Sample records for upper saturated zone

  1. Damping Effect of an Unsaturated-Saturated System on Tempospatial Variations of Pressure Head and Specific Flux

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zhang, Y. K.; Liang, X.

    2014-12-01

    Damping effect of an unsaturated-saturated system on tempospatialvariations of pressurehead and specificflux was investigated. The variance and covariance of both pressure head and specific flux in such a system due to a white noise infiltration were obtained by solving the moment equations of water flow in the system and verified with Monte Carlo simulations. It was found that both the pressure head and specific flux in this case are temporally non-stationary. The variance is zero at early time due to a deterministic initial condition used, then increases with time, and approaches anasymptotic limit at late time.Both pressure head and specific flux arealso non-stationary in space since the variance decreases from source to sink. The unsaturated-saturated systembehavesasa noise filterand it damps both the pressure head and specific flux, i.e., reduces their variations and enhances their correlation. The effect is stronger in upper unsaturated zone than in lower unsaturated zone and saturated zone. As a noise filter, the unsaturated-saturated system is mainly a low pass filter, filtering out the high frequency components in the time series of hydrological variables. The damping effect is much stronger in the saturated zone than in the saturated zone.

  2. Sidewall crystallization and saturation front formation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, E. T.

    2012-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface driven processes of conduction and crystallization front migration. In the former case, volatile saturation occurs uniformly chamber wide, in the latter volatile saturation occurs along an inward propagating front. Ambient thermal gradient primarily controls the propagation rate; warm (> 30 °C / km) geothermal gradients promote 1000m+ thick crystal mush zones but slow crystallization front propagation. Cold geothermal gradients support the opposite. Magma chamber geometry plays a second order role in controlling propagation rates; bodies with high surface to magma ratio and large Earth's surface parallel faces exhibit more rapid propagation and smaller mush zones. Crystallization front propagation occurs at speeds of up to 6 cm/year (rhyolitic magma, thin sill geometry, 10 °C / km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate and ascend under certain conditions. Saturation front propagation is fixed by pressure and magma crystal content; above certain modest initial water contents (4.4 wt% in a dacite) mobile magma above 10 km depth always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt% in a dacite at 5 km depth), creating an upper saturated interface for most common (4 - 6 wt%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. Magma de-densification by bubble nucleation promotes convection and homogenization in dacitic systems. If the fluid pocket grew rapidly without draining, hydro-fracturing and eruption would result. The combination of fluid escape pathways and metal scavenging would generate economic vein or porphyry deposits.

  3. Results of coalbed-methane drilling, Mylan Park, Monongalia County, West Virginia: Chapter G.3 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Fedorko, Nick; Warwick, Peter D.; Grady, William C.; Britton, James Q.; Schuller, William A.; Crangle, Robert D.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    High-pressure carbon-dioxide adsorption isotherms were measured on composite coal samples of the Upper Kittanning coal bed and the Middle Kittanning and Clarion coal zones. Assuming that the reservoir pressure in the Mylan Park coals is equivalent to the normal hydrostatic pressure, the estimated maximum carbon-dioxide adsorption pressures range from a low of about 300 pounds per square inch (lb/in2 ) in coals from the Clarion coal zone to 500 lb/in2 for coals from the Upper Kittanning coal bed. The estimated maximum methane adsorption isotherms show that the coals from the Upper Kittanning coal bed and the Middle Kittanning coal zone are undersaturated in methane, but coals from the Clarion coal zone are close to saturation.

  4. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  5. When interflow also percolates: downslope travel distances and hillslope process zones.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, C. Rhett; Bitew, Menberu; Du, Enhao

    2014-02-17

    In hillslopes with soils characterized by deep regoliths, such as Ultisols,Oxisols, and Alfisols, interflow occurs episodically over impeding layers near and parallel to the soil surface such as low-conductivity B horizons (e.g.Newman et al., 1998; Buttle andMcDonald, 2002; Du et al., In Review), till layers (McGlynn et al., 1999; Bishop et al., 2004), hardpans (McDaniel et al., 2008), C horizons (Detty and McGuire, 2010), and permeable bedrock (Tromp van Meerveld et al., 2007). As perched saturation develops within and above these impeding but permeable horizons, flow moves laterally downslope, but the perched water also continues to percolate through the impedingmore » horizon to the unsaturated soils and saprolite below. Perched water and solutes will eventually traverse the zone of perched saturation above the impeding horizon and then enter and percolate through the impeding horizon. In such flow situations, only lower hillslope segments with sufficient downslope travel distance will deliver water to the riparian zone within the time scale of a storm.farther up the slope, lateral flow within the zone of perched saturation. will act mainly to shift the point of percolation (location where a water packet leaves the downslope flow zone in the upper soil layer and enters the impeding layer) down the hillslope from the point of infiltration. In flatter parts of the hillslope or in areas with little contrast between the conductivities of the upper and impeding soil layers, lateral flow distances will be negligible.« less

  6. Analysis of flowpath dynamics in a steep unchannelled hollow in the Tanakami Mountains of Japan

    NASA Astrophysics Data System (ADS)

    Uchida, Taro; Asano, Yuko; Ohte, Nobuhito; Mizuyama, Takahisa

    2003-02-01

    Simultaneous measurements of runoff, soil pore water pressure, soil temperature, and water chemistry were taken to evaluate the spatial and temporal nature of flowpaths in a steep 0·1 ha unchannelled hollow in the Tanakami Mountains of central Japan. Tensiometers showed that a saturated area formed and a downward hydraulic gradient existed continuously in the area near a spring. The amplitude of the soil-bedrock interface temperature difference near the spring was smaller than that in the upper hollow, although soil depth near the spring was smaller than in the upper hollow. This suggests that, in the small perennially saturated area near the spring, water percolates through the vadose zone mixed with water emerging from the bedrock. During summer rainstorms, the soil-bedrock interface temperature increased as the ground became saturated. Silica and sodium concentrations in the transient saturated groundwater during these episodes were significantly lower than those in the perennial groundwater, suggesting that both rainwater and shallow soil water had important effects on the formation of transient saturated groundwater on the upper slope. In this case, the streamflow varied with the soil pore water pressure on the upper slope; the soil pore water pressure in the area near the spring remained nearly constant. Moreover, the spring water temperature was almost the same as the transient groundwater temperature on the upper slope. This indicates that the transient groundwater in the upper slope flowed to the spring via lateral preferential paths. The relative inflow of bedrock groundwater to the spring decreased as rainfall increased.

  7. Vertical variability in saturated zone hydrochemistry near Yucca Mountain, Nevada

    USGS Publications Warehouse

    Patterson, G.L.; Striffler, P.S.

    2006-01-01

    The differences in the saturated zone hydrochemistry with depth at borehole NC-EWDP-22PC reflect the addition of recharge along Fortymile Wash. The differences in water chemistry with depth at borehole NC-EWDP-19PB appear to indicate that other processes are involved. Water from the lower part of NC-EWDP-19PB possesses chemical characteristics that clearly indicate that it has undergone cation exchange that resulted in the removal of calcium and magnesium and the addition of sodium. This water is very similar to water from the Western Yucca Mountain facies that has previously been thought to flow west of NC-EWDP-19PB. Water from the lower zone in NC-EWDP-19PB also could represent water from the Eastern Yucca Mountain fades that has moved through day-bearing or zeolitized aquifer material resulting in the altered chemistry. Water chemistry from the upper part of the saturated zone at NC-EWDP-19PB, both zones at NC-EWDP-22PC, and wells in the Fortymile Wash facies appears to be the result of recharge through the alluvium south of Yucca Mountain and within the Fortymile Wash channel.

  8. An interpretation of core and wireline logs for the Petrophysical evaluation of Upper Shallow Marine sandstone reservoirs of the Bredasdorp Basin, offshore South Africa

    NASA Astrophysics Data System (ADS)

    Magoba, Moses; Opuwari, Mimonitu

    2017-04-01

    This paper embodies a study carried out to assess the Petrophysical evaluation of upper shallow marine sandstone reservoir of 10 selected wells in the Bredasdorp basin, offshore, South Africa. The studied wells were selected randomly across the upper shallow marine formation with the purpose of conducting a regional study to assess the difference in reservoir properties across the formation. The data sets used in this study were geophysical wireline logs, Conventional core analysis and geological well completion report. The physical rock properties, for example, lithology, fluid type, and hydrocarbon bearing zone were qualitatively characterized while different parameters such as volume of clay, porosity, permeability, water saturation ,hydrocarbon saturation, storage and flow capacity were quantitatively estimated. The quantitative results were calibrated with the core data. The upper shallow marine reservoirs were penetrated at different depth ranging from shallow depth of about 2442m to 3715m. The average volume of clay, average effective porosity, average water saturation, hydrocarbon saturation and permeability range from 8.6%- 43%, 9%- 16%, 12%- 68% , 32%- 87.8% and 0.093mD -151.8mD respectively. The estimated rock properties indicate a good reservoir quality. Storage and flow capacity results presented a fair to good distribution of hydrocarbon flow.

  9. Impact of Reservoir Fluid Saturation on Seismic Parameters: Endrod Gas Field, Hungary

    NASA Astrophysics Data System (ADS)

    El Sayed, Abdel Moktader A.; El Sayed, Nahla A.

    2017-12-01

    Outlining the reservoir fluid types and saturation is the main object of the present research work. 37 core samples were collected from three different gas bearing zones in the Endrod gas field in Hungary. These samples are belonging to the Miocene and the Upper - Lower Pliocene. These samples were prepared and laboratory measurements were conducted. Compression and shear wave velocity were measured using the Sonic Viewer-170-OYO. The sonic velocities were measured at the frequencies of 63 and 33 kHz for compressional and shear wave respectively. All samples were subjected to complete petrophysical investigations. Sonic velocities and mechanical parameters such as young’s modulus, rigidity, and bulk modulus were measured when samples were saturated by 100%-75%-0% brine water. Several plots have been performed to show the relationship between seismic parameters and saturation percentages. Robust relationships were obtained, showing the impact of fluid saturation on seismic parameters. Seismic velocity, Poisson’s ratio, bulk modulus and rigidity prove to be applicable during hydrocarbon exploration or production stages. Relationships among the measured seismic parameters in gas/water fully and partially saturated samples are useful to outline the fluid type and saturation percentage especially in gas/water transitional zones.

  10. Interlake production established using quantitative hydrocarbon well-log analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, J.; Atkinson, A.

    1988-07-01

    Production was established in a new pay zone of the basal Interlake Formation adjacent to production in Midway field in Williams County, North Dakota. Hydrocarbon saturation, which was computed using hydrocarbon well-log (mud-log) data, and computed permeability encouraged the operator to run casing and test this zone. By use of drilling rig parameters, drilling mud properties, hydrocarbon-show data from the mud log, drilled rock and porosity descriptions, and wireline log porosity, this new technique computes oil saturation (percent of porosity) and permeability to the invading filtrate, using the Darcy equation. The Leonardo Fee well was drilled to test the Devonianmore » Duperow, the Silurian upper Interlake, and the Ordovician Red River. The upper two objectives were penetrated downdip from Midway production and there were no hydrocarbon shows. It was determined that the Red River was tight, based on sample examination by well site personnel. The basal Interlake, however, liberated hydrocarbon shows that were analyzed by this new technology. The results of this evaluation accurately predicted this well would be a commercial success when placed in production. Where geophysical log analysis might be questionable, this new evaluation technique may provide answers to anticipated oil saturation and producibility. The encouraging results of hydrocarbon saturation and permeability, produced by this technique, may be largely responsible for the well being in production today.« less

  11. Estimating organic maturity from well logs, Upper Cretaceous Austin Chalk, Texas Gulf coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hines, G.A.; Berg, R.R.

    1990-09-01

    The Austin Chalk is both a source rock for oil and a fractured reservoir, and the evaluation of its organic maturity from well logs could be an aid to exploration and production. Geochemical measurements have shown three zones of organic maturity for source materials: (1) an immature zone to depths of 6,000 ft, (2) a peak-generation and accumulation zone from 6,000 to 6,500 ft, and (3) a mature, expulsion and migration zone below 6,500 ft. The response of common well logs identifies these zones. True resistivity (R{sub t}) is low in the immature zone, increases to a maximum in themore » peak-generation zone, and decreases to intermediate values in the expulsion zone. Density and neutron porosities are different in the immature zone but are nearly equal in the peak generation and expulsion zones. Correlations with conventional core analyses indicate that R{sub t} values between 9 and 40 ohm-m in the expulsion zone reflect a moveable oil saturation of 10 to 20% in the rock matrix. The moveable saturation provides oil from the matrix to fractures and is essential for sustained oil production. Therefore, the evaluation of moveable oil from well logs could be important in exploration.« less

  12. Shallow subsurface storm flow in a forested headwater catchment: Observations and modeling using a modified TOPMODEL

    USGS Publications Warehouse

    Scanlon, Todd M.; Raffensperger, Jeff P.; Hornberger, George M.; Clapp, Roger B.

    2000-01-01

    Transient, perched water tables in the shallow subsurface are observed at the South Fork Brokenback Run catchment in Shenandoah National Park, Virginia. Crest piezometers installed along a hillslope transect show that the development of saturated conditions in the upper 1.5 m of the subsurface is controlled by total precipitation and antecedent conditions, not precipitation intensity, although soil heterogeneities strongly influence local response. The macroporous subsurface storm flow zone provides a hydrological pathway for rapid runoff generation apart from the underlying groundwater zone, a conceptualization supported by the two‐storage system exhibited by hydrograph recession analysis. A modified version of TOPMODEL is used to simulate the observed catchment dynamics. In this model, generalized topographic index theory is applied to the subsurface storm flow zone to account for logarithmic storm flow recessions, indicative of linearly decreasing transmissivity with depth. Vertical drainage to the groundwater zone is required, and both subsurface reservoirs are considered to contribute to surface saturation.

  13. Hydrogeology, water quality, and water-supply potential of the Lower Floridan Aquifer, coastal Georgia, 1999-2002

    USGS Publications Warehouse

    Falls, W. Fred; Harrelson, Larry G.; Conlon, Kevin J.; Petkewich, Matthew D.

    2005-01-01

    The hydrogeology and water quality of the upper permeable and Fernandina permeable zones of the Lower Floridan aquifer were studied at seven sites in the 24-county study area encompassed by the Georgia Coastal Sound Science Initiative. Although substantially less than the Upper Floridan aquifer in coastal Georgia, transmissivities for the Lower Floridan aquifer are in the same range as other water-supply aquifers in Georgia and South Carolina and could meet the needs of public drinking-water supply. Water of the upper permeable zone of the Lower Floridan aquifer exceeds the Federal secondary drinking-water standards for sulfate and total dissolved solids at most coastal Georgia sites and the Federal secondary drinking-water standard for chloride at the Shellman Bluff site. The top of the Lower Floridan aquifer correlates within 50 feet of the previously reported top, except at the St Simons Island site where the top is more than 80 feet higher. Based on the hydrogeologic characteristics, the seven sites are divided into the northern sites at Shellman Bluff, Richmond Hill, Pembroke, and Pineora; and southern sites at St Marys, Brunswick, and St Simons Island. At the northern sites, the Lower Floridan aquifer does not include the Fernandina permeable zone, is thinner than the overlying Upper Floridan aquifer, and consists of only strata of the middle Eocene Avon Park Formation. Transmissivities in the Lower Floridan aquifer are 8,300 feet squared per day at Richmond Hill and 6,000 feet squared per day at Shellman Bluff, generally one tenth the transmissivity of the Upper Floridan aquifer at these sites. At the southern sites, the upper permeable zone of the Lower Floridan aquifer is thicker than the Upper Floridan aquifer and consists of porous limestone and dolomite interbedded with nonporous strata of the middle Eocene Avon Park and early Eocene Oldsmar Formations. Transmissivities for the upper permeable zone of the Lower Floridan aquifer are 500 feet squared per day at the St Simons Island site and 13,000 feet squared per day at the St Marys site. The Lower Floridan aquifer at the Brunswick and St Marys sites includes the Fernandina permeable zone, which consists of saltwater-bearing dolomite. Hydrographs of Coastal Sound Science Initiative wells and other nearby wells open to the Upper Floridan aquifer, and the upper permeable and Fernandina permeable zones of the Lower Floridan aquifer have similar trends. Water levels in wells open to the Upper and Lower Floridan aquifers are below land surface at the northern sites and the St Simons Island site, and above land surface at the Brunswick and St Marys sites, as of January 1, 2004. Freshwater is present in the Lower Floridan aquifer at Pineora, Pembroke, and St Marys, and from 1,259 to 1,648 feet below land surface at Brunswick. Slightly saline water is present in the Lower Floridan aquifer at Richmond Hill, Shellman Bluff, St Simons Island, and from 1,679 to 1,970 feet below land surface in well 34H495 at Brunswick. The upper permeable zone of the Lower Floridan aquifer contains bicarbonate water at the Pembroke site, sulfate-bicarbonate water at the Brunswick site, and sulfate water at the St Simons Island, Shellman Bluff, St Marys, and Richmond Hill sites. The bicarbonate, sulfate-bicarbonate, and sulfate waters are saturated relative to calcite and dolomite, and undersaturated with gypsum and anhydrite. The Fernandina permeable zone in well 34H495 includes moderately saline water, very saline water, and brine. The Fernandina permeable zone of the Lower Floridan aquifer beneath downtown Brunswick contains chloride water that is slightly undersaturated to saturated with gypsum and anhydrite. Concentrations of total dissolved solids, sulfate, and chloride exceeded the Federal secondary drinking-water standards. The chloride-contaminated plumes beneath downtown Brunswick would require at least a 12- to 20-percent contribution of very saline water from the Fernandi

  14. Light Dependence of [3H]Leucine Incorporation in the Oligotrophic North Pacific Ocean†

    PubMed Central

    Church, Matthew J.; Ducklow, Hugh W.; Karl, David M.

    2004-01-01

    The influence of irradiance on bacterial incorporation of [3H]leucine was evaluated at Station ALOHA in the oligotrophic North Pacific subtropical gyre. Six experiments were conducted on three cruises to Station ALOHA to examine how [3H]leucine incorporation varied as a function of irradiance. Two experiments were also conducted to assess the photoautotrophic response to irradiance (based on photosynthetic uptake of [14C]bicarbonate) in both the upper and lower photic zones. Rates of [3H]leucine incorporation responded to irradiance in a photosynthesis-like manner, increasing sharply at low light and then saturating and sometimes declining with increasing light intensity. The influence of irradiance on bacterial growth was evaluated in both the well-lit (5 to 25 m) and dimly lit regions of the upper ocean (75 to 100 m) to determine whether the bacterial response to irradiance differed along the depth-dependent light gradient of the photic zone. [3H]leucine incorporation rates were analyzed with a photosynthesis-irradiance model for a quantitative description of the relationships between [3H]leucine incorporation and irradiance. Maximum rates of [3H]leucine incorporation in the upper photic zone increased 48 to 92% relative to those of dark-incubated samples, with [3H]leucine incorporation saturating at light intensities between 58 and 363 μmol of quanta m−2 s−1. Rates of [3H]leucine incorporation in the deep photic zone were photostimulated 53 to 114% and were susceptible to photoinhibition, with rates declining at light intensities of >100 μmol of quanta m−2 s−1. The results of these experiments revealed that sunlight directly influences bacterial growth in this open-ocean ecosystem. PMID:15240286

  15. Two-phase convective CO 2 dissolution in saline aquifers

    DOE PAGES

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-30

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO 2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO 2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO 2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have eithermore » ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO 2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO 2 more than 3 times above the rate assuming single-phase conditions.« less

  16. Petrophysics of Lower Silurian sandstones and integration with the tectonic-stratigraphic framework, Appalachian basin, United States

    USGS Publications Warehouse

    Castle, J.W.; Byrnes, A.P.

    2005-01-01

    Petrophysical properties were determined for six facies in Lower Silurian sandstones of the Appalachian basin: fluvial, estuarine, upper shoreface, lower shoreface, tidal channel, and tidal flat. Fluvial sandstones have the highest permeability for a given porosity and exhibit a wide range of porosity (2-18%) and permeability (0.002-450 md). With a transition-zone thickness of only 1-6 m (3-20 ft), fluvial sandstones with permeability greater than 5 md have irreducible water saturation (Siw) less than 20%, typical of many gas reservoirs. Upper shoreface sandstones exhibit good reservoir properties with high porosity (10-21%), high permeability (3-250 md), and low S iw (<20%). Lower shoreface sandstones, which are finer grained, have lower porosity (4-12%), lower permeability (0.0007-4 md), thicker transition zones (6-180 m [20-600 ft]), and higher S iw. In the tidal-channel, tidal-flat, and estuarine facies, low porosity (average < 6%), low permeability (average < 0.02 md), and small pore throats result in large transition zones (30-200 m; 100-650 ft) and high water saturations. The most favorable reservoir petrophysical properties and the best estimated production from the Lower Silurian sandstones are associated with fluvial and upper shoreface facies of incised-valley fills, which we interpret to have formed predominantly in areas of structural recesses that evolved from promontories along a collisional margin during the Taconic orogeny. Although the total thickness of the sandstone may not be as great in these areas, reservoir quality is better than in adjacent structural salients, which is attributed to higher energy depositional processes and shallower maximum burial depth in the recesses than in the salients. Copyright ??2005. The American Association of Petroleum Geologists. All rights reserved.

  17. Quadrupole mass filter: design and performance for operation in stability zone 3.

    PubMed

    Syed, Sarfaraz U A H; Hogan, Thomas J; Antony Joseph, Mariya J; Maher, Simon; Taylor, Stephen

    2013-10-01

    The predicted performance of a quadrupole mass filter (QMF) operating in Mathieu stability zone 3 is described in detail using computer simulations. The investigation considers the factors that limit the ultimate maximum resolution (Rmax) and percentage transmission (%Tx), which can be obtained for a given QMF for a particular scan line of operation. The performance curve (i.e., the resolution (R) versus number (N) of radio frequency (rf) cycles experienced by the ions in the mass filter) has been modeled for the upper and lower tip of stability zone 3. The saturation behavior of the performance curve observed in practice for zone 3 is explained. Furthermore, new design equations are presented by examining the intersection of the scan line with stability zone 3. Resolution versus transmission characteristics of stability zones 1 and 3 are compared and the dependence of performance for zones 1 and 3 is related to particular instrument operating parameters.

  18. Effects of bedrock geology on source and flowpath of runoff water in steep unchanneled hollows

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Asano, Y.; Kosugi, K.; Ohte, N.; Mizuyama, T.

    2001-05-01

    Simultaneous measurements of runoff, soil pore water pressure and soil temperature were taken to evaluate the spatial and temporal nature of flowpaths and flow sources in steep unchanneled hollows in central Japan. Two small hollows were monitored; one is underlain by granite and one is underlain by Paleozoic shale. In both catchments, tensiometers showed that a saturated area formed in the areas near a spring. The soil temperature suggests that in the small perennially saturated area near the spring, water percolating through the vadose zone mixed with water emerging from the bedrock. During rainstorms, the streamflow varied with the soil pore water pressure on the upper slope; the soil pore water pressure in the area near the spring remained nearly constant._@ Moreover, the spring water temperature was almost the same as the transient groundwater temperature on the upper slope. This indicates that the transient groundwater in the upper slope flowed to the spring via lateral preferential paths in both catchments. During summer rainstorms, the soil-bedrock interface temperature increased as the ground became saturated in the granite hollow, suggesting that both rainwater and shallow soil water had important effects on the formation of transient saturated groundwater on the upper slope. That is, it can be concluded that the contribution of the bedrock groundwater to the streamflow was relatively small in the granite hollow during storm runoff. The area where the bedrock groundwater seeped into the soil mantle did not grow in size as the contributing area for the streamflow extended to the upper hollow in the granite catchment. In contrast, the soil temperature indicated that after heavy rainfall (77.5 mm), bedrock groundwater played an important role in the formation of the transient groundwater in the Paleozoic shale hollow. Consequently, the contribution of the bedrock groundwater to the streamflow was relatively large in the shale hollow after heavy rainfall.

  19. Using Geophysics to Define Hydrostratigraphic Units in the Edwards and Trinity Aquifers, Texas

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Blome, C. D.; Clark, A. K.; Kress, W.; Smith, D. V.

    2007-05-01

    Airborne and ground geophysical surveys conducted in Uvalde, Medina, and northern Bexar counties, Texas, can be used to define and characterize hydrostratigraphic units of the Edwards and Trinity aquifers. Airborne magnetic surveys have defined numerous Cretaceous intrusive stocks and laccoliths, mainly in Uvalde County, that influence local hydrology and perhaps regional ground-water flow paths. Depositional environments in the aquifers can be classified as shallow water platforms (San Marcos Platform, Edwards Group), shoal and reef facies (Devils River Trend, Devils River Formation), and deeper water basins (Maverick Basin, West Nueces, McKnight, and Salmon Peak Formations). Detailed airborne and ground electromagnetic surveys have been conducted over the Edwards aquifer catchment zone (exposed Trinity aquifer rocks), recharge zone (exposed Edwards aquifer rocks), and artesian zone (confined Edwards) in the Seco Creek area (northeast Uvalde and Medina Counties; Devils River Trend). These geophysical survey data have been used to divide the Edwards exposed within the Balcones fault zone into upper and lower hydrostratigraphic units. Although both units are high electrical resistivity, the upper unit has slightly lower resistivity than the lower unit. The Georgetown Formation, at the top of the Edwards Group has a moderate resistivity. The formations that comprise the upper confining units to the Edwards aquifer rocks have varying resistivities. The Eagleford and Del Rio Groups (mainly clays) have very low resistivities and are excellent electrical marker beds in the Seco Creek area. The Buda Limestone is characterized by high resistivities. Moderate resistivities characterize the Austin Group rocks (mainly chalk). The older Trinity aquifer, underlying the Edwards aquifer rocks, is characterized by less limestone (electrically resistive or low conductivity units) and greater quantities of mudstones (electrically conductive or low resistivity units). In the western area (Devils River Trend and Maverick Basin) of the Trinity aquifer system there are well-defined collapse units and features that are marked by moderate resistivities bracketed by resistive limestone and conductive mudstone of the Glen Rose Limestone. In the central part of the aquifer (San Marcos Platform) the Trinity's lithologies are divided into upper and lower units with further subdivisions into hydrostratigraphic units. These hydrostratigraphic units are well mapped by an airborne electromagnetic survey in Bexar County. Electrical properties of the Edwards aquifer also vary across the fresh-saline water interface where ground and borehole electrical surveys have been conducted. The saline- saturated Edwards is predictably more conductive than the fresh-water saturated rocks. Similar fresh-saline water interfaces exist within the upper confining units of the Edwards aquifer (Carrizo-Wilcox aquifer) and the Trinity aquifer rocks.

  20. Sr-90 Immobilization by Infiltration of a Ca-Citrate-PO4 Solution into the Hanford 100-N Area Vadose Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szecsody, Jim E.; Fruchter, Jonathan S.; Burns, Carolyn A.

    This project was initiated to develop a strategy for infiltration of a Ca-citrate-PO4 solution in order to precipitate apatite [Ca6(PO4)10(OH)2] in desired locations in the vadose zone for Sr-90 remediation. Laboratory experiments have demonstrated that infiltration of a Ca-citrate-PO4 solution into sediments at low and high water saturation results in citrate biodegradation and formation of apatite. The citrate biodegradation rate was relatively uniform, in spite of the spatial variability of sediment microbial biomass, likely because of microbial transport processes that occur during solution infiltration. The precipitate was characterized as hydroxyapatite, and the Sr-90 substitution into apatite was shown to havemore » a half-life of 5.5 to 16 months. 1-D and 2-D laboratory infiltration experiments quantified the spatial distribution of apatite that formed during solution infiltration. Slow infiltration in 2-D experiments at low water saturation show the apatite precipitate concentrated in the upper third of the infiltration zone. More rapid 1-D infiltration studies show the apatite precipitate concentrated at greater depth.« less

  1. Preliminary hydrogeologic investigation of the Maxey Flats radioactive waste burial site, Fleming County, Kentucky

    USGS Publications Warehouse

    Zehner, Harold H.

    1979-01-01

    Burial trenches at the Maxey Flats radioactive waste burial site , Fleming County, Ky., cover an area of about 0.03 square mile, and are located on a plateau, about 300 to 400 feet above surrounding valleys. Although surface-water characteristics are known, little information is available regarding the ground-water hydrology of the Maxey Flats area. If transport of radionuclides from the burial site were to occur, water would probably be the principal mechanism of transport by natural means. Most base flow in streams around the burial site is from valley alluvium, and from the mantle of regolith, colluvium, and soil partially covering adjacent hills. Very little base flow is due to ground-water flow from bedrock. Most water in springs is from the mantle, rather than from bedrock. Rock units underlying the Maxey Flats area are, in descending order, the Nancy and Farmers Members of the Borden Formation, Sunbury, Bedford, and Ohio Shales, and upper part of the Crab Orchard Formation. These units are mostly shales, except for the Farmers Member, which is mostly sandstone. Total thickness of the rocks is about 320 feet. All radioactive wastes are buried in the Nancy Member. Most ground-water movement in bedrock probably occurs in fractures. The ground-water system at Maxey Flats is probably unconfined, and recharge occurs by (a) infiltration of rainfall into the mantle, and (b) vertical, unsaturated flow from the saturated regolith on hilltops to saturated zones in the Farmers Member and Ohio Shale. Data are insufficient to determine if saturated zones exist in other rock units. The upper part of the Crab Orchard Formation is probably a hydrologic boundary, with little ground-water flow through the formation. (USGS)

  2. Preferential Flow Paths In A Karstified Spring Catchment: A Study Of Fault Zones As Conduits To Rapid Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Terrell, A. N.; Veltri, M.; Sauter, M.; Schmidt, S.

    2017-12-01

    In this study we model saturated and unsaturated flow in the karstified Weendespring catchment, located within the Leinetal graben in Goettingen, Germany. We employ the finite element COMSOL Multiphysics modeling software to model variably saturated flow using the Richards equation with a van Genuchten type parameterization. As part of the graben structure, the Weende spring catchment is intersected by seven fault zones along the main flow path of the 7400 m cross section of the catchment. As the Weende spring is part of the drinking water supply in Goettingen, it is particularly important to understand the vulnerability of the catchment and effect of fault zones on rapid transport of contaminants. Nitrate signals have been observed at the spring only a few days after the application of fertilizers within the catchment at a distance of approximately 2km. As the underlying layers are known to be highly impermeable, fault zones within the area are likely to create rapid flow paths to the water table and the spring. The model conceptualizes the catchment as containing three hydrogeological limestone units with varying degrees of karstification: the lower Muschelkalk limestone as a highly conductive layer, the middle Muschelkalk as an aquitard, and the upper Muschelkalk as another conductive layer. The fault zones are parameterized based on a combination of field data from quarries, remote sensing and literary data. The fault zone is modeled considering the fracture core as well as the surrounding damage zone with separate, specific hydraulic properties. The 2D conceptual model was implemented in COMSOL to study unsaturated flow at the catchment scale using van Genuchten parameters. The study demonstrates the importance of fault zones for preferential flow within the catchment and its effect on the spatial distribution of vulnerability.

  3. Magmatic processes in the layered Series of the Skaergaard intrusion inferred from core and rim compositions of plagioclase

    NASA Astrophysics Data System (ADS)

    Brown, W. L.; Toplis, M. J.

    2003-04-01

    Due to slow NaSi-CaAl exchange in plagioclase, the proportion of the anorthite component (An) may be considered essentially a primary feature in magmatic bodies such as small layered intrusions. Thus, An provides a potential window into the evolution of such magmatic systems on various length scales. In order to assess the utility of this approach, 13 thin sections covering the principal zones and sub-zones of the Layered Series of the Skaergaard intrusion, East Greenland, were studied. In each thin section 90 to 150 analyses of plagioclase were made using an electron microprobe. Analyses were made in grain centres and at grain edges, particular attention being paid to plagioclase-plagioclase contacts. The cores of large and moderately sized crystals show narrow compositional ranges, 90% of analyses lying within 3 mol% of the mean. In accordance with previous studies, we find that mean core compositions vary continuously with stratigraphic height, from ˜An70 at the lowest levels, to ˜An30 at the top of Upper Zone (UZ). Rim compositions of touching plagioclase also show strong maxima in their mode, but the variation of this composition with stratigraphic height is distinctly different from that of crystal cores. In the Lower Zone (LZ) and lower Middle Zone (MZ), the most abundant rim compositions are systematically An50± 1, core and rim compositions converging in the lower MZ. In the upper MZ to UZ, rim compositions are very similar to corresponding cores, but locally may be more evolved, particularly when plagioclase is intergrown with quartz. The systematic decrease of An as a function of stratigraphic height is strong evidence in favour of fractional crystallization of the main liquid. However, the fact that plagioclase zoning does not extend to nearly pure albite in the vast majority of rocks implies mobility of intercumulus liquid. If compaction (expulsion) were the mechanism responsible for this, it would be difficult to explain the remarkably constant cut-off in rim compositions at An50 in the LZ and lower MZ. On the other hand, this cut-off corresponds to the An content at magnetite saturation, which leads us to propose that the observed features are the result of a density inversion in the liquid following oxide saturation. This density inversion causes the intercumulus liquid to become gravitationally unstable relative to the overlying main liquid leading to compositional convection in the upper LZ and MZ, a hypothesis consistent with the adcumulus texture of those rocks.

  4. Determining the vertical evolution of hydrodynamic parameters in weathered and fractured south Indian crystalline-rock aquifers: insights from a study on an instrumented site

    NASA Astrophysics Data System (ADS)

    Boisson, A.; Guihéneuf, N.; Perrin, J.; Bour, O.; Dewandel, B.; Dausse, A.; Viossanges, M.; Ahmed, S.; Maréchal, J. C.

    2015-02-01

    Due to extensive irrigation, most crystalline aquifers of south India are overexploited. Aquifer structure consists of an upper weathered saprolite followed by a fractured zone whose fracture density decreases with depth. To achieve sustainable management, the evolution of hydrodynamic parameters (transmissivity and storage coefficient) by depth in the south Indian context should be quantified. Falling-head borehole permeameter tests, injection tests, flowmeter profiles, single-packer tests and pumping tests were carried out in the unsaturated saprolite and saturated fractured granite. Results show that the saprolite is poorly transmissive (T fs = 3 × 10-7 to 8.5 × 10-8 m2 s-1) and that the most conductive part of the aquifer corresponds to the bottom of the saprolite and the upper part of the fractured rock (T = 1.0 × 10-3 to 7.0 × 10-4 m2 s-1). The transmissivity along the profile is mostly controlled by two distinct conductive zones without apparent vertical hydraulic connection. The transmissivity and storage coefficient both decrease with depth depending on the saturation of the main fracture zones, and boreholes are not exploitable after a certain depth (27.5 m on the investigated section). The numerous investigations performed allow a complete quantification with depth of the hydrodynamic parameters along the weathering profile, and a conceptual model is presented. Hydrograph observations (4 years) are shown to be relevant as a first-order characterization of the media and diffusivity evolution with depth. The evolution of these hydrodynamic parameters along the profile has a great impact on groundwater prospecting, exploitation and transport properties in such crystalline rock aquifers.

  5. Electrical resistivity and porosity structure of the upper Biscayne Aquifer in Miami-Dade County, Florida

    NASA Astrophysics Data System (ADS)

    Whitman, Dean; Yeboah-Forson, Albert

    2015-12-01

    Square array electrical soundings were made at 13 sites in the Biscayne Aquifer distributed between 1 and 20 km from the shoreline. These soundings were modeled to investigate how resistivity varies spatially and with depth in the upper 15 m of the aquifer. Porosity was estimated from the modeled formation resistivity and observed pore fluid resistivity with Archie's Law. The models were used to interpolate resistivity and porosity surfaces at -2, -5, -8, and -15 m elevations. Modeled resistivity in the unsaturated zone is generally higher than 300 Ω m with the resistivity at sites with thick unsaturated zones greater than 1000 Ω m. Resistivity in the saturated zone ranges from 30 to 320 Ω m. At many sites in the western portions of the study area, resistivity is constant or increases with depth whereas sites in the center of the Atlantic Coastal Ridge exhibit a distinct low resistivity zone (ρ < 45 Ω m) at elevations ranging between -5 and -10 m. At one site near the shore of Biscayne Bay, the resistivity is less than 10 Ω m at -5 m elevation reflecting the presence of salt water in the aquifer. The estimated porosity ranges between 14% and 71% with modal values near 25%. The porosity structure varies both with depth and spatially. Western sites exhibit a high porosity zone at shallow depths best expressed in a NE-SW trending zone of 40-50% porosity situated near the western margin of the Atlantic Coastal Ridge. This zone roughly corresponds in depth with the Q5 chronostratigraphic unit of the Miami Fm. which constitutes the upper flow unit of the Biscayne Aquifer. The highest porosity (>50%) is seen at elevations below -5 m at sites in the center of the Atlantic Coastal Ridge and likely corresponds to solution features. The general NE-SW trend of the resistivity and porosity structure suggests a causal connection with the Pleistocene paleogeography and sedimentary environments.

