceanic Surface Observation for Reproducing the Upper Ocean Structure in ECHAM5/MPI-OM

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Zheng, Fei; Zhu, Jiang

    2017-12-01

    Better constraints of initial conditions from data assimilation are necessary for climate simulations and predictions, and they are particularly important for the ocean due to its long climate memory; as such, ocean data assimilation (ODA) is regarded as an effective tool for seasonal to decadal predictions. In this work, an ODA system is established for a coupled climate model (ECHAM5/MPI-OM), which can assimilate all available oceanic observations using an ensemble optimal interpolation approach. To validate and isolate the performance of different surface observations in reproducing air-sea climate variations in the model, a set of observing system simulation experiments (OSSEs) was performed over 150 model years. Generally, assimilating sea surface temperature, sea surface salinity, and sea surface height (SSH) can reasonably reproduce the climate variability and vertical structure of the upper ocean, and assimilating SSH achieves the best results compared to the true states. For the El Niño-Southern Oscillation (ENSO), assimilating different surface observations captures true aspects of ENSO well, but assimilating SSH can further enhance the accuracy of ENSO-related feedback processes in the coupled model, leading to a more reasonable ENSO evolution and air-sea interaction over the tropical Pacific. For ocean heat content, there are still limitations in reproducing the long time-scale variability in the North Atlantic, even if SSH has been taken into consideration. These results demonstrate the effectiveness of assimilating surface observations in capturing the interannual signal and, to some extent, the decadal signal but still highlight the necessity of assimilating profile data to reproduce specific decadal variability.

  12. Closure Time of the Junggar-Balkhash Ocean: Constraints From Late Paleozoic Volcano-Sedimentary Sequences in the Barleik Mountains, West Junggar, NW China

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Han, Bao-Fu; Chen, Jia-Fu; Ren, Rong; Zheng, Bo; Wang, Zeng-Zhen; Feng, Li-Xia

    2017-12-01

    The Junggar-Balkhash Ocean was a major branch of the southern Paleo-Asian Ocean. The timing of its closure is important for understanding the history of the Central Asian Orogenic Belt. New sedimentological and geochronological data from the Late Paleozoic volcano-sedimentary sequences in the Barleik Mountains of West Junggar, NW China, help to constrain the closure time of the Junggar-Balkhash Ocean. Tielieketi Formation (Fm) is dominated by littoral sediments, but its upper glauconite-bearing sandstone is interpreted to deposit rapidly in a shallow-water shelf setting. By contrast, Heishantou Fm consists chiefly of volcanic rocks, conformably overlying or in fault contact with Tielieketi Fm. Molaoba Fm is composed of parallel-stratified fine sandstone and sandy conglomerate with graded bedding, typical of nonmarine, fluvial deposition. This formation unconformably overlies the Tielieketi and Heishantou formations and is conformably covered by Kalagang Fm characterized by a continental bimodal volcanic association. The youngest U-Pb ages of detrital zircons from sandstones and zircon U-Pb ages from volcanic rocks suggest that the Tielieketi, Heishantou, Molaoba, and Kalagang formations were deposited during the Famennian-Tournaisian, Tournaisian-early Bashkirian, Gzhelian, and Asselian-Sakmarian, respectively. The absence of upper Bashkirian to Kasimovian was likely caused by tectonic uplifting of the West Junggar terrane. This is compatible with the occurrence of coeval stitching plutons in the West Junggar and adjacent areas. The Junggar-Balkhash Ocean should be finally closed before the Gzhelian, slightly later or concurrent with that of other ocean domains of the southern Paleo-Asian Ocean.

  13. Variability of upper-ocean characteristics and tropical cyclones in the South West Indian Ocean

    NASA Astrophysics Data System (ADS)

    Mawren, D.; Reason, C. J. C.

    2017-03-01

    Track and intensity are key aspects of tropical cyclone behavior. Intensity may be impacted by the upper-ocean heat content relevant for TC intensification (known as Tdy) and barrier layer thickness (BLT). Here the variability of Tdy and BLT in the South West Indian Ocean and their relationships with tropical cyclones are investigated. It is shown that rapid cyclone intensification is influenced by large Tdy values, thick barrier layers and the presence of anticyclonic eddies. For TC generation in the South West Indian Ocean, the parameter Tdy was found to be important. Large BLT values overlay with large Tdy values during summer. Both fields are modulated by the westward propagation of Rossby waves, which are often associated with ENSO. For example, the 1997-1998 El Niño shows a strong signal in Tdy, SST, and BLT over the South West Indian Ocean. After this event, an increasing trend in Tdy occurred over most of the basin which may be associated with changes in atmospheric circulation. Increasing SST, Power Dissipation Index and frequency of Category 5 tropical cyclones also occurred from 1980 to 2010. To further examine the links between tropical cyclones, Tdy, and BLT, the ocean response to Category 5 Tropical Cyclone Bansi that developed near Madagascar during January 2015 was analyzed. Its unusual track was found to be linked with the strengthening of the monsoonal north westerlies while its rapid intensification from Category 2 to Category 4 was linked to a high-Tdy region, associated with a warm core eddy and large BLT.

  14. Production and recycling of oceanic crust in the early Earth

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.

    2004-08-01

    Because of the strongly different conditions in the mantle of the early Earth regarding temperature and viscosity, present-day geodynamics cannot simply be extrapolated back to the early history of the Earth. We use numerical thermochemical convection models including partial melting and a simple mechanism for melt segregation and oceanic crust production to investigate an alternative suite of dynamics which may have been in operation in the early Earth. Our modelling results show three processes that may have played an important role in the production and recycling of oceanic crust: (1) Small-scale ( x×100 km) convection involving the lower crust and shallow upper mantle. Partial melting and thus crustal production takes place in the upwelling limb and delamination of the eclogitic lower crust in the downwelling limb. (2) Large-scale resurfacing events in which (nearly) the complete crust sinks into the (eventually lower) mantle, thereby forming a stable reservoir enriched in incompatible elements in the deep mantle. New crust is simultaneously formed at the surface from segregating melt. (3) Intrusion of lower mantle diapirs with a high excess temperature (about 250 K) into the upper mantle, causing massive melting and crustal growth. This allows for plumes in the Archean upper mantle with a much higher excess temperature than previously expected from theoretical considerations.

  15. Calibration of Ocean Forcing with satellite Flux Estimates (COFFEE)

    NASA Astrophysics Data System (ADS)

    Barron, Charlie; Jan, Dastugue; Jackie, May; Rowley, Clark; Smith, Scott; Spence, Peter; Gremes-Cordero, Silvia

    2016-04-01

    Predicting the evolution of ocean temperature in regional ocean models depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. Within the COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates, real-time satellite observations are used to estimate shortwave, longwave, sensible, and latent air-sea heat flux corrections to a background estimate from the prior day's regional or global model forecast. These satellite-corrected fluxes are used to prepare a corrected ocean hindcast and to estimate flux error covariances to project the heat flux corrections for a 3-5 day forecast. In this way, satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. While traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle, COFFEE endeavors to appropriately partition and reduce among various surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using operational global or regional atmospheric forcing. Experiment cases combine different levels of flux calibration with assimilation alternatives. The cases use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger regional domains where a full 4DVAR methodology may be cost-prohibitive.

  16. Comparative Analysis of Upper Ocean Heat Content Variability from Ensemble Operational Ocean Analyses

    NASA Technical Reports Server (NTRS)

    Xue, Yan; Balmaseda, Magdalena A.; Boyer, Tim; Ferry, Nicolas; Good, Simon; Ishikawa, Ichiro; Rienecker, Michele; Rosati, Tony; Yin, Yonghong; Kumar, Arun

    2012-01-01

    Upper ocean heat content (HC) is one of the key indicators of climate variability on many time-scales extending from seasonal to interannual to long-term climate trends. For example, HC in the tropical Pacific provides information on thermocline anomalies that is critical for the longlead forecast skill of ENSO. Since HC variability is also associated with SST variability, a better understanding and monitoring of HC variability can help us understand and forecast SST variability associated with ENSO and other modes such as Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO), Tropical Atlantic Variability (TAV) and Atlantic Multidecadal Oscillation (AMO). An accurate ocean initialization of HC anomalies in coupled climate models could also contribute to skill in decadal climate prediction. Errors, and/or uncertainties, in the estimation of HC variability can be affected by many factors including uncertainties in surface forcings, ocean model biases, and deficiencies in data assimilation schemes. Changes in observing systems can also leave an imprint on the estimated variability. The availability of multiple operational ocean analyses (ORA) that are routinely produced by operational and research centers around the world provides an opportunity to assess uncertainties in HC analyses, to help identify gaps in observing systems as they impact the quality of ORAs and therefore climate model forecasts. A comparison of ORAs also gives an opportunity to identify deficiencies in data assimilation schemes, and can be used as a basis for development of real-time multi-model ensemble HC monitoring products. The OceanObs09 Conference called for an intercomparison of ORAs and use of ORAs for global ocean monitoring. As a follow up, we intercompared HC variations from ten ORAs -- two objective analyses based on in-situ data only and eight model analyses based on ocean data assimilation systems. The mean, annual cycle, interannual variability and longterm trend of HC have been analyzed

  17. Structure of the pelagic cnidarian community in Lützow-Holm Bay in the Indian sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Toda, R.; Moteki, M.; Ono, A.; Horimoto, N.; Tanaka, Y.; Ishimaru, T.

    2010-08-01

    The structure of the pelagic cnidarian community in Lützow-Holm Bay in the Indian sector of East Antarctica was investigated in January 2005 and 2006. Zooplankton samples from six discrete depths (surface to 2000 m) obtained using an RMT-8 yielded 4666 individuals of 31 species of cnidarian. Cnidarian abundance and carbon biomass were far greater in 2005 than in 2006. The biomass of macrozooplankton was large in the upper 200 m in 2005, but concentrated at 200-500 m in 2006, except for Euphausiacea. The most dominant species was Diphyes antarctica, followed by Dimophyes arctica and Muggiaea bargmannae. Four species had never been collected from East Antarctica; of these, Solmissus incisa was a first record in the Southern Ocean. Cluster analysis revealed the following three major communities: the epipelagic (0-200 m), in summer surface, winter, and upper modified circumpolar deep waters (MCDW); the upper mesopelagic (200-500 m), in upper MCDW; and the lower meso- and bathypelagic (500-2000 m), in lower MCDW. The epipelagic and lower meso- and bathypelagic communities are likely reduced in abundance/biomass when primary production is low, due to bottom-up control, while the upper mesopelagic community remains stable.

  18. 76 FR 20302 - Listing Endangered and Threatened Species; 90-Day Finding on a Petition To List Chinook Salmon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... a Petition To List Chinook Salmon AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... salmon (Oncorhynchus tshawytscha) in the Upper Klamath and Trinity Rivers Basin as threatened or... conduct a status review of the Chinook salmon in the Upper Klamath and Trinity Rivers Basin to determine...

  19. Unraveling P-T-t-D Evolution of Zermatt-Saas Ophiolites from Valtournanche: from Ocean Opening to Mountain Building

    NASA Astrophysics Data System (ADS)

    Rebay, G.; Tiepolo, M.; Zanoni, D.; Langone, A.; Spalla, M. I.

    2015-12-01

    The Zermatt-Saas (ZS) Zone, formerly part of Tethyan oceanic crust and variously affected by oceanic metamorphism, is now part of the orogenic suture that developed in the Western European Alps during the Alpine subduction and collision. The ZS rocks preserve a dominant HP to UHP metamorphic imprint overprinted by greenschist facies metamorphism. The age of the oceanic protoliths is considered to be middle to upper Jurassic whereas the HP metamorphism is mostly considered to be Eocene. In upper Valtournanche ZS ophiolites, the dominant regional S2 foliation is mapped with spatial continuity in serpentinite, metarodingite and eclogite and is defined by HP/UHP parageneses in all lithotypes. It developed at 2.5 ± 0.3 GPa and 600 ± 20°C during Alpine subduction. S2 foliation of serpentinites wraps rare clinopyroxene and zircon relics. Trace element composition of clinopyroxene suggests that they crystallised from a melt in equilibrium with plagioclase: they most likely represent relicts of gabbroic assemblages. The clinopyroxene porphyroclasts have rims indented within S2 and compositions similar to fine-grained clinopyroxeneII defining S2, suggesting that they recrystallised during Alpine subduction. Zircon cores show, under CL, sector zoning typical of magmatic growth. U-Pb dates suggest their crystallisation during Middle Jurassic. Magmatic cores have thin fringe overgrowths parallel to the S2 foliation. U-Pb concordant analyses on these domains reveal an Upper Cretaceous-Paleocene crystallization most likely representing the HP to UHP Alpine re-equilibration. This suggests that some sections of the ZS have experienced HP to UHP metamorphism earlier than previously thought, opening new interpretative geodynamic scenarios. Remarkably, these new dates are similar to those recorded for the HP re-equilibration in the continental crust of the adjacent Austroalpine units (upper plate of the Alpine subduction system) and to those recorded for prograde metamorphism in other parts of the ZS ophiolites.