  6. Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernfoerde Bay, German Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martens, C.S.; Albert, D.B.; Alperin, M.J.

    Methane concentrations in the pore waters of Eckernfoerde Bay in the German Baltic Sea generally reach gas bubble saturation values within the upper meter of the sediment column. The depth at which saturation occurs is controlled by a balance between rates of methane production, consumption (oxidation), and transport. The relative importance of anaerobic methane oxidation (AMO) in controlling dissolved and gas bubble methane distributions in the bay's sediments is indirectly revealed through methane concentration versus depth profiles, depth variations in the stable C and H isotope composition of methane, and the C isotope composition of total dissolved inorganic carbon ({Sigma}CO{submore » 2}). Direct radiotracer measurements indicate that AMO rates of over 15 mM/yr are focused at the base of the sulfate reduction zone. Diagenetic equations that describe the depth destructions of the {delta}{sup 13}C and {delta}D values of methane reproduce isotopic shifts observed throughout the methane oxidation zone and are best fit with kinetic isotope fractionation factors of 1.012 {+-} 0.001 and 1.120 {plus{underscore}minus} 0.020 respectively.« less

  7. Sr-90 Immobilization by Infiltration of a Ca-Citrate-PO{sub 4} Solution into the Hanford 100-N Area Vadose Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szecsody, J.E.; Fruchter, J.S.; Burns, C.A.

    This project was initiated to develop a strategy for infiltration of a Ca-citrate-PO{sub 4} solution in order to precipitate apatite [Ca{sub 6}(PO{sub 4}){sub 10}(OH){sub 2}] in desired locations in the vadose zone for Sr-90 remediation. Laboratory experiments have demonstrated that infiltration of a Ca-citrate-PO{sub 4} solution into sediments at low and high water saturation results in citrate biodegradation and formation of apatite. The citrate biodegradation rate was relatively uniform, in spite of the spatial variability of sediment microbial biomass, likely because of microbial transport processes that occur during solution infiltration. The precipitate was characterized as hydroxyapatite, and the Sr-90 substitutionmore » into apatite was shown to have an incorporation half-life of 5.5 to 16 months. One and two dimensional (1-D and 2-D) laboratory infiltration experiments quantified the spatial distribution of apatite that formed during solution infiltration. Slow infiltration in 2-D experiments at low water saturation show the apatite precipitate concentrated in the upper third of the infiltration zone. More rapid 1-D infiltration studies show the apatite precipitate concentrated at greater depth. (authors)« less

  8. Hydraulic characteristics and nutrient transport and transformation beneath a rapid infiltration basin, Reedy Creek Improvement District, Orange County, Florida

    USGS Publications Warehouse

    Sumner, D.M.; Bradner, L.A.

    1996-01-01

    The Reedy Creek Improvement District disposes of about 7.5 million gallons per day (1992) of reclaimed water through 85 1-acre rapid infiltration basins within a 1,000-acre area of sandy soils in Orange County, Florida. The U.S. Geological Survey conducted field experiments in 1992 at an individual basin to examine and better understand the hydraulic characteristics and nutrient transport and transformation of reclaimed water beneath a rapid infiltration basin. At the time, concentrations of total nitrogen and total phosphorus in reclaimed water were about 3 and 0.25 milligrams per liter, respectively. A two-dimensional, radial, unsaturated/saturated numerical flow model was applied to describe the flow system beneath a rapid infiltration basin under current and hypothetical basin loading scenarios and to estimate the hydraulic properties of the soil and sediment beneath a basin. The thicknesses of the unsaturated and saturated parts of the surficial aquifer system at the basin investigated were about 37 and 52 feet, respectively. The model successfully replicated the field-monitored infiltration rate (about 5.5 feet per day during the daily flooding periods of about 17 hours) and ground-water mounding response during basin operation. Horizontal and vertical hydraulic conductivity of the saturated part of the surficial aquifer system were estimated to be 150 and 45 feet per day, respectively. The field-saturated vertical hydraulic conductivity of the shallow soil, estimated to be about 5.1 feet per day, was considered to have been less than the full- saturation value because of the effects of air entrapment. Specific yield of the surficial aquifer was estimated to be 0.41. The upper 20 feet of the basin subsurface profile probably served as a system control on infiltration because of the relatively low field-saturated, vertical hydraulic conductivity of the sediments within this layer. The flow model indicates that, in the vicinity of the basin, flow in the deeper, saturated zone was relatively slow compared to the more vigorous flow in the shallow saturated zone. The large radial component of flow below the water table in the vicinity of the basin implies that reclaimed water moves preferentially in the shallow part of the saturated zone upon reaching the water table. Therefore, there may be some vertical stratification in the saturated zone, with recently infiltrated water overlying ambient water. The infiltration capacity at the basin would be unaffected by a small (less than 10 feet) increase in background water-table altitude, because the water table would remain below the system control on infiltration. However, water-table rises of 15 and 20 feet were estimated to reduce the infiltration capacity of the basin by 8 and 25 percent, respectively. Model simulations indicate that increasing ponded depth within the basin from 4 to 12 inches and from 4 to 24 inches would increase basin infiltration capacity by less than 6 and 11 percent, respectively. A loading strategy at the basin that relies on long, uninterrupted flooding was shown to offer the possibility of inducing a more anaerobic environment conducive to denitrification while maintaining reclaimed-water disposal capacity. Field measurements indicated that transient, elevated concentrations or "spikes" of nitrate (as high as 33 milligrams per liter as nitrogen) occurred at the leading edge of the infiltrating water and in the shallow saturated zone following a prolonged basin rest period. This phenomenon probably is the result of mineralization and nitrification of organic nitrogen retained with the subsurface during earlier basin loading events. The organic nitrogen was retained in the shallow soil (due to adsorption/straining) and the shallow saturated zone following a prolonged basin rest period. This phenomenon probably is the result of mineralization and nitrification of organic nitrogen retained within the subsurface during earlier basin loading event

  9. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation.

    PubMed

    Brouyère, Serge; Dassargues, Alain; Hallet, Vincent

    2004-08-01

    This paper presents the results of a detailed field investigation that was performed for studying groundwater recharge processes and solute downward migration mechanisms prevailing in the unsaturated zone overlying a chalk aquifer in Belgium. Various laboratory measurements were performed on core samples collected during the drilling of boreholes in the experimental site. In the field, experiments consisted of well logging, infiltration tests in the unsaturated zone, pumping tests in the saturated zone and tracer tests in both the saturated and unsaturated zones. Results show that gravitational flows govern groundwater recharge and solute migration mechanisms in the unsaturated zone. In the variably saturated chalk, the migration and retardation of solutes is strongly influenced by recharge conditions. Under intense injection conditions, solutes migrate at high speed along the partially saturated fissures, downward to the saturated zone. At the same time, they are temporarily retarded in the almost immobile water located in the chalk matrix. Under normal recharge conditions, fissures are inactive and solutes migrate slowly through the chalk matrix. Results also show that concentration dynamics in the saturated zone are related to fluctuations of groundwater levels in the aquifer. A conceptual model is proposed to explain the hydrodispersive behaviour of the variably saturated chalk. Finally, the vulnerability of the chalk to contamination issues occurring at the land surface is discussed.

  10. Improved predictions of saturated and unsaturated zone drawdowns in a heterogeneous unconfined aquifer via transient hydraulic tomography: Laboratory sandbox experiments

    NASA Astrophysics Data System (ADS)

    Berg, Steven J.; Illman, Walter A.

    2012-11-01

    SummaryInterpretation of pumping tests in unconfined aquifers has largely been based on analytical solutions that disregard aquifer heterogeneity. In this study, we investigate whether the prediction of drawdown responses in a heterogeneous unconfined aquifer and the unsaturated zone above it with a variably saturated groundwater flow model can be improved by including information on hydraulic conductivity (K) and specific storage (Ss) from transient hydraulic tomography (THT). We also investigate whether these predictions are affected by the use of unsaturated flow parameters estimated through laboratory hanging column experiments or calibration of in situ drainage curves. To investigate these issues, we designed and conducted laboratory sandbox experiments to characterize the saturated and unsaturated properties of a heterogeneous unconfined aquifer. Specifically, we conducted pumping tests under fully saturated conditions and interpreted the drawdown responses by treating the medium to be either homogeneous or heterogeneous. We then conducted another pumping test and allowed the water table to drop, similar to a pumping test in an unconfined aquifer. Simulations conducted using a variably saturated flow model revealed: (1) homogeneous parameters in the saturated and unsaturated zones have a difficult time predicting the responses of the heterogeneous unconfined aquifer; (2) heterogeneous saturated hydraulic parameter distributions obtained via THT yielded significantly improved drawdown predictions in the saturated zone of the unconfined aquifer; and (3) considering heterogeneity of unsaturated zone parameters produced a minor improvement in predictions in the unsaturated zone, but not the saturated zone. These results seem to support the finding by Mao et al. (2011) that spatial variability in the unsaturated zone plays a minor role in the formation of the S-shape drawdown-time curve observed during pumping in an unconfined aquifer.

  11. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands

    NASA Astrophysics Data System (ADS)

    Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D.; Bastow, Trevor P.; Rayner, John L.; Davis, Greg B.

    2017-01-01

    Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141 days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time.

  12. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands.

    PubMed

    Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D; Bastow, Trevor P; Rayner, John L; Davis, Greg B

    2017-01-01

    Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time. Copyright © 2016. Published by Elsevier B.V.

  13. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones.

    PubMed

    Delin, Geoffrey N; Herkelrath, William N

    2017-05-01

    A tracer test was conducted to aid in the investigation of water movement and solute transport at a crude-oil spill site near Bemidji, Minnesota. Time of travel was measured using breakthrough curves for rhodamine WT and bromide tracers moving from the soil surface through oil-contaminated and oil-free unsaturated zones to the saturated zone. Results indicate that the rates of tracer movement were similar in the oil-free unsaturated and saturated zones compared to the oily zones. These results are somewhat surprising given the oil contamination in the unsaturated and saturated zones. Rhodamine tracer breakthrough in the unsaturated and saturated zones in general was delayed in comparison to bromide tracer breakthrough. Peak tracer concentrations for the lysimeters and wells in the oily zone were much greater than at the corresponding depths in the oil-free zone. Water and tracer movement in the oily zone was complicated by soil hydrophobicity and decreased oil saturations toward the periphery of the oil. Preferential flow resulted in reduced tracer interaction with the soil, adsorption, and dispersion and faster tracer movement in the oily zone than expected. Tracers were freely transported through the oily zone to the water table. Recharge calculations support the idea that the oil does not substantially affect recharge in the oily zone. This is an important result indicating that previous model-based assumptions of decreased recharge beneath the oil were incorrect. Results have important implications for modeling the fate and transport of dissolved contaminants at hydrocarbon spill sites. Published by Elsevier B.V.

  14. Temporal and spatial variabilities in the surface moisture content of a fine-grained beach

    NASA Astrophysics Data System (ADS)

    Namikas, S. L.; Edwards, B. L.; Bitton, M. C. A.; Booth, J. L.; Zhu, Y.

    2010-01-01

    This study examined spatial and temporal variations in the surface moisture content of a fine-grained beach at Padre Island, Texas, USA. Surface moisture measurements were collected on a 27 × 24 m grid that extended from the dune toe to the upper foreshore. The grid was surveyed at 2 to 4 h intervals for two tidal cycles, generating 17 maps of the spatial distribution of surface moisture. Simultaneous measurements of air temperature and humidity, wind speed and direction, tidal elevation, and water table elevation were used to interpret observed changes in surface moisture. It was found that the spatial distribution of surface moisture was broadly characterized by a cross-shore gradient of high to low content moving landward from the swash zone. The distribution of surface moisture was conceptualized in terms of three zones: saturated (> 25%), intermediate or transitional (5-25%), and dry (< 5%). The position of the saturated zone corresponded to the uppermost swash zone and therefore shifted in accordance with tidal elevation. Moisture contents in the intermediate and dry zones were primarily related to variation in water table depth (which was in turn controlled by tidal elevation) and to a lesser extent by evaporation. Signals associated with atmospheric processes such as evaporation were muted by the minimal degree of variation in atmospheric parameters experienced during most of the study period, but were apparent for the last few hours. The observed spatial and temporal variations in moisture content correspond reasonably well with observations of key controlling processes, but more work is needed to fully characterize this process suite.

  15. Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer

    USGS Publications Warehouse

    Moench, Allen F.

    1995-01-01

    A Laplace transform solution is presented for flow to a well in a homogeneous, water-table aquifer with noninstanta-neous drainage of water from the zone above the water table. The Boulton convolution integral is combined with Darcy's law and used as an upper boundary condition to replace the condition used by Neuman. Boulton's integral derives from the assumption that water drained from the unsaturated zone is released gradually in a manner that varies exponentially with time in response to a unit decline in hydraulic head, whereas the condition used by Newman assumes that the water is released instantaneously. The result is a solution that reduces to the solution obtained by Neuman as the rate of release of water from the zone above the water table increases. A dimensionless fitting parameter, γ, is introduced that incorporates vertical hydraulic conductivity, saturated thickness, specific yield, and an empirical constant α1, similar to Boulton's α. Results show that theoretical drawdown in water-table piezometers is amplified by noninstantaneous drainage from the unsaturated zone to a greater extent than drawdown in piezometers located at depth in the saturated zone. This difference provides a basis for evaluating γ by type-curve matching in addition to the other dimensionless parameters. Analysis of drawdown in selected piezometers from the published results of two aquifer tests conducted in relatively homogeneous glacial outwash deposits but with significantly different hydraulic conductivities reveals improved comparison between the theoretical type curves and the hydraulic head measured in water-table piezometers.

  16. A new perspective on the generation of the 2016 M6.4 Meilung earthquake, southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2017-12-01

    In order to investigate the likely generation mechanism of the 2016 M6.4 Meilung earthquake, a large number of high-quality travel times from P- and S-wave source-receiver pairs are used jointly in this study to invert three-dimensional (3-D) seismic velocity (Vp, Vs) and Poisson's ratio structures at high resolution. We also calculated crack density, saturate fracture, and bulk-sound velocity from our inverted Vp, Vs, and s models. In this way, multi-geophysical parameter imaging revealed that the 2016 Meilung earthquake occurred along a distinctive edge portion exhibiting high-to-low variations in these parameters in both horizontal and vertical directions across the hypocenter. We consider that a slow velocity and high-Poisson ratio body that has high-crack density and somewhat high-saturate fracture anomalies above the hypocenter under the coastal plain represents fluids contained in the young fold-and-thrust belt relative to the passive Asian continental margin in southwestern Taiwan. Intriguing, a continuous low Vp and Vs zone with high Poisson ratio, crack density and saturate fracture anomalies across the Laonung and Chishan faults is also clearly imaged in the northwestern upper crust beneath the coastal plain and western foothills as far as the southeastern lower crust under the central range. We therefore propose that this southeastern extending weakened zone was mainly the result of a fluid intrusion either from the young fold-and-thrust belt associated with the passive Asian continental margin in the shallow crust or the subducted Eurasian continental (EC) plate in the lower crust and uppermost mantle. We suggest that fluid intrusion into the upper Oligocene to Pleistocene shallow marine and clastic shelf units of the Eurasian continental crust and/or the relatively thin uppermost part of the transitional Pleistocene-Holocene foreland due to the subduction of the EC plate along the deformation front played a key role in earthquake generation in southwestern Taiwan. Such fluid penetration would reduce Vp, and Vs while increasing Poisson ratio and saturate fracture across the source area, leading to mechanical strength failure of the rock matrix in the relative weakened and brittle seismogenic layer and triggering the 2016 earthquake.

  17. Making the most of CZ seismics: Improving shallow critical zone characterization using surface-wave analysis

    NASA Astrophysics Data System (ADS)

    Pasquet, S.; Wang, W.; Holbrook, W. S.; Bodet, L.; Carr, B.; Flinchum, B. A.

    2017-12-01

    Estimating porosity and saturation in the shallow subsurface over large lateral scales is vitally important for understanding the development and evolution of the Critical Zone (CZ). Because elastic properties (P- and S-wave velocities) are particularly sensitive to porosity and saturation, seismic methods (in combination with petrophysical models) are effective tools for mapping CZ architecture and processes. While many studies employ P-wave refraction methods, fewer use the surface waves that are typically also recorded in those same surveys. Here we show the value of exploiting surface waves to extract supplementary shear-wave velocity (Vs) information in the CZ. We use a new, user-friendly, open-source MATLAB-based package (SWIP) to invert surface-wave data and estimate lateral variations of Vs in the CZ. Results from synthetics show that this approach enables the resolution of physical property variations in the upper 10-15 m below the surface with lateral scales of about 5 m - a vast improvement compared to P-wave tomography alone. A field example at a Yellowstone hydrothermal system also demonstrates the benefits of including Vs in the petrophysical models to estimate not only porosity but also saturation, thus highlighting subsurface gas pathways. In light of these results, we strongly suggest that surface-wave analysis should become a standard approach in CZ seismic surveys.

  18. Simulation of the mulltizones clastic reservoir: A case study of Upper Qishn Clastic Member, Masila Basin-Yemen

    NASA Astrophysics Data System (ADS)

    Khamis, Mohamed; Marta, Ebrahim Bin; Al Natifi, Ali; Fattah, Khaled Abdel; Lashin, Aref

    2017-06-01

    The Upper Qishn Clastic Member is one of the main oil-bearing reservoirs that are located at Masila Basin-Yemen. It produces oil from many zones with different reservoir properties. The aim of this study is to simulate and model the Qishn sandstone reservoir to provide more understanding of its properties. The available, core plugs, petrophysical, PVT, pressure and production datasets, as well as the seismic structural and geologic information, are all integrated and used in the simulation process. Eclipse simulator was used as a powerful tool for reservoir modeling. A simplified approach based on a pseudo steady-state productivity index and a material balance relationship between the aquifer pressure and the cumulative influx, is applied. The petrophysical properties of the Qishn sandstone reservoir are mainly investigated based on the well logging and core plug analyses. Three reservoir zones of good hydrocarbon potentiality are indicated and named from above to below as S1A, S1C and S2. Among of these zones, the S1A zone attains the best petrophysical and reservoir quality properties. It has an average hydrocarbon saturation of more than 65%, high effective porosity up to 20% and good permeability record (66 mD). The reservoir structure is represented by faulted anticline at the middle of the study with a down going decrease in geometry from S1A zone to S2 zone. It is limited by NE-SW and E-W bounding faults, with a weak aquifer connection from the east. The analysis of pressure and PVT data has revealed that the reservoir fluid type is dead oil with very low gas liquid ratio (GLR). The simulation results indicate heterogeneous reservoir associated with weak aquifer, supported by high initial water saturation and high water cut. Initial oil in place is estimated to be around 628 MM BBL, however, the oil recovery during the period of production is very low (<10%) because of the high water cut due to the fractures associated with many faults. Hence, secondary and tertiary methods are needed to enhance the oil recovery. Water flooding is recommended as the first step of oil recovery enhancement by changing some of high water cut wells to injectors.

  19. Distributions and Relationships of CO2, O2, and Dimethylsulfide in the Changjiang (Yangtze) Estuary and Its Adjacent Waters in Summer

    NASA Astrophysics Data System (ADS)

    Wu, Xi; Tan, Tingting; Liu, Chunying; Li, Tie; Liu, Xiaoshou; Yang, Guipeng

    2018-04-01

    The distributions and relationships of O2, CO2, and dimethylsulfide (DMS) in the Changjiang (Yangtze) Estuary and its adjacent waters were investigated in June 2014. In surface water, mean O2 saturation level, partial pressure of CO2 (pCO2), and DMS concentrations (and ranges) were 110% (89%-167%), 374 μatm (91-640 μatm), and 8.53 nmol L-1 (1.10-27.50 nmol L-1), respectively. The sea-to-air fluxes (and ranges) of DMS and CO2 were 8.24 μmol m-2 d-1 (0.26-62.77 μmol m-2 d-1), and -4.7 mmol m-2 d-1 (-110.8-31.7 mmol m-2 d-1), respectively. Dissolved O2 was oversaturated, DMS concentrations were relatively high, and this region served as a sink of atmospheric CO2. The pCO2 was significantly and negatively correlated with the O2 saturation level, while the DMS concentration showed different positive relationships with the O2 saturation level in different water masses. In vertical profiles, a hypoxic zone existed below 20 m at a longitude of 123°E. The stratification of temperature and salinity caused by the Taiwan Warm Current suppressed seawater exchange between upper and lower layers, resulting in the formation of a hypoxic zone. Oxidative decomposition of organic detritus carried by the Changjiang River Diluted Water (CRDW) consumed abundant O2 and produced additional CO2. The DMS concentrations decreased because of low phytoplankton biomass in the hypoxic zone. Strong correlations appeared between the O2 saturation level, pCO2 and DMS concentrations in vertical profiles. Our results strongly suggested that CRDW played an important role in the distributions and relationships of O2, CO2, and DMS.

  20. Hydric soils in a southeastern Oregon vernal pool

    USGS Publications Warehouse

    Clausnitzer, D.; Huddleston, J.H.; Horn, E.; Keller, Michael; Leet, C.

    2003-01-01

    Vernal pools on the High Lava Plain of the northern Great Basin become ponded in most years, but their soils exhibit weak redoximorphic features indicative of hydric conditions. We studied the hydrology, temperature, redox potentials, soil chemistry, and soil morphology of a vernal pool to determine if the soils are hydric, and to evaluate hydric soil field indicators. We collected data for 3 yr from piezometers, Pt electrodes, and thermocouples. Soil and water samples were analyzed for pH, organic C, and extractable Fe and Mn. Soils were ponded from January through April or May, but subsurface saturation was never detected. Soil temperatures 50 cm below the surface rose above 5??C by March. Clayey Bt horizons perched water and limited saturation to the upper 10 cm. Redox potentials at a 5-cm depth were often between 200 and 300 mV, indicating anaerobic conditions, but producing soluble Fe2+ concentrations <1 mg L-1. Extractable soil Fe contents indicated Fe depletion from pool surface horizons and accumulation at or near the upper Bt1 horizon. Depletions and concentrations did not satisfy the criteria of any current hydric soil indicators. We recommend development of new indicators based on acceptance of fewer, less distinct redox concentrations for recognition of a depleted A horizon, and on presence of a thin zone containing redox concentrations located in the upper part of the near-surface perching horizon.

  1. Runoff and solute mobilization processes in a semiarid headwater catchment

    NASA Astrophysics Data System (ADS)

    Hughes, Justin D.; Khan, Shahbaz; Crosbie, Russell S.; Helliwell, Stuart; Michalk, David L.

    2007-09-01

    Runoff and solute transport processes contributing to streamflow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Streamflow and electrical conductivity were monitored from two gauges draining a portion of the upper catchment area (UCA) and a saline scalded area, respectively. Runoff in the UCA was related to the formation of a seasonally perched aquifer in the near-surface zone (0-0.4 m). A similar process was responsible for runoff generation in the saline scalded area. However, saturation in the scald area was related to the proximity of groundwater rather than low subsurface hydraulic conductivity. Because of higher antecedent water content, runoff commenced earlier in winter from the scald than did the UCA. Additionally, areal runoff from the scald was far greater than from the UCA. Total runoff from the UCA was higher than the scald (15.7 versus 3.5 mL), but salt export was far lower (0.6 and 5.4 t for the UCA and scald area, respectively) since salinity of the scald runoff was far higher than that from the UCA, indicating the potential impact of saline scalded areas at the catchment scale. End-member mixing analysis modeling using six solutes indicated that most runoff produced from the scald was "new" (40-71%) despite the proximity of the groundwater surface and the high antecedent moisture levels. This is a reflection of the very low hydraulic conductivity of soils in the study area. Nearly all chloride exported to the stream from the scald emanated from the near-surface zone (77-87%). Runoff and solute mobilization processes depend upon seasonal saturation occurring in the near-surface zone during periods of low evaporative demand and generation of saturated overland flow.

  2. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relation- ships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally. Parameters of the hydrogeologic units developed in this study and the relation of flow properties to porosity that are described can be used to produce detailed and accurate representations of the core-scale hydrologic processes ongoing at Yucca Mountain.

  3. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2005

    USGS Publications Warehouse

    Hoilman, Gene R.; Lindenberg, Mary K.; Wood, Tamara M.

    2008-01-01

    During June-October 2005, water quality data were collected from Upper Klamath and Agency Lakes in Oregon, and meteorological data were collected around and within Upper Klamath Lake. Data recorded at two continuous water quality monitors in Agency Lake showed similar temperature patterns throughout the field season, but data recorded at the northern site showed more day-to-day variability for dissolved oxygen concentration and saturation after late June and more day-to-day variability for pH and specific conductance values after mid-July. Data recorded from the northern and southern parts of Agency Lake showed more comparable day-to-day variability in dissolved oxygen concentrations and pH from September through the end of the monitoring period. For Upper Klamath Lake, seasonal (late July through early August) lows of dissolved oxygen concentrations and saturation were coincident with a seasonal low of pH values and seasonal highs of ammonia and orthophosphate concentrations, specific conductance values, and water temperatures. Patterns in these parameters, excluding water temperature, were associated with bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae in Upper Klamath Lake. In Upper Klamath Lake, water temperature in excess of 28 degrees Celsius (a high stress threshold for Upper Klamath Lake suckers) was recorded only once at one site during the field season. Large areas of Upper Klamath Lake had periods of dissolved oxygen concentration of less than 4 milligrams per liter and pH value greater than 9.7, but these conditions were not persistent throughout days at most sites. Dissolved oxygen concentrations in Upper Klamath Lake on time scales of days and months appeared to be influenced, in part, by bathymetry and prevailing current flow patterns. Diel patterns of water column stratification were evident, even at the deepest sites. This diel pattern of stratification was attributable to diel wind speed patterns and the shallow nature of most of Upper Klamath Lake. Timing of the daily extreme values of dissolved oxygen concentration, pH, and water temperature was less distinct with increased water column depth. Chlorophyll a concentrations varied spatially and temporally throughout Upper Klamath Lake. Location greatly affected algal concentrations, in turn affecting nutrient and dissolved oxygen concentrations - some of the highest chlorophyll a concentrations were associated with the lowest dissolved oxygen concentrations and the highest un-ionized ammonia concentrations. The occurrence of the low dissolved oxygen and high un-ionized ammonia concentrations coincided with a decline in algae resulting from cell death, as measured by concentrations of chlorophyll a. Dissolved oxygen production rates in experiments were as high as 1.47 milligrams of oxygen per liter per hour, and consumption rates were as much as -0.73 milligrams of oxygen per liter per hour. Dissolved oxygen consumption rates measured in this study were comparable to those measured in a 2002 Upper Klamath Lake study, and a higher rate of dissolved oxygen consumption was recorded in dark bottles positioned higher in the water column. Data, though inconclusive, indicated that a decreasing trend of dissolved oxygen productivity through July could have contributed to the decreasing dissolved oxygen concentrations and percent saturation recorded in Upper Klamath Lake during this time. Phytoplankton self-shading was evident from a general inverse relation between depth of photic zone and chlorophyll a concentrations. This shading caused net dissolved oxygen consumption during daylight hours in lower parts of the water column that would otherwise have been in the photic zone. Meteorological data collected in and around Upper Klamath Lake showed that winds were likely to come from a broad range of westerly directions in the northern one-third of the lake, but tended to come from a narrow range of northwesterly directions

  4. GPR studies over the tsunami affected Karaikal beach, Tamil Nadu, south India

    NASA Astrophysics Data System (ADS)

    Loveson, V. J.; Gujar, A. R.; Barnwal, R.; Khare, Richa; Rajamanickam, G. V.

    2014-08-01

    In this study, results of GPR profiling related to mapping of subsurface sedimentary layers at tsunami affected Karaikal beach are presented . A 400 MHz antenna was used for profiling along 262 m stretch of transect from beach to backshore areas with penetration of about 2.0 m depth (50 ns two-way travel time). The velocity analysis was carried out to estimate the depth information along the GPR profile. Based on the significant changes in the reflection amplitude, three different zones are marked and the upper zone is noticed with less moisture compared to other two (saturated) zones. The water table is noticed to vary from 0.5 to 0.75 m depth (12-15 ns) as moving away from the coastline. Buried erosional surface is observed at 1.5 m depth (40-42 ns), which represents the limit up to which the extreme event acted upon. In other words, it is the depth to which the tsunami sediments have been piled up to about 1.5 m thickness. Three field test pits were made along the transect and sedimentary sequences were recorded. The sand layers, especially, heavy mineral layers, recorded in the test pits indicate a positive correlation with the amplitude and velocity changes in the GPR profile. Such interpretation seems to be difficult in the middle zone due to its water saturation condition. But it is fairly clear in the lower zone located just below the erosional surface where the strata is comparatively more compact. The inferences from the GPR profile thus provide a lucid insight to the subsurface sediment sequences of the tsunami sediments in the Karaikal beach.

  5. Flood quantiles scaling with upper soil hydraulic properties for different land uses at catchment scale

    NASA Astrophysics Data System (ADS)

    Peña, Luis E.; Barrios, Miguel; Francés, Félix

    2016-10-01

    Changes in land use within a catchment are among the causes of non-stationarity in the flood regime, as they modify the upper soil physical structure and its runoff production capacity. This paper analyzes the relation between the variation of the upper soil hydraulic properties due to changes in land use and its effect on the magnitude of peak flows: (1) incorporating fractal scaling properties to relate the effect of the static storage capacity (the sum of capillary water storage capacity in the root zone, canopy interception and surface puddles) and the upper soil vertical saturated hydraulic conductivity on the flood regime; (2) describing the effect of the spatial organization of the upper soil hydraulic properties at catchment scale; (3) examining the scale properties in the parameters of the Generalized Extreme Value (GEV) probability distribution function, in relation to the upper soil hydraulic properties. This study considered the historical changes of land use in the Combeima River catchment in South America, between 1991 and 2007, using distributed hydrological modeling of daily discharges to describe the hydrological response. Through simulation of land cover scenarios, it was demonstrated that it is possible to quantify the magnitude of peak flows in scenarios of land cover changes through its Wide-Sense Simple Scaling with the upper soil hydraulic properties.

  6. Biofilter design for effective nitrogen removal from stormwater - influence of plant species, inflow hydrology and use of a saturated zone.

    PubMed

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Fletcher, Tim D; Hatt, Belinda E; Deletic, Ana

    2014-01-01

    The use of biofilters to remove nitrogen and other pollutants from urban stormwater runoff has demonstrated varied success across laboratory and field studies. Design variables including plant species and use of a saturated zone have large impacts upon performance. A laboratory column study of 22 plant species and designs with varied outlet configuration was conducted across a 1.5-year period to further investigate the mechanisms and influences driving biofilter nitrogen processing. This paper presents outflow concentrations of total nitrogen from two sampling events across both 'wet' and 'dry' frequency dosing, and from sampling across two points in the outflow hydrograph. All plant species were effective under conditions of frequent dosing, but extended drying increased variation between species and highlighted the importance of a saturated zone in maintaining biofilter function. The saturated zone also effectively treated the volume of stormwater stored between inflow events, but this extended detention provided no additional benefit alongside the rapid processing of the highest performing species. Hence, the saturated zone reduced performance differences between plant species, and potentially acts as an 'insurance policy' against poor sub-optimal plant selection. The study shows the importance of biodiversity and inclusion of a saturated zone in protecting against climate variability.

  7. Investigating and predicting landslides using a rainfall runoff model in Norway

    NASA Astrophysics Data System (ADS)

    Kråbøl, Eline; Skaugen, Thomas; Devoli, Graziella; Xu, Chong-Yu

    2016-04-01

    Landslides are amongst the most destructive natural hazards, causing damage to infrastructures, such as roads, railroads and houses, and can, in a worst-case scenario, take lives. A better understanding of the triggering processes of landslides are important as it enables us to perform better forecasts, improve mapping of zones with landslide risk and carry out mitigation measures. In this study, a parameter-parsimonious rainfall-runoff model, DDD (Distance Distribution Dynamics), is used to simulate the hydrological conditions for rainfall-induced landslide events. The model estimates the capacity of the subsurface reservoir at different levels of saturation and predicts overland flow. The subsurface in the DDD has a 2-D representation in that it calculates the saturated and unsaturated soil moisture along a hillslope representing the entire catchment in question. In this study, 50 landslide events in 10 catchments in Southern Norway are investigated. Characteristics of the subsurface states, before, during and after the landslide are analysed for the whole catchment and at three points (lower, middle and upper part) of the hillslope. Preliminary results show that the hysteretic loop of storage and discharge follow complex clockwise and anti-clockwise patterns. Anti-clockwise loops occur more frequent, except for the middle part of the hillslope. In the upper part of the hillslope, anti-clockwise loop occur almost exclusively (94 %). Evaluated for the entire catchment, 57 % of the landslide events occurred at maximum saturation, while 77 % of the events occurred at saturation above 80 %. We found the majority of the landslide events to be associated with the rising limb and the top of the hysteretic curve with 64 % and 17 %, respectively. Overland flow was found for 68 % of the events.

  8. The frictional strength of talc gouge in high-velocity shear experiments

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofeng; Elwood Madden, Andrew S.; Reches, Ze'ev

    2017-05-01

    Talc is present in several large-scale fault zones worldwide and is mineralogically stable at temperature of the upper crust. It is therefore necessary to gain a better understanding of the frictional behavior of talc under a wide range of slip velocity conditions occurring during the seismic cycle. We analyzed the frictional and structural characteristics of room-dry and water-saturated talc gouge by shear experiments on a confined gouge layer at slip velocity range of 0.002-0.66 m/s and normal stress up to 4.1 MPa. Room-dry talc showed a distinct slip-strengthening with the initial friction coefficient of μ 0.4 increased systematically to μ 1 at slip distance D > 1 m. Room-dry talc also displayed velocity-strengthening at slip distances shorter than 1 m. The water-saturated talc gouge displayed systematic low frictional strength of μ = 0.1-0.3 for the entire experimental range, with clear velocity-strengthening behavior with positive (a-b) values (rate dependence parameter of rate and state friction) of 0.01-0.04. The microstructural analyses revealed distributed shear and systematic dilation (up to 50%) for the room-dry talc, in contrast to the extreme slip localization and strong shear compaction for water-saturated talc. We propose that talc frictional strength is controlled by lubrication along cleavage surfaces that is facilitated by adsorbed water (room-dry) and surplus water (water-saturated). This mechanism can explain our experimental observations of slip-strengthening and velocity-strengthening for both types of talc gouge, as well as other clay minerals. It is thus expected that talc presence in fault zones would enhance creep and inhibit unstable slip.

  9. Driver behavior and accident frequency in school zones: Assessing the impact of sign saturation.

    PubMed

    Strawderman, Lesley; Rahman, Md Mahmudur; Huang, Yunchen; Nandi, Apurba

    2015-09-01

    Based on the models of human information processing, if a driver observes too many of the same signs, he or she may no longer pay attention to those signs. In the case of school zones, this expected effect may lead to non-compliance to posted speeds, negatively impacting safety around nearby schools. This study aims to investigate the effect of the number of nearby school zones on driver behavior (vehicle speed and compliance) and accident frequency. As a measure of the density of school zones, this study introduced and defined a new term sign saturation and presented a methodology to calculate sign saturation for school zones. Results found a significant effect of sign saturation on vehicle speed, compliance, and accident frequency. This study also examined the speeding behavior in school zones for different time of the day and day of the week. Results found that speeding was more prevalent in the early mornings and during the weekends. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Herbicide and nitrate variation in alluvium underlying a cornfield at a site in Iowa County, Iowa

    USGS Publications Warehouse

    Kalkhoff, S.J.; Detroy, M.G.; Cherryholmes, K.; Kuzniar, R.L.

    1992-01-01

    A hydrologic investigation to determine vertical and seasonal variation of atrazine, alachlor, cyanazine, and nitrate at one location and to relate the variation to ground-water movement in the Iowa River alluvium was conducted in Iowa County, Iowa, from March 1986 to December 1987. Water samples were collected at discrete intervals through the alluvial sequence from the soil zone to the base of the aquifer. Alachlor, atrazine, and cyanazine were detected most frequently in the soil zone but also were present in the upper part of the alluvial aquifer. Alachlor was detected sporadically, whereas, atrazine, cyanazine, and nitrate were present throughout the year. In the alluvial aquifer, the herbicides generally were not detected during 1986 and were present in detectable concentrations for only a short period of time in the upper 1.6 meters of the aquifer during 1987. Nitrate was present throughout the alluvium and was stratified in the alluvial aquifer. The largest nitrate concentrations were detected in the middle part of the aquifer. Nitrate concentrations were variable only in the upper 2 meters of the aquifer. Vertical movement of herbicides and nitrate in the soil correlated with precipitation and degree of saturation. A clay layer retarded vertical movement of atrazine but not nitrate from the soil layer to the aquifer. Vertical movement could not account for the chemical variation in the alluvial aquifer.

  11. TREATMENT OF A SATURATED ZONE HEXAVALENT CHROMIUM SOURCE AREA USING A FERROUS SULFATE/SODIUM DITHIONITE MIXTURE: A FIELD PILOT STUDY

    EPA Science Inventory

    A field pilot study was conducted to evaluate the performance of a combined ferrous sulfate/sodium dithionite solution for in situ treatment of a saturated zone hexavalent chromium source area at a former ferrochromium alloy production facility in Charleston, S.C. The saturate...

  12. Dissolution rates of subsoil limestone in a doline on the Akiyoshi-dai Plateau, Japan: An approach from a weathering experiment, hydrological observations, and electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Akiyama, Sanae; Hattanji, Tsuyoshi; Matsushi, Yuki; Matsukura, Yukinori

    2015-10-01

    This study aims at estimating the controlling factors for the denudation rates of limestone, which often forms solution dolines on karst tablelands. Our approaches include (1) electrical resistivity tomography (ERT) to reveal shallow subsurface structures and hydrological settings, (2) automated monitoring of volumetric water content in soil profiles and manual measurements of subsurface CO2 concentrations and soil water chemistry, and (3) a field weathering experiment using limestone tablets with the micro-weight loss technique for determining current denudation rates. The field experiment and monitoring were carried out over 768 days from 2009-2011 at four sites with varying topographic and hydrological conditions along the sideslope of a doline on the Akiyoshi-dai karst plateau in SW-Japan. The installation depths of the limestone tablets were 15 cm or 50 cm below the slope surface. The soil moisture conditions varied site by site. Water-saturated conditions continued for 40-50% of the whole experimental period at 50-cm depth of upper and middle sites, while only 0-10% of the experimental period was water-saturated at the other sites. Chemical analysis revealed that the soil water was chemically unsaturated with calcite for all the sites. Spatial differences in concentrations of CO2 in soil pore air were statistically less significant. The denudation rates of the buried limestone tablets were 17.7-21.9 mg cm- 2 a- 1 at the upper and middle slopes, where the soil was water-saturated for a long time after precipitation. The lowest denudation of 3.9 mg cm- 2 a- 1 was observed on lower slopes where soil was not capable of maintaining water at a near saturation level even after precipitation. Statistical analysis revealed that the denudation rates of the tablets were strongly controlled by the duration for which soil pores were saturated by water (the conditions defined here are degrees of water saturation greater than 97%). Electrical resistivity tomography indicated that areas with high soil moisture conditions were located at the deeper zone on the lower slopes and the bottom of the doline, where denudation would be faster.

  13. Nurse opinions and pulse oximeter saturation target limits for preterm infants.

    PubMed

    Nghiem, Tuyet-Hang; Hagadorn, James I; Terrin, Norma; Syke, Sally; MacKinnon, Brenda; Cole, Cynthia H

    2008-05-01

    The objectives of this study were to compare pulse oximeter saturation limits targeted by nurses for extremely preterm infants during routine care with nurse opinions regarding appropriate pulse oximeter saturation limits and with policy-specified pulse oximeter saturation limits and to identify factors that influence pulse oximeter saturation limits targeted by nurses. We surveyed nurses in US NICUs with neonatal-perinatal fellowships in 2004. Data collected included pulse oximeter saturation limits targeted by nurses and by NICU policy when present, nurses' opinions about appropriate pulse oximeter saturation limits, and NICU and nurse characteristics. Factors associated with pulse oximeter saturation limits targeted by nurses were identified with hierarchical linear modeling. Among those eligible, 2805 (45%) nurses in 59 (60%) NICUs responded. Forty (68%) of 59 NICUs had a policy that specified a pulse oximeter saturation target range for extremely preterm infants. Among 1957 nurses at NICUs with policies, 540 (28%) accurately identified the upper and lower limits of their NICU's policy and also targeted these values in practice. NICU-specific SDs for individual nurse target limits were less at NICUs with versus without a policy for both upper and lower limits. Hierarchical linear modeling identified presence of pulse oximeter saturation policy, NICU-specific nurse group opinion, and individual nurse opinion as factors significantly associated with individual pulse oximeter saturation target limits. For each percentage point increase in individual opinion upper limit, the individual target upper limit increased by 0.41 percentage point at NICUs with a policy compared with 0.6 percentage point at NICUs with no policy. Presence of policy-specified pulse oximeter saturation limits, nurse group opinion, and individual nurse opinion were independently associated with individual nurse pulse oximeter saturation target limits during routine care of extremely preterm infants. The presence of a policy reduced the influence of individual nurse opinion on targeted pulse oximeter saturation limits and reduced variation among nurse target limits within NICUs.

  14. Water partitioning in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Inoue, Toru; Wada, Tomoyuki; Sasaki, Rumi; Yurimoto, Hisayoshi

    2010-11-01

    We have conducted H2O partitioning experiments between wadsleyite and ringwoodite and between ringwoodite and perovskite at 1673 K and 1873 K, respectively. These experiments were performed in order to constrain the relative distribution of H2O in the upper mantle, the mantle transition zone, and the lower mantle. We successfully synthesized coexisting mineral assemblages of wadsleyite-ringwoodite and ringwoodite-perovskite that were large enough to measure the H2O contents by secondary ion mass spectrometry (SIMS). Combining our previous H2O partitioning data (Chen et al., 2002) with the present results, the determined water partitioning between olivine, wadsleyite, ringwoodite, and perovskite under H2O-rich fluid saturated conditions are 6:30:15:1, respectively. Because the maximum H2O storage capacity in wadsleyite is ∼3.3 wt% (e.g. Inoue et al., 1995), the possible maximum H2O storage capacity in the olivine high-pressure polymorphs are as follows: ∼0.7 wt% in olivine (upper mantle just above 410 km depth), ∼3.3 wt% in wadsleyite (410-520 km depth), ∼1.7 wt% in ringwoodite (520-660 km depth), and ∼0.1 wt% in perovskite (lower mantle). If we assume ∼0.2 wt% of the H2O content in wadsleyite in the mantle transition zone estimated by recent electrical conductivity measurements (e.g. Dai and Karato, 2009), the estimated H2O contents throughout the mantle are as follows; ∼0.04 wt% in olivine (upper mantle just above 410 km depth), ∼0.2 wt% in wadsleyite (410-520 km depth), ∼0.1 wt% in ringwoodite (520-660 km depth) and ∼0.007 wt% in perovskite (lower mantle). Thus, the mantle transition zone should contain a large water reservoir in the Earth's mantle compared to the upper mantle and the lower mantle.

  15. Saltwater movement in the upper Floridan aquifer beneath Port Royal Sound, South Carolina

    USGS Publications Warehouse

    Smith, Barry S.

    1994-01-01

    Freshwater for Hilton Head Island, South Carolina, is supplied by withdrawals from the Upper Floridan aquifer. Freshwater for the nearby city of Savannah, Georgia, and for the industry that has grown adjacent to the city, has also been supplied, in part, by withdrawal from the Upper Floridan aquifer since 1885. The withdrawal of ground water has caused water levels in the Upper Floridan aquifer to decline over a broad area, forming a cone of depression in the potentiometric surface of the aquifer centered near Savannah. In 1984, the cone of depression extended beneath Hilton Head Island as far as Port Royal Sound. Flow in the aquifer, which had previously been toward Port Royal Sound, has been reversed, and, as a result, saltwater in the aquifer beneath Port Royal Sound has begun to move toward Hilton Head Island. The Saturated-Unsaturated Transport (SUTRA) model of the U.S. Geological Survey was used for the simulation of density-dependent ground-water flow and solute transport for a vertical section of the Upper Floridan aquifer and upper confining unit beneath Hilton Head Island and Port Royal Sound. The model simulated a dynamic equilibrium between the flow of seawater and freshwater in the aquifer near the Gyben-Herzberg position estimated for the period before withdrawals began in 1885; it simulated reasonable movements of brackish water and saltwater from that position to the position determined by chemical analyses of samples withdrawn from the aquifer in 1984, and it approximated hydraulic heads measured in the aquifer in 1976 and 1984. The solute-transport simulations indicate that the transition zone would continue to move toward Hilton Head Island even if pumping ceased on the island. Increases in existing withdrawals or additional withdrawals on or near Hilton Head Island would accelerate movement of the transition zone toward the island, but reduction in withdrawals or the injection of freshwater would slow movement toward the island, according to the simulations. Future movements of the transition zone toward Hilton Head Island will depend on hydraulic gradients in the aquifer beneath the island and the sound. Hydraulic gradients in the Upper Floridan aquifer beneath Hilton Head Island and Port Royal Sound are strongly influenced by withdrawals on the island and near Savannah. Since 1984, withdrawals on Hilton Head Island have increased.

  16. RISK OF UNSATURATED/SATURATED TRANSPORT AND TRANSFORMATION OF CHEMICAL CONCENTRATIONS (RUSTIC): VOLUME 1. THEORY AND CODE VERIFICATION

    EPA Science Inventory

    The RUSTIC program links three subordinate models--PRZM, VADOFT, and SAFTMOD--in order to predict pesticide transport and transformation through the crop root zone, the unsaturated zone, and the saturated zone to drinking water wells. PRZM is a one-dimensional finite-difference m...

  17. Evaluation of groundwater and soil pollution in a landfill area using electrical resistivity imaging survey.

    PubMed

    Ahmed, A M; Sulaiman, W N

    2001-11-01

    Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L-L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no significant difference in the amount of fluoride (F) in the different locations. In the soil vadose zone, heavy metals were found to be in their typical normal ranges and within the background concentrations. Soil exchangeable bases were significantly higher in the soil saturated zone compared to the vadose zone, and no significant difference was obtained in the levels of inorganic pollutants. With the exception of Cd, the concentration ranges of all trace elements (Cu, Zn, Cr, Pb, and Ni) of Seri Petaling landfill soils were below the upper limits of baseline concentrations published from different sources.

  18. Experimental investigation of water distribution in a two-phase zone during gravity-dominated evaporation

    NASA Astrophysics Data System (ADS)

    Cejas, Cesare M.; Castaing, Jean-Christophe; Hough, Larry; Frétigny, Christian; Dreyfus, Rémi

    2017-12-01

    We characterize the water repartition within the partially saturated (two-phase) zone (PSZ) during evaporation from mixed wettable porous media by controlling the wettability of glass beads, their sizes, and as well the surrounding relative humidity. Here, capillary numbers are low and under these conditions, the percolating front is stabilized by gravity. Using experimental and numerical analyses, we find that the PSZ saturation decreases with the Bond number, where packing of smaller particles have higher saturation values than packing made of larger particles. Results also reveal that the extent (height) of the PSZ, as well as water saturation in the PSZ, both increase with wettability. We also numerically calculate the saturation exclusively contained in connected liquid films and results show that values are less than the expected PSZ saturation. These results strongly reflect that the two-phase zone is not solely made up of connected capillary networks but also made of disconnected water clusters or pockets. Moreover, we also find that global saturation (PSZ + full wet zone) decreases with wettability, confirming that greater quantity of water is lost via evaporation with increasing hydrophilicity. These results show that connected liquid films are favored in more-hydrophilic systems while disconnected water pockets are favored in less-hydrophilic systems.

  19. A new perspective on the generation of the 2016 M6.7 Kaohsiung earthquake, southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Zhi

    2017-04-01

    In order to investigate the likely generation mechanism of the 2016 M6.7 Kaohsiung earthquake, a large number of high-quality travel times from P- and S-wave source-receiver pairs are used jointly in this study to invert three-dimensional (3-D) seismic velocity (Vp, Vs) and Poisson's ratio structures at high resolution. We also calculated crack density, saturate fracture, and bulk-sound velocity from our inverted Vp, Vs, and σgodels. In this way, multi-geophysical parameter imaging revealed that the 2016 Kaohsiung earthquake occurred along a distinctive edge portion exhibiting high-to-low variations in these parameters in both horizontal and vertical directions across the hypocenter. We consider that a slow velocity and high-σ body that has high ɛ and somewhat high ζ anomalies above the hypocenter under the Coastal Plain represents fluids contained in the young fold-and-thrust belt associated with the passive Asian continental margin in southwestern Taiwan. Intriguing, a continuous low Vp and Vs zone with high Poisson's ratio, crack density and saturate fracturegnomalies across the Laonung and Chishan faults is also clearly imaged in the northwestern upper crust beneath the Coastal Plain and Western Foothills as far as the southeastern lower crust under the Central Range. We therefore propose that this southeastern extending weakened zone was mainly the result of a fluid intrusion either from the young fold-and-thrust belt the shallow crust or the subducted Eurasian continental (EC) plate in the lower crust and uppermost mantle. We suggest that fluid intrusion into the upper Oligocene to Pleistocene shallow marine and clastic shelf units of the Eurasian continental crust and/or the relatively thin uppermost part of the transitional Pleistocene-Holocene foreland due to the subduction of the EC plate along the deformation front played a key role in earthquake generation in southwestern Taiwan. Such fluid penetration would reduce Vp, and Vs while increasing Poisson's ratio and saturate fracture across the source area, leading to mechanical strength failure of the rock matrix in the relative weakened and brittle seismogenic layer and triggering the 2016 earthquake. PIC

  20. Effect of deforestation on stream water chemistry in the Skrzyczne massif (the Beskid Śląski Mountains in southern Poland).

    PubMed

    Kosmowska, Amanda; Żelazny, Mirosław; Małek, Stanisław; Siwek, Joanna Paulina; Jelonkiewicz, Łukasz

    2016-10-15

    The purpose of the study was to identify the factors affecting stream water chemistry in the small mountain catchments deforested to varying degrees, from 98.7 to 14.1%, due to long-term acid deposition. Water samples were collected monthly in 2013 and 2014 from 17 streams flowing across three distinct elevation zones in the Skrzyczne massif (Poland): Upper, Middle and Lower Forest Zone. Chemical and physical analyses, including the pH, electrical conductivity (EC), total mineral content (Mt), water temperature, and the concentrations of Ca(2+), Mg(2+), Na(+), K(+), HCO3(-), SO4(2-), Cl(-), and NO3(-), were conducted. Based on Principal Component Analysis (PCA), the most important factor affecting water chemistry was human impact associated with changes in pH, SO4(2-) concentration, and the concentration of most of the main ions. The substantial acidity of the studied environment contributed to the exclusion of natural factors, associated with changes in discharge, from the list of major factors revealed by PCA. All of the streams were characterized by very low EC, Mt, and low concentrations of the main ions such as Ca(2+) and HCO3(-). This is the effect of continuous leaching of solutes from the soils by acidic precipitation. The lowest parameter values were measured for the streams situated in the Upper Forest Zone, which is associated with greater acid deposition at the higher elevations. In the streams located in the Upper Forest Zone, a higher percentage of SO4(2-) occurred than in the streams situated in the Middle and Lower Forest Zones. However, the largest share of SO4(2-) was measured in the most deforested catchment. The saturation of the studied deforested catchment with sulfur compounds is reflected by a positive correlation between SO4(2-) and discharge. Hence, a forest acts as a natural buffer that limits the level of acidity in the natural environment caused by acidic atmospheric deposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Modern Processes of Hydrocarbon Migration and Re-Formation of Oil and Gas Fields (Based on the Results of Monitoring and Geochemical Studies)

    NASA Astrophysics Data System (ADS)

    Plotnikova, Irina; Salakhidinova, Gulmira; Nosova, Fidania; Pronin, Nikita; Ostroukhov, Sergey

    2015-04-01

    Special geochemical studies of oils allowed to allocate a movable migration component of oils in the industrial oil deposits. In the field the migration component of oils varies in different parts of the field. The largest percentage of the light migration component (gas condensate of the oil) was detected in the central part of the Kama-Kinel troughs system. Monitoring of the composition of water, oil and gas (condensate light oil component) in the sedimentary cover and ni crystalline basement led to the conclusion of modern migration of hydrocarbons in sedimentary cover. This proves the existence of the modern processes of formation and reformation of oil and gas fields. This presentation is dedicated to the problem of definition of geochemical criteria of selection of hydrocarbons deposit reformation zone in the sample wells of Minibaevskaya area of Romashkinskoye field. While carrying out this work we examined 11 samples of oil from the Upper Devonian Pashiysky horizon. Four oil samples were collected from wells reckoned among the "anomalous" zones that were marked out according to the results of geophysical, oil field and geological research. Geochemical studies of oils were conducted in the laboratory of geochemistry of the Kazan (Volga-region) Federal University. The wells where the signs of hydrocarbons influx from the deep zones of the crust were recorded are considered to be "anomalous". A number of scientists connect this fact to the hypothesis about periodic influx of deep hydrocarbons to the oil deposits of Romashkinskoye field. Other researchers believe that the source rocks of the adjacent valleys sedimentary cover generate gases when entering the main zone of gas formation, which then migrate up the section and passing through the previously formed deposits of oil, change and "lighten" their composition. Regardless of the point of view on the source of the hydrocarbons, the study of the process of deposits refilling with light hydrocarbons is an important fundamental task of exceptional practical importance. The reservoir water monitoring has been conducted in five wells that have penetrated the water-saturated, loosely aggregated zones of the South Tatarstan Arch's basement. The long-term testing resulted in the production of reservoir water from the basement. The sedimentary cover in these wells is blocked by the column, which prevents water cross-flowing from the sedimentary cover. The observations have shown that the levels, gas saturation, mineralisation, density, and composition of reservoir waters from the loosely aggregated zones of the basement change with time. The varying characteristics of the water include its component composition, redox potential, and amount of chlorine and some other components and trace elements. Compositional changes in gases of the loosely aggregated zones of the basement, variations in the gas saturation of reservoir waters and of their composition, the decreasing density of oil in the sedimentary cover, - all result from one cause. This cause is the movement of fluids (solutions and gases dissolved in them) through the loosely aggregated zones and faults of the Earth's crust and the sedimentary cover. The fluids mainly move vertically in an upward direction, although their migration through subhorizontal, loosely aggregated zones of the crystalline basement is also possible. Fluid migration still takes place in the Earth's crust of ancient platforms. This phenomenon indicates that some portions of the platforms - primarily, their margins - periodically resume tectonic activities. The fluid dynamic activity of the crust define the processes in the sedimentary cover. It affects the development of the sedimentary basin during the sedimentation period, and the formation of mineral deposits. The monitoring of the present-day movement of fluid systems in the loosely aggregated zones of the basement will permit the more detailed study of the present-day fluid regime in the upper portion of the Earth's crust and the sedimentary cover.

  2. Effect of sensor location on regional cerebral oxygen saturation measured by INVOS 5100 in on-pump cardiac surgery.

    PubMed

    Cho, Ah-Reum; Kwon, Jae-Young; Kim, Choongrak; Hong, Jung-Min; Kang, Christine

    2017-04-01

    Near-infrared spectroscopy sensors often cannot be attached at the commercially recommended locations because combined use of neurological monitoring systems is common during on-pump cardiac surgery. The primary purpose of this study was to compare the incidence of regional cerebral oxygen desaturation and regional cerebral oxygen saturation values detected using near-infrared spectroscopy between the upper and lower forehead during on-pump cardiac surgery. A prospective observational study was conducted with 25 adult patients scheduled for elective on-pump cardiac surgery. Regional cerebral oxygen saturations at the left upper and lower forehead and other clinical measurements were monitored intraoperatively. McNemar's test was used to analyze differences in the incidence of cerebral regional oxygen desaturation between the left upper and lower forehead. Two-way repeated measures ANOVA with post hoc Bonferroni correction was used to compare the regional cerebral oxygen saturation at each time point. There was a significantly higher incidence of regional cerebral oxygen desaturation at the upper than lower forehead only at 1 h after initiation of aortic cross-clamping. There were significant differences between the left upper and lower regional cerebral oxygen saturation values throughout the observation period. Regional cerebral oxygen saturation was significantly lower at the upper than lower forehead during on-pump cardiac surgery. However, disagreements in detection of cerebral regional oxygen desaturation were only significant at 1 h after initiation of aortic cross-clamping. WHO-ICTRP, Clinical Research Information Service (CRiS). ID: KCT0000971. URL: https://cris.nih.go.kr/cris/search/search_result_st01_en.jsp?seq=3678&type=my .

  3. [Noninvasive estimation of human tissue respiration with wavelet-analysis of oxygen saturation and blood flow oscillations in microvessels].

    PubMed

    Krupatkin, A I

    2012-01-01

    Laser Doppler flowmetry, laser spectrophotometry of oxygen saturation and fluorescence determination of NAD-H/FAD ratio were carried out at 30 humans in the upper extremity skin zones with and without arteriole-venule anastomoses (AVA). For the first time it was shown that wavelet-analysis of oxygen saturation and microvascular blood flow oscillations was an effective approach to noninvasive estimation of skin oxygen extraction (OE) and oxygen consumption rate (OC). OE = (SaO2--SvO2)/SaO2, where SaO2 (%) and SvO2(%) are the oxygen saturation of arterial and venular blood, correspondingly. If the ratio between amplitudes of cardiac rhythm (Ac, p.u.) and respiratory rhythm (Ar, p.u.) Ac/Ar < or = 1, SvO2 = SO2. In the case of Ac/Ar >1, SvO2 = SO2/(Ac/Ar). OC = Mnutr x (SaO2-SvO2) in p.u. x %O2, where Mnutr--value of nutritive perfusion (p.u.). Mnutr = M/SI, where SI--shunting index of blood flow in microvessels. The values of perfusion, OE and OC were higher in the skin with AVA than in the skin without AVA. The values of perfusion and oxygen saturation were more variable in the skin with AVA. The greatest significance for tissue metabolism have the oxygen diffused from the smallest arterioles and capillaries. The contribution increased to tissue metabolism of total perfusion and of oxygen diffused from arterioles in the conditions of tissue ischemia.

  4. Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2010-07-01

    We present an analytical solution for flow to a partially penetrating well in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from drawdowns recorded in the saturated and/or unsaturated zone. We improve upon a previous such solution due to Tartakovsky and Neuman (2007) by (1) adopting a more flexible representation of unsaturated zone constitutive properties and (2) allowing the unsaturated zone to have finite thickness. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of unsaturated zone constitutive parameters and thickness on drawdowns in the saturated and unsaturated zones as functions of position and time; demonstrate the development of significant horizontal hydraulic gradients in the unsaturated zone in response to pumping; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten-Mualem constitutive model; use our solution to analyze drawdown data from a pumping test conducted by the U.S. Geological Survey at Cape Cod, Massachusetts; and compare our estimates of van Genuchten-Mualem parameters with laboratory values obtained for similar materials in the area.

  5. Gravity anomaly and density structure of the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Wang, Chi-Yuen; Rui, Feng; Zhengsheng, Yao; Xingjue, Shi

    1986-01-01

    A densely spaced gravity survey across the San andreas fault zone was conducted near Bear Valley, about 180 km south of San Francisco, along a cross-section where a detailed seismic reflection profile was previously made by McEvilly (1981). With Feng and McEvilly's velocity structure (1983) of the fault zone at this cross-section as a constraint, the density structure of the fault zone is obtained through inversion of the gravity data by a method used by Parker (1973) and Oldenburg (1974). Although the resulting density picture cannot be unique, it is better constrained and contains more detailed information about the structure of the fault than was previously possible. The most striking feature of the resulting density structure is a deeply seated tongue of low-density material within the fault zone, probably representing a wedge of fault gouge between the two moving plates, which projects from the surface to the base of the seismogenic zone. From reasonable assumptions concerning the density of the solid grains and the state of saturation of the fault zone the average porosity of this low-density fault gouge is estimated as about 12%. Stress-induced cracks are not expected to create so much porosity under the pressures in the deep fault zone. Large-scaled removal of fault-zone material by hydrothermal alteration, dissolution, and subsequent fluid transport may have occurred to produce this pronounced density deficiency. In addition, a broad, funnel-shaped belt of low density appears about the upper part of the fault zone, which probably represents a belt of extensively shattered wall rocks.

  6. Geohydrology of Test Well USW H-3, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thordarson, W.; Rush, F.E.; Waddell, S.J.

    Test well USW H-3 is one of several test wells drilled in the southwestern part of the Nevada Test Site in cooperation with the US Department of Energy for investigations related to the isolation of high-level radioactive wastes. All rocks penetrated by the well to a total depth of 1219 meters are volcanic tuff of Tertiary age. The composite hydraulic head in the zone 751 to 1219 meters was 733 meters above sea level, and at a depth below land surface of 751 meters. Below a depth of 1190 meters, the hydraulic head was 754 meters above sea level ormore » higher, suggesting an upward component of groundwater flow at the site. The most transmissive part of the saturated zone is in the upper part of the Tram Member of the Crater Flat Tuff in the depth interval from 809 to 841 meters, with an apparent transmissivity of about 7 x 10{sup -1} meter squared per day. The remainder of the penetrated rocks in the saturated zone, 841 to 1219 meters, has an apparent transmissivity of about 4 x 10{sup -1} meter squared per day. The most transmissive part of the lower depth interval is in the bedded tuff and Lithic Ridge Tuff, in the depth interval from 1108 to 1120 meters. The apparent hydraulic conductivity of the rocks in the lower depth interval from 841 to 1219 meters commonly ranges from about 10{sup -1} to 10{sup -4} meter per day. 32 references, 20 figures, 4 tables.« less

  7. Gas centrifuge purge method

    DOEpatents

    Theurich, Gordon R.

    1976-01-01

    1. In a method of separating isotopes in a high speed gas centrifuge wherein a vertically oriented cylindrical rotor bowl is adapted to rotate about its axis within an evacuated chamber, and wherein an annular molecular pump having an intake end and a discharge end encircles the uppermost portion of said rotor bowl, said molecular pump being attached along its periphery in a leak-tight manner to said evacuated chamber, and wherein end cap closure means are affixed to the upper end of said rotor bowl, and a process gas withdrawal and insertion system enters said bowl through said end cap closure means, said evacuated chamber, molecular pump and end cap defining an upper zone at the discharge end of said molecular pump, said evacuated chamber, molecular pump and rotor bowl defining a lower annular zone at the intake end of said molecular pump, a method for removing gases from said upper and lower zones during centrifuge operation with a minimum loss of process gas from said rotor bowl, comprising, in combination: continuously measuring the pressure in said upper zone, pumping gas from said lower zone from the time the pressure in said upper zone equals a first preselected value until the pressure in said upper zone is equal to a second preselected value, said first preselected value being greater than said second preselected value, and continuously pumping gas from said upper zone from the time the pressure in said upper zone equals a third preselected value until the pressure in said upper zone is equal to a fourth preselected value, said third preselected value being greater than said first, second and fourth preselected values.

  8. Aquifer Characteristics Data Report for the Weldon Spring Site chemical plant/raffinate pits and vicinity properties for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-11-01

    This report describes the procedures and methods used, and presents the results of physical testing performed, to characterize the hydraulic properties of the shallow Mississippian-Devonian aquifer beneath the Weldon Spring chemical plant, raffinate pits, and vicinity properties. The aquifer of concern is composed of saturated rocks of the Burlington-Keokuk Limestone which constitutes the upper portion of the Mississippian-Devonian aquifer. This aquifer is a heterogeneous anisotropic medium which can be described in terms of diffuse Darcian flow overlain by high porosity discrete flow zones and conduits. Average hydraulic conductivity for all wells tested is 9.6E-02 meters/day (3.1E-01 feet/day). High hydraulic conductivitymore » values are representative of discrete flow in the fractured and weathered zones in the upper Burlington-Keokuk Limestone. They indicate heterogeneities within the Mississippian-Devonian aquifer. Aquifer heterogeneity in the horizontal plane is believed to be randomly distributed and is a function of fracture spacing, solution voids, and preglacial weathering phenomena. Relatively high hydraulic conductivities in deeper portions of the aquifer are though to be due to the presence of widely spaced fractures. 44 refs., 27 figs., 9 tabs.« less

  9. Discussion of pore pressure transmission under rain infiltration in a soil layer

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Jan, C. D.

    2017-12-01

    The vadose zone (or unsaturated zone) denotes the geologic media between ground surface and the water table in situ where the openings, or pores, in the soil (rock) layers are partially filled with water and air. In this landscape, rainwater infiltrates into soils advancing through this vadose zone and could generates a shallow saturation zone at soil bedrock boundary due to permeability contrast. This saturation zone leads to downslope shallow subsurface storm runoff that contributes to a part of saturation overland flow, dominating water reaching river channels. Hence, unsaturated processes (e.g., rain infiltration) is an important issue that can determine the timing and magnitude of positive pore pressure and discharge peaks, and the characteristics of runoff, water chemistry, hillslope stability is also tie to the processes. In this study, we investigated the transmission of pore pressure evolution in the vadose zone for diverse soil materials based on poroelasticity theory. Commonly, a traditional way is to utilize the Richard's equation to predict pore pressure evolution under unsaturated rain infiltration, ignoring the inertial effect on the process. Here we relax this limitation and propose two reference time tk and tep that can represent the arriving time at a certain depth of wave propagation and dissipation, respectively. Form ground surface to a depth of 1 m, tk has significant differences under nearly unsaturated conditions for diverse soil properties; however, no evident variations in tk can be observed under nearly saturated conditions. Values of tep for loose, cohesionless soils are much greater but decreases to the smallest one (within 1 day) than those for other soil properties under a nearly saturated condition. Results indicate that transient pore pressure transmission is mainly dominated by dynamic wave propagation but the effect of dissipation could become more important with increase in water saturation.

  10. Movement triggers and remediation in a fracture-dominated translational landslide at the Oregon coast

    USGS Publications Warehouse

    Priest, George R.; Allan, Jonathan; Niem, Alan; Niem, Wendy A.; Dickenson, Stephen E.

    2009-01-01

    The Johnson Creek landslide is a translational slide in seaward dipping Miocene siltstone and sandstone (Astoria Formation) and an overlying Quaternary marine terrace deposit. The slide terminates in a sea cliff and has a hummocky to nearly horizontal ground surface. The basal slide plane, however, slopes subparallel to the dip of the Miocene rocks, except beneath the back-tilted toe blocks where it curves upward. The siltstone and sandstone have low estimated permeability but cores and field mapping reveal an extensive fracture system within the slide mass. The slide mainly moves in response to groundwater pressure and coastal erosion of the toe. Limit-equilibrium stability analyses indicate that 3 m of erosion at the toe would destabilize the slide for most of the wet season, although no movement could be directly attributed to erosion in the 5 years of observation. Intense rainfall events raise pore-water pressure throughout the slide in the form of pulses of water pressure traveling from the headwall graben down the axis of the slide at rates of 1.4-2.5 m/hr in the upper part, and 3.5 m/hr to virtually instantaneous in the middle part. Infiltration of meteoric water was only ~50 mm/hr. Slope of the water table exceeds topographic slope from the head to the toe of the slide, so infiltration was too slow to directly raise head in 90 percent of the slide mass where the saturated zone is deeper than a few meters. Only at the headwall graben was the saturated zone shallow enough for rainfall events to trigger pulses of water pressure through the entire saturated zone. When a pressure pulse reached the threshold pressure for movement in the central part of the slide, the whole slide began slow, creeping movement. As head became larger and larger than the threshold for movement in more of the slide mass, movement accelerated and differential displacement between internal slide blocks became more pronounced. These findings suggest that dewatering the shallowest part of the saturated zone in this type of slide will stop these rapid pressure pulses, thereby stopping or greatly reducing seasonal movement. If slides are also subject to continual removal of material from the toe, especially where there are back-tilted toe blocks, then some type of buttress or tied-back shear pile wall may be the only effective long term remediation.

  11. Ionization and chemiluminescence during the progressive aeration of methane flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, Felix; Carleton, Fred

    Saturation currents and chemiluminescence, especially at the CH{sup *} and C{sub 2}{sup *} wavelengths, are measured for a range of small, laminar methane flames during progressive addition of air, with the principal objective of distinguishing between pure diffusion flames, premixed flames of compositions falling between the upper and lower flammability limits, and the broad range of aerated flames lying in between these regimes. Flame areas defined by the loci of maximum luminosity and by schlieren contours were recorded, so that saturation current densities, CH{sup *} and C{sub 2}{sup *} emission per unit flame area, as well as burning velocities couldmore » be deduced. For admixtures of less than 70 vol.%, air appears to act, surprisingly, as an inert diluent as regards saturation currents, so that saturation currents are essentially proportional to fuel flow alone. Much the same applies to chemiluminescence. However, schlieren contours, which were recorded both to provide a basis for burning velocity measurements and to explore density changes in the reactants, indicated the presence of a burner - stabilised propagating reaction zone ahead of the luminous flame surface starting at around 50 vol.% and possibly even at lower air admixtures. This evidence of a steep change in refractive index is indicative of a premixed reaction zone involving the added oxygen, which however generates no chemi-ionization and emits no light. Even photographing the flame by radiation emitted at the CH{sup *} and C{sub 2}{sup *} wavelengths shows no sign of its existence. Its burning velocity is about 10 cm/s, when stabilized by the surrounding diffusion flame. The most plausible rationale for these observations is the formation of syngas by the partial oxidation of methane. The subsequent burning of CO and H{sub 2} is known to occur without chemi-ionization or appreciable light emission. (author)« less

  12. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea

    USGS Publications Warehouse

    Wang, Xiujuan; Hutchinson, Deborah R.; Wu, Shiguo; Yang, Shengxiong; Guo, Yiqun

    2011-01-01

    Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190–221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone.

  13. Diel fluctuations of viscosity-driven riparian inflow affect streamflow DOC concentration

    NASA Astrophysics Data System (ADS)

    Schwab, Michael P.; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2018-04-01

    Diel fluctuations of stream water DOC concentrations are generally explained by a complex interplay of different instream processes. We measured the light absorption spectrum of water and DOC concentrations in situ and with high frequency by means of a UV-Vis spectrometer during 18 months at the outlet of a forested headwater catchment in Luxembourg (0.45 km2). We generally observed diel DOC fluctuations with a maximum in the afternoon during days that were not affected by rainfall-runoff events. We identified an increased inflow of terrestrial DOC to the stream in the afternoon, causing the DOC maxima in the stream. The terrestrial origin of the DOC was derived from the SUVA-254 (specific UV absorbance at 254 nm) index, which is a good indicator for the aromaticity of DOC. In the studied catchment, the most likely process that can explain the diel DOC input variations towards the stream is the so-called viscosity effect. The water temperature in the upper parts of the saturated riparian zone is increasing during the day, leading to a lower viscosity and therefore a higher hydraulic conductivity. Consequently, more water from areas that are rich in terrestrial DOC passes through the saturated riparian zone and contributes to streamflow in the afternoon. We believe that not only diel instream processes, but also viscosity-driven diel fluctuations of terrestrial DOC input should be considered to explain diel DOC patterns in streams.

  14. Runoff and Solute Mobilisation in a Semi-arid Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Khan, S.; Crosbie, R.; Helliwell, S.; Michalk, D.