  20. Effects of Submesoscale Turbulence on Reactive Tracers in the Upper Ocean

    NASA Astrophysics Data System (ADS)

    Smith, Katherine Margaret

    In this dissertation, Large Eddy Simulations (LES) are used to model the coupled turbulence-reactive tracer dynamics within the upper mixed layer of the ocean. Prior work has shown that LES works well over the spatial and time scales relevant to both turbulence and reactive biogeochemistry. Additionally, the code intended for use is able to carry an arbitrary number of tracer equations, allowing for easy expansion of the species reactions. Research in this dissertation includes a study of 15 idealized non-reactive tracers within an evolving large-scale temperature front in order determine and understand the fundamental dynamics underlying turbulence-tracer interaction in the absence of reactions. The focus of this study, in particular, was on understanding the evolution of biogeochemically-relevant, non-reactive tracers in the presence of both large ( 5 km) submesoscale eddies and smallscale ( 100 m) wave-driven Langmuir turbulence. The 15 tracers studied have different initial, boundary, and source conditions and significant differences are seen in their distributions depending on these conditions. Differences are also seen between regions where submesoscale eddies and small-scale Langmuir turbulence are both present, and in regions with only Langmuir turbulence. A second study focuses on the examination of Langmuir turbulence effects on upper ocean carbonate chemistry. Langmuir mixing time scales are similar to those of chemical reactions, resulting in potentially strong tracer-flow coupling effects. The strength of the Langmuir turbulence is varied, from no wave-driven turbulence (i.e., only shear-driven turbulence), to Langmuir turbulence that is much stronger than that found in typical upper ocean conditions. Three different carbonate chemistry models are also used in this study: time-dependent chemistry, equilibrium chemistry, and no-chemistry (i.e., non-reactive tracers). The third and final study described in this dissertation details the development of a reduced-order biogeochemical model with 17 state equations that can accurately reproduce the Bermuda Atlantic Time-series Study (BATS) ecosystem behavior, but that can also be integrated within high-resolution LES.

  1. Uganda rainfall variability and prediction

    NASA Astrophysics Data System (ADS)

    Jury, Mark R.

    2018-05-01

    This study analyzes large-scale controls on Uganda's rainfall. Unlike past work, here, a May-October season is used because of the year-round nature of agricultural production, vegetation sensitivity to rainfall, and disease transmission. The Uganda rainfall record exhibits steady oscillations of ˜3 and 6 years over 1950-2013. Correlation maps at two-season lead time resolve the subtropical ridge over global oceans as an important feature. Multi-variate environmental predictors include Dec-May south Indian Ocean sea surface temperature, east African upper zonal wind, and South Atlantic wind streamfunction, providing a 33% fit to May-Oct rainfall time series. Composite analysis indicates that cool-phase El Niño Southern Oscillation supports increased May-Oct Uganda rainfall via a zonal overturning lower westerly/upper easterly atmospheric circulation. Sea temperature anomalies are positive in the east Atlantic and negative in the west Indian Ocean in respect of wet seasons. The northern Hadley Cell plays a role in limiting the northward march of the equatorial trough from May to October. An analysis of early season floods found that moist inflow from the west Indian Ocean converges over Uganda, generating diurnal thunderstorm clusters that drift southwestward producing high runoff.

  2. Seasonality of coastal zone scanner phytoplankton pigment in the offshore oceans

    NASA Technical Reports Server (NTRS)

    Banse, K.; English, D. C.

    1994-01-01

    The NASA Global Ocean Data Set of plant pigment concentrations in the upper euphotic zone is evaluated for diserning geographical and temporal patterns of seasonality in the open sea. Monthly medians of pigment concentrations for all available years are generated for fields of approximately 77,000 sq km. For the climatological year, highest and lowest medians, month of occurence of the highest median, ratio of highest to lowest medians, and absolute range between the highest and lowest medians are mapped ocean-wide between 62.5 deg N and 62.5 deg S. Seasonal cycles are depicted for 48 sites. In much of the offshore ocean, seasonality of pigment is inferred to be driven almost equally by the interaction of the abiotic environment with phytoplankton physiology and the loss of cells from grazing. Special emphasis among natural domains or provinces is given to the Subantarctic water ring, with no seasonality in its low chlorophyll concentrations in spite of strong environmental forcing, and the narrow Transition Zones, a few degrees of latitude on the equatorial sides of the Subtropical Convergences of the southern hemisphere and their homologs in the northern hemisphere, which have late winter blooms caused by nutrient injection into the upper layers.

  3. On the shortening of Indian summer monsoon season in a warming scenario

    NASA Astrophysics Data System (ADS)

    Sabeerali, C. T.; Ajayamohan, R. S.

    2018-03-01

    Assessing the future projections of the length of rainy season (LRS) has paramount societal impact considering its potential to alter the seasonal mean rainfall over the Indian subcontinent. Here, we explored the projections of LRS using both historical and Representative Concentration Pathways 8.5 (RCP8.5) simulations of the Coupled Model Intercomparison Project Phase5 (CMIP5). RCP8.5 simulations project shortening of the LRS of Indian summer monsoon by altering the timing of onset and withdrawal dates. Most CMIP5 RCP8.5 model simulations indicate a faster warming rate over the western tropical Indian Ocean compared to other regions of the Indian Ocean. It is found that the pronounced western Indian Ocean warming and associated increase in convection results in warmer upper troposphere over the Indian Ocean compared to the Indian subcontinent, reducing the meridional gradient in upper tropospheric temperature (UTT) over the Asian summer monsoon (ASM) domain. The weakening of the meridional gradient in UTT induces weakening of easterly vertical wind shear over the ASM domain during first and last phase of monsoon, facilitate delayed (advanced) monsoon onset (withdrawal) dates, ensues the shortening of LRS of the Indian summer monsoon in a warming scenario.

  4. Assessing uncertainty in the turbulent upper-ocean mixed layer using an unstructured finite-element solver

    NASA Astrophysics Data System (ADS)

    Pacheco, Luz; Smith, Katherine; Hamlington, Peter; Niemeyer, Kyle

    2017-11-01

    Vertical transport flux in the ocean upper mixed layer has recently been attributed to submesoscale currents, which occur at scales on the order of kilometers in the horizontal direction. These phenomena, which include fronts and mixed-layer instabilities, have been of particular interest due to the effect of turbulent mixing on nutrient transport, facilitating phytoplankton blooms. We study these phenomena using a non-hydrostatic, large eddy simulation for submesoscale currents in the ocean, developed using the extensible, open-source finite element platform FEniCs. Our model solves the standard Boussinesq Euler equations in variational form using the finite element method. FEniCs enables the use of parallel computing on modern systems for efficient computing time, and is suitable for unstructured grids where irregular topography can be considered in the future. The solver will be verified against the well-established NCAR-LES model and validated against observational data. For the verification with NCAR-LES, the velocity, pressure, and buoyancy fields are compared through a surface-wind-driven, open-ocean case. We use this model to study the impacts of uncertainties in the model parameters, such as near-surface buoyancy flux and secondary circulation, and discuss implications.

  5. Seasonality and vertical structure of microbial communities in an ocean gyre.

    PubMed

    Treusch, Alexander H; Vergin, Kevin L; Finlay, Liam A; Donatz, Michael G; Burton, Robert M; Carlson, Craig A; Giovannoni, Stephen J

    2009-10-01

    Vertical, seasonal and geographical patterns in ocean microbial communities have been observed in many studies, but the resolution of community dynamics has been limited by the scope of data sets, which are seldom up to the task of illuminating the highly structured and rhythmic patterns of change found in ocean ecosystems. We studied vertical and temporal patterns in the microbial community composition in a set of 412 samples collected from the upper 300 m of the water column in the northwestern Sargasso Sea, on cruises between 1991 and 2004. The region sampled spans the extent of deep winter mixing and the transition between the euphotic and the upper mesopelagic zones, where most carbon fixation and reoxidation occurs. A bioinformatic pipeline was developed to de-noise, normalize and align terminal restriction fragment length polymorphism (T-RFLP) data from three restriction enzymes and link T-RFLP peaks to microbial clades. Non-metric multidimensional scaling statistics resolved three microbial communities with distinctive composition during seasonal stratification: a surface community in the region of lowest nutrients, a deep chlorophyll maximum community and an upper mesopelagic community. A fourth microbial community was associated with annual spring blooms of eukaryotic phytoplankton that occur in the northwestern Sargasso Sea as a consequence of winter convective mixing that entrains nutrients to the surface. Many bacterial clades bloomed in seasonal patterns that shifted with the progression of stratification. These richly detailed patterns of community change suggest that highly specialized adaptations and interactions govern the success of microbial populations in the oligotrophic ocean.

  6. Atmospheric forcing of the upper ocean transport in the Gulf of Mexico: From seasonal to diurnal scales

    NASA Astrophysics Data System (ADS)

    Judt, Falko; Chen, Shuyi S.; Curcic, Milan

    2016-06-01

    The 2010 Deepwater Horizon oil spill in the Gulf of Mexico (GoM) was an environmental disaster, which highlighted the urgent need to predict the transport and dispersion of hydrocarbon. Although the variability of the atmospheric forcing plays a major role in the upper ocean circulation and transport of the pollutants, the air-sea interaction on various time scales is not well understood. This study provides a comprehensive overview of the atmospheric forcing and upper ocean response in the GoM from seasonal to diurnal time scales, using climatologies derived from long-term observations, in situ observations from two field campaigns, and a coupled model. The atmospheric forcing in the GoM is characterized by striking seasonality. In the summer, the time-average large-scale forcing is weak, despite occasional extreme winds associated with hurricanes. In the winter, the atmospheric forcing is much stronger, and dominated by synoptic variability on time scales of 3-7 days associated with winter storms and cold air outbreaks. The diurnal cycle is more pronounced during the summer, when sea breeze circulations affect the coastal regions and nighttime wind maxima occur over the offshore waters. Realtime predictions from a high-resolution atmosphere-wave-ocean coupled model were evaluated for both summer and winter conditions during the Grand LAgrangian Deployment (GLAD) in July-August 2012 and the Surfzone Coastal Oil Pathways Experiment (SCOPE) in November-December 2013. The model generally captured the variability of atmospheric forcing on all scales, but suffered from some systematic errors.

  7. Causes of Upper-Ocean Temperature Anomalies in the Tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Rugg, A.; Foltz, G. R.; Perez, R. C.

    2016-02-01

    Hurricane activity and regional rainfall are strongly impacted by upper ocean conditions in the tropical North Atlantic, defined as the region between the equator and 20°N. A previous study analyzed a strong cold sea surface temperature (SST) anomaly that developed in this region during early 2009 and was recorded by the Pilot Research Array in the Tropical Atlantic (PIRATA) moored buoy at 4°N, 23°W (Foltz et al. 2012). The same mooring shows a similar cold anomaly in the spring of 2015 as well as a strong warm anomaly in 2010, offering the opportunity for a more comprehensive analysis of the causes of these events. In this study we examine the main causes of the observed temperature anomalies between 1998 and 2015. Basin-scale conditions during these events are analyzed using satellite SST, wind, and rain data, as well as temperature and salinity profiles from the NCEP Global Ocean Data Assimilation System. A more detailed analysis is conducted using ten years of direct measurements from the PIRATA mooring at 4°N, 23°W. Results show that the cooling and warming anomalies were caused primarily by wind-driven changes in surface evaporative cooling, mixed layer depth, and upper-ocean vertical velocity. Anomalies in surface solar radiation acted to damp the wind-driven SST anomalies in the latitude bands of the ITCZ (3°-8°N). Basin-scale analyses also suggest a strong connection between the observed SST anomalies and the Atlantic Meridional Mode, a well-known pattern of SST and surface wind anomalies spanning the tropical Atlantic.