    2006-12-01

    Runoff and solute transport processes contributing to stream flow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Stream flow and electrical conductivity were monitored from two gauges draining a portion of upper catchment area (UCA), and a saline scalded area respectively. Results show that the bulk of catchment solute export, occurs via a small saline scald (< 2% of catchment area) where solutes are concentrated in the near surface zone (0-40 cm). Non-scalded areas of the catchment are likely to provide the bulk of catchment runoff, although the scalded area is a higher contributor on an areal basis. Runoff from the non-scalded area is about two orders of magnitude lower in electrical conductivity than the scalded area. This study shows that the scalded zone and non-scalded parts of the catchment can be managed separately since they are effectively de-coupled except over long time scales, and produce runoff of contrasting quality. Such differences are "averaged out" by investigations that operate at larger scales, illustrating that observations need to be conducted at a range of scales. EMMA modelling using six solutes shows that "event" or "new" water dominated the stream hydrograph from the scald. This information together with hydrometric data and soil physical properties indicate that saturated overland flow is the main form of runoff generation in both the scalded area and the UCA. Saturated areas make up a small proportion of the catchment, but are responsible for production of all run off in conditions experienced throughout the experimental period. The process of saturation and runoff bears some similarities to the VSA concept (Hewlett and Hibbert 1967).

  15. Evaluation of a distributed catchment scale water balance model

    NASA Technical Reports Server (NTRS)

    Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.

  16. Ground-water quality of the Upper Floridan Aquifer near an abandoned manufactured gas plant in Albany, Georgia

    USGS Publications Warehouse

    Chapman, M.J.

    1993-01-01

    Manufactured gas plants produced gas for heating and lighting in the United States from as early as 1816 into the 1960's. By-products including, but not limited to, oil residues and tar, were generated during the gas-manufacturing process. Organic compounds (hydrocarbons) were detected in water in the upper water-bearing zone of the Upper Floridan aquifer near an abandoned manufactured gas plant (MGP) in Albany, Georgia, during an earlier investigation in 1990. Chemical analyses of ground-water samples collected from five existing monitoring wells in 1991 verify the presence of hydrocarbons and metals in the upper water-beating zone of the Upper Floridan aquifer. One well was drilled into the lower water-beating zone of the Upper Floridan aquifer in 1991 for water-quality sampling and water-level monitoring. Analyses of ground water sampled from this well did not show evidence of benzene, toluene, xylene, napthalene, acenaphthlene, or other related compounds detected in the upper water-bearing zone in the study area. Low concentrations of tetrachloroethane, trichloromethane, and l,2-cisdichloroethene were detected in a water sample from the deeper well; however, these compounds were not detected in the upper water-bearing zone in the study area. Inorganic constituent concentrations also were substantially lower in the deeper well. Overall, ground water sampled from the lower water-bearing zone had lower specific conductance and alkalinity; and lower concentrations of dissolved solids, iron, and manganese compared to ground water sampled from the upper water-bearing zone. Water levels for the upper and lower water-bearing zones were similar throughout the study period.

  17. Large-scale depositional characteristics of the Ulleung Basin and its impact on electrical resistivity and Archie-parameters for gas hydrate saturation estimates

    USGS Publications Warehouse

    Riedel, Michael; Collett, Timothy S.; Kim, H.-S.; Bahk, J.-J.; Kim, J.-H.; Ryu, B.-J.; Kim, G.-Y.

    2013-01-01

    Gas hydrate saturation estimates were obtained from an Archie-analysis of the Logging-While-Drilling (LWD) electrical resistivity logs under consideration of the regional geological framework of sediment deposition in the Ulleung Basin, East Sea, of Korea. Porosity was determined from the LWD bulk density log and core-derived values of grain density. In situ measurements of pore-fluid salinity as well as formation temperature define a background trend for pore-fluid resistivity at each drill site. The LWD data were used to define sets of empirical Archie-constants for different depth-intervals of the logged borehole at all sites drilled during the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2). A clustering of data with distinctly different trend-lines is evident in the cross-plot of porosity and formation factor for all sites drilled during UBGH2. The reason for the clustering is related to the difference between hemipelagic sediments (mostly covering the top ∼100 mbsf) and mass-transport deposits (MTD) and/or the occurrence of biogenic opal. For sites located in the north-eastern portion of the Ulleung Basin a set of individual Archie-parameters for a shallow depth interval (hemipelagic) and a deeper MTD zone was achieved. The deeper zone shows typically higher resistivities for the same range of porosities seen in the upper zone, reflecting a shift in sediment properties. The presence of large amounts of biogenic opal (up to and often over 50% as defined by XRD data) was especially observed at Sites UBGH2-2_1 and UBGH2-2_2 (as well as UBGH1-9 from a previous drilling expedition in 2007). The boundary between these two zones can also easily be identified in gamma-ray logs, which also show unusually low readings in the opal-rich interval. Only by incorporating different Archie-parameters for the different zones a reasonable estimate of gas hydrate saturation was achieved that also matches results from other techniques such as pore-fluid freshening, velocity-based calculations, and pressure-core degassing experiments. Seismically, individual boundaries between zones were determined using a grid of regional 2D seismic data. Zoning from the Archie-analysis for sites in the south-western portion of the Ulleung Basin was also observed, but at these sites it is linked to individually stacked MTDs only and does not reflect a mineralogical occurrence of biogenic opal or hemipelagic sedimentation. The individual MTD events represent differently compacted material often associated with a strong decrease in porosity (and increase in density), warranting a separate set of empirical Archie-parameters.

  18. ASSESSING UST CORRECTIVE ACTION TECHNOLOGIES: EARLY SCREENING OF CLEANUP TECHNOLOGIES FOR THE SATURATED ZONE

    EPA Science Inventory

    This manual assists the user in making a preliminary evaluation of the likely effectiveness of various remediation technologies in the event of a release of petroleum products into the saturated zone. he manual: 1) helps the user develop a conceptual understanding of site conditi...

  19. 40 CFR 149.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... significant amount of water to a well or spring. (b) Recharge means a process, natural or artificial, by which water is added to the saturated zone of an aquifer. (c) Recharge Area means an area in which water reaches the zone of saturation (ground water) by surface infiltration; in addition, a major recharge area...

  20. 40 CFR 149.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... significant amount of water to a well or spring. (b) Recharge means a process, natural or artificial, by which water is added to the saturated zone of an aquifer. (c) Recharge Area means an area in which water reaches the zone of saturation (ground water) by surface infiltration; in addition, a major recharge area...

  1. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    NASA Astrophysics Data System (ADS)

    Watlet, Arnaud; Kaufmann, Olivier; Triantafyllou, Antoine; Poulain, Amaël; Chambers, Jonathan E.; Meldrum, Philip I.; Wilkinson, Paul B.; Hallet, Vincent; Quinif, Yves; Van Ruymbeke, Michel; Van Camp, Michel

    2018-03-01

    Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL) site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT) monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets) and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1) upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2) deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3) a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of the sources of drip discharge spots traditionally monitored in caves and aims to support modelling approaches of karst hydrological processes.

  2. Limited denitrification in glacial deposit aquifers having thick unsaturated zones (Long Island, USA)

    NASA Astrophysics Data System (ADS)

    Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert

    2013-12-01

    The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3-41.1 μmol L-1) and high dissolved oxygen concentrations (58-100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.

  3. Nannoplankton malformation during the Paleocene-Eocene Thermal Maximum and its paleoecological and paleoceanographic significance

    USGS Publications Warehouse

    Bralower, Timothy J.; Self-Trail, Jean

    2016-01-01

    The Paleocene-Eocene Thermal Maximum (PETM) is characterized by a transient group of nannoplankton, belonging to the genus Discoaster. Our investigation of expanded shelf sections provides unprecedented detail of the morphology and phylogeny of the transient Discoasterduring the PETM and their relationship with environmental change. We observe a much larger range of morphological variation than previously documented suggesting that the taxa belonged to a plexus of highly gradational morphotypes rather than individual species. We propose that the plexus represents malformed ecophenotypes of a single species that migrated to a deep photic zone refuge during the height of PETM warming and eutrophication. Anomalously, high rates of organic matter remineralization characterized these depths during the event and led to lower saturation levels, which caused malformation. The proposed mechanism explains the co-occurrence of malformed Discoaster with pristine species that grew in the upper photic zone; moreover, it illuminates why malformation is a rare phenomenon in the paleontological record.

  4. Local recharge processes in glacial and alluvial deposits of a temperate catchment

    NASA Astrophysics Data System (ADS)

    Fragalà, Federico A.; Parkin, Geoff

    2010-07-01

    SummaryThis study demonstrates that the composition and structure of Quaternary deposits and topography significantly influence rates of recharge and distribution of diffuse agricultural pollution at the hillslope scale. Analyses were made of vertical profiles of naturally-occurring chloride and nitrate, and artificially introduced bromide, in unsaturated and saturated sections of borehole cores of glacial till and alluvium under different land uses in the Upper Eden valley (UK). Estimates of local potential recharge were made based on chloride mass balance and nitrate peak methods. Persistent chloride bulges below the root zone were observed, and are interpreted to result from filtration processes at lithological boundaries. Changes in the shape of chloride profiles downslope, corroborated by nitrate profiles, indicate the roles of surface or near-surface runoff and runon, and the existence of lateral subsurface flows at depth. These findings have implications for estimation of recharge rates through unsaturated zones in Quaternary deposits, and the interpretation of potential 'hot-spots' of diffuse agrochemicals, particularly nitrates, moving through Quaternary deposits into groundwater.

  5. Nannoplankton malformation during the Paleocene-Eocene Thermal Maximum and its paleoecological and paleoceanographic significance

    NASA Astrophysics Data System (ADS)

    Bralower, Timothy J.; Self-Trail, Jean M.

    2016-10-01

    The Paleocene-Eocene Thermal Maximum (PETM) is characterized by a transient group of nannoplankton, belonging to the genus Discoaster. Our investigation of expanded shelf sections provides unprecedented detail of the morphology and phylogeny of the transient Discoaster during the PETM and their relationship with environmental change. We observe a much larger range of morphological variation than previously documented suggesting that the taxa belonged to a plexus of highly gradational morphotypes rather than individual species. We propose that the plexus represents malformed ecophenotypes of a single species that migrated to a deep photic zone refuge during the height of PETM warming and eutrophication. Anomalously, high rates of organic matter remineralization characterized these depths during the event and led to lower saturation levels, which caused malformation. The proposed mechanism explains the co-occurrence of malformed Discoaster with pristine species that grew in the upper photic zone; moreover, it illuminates why malformation is a rare phenomenon in the paleontological record.

  6. A practical tool for estimating subsurface LNAPL distributions and transmissivity using current and historical fluid levels in groundwater wells: Effects of entrapped and residual LNAPL

    NASA Astrophysics Data System (ADS)

    Lenhard, R. J.; Rayner, J. L.; Davis, G. B.

    2017-10-01

    A model is presented to account for elevation-dependent residual and entrapped LNAPL above and below, respectively, the water-saturated zone when predicting subsurface LNAPL specific volume (fluid volume per unit area) and transmissivity from current and historic fluid levels in wells. Physically-based free, residual, and entrapped LNAPL saturation distributions and LNAPL relative permeabilities are integrated over a vertical slice of the subsurface to yield the LNAPL specific volumes and transmissivity. The model accounts for effects of fluctuating water tables. Hypothetical predictions are given for different porous media (loamy sand and clay loam), fluid levels in wells, and historic water-table fluctuations. It is shown the elevation range from the LNAPL-water interface in a well to the upper elevation where the free LNAPL saturation approaches zero is the same for a given LNAPL thickness in a well regardless of porous media type. Further, the LNAPL transmissivity is largely dependent on current fluid levels in wells and not historic levels. Results from the model can aid developing successful LNAPL remediation strategies and improving the design and operation of remedial activities. Results of the model also can aid in accessing the LNAPL recovery technology endpoint, based on the predicted transmissivity.

  7. Do storage dynamics in hydropedological units control hydrological connectivity? (Invited)

    NASA Astrophysics Data System (ADS)

    Tetzlaff, D.; Birkel, C.; Dick, J.; Geris, J.; Soulsby, C.

    2013-12-01

    In many northern landscapes, peat-dominated riparian wetlands often characterise the zone of connection between terrestrial drainage and the river network. In order to understand the relationship between connectivity and stream flow generation in a montane headwater catchment, we examined the storage dynamics and isotopic composition of soil water in major hydropedological units. These formed a classic catena sequence for northern catchments from free-draining podzols on steep upper hillslopes through to peaty gleysols in lower receiving slopes to deeper peats (Histosols) in the riparian zone. The peaty gleys and peats remained saturated throughout the year, whilst the podzols showed distinct wetting and drying cycles. In this climatic region, most precipitation events are less than 10mm in magnitude, storm runoff is mainly generated from the Histosols and Gleysols, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich surface horizons of the soils due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the strongly reflects that of the near surface waters in the riparian peats. Old 'pre-event' water generally accounts for >80% of flow, even in large events, mainly reflecting the displacement of water stored in the riparian peats and peaty gleys. These riparian areas appear to be the dominant zone where different catchment source waters mix; acting as an 'isostat' that regulates the isotopic composition of stream waters and integrates the Transit Time Distribution (TTD) for the catchment.

  8. Geohydrology and contamination at the Michigan Department of Transportation maintenance garage area, Kalamazoo County, Michigan

    USGS Publications Warehouse

    Lynch, E.A.; Huffman, G.C.

    1996-01-01

    A leaking underground storage tank was removed from the Michigan Department of Transportation maintenance garage area in Kalamazoo County., Mich., in 1985. The tank had been leaking unleaded gasoline. Although a remediation system was operational at the site for several years after the tank was removed, ground-water samples collected from monitoring wells in the area consistently showed high concentrations of benzene, toluene. ethylbenzene, and xylenes--indicators of the presence of gasoline. The U.S. Geological Survey did a study in cooperation with the Michigan Department of Transportation, to define the geology, hydrology, and occurrence of gasoline contamination in the maintenance garage area. The aquifer affected by gasoline contamination is an unconfined glaci'a.l sand and gravel aquifer. The average depth to water in the study area is about 74.7 feet. Water-level fluctuations are small; maximum fluctuation was slightly more than 1 foot during August 1993-August 1994. Hydraulic conductivities based on aquifer-test data collected for the study and estimated by use of the Cooper-Jacob method of solution ranged from 130 to 144 feet per day. Ground water is moving in an east-southeasterly direction at a rate of about I foot per day. Leakage from perforated pipes leading from the underground storage tanks to the pump station was identified as a second source of gasoline contamination to saturated and unsaturated zones. The existence of this previously unknown second source is part of the reason that previous remediation efforts were ineffective. Residual contaminants in the unsaturated zone are expected to continue to move to the water table with recharge, except in a small area covered by asphalt at the land surface. The gasoline plume from the perforated pipe source has merged with that from the leaking underground storage tank, and the combined plume in the saturated zone is estimated to cover an area of 30,000 square feet. The combined plume is in the upper 20 feet of the saturated zone. The relative distribution of benzene, toluene, ethylbenzene, and xylenes indicate that factors such as sorption, solubility, and susceptibility to microbial degradation are affecting the movement of the combined plume. Given these factors, the plume is expected to move at a rate of less than 1 foot per day.

  9. Deep Vadose Zone Flow and Transport Behavior at T-Tunnel Complex, Rainier Mesa, Nevada National Security Site

    NASA Astrophysics Data System (ADS)

    Parashar, R.; Reeves, D. M.

    2010-12-01

    Rainier Mesa, a tuffaceous plateau on the Nevada National Security Site, has been the location of numerous subsurface nuclear tests conducted in a series of tunnel complexes located approximately 450 m below the top of the mesa and 500 m above the regional groundwater flow system. The tunnels were constructed near the middle of an 800 m Tertiary sequence of faulted, low-permeability welded and non-welded bedded, vitric, and zeolitized tuff units. Water levels from wells in the vicinity of the T-tunnel complex indicate the presence of a perched saturation zone located approximately 100 m above the T-tunnel complex. This upper zone of saturation extends downward through most of the Tertiary sequence. The groundwater table is located at an elevation of 1300 m within a thrust sheet of Paleozoic carbonates, corresponding to the lower carbonate aquifer hydrostratigraphic unit (LCA3). The LCA3 is considered to be hydraulically connected to the Death Valley regional flow system. The objective of this project is to simulate complex downward patterns of fluid flow and radionuclide transport from the T-tunnel complex through the matrix and fault networks of the Tertiary tuff units to the water table. We developed an improved fracture characterization and mapping methodology consisting of displacement-length scaling relationships, simulation of realistic fault networks based on site-specific data, and the development of novel fracture network upscaling techniques that preserves fracture network flow and transport properties on coarse continuum grid. Development of upscaling method for fracture continua is based on the concepts of discrete fracture network modeling approach which performs better at honoring network connectivity and anisotropy of sparse networks in comparison to other established methods such as a tensor approach. Extensive flow simulations in the dual-continuum framework demonstrate that the characteristics of fault networks strongly influences the saturation profile and formation of perched zones, although they may not conduct a large amount of flow when compared to the matrix continua. The simulated results are found to be very sensitive to distribution of fracture aperture, density of the network, and spatial pattern of fracture clustering. The faults provide rapid pathways for radionuclide transport and the conceptual modeling of diffusional mass transfer between matrix and fracture continua plays a vital role in prediction of the overall behavior of the breakthrough curve.

  10. Sedimentological Control on Hydrate Saturation Distribution in Arctic Gas-Hydrate-Bearing Deposits

    NASA Astrophysics Data System (ADS)

    Behseresht, J.; Peng, Y.; Bryant, S. L.

    2010-12-01

    Grain size variations along with the relative rates of fluid phases migrating into the zone of hydrate stability, plays an important role in gas-hydrate distribution and its morphologic characteristics. In the Arctic, strata several meters thick containing large saturations of gas hydrate are often separated by layers containing small but nonzero hydrate saturations. Examples are Mt. Elbert, Alaska and Mallik, NW Territories. We argue that this sandwich type hydrate saturation distribution is consistent with having a gas phase saturation within the sediment when the base of gas hydrate stability zone (BGHSZ) was located above the sediment package. The volume change during hydrate formation process derives movement of fluid phases into the GHSZ. We show that this fluid movement -which is mainly governed by characteristic relative permeability curves of the host sediment-, plays a crucial role in the amount of hydrate saturation in the zone of major hydrate saturation. We develop a mechanistic model that enables estimating the final hydrate saturation from an initial gas/water saturation in sediment with known relative permeability curves. The initial gas/water saturation is predicted using variation of capillary entry pressure with depth, which in turn depends on the variation in grain-size distribution. This model provides a mechanistic approach for explaining large hydrate saturations (60%-75%) observed in zones of major hydrate saturation considering the governing characteristic relative permeability curves of the host sediments. We applied the model on data from Mount Elbert well on the Alaskan North Slope. It is shown that, assuming a cocurrent flow of gas and water into the GHSZ, such large hydrate saturations (up to 75%) cannot result from large initial gas saturations (close to 1-Sw,irr) due to limitations on water flux imposed by typical relative permeability curves. They could however result from modest initial gas saturations (ca. 40%) at which we have reasonable phase mobility ratios required for appropriate relative rates of gas and water transporting into GHSZ to form large hydrate saturations. Nevertheless, from the profile of capillary entry pressure vs. depth, we expect large initial gas saturations and thus the final high hydrate saturation suggests another form of water flow: water moves down through accumulated hydrate from the unfrozen water above. For this to happen the water phase must remain connected within the hydrate-bearing sediment. This seems plausible in hydrate bearing sediments because hydrate formation will be stopped before water saturation gets to very low values (lower than Sw,irr) due to salinity build up. The location of small hydrate saturations (10-15%) is consistent with the location of the residual gas phase established during water imbibition into these locations while they serve as a gas source to the layers above.

  11. Estimation of hectare-scale soil-moisture characteristics from aquifer-test data

    USGS Publications Warehouse

    Moench, A.F.

    2003-01-01

    Analysis of a 72-h, constant-rate aquifer test conducted in a coarse-grained and highly permeable, glacial outwash deposit on Cape Cod, Massachusetts revealed that drawdowns measured in 20 piezometers located at various depths below the water table and distances from the pumped well were significantly influenced by effects of drainage from the vadose zone. The influence was greatest in piezometers located close to the water table and diminished with increasing depth. The influence of the vadose zone was evident from a gap, in the intermediate-time zone, between measured drawdowns and drawdowns computed under the assumption that drainage from the vadose zone occurred instantaneously in response to a decline in the elevation of the water table. By means of an analytical model that was designed to account for time-varying drainage, simulated drawdowns could be closely fitted to measured drawdowns regardless of the piezometer locations. Because of the exceptional quality and quantity of the data and the relatively small aquifer heterogeneity, it was possible by inverse modeling to estimate all relevant aquifer parameters and a set of three empirical constants used in the upper-boundary condition to account for the dynamic drainage process. The empirical constants were used to define a one-dimensional (ID) drainage versus time curve that is assumed to be representative of the bulk material overlying the water table. The curve was inverted with a parameter estimation algorithm and a ID numerical model for variably saturated flow to obtain soil-moisture retention curves and unsaturated hydraulic conductivity relationships defined by the Brooks and Corey equations. Direct analysis of the aquifer-test data using a parameter estimation algorithm and a two-dimensional, axisymmetric numerical model for variably saturated flow yielded similar soil-moisture characteristics. Results suggest that hectare-scale soil-moisture characteristics are different from core-scale predictions and even relatively small amounts of fine-grained material and heterogeneity can dominate the large-scale soil-moisture characteristics and aquifer response. ?? 2003 Elsevier B.V. All rights reserved.

  12. Hydrologically Controlled Arsenic Release in Deltaic Wetlands and Coastal Riparian Zones

    NASA Astrophysics Data System (ADS)

    Stuckey, J.; LeMonte, J. J.; Yu, X.; Schaefer, M.; Kocar, B. D.; Benner, S. G.; Rinklebe, J.; Tappero, R.; Michael, H. A.; Fendorf, S. E.; Sparks, D. L.

    2016-12-01

    Wetland and riparian zone hydrology exerts critical controls on the biogeochemical cycling of metal contaminants including arsenic. The role of wetlands in driving geogenic arsenic release to groundwater has been debated in the deltas of South and Southeast Asia where the largest impacted human population resides. In addition, groundwater in coastal areas worldwide, such as those in South and Southeast Asia and the Mid-Atlantic of the U.S., is at risk to largely unexplored biogeochemical and hydrologic impacts of projected sea level rise. First, we present data from fresh-sediment incubations, in situ model sediment incubations and a controlled field experiment with manipulated wetland hydrology and organic carbon inputs in the minimally disturbed upper Mekong Delta. Here we show that arsenic release is limited to near-surface sediments of permanently saturated wetlands where both organic carbon and arsenic-bearing solids are sufficiently reactive for microbial oxidation of organic carbon and reduction of arsenic-bearing iron oxides. In contrast, within the deeper aquifer or seasonally saturated sediments, reductive dissolution of iron oxides is observed only when either more reactive exogenous forms of iron oxides or organic carbon are added, revealing a potential thermodynamic restriction to microbial metabolism. Second, in order to assess the potential impacts of sea level rise on arsenic release to groundwater, we determined the changes in arsenic speciation and partitioning in sediment collected from an anthropogenically contaminated coastal riparian zone under controlled Eh regimes in both seawater and freshwater systems. Here we show greater arsenic release under anoxic/suboxic conditions in the freshwater system than in the seawater system, potentially due to high salinity induced microbial inhibition. Collectively, our work shows that shifting hydrologic conditions in deltaic wetlands and tidally influenced zones impacts the extent of arsenic release to groundwater. Land and water management decisions that increase the duration of wetland inundation may promote arsenic release to groundwater.

  13. Extreme pollution of soils by emissions of the copper-nickel industrial complex in the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Kashulina, G. M.

    2017-07-01

    The distribution of the total Ni, Cu, Co, Cd, Pb, and Zn contents was studied in the soil profiles of six catenas in the zone subjected to emissions of the copper-nickel industrial complex, which is the largest source of SO2 and heavy metals in northern Europe. The results show that, at present, the concentrations of Ni and Cu in the upper organic soil horizons in the impact zone reach extreme levels of 9000 and 6000 mg/kg, respectively. Under conditions of the long-term intense multi-element industrial emissions, the modern levels of the accumulation of polluting substances in soils greatly depend on the indirect factors, such as the degree of the technogenic degradation of soils with the loss of a significant part of soil organic matter, the reaching of threshold saturation of the topsoil with polluting metals, and competitive relationships between chemical elements. The state of the ecosystems in the impact zone varied greatly and did not always agree with the contents of the main metals-pollutants in the soils. The moisture conditions determined by the landscape position affected significantly the resistance of the ecosystems to emissions.

  14. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea

    USGS Publications Warehouse

    Wang, X.; Hutchinson, D.R.; Wu, S.; Yang, S.; Guo, Y.

    2011-01-01

    Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190-221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone. Copyright 2011 by the American Geophysical Union.

  15. Impact of sub-horizontal discontinuities and vertical heterogeneities on recharge processes in a weathered crystalline aquifer in southern India

    NASA Astrophysics Data System (ADS)

    Nicolas, Madeleine; Selles, Adrien; Bour, Olivier; Maréchal, Jean-Christophe; Crenner, Marion; Wajiduddin, Mohammed; Ahmed, Shakeel

    2017-04-01

    In the face of increasing demands for irrigated agriculture, many states in India are facing water scarcity issues, leading to severe groundwater depletion. Because perennial water resources in southern India consist mainly of crystalline aquifers, understanding how recharge takes place and the role of preferential flow zones in such heterogeneous media is of prime importance for successful and sustainable aquifer management. Here we investigate how vertical heterogeneities and highly transmissive sub-horizontal discontinuities may control groundwater flows and recharge dynamics. Recharge processes in the vadose zone were examined by analysing the propagation of an infiltration front and mass transfers resulting from the implementation of a managed aquifer recharge (MAR) structure. Said structure was set up in the Experimental Hydrogeological Park in Telangana (Southern India), a well-equipped and continuously monitored site, which is periodically supplied with surface water deviated from the nearby Musi river, downstream of Hyderabad. An initial volume balance equation was applied to quantify the overall inputs from the MAR structure into the groundwater system, which was confirmed using a chloride mass balance approach. To understand how this incoming mass is then distributed within the aquifer, we monitored the evolution of water volumes in the tank, and the resulting lateral propagation front observed in the surrounding borehole network. Borehole logs of temperature and conductivity were regularly performed to identify preferential flow paths. As a result we observed that mass transfers take place in the way of preferential lateral flow through the most transmissive zones of the profile. These include the interface between the lower portion of the upper weathered horizon (the saprolite) and the upper part of the underlying fissured granite, as well as the first flowing fractures. This leads to a rapid lateral transfer of recharge, which allows quick replenishment of aquifers but may have severe implications regarding groundwater quality, whether contaminants originate from diffuse sources (such as fertilizers), or a localized injection of polluted surface water. These findings confirm previous studies about the non-linear behaviour of hard rock aquifers (Guihéneuf et al., 2014) and recharge processes (Boisson et al., 2015; Alazard et al., 2015). Depending on water level conditions, the aquifer shifts from a regional flow system (when superficial more connected and weathered levels are saturated), to independent local flow systems (when only the lower lesser fractured portion is saturated). Thus recharge seems to be controlled by the existence of (i) vertical heterogeneities within the unsaturated zone and (ii) highly transmissive sub-horizontal discontinuities, both of which controlling groundwater flows and recharge dynamics.

  16. Comparison of different assimilation methodologies of groundwater levels to improve predictions of root zone soil moisture with an integrated terrestrial system model

    NASA Astrophysics Data System (ADS)

    Zhang, Hongjuan; Kurtz, Wolfgang; Kollet, Stefan; Vereecken, Harry; Franssen, Harrie-Jan Hendricks

    2018-01-01

    The linkage between root zone soil moisture and groundwater is either neglected or simplified in most land surface models. The fully-coupled subsurface-land surface model TerrSysMP including variably saturated groundwater dynamics is used in this work. We test and compare five data assimilation methodologies for assimilating groundwater level data via the ensemble Kalman filter (EnKF) to improve root zone soil moisture estimation with TerrSysMP. Groundwater level data are assimilated in the form of pressure head or soil moisture (set equal to porosity in the saturated zone) to update state vectors. In the five assimilation methodologies, the state vector contains either (i) pressure head, or (ii) log-transformed pressure head, or (iii) soil moisture, or (iv) pressure head for the saturated zone only, or (v) a combination of pressure head and soil moisture, pressure head for the saturated zone and soil moisture for the unsaturated zone. These methodologies are evaluated in synthetic experiments which are performed for different climate conditions, soil types and plant functional types to simulate various root zone soil moisture distributions and groundwater levels. The results demonstrate that EnKF cannot properly handle strongly skewed pressure distributions which are caused by extreme negative pressure heads in the unsaturated zone during dry periods. This problem can only be alleviated by methodology (iii), (iv) and (v). The last approach gives the best results and avoids unphysical updates related to strongly skewed pressure heads in the unsaturated zone. If groundwater level data are assimilated by methodology (iii), EnKF fails to update the state vector containing the soil moisture values if for (almost) all the realizations the observation does not bring significant new information. Synthetic experiments for the joint assimilation of groundwater levels and surface soil moisture support methodology (v) and show great potential for improving the representation of root zone soil moisture.

  17. THE VELOCITY OF DNAPL FINGERING IN WATER-SATURATED POROUS MEDIA LABORATORY EXPERIMENTS AND A MOBILE-IMMOBILE-ZONE MODEL. (R826157)

    EPA Science Inventory

    Dense nonaqueous phase liquids (DNAPLs) are immiscible with water and can give rise to highly fingered fluid distributions when infiltrating through water-saturated porous media. In this paper, a conceptual mobile¯immobile¯zone (MIZ) model is pr...

  18. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Kyeong; Kim, Heonki; Kwon, Hobin; Annable, Michael D.

    2018-03-01

    The effect of groundwater viscosity control on the performance of surfactant-enhanced air sparging (SEAS) was investigated using 1- and 2-dimensional (1-D and 2-D) bench-scale physical models. The viscosity of groundwater was controlled by a thickener, sodium carboxymethylcellulose (SCMC), while an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), was used to control the surface tension of groundwater. When resident DI water was displaced with a SCMC solution (500 mg/L), a SDBS solution (200 mg/L), and a solution with both SCMC (500 mg/L) and SDBS (200 mg/L), the air saturation for sand-packed columns achieved by air sparging increased by 9.5%, 128%, and 154%, respectively, (compared to that of the DI water-saturated column). When the resident water contained SCMC, the minimum air pressure necessary for air sparging processes increased, which is considered to be responsible for the increased air saturation. The extent of the sparging influence zone achieved during the air sparging process using the 2-D model was also affected by viscosity control. Larger sparging influence zones (de-saturated zone due to air injection) were observed for the air sparging processes using the 2-D model initially saturated with high-viscosity solutions, than those without a thickener in the aqueous solution. The enhanced air saturations using SCMC for the 1-D air sparging experiment improved the degradative performance of gaseous oxidation agent (ozone) during air sparging, as measured by the disappearance of fluorescence (fluorescein sodium salt). Based on the experimental evidence generated in this study, the addition of a thickener in the aqueous solution prior to air sparging increased the degree of air saturation and the sparging influence zone, and enhanced the remedial potential of SEAS for contaminated aquifers.

  19. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    PubMed

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are <2 x 10(-14), and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  20. Explosion Amplitude Reduction due to Fractures in Water-Saturated and Dry Granite

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2013-12-01

    Empirical observations made at the Semipalatinsk Test Site suggest that nuclear tests in the fracture zones left by previous explosions ('repeat shots') show reduced seismic amplitudes compared to the nuclear tests in virgin rocks. Likely mechanisms for the amplitude reduction in the repeat shots include increased porosity and reduced strength and elastic moduli, leading to pore closing and frictional sliding. Presence of pore water significantly decreases rock compressibility and strength, thus affecting seismic amplitudes. A series of explosion experiments were conducted in order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fracture zones of previously detonated explosions. Explosions in water-saturated granite were conducted in central New Hampshire in 2011 and 2012. Additional explosions in dry granite were detonated in Barre, VT in 2013. The amplitude reduction is different between dry and water-saturated crystalline rocks. Significant reduction in seismic amplitudes (by a factor of 2-3) in water-saturated rocks was achieved only when the repeat shot was detonated in the extensive damage zone created by a significantly larger (by a factor of 5) explosion. In case where the first and the second explosions were similar in yield, the amplitude reduction was relatively modest (5-20%). In dry rocks the amplitude reduction reached a factor of 2 even in less extensive damage zones. In addition there are differences in frequency dependence of the spectral amplitude ratios between explosions in dry and water-saturated rocks. Thus the amplitude reduction is sensitive to the extent of the damage zone as well as the pore water content.

  1. Fast ground-water mixing and basal recharge in an unconfined, alluvial aquifer, Konza LTER Site, Northeastern Kansas

    USGS Publications Warehouse

    Macpherson, G.L.; Sophocleous, M.

    2004-01-01

    Ground-water chemistry and water levels at three levels in a well nest were monitored biweekly for two and a half years in a shallow unconfined floodplain aquifer in order to study the dynamics of such shallow aquifers. The aquifer, in northeastern Kansas, consists of high porosity, low hydraulic conductivity fine-grained sediments dominated by silt and bounded by fractured limestone and shale bedrock. Results show that the aquifer underwent chemical stratification followed by homogenization three times during the study period. The length of time between maximum stratification and complete homogenization was 3-5 months. The chemical parameters most useful for demonstrating the mixing trends were dissolved nitrate and sulfate. Higher nitrate concentrations were typical of unsaturated zone water and were sourced from fertilizer applied to the cultivated fields on the floodplain. Variations in sulfate concentrations are attributed to dissolution of rare gypsum in limestone bedrock and variable evapoconcentration in the unsaturated zone. The mixing of three chemically different waters (entrained, unsaturated-zone water; water entering the base of the floodplain aquifer; and water in residence before each mixing event) was simulated. The resident water component for each mixing event was a fixed composition based on measured water chemistry in the intermediate part of the aquifer. The entrained water composition was calculated using a measured composition of the shallow part of the aquifer and measurements of soil-water content in the unsaturated zone. The incoming basal water composition and the fractions of each mixing component were fitted to match the measured chemistry at the three levels in the aquifer. A conceptual model for this site explains: (1) rapid water-level rises, (2) water-chemistry changes at all levels in the aquifer coincident with the water-level rises, (3) low measured hydraulic conductivity of the valley fill and apparent lack of preferential flow pathways, (4) minuscule amounts of unsaturated-zone recharge, and (5) dissolved oxygen peaks in the saturated zone lagging water-level peaks. We postulate that rainfall enters fractures in bedrock adjacent to the floodplain. This recharge water moves rapidly through the fractured bedrock into the base of the floodplain aquifer. The recharge event through the bedrock causes a rapid rise in water level in the floodplain aquifer, and the chemistry of the deepest water in the floodplain aquifer changes at that time. The rising water also entrains slow-moving, nitrate-rich, unsaturated-zone water, altering the chemistry of water in the shallow part of the aquifer. Vertical chemical stratification in the aquifer is thus created by the change in water chemistry in the upper and lower parts of the saturated zone. As the water level begins to decline, the aquifer undergoes mixing that eventually results in homogeneous water chemistry. The rise in water level from the recharge event also displaces gas from the unsaturated zone that is then replaced as the water level declines following the recharge event. This new, oxygen-rich vadose-zone air equilibrates rapidly with saturated-zone water, resulting in a dissolved oxygen pulse in the ground water that peaks one-half to 2 months after the water-level peak. This oxygen pulse subsequently declines over a period of 2-6 months. ?? 2003 Elsevier B.V. All rights reserved.

  2. Development of a large volume of eruptible mush in the upper Wooley Creek batholith, Klamath Mountains, California: evidence from bulk rock, mineral analyses and textural observations

    NASA Astrophysics Data System (ADS)

    Coint, N.; Barnes, C. G.; Barnes, M. A.; Yoshinobu, A. S.