  8. Instantaneous influence of dust storms on the optical scattering property of the ocean: a case study in the Yellow Sea, China.

    PubMed

    Chen, Shuguo; Zhang, Tinglu; Chen, Wenzhong; Shi, Jinhui; Hu, Lianbo; Song, Qingjun

    2016-12-12

    Asian dust storms originating from arid or semi-arid regions of China or her adjacent regions have important impact on the atmosphere and water composition, and ecological environment of the Eastern China Seas. This research used data collected in the middle of the South Yellow Sea, China, during a dust storm event from 23 April to 24 April 2006 to analyze the instantaneous influence of dust storms on optical scattering properties, which are closely related to particle characteristics. The analysis results showed that the dust storm had a remarkable influence on the optical scattering property in the upper mixed layer of water, and dust particles drily deposited from the dust storm with an aerosol optical depth of nearly 2.5 into the water could induce a 0.14 m-1 change in the water optical scattering coefficient at 532 nm at the depth of 4 m. The duration of the instantaneous influence of the dust storm on the water optical scattering properties was short, and this influence disappeared rapidly within approximately 3 hours after the end of the dust storm.

  9. Vertical Structure and Dynamics of the Beaufort Gyre Subsurface Layer from ADCP Obervations

    NASA Astrophysics Data System (ADS)

    Torres, D. J.; Krishfield, R. A.; Proshutinsky, A. Y.; Timmermans, M. L. E.

    2014-12-01

    As part of the Beaufort Gyre Observing System (BGOS), several Acoustic Doppler Current Profilers (ADCPs) have been maintained at moorings in different locations in the Canada Basin since 2005 to measure upper ocean velocities and sea ice motion. The ADCP data have been analyzed to better understand relationships among different components of forcing driving the sea ice and upper ocean layer including: winds, tides, and horizontal and vertical density gradients in the ocean. Specific attention is paid to data processing and analysis to separate inertial and tidal motions in these regions in the vicinity of the critical latitudes. In addition, we describe the dynamic characteristics of halocline eddies and estimate their kinetic energy and their role in the total energy balance in this region. Ice-Tethered Profiler (ITP) data are used in conjunction with the ADCP measurements to identify relationships between T-S and vertical velocity structures in the mixed layer and deeper. Seasonal and interannual variability in all parameters are also discussed and causes of observed changes are suggested.

  10. Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation

    NASA Astrophysics Data System (ADS)

    Malecha, Ziemowit; Chini, Gregory; Julien, Keith

    2012-11-01

    Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.

  11. Projected changes of the low-latitude north-western Pacific wind-driven circulation under global warming

    NASA Astrophysics Data System (ADS)

    Duan, Jing; Chen, Zhaohui; Wu, Lixin

    2017-05-01

    Based on the outputs of 25 models participating in the Coupled Model Intercomparison Project Phase 5, the projected changes of the wind-driven circulation in the low-latitude north-western Pacific are evaluated. Results demonstrate that there will be a decrease in the mean transport of the North Equatorial Current (NEC), Mindanao Current, and Kuroshio Current in the east of the Philippines, accompanied by a northward shift of the NEC bifurcation Latitude (NBL) off the Philippine coast with over 30% increase in its seasonal south-north migration amplitude. Numerical simulations using a 1.5-layer nonlinear reduced-gravity ocean model show that the projected changes of the upper ocean circulation are predominantly determined by the robust weakening of the north-easterly trade winds and the associated wind stress curl under the El Niño-like warming pattern. The changes in the wind forcing and intensified upper ocean stratification are found equally important in amplifying the seasonal migration of the NBL.

  12. Detrital Cr-spinel in the Šambron-Kamenica Zone (Slovakia): evidence for an ocean-spreading zone in the Northern Vardar suture?

    NASA Astrophysics Data System (ADS)

    Lenaz, Davide; Mazzoli, Claudio; Spišiak, Jan; Princivalle, Francesco; Maritan, Lara

    2009-03-01

    The Šambron-Kamenica Zone is situated on the northern margin of the Levočské vrchy mountains and Šarišskà vrchovina Highland, where the Central Carpathian Paleogene joins the Pieniny Klippen Belt. Sandstone outcrops in this area. From Cretaceous to Late Oligocene in age, these sediments suggest transport directions from S and SE. The heavy mineral assemblages of this sandstone include Cr-spinel grains, mainly displaying types II and III alpine-peridotite affinities, and are representative of Ocean Island Basalt volcanism. A sample from Upper Eocene sediments at Vit’az shows a clear change in Cr-spinel composition, which turns out to have types I and II peridotite affinities, and to derive from arc and Middle Ocean Ridge Basalt volcanism, with sediment transport directions from SW and WSW. These data indicate major variations in the Upper Eocene tectonic setting, giving constraints to paleogeographic reconstruction of the Slovak Central Carpathians.

  13. Statistical mechanics explanation for the structure of ocean eddies and currents

    NASA Astrophysics Data System (ADS)

    Venaille, A.; Bouchet, F.

    2010-12-01

    The equilibrium statistical mechanics of two dimensional and geostrophic flows predicts the outcome for the large scales of the flow, resulting from the turbulent mixing. This theory has been successfully applied to describe detailed properties of Jupiter's Great Red Spot. We discuss the range of applicability of this theory to ocean dynamics. It is able to reproduce mesoscale structures like ocean rings. It explains, from statistical mechanics, the westward drift of rings at the speed of non dispersive baroclinic waves, and the recently observed (Chelton and col.) slower northward drift of cyclonic eddies and southward drift of anticyclonic eddies. We also uncover relations between strong eastward mid-basin inertial jets, like the Kuroshio extension and the Gulf Stream, and statistical equilibria. We explain under which conditions such strong mid-basin jets can be understood as statistical equilibria. We claim that these results are complementary to the classical Sverdrup-Munk theory: they explain the inertial part basin dynamics, the jets structure and location, using very simple theoretical arguments. References: A. VENAILLE and F. BOUCHET, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. BOUCHET and A. VENAILLE, Statistical mechanics of two-dimensional and geophysical flows, arxiv ...., submitted to Physics Reports P. BERLOFF, A. M. HOGG, W. DEWAR, The Turbulent Oscillator: A Mechanism of Low- Frequency Variability of the Wind-Driven Ocean Gyres, Journal of Physical Oceanography 37 (2007) 2363-+. D. B. CHELTON, M. G. SCHLAX, R. M. SAMELSON, R. A. de SZOEKE, Global observations of large oceanic eddies, Geo. Res. Lett.34 (2007) 15606-+ b) and c) are snapshots of streamfunction and potential vorticity (red: positive values; blue: negative values) in the upper layer of a three layer quasi-geostrophic model of a mid-latitude ocean basin (from Berloff and co.). a) Streamfunction predicted by statistical mechanics. Even in an out-equilibrium situation like this one, equilibrium statistical mechanics predicts remarkably the overall qualitative flow structure. Observation of westward drift of ocean eddies and of slower northward drift of cyclones and southward drift of anticyclones by Chelton and co. We explain these observations from statistical mechanics.

  14. Seasonality of light transmittance through Arctic sea ice during spring and summe

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Hudson, S. R.; Granskog, M. A.; Pavlov, A.; Taskjelle, T.; Kauko, H.; Katlein, C.; Geland, S.; Perovich, D. K.

    2017-12-01

    The energy budget of sea ice and the upper ocean during spring, summer, and autumn is strongly affected by the transfer of solar shortwave radiation through sea ice and into the upper ocean. Previous studies highlighted the great importance of the spring-summer transition, when incoming fluxes are highest and even small changes in surface albedo and transmittance have strong impacts on the annual budgets. The timing of melt onset and changes in snow and ice conditions are also crucial for primary productivity and biogeochemical processes. Here we present results from time series measurements of radiation fluxes through seasonal Arctic sea ice, as it may be expected to play a key role in the future Arctic. Our observations were performed during the Norwegian N-ICE drift experiment in 2015 and the Polarstern expedition PS106 in 2017, both studying sea ice north of Svalbard. Autonomous stations were installed to monitor spectral radiation fluxes above and under sea ice. The observation periods cover the spring-summer transition, including snow melt and early melt pond formation. The results show the direct relation of optical properties to under ice algae blooms and their influence on the energy budget. Beyond these results, we will discuss the latest plans and implementation of radiation measurements during the MOSAiC drift in 2019/2020. Then, a full annual cycle of radiation fluxes may be studied from manned and autonomous (buoys) measurements as well as using a remotely operated vehicle (ROV) as measurement platform. These measurements will be performed in direct relation with numerical simulations on different scales.

  15. Evidences of a Stalled-slab Beneath the Coast Ranges, California, From Seismicity and Converted Phases

    NASA Astrophysics Data System (ADS)

    Cao, A.; Liu, K. H.; Gao, S. S.

    2001-12-01

    In spite of numerous geophysical studies, the existence and geometry of a stalled slab beneath the Coast Ranges remains vague. In this study we use the distribution of mantle earthquakes and P-to-S converted phases from tilt interfaces to address the problem. Based on the CNSS catalog, in the period between 01/1960 and 04/2001, there were about 450 earthquakes occurred at depth larger than 35 km in the vicinity of the Coast Ranges. When plotted along east-west cross-sections, those earthquakes show a clear slab-like image, similar to the upper part of classic Benioff zones along subducting oceanic slabs. One of such cross-sections, which has a width of 20 km and a latitude of 39N, is located in the so-called 'slabless window' suggested by several previous geologic and geophysic studies, implying the existence of a stalled-slab along the cross-section. The mantle earthquakes can be explained as the result of stress concentration caused by heterogeneities in elastic properties associated with the cold slab, and of changes in mineralogical phases in the upper-most mantle in and around the slab. The existence of the slab is supported by clear azimuthal variations of the amplitude and arrival time of P-to-S converted phases from a tilt interface at about 70 km depth recorded by a broadband seismic station in the area. Our analysis shows that the converted phase is probably from a subducted oceanic lithosphere dipping to the east. The strike of the slab is approximately parallel to the Coast Ranges.

  16. Leveraging Oceanic and Surface Intensive Field Campaign Data Sets for Validation and Improvement of Recent Hyperspectral IR Satellite Data Products

    NASA Astrophysics Data System (ADS)

    Joseph, E.; Nalli, N. R.; Oyola, M. I.; Morris, V. R.; Sakai, R.

    2014-12-01

    An overview is given of research to validate or improve the retrieval of environmental data records (EDRs) from recently deployed hyperspectral IR satellite sensors such as Suomi NPP Cross-track Infrared Microwave Sounder Suite (CrIMSS). The effort centers around several surface field intensive campaigns that are designed or leveraged for EDR validation. These data include ship-based observations of upper air ozone, pressure, temperature and relative humidity soundings; aerosol and cloud properties; and sea surface temperature. Similar intensive data from two land-based sites are also utilized as well. One site, the Howard University Beltsville site, is at a single point location but has a comprehensive array of observations for an extended period of time. The other land site, presently being deployed by the University at Albany, is under development with limited upper air soundings but will have regionally distributed surface based microwave profiling of temperature and relative humidity on the scale of 10 - 50 km and other standard meteorological observations. Combined these observations provide data that are unique in their wide range including, a variety of meteorological conditions and atmospheric compositions over the ocean and urban-suburban environments. With the distributed surface sites the variability of atmospheric conditions are captured concurrently across a regional spatial scale. Some specific examples are given of comparisons of moisture and temperature correlative EDRs from the satellite sensors and surface based observations. An additional example is given of the use of this data to correct sea surface temperature (SST) retrieval biases from the hyperspectral IR satellite observations due to aerosol contamination.

  17. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere.

    PubMed

    Sasaki, Hideharu; Klein, Patrice; Qiu, Bo; Sasai, Yoshikazu

    2014-12-15

    Ocean eddies (with a size of 100-300 km), ubiquitous in satellite observations, are known to represent about 80% of the total ocean kinetic energy. Recent studies have pointed out the unexpected role of smaller oceanic structures (with 1-50 km scales) in generating and sustaining these eddies. The interpretation proposed so far invokes the internal instability resulting from the large-scale interaction between upper and interior oceanic layers. Here we show, using a new high-resolution simulation of the realistic North Pacific Ocean, that ocean eddies are instead sustained by a different process that involves small-scale mixed-layer instabilities set up by large-scale atmospheric forcing in winter. This leads to a seasonal evolution of the eddy kinetic energy in a very large part of this ocean, with an amplitude varying by a factor almost equal to 2. Perspectives in terms of the impacts on climate dynamics and future satellite observational systems are briefly discussed.

  18. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere

    PubMed Central

    Sasaki, Hideharu; Klein, Patrice; Qiu, Bo; Sasai, Yoshikazu

    2014-01-01

    Ocean eddies (with a size of 100–300 km), ubiquitous in satellite observations, are known to represent about 80% of the total ocean kinetic energy. Recent studies have pointed out the unexpected role of smaller oceanic structures (with 1–50 km scales) in generating and sustaining these eddies. The interpretation proposed so far invokes the internal instability resulting from the large-scale interaction between upper and interior oceanic layers. Here we show, using a new high-resolution simulation of the realistic North Pacific Ocean, that ocean eddies are instead sustained by a different process that involves small-scale mixed-layer instabilities set up by large-scale atmospheric forcing in winter. This leads to a seasonal evolution of the eddy kinetic energy in a very large part of this ocean, with an amplitude varying by a factor almost equal to 2. Perspectives in terms of the impacts on climate dynamics and future satellite observational systems are briefly discussed. PMID:25501039

  19. Multiyear prediction of monthly mean Atlantic Meridional Overturning Circulation at 26.5°N.

    PubMed

    Matei, Daniela; Baehr, Johanna; Jungclaus, Johann H; Haak, Helmuth; Müller, Wolfgang A; Marotzke, Jochem

    2012-01-06

    Attempts to predict changes in Atlantic Meridional Overturning Circulation (AMOC) have yielded little success to date. Here, we demonstrate predictability for monthly mean AMOC strength at 26.5°N for up to 4 years in advance. This AMOC predictive skill arises predominantly from the basin-wide upper-mid-ocean geostrophic transport, which in turn can be predicted because we have skill in predicting the upper-ocean zonal density difference. Ensemble forecasts initialized between January 2008 and January 2011 indicate a stable AMOC at 26.5°N until at least 2014, despite a brief wind-induced weakening in 2010. Because AMOC influences many aspects of climate, our results establish AMOC as an important potential carrier of climate predictability.

  20. SPURS-2: Multi-month and multi-scale observations of upper ocean salinity in a rain-dominated salinity minimum region.

    NASA Astrophysics Data System (ADS)

    Rainville, L.; Farrar, J. T.; Shcherbina, A.; Centurioni, L. R.

    2017-12-01

    The Salinity Processes in the Upper-ocean Regional Study (SPURS) is a program aimed at understanding the patterns and variability of sea surface salinity. Following the first SPURS program in an evaporation-dominated region (2012-2013), the SPURS-2 program targeted wide range of spatial and temporal scales associated with processes controlling salinity in the rain-dominated Eastern Pacific Fresh Pool. Autonomous instruments were delivered in August and September 2016 using research vessels conducted observations over one complete annual cycle. The SPURS-2 field program used coordinated observations from many different autonomous platforms, and a mix of Lagrangian and Eulerian approaches. Here we discuss the motivation, implementation, and the early of SPURS-2.

  1. Comparisons of observed seasonal climate features with a winter and summer numerical simulation produced with the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Halem, M.; Shukla, J.; Mintz, Y.; Wu, M. L.; Godbole, R.; Herman, G.; Sud, Y.

    1979-01-01

    Results are presented from numerical simulations performed with the general circulation model (GCM) for winter and summer. The monthly mean simulated fields for each integration are compared with observed geographical distributions and zonal averages. In general, the simulated sea level pressure and upper level geopotential height field agree well with the observations. Well simulated features are the winter Aleutian and Icelandic lows, the summer southwestern U.S. low, the summer and winter oceanic subtropical highs in both hemispheres, and the summer upper level Tibetan high and Atlantic ridge. The surface and upper air wind fields in the low latitudes are in good agreement with the observations. The geographical distirbutions of the Earth-atmosphere radiation balance and of the precipitation rates over the oceans are well simulated, but not all of the intensities of these features are correct. Other comparisons are shown for precipitation along the ITCZ, rediation balance, zonally averaged temperatures and zonal winds, and poleward transports of momentum and sensible heat.

  2. Precambrian U-Pb zircon ages in eclogites and garnet pyroxenites from South Brittany (France): an old oceanic crust in the West European Hercynian belt?

    NASA Astrophysics Data System (ADS)

    Peucat, J. J.; Vidal, Ph.; Godard, G.; Postaire, B.

    1982-08-01

    U-Pb zircon ages have been determined for two eclogites from the Vendée and for two garnet pyroxenites from the Baie d'Audierne. In an episodic Pb loss model, the two discordia would give upper intercept ages around 1300-1250 Ma and lower intercepts ages of 436-384 Ma. Two interpretations are proposed: (1) The 1250-1300 Ma ages may reflect an unspecified upper mantle event or process; the Paleozoic ages correspond to the tectonic emplacement of an eclogitic mantle fragment into the continental crust. (2) The protolith may have been extracted from the upper mantle 1250-1300 Ma ago and stored in a crustal environment until it was metamorphosed under high-pressure conditions around 400 Ma ago. This latter model is favoured by available geologic and isotopic data. Consequently, we propose that a 1300 Ma old oceanic crust was tectonicly incorporated into a sialic basement during the Proterozoic. This mixture was subsequently subducted during the Paleozoic.

  3. Ocean color modeling: Parameterization and interpretation

    NASA Astrophysics Data System (ADS)

    Feng, Hui

    The ocean color as observed near the water surface is determined mainly by dissolved and particulate substances, known as "optically-active constituents," in the upper water column. The goal of ocean color modeling is to interpret an ocean color spectrum quantitatively to estimate the suite of optically-active constituents near the surface. In recent years, ocean color modeling efforts have been centering upon three major optically-active constituents: chlorophyll concentration, colored dissolved organic matter, and scattering particulates. Many challenges are still being faced in this arena. This thesis generally addresses and deals with some critical issues in ocean color modeling. In chapter one, an extensive literature survey on ocean color modeling is given. A general ocean color model is presented to identify critical candidate uncertainty sources in modeling the ocean color. The goal for this thesis study is then defined as well as some specific objectives. Finally, a general overview of the dissertation is portrayed, defining each of the follow-up chapters to target some relevant objectives. In chapter two, a general approach is presented to quantify constituent concentration retrieval errors induced by uncertainties in inherent optical property (IOP) submodels of a semi-analytical forward model. Chlorophyll concentrations are retrieved by inverting a forward model with nonlinear IOPs. The study demonstrates how uncertainties in individual IOP submodels influence the accuracy of the chlorophyll concentration retrieval at different chlorophyll concentration levels. The important finding for this study shows that precise knowledge of spectral shapes of IOP submodels is critical for accurate chlorophyll retrieval, suggesting an improvement in retrieval accuracy requires precise spectral IOP measurements. In chapter three, three distinct inversion techniques, namely, nonlinear optimization (NLO), principal component analysis (PCA) and artificial neural network (ANN) are compared to assess their inversion performances to retrieve optically-active constituents for a complex nonlinear bio-optical system simulated by a semi-analytical ocean color model. A well-designed simulation scheme was implemented to simulate waters of different bio-optical complexity, and then the three inversion methods were applied to these simulated datasets for performance evaluation. In chapter four, an approach is presented for optimally parameterizing an irradiance reflectance model on the basis of a bio-optical dataset made at 45 stations in the Tokyo Bay and nearby regions between 1982 and 1984. (Abstract shortened by UMI.)

  4. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response

    NASA Astrophysics Data System (ADS)

    Sallée, J.-B.; Shuckburgh, E.; Bruneau, N.; Meijers, A. J. S.; Bracegirdle, T. J.; Wang, Z.; Roy, T.

    2013-04-01

    The ability of the models contributing to the fifth Coupled Models Intercomparison Project (CMIP5) to represent the Southern Ocean hydrological properties and its overturning is investigated in a water mass framework. Models have a consistent warm and light bias spread over the entire water column. The greatest bias occurs in the ventilated layers, which are volumetrically dominated by mode and intermediate layers. The ventilated layers have been observed to have a strong fingerprint of climate change and to impact climate by sequestrating a significant amount of heat and carbon dioxide. The mode water layer is poorly represented in the models and both mode and intermediate water have a significant fresh bias. Under increased radiative forcing, models simulate a warming and lightening of the entire water column, which is again greatest in the ventilated layers, highlighting the importance of these layers for propagating the climate signal into the deep ocean. While the intensity of the water mass overturning is relatively consistent between models, when compared to observation-based reconstructions, they exhibit a slightly larger rate of overturning at shallow to intermediate depths, and a slower rate of overturning deeper in the water column. Under increased radiative forcing, atmospheric fluxes increase the rate of simulated upper cell overturning, but this increase is counterbalanced by diapycnal fluxes, including mixed-layer horizontal mixing, and mostly vanishes.

  5. Potential predictability and forecast skill in ensemble climate forecast: a skill-persistence rule

    NASA Astrophysics Data System (ADS)

    Jin, Yishuai; Rong, Xinyao; Liu, Zhengyu

    2017-12-01

    This study investigates the factors relationship between the forecast skills for the real world (actual skill) and perfect model (perfect skill) in ensemble climate model forecast with a series of fully coupled general circulation model forecast experiments. It is found that the actual skill for sea surface temperature (SST) in seasonal forecast is substantially higher than the perfect skill on a large part of the tropical oceans, especially the tropical Indian Ocean and the central-eastern Pacific Ocean. The higher actual skill is found to be related to the higher observational SST persistence, suggesting a skill-persistence rule: a higher SST persistence in the real world than in the model could overwhelm the model bias to produce a higher forecast skill for the real world than for the perfect model. The relation between forecast skill and persistence is further proved using a first-order autoregressive model (AR1) analytically for theoretical solutions and numerically for analogue experiments. The AR1 model study shows that the skill-persistence rule is strictly valid in the case of infinite ensemble size, but could be distorted by sampling errors and non-AR1 processes. This study suggests that the so called "perfect skill" is model dependent and cannot serve as an accurate estimate of the true upper limit of real world prediction skill, unless the model can capture at least the persistence property of the observation.

  6. Rain Rate from IMERG as a Predictor for Salinity Stratification in the Upper Meter of the Ocean during SPURS-2 Rain Events

    NASA Astrophysics Data System (ADS)

    Thompson, E. J.; Asher, W.; Drushka, K.; Schanze, J. J.; Jessup, A. T.; Clark, D.

    2016-12-01

    Rain can produce a lens of fresher and generally colder, less dense water at the ocean surface. These stable surface layers concentrate heat, freshwater, and momentum into a thin layer and reduce the exchange of these properties between the surface layer and deeper water, which can impact regional freshwater storage and air-sea fluxes of heat and moisture. Although in situ observations have shown that fresh lenses are common in the presence of rain, attempts to correlate the magnitude and lifetime of the surface freshening with rain rate using field data have not produced a definitive relationship. The reasons for this are most likely that in situ rain rate measurements represent the freshwater flux to the ocean surface at a single point in space and time, whereas the fresh lens is the result of the integrated rainfall over time and space, convoluted with the evolution of the fresh lens. Therefore, it is possible that integrated, upstream rainfall estimates might provide a better correlate for the presence of fresh lenses than in situ measurements at a point. This hindcast study seeks to determine the utility of NASA GPM IMERG satellite measurements of rain relative to in situ collocated rain measurements in predicting the occurrence and duration of 0-1 m freshwater stabilization of the ocean. Vertical gradients of temperature, salinity, and density between the surface and at most a few meters were measured using towed profilers and underway sampling during the 2016 SPURS-2 experiment conducted in the tropical east Pacific Ocean. Local wind speed was also measured and taken into account. These measurements were used to determine whether local or integrated upstream precipitation metrics could better predict the occurrence of rain-generated lenses of fresher water at the ocean surface and whether the strength and duration of rain events was correlated with the observed lifetime of fresh lenses.