    2012-12-01

    The modalities of development of large volumes of mush in the middle to upper crust capable of erupting have been debated over the past few years. The existence of crystal-rich ignimbrites in the volcanic record indicate that eruptive products do not necessarily correspond to evacuation of the residual magma but that the mush itself can be drained during eruptive events. In this study we present a plutonic example of a large magma batch that evolved by fractional crystallization at a hundred km3 scale: the upper zone of the Wooley Creek batholith (WCb). The WCb is an intrusive complex emplaced over less than 3 m.y. (Kevin Chamberlain, personal communication). The upper zone grades upward from quartz diorite (53 wt% SiO2) to granite (70 wt% SiO2). Hornblende from the central and upper zone have rare earth element patterns that are parallel to one another and with REE concentrations and negative Eu anomalies that decrease from core to rim. The similarities of hornblende REE patterns throughout both the central and upper zones of the system (160 km2 of exposed area) suggest that hornblende crystallized from a magma batch of fairly homogeneous composition. Thus, upward changes in bulk composition between rocks at the bottom and the top of this unit result from varying mineral proportions, with more subhedral plagioclase and hornblende at the bottom and more anhedral to euhedral quartz and interstitial to poikilitic K-feldspar at the top. Two possible explanations are considered: 1) more felsic batches of magma were emplaced at the top of the system and more mafic ones were restricted to the bottom, 2) the upper zone acquired its upward compositional zoning through melt percolation, with the less dense felsic melt ponding at the roof of the system. In the first case, the similarity of hornblende REE patterns throughout the upper zone cannot be explained. Therefore, we favor the second explanation, which is also supported by the lack of sharp contacts in the upper zone. Individual magma batches in the central zone contain hornblende of similar composition as in the upper zone and are interpreted as a preserved part of the feeder system of the latter. Therefore the magma in both the central and upper WCb was already fairly homogeneous when it arrived at the level of emplacement. Dacitic to rhyodacitic roof dikes with30-40% phenocrysts of hornblende and plagioclase with compositions similar to those found in the central and upper zones indicate that the mush was once eruptible. The presence of quartz phenocrysts, which are only found in the uppermost portion of the upper zone, show that 'eruption' occurred after the development of the broad zoning of the upper zone and after more evolved melt had collected at the top of an underlying mush. This study introduces new tools to study magmatic reservoir evolution. The combination of bulk rock and mineral data allows assessment of the extent of mineral-melt separation and identification of the composition of a potential parental magma(s). These data can ideally be used to delimit the size of magma batches and constrain the scale of their chemical/physical connectivity.

  3. High rates of organic carbon processing in the hyporheic zone of intermittent streams.

    PubMed

    Burrows, Ryan M; Rutlidge, Helen; Bond, Nick R; Eberhard, Stefan M; Auhl, Alexandra; Andersen, Martin S; Valdez, Dominic G; Kennard, Mark J

    2017-10-16

    Organic carbon cycling is a fundamental process that underpins energy transfer through the biosphere. However, little is known about the rates of particulate organic carbon processing in the hyporheic zone of intermittent streams, which is often the only wetted environment remaining when surface flows cease. We used leaf litter and cotton decomposition assays, as well as rates of microbial respiration, to quantify rates of organic carbon processing in surface and hyporheic environments of intermittent and perennial streams under a range of substrate saturation conditions. Leaf litter processing was 48% greater, and cotton processing 124% greater, in the hyporheic zone compared to surface environments when calculated over multiple substrate saturation conditions. Processing was also greater in more saturated surface environments (i.e. pools). Further, rates of microbial respiration on incubated substrates in the hyporheic zone were similar to, or greater than, rates in surface environments. Our results highlight that intermittent streams are important locations for particulate organic carbon processing and that the hyporheic zone sustains this fundamental process even without surface flow. Not accounting for carbon processing in the hyporheic zone of intermittent streams may lead to an underestimation of its local ecological significance and collective contribution to landscape carbon processes.

  4. Redox-influenced seismic properties of upper-mantle olivine

    NASA Astrophysics Data System (ADS)

    Cline, C. J., II; Faul, U. H.; David, E. C.; Berry, A. J.; Jackson, I.

    2018-03-01

    Lateral variations of seismic wave speeds and attenuation (dissipation of strain energy) in the Earth’s upper mantle have the potential to map key characteristics such as temperature, major-element composition, melt fraction and water content. The inversion of these data into meaningful representations of physical properties requires a robust understanding of the micromechanical processes that affect the propagation of seismic waves. Structurally bound water (hydroxyl) is believed to affect seismic properties but this has yet to be experimentally quantified. Here we present a comprehensive low-frequency forced-oscillation assessment of the seismic properties of olivine as a function of water content within the under-saturated regime that is relevant to the Earth’s interior. Our results demonstrate that wave speeds and attenuation are in fact strikingly insensitive to water content. Rather, the redox conditions imposed by the choice of metal sleeving, and the associated defect chemistry, appear to have a substantial influence on the seismic properties. These findings suggest that elevated water contents are not responsible for low-velocity or high-attenuation structures in the upper mantle. Instead, the high attenuation observed in hydrous and oxidized regions of the upper mantle (such as above subduction zones) may reflect the prevailing oxygen fugacity. In addition, these data provide no support for the hypothesis whereby a sharp lithosphere–asthenosphere boundary is explained by enhanced grain boundary sliding in the presence of water.

  5. Carbon dioxide concentration in caves and soils in an alpine setting: implications for speleothem fabrics and their palaeoclimate significance

    NASA Astrophysics Data System (ADS)

    Borsato, Andrea; Frisia, Silvia; Miorandi, Renza

    2015-04-01

    Carbon dioxide concentration in soils controls carbonate dissolution, soil CO2 efflux to the atmosphere, and CO2 transfer to the subsurface that lead, ultimately, to speleothem precipitation. Systematic studies on CO2 concentration variability in soil and caves at regional scale are, however, few. Here, the systematic investigation of CO2 concentration in caves and soils in a temperate, Alpine region along a 2,100 m altitudinal range transect, which corresponds to a mean annual temperature (MAT) range of 12°C is presented. Soil pCO2 is controlled by the elevation and MAT and exhibits strong seasonality, which follows surface air temperature with a delay of about a month. The aquifer pCO2, by contrast, is fairly constant throughout the year, and it is primarily influenced by summer soil pCO2. Cave CO2 concentration is a balance between the CO2 influx and CO2 efflux, where the efflux is controlled by the cave ventilation, which is responsible for low pCO2 values recorded in most of the caves with respect to soil levels. Carbon dioxide in the innermost part of the studied caves exhibits a clear seasonal pattern. Thermal convection is the most common mechanism causing higher ventilation and low cave air pCO2 levels during the winter season: this promotes CO2 degassing and higher supersaturation in the drip water and, eventually, higher speleothem growth rates during winter. The combined influence of three parameters - dripwater pCO2, dripwater Ca content, and cave air pCO2 - all related to the infiltration elevation and MAT directly controls calcite supersaturation in dripwater. Four different altitudinal belts are then defined, which reflect temperature-dependent saturation state of dripwaters. These belts broadly correspond to vegetation zones: the lower montane (100 to 800 m asl), the upper montane (800 to 1600 m asl), the subalpine (1600 to 2200 m asl) and the Alpine (above 2200 m asl). Each altitudinal belt is characterised by different calcite fabrics, which can shift upward/downward in elevation as a response to temperature increase/decrease through time. In the lower and upper montane zones the columnar types (compact, open, fascicular optic) are the most common fabrics, with the microcrystalline type most typical of the upper montane zone. The dendritic fabric becomes predominant in the higher upper montane and lower subalpine zones. The higher subalpine to lower alpine zones the only speleothem actually forming is moonmilk. Eventually, the occurrence of "altitudinal" fabrics within the vertical growth axis of a stalagmite is indicative of changes in the MAT through time Therefore, fabric changes in fossil speleothems in temperate climate settings can be potentially used to reconstruct regional MAT changes in the past.

  6. Linking pore-scale and basin-scale effects on diffusive methane transport in hydrate bearing environments through multi-scale reservoir simulations

    NASA Astrophysics Data System (ADS)

    Nole, M.; Daigle, H.; Cook, A.; Malinverno, A.; Hillman, J. I. T.

    2016-12-01

    We explore the gas hydrate-generating capacity of diffusive methane transport induced by solubility gradients due to pore size contrasts in lithologically heterogeneous marine sediments. Through the use of 1D, 2D, and 3D reactive transport simulations, we investigate scale-dependent processes in diffusion-dominated gas hydrate systems. These simulations all track a sand body, or series of sands, surrounded by clays as they are buried through the gas hydrate stability zone. Methane is sourced by microbial methanogenesis in the clays surrounding the sand layers. In 1D, simulations performed in a Lagrangian reference frame demonstrate that gas hydrate in thin sands (3.6 m thick) can occur in high saturations (upward of 70%) at the edges of sand bodies within the upper 400 meters below the seafloor. Diffusion of methane toward the center of the sand layer depends on the concentration gradient within the sand: broader sand pore size distributions with smaller median pore sizes enhance diffusive action toward the sand's center. Incorporating downhole log- and laboratory-derived sand pore size distributions, gas hydrate saturations in the center of the sand can reach 20% of the hydrate saturations at the sand's edges. Furthermore, we show that hydrate-free zones exist immediately above and below the sand and are approximately 5 m thick, depending on the sand-clay solubility contrast. A moving reference frame is also adopted in 2D, and the angle of gravity is rotated relative to the grid system to simulate a dipping sand layer. This is important to minimize diffusive edge effects or numerical diffusion that might be associated with a dipping sand in an Eulerian grid system oriented orthogonal to gravity. Two-dimensional simulations demonstrate the tendency for gas hydrate to accumulate downdip in a sand body because of greater methane transport at depth due to larger sand-clay solubility contrasts. In 3D, basin-scale simulations illuminate how convergent sand layers in a multilayered system can compete for diffusion from clays between them, resulting in relatively low hydrate saturations. All simulations suggest that when hydrate present in clays dissociates with burial, the additional dissolved methane is soaked up by nearby sands preserving high hydrate saturations.

  7. Linking pore-scale and basin-scale effects on diffusive methane transport in hydrate bearing environments through multi-scale reservoir simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nole, Michael; Daigle, Hugh; Cook, Ann

    We explore the gas hydrate-generating capacity of diffusive methane transport induced by solubility gradients due to pore size contrasts in lithologically heterogeneous marine sediments. Through the use of 1D, 2D, and 3D reactive transport simulations, we investigate scale-dependent processes in diffusion-dominated gas hydrate systems. These simulations all track a sand body, or series of sands, surrounded by clays as they are buried through the gas hydrate stability zone. Methane is sourced by microbial methanogenesis in the clays surrounding the sand layers. In 1D, simulations performed in a Lagrangian reference frame demonstrate that gas hydrate in thin sands (3.6 m thick)more » can occur in high saturations (upward of 70%) at the edges of sand bodies within the upper 400 meters below the seafloor. Diffusion of methane toward the center of the sand layer depends on the concentration gradient within the sand: broader sand pore size distributions with smaller median pore sizes enhance diffusive action toward the sand’s center. Incorporating downhole log- and laboratory-derived sand pore size distributions, gas hydrate saturations in the center of the sand can reach 20% of the hydrate saturations at the sand’s edges. Furthermore, we show that hydrate-free zones exist immediately above and below the sand and are approximately 5 m thick, depending on the sand-clay solubility contrast. A moving reference frame is also adopted in 2D, and the angle of gravity is rotated relative to the grid system to simulate a dipping sand layer. This is important to minimize diffusive edge effects or numerical diffusion that might be associated with a dipping sand in an Eulerian grid system oriented orthogonal to gravity. Two-dimensional simulations demonstrate the tendency for gas hydrate to accumulate downdip in a sand body because of greater methane transport at depth due to larger sand-clay solubility contrasts. In 3D, basin-scale simulations illuminate how convergent sand layers in a multilayered system can compete for diffusion from clays between them, resulting in relatively low hydrate saturations. All simulations suggest that when hydrate present in clays dissociates with burial, the additional dissolved methane is soaked up by nearby sands preserving high hydrate saturations.« less

  8. Iron Isotope Fractionation in the Bushveld Igneous Complex Provide Insight into Fractional Crystallization

    NASA Astrophysics Data System (ADS)

    Rios, K. L.; Feineman, M. D.; Bybee, G. M.

    2016-12-01

    Dated at 2.056 Ga and encompassing an estimated 65,000 km2 in surface area and 650,000 km3 in volume the Bushveld Igneous Complex in South Africa contains the largest and most unique layered mafic intrusion in the world. It contains 80-90% of the world's minable platinum group elements. Scientists are interested in understanding the origin of this intrusion due to its massive size, unique assemblage of minerals, and strongly zoned stratigraphy. Iron isotopes may help us to understand the roles of partial mantle melting and fractional crystallization in magma genesis and differentiation. For example, it may be possible to determine what role fractional crystallization of oxides and sulfides played in the formation of the Rustenburg Layered Suite (RLS) by comparing δ56Fe in samples from the Lower, Critical, Main and Upper Zones. The use of MC-ICPMS has made it more routine to study the fractionation of stable iron isotopes in natural systems; however, this technique has only been applied in a few studies of the RLS, mostly restricted to the Upper Main and Upper Zones. In this study δ56Fe was determined in Upper Zone magnetite, Critical Zone chromitite and Critical Zone sulfides using MC-ICP-MS. Previous research has shown that early crystallizing mafic phases incorporate the lighter 54Fe isotope leaving a residual magma with a higher δ56Fe value. Therefore, if the Upper Zone magma represents a high-degree differentiate of the parental Bushveld magma, then magmas from the Upper Zone would be expected to have a higher δ56Fe than magmas contributing to the Lower, Critical and Main Zones. The results of this experiment were indeed consistent with this hypothesis. The δ56Fe values recorded for the three sample types were: magnetite 0.19 ±0.03‰; sulfides -0.45 ±0.03‰ to -0.81 ±0.03‰; and chromitite 0.03 ±0.05‰. The sulfides of the Critical Zone are isotopically lighter than would be predicted based on equilibrium sulfide-melt fractionation, if the parental melt of the Critical Zone were in equilibrium with previously published whole rock data for Upper Zone. This is consistent with interpretations of the Upper Zone as a high degree differentiate of the Bushveld Parental Magma.

  9. TDEM survey in an area of seismicity induced by water wells in Paraná sedimentary basin, Northern São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Porsani, Jorge Luís; Almeida, Emerson Rodrigo; Bortolozo, Cassiano Antonio; Santos, Fernando Acácio Monteiro dos

    2012-07-01

    This article presents TDEM results from an area with recent induced shallow seismicity. The purpose was to do a geoelectrical mapping of sedimentary and fractured basaltic aquifers for better understanding of the hydrogeologic setting. The study area is in the Paraná basin where flood basalts are overlain by sedimentary units near the city of Bebedouro, northern São Paulo State, Brazil. 86 TDEM soundings were acquired in an area of 90 km2 in the Andes and Botafogo study areas. The soundings were chosen next to wells for calibration, and also along profiles crossing the seismically active areas. 1-D interpretation results showed the general geoelectrical stratigraphy of this part of the Paraná basin. The upper geoelectrical layer is the shallow sedimentary aquifer (Adamantina formation) with less than 80 m thickness. The second geoelectrical layer contains the upper basalts of the Serra Geral formation at about 60-80 m depths. A saturated fractured basalt zone between 100 and 300 m depths was identifiable on various TDEM soundings. This depth range corresponds to the range of hypocentral depths for more than 3000 micro-earthquakes in this area. The lower basalt layer was estimated to lie between 400 and 650 m depth. The deepest geoelectrical layer detected by various TDEM soundings corresponds to the Botucatu sandstone (Guarani aquifer). Results suggest that the high-discharge wells are located in the fractured zone in the middle basalt of the Serra Geral formation. There is a good correlation between seismically active areas, high discharge wells (> 190 m3/h), and fracture zones in the middle basalt. The results reinforce the hypothesis that the shallow seismic activity in the Bebedouro region is being triggered by high rates of groundwater withdrawal.

  10. Geologic setting, sedimentary architecture, and paragenesis of the Mesoproterozoic sediment-hosted Sheep Creek Cu-Co-Ag deposit, Helena embayment, Montana

    USGS Publications Warehouse

    Graham, Garth; Hitzman, Murray W.; Zieg, Jerry

    2012-01-01

    The northern margin of the Helena Embayment contains extensive syngenetic to diagenetic massive pyrite horizons that extend over 25 km along the Volcano Valley-Buttress fault zone and extend up to 8 km basinward (south) within the Mesoproterozoic Newland Formation. The Sheep Creek Cu-Co deposit occurs within a structural block along a bend in the fault system, where replacement-style chalcopyrite mineralization is spatially associated mostly with the two stratigraphically lowest massive pyrite zones. These mineralized pyritic horizons are intercalated with debris flows derived from synsedimentary movement along the Volcano Valley-Buttress fault zone. Cominco American Inc. delineated a geologic resource of 4.5 Mt at 2.5% Cu and 0.1% Co in the upper sulfide zone and 4 Mt at 4% Cu within the lower sulfide zone. More recently, Tintina Resources Inc. has delineated an inferred resource of 8.48 Mt at 2.96% Cu, 0.12% Co, and 16.4 g/t Ag in the upper sulfide zone. The more intact upper sulfide zone displays significant thickness variations along strike thought to represent formation in at least three separate subbasins. The largest accumulation of mineralized sulfide in the upper zone occurs as an N-S–trending body that thickens southward from the generally E trending Volcano Valley Fault and probably occupies a paleograben controlled by normal faults in the hanging wall of the Volcano Valley Fault. Early microcrystalline to framboidal pyrite was accompanied by abundant and local barite deposition in the upper and lower sulfide zones, respectively. The sulfide bodies underwent intense (lower sulfide zone) to localized (upper sulfide zone) recrystallization and overprinting by coarser-grained pyrite and minor marcasite that is intergrown with and replaces dolomite. Silicification and paragenetically late chalcopyrite, along with minor tennantite in the upper sulfide zone, replaces fine-grained pyrite, barite, and carbonate. The restriction of chalcopyrite to inferred synsedimentary E- and northerly trending faults and absence of definitive zonation with respect to the Laramide Volcano Valley Fault in the lower sulfide zone suggest a diagenetic age related to basin development for the Sheep Creek Cu-Co-Ag deposit.

  11. Thermohydrologic modeling of the large-block test in partially saturated fractured tuff at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Lee, K.; Buscheck, T. A.; Glascoe, L. G.; Gansemer, J.; Sun, Y.

    2002-12-01

    In support of the characterization of Yucca Mountain as a potential site for as a geologic repository for high-level nuclear waste, the US Department of Energy conducted the Large Block Test (LBT) at nearby Fran Ridge. The LBT was conducted in an excavated 3x 3x 4.5m block of partially saturated, fractured nonlithophysal Topopah Spring tuff, which is one of the host-rock units for the potential repository at Yucca Mountain. The LBT was one of a series of field-scale thermohydrologic tests conducted in the repository host-rock units. The LBT was heated by line heaters installed in five boreholes lying in a horizontal plane 2.75 m below the upper surface of the block. The field-scale thermal tests were designed to help investigators better understand the coupled thermohydrologic-mechanical-chemical processes that would occur in the host rock in response to the radioactive heat of decay from emplaced waste packages. The tests also provide data for the calibration and validation of numerical models used to analyze the thermohydrologic response of the near-field host rock and Engineered Barrier System (EBS). Using the NUFT code and the dual-permeability approach to representing fracture-matrix interaction, we simulated the thermohydrologic response of the block to a heating and cooling cycle. The primary goals of the analysis were to study the heat-flow mechanisms and water redistribution patterns in the boiling and sub-boiling zones, and to compare model results with measured temperature and liquid saturation data, and thereby evaluate two rock property data sets available for modeling thermohydrologic behavior in the rock. Model results were also used for model calibration and validation. We obtained a good to excellent match between model and observed temperatures, and found that the distinct dryout and condensation zones modeled above and below the heater level agreed fairly well with the liquid-saturation measurements. We identified the best-fit data set by using a statistical analysis to compare model and field temperatures, and found that heat flow in the block was dominated by conduction.

  12. Limited denitrification in glacial deposit aquifers having thick unsaturated zones (Long Island, USA)

    USGS Publications Warehouse

    Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert

    2013-01-01

    The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3–41.1 μmol L−1) and high dissolved oxygen concentrations (58–100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.

  13. Validating modelled variable surface saturation in the riparian zone with thermal infrared images

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa

    2015-04-01

    Variable contributing areas and hydrological connectivity have become prominent new concepts for hydrologic process understanding in recent years. The dynamic connectivity within the hillslope-riparian-stream (HRS) system is known to have a first order control on discharge generation and especially the riparian zone functions as runoff buffering or producing zone. However, despite their importance, the highly dynamic processes of contraction and extension of saturation within the riparian zone and its impact on runoff generation still remain not fully understood. In this study, we analysed the potential of a distributed, fully coupled and physically based model (HydroGeoSphere) to represent the spatial and temporal water flux dynamics of a forested headwater HRS system (6 ha) in western Luxembourg. The model was set up and parameterised under consideration of experimentally-derived knowledge of catchment structure and was run for a period of four years (October 2010 to August 2014). For model evaluation, we especially focused on the temporally varying spatial patterns of surface saturation. We used ground-based thermal infrared (TIR) imagery to map surface saturation with a high spatial and temporal resolution and collected 20 panoramic snapshots of the riparian zone (ca. 10 by 20 m) under different hydrologic conditions. These TIR panoramas were used in addition to several classical discharge and soil moisture time series for a spatially-distributed model validation. In a manual calibration process we optimised model parameters (e.g. porosity, saturated hydraulic conductivity, evaporation depth) to achieve a better agreement between observed and modelled discharges and soil moistures. The subsequent validation of surface saturation patterns by a visual comparison of processed TIR panoramas and corresponding model output panoramas revealed an overall good accordance for all but one region that was always too dry in the model. However, quantitative comparisons of modelled and observed saturated pixel percentages and of their modelled and measured relationships to concurrent discharges revealed remarkable similarities. During the calibration process we observed that surface saturation patterns were mostly affected by changing the soil properties of the topsoil in the riparian zone, but that the discharge behaviour did not change substantially at the same time. This effect of various spatial patterns occurring concomitant to a nearly unchanged integrated response demonstrates the importance of spatially distributed validation data. Our study clearly benefited from using different kinds of data - spatially integrated and distributed, temporally continuous and discrete - for the model evaluation procedure.

  14. Seismicity, faulting, and structure of the Koyna-Warna seismic region, Western India from local earthquake tomography and hypocenter locations

    NASA Astrophysics Data System (ADS)

    Dixit, Madan M.; Kumar, Sanjay; Catchings, R. D.; Suman, K.; Sarkar, Dipankar; Sen, M. K.

    2014-08-01

    Although seismicity near Koyna Reservoir (India) has persisted for ~50 years and includes the largest induced earthquake (M 6.3) reported worldwide, the seismotectonic framework of the area is not well understood. We recorded ~1800 earthquakes from 6 January 2010 to 28 May 2010 and located a subset of 343 of the highest-quality earthquakes using the tomoDD code of Zhang and Thurber (2003) to better understand the framework. We also inverted first arrivals for 3-D Vp, Vs, and Vp/Vs and Poisson's ratio tomography models of the upper 12 km of the crust. Epicenters for the recorded earthquakes are located south of the Koyna River, including a high-density cluster that coincides with a shallow depth (<1.5 km) zone of relatively high Vp and low Vs (also high Vp/Vs and Poisson's ratios) near Warna Reservoir. This anomalous zone, which extends near vertically to at least 8 km depth and laterally northward at least 15 km, is likely a water-saturated zone of faults under high pore pressures. Because many of the earthquakes occur on the periphery of the fault zone, rather than near its center, the observed seismicity-velocity correlations are consistent with the concept that many of the earthquakes nucleate in fractures adjacent to the main fault zone due to high pore pressure. We interpret our velocity images as showing a series of northwest trending faults locally near the central part of Warna Reservoir and a major northward trending fault zone north of Warna Reservoir.

  15. Biodegradation of subsurface oil in a tidally influenced sand beach: Impact of hydraulics and interaction with pore water chemistry

    NASA Astrophysics Data System (ADS)

    Geng, Xiaolong; Boufadel, Michel C.; Lee, Kenneth; Abrams, Stewart; Suidan, Makram

    2015-05-01

    The aerobic biodegradation of oil in tidally influenced beaches was investigated numerically in this work using realistic beach and tide conditions. A numerical model BIOMARUN, coupling a multiple-Monod kinetic model BIOB to a density-dependent variably saturated groundwater flow model 2-D MARUN, was used to simulate the biodegradation of low-solubility hydrocarbon and transport processes of associated solute species (i.e., oxygen and nitrogen) in a tidally influenced beach environment. It was found that different limiting factors affect different portions of the beach. In the upper intertidal zone, where the inland incoming nutrient concentration was large (1.2 mg N/L), oil biodegradation occurred deeper in the beach (i.e., 0.3 m below the surface). In the midintertidal zone, a reversal was noted where the biodegradation was fast at shallow locations (i.e., 0.1 m below the surface), and it was due to the decrease of oxygen with depth due to consumption, which made oxygen the limiting factor for biodegradation. Oxygen concentration in the midintertidal zone exhibited two peaks as a function of time. One peak was associated with the high tide, when dissolved oxygen laden seawater filled the beach and a second oxygen peak was observed during low tides, and it was due to pore oxygen replenishment from the atmosphere. The effect of the capillary fringe (CF) height was investigated, and it was found that there is an optimal CF for the maximum biodegradation of oil in the beach. Too large a CF (i.e., very fine material) would attenuate oxygen replenishment (either from seawater or the atmosphere), while too small a CF (i.e., very coarse material) would reduce the interaction between microorganisms and oil in the upper intertidal zone due to rapid reduction in the soil moisture at low tide. This article was corrected on 22 JUN 2015. See the end of the full text for details.

  16. On the value of surface saturated area dynamics mapped with thermal infrared imagery for modeling the hillslope-riparian-stream continuum

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa

    2016-10-01

    The highly dynamic processes within a hillslope-riparian-stream (HRS) continuum are known to affect streamflow generation, but are yet not fully understood. Within this study, we simulated a headwater HRS continuum in western Luxembourg with an integrated hydrologic surface subsurface model (HydroGeoSphere). The model was setup with thorough consideration of catchment-specific attributes and we performed a multicriteria model evaluation (4 years) with special focus on the temporally varying spatial patterns of surface saturation. We used a portable thermal infrared (TIR) camera to map surface saturation with a high spatial resolution and collected 20 panoramic snapshots of the riparian zone (approx. 10 m × 20 m) under different hydrologic conditions. Qualitative and quantitative comparison of the processed TIR panoramas and the corresponding model output panoramas revealed a good agreement between spatiotemporal dynamic model and field surface saturation patterns. A double logarithmic linear relationship between surface saturation extent and discharge was similar for modeled and observed data. This provided confidence in the capability of an integrated hydrologic surface subsurface model to represent temporal and spatial water flux dynamics at small (HRS continuum) scales. However, model scenarios with different parameterizations of the riparian zone showed that discharge and surface saturation were controlled by different parameters and hardly influenced each other. Surface saturation only affected very fast runoff responses with a small volumetric contribution to stream discharge, indicating that the dynamic surface saturation in the riparian zone does not necessarily imply a major control on runoff generation.

  17. Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June

    2001-06-01

    Yucca Mountain is an arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500-1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5-4.5 mm/yr, or 2-3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data, particularly fracture flow deep in the unsaturated zone. This paper presents the history of the evolution of conceptual models of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada ( Flint, A.L., Flint, L.E., Kwicklis, E.M., Bodvarsson, G.S., Fabryka-Martin, J.M., 2001. Hydrology of Yucca Mountain. Reviews of Geophysics in press). This retrospective is the basis for recommendations for optimizing the efficiency with which a viable and robust conceptual model can be developed for a complex site.

  18. Hydrogeology of the surficial aquifer in the vicinity of a former landfill, Naval Submarine Base Kings Bay, Camden County, Georgia

    USGS Publications Warehouse

    Leeth, David C.

    1999-01-01

    Neogene and Quaternary sediments constitute the surficial aquifer beneath the study area; in descending order from youngest to oldest these include-the Quaternary undifferentiated surficial sand and Satilla Formation; the Pliocene(?) Cypresshead Formation; and the middle Miocene Coosawhatchie Formation. Beneath the surficial aquifer, the upper Brunswick aquifer consists of part of the lower Miocene Marks Head Formation. The surficial aquifer is divided into three water-bearing zones on the basis of lithologic and geophysical properties of sediments, hydraulic-head differences between zones, and differences in ground-water chemistry. The shallowest zone-the water-table zone-consists of medium to fine sand and clayey sand and is present from land surface to a depth of about 77 feet. Below the water-table zone, the confined upper water-bearing zone consists of medium to very coarse sand and is present from a depth of about 110 to 132 feet. Beneath the upper water-bearing zone, the confined lower water-bearing zone consists of coarse sand and very fine gravel and is present from a depth of about 195 to 237 feet. Hydraulic separation is suggested by differences in water chemistry between the water-table zone and upper water-bearing zone. The sodium chloride type water in the water-table zone differs from the calcium bicarbonate type water in the upper water-bearing zone. Hydraulic separation also is indicated by hydraulic head differences of more than 6.5 feet between the water-table zone and the upper water-bearing zone. Continuous and synoptic water-level measurements in the water-table zone, from October 1995 to April 1997, indicate the presence of a water-table high beneath and adjacent to the former landfill-the surface of which varies about 5 feet with time because of recharge and discharge. Water-level data from clustered wells also suggest that restriction of vertical ground-water flow begins to occur at an altitude of about 5 to 10 feet below sea level (35 to 40 feet below land surface) in the water-table zone because of the increasing clay content of the Cypresshead Formation.

  19. A practical tool for estimating subsurface LNAPL distributions and transmissivity using current and historical fluid levels in groundwater wells: Effects of entrapped and residual LNAPL.

    PubMed

    Lenhard, R J; Rayner, J L; Davis, G B

    2017-10-01

    A model is presented to account for elevation-dependent residual and entrapped LNAPL above and below, respectively, the water-saturated zone when predicting subsurface LNAPL specific volume (fluid volume per unit area) and transmissivity from current and historic fluid levels in wells. Physically-based free, residual, and entrapped LNAPL saturation distributions and LNAPL relative permeabilities are integrated over a vertical slice of the subsurface to yield the LNAPL specific volumes and transmissivity. The model accounts for effects of fluctuating water tables. Hypothetical predictions are given for different porous media (loamy sand and clay loam), fluid levels in wells, and historic water-table fluctuations. It is shown the elevation range from the LNAPL-water interface in a well to the upper elevation where the free LNAPL saturation approaches zero is the same for a given LNAPL thickness in a well regardless of porous media type. Further, the LNAPL transmissivity is largely dependent on current fluid levels in wells and not historic levels. Results from the model can aid developing successful LNAPL remediation strategies and improving the design and operation of remedial activities. Results of the model also can aid in accessing the LNAPL recovery technology endpoint, based on the predicted transmissivity. Copyright © 2017 Commonwealth Scientific and Industrial Research Organisation - Copyright 2017. Published by Elsevier B.V. All rights reserved.

  20. Linking carbon and hydrologic fluxes in the critical zone: Observations from high-frequency monitoring of a weathered bedrock vadose zone

    NASA Astrophysics Data System (ADS)

    Tune, A. K.; Druhan, J. L.; Wang, J.; Cargill, S.; Murphy, C.; Rempe, D. M.

    2017-12-01

    A principle challenge in quantifying feedbacks between continental weathering and atmospheric CO2 is to improve understanding of how biogeochemical processes in the critical zone influence the distribution and mobility of organic and inorganic carbon. In particular, in landscapes characterized by thin soils and heterogeneous weathered and fractured bedrock, little data exist to inform and constrain predictive models for carbon dynamics. Here, we present the results of an intensive water and gas sampling campaign across an 18 m thick, variably saturated argillite weathering profile in the Eel River CZO. We monitor water content in situ and regularly collect samples of freely-draining water, tightly-held water, and gas through wet and dry seasons using a novel Vadose-zone Monitoring System (VMS) consisting of sensors and samplers distributed across a 20 m long inclined borehole. This novel approach facilitates the interception of gas and water during transport across the entire variably saturated weathering profile. The data demonstrate that seasonal changes in saturation control the vertical distribution and mobility of carbon in the fractured critical zone. Concentrations of gaseous CO2, O2, and dissolved organic and inorganic carbon fluctuate significantly and repeatably with seasonal additions of water infiltrating the weathered bedrock. A persistent vertical structure in the concentrations of dissolved phases and gas concentrations broadly corresponds to depths associated with unsaturated, seasonally saturated, and chronically saturated zones. Associated variations in the vertical structure of mineralogy and elemental composition, including solid phase organic carbon content, are observed in core obtained during drilling. Together, our observations indicate significant respiration of organic carbon at depths greater than the base of the soil, and thus motivate further investigation of the role of heterogeneous weathered, bedrock environments, which are needed to improve quantitative models for feedbacks between terrestrial and atmospheric CO2.

  1. Convectively driven PCR thermal-cycling

    DOEpatents

    Benett, William J.; Richards, James B.; Milanovich, Fred P.

    2003-07-01

    A polymerase chain reaction system provides an upper temperature zone and a lower temperature zone in a fluid sample. Channels set up convection cells in the fluid sample and move the fluid sample repeatedly through the upper and lower temperature zone creating thermal cycling.

  2. 33 CFR 165.T08-0315 - Safety Zone; Upper Mississippi River, Mile 183.0 to 183.5.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... River, Mile 183.0 to 183.5. 165.T08-0315 Section 165.T08-0315 Navigation and Navigable Waters COAST... Guard District § 165.T08-0315 Safety Zone; Upper Mississippi River, Mile 183.0 to 183.5. (a) Location. The following area is a safety zone: All waters of the Upper Mississippi River, mile 183.0 to 183.5...

  3. Evaluation of Nitrate Fluxes to Groundwater under Agriculture Land Uses across the Loess Plateau - A Catchment Scale Investigation

    NASA Astrophysics Data System (ADS)

    Turkeltaub, T.; Jia, X.; Binley, A. M.

    2016-12-01

    Nitrate management is required for fulfilling the objective of high agriculture productivity and concurrently reduced groundwater contamination to minimum. Yet, nitrate is considered as a non-point contaminant. Therefore, understanding the temporal and spatial processes controls of nitrate transport in the vadose zone are imperative for protection of groundwater. This study is conducted in the Loess Plateau which located in the north-central of mainland China and characterized with a semi-arid climate. Moreover, it accounts for about 6.6% of the Chinese territory and supports over 8.5% of the Chinese population. This area undergoes high pressure from human activities and requiring optimal management interventions. Integrated modelling frameworks, which include unsaturated and saturated processes, are able to simulate nitrate transport under various scenarios, and provide reasonable prediction for the decision-makers. We used data obtained from soil samples collected across a region of 41 × 104 km2 (243 samples, to 5 m depth) to derive unsaturated flow and transport properties. Particle size distributions, saturated hydraulic conductivity, water content at field capacity (0.33 atm) and saturated water content were also obtained for the shallower layers (0-40 cm). The van Genuchten - Mualem soil parameters describing the retention and the unsaturated hydraulic conductivity curves were estimated with the Rosetta code. The analysis of the soil samples indicated that the silt loam soil type is dominant. Hence, a scaling approach was chosen as an adequate method for estimation of representative retention and hydraulic conductivity curves. Water flow and nitrate leaching were simulated with mechanistic based 1-D model for each agriculture land use within the area. The simulated nitrate losses were compared with results of root zone model simulations. Subsequently, the calculated fluxes were input as upper boundary conditions in the Modflow model to examine the regional groundwater nitrate concentration levels. Ultimately, this integrated model framework is flexible and therefore allows testing various land-use scenarios.

  4. Geohydrology of the central Mesilla Valley, Dona Ana County, New Mexico

    USGS Publications Warehouse

    Wilson, Clyde A.; White, Robert R.