  7. Radiometry from Bio-Argo Floats: a New Strategy to Validate Ocean Color Products at the Global Scale.

    NASA Astrophysics Data System (ADS)

    Organelli, E.; Claustre, H.; Serra, R.; Bricaud, A.; Schmechtig, C.; D'Ortenzio, F.; Poteau, A.; Mangin, A.; Leymarie, E.; Obolensky, G.; Prieur, L. M.; Dall'Olmo, G.; Xing, X.

    2016-02-01

    Thanks to a new generation of Bio-Argo floats equipped with sensors for PAR (Photosynthetically Available Irradiance) and downward irradiance measurements at selected wavelengths (i.e., 380, 412 and 490 nm), the number of radiometric measurements has been dramatically increasing and data are available for diverse open ocean systems, including winter periods with harsh seas when ships can hardly sample. More than 6500 radiometric profiles have so far been acquired around solar noon in the upper 250 m of the ocean. These radiometric profiles, acquired simultaneously to other key biogeochemical and bio-optical variables (chlorophyll a, CDOM, light backscattering), represent a fruitful data source for validation of Ocean Color (OC) products. Two different strategies can be implemented: direct validation of satellite OC products and identification of regions characterized by bio-optical anomalies. Diffuse attenuation coefficients (Kd) derived from these profiles, after a specifically developed quality control, are used for these purposes.A good agreement is observed between satellite-derived Kd values at 490 nm and their Bio-Argo counterparts. However, satellite overestimates low in situ Kd values found in very clear waters (e.g., Atlantic and Pacific Sub-Tropical Gyres). The analysis of the spectral Kd variability in the surface ocean shows the potential of Bio-Argo floats in identifying those regions with optical properties departing from global bio-optical relationships. Divergences of the ratio between Kd values at 380 nm and those at 490 nm from global bio-optical models are observed in areas such as the Mediterranean Sea and the North Atlantic in winter. This might cause difficulties in retrieving biogeochemical parameters from satellite data. Hence, delineation of "anomalous" regions by Bio-Argo floats represents a useful strategy for planning dedicated cruises, setting mooring buoys or using CAL/VAL floats in order to improve Ocean Color applications.

  8. The sequestration switch: removing industrial CO2 by direct ocean absorption.

    PubMed

    Ametistova, Lioudmila; Twidell, John; Briden, James

    2002-04-22

    This review paper considers direct injection of industrial CO2 emissions into the mid-water oceanic column below 500 m depth. Such a process is a potential candidate for switching atmospheric carbon emissions directly to long term sequestration, thereby relieving the intermediate atmospheric burden. Given sufficient research justification, the argument is that harmful impact in both the Atmosphere and the biologically rich upper marine layer could be reduced. The paper aims to estimate the role that active intervention, through direct ocean CO2 storage, could play and to outline further research and assessment for the strategy to be a viable option for climate change mitigation. The attractiveness of direct ocean injection lies in its bypassing of the Atmosphere and upper marine region, its relative permanence, its practicability using existing technologies and its quantification. The difficulties relate to the uncertainty of some fundamental scientific issues, such as plume dynamics, lowered pH of the exposed waters and associated ecological impact, the significant energy penalty associated with the necessary engineering plant and the uncertain costs. Moreover, there are considerable uncertainties regarding related international marine law. Development of the process would require acceptance of the evidence for climate change, strict requirements for large industrial consumers of fossil fuel to reduce CO2 emissions into the Atmosphere and scientific evidence for the overall beneficial impact of ocean sequestration.

  9. Space-for-time substitution in predicting the state of picoplankton and nanoplankton in a changing Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Li, William K. W.; Carmack, Eddy C.; McLaughlin, Fiona A.; Nelson, R. John; Williams, William J.

    2013-10-01

    The Arctic Ocean is changing rapidly but there are no long-term time series observations on the state of the phytoplankton community that could allow a link to be made from physical/chemical pressures to the impact on marine ecosystems. Here, we test the idea that space-for-time (SFT) substitution might predict temporal change in the Canada Basin premised on differences in the present state of phytoplankton in other geographic zones, specifically the ratio in the abundance of picophytoplankton to nanophytoplankton (Pico:Nano). We compared the change in Pico:Nano observed in the Canada Basin from 2004 to 2012 to the different average states of this ratio in 26 other ocean ecological regions. Our results show that as upper ocean nitrate concentration changed in the Canada Basin from year to year, the concomitant change in Pico:Nano was statistically commensurate with the difference that this ratio exhibits between Longhurst ecological provinces in relation to nitrate concentration. Lower average concentration of nitrate in the upper water column is associated with a higher value of Pico:Nano, a result consistent with resource control of phytoplankton size structure in the ocean. We suggest that SFT substitution allows an explanation of temporal progression from spatial pattern as a test of mechanism, but such statistical prediction is not necessarily a projection of future states.

  10. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere.

    PubMed

    Schlindwein, Vera; Schmid, Florian

    2016-07-14

    Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere-asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation.

  11. Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    PubMed Central

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L.; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C.; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q.; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J.; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Motz, Holger; Neff, Max; Nezri, Emma nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E.; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G.; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J. M.; Stolarczyk, Thierry; Taiuti, Mauro G. F.; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as “open-sea convection”. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts. PMID:23874425

  12. Estimating the distribution of colored dissolved organic matter during the Southern Ocean Gas Exchange Experiment using four-dimensional variational data assimilation

    NASA Astrophysics Data System (ADS)

    Del Castillo, C. E.; Dwivedi, S.; Haine, T. W. N.; Ho, D. T.

    2017-03-01

    We diagnosed the effect of various physical processes on the distribution of mixed-layer colored dissolved organic matter (CDOM) and a sulfur hexafluoride (SF6) tracer during the Southern Ocean Gas Exchange Experiment (SO GasEx). The biochemical upper ocean state estimate uses in situ and satellite biochemical and physical data in the study region, including CDOM (absorption coefficient and spectral slope), SF6, hydrography, and sea level anomaly. Modules for photobleaching of CDOM and surface transport of SF6 were coupled with an ocean circulation model for this purpose. The observed spatial and temporal variations in CDOM were captured by the state estimate without including any new biological source term for CDOM, assuming it to be negligible over the 26 days of the state estimate. Thermocline entrainment and photobleaching acted to diminish the mixed-layer CDOM with time scales of 18 and 16 days, respectively. Lateral advection of CDOM played a dominant role and increased the mixed-layer CDOM with a time scale of 12 days, whereas lateral diffusion of CDOM was negligible. A Lagrangian view on the CDOM variability was demonstrated by using the SF6 as a weighting function to integrate the CDOM fields. This and similar data assimilation methods can be used to provide reasonable estimates of optical properties, and other physical parameters over the short-term duration of a research cruise, and help in the tracking of tracer releases in large-scale oceanographic experiments, and in oceanographic process studies.

  13. Estimating the Distribution of Colored Dissolved Organic Matter During the Southern Ocean Gas Exchange Experiment Using Four-Dimensional Variational Data Assimilation

    NASA Technical Reports Server (NTRS)

    Del Castillo, C. E.; Dwivedi, S.; Haine, T. W. N.; Ho, D. T.

    2017-01-01

    We diagnosed the effect of various physical processes on the distribution of mixed-layer colored dissolved organic matter (CDOM) and a sulfur hexauoride (SF6) tracer during the Southern Ocean Gas Exchange Experiment (SO GasEx). The biochemical upper ocean state estimate uses in situ and satellite biochemical and physical data in the study region, including CDOM (absorption coefcient and spectral slope), SF6, hydrography, and sea level anomaly. Modules for photobleaching of CDOM and surface transport of SF6 were coupled with an ocean circulation model for this purpose. The observed spatial and temporal variations in CDOM were captured by the state estimate without including any new biological source term for CDOM, assuming it to be negligible over the 26 days of the state estimate. Thermocline entrainment and photobleaching acted to diminish the mixed-layer CDOM with time scales of 18 and 16 days, respectively. Lateral advection of CDOM played a dominant role and increased the mixed-layer CDOM with a time scale of 12 days, whereas lateral diffusion of CDOM was negligible. A Lagrangian view on the CDOM variability was demonstrated by using the SF6 as a weighting function to integrate the CDOM elds. This and similar data assimilation methods can be used to provide reasonable estimates of optical properties, and other physical parameters over the short-term duration of a research cruise, and help in the tracking of tracer releases in large-scale oceanographic experiments, and in oceanographic process studies.

  14. Upper Ocean Mixing Processes and Circulation in the Arabian Sea during Monsoons using Remote Sensing, Hydrographic Observations and HYCOM Simulations

    DTIC Science & Technology

    2015-09-30

    effecting the salinity of the upper layer and the formation of the barrier layer (BL) within the isothermal layer. The BL in turn controls vertical mixing...daily values over a month with a 1° horizontal resolution [Reynolds et al., 2002]. Daily data (from Coriolis project) and Monthly gridded Argo

  15. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

    DTIC Science & Technology

    2014-09-30

    warmer profile through greater latent heat release. Resulting temperature profiles all follow essentially moist adiabats in the upper troposphere ...default RRTM ozone concentration profile). Greater convective mixing deepens the tropopause for cases with stronger moisture flux convergence. Case...with tropospheric temperatures about 4 degrees cooler than the original temperature profile. This case represents conditions during the suppressed

  16. Refinement of Protocols for Measuring the Apparent Optical Properties of Seawater. Chapter 8

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B.; Zibordi, Giuseppe; Berthon, Jean-Francois; Nirek, Andre; Antoine, David

    2003-01-01

    Ocean color satellite missions, like the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) or the Moderate Resolution Imaging Spectroradiometer (MODIS) projects, are tasked with acquiring a global ocean color data set, validating and monitoring the accuracy and quality of the data, processing the radiometric data into geophysical units using a set of atmospheric and bio-optical algorithms, and distributing the final products to the scientific community. The long-standing requirement of the SeaWiFS Project, for example, is to produce spectral water-leaving radiances, LW(lambda), to within 5% absolute (lambda denotes wavelength) and chlorophyll a concentrations to within 35% (Hooker and Esaias 1993), and most ocean color sensors have the same or similar requirements. Although a diverse set of activities are required to ensure the accuracy requirements are met (Hooker and McClain 2000), the perspective here is with field observations. The accurate determination of upper ocean apparent optical properties (AOPs) is essential for the vicarious calibration of ocean color data and the validation of the derived data products, because the sea-truth measurements are used to evaluate the satellite observations (Hooker and McClain 2000). The uncertainties with in situ AOP measurements have various sources: a) the sampling procedures used in the field, including the environmental conditions encountered; b) the absolute characterization of the radiometers in the laboratory; c) the conversion of the light signals to geophysical units in a processing scheme, and d) the stability of the radiometers in the harsh environment they are subjected to during transport and use. Assuming ideal environmental conditions, so this aspect can be neglected, the SeaWiFS ground-truth uncertainty budget can only be satisfied if each uncertainty is on the order of 1-2%, or what is generally referred to as 1% radiometry. In recent years, progress has been made in estimating the magnitude of some of these uncertainties and in defining procedures for minimizing them. For the SeaWiFS Project, the first step was to convene a workshop to draft the SeaWiFS Ocean Optics Protocols (hereafter referred to as the Protocols). The Protocols initially adhered to the Joint Global Ocean Flux Study (JGOFS) sampling procedures (JGOFS 1991) and defined the standards for optical measurements to be used in SeaWiFS calibration and validation activities (Mueller and Austin 1992). Over time, the Protocols were revised (Mueller and Austin 1995), and then recurringly updated on essentially an annual basis (Mueller 2000, 2002, and 2003) as part of the Sensor Inter-comparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project. 98

  17. Depth-varying seismogenesis on an oceanic detachment fault at 13°20‧N on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Craig, Timothy J.; Parnell-Turner, Ross

    2017-12-01

    Extension at slow- and intermediate-spreading mid-ocean ridges is commonly accommodated through slip on long-lived faults called oceanic detachments. These curved, convex-upward faults consist of a steeply-dipping section thought to be rooted in the lower crust or upper mantle which rotates to progressively shallower dip-angles at shallower depths. The commonly-observed result is a domed, sub-horizontal oceanic core complex at the seabed. Although it is accepted that detachment faults can accumulate kilometre-scale offsets over millions of years, the mechanism of slip, and their capacity to sustain the shear stresses necessary to produce large earthquakes, remains subject to debate. Here we present a comprehensive seismological study of an active oceanic detachment fault system on the Mid-Atlantic Ridge near 13°20‧N, combining the results from a local ocean-bottom seismograph deployment with waveform inversion of a series of larger teleseismically-observed earthquakes. The unique coincidence of these two datasets provides a comprehensive definition of rupture on the fault, from the uppermost mantle to the seabed. Our results demonstrate that although slip on the deep, steeply-dipping portion of detachment faults is accommodated by failure in numerous microearthquakes, the shallow, gently-dipping section of the fault within the upper few kilometres is relatively strong, and is capable of producing large-magnitude earthquakes. This result brings into question the current paradigm that the shallow sections of oceanic detachment faults are dominated by low-friction mineralogies and therefore slip aseismically, but is consistent with observations from continental detachment faults. Slip on the shallow portion of active detachment faults at relatively low angles may therefore account for many more large-magnitude earthquakes at mid-ocean ridges than previously thought, and suggests that the lithospheric strength at slow-spreading mid-ocean ridges may be concentrated at shallow depths.