    1984-01-01

    Five large-capacity irrigation wells, with depths ranging from 370 to 686 feet, were drilled by the Elephant Butte Irrigation District between 1973 and 1975, in the Mesilla Valley about 7 miles south of Las Cruces, New Mexico. These were the first deep wells in the area, and their installation provided an opportunity to conduct extensive aquifer tests under relatively undisturbed conditions. The deep irrigation wells are perforated in the Santa Fe Group of Miocene to Pleistocene Age. The Santa Fe Group is composed of interfingering and alternating beds of clay, silt, sand, and small gravel. In the area of these wells, the upper part of the saturated zone contains slightly saline water to a depth of about 100 to 175 feet below the water table, underlain by a freshwater zone extending to depths greater than 1,200 feet. As water is pumped from the freshwater zone, leakage occurs from above and below the perforated interval. At one of the irrigation district wells, slightly saline water moved downward because of a lack of confining layers in the aquifer. At three other wells, the surface casing was not set deep enough and slightly saline water moved into the top of the perforations , downward in the casing, and into the freshwater part of the aquifer. (USGS)

  5. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging.

    PubMed

    Choi, Jae-Kyeong; Kim, Heonki; Kwon, Hobin; Annable, Michael D

    2018-03-01

    The effect of groundwater viscosity control on the performance of surfactant-enhanced air sparging (SEAS) was investigated using 1- and 2-dimensional (1-D and 2-D) bench-scale physical models. The viscosity of groundwater was controlled by a thickener, sodium carboxymethylcellulose (SCMC), while an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), was used to control the surface tension of groundwater. When resident DI water was displaced with a SCMC solution (500 mg/L), a SDBS solution (200 mg/L), and a solution with both SCMC (500 mg/L) and SDBS (200 mg/L), the air saturation for sand-packed columns achieved by air sparging increased by 9.5%, 128%, and 154%, respectively, (compared to that of the DI water-saturated column). When the resident water contained SCMC, the minimum air pressure necessary for air sparging processes increased, which is considered to be responsible for the increased air saturation. The extent of the sparging influence zone achieved during the air sparging process using the 2-D model was also affected by viscosity control. Larger sparging influence zones (de-saturated zone due to air injection) were observed for the air sparging processes using the 2-D model initially saturated with high-viscosity solutions, than those without a thickener in the aqueous solution. The enhanced air saturations using SCMC for the 1-D air sparging experiment improved the degradative performance of gaseous oxidation agent (ozone) during air sparging, as measured by the disappearance of fluorescence (fluorescein sodium salt). Based on the experimental evidence generated in this study, the addition of a thickener in the aqueous solution prior to air sparging increased the degree of air saturation and the sparging influence zone, and enhanced the remedial potential of SEAS for contaminated aquifers. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Nitrogen transport and transformations in a shallow aquifer receiving wastewater discharge: A mass balance approach

    USGS Publications Warehouse

    Desimone, Leslie A.; Howes, Brian L.

    1998-01-01

    Nitrogen transport and transformations were followed over the initial 3 years of development of a plume of wastewater-contaminated groundwater in Cape Cod, Massachusetts. Ammonification and nitrification in the unsaturated zone and ammonium sorption in the saturated zone were predominant, while loss of fixed nitrogen through denitrification was minor. The major effect of transport was the oxidation of discharged organic and inorganic forms to nitrate, which was the dominant nitrogen form in transit to receiving systems. Ammonification and nitrification in the unsaturated zone transformed 16–19% and 50–70%, respectively, of the total nitrogen mass discharged to the land surface during the study but did not attenuate the nitrogen loading. Nitrification in the unsaturated zone also contributed to pH decrease of 2 standard units and to an N2O increase (46–660 µg N/L in the plume). Other processes in the unsaturated zone had little net effect: Ammonium sorption removed <1% of the total discharged nitrogen mass; filtering of particulate organic nitrogen was less than 3%; ammonium and nitrate assimilation was less than 6%; and ammonia volatilization was less than 0.25%. In the saturated zone a central zone of anoxic groundwater (DO ≤ 0.05 mg/L) was first detected 17 months after effluent discharge to the aquifer began, which expanded at about the groundwater-flow velocity. Although nitrate was dominant at the water table, the low, carbon-limited rates of denitrification in the anoxic zone (3.0–9.6 (ng N/cm3)/d) reduced only about 2% of the recharged nitrogen mass to N2. In contrast, ammonium sorption in the saturated zone removed about 16% of the recharged nitrogen mass from the groundwater. Ammonium sorption was primarily limited to anoxic zone, where nitrification was prevented, and was best described by a Langmuir isotherm in which effluent ionic concentrations were simulated. The initial nitrogen load discharged from the groundwater system may depend largely on the growth and stability of the sorbed ammonium pool, which in turn depends on effluent-loading practices, subsurface microbial processes, and saturation of available exchange sites.

  7. Implementation of Solute Transport in the Vadose Zone into the `HYDRUS Package for MODFLOW'

    NASA Astrophysics Data System (ADS)

    Simunek, J.; Beegum, S.; Szymkiewicz, A.; Sudheer, K. P.

    2017-12-01

    The 'HYDRUS package for MODFLOW' was developed by Seo et al. (2007) and Twarakavi et al. (2008) to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package, which is based on the HYDRUS-1D model (Šimůnek et al., 2016) simulating unsaturated water flow in the vadose zone, was incorporated into MODFLOW (Harbaugh et al., 2000) simulating saturated groundwater flow. The HYDRUS package in the coupled model can be used to represent the effects of various unsaturated zone processes, including infiltration, evaporation, root water uptake, capillary rise, and recharge in homogeneous or layered soil profiles. The coupled model is effective in addressing spatially-variable saturated-unsaturated hydrological processes at the regional scale, allowing for complex layering in the unsaturated zone, spatially and temporarily variable water fluxes at the soil surface and in the root zone, and with alternating recharge and discharge fluxes (Twarakavi et al., 2008). One of the major limitations of the coupled model was that it could not be used to simulate at the same time solute transport. However, solute transport is highly dependent on water table fluctuations due to temporal and spatial variations in groundwater recharge. This is an important concern when the coupled model is used for analyzing groundwater contamination due to transport through the unsaturated zone. The objective of this study is to integrate the solute transport model (the solute transport part of HYDRUS-1D for the unsaturated zone and MT3DMS (Zheng and Wang, 1999; Zheng, 2009) for the saturated zone) into an existing coupled water flow model. The unsaturated zone component of the coupled model can consider solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption (Šimůnek and van Genuchten, 2008). Due to complex interactions at the groundwater table, certain modifications of the pressure head (compared to the original coupling) and solute concentration profiles were incorporated into the HYDRUS package. The developed integrated model is verified using HYDRUS-2D and analyzed for its computational time requirements.

  8. What electrical measurements can say about changes in fault systems.

    PubMed Central

    Madden, T R; Mackie, R L

    1996-01-01

    Earthquake zones in the upper crust are usually more conductive than the surrounding rocks, and electrical geophysical measurements can be used to map these zones. Magnetotelluric (MT) measurements across fault zones that are parallel to the coast and not too far away can also give some important information about the lower crustal zone. This is because the long-period electric currents coming from the ocean gradually leak into the mantle, but the lower crust is usually very resistive and very little leakage takes place. If a lower crustal zone is less resistive it will be a leakage zone, and this can be seen because the MT phase will change as the ocean currents leave the upper crust. The San Andreas Fault is parallel to the ocean boundary and close enough to have a lot of extra ocean currents crossing the zone. The Loma Prieta zone, after the earthquake, showed a lot of ocean electric current leakage, suggesting that the lower crust under the fault zone was much more conductive than normal. It is hard to believe that water, which is responsible for the conductivity, had time to get into the lower crustal zone, so it was probably always there, but not well connected. If this is true, then the poorly connected water would be at a pressure close to the rock pressure, and it may play a role in modifying the fluid pressure in the upper crust fault zone. We also have telluric measurements across the San Andreas Fault near Palmdale from 1979 to 1990, and beginning in 1985 we saw changes in the telluric signals on the fault zone and east of the fault zone compared with the signals west of the fault zone. These measurements were probably seeing a better connection of the lower crust fluids taking place, and this may result in a fluid flow from the lower crust to the upper crust. This could be a factor in changing the strength of the upper crust fault zone. PMID:11607664

  9. 77 FR 28255 - Safety Zone; Upper Mississippi River, Mile 183.0 to 183.5

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ...-AA00 Safety Zone; Upper Mississippi River, Mile 183.0 to 183.5 AGENCY: Coast Guard, DHS. ACTION... Upper Mississippi River, from mile 183.0 to mile 183.5, in the vicinity of the Merchants Bridge and... Merchants Bridge in the vicinity of mile 183.0 to 183.5 on the Upper Mississippi River. After initial...

  10. 78 FR 46258 - Safety Zone; Upper Mississippi River, Mile 662.8 to 663.9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ...-AA00 Safety Zone; Upper Mississippi River, Mile 662.8 to 663.9 AGENCY: Coast Guard, DHS. ACTION... Upper Mississippi River, from mile 662.8 to 663.9, extending the entire width of the river. This safety... mile 662.8 to 663.9 on the Upper Mississippi River. Anticipated traffic on the river presents safety...

  11. 76 FR 36316 - Safety Zone; Upper Mississippi River, Mile 180.0 to 179.0

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ...-AA00 Safety Zone; Upper Mississippi River, Mile 180.0 to 179.0 AGENCY: Coast Guard, DHS. ACTION... Upper Mississippi River, from Mile 180.0 to 179.0, extending the entire width of the river. This safety... combat capabilities between Mile 180.0 and 179.0 on the Upper Mississippi River. This event presents...

  12. Lack of differences in the regional variation of oxygen saturation in larger retinal vessels in diabetic maculopathy and proliferative diabetic retinopathy.

    PubMed

    Jørgensen, Christina Mørup; Bek, Toke

    2017-06-01

    Diabetic retinopathy is characterised by morphological lesions in the ocular fundus related to disturbances in retinal blood flow. The two vision threatening forms of retinopathy show specific patterns of distribution of retinal lesions with proliferative diabetic retinopathy (PDR) developing secondary to ischaemia and hypoxia in the retinal periphery and diabetic maculopathy (DM) developing secondary to hyperperfusion and increased vascular permeability in the macular area. These differences in the distribution of retinal lesions might be reflected in regional differences in oxygen saturation in the larger retinal vessels. Dual-wavelength retinal oximetry was performed in 30 normal persons, 30 patients with DM and 30 patients with PDR, and the oxygen saturation was measured in peripapillary vessels supplying the four retinal quadrants and in branches from the upper temporal arcades supplying, respectively, the macular area and the retinal periphery. The overall oxygen saturation was significantly higher in diabetic patients than in normal persons and the arteriovenous (AV) saturation difference significantly lower in the patients with DM. The regional variation in oxygen saturation was similar in the three studied groups with a decreasing saturation from the upper nasal through the lower nasal, lower temporal and the upper temporal peripapillary vessels, and with a significantly higher oxygen saturation in venules draining the macular area than in venules draining the retinal periphery. The regional differences in retinal lesions in vision threatening diabetic retinopathy are not reflected in regional differences in the oxygen saturation of larger retinal vessels. The development of vision threatening diabetic retinopathy depends on other factors, such as, for example, regional differences in the retinal microcirculation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Three Skin Zones in the Asian Upper Eyelid Pertaining to the Asian Blepharoplasty.

    PubMed

    Choi, Yeop; Kang, Hyun Gu; Nam, Yong Seok

    2017-06-01

    Natural looking double fold is an essential and aesthetically pleasing masterpiece in Asian blepharoplasty. This study aims to emphasize the 3 skin zone concept in the Asian upper blepharoplasty. The authors examined the anterior lamella of each skin zone microscopically by performing 31 double-eyelid surgeries and 11 infrabrow lifts. Characteristics of dermal components, subcutaneous tissue, and outer fascia of OOM (OFOOM) at each skin zone were documented. The authors evaluated the vertical scales of each skin zone in young and aged Asian patients who visited the first author's clinic for the primary or secondary upper blepharoplasty with ×3.5 magnifying surgical loupe. The thickness of OOM had no difference among zones 1, 2, and 3. The skin and subdermal tissue had varying characteristics according to its skin zone. At zone 1, it seemed that only thin skin was on the OOM. The anterior lamella of zone 2 seemed to consist of skin, white fascia (OFOOM) including a venous network, and OOM in a gross field. At zone 3, thick skin, thick subcutaneous fatty layer, and OOM were magnified. The OFOOM of zone 3 was not significantly identified due to a sticky adherence with OOM. At the point of vertical scales of skin zone, good eyelids have lower zone 3 ratio and higher zones 1 and 2 ratio with qualified topographic condition. The authors classified the Asian upper eyelid as with 3 skin zones. Based on its anatomical investigation, the authors can afford anthropometric data and supplemental theory for the creation of aesthetic folds.

  14. The occurrence of the Complexiopollis-Atlantopollis zone (Palynomorphs) in the Eagle Ford Group (Upper Cretaceous) of Texas

    USGS Publications Warehouse

    Christopher, Raymond A.

    1982-01-01

    The Lower and lower Upper Cretaceous palynological zones defined in the Atlantic Coastal Plain Province and which occur in the eastern Gulf Coastal Plain Province are characterized by a paucity of marine invertebrate fossils. As a result, correlation of these zones with European and provincial stages, as well as with other microfossil and megafossil zones is tenuous. However, an examination of a complete section of the Eagle Ford Group and adjacent strata in Texas reveals that: 1) the upper part of the Woodbine Formation and the Tarrant Formation of the overlying Eagle Ford Group represent a biostratigraphic interval that is absent in the Atlantic and eastern Gulf Coastal Plain Provinces; 2) the Complexiopollis-Atlantopollis Zone (zone IV of some authors) occurs within the Britton Formation (Eagle Ford Group), and is equivalent to the upper part of the Rotalipora cushmani-greenhornensis Subzone (planktic foraminifers) and possibly to the Sciponoceras gracile Zone (ammonites); 3) the Arcadia Park Formation (Eagle Ford Group) contains a mixed assemblage of palynomorphs that includes guides to both the Complexiopollis-Atlantopollis and the overlying Complexiopollis exigua-Santalacites minor Zones, suggesting that biostratigraphic equivalents of the Arcadia Park Formation are not represented in the Atlantic and eastern Gulf Coastal Plain Provinces; and 4) in the basal part of the Austin Chalk of Texas, only one guide palynomorph to the Complexiopollis-Atlantopollis Zone was recognized, but guides to the Complexiopollis exigua-Santalacites minor Zone are present. The Tuscaloosa Group of the eastern Gulf Coastal Plain appears to be biostratigraphically equivalent to the Complexiopollis-Atlantopollis Zone, and therefore correlative with the middle to upper part of the Britton Formation of the Eagle Ford Group.

  15. Seismicity, faulting, and structure of the Koyna-Warna seismic region, Western India from local earthquake tomography and hypocenter locations

    USGS Publications Warehouse

    Dixit, Madan M.; Kumar, Sanjay; Catchings, Rufus D.; Suman, K.; Sarkar, Dipankar; Sen, M.K.

    2014-01-01

    Although seismicity near Koyna Reservoir (India) has persisted for ~50 years and includes the largest induced earthquake (M 6.3) reported worldwide, the seismotectonic framework of the area is not well understood. We recorded ~1800 earthquakes from 6 January 2010 to 28 May 2010 and located a subset of 343 of the highest-quality earthquakes using the tomoDD code of Zhang and Thurber (2003) to better understand the framework. We also inverted first arrivals for 3-D Vp, Vs, and Vp/Vs and Poisson's ratio tomography models of the upper 12 km of the crust. Epicenters for the recorded earthquakes are located south of the Koyna River, including a high-density cluster that coincides with a shallow depth (<1.5 km) zone of relatively high Vp and low Vs (also high Vp/Vs and Poisson's ratios) near Warna Reservoir. This anomalous zone, which extends near vertically to at least 8 km depth and laterally northward at least 15 km, is likely a water-saturated zone of faults under high pore pressures. Because many of the earthquakes occur on the periphery of the fault zone, rather than near its center, the observed seismicity-velocity correlations are consistent with the concept that many of the earthquakes nucleate in fractures adjacent to the main fault zone due to high pore pressure. We interpret our velocity images as showing a series of northwest trending faults locally near the central part of Warna Reservoir and a major northward trending fault zone north of Warna Reservoir.

  16. 76 FR 77901 - Safety Zone; Upper Mississippi River, Mile 389.4 to 403.1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ...-AA00 Safety Zone; Upper Mississippi River, Mile 389.4 to 403.1 AGENCY: Coast Guard, DHS. ACTION... Upper Mississippi River, from Mile 389.4 to 403.1, extending the entire width of the river located on... 389.4 to 403.1 on the Upper Mississippi River. Under 5 U.S.C. 553(d)(3), the Coast Guard finds that...

  17. Effects of unsaturated zone on ground-water mounding

    USGS Publications Warehouse

    Sumner, D.M.; Rolston, D.E.; Marino, M.A.

    1999-01-01

    The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding-an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the dynamic nature of basin infiltration, the finite transmission time of the infiltration front to the water table, or the interception of the basin floor by the capillary fringe.The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding - an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the dynamic nature of basin infiltration, the finite transmission time of the infiltration front to the water, or the interception of the basin floor by the capillary fringe.

  18. A progress report on results of test drilling and ground-water investigations of the Snake Plain aquifer, southeastern Idaho: Part 1: Mud Lake Region, 1969-70 and Part 2: Observation Wells South of Arco and West of Aberdeen

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1973-01-01

    The results of drilling test holes to depths of approximately 1,000 feet in the Mud Lake region show that a large part of the region is underlain by both sedimentary deposits and basalt flows. At some locations, predominantly sedimentary deposits were penetrated; at others, basalt flows predominated. The so-called Mud Lake-Market Lake barrier denotes a change in geology. From the vicinity of the barrier area, as described by Stearns, Crandall, and Steward (1938, p. 111), up the water-table gradient for at least a few tens of miles, the saturated geologic section consists predominantly of beds of sediments that are intercalated with numerous basalt flows. Downgradient from the barrier, sedimentary deposits are not common and practically all the water-bearing formations are basalt, at least to the depths explored so far. Thus, the barrier is a transition zone from a sedimentary-basaltic sequence to a basaltic sequence. The sedimentary-basaltic sequence forms a complex hydrologic system in which water occurs under water-table conditions in the upper few tens of feet of saturated material and under artesian conditions in the deeper material in the southwest part of the region. The well data indicate that southwest of the barrier, artesian pressures are not significant. Southwest of the barrier, few sedimentary deposits occur in the basalt section and, as described by Mundorff, Crosthwaite, and Kilburn (1964). ground water occurs in a manner typical of the Snake Plain aquifer. In several wells, artesian pressures are higher in the deeper formations than in the shallower ones, but the reverse was found in a few wells. The available data are not adequate to describe the water-bearing characteristics of the artesian aquifer nor the effects that pumping in one zone would have on adjacent zones. The water-table aquifer yields large quantities of water to irrigation wells.

  19. Spatial distribution of microbial biomass, activity, community structure, and the biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in the subsurface.

    PubMed

    Federle, T W; Ventullo, R M; White, D C

    1990-12-01

    The vertical distribution of microbial biomass, activity, community structure and the mineralization of xenobiotic chemicals was examined in two soil profiles in northern Wisconsin. One profile was impacted by infiltrating wastewater from a laundromat, while the other served as a control. An unconfined aquifer was present 14 meters below the surface at both sites. Biomass and community structure were determined by acridine orange direct counts and measuring concentrations of phospholipid-derived fatty acids (PLFA). Microbial activity was estimated by measuring fluorescein diacetate (FDA) hydrolysis, thymidine incorporation into DNA, and mixed amino acid (MAA) mineralization. Mineralization kinetics of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) were determined at each depth. Except for MAA mineralization rates, measures of microbial biomass and activity exhibited similar patterns with depth. PLFA concentration and rates of FDA hydrolysis and thymidine incorporation decreased 10-100 fold below 3 m and then exhibited little variation with depth. Fungal fatty acid markers were found at all depths and represented from 1 to 15% of the total PLFAs. The relative proportion of tuberculostearic acid (TBS), an actinomycete marker, declined with depth and was not detected in the saturated zone. The profile impacted by wastewater exhibited higher levels of PLFA but a lower proportion of TBS than the control profile. This profile also exhibited faster rates of FDA hydrolysis and amino acid mineralization at most depths. LAS was mineralized in the upper 2 m of the vadose zone and in the saturated zone of both profiles. Little or no LAS biodegradation occurred at depths between 2 and 14 m. LAE was mineralized at all depths in both profiles, and the mineralization rate exhibited a similar pattern with depth as biomass and activity measurements. In general, biomass and biodegradative activities were much lower in groundwater than in soil samples obtained from the same depth.

  20. A revision of the Norian Conchostracan Zonation in North America and its implications for Late Triassic North American tectonic history

    USGS Publications Warehouse

    Weems, Robert E.; Lucas, Spencer G.

    2015-01-01

    Collections of Upper Triassic (Norian) conchostracans from the upper Cumnock and lower Sanford formations (North Carolina), Bull Run Formation (Virginia), Gettysburg Formation (Pennsylvania), Passaic Formation (New Jersey), Blomidon Formation (Nova Scotia), and Redonda Formation (New Mexico) have significantly expanded our knowledge of the Norian conchostracan faunas in these units. These collections show that the temporal and spatial distribution of Norian conchostracans in North America is more complex and more environmentally controlled than previously thought. The new collections require a revision and simplification of the published conchostracan zonation for this interval. The revised zonation, based almost entirely on evolution within the lineage of the conchostracan genus Shipingia, consists of five zones: the Shipingia weemsi-Euestheria buravasi zone (Lacian), the Shipingia mcdonaldi zone (lower Alaunian), the Shipingia hebaozhaiensis zone (upper Alaunian), the Shipingia olseni zone (lower and middle Sevatian), and the Shipingia gerbachmanni zone (upper Sevatian). A new species of Norian conchostracan, Wannerestheria kozuri, is described from the Groveton Member of the Bull Run Formation (Virginia). Two new members (Plum Run and Fairfield members) are named in the Gettysburg Formation (Gettysburg Basin, Maryland and Pennsylvania). The distribution of upper Carnian and Norian strata in the Fundy, Newark, Gettysburg, and Culpeper basins indicates that there was a significant, previously undetected tectonic reorganization within these basins that occurred around the Carnian-Norian boundary. The presence of an upper Norian-lower Rhaetian unconformity within the Newark Supergroup is reaffirmed. A re-evaluation of the conchostracan record from the Redonda Formation of the Chinle Group in New Mexico indicates that the four conchostracan-bearing lacustrine beds in this unit are part of only a single, consistently recognizable conchostracan zone, which we here designate as the Shipingia gerbachmanni zone.

  1. Assessing controls on perched saturated zones beneath the Idaho Nuclear Technology and Engineering Center, Idaho

    USGS Publications Warehouse

    Mirus, Benjamin B.; Perkins, Kim S.; Nimmo, John R.

    2011-01-01

    Waste byproducts associated with operations at the Idaho Nuclear Technology and Engineering Center (INTEC) have the potential to contaminate the eastern Snake River Plain (ESRP) aquifer. Recharge to the ESRP aquifer is controlled largely by the alternating stratigraphy of fractured volcanic rocks and sedimentary interbeds within the overlying vadose zone and by the availability of water at the surface. Beneath the INTEC facilities, localized zones of saturation perched on the sedimentary interbeds are of particular concern because they may facilitate accelerated transport of contaminants. The sources and timing of natural and anthropogenic recharge to the perched zones are poorly understood. Simple approaches for quantitative characterization of this complex, variably saturated flow system are needed to assess potential scenarios for contaminant transport under alternative remediation strategies. During 2009-2011, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, employed data analysis and numerical simulations with a recently developed model of preferential flow to evaluate the sources and quantity of recharge to the perched zones. Piezometer, tensiometer, temperature, precipitation, and stream-discharge data were analyzed, with particular focus on the possibility of contributions to the perched zones from snowmelt and flow in the neighboring Big Lost River (BLR). Analysis of the timing and magnitude of subsurface dynamics indicate that streamflow provides local recharge to the shallow, intermediate, and deep perched saturated zones within 150 m of the BLR; at greater distances from the BLR the influence of streamflow on recharge is unclear. Perched water-level dynamics in most wells analyzed are consistent with findings from previous geochemical analyses, which suggest that a combination of annual snowmelt and anthropogenic sources (for example, leaky pipes and drainage ditches) contribute to recharge of shallow and intermediate perched zones throughout much of INTEC. The source-responsive fluxes model was parameterized to simulate recharge via preferential flow associated with intermittent episodes of streamflow in the BLR. The simulations correspond reasonably well to the observed hydrologic response within the shallow perched zone. Good model performance indicates that source-responsive flow through a limited number of connected fractures contributes substantially to the perched-zone dynamics. The agreement between simulated and observed perched-zone dynamics suggest that the source-responsive fluxes model can provide a valuable tool for quantifying rapid preferential flow processes that may result from different land management scenarios.

  2. Meteoric calcite cementation: diagenetic response to relative fall in sea-level and effect on porosity and permeability, Las Negras area, southeastern Spain

    NASA Astrophysics Data System (ADS)

    Li, Zhaoqi; Goldstein, Robert H.; Franseen, Evan K.

    2017-03-01

    A dolomitized Upper Miocene carbonate system in southeast Spain contains extensive upper and lower zones of calcite cementation that cut across the stratigraphy. Cement textures including isopachous and circumgranular, which are consistent with phreatic-zone cementation. Cements in the upper cemented zone are non-luminescent, whereas those in the lower cemented zone exhibit multiple bands of luminescent and non-luminescent cements. In the upper cemented zone, isotopic data show two meteoric calcite lines (MCL) with mean δ18O at - 5.1‰ and - 5.8‰ VPDB, whereas no clear MCL is defined in the lower cemented zone where mean δ18O for calcite cement is at - 6.7‰ VPDB. δ13C values in both cement zones are predominantly negative, ranging from - 10 to + 2‰ VPDB, suggestive of carbon from soil gas or decayed organics. Measurements of Tm ice in primary fluid inclusions yield a mode of 0.0 °C in both zones, indicating calcite cementation from fresh water. These two zones define the positions of two different paleo-water tables that formed during a relative sea-level fall and erosional downcutting during the Plio-Pleistocene. The upper cemented zone pre-dated the lower cemented zone on the basis of known relative sea-level history. Meteoric calcite cementation reduced porosity and permeability, but measured values are inconsistent with simple filling of open pore space. Each texture, boundstone, grainstone, packstone, wackestone, produces a different relationship between percent calcite cement and porosity/permeability. Distribution of cements may be predictable on the basis of known sea-level history, and the effect of the cementation can be incorporated into subsurface geomodels by defining surfaces of rock boundaries that separate cemented zones from uncemented zones, and applying texture-specific relationships among cementation, porosity and permeability.

  3. Study on 3-D velocity structure of crust and upper mantle in Sichuan-yunnan region, China

    USGS Publications Warehouse

    Wang, C.; Mooney, W.D.; Wang, X.; Wu, J.; Lou, H.; Wang, F.

    2002-01-01

    Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others appear the characteristic of tectonic boundary, indicating that the faults litely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the Indian and the Asian plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal.value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.

  4. Controls on deep drainage beneath the root soil zone in snowmelt-dominated environments

    NASA Astrophysics Data System (ADS)

    Hammond, J. C.; Harpold, A. A.; Kampf, S. K.

    2017-12-01

    Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and high latitude locations, yet we still lack a detailed understanding of how snowmelt is partitioned between the soil, deep drainage, and streamflow under a variety of soil, climate, and snow conditions. Here we use Hydrus 1-D simulations with historical inputs from five SNOTEL snow monitoring sites in each of three regions, Cascades, Sierra, and Southern Rockies, to investigate how inter-annual variability on water input rate and duration affects soil saturation and deep drainage. Each input scenario was run with three different soil profiles of varying hydraulic conductivity, soil texture, and bulk density. We also created artificial snowmelt scenarios to test how snowmelt intermittence affects deep drainage. Results indicate that precipitation is the strongest predictor (R2 = 0.83) of deep drainage below the root zone, with weaker relationships observed between deep drainage and snow persistence, peak snow water equivalent, and melt rate. The ratio of deep drainage to precipitation shows a stronger positive relationship to melt rate suggesting that a greater fraction of input becomes deep drainage at higher melt rates. For a given amount of precipitation, rapid, concentrated snowmelt may create greater deep drainage below the root zone than slower, intermittent melt. Deep drainage requires saturation below the root zone, so saturated hydraulic conductivity serves as a primary control on deep drainage magnitude. Deep drainage response to climate is mostly independent of soil texture because of its reliance on saturated conditions. Mean water year saturations of deep soil layers can predict deep drainage and may be a useful way to compare sites in soils with soil hydraulic porosities. The unit depth of surface runoff often is often greater than deep drainage at daily and annual timescales, as snowmelt exceeds infiltration capacity in near-surface soil layers. These results suggest that processes affecting the duration of saturation below the root zone could compromise deep recharge, including changes in snowmelt rate and duration as well as the depth and rate of ET losses from the soil profile.

  5. Ground-water geology of the Gonaives Plain, Haiti

    USGS Publications Warehouse

    Taylor, George C.; Lemoine, Rémy C.

    1950-01-01

    The Gonaives Plain lies in northern Haiti at the head of the Gulf of Gonaives. Ground water in the plain is used widely for domestic and stock purposes but only to limited extent for irrigation. The future agricultural development of the plain will depend in large measure on the proper utilization of available ground-water supplies for irrigation. The rocks in the region of the Gonaives Plain belong to the upper (?) Cretaceous series of the Cretaceous system, the Nocene and Oligovene series of the Tertiary system, and the Pleistocene and Recent series of the Quarternary system. The structural depression occupied by the Gonaives Plain was formed in post-Miocene time by the dislocation of Oligocene and older rocks along normal faults and by the tilting of the adjacent crustal blocks. The lower parts of the depression contain a Pleistocene and Recent alluvial fill deposited by streams tributary to the plain. The upper (?) Cretaceous rocks include aniesite and basalt lava flows locally intercalated with some beds of tuff and agglomerate. These rocks are generally dense and impervious but locally small springs rise from fractures and bedding planes or from weathered zones. The Nocene rocks are hard, thin-bedded, cherty limestones with some beds of massive chalky limestone. Considerable ground water circulates through joints, bedding planes, and solution passages in these rocks giving rise to important springs such as Sources Madame Charles. These springs discharge at the rate of about 110 liters per second. The Oligocene rocks include limestone, shely limestone, limy sandstone, marl, and shale. The limestone beds contain solution passages and other openings and these may afford capacity for the circulation of ground water. However, no wells or springs in Oligocene rocks were observed during the present study. The alluvial fill of the plain is composed of interbedded lenses of clay, silt, sand, and gravel. These deposits contain a zone of saturation whose upper limit is marked by a water table. The depth to the water table beneath the alluvial lowland of the plain ranges from less than one meter to about 20 meters. In most places in the plain the depth to water is less that 15 meters. Where present in the zone of saturation the coarse, well-sorted sand and gravel beds of the alluvium will probably yield moderate to large supplies of water to wells and infiltration galleries. The individual yields of existing wells range from a few liters to about 60 liters per second. The most favorable part of the plain for ground-water prospecting and development lies 5 to 10 kilometers northeast of Gonaives. In this area yields of 10 to 50 liters per second could be obtained from the alluvium in simple wells drilled to depths of about 35 to 45 meters. Additional information on the yield and physical character of aquifers in the alluvium would be provided by test wells drilled to depths of 40 to 60 meters.

  6. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Dan

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydratesmore » and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.« less

  7. Radial Anisotropy in the Mantle Transition Zone and Its Implications

    NASA Astrophysics Data System (ADS)

    Chang, S. J.; Ferreira, A. M.

    2016-12-01

    Seismic anisotropy is a useful tool to investigate mantle flow, mantle convection, and the presence of melts in mantle, since it provides information on the direction of mantle flow or the orientation of melts by combining it with laboratory results in mineral physics. Although the uppermost and lowermost mantle with strong anisotropy have been well studied, anisotropic properties of the mantle transition zone is still enigmatic. We use a recent global radially anisotropic model, SGLOBE-rani, to examine the patterns of radial anisotropy in the mantle transition zone. Strong faster SV velocity anomalies are found in the upper transition zone beneath subduction zones in the western Pacific, which decrease with depth, thereby nearly isotropic in the lower transition zone. This may imply that the origin for the anisotropy is the lattice-preferred orientation of wadsleyite, the dominant anisotropic mineral in the upper transition zone. The water content in the upper transition zone may be inferred from radial anisotropy because of the report that anisotropic intensity depends on the water content in wadsleyite.

  8. 77 FR 40518 - Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... 1625-AA00 Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York Bay, Lower New York Bay; New York, NY ACTION: Final rule. SUMMARY: The Coast Guard is establishing seven temporary safety zones for swim events within the Captain of the Port (COTP) New York Zone. These...

  9. Vitrification of waste with conitnuous filling and sequential melting

    DOEpatents

    Powell, James R.; Reich, Morris

    2001-09-04

    A method of filling a canister with vitrified waste starting with a waste, such as high-level radioactive waste, that is cooler than its melting point. Waste is added incrementally to a canister forming a column of waste capable of being separated into an upper zone and a lower zone. The minimum height of the column is defined such that the waste in the lower zone can be dried and melted while maintaining the waste in the upper zone below its melting point. The maximum height of the column is such that the upper zone remains porous enough to permit evolved gases from the lower zone to flow through the upper zone and out of the canister. Heat is applied to the waste in the lower zone to first dry then to raise and maintain its temperature to a target temperature above the melting point of the waste. Then the heat is applied to a new lower zone above the melted waste and the process of adding, drying and melting the waste continues upward in the canister until the entire canister is filled and the entire contents are melted and maintained at the target temperature for the desired period. Cooling of the melted waste takes place incrementally from the bottom of the canister to the top, or across the entire canister surface area, forming a vitrified product.

  10. Saturated-unsaturated flow to a partially penetrating well with storage in a compressible aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Neuman, S. P.

    2010-12-01

    Mishra and Neuman [2010] developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or the unsaturated zone. We extend their solution to the case of a finite diameter pumping well with storage. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten - Mualem constitutive model; and use our solution to analyze drawdown data from a pumping test conducted at the Borden site in Ontario, Canada.

  11. System and method for producing metallic iron

    DOEpatents

    Bleifuss, Rodney L; Englund, David J; Iwasaki, Iwao; Fosnacht, Donald R; Brandon, Mark M; True, Bradford G

    2013-09-17

    A hearth furnace for producing metallic iron material has a furnace housing having a drying/preheat zone, a conversion zone, a fusion zone, and optionally a cooling zone, the conversion zone is between the drying/preheat zone and the fusion zone. A moving hearth is positioned within the furnace housing. A hood or separation barrier within at least a portion of the conversion zone, fusion zone or both separates the fusion zone into an upper region and a lower region with the lower region adjacent the hearth and the upper region adjacent the lower region and spaced from the hearth. An injector introduces a gaseous reductant into the lower region adjacent the hearth. A combustion region may be formed above the hood or separation barrier.

  12. Oyster-bioimmured ammonites from the Upper Albian of Annopol, Poland: stratigraphic and palaeobiogeographic implications

    NASA Astrophysics Data System (ADS)

    Machalski, Marcin; Kennedy, William J.

    2013-12-01

    Machalski, M. and Kennedy, W.J. 2013. Oyster-bioimmured ammonites from the Upper Albian of Annopol, Poland: stratigraphic and palaeobiogeographic implications. Acta Geologica Polonica, 63 (4), 545-554. Warszawa. Ammonites Mortoniceras (Subschloenbachia) sp. are preserved as attachment scars on the oyster shells from the topmost portion of the Albian succession at Annopol, Poland. These oyster-bioimmured ammonites show a closest affinity to the representatives of Mortoniceras (Subschloenbachia) characteristic of the upper Upper Albian Mortoniceras perinflatum Zone. No ammonites indicative of the uppermost Albian-lowermost Cenomanian Praeschloenbachia briacensis Zone are recorded. Thus, the hiatus at the Albian-Cenomanian boundary at Annopol embraces the latter zone. The presence (and dominance) of Mortoniceras in the upper Upper Albian ammonite assemblage of Annopol suggests that the representatives of this Tethyan genus could migrate into the epicratonic areas of Poland directly from the Tethyan Realm, via the Lwow (Lviv) region.