  18. Tropical warm pool rainfall variability and impact on upper ocean variability throughout the Madden-Julian oscillation

    NASA Astrophysics Data System (ADS)

    Thompson, Elizabeth J.

    Heating and rain freshening often stabilize the upper tropical ocean, bringing the ocean mixed layer depth to the sea surface. Thin mixed layer depths concentrate subsequent fluxes of heat, momentum, and freshwater in a thin layer. Rapid heating and cooling of the tropical sea surface is important for controlling or triggering atmospheric convection. Ocean mixed layer depth and SST variability due to rainfall events have not been as comprehensively explored as the ocean's response to heating or momentum fluxes, but are very important to understand in the tropical warm pool where precipitation exceeds evaporation and many climate phenomena such as ENSO and the MJO (Madden Julian Oscillation) originate. The first part of the dissertation investigates tropical, oceanic convective and stratiform rainfall variability and determines how to most accurately estimate rainfall accumulation with radar from each rain type. The second, main part of the dissertation uses central Indian Ocean salinity and temperature microstructure measurements and surrounding radar-derived rainfall maps throughout two DYNAMO MJO events to determine the impact of precipitating systems on upper-ocean mixed layer depth and resulting SST variability. The ocean mixed layer was as shallow as 0-5 m during 528/1071 observation hours throughout 2 MJOs (54% of the data record). Out of 43 observation days, thirty-eight near-surface mixed layer depth events were attributed to freshwater stabilization, called rain-formed mixed layers (RFLs). Thirty other mixed layer stratification events were classified as diurnal warm layers (DWLs) due to stable temperature stratification by daytime heating. RFLs and DWLs were observed to interact in two ways: 1) RFLs fill preexisting DWLs and add to total near-surface mixed layer stratification, which occurred ten times; 2) RFLs last long enough to heat, creating a new DWL on top of the RFL, which happened nine times. These combination stratification events were responsible for the highest SST warming rates and some of the highest SSTs leading up to the most active precipitation and wind stage of the each MJO. DWLs without RFL interaction helped produce the highest SSTs in suppressed MJO conditions. As storm intensity, frequency, duration, and the ability of storms to maintain stratiform rain areas increased, RFLS became more common in the disturbed and active MJO phases. Along with the barrier layer, DWL and RFL stratification events helped suppress wind-mixing, cooling, and mixed layer deepening throughout the MJO. We hypothesize that both salinity and temperature stratification events, and their interactions, are important for controlling SST variability and therefore MJO initiation in the Indian Ocean. Most RFLs were caused by submesoscale and mesoscale convective systems with stratiform rain components and local rain accumulations above 10 mm but with winds mostly below 8 m s-1. We hypothesize that the stratiform rain components of storms helped stratify the ocean by providing weak but widespread, steady, long-lived freshwater fluxes. Although generally limited to rain rates ≤ 10 mm hr-1, it is demonstrated that stratiform rain can exert a strong buoyancy flux into the ocean, i.e. as high as maximum daytime solar heating. Storm morphology and the preexisting vertical structure of ocean stability were critical in determining ocean mixed layer depth variability in the presence of rain. Therefore, we suggest that high spatial and temporal resolution coupled ocean-atmosphere models that can parameterize or resolve storm morphology as well as ocean mixed layer and barrier layer evolution are needed to reproduce the diurnal and intraseasonal SST variability documented throughout the MJO.

  19. The Ocean's Abyssal Mass Flux Sustained Primarily By the Wind: Vector Correlation of Time Series in Upper and Abyssal Layers

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.

    2003-12-01

    As Wunsch has recently noted (2002), use of the term "thermohaline circulation" is muddled. The term is used with at least seven inconsistent meanings, among them abyssal circulation, the circulation driven by density and pressure differences in the deep ocean, the global conveyor, and at least four others. The use of a single term for all these concepts can create an impression that an understanding exists whereby in various combinations the seven meanings have been demonstrated to mean the same thing. But that is not the case. A particularly important consequence of the muddle is the way in which abyssal circulation is sometimes taken to be driven mostly or entirely by temperature and density differences, and equivalent to the global conveyor. But in fact the distinction between abyssal and upper-layer circulation has not been measured. To find out whether available data justifies a distinction between the upper-layer and abyssal circulations, this study surveyed velocity time series obtained by deep current meter moorings. Altogether, 114 moorings were identified, drawn from about three dozen experiments worldwide over the period 1973-1996, each of which deployed current meters in both the upper (2003750) layers. For each pair of current meters, the Kundu and Crosby measures of vector correlation were estimated, as well as coherences for periods from 10 to 60 days. In the North Atlantic, for example, Kundu vector correlation (50-day window): 0.48 +/- .03 Crosby vector correlation (absolute value, 50 day window): 0.46 +/- .07 Coherence at 60 days: .36 +/- .07 - at 30 days: 0.40 +/- .06 - at 10 days: 0.22 +/- .05 Most figures for the South Atlantic, Pacific and Southern Oceans are similar. Those obtained in the Indian Ocean or near the Equator are somewhat different. The statistics obtained here are consistent with the work of Wunsch (1997), and tend to confirm Wunsch's result that current velocities at depth are linked with those in the upper layers. Energetics of the circulation that do not take this into account are making an unjustifiable approximation of the physics. These results do not tell us whether time averaged flow on longer time scales might permit distinction of upper layer and abyssal flow components. Some intriguing corollaries do follow. First, the abyssal circulation is not identically the same thing as a global conveyor belt driven by temperature and density differences. Rather, as Wunsch noted (2002), the ocean's mass flux is sustained primarily by the wind. We may add that these wind patterns are about as robust as the temperature differences between equator and pole; this major driver of circulation is not a frail phenomenon. Second, the classical notion of a level of no motion that is also a constant-density surface, an LNM, is inconsistent with the results presented here. Such an LNM would wall off the upper layer circulation from the lower, and as they are not walled off, there can be no such LNM. Third, wind stress is being transmitted down column, presumably to the sea floor.

  20. On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data

    NASA Astrophysics Data System (ADS)

    Khan, A.; Boschi, L.; Connolly, J. A. D.

    2009-09-01

    We invert global observations of fundamental and higher-order Love and Rayleigh surface wave dispersion data jointly at selected locations for 1-D radial profiles of Earth's mantle composition, thermal state, and anisotropic structure using a stochastic sampling algorithm. Considering mantle compositions as equilibrium assemblages of basalt and harzburgite, we employ a self-consistent thermodynamic method to compute their phase equilibria and bulk physical properties (P, S wave velocity and density). Combining these with locally varying anisotropy profiles, we determine anisotropic P and S wave velocities to calculate dispersion curves for comparison with observations. Models fitting data within uncertainties provide us with a range of profiles of composition, temperature, and anisotropy. This methodology presents an important complement to conventional seismic tomography methods. Our results indicate radial and lateral gradients in basalt fraction, with basalt depletion in the upper and enrichment of the upper part of the lower mantle, in agreement with results from geodynamical calculations, melting processes at mid-ocean ridges, and subduction of chemically stratified lithosphere. Compared with preliminary reference Earth model (PREM) and seismic tomography models, our velocity models are generally faster in the upper transition zone (TZ) and slower in the lower TZ, implying a steeper velocity gradient. While less dense than PREM, density gradients in the TZ are also steeper. Mantle geotherms are generally adiabatic in the TZ, whereas in the upper part of the lower mantle, stronger lateral variations are observed. The retrieved anisotropy structure agrees with previous studies indicating positive as well as laterally varying upper mantle anisotropy, while there is little evidence for anisotropy in and below the TZ.

  1. Ambient noise dynamics in a heavy shipping area.

    PubMed

    Kinda, G Bazile; Le Courtois, Florent; Stéphan, Yann

    2017-11-15

    The management of underwater noise within the European Union's waters is a significant component (Descriptor 11) of the Marine Strategy Framework Directive (MSFD). The indicator related to continuous noise, is the noise levels in two one-third octave bands centered at 63Hz and 125Hz. This paper presents an analysis of underwater noise in the Celtic Sea, a heavy shipping area which also hosts the seasonal Ushant thermal front. In addition to the MSFD recommended frequency bands, the analysis was extended to lower and upper frequency bands. Temporal and spatial variations as well as the influence of the properties of the water column on the noise levels were assessed. The noise levels in the area had a high dynamic range and generally exceeded 100dB re 1μPa. Finally, the results highlighted that oceanic mooring must be designed to minimize the pseudo-noise and consider the water column physical properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Phosphorus, Barium and Bioactive Metals (Zn, Cu, Co) in Coral Aragonite: Relationships to Upper Ocean Productivity

    NASA Astrophysics Data System (ADS)

    Sherrell, R. M.; Lavigne, M. G.; Linsley, B. K.

    2006-12-01

    Coral records of surface ocean properties related to primary productivity could reveal much about the history of upper ocean biogeochemistry over decades to centuries, but are currently relatively undeveloped. This presentation will explore the utility of high-resolution records of P/Ca, Ba/Ca, and the micronutrient metals Zn/Ca, Cu/Ca, and Co/Ca. Using high sensitivity laser ablation ICP-MS, we have obtained multi-year records of these variables with ~ bi-weekly resolution and seasonal dating for Porites corals from Rarotonga (21S, 159W) and Clipperton Atoll (10N, 109W) Results are compared to data for Porites and Acropora spp. grown in culture at Rutgers University, to explore the applicability of cultured corals for quantifying the effects of seawater chemistry on trace elements in coralline aragonite. The P/Ca results suggest lattice-bound incorporation and encourage the development of a surface ocean PO4 proxy details will be presented by LaVigne et al. elsewhere in this session. At Rarotonga, Ba/Ca shows regular, ~ annual, 2-5 week duration spikes a factor of 2-3 higher than the ~ constant background signal, appearing in austral spring- summer. These are not associated with runoff or authigenic mineral incorporation, and are similar to Ba spikes observed at least twice in the literature. We explore the hypothesis that these signals are related to biogenic organically-bound or barite Ba in the ambient surface water, and might therefore serve as a proxy of phytoplankton bloom intensity during the most productive part of the year. Potential mechanisms of incorporation must include the possibility of suspended particulate elements finding a route to permanent sequestration in the skeleton. Laser ablation values for Zn, and Cu are similar at Rarotonga and Clipperton, and higher by factors of 500 and 15 than literature values for cleaned aragonite analyzed in solution, while our Co/Ca values are the lowest ever determined. Seasonal and shorter scale variations at Rarotonga are muted for Zn, but substantial for Cu and Co, possibly reflecting biologically-driven changes in ambient dissolved metal concentration or speciation. Corals grown in non-metal clean artificial seawater are higher for Zn, but surprisingly lower for Cu and Co. We suggest that the distribution coefficient model of metal incorporation may need to be revised to include aspects of dissolved metal speciation and particulate metal sources. In sum, these results will be used to evaluate the utility of laser ablation data for revealing aspects of open ocean biogeochemistry in the past.

  3. Simulation of global oceanic upper layers forced at the surface by an optimal bulk formulation derived from multi-campaign measurements.

    NASA Astrophysics Data System (ADS)

    Garric, G.; Pirani, A.; Belamari, S.; Caniaux, G.