  13. 47 CFR 27.303 - Upper 700 MHz commercial and public safety coordination zone.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... safety coordinator. (1) The description must include, at a minimum; (i) The frequency or frequencies on... 47 Telecommunication 2 2011-10-01 2011-10-01 false Upper 700 MHz commercial and public safety... Rules for WCS § 27.303 Upper 700 MHz commercial and public safety coordination zone. (a) General. CMRS...

  14. Driver speed limit compliance in school zones : assessing the impact of sign saturation.

    DOT National Transportation Integrated Search

    2013-10-01

    School zones are often viewed as an effective way to reduce driving speeds and thereby improve : safety near our nations schools. The effect of school zones on reducing driving speeds, however, is : minimal at best. Studies have shown that over 90...

  15. Upper Albian and Cenomanian (Cretaceous) ammonites from the Debarsu Formation (Yazd Block, Central Iran)

    NASA Astrophysics Data System (ADS)

    Wilmsen, Markus; Storm, Marisa; Fürsich, Franz Theodor; Majidifard, Mahmoud Reza

    2013-12-01

    Wilmsen, M., Storm, M., Fürsich, F.T. and Majidifard, M.R. 2013. Upper Albian and Cenomanian (Cretaceous) ammonites from the Debarsu Formation (Yazd Block, Central Iran). Acta Geologica Polonica, 63 (4), 489-513. Warszawa. New ammonite faunas consisting of 13 taxa provide the first reliable biostratigraphic dating of the Debarsu Formation of the Yazd Block, west-central Iran, indicating several levels in the Upper Albian and Lower Cenomanian, while a foraminiferal assemblage places the top of the Formation in the Middle Turonian. Among the identified ammonite taxa, Acompsoceras renevieri (Sharpe, 1857) is recorded from Iran for the first time. The upper part of the lower Upper Albian is proved by the occurrences of mortoniceratines of the Mortoniceras (M.) inflatum Zone in the lowermost part of the Debarsu Formation. For the upper Upper Albian (traditional Stoliczkaia dispar Zone), the M. (Subschloenbachia ) rostratum and M. (S.) perinflatum zones are proved by their index taxa. However, there is no evidence of the terminal Arrhaphoceras (Praeschloenbachia) briacensis Zone. The upper part of the lower Lower Cenomanian Mantelliceras mantelli Zone (M. saxbii Subzone) is proved by M. saxbii and M. cf. mantelli. Below, there is an ammonite- barren interval of ca. 100 m in thickness between M. (S.) perinflatum zonal strata and the M. saxbii Subzone. The upper Lower Cenomanian is documented by the presence of typically M. dixoni zonal ammonites such as Acompsoceras renevieri. Upper Cenomanian and Turonian ammonites have not been found in the upper part of the Debarsu Formation, but micro-biostratigraphic evidence (planktonic foraminifers) from the uppermost part of the formation indicate that the formation ranges into the Turonian. For the development of the major tectonic unconformity at the base of the overlying Haftoman Formation (which yielded Lower Coniacian inoceramids near its base), only 2-3 myr remain, stressing the geodynamic activity of Central Iran during mid-Cretaceous times.

  16. Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June

    2001-01-01

    Yucca Mountain is an arid site proposed for consideration as the United States’ first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500–1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5–4.5 mm/yr, or 2–3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data, particularly fracture flow deep in the unsaturated zone. This paper presents the history of the evolution of conceptual models of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada (Flint, A.L., Flint, L.E., Kwicklis, E.M., Bodvarsson, G.S., Fabryka-Martin, J.M., 2001. Hydrology of Yucca Mountain. Reviews of Geophysics in press). This retrospective is the basis for recommendations for optimizing the efficiency with which a viable and robust conceptual model can be developed for a complex site.

  17. Electric conductivity for laboratory and field monitoring of induced partial saturation (IPS) in sands

    NASA Astrophysics Data System (ADS)

    Kazemiroodsari, Hadi

    Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was implemented in the prepared specimen to validate the numerical simulation model and explore the use of conductivity probes to detect the transport of chemical solution, estimate degree of saturation achieved due to injection of chemical solution, and evaluate final zone of partial saturation. The conductivity probe and the simulation results agreed well. To study the effect of IPS on liquefaction response of the sand specimen, IPS was implemented in a large (2-story high) sand specimen prepared in the laminar box of NEES Buffalo and then the specimen was subjected to harmonic shaking. Electric conductivity probes were used in the specimen treatment by controlling the duration and spacing of injection of the chemical solution, in monitoring the transport of chemical solution, in the estimation of zone of partial saturation achieved, and in the estimation of degree of saturation achieved due to implementation of IPS. The conductivity probes indicated partial saturation of the specimen. The shaking tests results confirmed the partial saturation state of the sand specimen. In addition, to the laboratory works, electric conductivity probes were used in field implementation of IPS in a pilot test at the Wildlife Liquefaction Array (WLA) of NEES UCSB site. The conductivity probes in the field test helped decide the optimum injection pressure, the injection tube spacing, and the degree of saturation that could be achieved in the field. The various laboratory and field tests confirmed that electric conductivity and the probes devised and used can be invaluable in the implementation of IPS, by providing information regarding transport of the chemical solution, the spacing of injection tubes, duration of injection, and the zone and degree of partial saturation caused by IPS.

  18. Spatiotemporal changes of seismic attenuation caused by injected CO2 at the Frio-II pilot site, Dayton, TX, USA

    NASA Astrophysics Data System (ADS)

    Zhu, Tieyuan; Ajo-Franklin, Jonathan B.; Daley, Thomas M.

    2017-09-01

    A continuous active source seismic monitoring data set was collected with crosswell geometry during CO2 injection at the Frio-II brine pilot, near Liberty, TX. Previous studies have shown that spatiotemporal changes in the P wave first arrival time reveal the movement of the injected CO2 plume in the storage zone. To further constrain the CO2 saturation, particularly at higher saturation levels, we investigate spatial-temporal changes in the seismic attenuation of the first arrivals. The attenuation changes over the injection period are estimated by the amount of the centroid frequency shift computed by local time-frequency analysis. We observe that (1) at receivers above the injection zone seismic attenuation does not change in a physical trend; (2) at receivers in the injection zone attenuation sharply increases following injection and peaks at specific points varying with distributed receivers, which is consistent with observations from time delays of first arrivals; then, (3) attenuation decreases over the injection time. The attenuation change exhibits a bell-shaped pattern during CO2 injection. Under Frio-II field reservoir conditions, White's patchy saturation model can quantitatively explain both the P wave velocity and attenuation response observed. We have combined the velocity and attenuation change data in a crossplot format that is useful for model-data comparison and determining patch size. Our analysis suggests that spatial-temporal attenuation change is not only an indicator of the movement and saturation of CO2 plumes, even at large saturations, but also can quantitatively constrain CO2 plume saturation when used jointly with seismic velocity.

  19. Geochemical stability of phosphorus solids below septic system infiltration beds

    NASA Astrophysics Data System (ADS)

    Zurawsky, M. A.; Robertson, W. D.; Ptacek, C. J.; Schiff, S. L.

    2004-09-01

    Review of 10 mature septic system plumes in Ontario, revealed that phosphorus (P) attenuation commonly occurred close to the infiltration pipes, resulting in discrete narrow intervals enriched in P by a factor of 2-4 ( Wood, J.S.A. 1993. MSc thesis, Dept. Earth Sci., University of Waterloo, Waterloo, Ont.; Ground Water 36 (1995) 1000; J. Contam. Hydrol. 33 (1998) 405). Although these attenuation reactions appeared to be sustainable under present conditions, the potential for remobilization of this P mass, should geochemical conditions change, is unknown. To test the stability of these P solids, dynamic flow column tests were carried out using sediments from three of the previously studied sites (Cambridge, Langton and Muskoka) focusing on sediments from the 'High-P' and underlying (Below) zones. Tests were continued for 166-266 pore volumes (PVs), during which time varying degrees of water saturation were maintained. During saturated flow conditions, relatively high concentrations of PO 4 were eluted from the Cambridge and Langton High-P zones (up to 4 and 9 mg/l P, respectively), accompanied by elevated concentrations of Fe (up to 1.4 mg/l) and Mn (up to 4 mg/l) and lower values of Eh (<150 mV). The Below zones from Cambridge and Langton, however, maintained lower concentrations of P (generally<2 mg/l), Fe (<0.2 mg/l) and Mn (<1 mg/l) and maintained higher Eh (>250 mV) during saturated flow conditions. During unsaturated flow, P and Fe declined dramatically in the High-P zones (P<1 mg/l, Fe<0.2 mg/l), whereas concentrations remained about the same during saturated and unsaturated flow in the Below zones. This behavior is at least partly attributed to the development of reducing conditions during saturated flow in the High-P zones, leading to reductive dissolution of Fe (III)-P solids present in the sediments. Reducing conditions did not develop in the Below zones apparently because of lower sediment organic carbon (OC) contents (0.03-0.04 wt.%) compared to the High-P zones (0.2-0.65 wt.%). At the Muskoka site, where the sediments were noncalcareous, low values of P (<0.2 mg/l) were maintained in both the High-P and Below columns and reducing conditions did not develop. Results indicate the possibility of remobilizing P accumulated below septic system infiltration beds should conditions become more reducing. This could occur if sewage loading patterns change, for example when a seasonal use, lakeshore cottage is converted to a permanent dwelling.

  20. Estimating the change of porosity in the saturated zone during air sparging.

    PubMed

    Tsai, Yih-jin; Kuo, Yu-chia; Chen, Tsu-chi; Chou, Feng-chih

    2006-01-01

    Air sparging is a remedial method for groundwater. The remedial region is similar to the air flow region in the saturated zone. If soil particles are transported during air sparging, the porosity distributions in the saturated zone change, which may alter the flow path of the air. To understand better the particle movement, this study performed a sandbox test to estimate the soil porosity change during air sparging. A clear fracture was formed and the phenomenon of particle movement was observed when the air injection was started. The moved sand filled the porous around the fracture and the reparked sand filled the fracture, reducing the porosity around the fracture. The results obtained from the photographs of the sandbox, the current measurements and the direct sand sample measurements were close to each other and are credible. Therefore, air injection during air sparging causes sand particle movement of sand, altering the characteristic of the sand matrix and the air distribution.

  1. Landslide stability: Role of rainfall-induced, laterally propagating, pore-pressure waves

    USGS Publications Warehouse

    Priest, G.R.; Schulz, W.H.; Ellis, W.L.; Allan, J.A.; Niem, A.R.; Niem, W.A.

    2011-01-01

    The Johnson Creek Landslide is a translational slide in seaward-dipping Miocene siltstone and sandstone (Astoria Formation) and an overlying Quaternary marine terrace deposit. The basal slide plane slopes sub-parallel to the dip of the Miocene rocks, except beneath the back-tilted toe block, where it slopes inland. Rainfall events raise pore-water pressure in the basal shear zone in the form of pulses of water pressure traveling laterally from the headwall graben down the axis of the slide at rates of 1-6 m/hr. Infiltration of meteoric water and vertical pressure transmission through the unsaturated zone has been measured at ~50 mm/hr. Infiltration and vertical pressure transmission were too slow to directly raise head at the basal shear zone prior to landslide movement. Only at the headwall graben was the saturated zone shallow enough for rainfall events to trigger lateral pulses of water pressure through the saturated zone. When pressure levels in the basal shear zone exceeded thresholds defined in this paper, the slide began slow, creeping movement as an intact block. As pressures exceeded thresholds for movement in more of the slide mass, movement accelerated, and differential displacement between internal slide blocks became more pronounced. Rainfall-induced pore-pressure waves are probably a common landslide trigger wherever effective hydraulic conductivity is high and the saturated zone is located near the surface in some part of a slide. An ancillary finding is apparently greater accuracy of grouted piezometers relative to those in sand packs for measurement of pore pressures at the installed depth.

  2. Quartz crystal growth

    DOEpatents

    Baughman, Richard J.

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  3. Cage-rotor induction motor inter-turn short circuit fault detection with and without saturation effect by MEC model.

    PubMed

    Naderi, Peyman

    2016-09-01

    The inter-turn short fault for the Cage-Rotor-Induction-Machine (CRIM) is studied in this paper and its local saturation is taken into account. However, in order to observe the exact behavior of machine, the Magnetic-Equivalent-Circuit (MEC) and nonlinear B-H curve are proposed to provide an insight into the machine model and saturation effect respectively. The electrical machines are generally operated near to their saturation zone due to some design necessities. Hence, when the machine is exposed to a fault such as short circuit or eccentricities, it is operated within its saturation zone and thus, time and space harmonics are integrated and as a result, current and torque harmonics are generated which the phenomenon cannot be explored when saturation is dismissed. Nonetheless, inter-turn short circuit may lead to local saturation and this occurrence is studied in this paper using MEC model. In order to achieve the mentioned objectives, two and also four-pole machines are modeled as two samples and the machines performances are analyzed in healthy and faulty cases with and without saturation effect. A novel strategy is proposed to precisely detect inter-turn short circuit fault according to the stator׳s lines current signatures and the accuracy of the proposed method is verified by experimental results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Innovative low cost procedure for nutrient removal as an integrated element of a decentralised water management concept for rural areas.

    PubMed

    Burde, M; Rolf, F; Grabowski, F

    2001-01-01

    The absence of large rivers with rather high niveau of self purifying effect in parts of east Germany leads to a discharging of the effluent of wastewater treatment plants into the groundwater in many cases. One useful consequence is the idea of realisation of decentralised measures and concepts in urban water resources management concerning municipal wastewater as well as rainfall, precipitation. At the same time, only the upper soil zone--a few decimetres--is water--saturated and thus discharge effective, even when extreme rainfall takes place. Underneath, however, there generally exists an unsaturated soil zone, which is up to now a rather unexplored retardation element of the hydrologic- and substrate-cycle. Nutrient removal in small wastewater treatment plants that are emptying into ground waters is often beneficial. The presented studies optimised an inexpensive method of subsequent enhanced wastewater treatment. The developed reactor is similar to a concentrated subsoil passage. The fixed bed reactor is divided in two sections to achieve aerobic and anoxic conditions for nitrification/denitrification processes. To enhance phosphorus removal, ferrous particles are put into the aerobic zone. Two series of column tests were carried out and a technical pilot plant was built to verify the efficiency of the process. The results show that this method can be implemented successfully.

  5. Reactive transport modeling of processes controlling the distribution and natural attenuation of phenolic compounds in a deep sandstone aquifer

    NASA Astrophysics Data System (ADS)

    Mayer, K. U.; Benner, S. G.; Frind, E. O.; Thornton, S. F.; Lerner, D. N.

    2001-12-01

    Reactive solute transport modeling was utilized to evaluate the potential for natural attenuation of a contaminant plume containing phenolic compounds at a chemical producer in the West Midlands, UK. The reactive transport simulations consider microbially mediated biodegradation of the phenolic compounds (phenols, cresols, and xylenols) by multiple electron acceptors. Inorganic reactions including hydrolysis, aqueous complexation, dissolution of primary minerals, formation of secondary mineral phases, and ion exchange are considered. One-dimensional (1D) and three-dimensional (3D) simulations were conducted. Mass balance calculations indicate that biodegradation in the saturated zone has degraded approximately 1-5% of the organic contaminant plume over a time period of 47 years. Simulations indicate that denitrification is the most significant degradation process, accounting for approximately 50% of the organic contaminant removal, followed by sulfate reduction and fermentation reactions, each contributing 15-20%. Aerobic respiration accounts for less than 10% of the observed contaminant removal in the saturated zone. Although concentrations of Fe(III) and Mn(IV) mineral phases are high in the aquifer sediment, reductive dissolution is limited, producing only 5% of the observed mass loss. Mass balance calculations suggest that no more than 20-25% of the observed total inorganic carbon (TIC) was generated from biodegradation reactions in the saturated zone. Simulations indicate that aerobic biodegradation in the unsaturated zone, before the contaminant entered the aquifer, may have produced the majority of the TIC observed in the plume. Because long-term degradation is limited to processes within the saturated zone, use of observed TIC concentrations to predict the future natural attenuation may overestimate contaminant degradation by a factor of 4-5.

  6. On the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Liu, Jin

    2017-03-01

    Conventional models of pumping tests in unconfined aquifers often neglect the unsaturated flow process. This study concerns the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells positioned in an unconfined aquifer. A mathematical model is established with special consideration of the coupled unsaturated-saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace-finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W) during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant) in unconfined aquifers affected from above by the unsaturated flow process.

  7. Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS

    USGS Publications Warehouse

    Morway, Eric D.; Niswonger, Richard G.; Langevin, Christian D.; Bailey, Ryan T.; Healy, Richard W.

    2013-01-01

    The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship.

  8. Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS.

    PubMed

    Morway, Eric D; Niswonger, Richard G; Langevin, Christian D; Bailey, Ryan T; Healy, Richard W

    2013-03-01

    The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  9. Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania.

    PubMed

    Skuratovič, Žana; Mažeika, Jonas; Petrošius, Rimantas; Martma, Tõnu

    2016-01-01

    The unsaturated zone is an important part of the water cycle, governed by many hydrological and hydrogeological factors and processes and provide water and nutrients to the terrestrial ecosystem. Besides, the soils of the unsaturated zone are regarded as the first natural barrier to a large extent and are able to limit the spread of contaminants depending on their properties. The unsaturated zone provides a linkage between atmospheric moisture, groundwater, and seepage of groundwater to streams, lakes, or other surface water bodies. The major difference between water flow in saturated and unsaturated soils is that the hydraulic conductivity, which is conventionally assumed to be a constant in saturated soils, is a function of the degree of saturation or matrix suction in the unsaturated soils. In Lithuania, low and intermediate level radioactive wastes generated from medicine, industry and research were accumulated at the Maisiagala radioactive waste repository. Short-lived low and intermediate levels radioactive waste, generated during the operation of the Ignalina Nuclear Power Plant (INPP) and arising after the INPP decommissioning will be disposed of in the near surface repository close to the INPP (Stabatiske site). Extensive data sets of the hydraulic properties and water content attributed to unsaturated zone soil profiles of the two radioactive waste disposal sites have been collected and summarized. Globally widespread radionuclide tritium ((3)H) and stable isotope ratio ((18)O/(16)O and (2)H/(1)H) distribution features were determined in precipitation, unsaturated zone soil moisture profiles and groundwater.

  10. Distributed watershed modeling of design storms to identify nonpoint source loading areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endreny, T.A.; Wood, E.F.

    1999-03-01

    Watershed areas that generate nonpoint source (NPS) polluted runoff need to be identified prior to the design of basin-wide water quality projects. Current watershed-scale NPS models lack a variable source area (VSA) hydrology routine, and are therefore unable to identify spatially dynamic runoff zones. The TOPLATS model used a watertable-driven VSA hydrology routine to identify runoff zones in a 17.5 km{sup 2} agricultural watershed in central Oklahoma. Runoff areas were identified in a static modeling framework as a function of prestorm watertable depth and also in a dynamic modeling framework by simulating basin response to 2, 10, and 25 yrmore » return period 6 h design storms. Variable source area expansion occurred throughout the duration of each 6 h storm and total runoff area increased with design storm intensity. Basin-average runoff rates of 1 mm h{sup {minus}1} provided little insight into runoff extremes while the spatially distributed analysis identified saturation excess zones with runoff rates equaling effective precipitation. The intersection of agricultural landcover areas with these saturation excess runoff zones targeted the priority potential NPS runoff zones that should be validated with field visits. These intersected areas, labeled as potential NPS runoff zones, were mapped within the watershed to demonstrate spatial analysis options available in TOPLATS for managing complex distributions of watershed runoff. TOPLATS concepts in spatial saturation excess runoff modelling should be incorporated into NPS management models.« less

  11. Finite-frequency wave propagation through outer rise fault zones and seismic measurements of upper mantle hydration

    USGS Publications Warehouse

    Miller, Nathaniel; Lizarralde, Daniel

    2016-01-01

    Effects of serpentine-filled fault zones on seismic wave propagation in the upper mantle at the outer rise of subduction zones are evaluated using acoustic wave propagation models. Modeled wave speeds depend on azimuth, with slowest speeds in the fault-normal direction. Propagation is fastest along faults, but, for fault widths on the order of the seismic wavelength, apparent wave speeds in this direction depend on frequency. For the 5–12 Hz Pn arrivals used in tomographic studies, joint-parallel wavefronts are slowed by joints. This delay can account for the slowing seen in tomographic images of the outer rise upper mantle. At the Middle America Trench, confining serpentine to fault zones, as opposed to a uniform distribution, reduces estimates of bulk upper mantle hydration from ~3.5 wt % to as low as 0.33 wt % H2O.

  12. Perfusion scintigraphy and patient selection for lung volume reduction surgery.

    PubMed

    Chandra, Divay; Lipson, David A; Hoffman, Eric A; Hansen-Flaschen, John; Sciurba, Frank C; Decamp, Malcolm M; Reilly, John J; Washko, George R

    2010-10-01

    It is unclear if lung perfusion can predict response to lung volume reduction surgery (LVRS). To study the role of perfusion scintigraphy in patient selection for LVRS. We performed an intention-to-treat analysis of 1,045 of 1,218 patients enrolled in the National Emphysema Treatment Trial who were non-high risk for LVRS and had complete perfusion scintigraphy results at baseline. The median follow-up was 6.0 years. Patients were classified as having upper or non-upper lobe-predominant emphysema on visual examination of the chest computed tomography and high or low exercise capacity on cardiopulmonary exercise testing at baseline. Low upper zone perfusion was defined as less than 20% of total lung perfusion distributed to the upper third of both lungs as measured on perfusion scintigraphy. Among 284 of 1,045 patients with upper lobe-predominant emphysema and low exercise capacity at baseline, the 202 with low upper zone perfusion had lower mortality with LVRS versus medical management (risk ratio [RR], 0.56; P = 0.008) unlike the remaining 82 with high perfusion where mortality was unchanged (RR, 0.97; P = 0.62). Similarly, among 404 of 1,045 patients with upper lobe-predominant emphysema and high exercise capacity, the 278 with low upper zone perfusion had lower mortality with LVRS (RR, 0.70; P = 0.02) unlike the remaining 126 with high perfusion (RR, 1.05; P = 1.00). Among the 357 patients with non-upper lobe-predominant emphysema (75 with low and 282 with high exercise capacity) there was no improvement in survival with LVRS and measurement of upper zone perfusion did not contribute new prognostic information. Compared with optimal medical management, LVRS reduces mortality in patients with upper lobe-predominant emphysema when there is low rather than high perfusion to the upper lung.

  13. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    USGS Publications Warehouse

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    Lake Starr and other lakes in the mantled karst terrain of Florida's Central Lake District are surrounded by a conductive surficial aquifer system that receives highly variable recharge from rainfall. In addition, downward leakage from these lakes varies as heads in the underlying Upper Floridan aquifer change seasonally and with pumpage. A saturated three-dimensional finite-difference ground-water flow model was used to simulate the effects of recharge, Upper Floridan aquifer heads, and model time scale on ground-water exchange with Lake Starr. The lake was simulated as an active part of the model using high hydraulic conductivity cells. Simulated ground-water flow was compared to net ground-water flow estimated from a rigorously derived water budget for the 2-year period August 1996-July 1998. Calibrating saturated ground-water flow models with monthly stress periods to a monthly lake water budget will result in underpredicting gross inflow to, and leakage from, ridge lakes in Florida. Underprediction of ground-water inflow occurs because recharge stresses and ground-water flow responses during rainy periods are averaged over too long a time period using monthly stress periods. When inflow is underestimated during calibration, leakage also is underestimated because inflow and leakage are correlated if lake stage is maintained over the long term. Underpredicted leakage reduces the implied effect of ground-water withdrawals from the Upper Floridan aquifer on the lake. Calibrating the weekly simulation required accounting for transient responses in the water table near the lake that generated the greater range of net ground-water flow values seen in the weekly water budget. Calibrating to the weekly lake water budget also required increasing the value of annual recharge in the nearshore region well above the initial estimate of 35 percent of the rainfall, and increasing the hydraulic conductivity of the deposits around and beneath the lake. To simulate the total ground-water inflow to lakes, saturated-flow models of lake basins need to account for the potential effects of rapid and efficient recharge in the surficial aquifer system closest to the lake. In this part of the basin, the ability to accurately estimate recharge is crucial because the water table is shallowest and the response time between rainfall and recharge is shortest. Use of the one-dimensional LEACHM model to simulate the effects of the unsaturated zone on the timing and magnitude of recharge in the nearshore improved the simulation of peak values of ground-water inflow to Lake Starr. Results of weekly simulations suggest that weekly recharge can approach the majority of weekly rainfall on the nearshore part of the lake basin. However, even though a weekly simulation with higher recharge in the nearshore was able to reproduce the extremes of ground-water exchange with the lake more accurately, it was not consistently better at predicting net ground-water flow within the water budget error than a simulation with lower recharge. The more subtle effects of rainfall and recharge on ground-water inflow to the lake were more difficult to simulate. The use of variably saturated flow modeling, with time scales that are shorter than weekly and finer spatial discretization, is probably necessary to understand these processes. The basin-wide model of Lake Starr had difficulty simulating the full spectrum of ground-water inflows observed in the water budget because of insufficient information about recharge to ground water, and because of practical limits on spatial and temporal discretization in a model at this scale. In contrast, the saturated flow model appeared to successfully simulate the effects of heads in the Upper Floridan aquifer on water levels and ground-water exchange with the lake at both weekly and monthly stress periods. Most of the variability in lake leakage can be explained by the average vertical head difference between the lake and a re

  14. Defining the upper age limit of luminescence dating: A case study using long lacustrine records from Chew Bahir, Ethiopia

    NASA Astrophysics Data System (ADS)

    Chapot, Melissa S.; Roberts, Helen M.; Lamb, Henry F.; Schäbitz, Frank; Asrat, Asfawossen; Trauth, Martin H.

    2017-04-01

    Optically stimulated luminescence (OSL) dating is a family of numerical chronometric techniques applied to quartz or feldspar mineral grains to assess the time since these grains were last exposed to sunlight (i.e. deposited), based on the amount of energy they absorbed from ambient radiation during burial. The maximum limit of any OSL dating technique is not defined by a fixed upper age limit, but instead by the maximum radiation dose the sample can accurately record before the OSL signal saturates. The challenge is to assess this upper limit of accurate age determination without necessitating comparison to independent age control. Laboratory saturation of OSL signals can be observed using a dose response curve (DRC) plotting OSL signal intensity against absorbed laboratory radiation dose. When a DRC is fitted with a single saturating exponential, one of the equation's parameters can be used to define a pragmatic upper limit beyond which uncertainties become large and asymmetric (Wintle and Murray, 2006). However, many sub-samples demonstrate DRCs that are best defined by double saturating exponential equations, which cannot be used to define this upper limit. To investigate the reliability of luminescence ages approaching saturation, Chapot et al. (2012) developed the Natural DRC concept, which uses expected ages derived from independent age control, combined with sample-specific measurements of ambient radioactivity, to calculate expected doses of absorbed radiation during burial. Natural OSL signal intensity is then plotted against these expected doses and compared to laboratory-generated DRCs. Using this approach, discrepancies between natural and laboratory DRCs have been observed for the same mineral material as natural OSL signal intensities saturate at absorbed radiation doses lower than the pragmatic upper limit defined by laboratory DRCs, leading to increasing age underestimation with depth without a metric for questioning the age reliability. The present study explores a means of defining the upper limit for reliable luminescence ages for sedimentary records without an established chronologic framework, using a long ( 280m; Cohen et al., 2016) lacustrine record from Chew Bahir, Ethiopia, drilled as part of the Hominin Sites and Paleolakes Drilling Project (HSPDP) of the International Continental Scientific Drilling Programme (ICDP) and CRC806 "Our way to Europe". Natural saturation of OSL signals is explored by plotting natural signal intensity against depth, creating a pseudo-Natural DRC that can be compared to laboratory DRCs. Unlike the homogenous deposits of the Chinese Loess Plateau where the Natural DRC concept was developed, the 280m composite core from Chew Bahir shows significant variation in lithology enabling investigation of the effects of sample to sample variability on Natural DRC construction, and facilitating comparison between signals from fine-quartz, fine-polymineral, and coarse-potassium feldspar grains. This work demonstrates how the concepts of Natural DRCs can be used to define the upper dating limit of sample suites without independent age control, providing valuable information for long sedimentary sequences such as the lacustrine deposits from Chew Bahir. Chapot M.S., et al. (2012), Radiation Measurements 47: 1045-1052. Cohen A, et al. (2016), Scientific Drilling 21: 1-16. Wintle, A.G., Murray, A.S. (2006) Radiation Measurements 41: 369-391.

  15. 77 FR 53769 - Safety Zone; Liberty to Freedom Swims, Liberty Island, Upper Bay and Hudson River, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... 1625-AA00 Safety Zone; Liberty to Freedom Swims, Liberty Island, Upper Bay and Hudson River, NY AGENCY... September 5, 2012 and September 15, 2012 Liberty to Freedom swim events. This temporary safety zone is necessary to protect the maritime public and event participants from the hazards associated with swim events...

  16. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions

    PubMed Central

    Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C

    2014-01-01

    We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. “pre-event” water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as “isostats,” not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Key Points Hillslope connectivity is controlled by small storage changes in soil units Different catchment source waters mix in large riparian wetland storage Isotopes show riparian wetlands set the catchment transit time distribution PMID:25506098

  17. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions.

    PubMed

    Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C

    2014-02-01

    We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. "pre-event" water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as "isostats," not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Hillslope connectivity is controlled by small storage changes in soil unitsDifferent catchment source waters mix in large riparian wetland storageIsotopes show riparian wetlands set the catchment transit time distribution.

  18. Saturation of low-threshold two-plasmon parametric decay leading to excitation of one localized upper hybrid wave

    NASA Astrophysics Data System (ADS)

    Gusakov, E. Z.; Popov, A. Yu.; Saveliev, A. N.

    2018-06-01

    We analyze the saturation of the low-threshold absolute parametric decay instability of an extraordinary pump wave leading to the excitation of two upper hybrid (UH) waves, only one of which is trapped in the vicinity of a local maximum of the plasma density profile. The pump depletion and the secondary decay of the localized daughter UH wave are treated as the most likely moderators of a primary two-plasmon decay instability. The reduced equations describing the nonlinear saturation phenomena are derived. The general analytical consideration is accompanied by the numerical analysis performed under the experimental conditions typical of the off-axis X2-mode ECRH experiments at TEXTOR. The possibility of substantial (up to 20%) anomalous absorption of the pump wave is predicted.

  19. Multi-scale hydrogeological and hydrogeophysical approach to monitor vadose zone hydrodynamics of a karst system

    NASA Astrophysics Data System (ADS)

    Watlet, Arnaud; Poulain, Amaël; Van Camp, Michel; Francis, Olivier; Triantafyllou, Antoine; Rochez, Gaëtan; Hallet, Vincent; Kaufmann, Olivier

    2016-04-01

    The vadose zone of karst systems plays an important role on the water dynamics. In particular, temporary perched aquifers can appear in the subsurface due to changes of weather conditions, reduced evapotranspiration and the vertical gradients of porosity and permeability. Although many difficulties are usually encountered when studying karst environments due to their heterogeneities, cave systems offer an outstanding opportunity to investigate vadose zone from the inside. We present a multi-scale study covering two years of hydrogeological and geophysical monitoring of the Lomme Karst System (LKS) located in the Variscan fold-and-thrust belt (Belgium), a region (~ 3000 ha) that shows many karstic networks within Devonian limestone units. Hydrogeological data cover the whole LKS and involve e.g. flows and levels monitoring or tracer tests performed in both vadose and saturated zones. Such data bring valuable information on the hydrological context of the studied area at the catchment scale. Combining those results with geophysical measurements allows validating and imaging them at a smaller scale, with more integrative techniques. Hydrogeophysical measurements are focused on only one cave system of the LKS, at the Rochefort site (~ 40 ha), taking benefit of the Rochefort Cave Laboratory (RCL) infrastructures. In this study, a microgravimetric monitoring and an Electrical Resistivity Tomography (ERT) monitoring are involved. The microgravimetric monitoring consists in a superconducting gravimeter continuously measuring gravity changes at the surface of the RCL and an additional relative gravimeter installed in the underlying cave located 35 meters below the surface. While gravimeters are sensible to changes that occur in both the vadose zone and the saturated zone of the whole cave system, combining their recorded signals allows enhancing vadose zone's gravity changes. Finally, the surface ERT monitoring provide valuable information at the (sub)-meter scale on the hydrological processes that occur in the vadose zone. Seasonal water variations and preferential flow path are observed. This helps separating the hydrological signature of the vadose zone from that of the saturated zone.

  20. Spatial distribution of triazine residues in a shallow alluvial aquifer linked to groundwater residence time.

    PubMed

    Sassine, Lara; Le Gal La Salle, Corinne; Khaska, Mahmoud; Verdoux, Patrick; Meffre, Patrick; Benfodda, Zohra; Roig, Benoît

    2017-03-01

    At present, some triazine herbicides occurrence in European groundwater, 13 years after their use ban in the European Union, remains of great concern and raises the question of their persistence in groundwater systems due to several factors such as storage and remobilization from soil and unsaturated zone, limited or absence of degradation, sorption in saturated zones, or to continuing illegal applications. In order to address this problem and to determine triazine distribution in the saturated zone, their occurrence is investigated in the light of the aquifer hydrodynamic on the basis of a geochemical approach using groundwater dating tracers ( 3 H/ 3 He). In this study, atrazine, simazine, terbuthylazine, deethylatrazine, deisopropylatrazine, and deethylterbuthylazine are measured in 66 samples collected between 2011 and 2013 from 21 sampling points, on the Vistrenque shallow alluvial aquifer (southern France), covered by a major agricultural land use. The frequencies of quantification range from 100 to 56 % for simazine and atrazine, respectively (LQ = 1 ng L -1 ). Total triazine concentrations vary between 15 and 350 ng L -1 and show three different patterns with depth below the water table: (1) low concentrations independent of depth but related to water origin, (2) an increase in concentrations with depth in the aquifer related to groundwater residence time and triazine use prior to their ban, and (3) relatively high concentrations at low depths in the saturated zone more likely related to a slow desorption of these compounds from the soil and unsaturated zone. The triazine attenuation rate varies between 0.3 for waters influenced by surface water infiltration and 4.8 for water showing longer residence times in the aquifer, suggesting an increase in these rates with water residence time in the saturated zone. Increasing triazine concentrations with depth is consistent with a significant decrease in the use of these pesticides for the last 10 years on this area and highlights the efficiency of their ban.

  1. Global Distribution and Parameter Dependences of Gravity Wave Activity in the Martian Upper Thermosphere Derived from MAVEN NGIMS Observations

    NASA Technical Reports Server (NTRS)

    Terada, Naoki; Leblanc, Francois; Nakagawa, Hiromu; Medvedev, Alexander S.; Yigit, Erdal; Kuroda, Takeshi; Hara, Takuya; England, Scott L.; Fujiwara, Hitoshi; Terada, Kaori; hide

    2017-01-01

    Wavelike perturbations in the Martian upper thermosphere observed by the Neutral Gas Ion Mass Spectrometer (NGIMS) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft have been analyzed. The amplitudes of small-scale perturbations with apparent wavelengths between approx. 100 and approx. 500 km in the Ar density around the exobase show a clear dependence on temperature (T(sub 0)) of the upper thermosphere. The average amplitude of the perturbations is approx. 10% on the dayside and approx. 20% on the nightside, which is about 2 and 10 times larger than those observed in the Venusian upper thermosphere and in the low-latitude region of Earths upper thermosphere, respectively. The amplitudes are inversely proportional to T(sub 0), suggesting saturation due to convective instability in the Martian upper thermosphere. After removing the dependence on T(sub 0), dependences of the average amplitude on the geographic latitude and longitude and solar wind parameters are found to be not larger than a few percent. These results suggest that the amplitudes of small-scale perturbations are mainly determined by convective breaking saturation in the upper thermosphere on Mars, unlike those on Venus and Earth.

  2. SIMS analyses of minor and trace element distributions in fracture calcite from Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Denniston, Rhawn F.; Shearer, Charles K.; Layne, Graham D.; Vaniman, David T.