    2006-12-01

    order to improve the air/sea interface for the future MERCATOR global ocean operational system, we have implemented the new bulk formulation developed by METEO-FRANCE (French Meteo office) in the MERCATOR 2 degree global ocean-ice coupled model (ORCA2/LIM). A single bulk formulation for the drag, temperature and moisture exchange coefficients is derived from an extended consistent database gathering 10 years of measurements issued from five experiments dedicated to air-sea fluxes estimates (SEMAPHORE, CATCH, FETCH, EQUALANT99 and POMME) in various oceanic basins (from Northern to equatorial Atlantic). The available database (ALBATROS) cover the widest range of atmospheric and oceanic conditions, from very light (0.3 m/s) to very strong (up to 29 m/s) wind speeds, and from unstable to extremely stable atmospheric boundary layer stratification. We have defined a work strategy to test this new formulation in a global oceanic context, by using this multi- campaign bulk formulation to derive air-sea fluxes from base meteorological variables produces by the ECMWF (European Centre for Medium Range and Weather Forecast) atmospheric forecast model, in order to get surface boundary conditions for ORCA2/LIM. The simulated oceanic upper layers forced at the surface by the previous air/sea interface are compared to those forced by the optimal bulk formulation. Consecutively with generally weaker transfer coefficient, the latter formulation reduces the cold bias in the equatorial Pacific and increases the too weak summer sea ice extent in Antarctica. Compared to a recent mixed layer depth (MLD) climatology, the optimal bulk formulation reduces also the too deep simulated MLDs. Comparison with in situ temperature and salinity profiles in different areas allowed us to evaluate the impact of changing the air/sea interface in the vertical structure.

  4. The Role of External Inputs and Internal Cycling in Shaping the Global Ocean Cobalt Distribution: Insights From the First Cobalt Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Tagliabue, Alessandro; Hawco, Nicholas J.; Bundy, Randelle M.; Landing, William M.; Milne, Angela; Morton, Peter L.; Saito, Mak A.

    2018-04-01

    Cobalt is an important micronutrient for ocean microbes as it is present in vitamin B12 and is a co-factor in various metalloenzymes that catalyze cellular processes. Moreover, when seawater availability of cobalt is compared to biological demands, cobalt emerges as being depleted in seawater, pointing to a potentially important limiting role. To properly account for the potential biological role for cobalt, there is therefore a need to understand the processes driving the biogeochemical cycling of cobalt and, in particular, the balance between external inputs and internal cycling. To do so, we developed the first cobalt model within a state-of-the-art three-dimensional global ocean biogeochemical model. Overall, our model does a good job in reproducing measurements with a correlation coefficient of >0.7 in the surface and >0.5 at depth. We find that continental margins are the dominant source of cobalt, with a crucial role played by supply under low bottom-water oxygen conditions. The basin-scale distribution of cobalt supplied from margins is facilitated by the activity of manganese-oxidizing bacteria being suppressed under low oxygen and low temperatures, which extends the residence time of cobalt. Overall, we find a residence time of 7 and 250 years in the upper 250 m and global ocean, respectively. Importantly, we find that the dominant internal resupply process switches from regeneration and recycling of particulate cobalt to dissolution of scavenged cobalt between the upper ocean and the ocean interior. Our model highlights key regions of the ocean where biological activity may be most sensitive to cobalt availability.

  5. Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Draper, D. S.

    2015-01-01

    The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP

  6. The Sun's Impact on Climate

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert

    2002-01-01

    We provide an overview of the impact of the Sun on the Earth atmosphere and climate system, focused on heating of Earth's atmosphere and oceans. We emphasize the importance of the spectral measurements of SIM and SOLSTICE- that we must know how solar variations are distributed over ultraviolet, visible, and infrared wavelengths, since these have separate characteristic influences on Earth's ozone layer, clouds, and upper layers of the oceans. Emphasis is also given to understanding both direct and indirect influences of the Sun on the Earth, which involve feedbacks between Earth's stratosphere, troposphere, and oceans, each with unique time scales, dynamics, chemistry, and biology, interacting non-linearly. Especially crucial is the role of all three phases of water on Earth, water vapor being the primary greenhouse gas in the atmosphere, the importance of trace gases such as CO2 arising from their absorption in the "water vapor window" at 800 - 1250/cm (12.5 to 8 microns). Melting of polar ice is one major response to the post-industrial global warming, enhanced due to "ice-albedo" feedback. Finally, water in liquid form has a major influence due to cloud albedo feedback, and also due to the oceans' absorption of solar radiation, particularly at visible wavelengths, through the visible "liquid water window" that allows penetration of visible light deep into the mixed layer, while nearby ultraviolet and infrared wavelengths do not penetrate past the upper centimeter ocean surface skin layer. A large fraction of solar energy absorbed by the oceans goes into the latent heat of evaporation. Thus the solar heating of the atmosphere-ocean system is strongly coupled through the water cycle of evaporation, cloud formation, precipitation, surface runoff and ice formation, to Earth's energy budget and climate, each different climate component responding to variations in different solar spectral bands, at ultraviolet, visible and infrared wavelengths.

  7. Reduced-Order Biogeochemical Flux Model for High-Resolution Multi-Scale Biophysical Simulations

    NASA Astrophysics Data System (ADS)

    Smith, Katherine; Hamlington, Peter; Pinardi, Nadia; Zavatarelli, Marco

    2017-04-01

    Biogeochemical tracers and their interactions with upper ocean physical processes such as submesoscale circulations and small-scale turbulence are critical for understanding the role of the ocean in the global carbon cycle. These interactions can cause small-scale spatial and temporal heterogeneity in tracer distributions that can, in turn, greatly affect carbon exchange rates between the atmosphere and interior ocean. For this reason, it is important to take into account small-scale biophysical interactions when modeling the global carbon cycle. However, explicitly resolving these interactions in an earth system model (ESM) is currently infeasible due to the enormous associated computational cost. As a result, understanding and subsequently parameterizing how these small-scale heterogeneous distributions develop and how they relate to larger resolved scales is critical for obtaining improved predictions of carbon exchange rates in ESMs. In order to address this need, we have developed the reduced-order, 17 state variable Biogeochemical Flux Model (BFM-17) that follows the chemical functional group approach, which allows for non-Redfield stoichiometric ratios and the exchange of matter through units of carbon, nitrate, and phosphate. This model captures the behavior of open-ocean biogeochemical systems without substantially increasing computational cost, thus allowing the model to be combined with computationally-intensive, fully three-dimensional, non-hydrostatic large eddy simulations (LES). In this talk, we couple BFM-17 with the Princeton Ocean Model and show good agreement between predicted monthly-averaged results and Bermuda testbed area field data (including the Bermuda-Atlantic Time-series Study and Bermuda Testbed Mooring). Through these tests, we demonstrate the capability of BFM-17 to accurately model open-ocean biochemistry. Additionally, we discuss the use of BFM-17 within a multi-scale LES framework and outline how this will further our understanding of turbulent biophysical interactions in the upper ocean.

  8. Reduced-Order Biogeochemical Flux Model for High-Resolution Multi-Scale Biophysical Simulations

    NASA Astrophysics Data System (ADS)

    Smith, K.; Hamlington, P.; Pinardi, N.; Zavatarelli, M.; Milliff, R. F.

    2016-12-01

    Biogeochemical tracers and their interactions with upper ocean physical processes such as submesoscale circulations and small-scale turbulence are critical for understanding the role of the ocean in the global carbon cycle. These interactions can cause small-scale spatial and temporal heterogeneity in tracer distributions which can, in turn, greatly affect carbon exchange rates between the atmosphere and interior ocean. For this reason, it is important to take into account small-scale biophysical interactions when modeling the global carbon cycle. However, explicitly resolving these interactions in an earth system model (ESM) is currently infeasible due to the enormous associated computational cost. As a result, understanding and subsequently parametrizing how these small-scale heterogeneous distributions develop and how they relate to larger resolved scales is critical for obtaining improved predictions of carbon exchange rates in ESMs. In order to address this need, we have developed the reduced-order, 17 state variable Biogeochemical Flux Model (BFM-17). This model captures the behavior of open-ocean biogeochemical systems without substantially increasing computational cost, thus allowing the model to be combined with computationally-intensive, fully three-dimensional, non-hydrostatic large eddy simulations (LES). In this talk, we couple BFM-17 with the Princeton Ocean Model and show good agreement between predicted monthly-averaged results and Bermuda testbed area field data (including the Bermuda-Atlantic Time Series and Bermuda Testbed Mooring). Through these tests, we demonstrate the capability of BFM-17 to accurately model open-ocean biochemistry. Additionally, we discuss the use of BFM-17 within a multi-scale LES framework and outline how this will further our understanding of turbulent biophysical interactions in the upper ocean.

  9. Decadal Prediction Skill in the GEOS-5 Forecast System

    NASA Technical Reports Server (NTRS)

    Ham, Yoo-Geun; Rienecker, Michele M.; Suarez, Max J.; Vikhliaev, Yury; Zhao, Bin; Marshak, Jelena; Vernieres, Guillaume; Schubert, Siegfried D.

    2013-01-01

    A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office's (GMAO's) GEOS-5 Atmosphere-Ocean general circulation model. The hind casts are initialized every December 1st from 1959 to 2010, following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multivariate ensemble optimal interpolation ocean and sea-ice reanalysis, and from GMAO's atmospheric reanalysis, the modern-era retrospective analysis for research and applications. The mean forecast skill of a three-member-ensemble is compared to that of an experiment without initialization but also forced with observed greenhouse gases. The results show that initialization increases the forecast skill of North Atlantic sea surface temperature compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. On the other hand, the initialization reduces the skill in predicting the warming trend over some regions outside the Atlantic. The annual-mean Atlantic meridional overturning circulation index, which is defined here as the maximum of the zonally-integrated overturning stream function at mid-latitude, is predictable up to a 4-year lead time, consistent with the predictable signal in upper ocean heat content over the North Atlantic. While the 6- to 9-year forecast skill measured by mean squared skill score shows 50 percent improvement in the upper ocean heat content over the subtropical and mid-latitude Atlantic, prediction skill is relatively low in the sub-polar gyre. This low skill is due in part to features in the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region that differ from observations. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.

  10. Tectono-sedimentary evolution of the eastern Gulf of Aden conjugate passive margins: Narrowness and asymmetry in oblique rifting context

    NASA Astrophysics Data System (ADS)

    Nonn, Chloé; Leroy, Sylvie; Khanbari, Khaled; Ahmed, Abdulhakim

    2017-11-01

    Here, we focus on the yet unexplored eastern Gulf of Aden, on Socotra Island (Yemen), Southeastern Oman and offshore conjugate passive margins between the Socotra-Hadbeen (SHFZ) and the eastern Gulf of Aden fracture zones. Our interpretation leads to onshore-offshore stratigraphic correlation between the passive margins. We present a new map reflecting the boundaries between the crustal domains (proximal, necking, hyper-extended, exhumed mantle, proto-oceanic and oceanic domains) and structures using bathymetry, magnetic surveys and seismic reflection data. The most striking result is that the magma-poor conjugate margins exhibit asymmetrical architecture since the thinning phase (Upper Rupelian-Burdigalian). Their necking domains are sharp ( 40-10 km wide) and their hyper-extended domains are narrow and asymmetric ( 10-40 km wide on the Socotra margin and 50-80 km wide on the Omani margin). We suggest that this asymmetry is related to the migration of the rift center producing significant lower crustal flow and sequential faulting in the hyper-extended domain. Throughout the Oligo-Miocene rifting, far-field forces dominate and the deformation is accommodated along EW to N110°E northward-dipping low angle normal faults. Convection in the mantle near the SHFZ may be responsible of change in fault dip polarity in the Omani hyper-extended domain. We show the existence of a northward-dipping detachment fault formed at the beginning of the exhumation phase (Burdigalien). It separates the northern upper plate (Oman) from southern lower plate (Socotra Island) and may have generated rift-induced decompression melting and volcanism affecting the upper plate. We highlight multiple generations of detachment faults exhuming serpentinized subcontinental mantle in the ocean-continent transition. Associated to significant decompression melting, final detachment fault may have triggered the formation of a proto-oceanic crust at 17.6 Ma and induced late volcanism up to 10 Ma. Finally, the setting up of a steady-state oceanic spreading center occurs at 17 Ma.

  11. Suspended sediment concentration and optical property observations of mixed-turbidity, coastal waters through multispectral ocean color inversion

    EPA Science Inventory

    Multispectral satellite ocean color data from high-turbidity areas of the coastal ocean contain information about the surface concentrations and optical properties of suspended sediments and colored dissolved organic matter (CDOM). Empirical and semi-analytical inversion algorit...

  12. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-10-01

    Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and higher partial pressure due to higher temperatures might slightly overcompensate for oxygen concentration decreases due to decreases in solubility.

  13. A reanalysis dataset of the South China Sea.

    PubMed

    Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu

    2014-01-01

    Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992-2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability.

  14. A reanalysis dataset of the South China Sea

    PubMed Central

    Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu

    2014-01-01

    Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992–2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability. PMID:25977803

  15. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    NASA Astrophysics Data System (ADS)

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-10-01

    Ocean currents play a key role in Earth's climate - they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.

  16. BIO ARGO floats: tools for operational monitoring of the Black Sea

    NASA Astrophysics Data System (ADS)

    Palazov, Atanas; Slabakova, Violeta; Peneva, Elisaveta; Stanev, Emil

    2014-05-01

    The assessment of ecological status in the context of the Water Framework Directive (WFD) and Marine Strategy Framework Directive (MSFD) requires comprehensive knowledge and understanding of the physical and biogeochemical processes that determine the functioning of marine ecosystems. One of the main challenges however is the need of data with frequency relevant to the spatial and temporal scales of the ecological processes. The majority of in situ observations that are commonly used for ecological monitoring of the Black Sea are generally based on near-shore monitoring programs or irregular oceanographic cruises that provide either non-synoptic, coarse resolution realizations of large scale processes or detailed, but time and site specific snapshots of local features. These gaps can be filled by two independent sources: satellite observation and profiling floats. In fact satellite ocean color sensors allows for determination at synoptic scale of water quality parameters through its absorption properties. However the satellite ocean color methods have a number of limitations such as: measurements can only be made during daylight hours; require cloud-free conditions and are sensitive to atmospheric aerosols; provide information only for the upper layer of the ocean (approximately the depth of 10% incident light); algorithms developed for global applications are a source of large uncertainties in the marginal seas and costal areas. These constrains of the optical remote sensing observations can be avoided by using miniature biogeochemical sensors and autonomous platforms that offer remarkable perspectives for observing the "biological" ocean, notably at critical spatiotemporal scales which have been out of reach until recently (Claustre et al., 2010). In the frame of "E-AIMS: Euro-Argo Improvements for the GMES marine Service" 7 EC FP project two Bio Argo floats were deployed in the Black Sea. Beside the traditionally CTD the floats were equipped with biogeochemical sensors (oxygen, irradiance, chl-a and backscattering). The selection of the deployment locations was limited only to the Bulgarian Black Sea waters, so that the optimal deployment strategy that has been chosen was the floats to be deployed in the maximum distant positions from each other along the Black Sea geostrophic current at depth ~ 1800 m. Coincident biogeochemical and in-water radiometric measurements were collected at the time of each float deployment to ensure intercalibration of the instruments mounted on the floats and as well as to find empirical relationship between optical data and biogeochemical variables. The data obtained form Bio floats will be used to: investigate the seasonal evolution of oxygen in the upper layers, including the subsurface oxygen maximum; study the seasonal and inter annual dynamics of phytoplankton blooms in the deeper Black Sea; cross validation of satellite derived Chl-a and backscattering. References: Claustre et al. (2010). Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies: potential synergies with ocean color remote sensing. Proceedings of the "OceanObs'09: Sustained Ocean Observations and Information for Society" Conference, Venice/Italy.

  17. Models of Deformation of Uppermost Oceanic Lithosphere: Comparison of Crustal Flexure in the Blönduós Area, Northern Iceland, and Structure of East Pacific Rise Crust at Hess Deep

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Karson, J. A.; Varga, R. J.; Gee, J. S.

    2007-12-01

    Models of the internal structure of oceanic crust have been constructed from studies of ophiolites and from more recent observations of tectonic windows into the upper crust. Spreading rate and/or magma supply are the central variables that control ridge processes and the ultimate architecture of ocean crust. In addition to ophiolites, Iceland also provides an important analog to study mid-ocean ridge processes and structure. Flexure zones in Iceland characterize the structure of Tertiary-Recent lava flows, and are areas wherein lavas dip regionally inward toward the axis of one of several ~N/S-trending rift zones. These rift zones are interpreted to represent fossil spreading centers which were abandoned during a series of eastward-directed ridge jumps. In the Hildará area, north-central Iceland, the eastern side of a regional flexure is characterized by westward-dipping lavas, approximately 6-8 Ma, which are cut by east-dipping normal faults and dikes. The upper-crustal structure within this flexure zone from slow spread (~20 mm/yr) crust exhibits remarkable similarities to the structure of the upper crust created at a fast-spreading (110 mm/yr) segment of the East Pacific Rise (EPR) observed at Hess Deep. In this modern ocean setting, ~1 Ma crust is characterized by west-dipping lavas above consistently east-dipping (away from the EPR) dikes and dike-subparallel fault zones. In both locations, paleomagnetic and structural data indicate that west-dipping lavas and east-dipping dikes result from tectonic rotations. In addition, cross-cutting dike relationships demonstrate that dike intrusion occurred both during and after normal fault- related tilting. These data indicate that fault-controlled tilting was initiated within the narrow neovolcanic zone of the ridge and is not associated with off-axis processes. Lavas at magmatically robust ridges commonly flow away from elevated ridge-crests. Measurement of anisotropy of magnetic susceptibility (AMS) of the lavas from the flexure in Iceland suggests a mean flow direction to the northeast, that is, away from the fossil-ridge axis, demonstrating that the fossil spreading center from which the lavas were extruded was located to the west. Despite the distinct differences in spreading rates, the high magma supply in both environments resulted in a very similar upper crustal architecture.

  18. Impacts of atmospheric variability on a coupled upper-ocean/ecosystem model of the subarctic Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Monahan, Adam Hugh; Denman, Kenneth L.

    2004-06-01

    The biologically-mediated flux of carbon from the upper ocean to below the permanent thermocline (the biological pump) is estimated to be ˜10 PgC/yr [, 2001], and plays an important role in the global carbon cycle. A detailed quantitative understanding of the dynamics of the biological pump is therefore important, particularly in terms of its potential sensitivity to climate change and its role in this change via feedback processes. Previous studies of coupled upper-ocean/planktonic ecosystem dynamics have considered models forced by observed atmospheric variability or by smooth annual and diurnal cycles. The second approach has the drawback that environmental variability is ubiquitous in the climate system, and may have a nontrivial impact on the (nonlinear) dynamics of the system, while the first approach is limited by the fact that observed time series are generally too short to obtain statistically robust characterizations of variability in the system. In the present study, an empirical stochastic model of high-frequency atmospheric variability (with a decorrelation timescale of less than a week) is estimated from long-term observations at Ocean Station Papa in the northeast subarctic Pacific. This empirical model, the second-order statistics of which resemble those of the observations to a good approximation, is used to produce very long (1000-year) realizations of atmospheric variability which are used to drive a coupled upper-ocean/ecosystem model. It is found that fluctuations in atmospheric forcing do not have an essential qualitative impact on most aspects of the dynamics of the ecosystem when primary production is limited by the availability of iron, although pronounced interannual variability in diatom abundance is simulated (even in the absence of episodic iron fertilization). In contrast, the impacts of atmospheric variability are considerably more significant when phytoplankton growth is limited in the summer by nitrogen availability, as observed closer to the North American coast. Furthermore, the high-frequency variability in atmospheric forcing is associated with regions in parameter space in which the system alternates between iron and nitrogen limitation on interannual to interdecadal timescales. Both the mean and variability of export production are found to be significantly larger in the nitrogen-limited regime than in the iron-limited regime.

  19. Plumes do not Exist: Plate Circulation is Confined to Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2002-12-01

    Plumes from deep mantle are widely conjectured to define an absolute reference frame, inaugurate rifting, drive plates, and profoundly modify oceans and continents. Mantle properties and composition are assumed to be whatever enables plumes. Nevertheless, purported critical evidence for plume speculation is false, and all data are better interpreted without plumes. Plume fantasies are made ever more complex and ad hoc to evade contradictory data, and have no predictive value because plumes do not exist. All plume conjecture derives from Hawaii and the guess that the Emperor-Hawaii inflection records a 60-degree change in Pacific plate direction at 45 Ma. Paleomagnetic latitudes and smooth Pacific spreading patterns disprove any such change. Rationales for other fixed plumes collapse when tested, and hypotheses of jumping, splitting, and gyrating plumes are specious. Thermal and physical properties of Hawaiian lithosphere falsify plume predictions. Purported tomographic support elsewhere represents artifacts and misleading presentations. Asthenosphere is everywhere near solidus temperature, so melt needs a tensional setting for egress but not local heat. Gradational and inconsistent contrasts between MORB and OIB are as required by depth-varying melt generation and behavior in contrasted settings and do not indicate systematically unlike sources. MORB melts rise, with minimal reaction, through hot asthenosphere, whereas OIB melts react with cool lithosphere, and lose mass, by crystallizing refractories and retaining and assimilating fusibles. The unfractionated lower mantle of plume conjecture is contrary to cosmologic and thermodynamic data, for mantle below 660 km is more refractory than that above. Subduction, due to density inversion by top-down cooling that forms oceanic lithosphere, drives plate tectonics and upper-mantle circulation. It organizes plate motions and lithosphere stress, which controls plate boundaries and volcanic chains. Hinge rollback is the key to kinematics. Arcs advance and collide, fast-spreading Pacific shrinks, etc. A fore-arc basin atop an overriding plate shows that hinge and non-shortening plate front there track together: velocities of rollback and advance are equal. Convergence velocity commonly also equals rollback velocity but often is greater. Slabs sinking broadside push upper mantle back under incoming plates and force rapid Pacific spreading, whereas overriding plates flow forward with retreating hinges. Backarc basins open behind island arcs migrating with hinges. Slabs settle on uncrossable 660-km discontinuity. (Contrary tomographic claims reflect sampling and smearing artifacts, notably due to along-slab raypaths.) Plates advance over sunken slabs and mantle displaced rearward by them, and ridges spread where advancing plates pull away. Ridges migrate over asthenosphere, producing geophysical and bathymetric asymmetry, and tap fresh asthenosphere into which slab material is recycled upward. Sluggish deep-mantle circulation is decoupled from rapid upper-mantle circulation, so plate motions can be referenced to semistable lower mantle. Global plate motions make kinematic sense if Antarctica, almost ringed by departing ridges and varying little in Cenozoic paleomagnetic position, is stationary: hinges roll back, ridges migrate, and directions and velocities of plate rotations accord with subduction, including sliding and crowding of oceanic lithosphere toward free edges, as the dominant drive. (The invalid hotspot and no-net-rotation frames minimize motions of hinges and ridges, and their plate motions lack kinematic sense.) Northern Eurasia also is almost stationary, Africa rotates very slowly counterclockwise toward Aegean and Zagros, Pacific plate races toward surface-exit subduction systems, etc.

  20. Surface boundary layer turbulence in the Southern ocean

    NASA Astrophysics Data System (ADS)

    Merrifield, Sophia; St. Laurent, Louis; Owens, Breck; Naveira Garabato, Alberto

    2015-04-01

    Due to the remote location and harsh conditions, few direct measurements of turbulence have been collected in the Southern Ocean. This region experiences some of the strongest wind forcing of the global ocean, leading to large inertial energy input. While mixed layers are known to have a strong seasonality and reach 500m depth, the depth structure of near-surface turbulent dissipation and diffusivity have not been examined using direct measurements. We present data collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field program. In a range of wind conditions, the wave affected surface layer (WASL), where surface wave physics are actively forcing turbulence, is contained to the upper 15-20m. The lag-correlation between wind stress and turbulence shows a strong relationship up to 6 hours (˜1/2 inertial period), with the winds leading the oceanic turbulent response, in the depth range between 20-50m. We find the following characterize the data: i) Profiles that have a well-defined hydrographic mixed layer show that dissipation decays in the mixed layer inversely with depth, ii) WASLs are typically 15 meters deep and 30% of mixed layer depth, iii) Subject to strong winds, the value of dissipation as a function of depth is significantly lower than predicted by theory. Many dynamical processes are known to be missing from upper-ocean parameterizations of mixing in global models. These include surface-wave driven processes such as Langmuir turbulence, submesocale frontal processes, and nonlocal representations of mixing. Using velocity, hydrographic, and turbulence measurements, the existence of coherent structures in the boundary layer are investigated.

Top