    1997-05-01

    Fracture-lining calcite samples from Yucca Mountain, Nevada, obtained as part of the extensive vertical sampling in studies of this site as a potential high-level waste repository, have been characterized according to microbeam-scale (25-30 μm) trace and minor element chemistry, and cathodoluminescent zonation patterns. As bulk chemical analyses are limited in spatial resolution and are subject to contamination by intergrown phases, a technique for analysis by secondary ion mass spectrometry (SIMS) of minor (Mn, Fe, Sr) and trace (REE) elements in calcite was developed and applied to eighteen calcite samples from four boreholes and one trench. SIMS analyses of REE in calcite and dolomite have been shown to be quantitative to abundances < 1 × chondrite. Although the low secondary ion yields associated with carbonates forced higher counting times than is necessary in most silicates, Mn, Fe, Sr, and REE analyses were obtained with sub-ppm detection limits and 2-15% analytical precision. Bulk chemical signatures noted by Vaniman (1994) allowed correlation of minor and trace element signatures in Yucca Mountain calcite with location of calcite precipitation (saturated vs. unsaturated zone). For example, upper unsaturated zone calcite exhibits pronounced negative Ce and Eu anomalies not observed in calcite collected below in the deep unsaturated zone. These chemical distinctions served as fingerprints which were applied to growth zones in order to examine temporal changes in calcite crystallization histories; analyses of such fine-scale zonal variations are unattainable using bulk analytical techniques. In addition, LREE (particularly Ce) scavenging of calcite-precipitating solutions by manganese oxide phases is discussed as the mechanism for Ce-depletion in unsaturated zone calcite.

  3. Upper limit for the effect of elastic bending stress on the saturation magnetization of L a0.8S r0.2Mn O3

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Chen, A. P.; Guo, E. J.; Roldan, M. A.; Jia, Q. X.; Fitzsimmons, M. R.

    2018-01-01

    Using polarized neutron reflectometry, we measured the influence of elastic bending stress on the magnetization depth profile of a L a0.8S r0.2Mn O3 (LSMO) epitaxial film grown on a SrTi O3 substrate. The elastic bending strain of ±0.03 % has no obvious effect on the magnetization depth profile at saturation. This result is in stark contrast to that of (L a1 -xP rx)1 -y C ayMn O3 (LPCMO) films for which strain of ±0.01 % produced dramatic changes in the magnetization profile and Curie temperature. We attribute the difference between the influence of strain on the saturation magnetization in LSMO (weak or none) and LPCMO (strong) to a difference in the ability of LSMO (weak or none) and LPCMO (strong) to phase separate. Our observation provides an upper limit of tuning LSMO saturation magnetization via elastic strain effect.

  4. An object-oriented model of the cardiopulmonary system with emphasis on the gravity effect.

    PubMed

    Chuong Ngo; Herranz, Silvia Briones; Misgeld, Berno; Vollmer, Thomas; Leonhardt, Steffen

    2016-08-01

    We introduce a novel comprehensive model of the cardiopulmonary system with emphasis on perfusion and ventilation distribution along the vertical thorax axis under the gravity effect. By using an object-oriented environment, the complex physiological system can be represented by a network of electrical, lumped-element compartments. The lungs are divided into three zones: upper, middle, and lower zone. Blood flow increases with the distance from the apex to the base of the lungs. The upper zone is characterized by a complete collapse of the pulmonary capillary vasculature; thus, there is no flow in this zone. The second zone has a "waterfall effect" where the blood flow is determined by the difference between the pulmonary-arterial and alveolar pressures. At resting position, the upper lobes of the lungs are more expanded than the middle and lower lobes. However, during spontaneous breathing, ventilation is nonuniform with more air entering the lower lobes than the middle and upper lobes. A simulative model of the complete system is developed which shows results in good agreement with the literature.

  5. Surface water-groundwater exchange in transitional coastal environments by airborne electromagnetics: The Venice Lagoon example

    NASA Astrophysics Data System (ADS)

    Viezzoli, A.; Tosi, L.; Teatini, P.; Silvestri, S.

    2010-01-01

    A comprehensive investigation of the mixing between salt/fresh surficial water and groundwater in transitional environments is an issue of paramount importance considering the ecological, cultural, and socio-economic relevance of coastal zones. Acquiring information, which can improve the process understanding, is often logistically challenging, and generally expensive and slow in these areas. Here we investigate the capability of airborne electromagnetics (AEM) at the margin of the Venice Lagoon, Italy. The quasi-3D interpretation of the AEM outcome by the spatially constrained inversion (SCI) methodology allows us to accurately distinguish several hydrogeological features down to a depth of about 200 m. For example, the extent of the saltwater intrusion in coastal aquifers and the transition between the upper salt saturated and the underlying fresher sediments below the lagoon bottom are detected. The research highlights the AEM capability to improve the hydrogeological characterization of subsurface processes in worldwide lagoons, wetlands, deltas.

  6. Results of hydraulic tests in U.S. Department of Energy's wells DOE-4, 5, 6, 7, 8, and 9, Salt Valley, Grand County, Utah

    USGS Publications Warehouse

    Wollitz, Leonard E.; Thordarson, William; Whitfield, Merrick S.; Weir, James E.

    1982-01-01

    Six exploratory wells were drilled into the cap rock underlying Salt Valley, Utah, for geologic, geophysical, and hydrologic data to augment information obtained from three previous test wells. Drilling of three other test holes was abandoned due to caving and loss of drilling tools, Before reaching the zone of saturation; the upper 100 meters of cap rock is unsaturated. Within the saturated part of the cap rock, hydraulic heads generally decrease with depth and to the northwest in this part of the valley.Hydraulic conductivity of the cap rock, as determined from pumping tests, ranged from 9.3 X 10-5 to 2.06 X 10-1 meters per day; as a result, groundwater flow rates in the cap rock are low. Water ranges from a calcium bicarbonate sulfate type on the western edge of the valley to a calcium magnesium sodium bicarbonate, sulfate, chloride type near the center of the valley. Carbon-14 specific activity for cap-rock water yielded an uncorrected age of about 17,000 to 26,000 years before present near the western edge of the valley and about 41,000 years before present near the center of the valley.

  7. System and method for producing metallic iron

    DOEpatents

    Bleifuss, Rodney L [Grand Rapids, MN; Englund, David J [Bovey, MN; Iwasaki, Iwao [Grand Rapids, MN; Fosnacht, Donald R [Hermantown, MN; Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-01-17

    A hearth furnace 10 for producing metallic iron material has a furnace housing 11 having a drying/preheat zone 12, a conversion zone 13, a fusion zone 14, and optionally a cooling zone 15, the conversion zone 13 is between the drying/preheat zone 12 and the fusion zone 14. A moving hearth 20 is positioned within the furnace housing 11. A hood or separation barrier 30 within at least a portion of the conversion zone 13, fusion zone 14 or both separates the fusion zone 14 into an upper region and a lower region with the lower region adjacent the hearth 20 and the upper region adjacent the lower region and spaced from the hearth 20. An injector introduces a gaseous reductant into the lower region adjacent the hearth 20. A combustion region may be formed above the hood or separation barrier.

  8. Self-potential investigations of a gravel bar in a restored river corridor

    USGS Publications Warehouse

    Linde, N.; Doetsch, J.; Jougnot, D.; Genoni, O.; Durst, Y.; Minsley, B.J.; Vogt, T.; Pasquale, N.; Luster, J.

    2011-01-01

    Self-potentials (SP) are sensitive to water fluxes and concentration gradients in both saturated and unsaturated geological media, but quantitative interpretations of SP field data may often be hindered by the superposition of different source contributions and time-varying electrode potentials. Self-potential mapping and close to two months of SP monitoring on a gravel bar were performed to investigate the origins of SP signals at a restored river section of the Thur River in northeastern Switzerland. The SP mapping and subsequent inversion of the data indicate that the SP sources are mainly located in the upper few meters in regions of soil cover rather than bare gravel. Wavelet analyses of the time-series indicate a strong, but non-linear influence of water table and water content variations, as well as rainfall intensity on the recorded SP signals. Modeling of the SP response with respect to an increase in the water table elevation and precipitation indicate that the distribution of soil properties in the vadose zone has a very strong influence. We conclude that the observed SP responses on the gravel bar are more complicated than previously proposed semi-empiric relationships between SP signals and hydraulic head or the thickness of the vadose zone. We suggest that future SP monitoring in restored river corridors should either focus on quantifying vadose zone processes by installing vertical profiles of closely spaced SP electrodes or by installing the electrodes within the river to avoid signals arising from vadose zone processes and time-varying electrochemical conditions in the vicinity of the electrodes. ?? 2011 Author(s).

  9. Self-potential investigations of a gravel bar in a restored river corridor

    USGS Publications Warehouse

    Linde, N.; Doetsch, J.; Jougnot, D.; Genoni, O.; Durst, Y.; Minsley, Burke J.; Vogt, T.; Pasquale, N.; Luster, J.

    2011-01-01

     Self-potentials (SP) are sensitive to water fluxes and concentration gradients in both saturated and unsaturated geological media, but quantitative interpretations of SP field data may often be hindered by the superposition of different source contributions and time-varying electrode potentials. Self-potential mapping and close to two months of SP monitoring on a gravel bar were performed to investigate the origins of SP signals at a restored river section of the Thur River in northeastern Switzerland. The SP mapping and subsequent inversion of the data indicate that the SP sources are mainly located in the upper few meters in regions of soil cover rather than bare gravel. Wavelet analyses of the time-series indicate a strong, but non-linear influence of water table and water content variations, as well as rainfall intensity on the recorded SP signals. Modeling of the SP response with respect to an increase in the water table elevation and precipitation indicate that the distribution of soil properties in the vadose zone has a very strong influence. We conclude that the observed SP responses on the gravel bar are more complicated than previously proposed semi-empiric relationships between SP signals and hydraulic head or the thickness of the vadose zone. We suggest that future SP monitoring in restored river corridors should either focus on quantifying vadose zone processes by installing vertical profiles of closely spaced SP electrodes or by installing the electrodes within the river to avoid signals arising from vadose zone processes and time-varying electrochemical conditions in the vicinity of the electrodes.

  10. The Canadian experience: why Canada decided against an upper limit for cholesterol.

    PubMed

    McDonald, Bruce E

    2004-12-01

    Canada, like the United States, held a "consensus conference on cholesterol" in 1988. Although the final report of the consensus panel recommended that total dietary fat not exceed 30 percent and saturated fat not exceed 10 percent of total energy intake, it did not specify an upper limit for dietary cholesterol. Similarly, the 1990, Health Canada publication "Nutrition Recommendations: The Report of the Scientific Review Committee" specified upper limits for total and saturated fat in the diet but did not specify an upper limit for cholesterol. Canada's Guidelines for Healthy Eating, a companion publication from Health Canada, suggested that Canadians "choose low-fat dairy products, lean meats, and foods prepared with little or no fat" while enjoying "a variety of foods." Many factors contributed to this position but a primary element was the belief that total dietary fat and saturated fat were primary dietary determinants of serum total and low-density lipoprotein (LDL) cholesterol levels, not dietary cholesterol. Hence, Canadian health authorities focused on reducing saturated fat and trans fats in the Canadian diet to help lower blood cholesterol levels rather than focusing on limiting dietary cholesterol. In an effort to allay consumer concern with the premise that blood cholesterol level is linked to dietary cholesterol, organizations such as the Canadian Egg Marketing Agency (CEMA) reminded health professionals, including registered dietitians, family physicians and nutrition educators, of the extensive data showing that there is little relationship between dietary cholesterol intake and cardiovascular mortality. In addition, it was pointed out that for most healthy individuals, endogenous synthesis of cholesterol by the liver adjusts to the level of dietary cholesterol intake. Educating health professionals about the relatively weak association between dietary cholesterol and the relatively strong association between serum cholesterol and saturated fat and trans fats helped keep consumers informed about healthy diets and ways to control blood cholesterol.

  11. Hydrogeologic framework and geochemistry of the intermediate aquifer system in parts of Charlotte, De Soto, and Sarasota counties, Florida

    USGS Publications Warehouse

    Torres, A.E.; Sacks, L.A.; Yobbi, D.K.; Knochenmus, L.A.; Katz, B.G.

    2001-01-01

    The hydrogeologic framework underlying the 600-square-mile study area in Charlotte, De Soto, and Sarasota Counties, Florida, consists of the surficial aquifer system, the intermediate aquifer system, and the Upper Floridan aquifer. The hydrogeologic framework and the geochemical processes controlling ground-water composition were evaluated for the study area. Particular emphasis was given to the analysis of hydrogeologic and geochemical data for the intermediate aquifer system. Flow regimes are not well understood in the intermediate aquifer system; therefore, hydrogeologic and geochemical information were used to evaluate connections between permeable zones within the intermediate aquifer system and between overlying and underlying aquifer systems. Knowledge of these connections will ultimately help to protect ground-water quality in the intermediate aquifer system. The hydrogeology was interpreted from lithologic and geophysical logs, water levels, hydraulic properties, and water quality from six separate well sites. Water-quality samples were collected from wells located along six ground-water flow paths and finished at different depth intervals. The selection of flow paths was based on current potentiometric-surface maps. Ground-water samples were analyzed for major ions; field parameters (temperature, pH, specific conductance, and alkalinity); stable isotopes (deuterium, oxygen-18, and carbon-13); and radioactive isotopes (tritium and carbon-14). The surficial aquifer system is the uppermost aquifer, is unconfined, relatively thin, and consists of unconsolidated sand, shell, and limestone. The intermediate aquifer system underlies the surficial aquifer system and is composed of clastic sediments interbedded with carbonate rocks. The intermediate aquifer system is divided into three permeable zones, the Tamiami/Peace River zone (PZ1), the Upper Arcadia zone (PZ2), and the Lower Arcadia zone (PZ3). The Tamiami/Peace River zone (PZ1) is the uppermost zone and is the thinnest and generally, the least productive zone in the intermediate aquifer system. The Upper Arcadia zone (PZ2) is the middle zone and productivity is generally higher than the overlying permeable zone. The Lower Arcadia zone (PZ3) is the lowermost permeable zone and is the most productive zone in the intermediate aquifer system. The intermediate aquifer system is underlain by the Upper Floridan aquifer, which consists of a thick, stratified sequence of limestone and dolomite. The Upper Floridan aquifer is the most productive aquifer in the study area; however, its use is generally restricted because of poor water quality. Interbedded clays and fine-grained clastics separate the aquifer systems and permeable zones. The hydraulic properties of the three aquifer systems are spatially variable. Estimated trans-missivity and horizontal hydraulic conductivity varies from 752 to 32,900 feet squared per day and from 33 to 1,490 feet per day, respectively, for the surficial aquifer system; from 47 to 5,420 feet squared per day and from 2 to 102 feet per day, respectively, for the Tamiami/Peace River zone (PZ1); from 258 to 24,633 feet squared per day and from 2 to 14 feet per day, respectively, for the Upper Arcadia zone (PZ2); from 766 to 44,900 feet squared per day and from 10 to 201 feet per day, respectively, for the Lower Arcadia zone (PZ3); and from 2,350 to 7,640 feet squared per day and from 10 to 41 feet per day, respectively, for the Upper Floridan aquifer. Confining units separating the aquifer systems have leakance coefficients estimated to range from 2.3 x 10-5 to 5.6 x 10-3 feet per day per foot. Strata composing the confining unit separating the Upper Floridan aquifer from the intermediate aquifer system are substantially more permeable than confining units separating the permeable zones in the intermediate aquifer system or separating the surficial aquifer and intermediate aquifer systems. In Charlotte, Sarasota, and western De Soto Counties, hydraulic

  12. Processes of multibathyal aragonite undersaturation in the Arctic Ocean

    USGS Publications Warehouse

    Wynn, J.G.; Robbins, L.L.; Anderson, L.G.

    2016-01-01

    During 3 years of study (2010–2012), the western Arctic Ocean was found to have unique aragonite saturation profiles with up to three distinct aragonite undersaturation zones. This complexity is produced as inflow of Atlantic-derived and Pacific-derived water masses mix with Arctic-derived waters, which are further modified by physiochemical and biological processes. The shallowest aragonite undersaturation zone, from the surface to ∼30 m depth is characterized by relatively low alkalinity and other dissolved ions. Besides local influence of biological processes on aragonite undersaturation of shallow coastal waters, the nature of this zone is consistent with dilution by sea-ice melt and invasion of anthropogenic CO2 from the atmosphere. A second undersaturated zone at ∼90–220 m depth (salinity ∼31.8–35.4) occurs within the Arctic Halocline and is characterized by elevated pCO2 and nutrients. The nature of this horizon is consistent with remineralization of organic matter on shallow continental shelves bordering the Canada Basin and the input of the nutrients and CO2 entrained by currents from the Pacific Inlet. Finally, the deepest aragonite undersaturation zone is at greater than 2000 m depth and is controlled by similar processes as deep aragonite saturation horizons in the Atlantic and Pacific Oceans. The comparatively shallow depth of this deepest aragonite saturation horizon in the Arctic is maintained by relatively low temperatures, and stable chemical composition. Understanding the mechanisms controlling the distribution of these aragonite undersaturation zones, and the time scales over which they operate will be crucial to refine predictive models.

  13. Summary of hydrologic testing of the Floridan aquifer system at Fort Stewart, Georgia

    USGS Publications Warehouse

    Gonthier, Gerard

    2011-01-01

    Flowmeter surveys at the study site indicate several permeable zones within the Floridan aquifer system. The Upper Floridan aquifer is composed of two water-bearing zones-the upper zone and the lower zone. The upper zone extends from 520 to 650 feet below land surface, contributes 96 percent of the total flow, and is more permeable than the lower zone, which extends from 650 to 705 feet below land surface and contributes the remaining 4 percent of the flow. The Lower Floridan aquifer consists of three zones at depths of 912-947, 1,090-1,139, and 1,211-1,250 feet below land surface that are inter-layered with three less-permeable zones. The Lower Floridan confining unit includes a permeable zone that extends from 793 to 822 feet below land surface. Horizontal hydraulic conductivity values of the Lower Floridan confining unit derived from slug tests within four packer-isolated intervals were from 2 to 20 feet per day, with a high value of 70 feet per day obtained for one of the intervals. Aquifer testing, using analytical techniques and model simulation, indicated the Upper Floridan aquifer had a transmissivity of about 100,000 feet squared per day, and the Lower Floridan aquifer had a transmissivity of 7,000 feet squared per day. Flowmeter surveys, slug tests within packer-isolated intervals, and parameter-estimation results indicate that the hydraulic properties of the Lower Floridan confining unit are similar to those of the Lower Floridan aquifer. Water-level data, for each aquifer test, were filtered for external influences such as barometric pressure, earth-tide effects, and long-term trends to enable detection of small water-level responses to aquifer-test pumping of less than 1 foot. During a 72-hour aquifer test of the Lower Floridan aquifer, a drawdown response of 0.3 to 0.4 foot was observed in two Upper Floridan aquifer wells, one of which was more than 1 mile away from the pumped well.

  14. Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Ruiz, L.; Hrachowitz, M.; Faucheux, M.; Gascuel-Odoux, C.

    2015-01-01

    While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure, and another one is that objective functions are usually based on individual variables time series (e.g. the discharge). This reduces the ability of classical procedures to assess the relevance of the conceptual hypotheses associated with models. We analysed the annual hysteric patterns observed between stream flow and water storage both in the saturated and unsaturated zones of the hillslope and the riparian zone of a headwater catchment in French Brittany (Environmental Research Observatory ERO AgrHys (ORE AgrHys)). The saturated-zone storage was estimated using distributed shallow groundwater levels and the unsaturated-zone storage using several moisture profiles. All hysteretic loops were characterized by a hysteresis index. Four conceptual models, previously calibrated and evaluated for the same catchment, were assessed with respect to their ability to reproduce the hysteretic patterns. The observed relationship between stream flow and saturated, and unsaturated storages led us to identify four hydrological periods and emphasized a clearly distinct behaviour between riparian and hillslope groundwaters. Although all the tested models were able to produce an annual hysteresis loop between discharge and both saturated and unsaturated storage, the integration of a riparian component led to overall improved hysteretic signatures, even if some misrepresentation remained. Such a system-like approach is likely to improve model selection.

  15. 75 FR 53963 - Iron Mask Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ...-long upper dam made of either zoned earth and rockfill or concrete-face earth and rockfill; (2) a 50-foot-high, 950-foot-long earth-filled upper saddle dike A; (3) a 20-foot-high, 400-foot-long earth-filled upper saddle dike B; (4) a 40-foot-high, 6,559-foot-long lower embankment made of zoned earth or...

  16. Field project to obtain pressure core, wireline log, and production test data for evaluation of CO/sub 2/ flooding potential, Conoco MCA unit well No. 358, Maljamar Field, Lea County, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, T.E.; Marlow, R.E.; Wilhelm, M.H.

    1981-11-01

    This report describes part of the work done to fulfill a contract awarded to Gruy Federal, Inc., by the Department of Energy (DOE) on Feburary 12, 1979. The work includes pressure-coring and associated logging and testing programs to provide data on in-situ oil saturation, porosity and permeability distribution, and other data needed for resource characterization of fields and reservoirs in which CO/sub 2/ injection might have a high probability of success. This report details the second such project. Core porosities agreed well with computed log porosities. Core water saturation and computed log porosities agree fairly well from 3692 to 3712more » feet, poorly from 3712 to 3820 feet and in a general way from 4035 to 4107 feet. Computer log analysis techniques incorporating the a, m, and n values obtained from Core Laboratories analysis did not improve the agreement of log versus core derived water saturations. However, both core and log analysis indicated the ninth zone had the highest residual hydrocarbon saturations and production data confirmed the validity of oil saturation determinations. Residual oil saturation, for the perforated and tested intervals were 259 STB/acre-ft for the interval from 4035 to 4055 feet, and 150 STB/acre-ft for the interval from 3692 to 3718 feet. Nine BOPD was produced from the interval 4035 to 4055 feet and no oil was produced from interval 3692 to 3718 feet, qualitatively confirming the relative oil saturations as calculated. The low oil production in the zone from 4022 to 4055 and the lack of production from 3692 to 3718 feet indicated the zone to be at or near residual waterflood conditions as determined by log analysis. This project demonstrates the usefulness of integrating pressure core, log, and production data to realistically evaluate a reservoir for carbon dioxide flood.« less

  17. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    PubMed

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  18. Determination of water saturation using gas phase partitioning tracers and time-lapse electrical conductivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Timothy C.; Oostrom, Martinus; Truex, Michael J.

    2013-05-21

    Water saturation is an important indicator of contaminant distribution and plays a governing role in contaminant transport within the vadose zone. Understanding the water saturation distribution is critical for both remediation and contaminant flux monitoring in unsaturated environments. In this work we propose and demonstrate a method of remotely determining water saturation levels using gas phase partitioning tracers and time-lapse bulk electrical conductivity measurements. The theoretical development includes the partitioning chemistry for the tracers we demonstrate (ammonia and carbon dioxide), as well as a review of the petrophysical relationship governing how these tracers influence bulk conductivity. We also investigate methodsmore » of utilizing secondary information provided by electrical conductivity breakthrough magnitudes induced by the tracers. We test the method on clean, well characterized, intermediate-scale sand columns under controlled conditions. Results demonstrate the capability to predict partitioning coefficients and accurately monitor gas breakthrough curves along the length of the column according to the corresponding electrical conductivity response, leading to accurate water saturation estimates. This work is motivated by the need to develop effective characterization and monitoring techniques for contaminated deep vadose zone environments, and provides a proof-of-concept toward uniquely characterizing and monitoring water saturation levels at the field scale and in three-dimensions using electrical resistivity tomography.« less

  19. A porewater - based stable isotope approach for the investigation of subsurface hydrological processes

    NASA Astrophysics Data System (ADS)

    Garvelmann, J.; Külls, C.; Weiler, M.

    2011-10-01

    Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid moutainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of porewater at various points along a fall line of a pasture hillslope in the southern Black Forest, Germany. The Porewater Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along two transects at the hillslopes. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in stream water during base flow. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.

  20. Pore- and fracture-filling gas hydrate reservoirs in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Green Canyon 955 H well

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2012-01-01

    High-quality logging-while-drilling (LWD) downhole logs were acquired in seven wells drilled during the Gulf of MexicoGasHydrateJointIndustryProjectLegII in the spring of 2009. Well logs obtained in one of the wells, the GreenCanyon Block 955Hwell (GC955-H), indicate that a 27.4-m thick zone at the depth of 428 m below sea floor (mbsf; 1404 feet below sea floor (fbsf)) contains gashydrate within sand with average gashydrate saturations estimated at 60% from the compressional-wave (P-wave) velocity and 65% (locally more than 80%) from resistivity logs if the gashydrate is assumed to be uniformly distributed in this mostly sand-rich section. Similar analysis, however, of log data from a shallow clay-rich interval between 183 and 366 mbsf (600 and 1200 fbsf) yielded average gashydrate saturations of about 20% from the resistivity log (locally 50-60%) and negligible amounts of gashydrate from the P-wave velocity logs. Differences in saturations estimated between resistivity and P-wave velocities within the upper clay-rich interval are caused by the nature of the gashydrate occurrences. In the case of the shallow clay-rich interval, gashydrate fills vertical (or high angle) fractures in rather than fillingpore space in sands. In this study, isotropic and anisotropic resistivity and velocity models are used to analyze the occurrence of gashydrate within both the clay-rich and sand dominated gas-hydrate-bearing reservoirs in the GC955-Hwell.

  1. Upper Cretaceous planktonic stratigraphy of the Göynük composite section, western Tethys (Bolu province, Turkey)

    NASA Astrophysics Data System (ADS)

    Wolfgring, Erik; Liu, Shasha; Wagreich, Michael; Böhm, Katharina; Omer Yilmaz, Ismail

    2017-04-01

    Upper Cretaceous strata exposed at Göynük (Mudurnu-Göynük basin, Bolu Province, Northwestern Anatolia, Turkey) provide a composite geological record from the Upper Santonian to the Maastrichtian. Deposits in this area originate from the Sakarya continent, therefore, a western Tethyan palaeogeographic setting with a palaeolatitude of a bit less than 30 degrees north can be reconstructed. Grey shales and clayey marls are exposed at Göynük and do frequently show volcanic intercalations in the oldest parts of the section, while the uppermost layers depict a more complete deeper-marine record. The pelagic palaeoenvironment, microfossil indicators point towards a distal slope setting, at the Göynük section comprises rich low-latitude planktonic foraminiferal and calcareous nannoplankton assemblages. Benthic foraminifera are scarce, however, some biostratigraphically indicative taxa were recovered. The three sections sampled for this study reveal a composite record from the Campanian Contusotruncana plummerae planktonic foraminifera Zone to the Maastrichtian Racemiguembelina fruticosa planktonic foraminifera Zone. The oldest sub section („GK-section") yields the „mid" Campanian Contusotruncana plummerae or Globotruncana ventricosa Zones and is followed by the „GC-section". The oldest strata in latter record the C. plummerae Zone, the Radotruncana calcarata Zone, Globotruncanita havanensis as well as the Globotruncana aegyptiaca Zone and are overlain by the youngest section examined in this study ("GS -section"). In the latter, we recognize the G. aegyptiaca Zone in the lowermost part, the upper Campanian/lower Maastrichtian Gansserina gansseri Zone, and the Maastrichtian Racemiguembelina fruticosa Zone. Nannofossil standard zones UC15b to UC18 are recorded within the composite section. The planktonic foraminiferal assemblages assessed in the Göynük area feature a well preserved, diverse plankton record that can be correlated to other western Tethyan sections from the Upper Cretaceous. Especially the Austrian Alpine sections (i.e. Northern Calcareous Alps and Ultrahelvetics) show similar environmental and palaeolatitudinal settings and feature a well established biostratigraphical and cyclostratigraphic record. Comparing the multi-proxy record assessed in these sections to the biostratigraphic data from the Göynük region provides useful insights into planktonic foraminiferal palaeoecology and the multistratigraphic high-resolution correlation in the Upper Cretaceous Tethyan realm.

  2. Paleontology and physical stratigraphy of the USGS-Pregnall No. 1 core (DOR-208), Dorchester County, South Carolina

    USGS Publications Warehouse

    Edwards, L.E.; Bybell, L.M.; Gohn, G.S.; Frederiksen, N.O.

    1997-01-01

    Pregnall No. 1, a 346-ft-deep corehole in northern Dorchester County, South Carolina, recovered sediments of late Paleocene, middle and late Eocene, and late Oligocene age. The core bottomed in the Chicora Member of the Williamsburg Formation (Black Mingo Group) of late Paleocene age (calcareous nannofossil Zones NP 7/8 (?) and NP 9). The Chicora (346 to 258 ft depth) consists of two contrasting lithologic units, a lower siliciclastic section of terrigenous sand, silt, and clay, and an upper carbonate section of moldic pelecypod limestone. The Chicora is overlain unconformably by the middle Eocene Moultrie Member of the Santee Limestone (Orangeburg Group). The Moultrie (258.0 to 189.4 ft) consists primarily of bryozoan-pelecypod-peloid packstones and grainstones, which are assigned to calcareous nannofossil Zone NP 16. Unconformably above the Moultrie are the locally shelly, microfossiliferous limestones of the Cross Member of the Santee Limestone (Orangeburg Group), which are assigned to middle Eocene Zone NP 17 and upper Eocene Zone NP 18. The Cross Member (189.4 to 90.9 ft) is unconformably overlain by a very thin, basal section of the upper Eocene Harleyville Formation (Cooper Group). The thin Harleyville section consists of fossiliferous limestone, primarily pelecypod-foraminifer-peloid packstones (90.9 to 85.8 ft), and is assigned to Zone NP 18, although samples from thicker Harleyville sections in the region typically are assigned to upper Eocene Zone NP 19/20. The Harleyville is overlain unconformably by the upper Oligocene Ashley Formation (Cooper Group). The Ashley Formation (85.8 to 30.0 ft) consists of a relatively homogeneous section of calcareous, microfossiliferous, silty and sandy clays assigned to Zones NP 24 and NP 25 (?). Neogene and (or) Quaternary deposits present in the upper 30 ft of the Pregnall section are assigned provisionally to an unnamed unit (30 to 22 ft) and to the Waccamaw Formation(?)(22 to 0 ft).

  3. Enhancement of the complete autotrophic nitrogen removal over nitrite process in a modified single-stage subsurface vertical flow constructed wetland: Effect of saturated zone depth.

    PubMed

    Huang, Menglu; Wang, Zhen; Qi, Ran

    2017-06-01

    This study was conducted to explore enhancement of the complete autotrophic nitrogen removal over nitrite (CANON) process in a modified single-stage subsurface vertical flow constructed wetland (VSSF) with saturated zone, and nitrogen transformation pathways in the VSSF treating digested swine wastewater were investigated at four different saturated zone depths (SZDs). SZD significantly affected nitrogen transformation pathways in the VSSF throughout the experiment. As the SZD was 45cm, the CANON process was enhanced most effectively in the system owing to the notable enhancement of anammox. Correspondingly, the VSSF had the best TN removal performance [(76.74±7.30)%] and lower N 2 O emission flux [(3.50±0.22)mg·(m 2 ·h) - 1 ]. It could be concluded that autotrophic nitrogen removal via CANON process could become a primary route for nitrogen removal in the VSSF with optimized microenvironment that developed as a result of the appropriate SZD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Chloride Concentration in Water from the Upper Permeable Zone of the Tertiary Limestone Aquifer System, Southeastern United States

    USGS Publications Warehouse

    Sprinkle, Craig L.

    1982-01-01

    INTRODUCTION The tertiary limestone aquifer system of the southeastern United States is a sequence of carbonate rocks referred to as the Floridan aquifer in Florida and the principal artesian aquifer in Georgia, Alabama, and South Carolina. More than 3 billion gallons of water are pumped daily from the limestone aquifer; and the system is the principal source of municipal, industrial, and agricultural water supply in south Georgia and most of Florida. The aquifer system includes units of Paleocene to early Miocene age that combine to form a continuous carbonate sequence that is hydraulically connected in varying degrees. In a small area near Brunswick, Ga., a thin sequence of rocks of Late Cretaceous age is part of the system. In and directly downdip from much of the outcrop area, the system consists of one continuous permeable unit. Further downdip the aquifer system generally consists of two major permeable zones separated by a less-permeable unit of highly variable hydraulic properties (very leaky to virtually nonleaky). Conditions for the system vary from unconfined to confined depending upon whether the argillaceous Miocene and younger rocks that form the upper confining unit have been removed by erosion. This report is one of a series of preliminary products depicting the hydrogeologic framework, water chemistry, and hydrology of the aquifer system. The map shows the distribution of chloride ions in water from the upper permeable zone of the limestone aquifer system. The upper permeable zone consists of several formations, primarily the Tampa, Suwannee, Ocala, and Avon Park Limestones (Miller 1981a, b). Chloride concentrations of water within the upper permeable zone vary from nearly zero in recharge areas to many thousands of milligrams per liter (mg/L) in coastal discharge areas. Where the aquifer system discharges into the sea, the upper permeable zone contains increasing amounts of seawater. In these areas, wells that fully penetrate the upper permeable zone will yield water with chloride concentrations that approach that of seawater, about 19500 mg/L.

  5. High-resolution monitoring across the soil-groundwater interface - Revealing small-scale hydrochemical patterns with a novel multi-level well

    NASA Astrophysics Data System (ADS)

    Gassen, Niklas; Griebler, Christian; Stumpp, Christine

    2016-04-01

    Biogeochemical turnover processes in the subsurface are highly variable both in time and space. In order to capture this variability, high resolution monitoring systems are required. Particular in riparian zones the understanding of small-scale biogeochemical processes is of interest, as they are regarded as important buffer zones for nutrients and contaminants with high turnover rates. To date, riparian research has focused on influences of groundwater-surface water interactions on element cycling, but little is known about processes occurring at the interface between the saturated and the unsaturated zone during dynamic flow conditions. Therefore, we developed a new type of high resolution multi-level well (HR-MLW) that has been installed in the riparian zone of the Selke river. This HR-MLW for the first time enables to derive water samples both from the unsaturated and the saturated zone across one vertical profile with a spatial vertical resolution of 0.05 to 0.5 m to a depth of 4 m b.l.s. Water samples from the unsaturated zone are extracted via suction cup sampling. Samples from the saturated zone are withdrawn through glass filters and steel capillaries. Both, ceramic cups and glass filters, are installed along a 1" HDPE piezometer tube. First high resolution hydrochemical profiles revealed a distinct depth-zonation in the riparian alluvial aquifer. A shallow zone beneath the water table carried a signature isotopically and hydrochemically similar to the nearby river, while layers below 1.5 m were influenced by regional groundwater. This zonation showed temporal dynamics related to groundwater table fluctuations and microbial turnover processes. The HR-MLW delivered new insight into mixing and turnover processes between riverwater and groundwater in riparian zones, both in a temporal and spatial dimension. With these new insights, we are able to improve our understanding of dynamic turnover processes at the soil - groundwater interface and of surface -groundwater interactions in riparian zones. In the future, a better prediction and targeted management of buffer mechanisms in riparian zones will be possible.

  6. Modeling: The Right Tool for the Job.

    ERIC Educational Resources Information Center

    Gavanasen, Varut; Hussain, S. Tariq

    1993-01-01

    Reviews the different types of models that can be used in groundwater modeling. Discusses the flow and contaminant transport models in the saturated zone, flow and contaminant transport in variably saturated flow regime, vapor transport, biotransformation models, multiphase models, optimization algorithms, and potentials pitfalls of using these…

  7. Soil Systems for Upscaling Saturated Hydraulic Conductivity (Ksat) for Hydrological Modeling in the Critical Zone

    USDA-ARS?s Scientific Manuscript database

    Successful hydrological model predictions depend on appropriate framing of scale and the spatial-temporal accuracy of input parameters describing soil hydraulic properties. Saturated soil hydraulic conductivity (Ksat) is one of the most important properties influencing water movement through soil un...

  8. Hydrologic and Biogeochemical Connections between Uplands and Streams in Contrasting Landscapes

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Webb, R. M.; Hjerdt, K. N.; Sebestyen, S. D.; Peters, N. E.; Burns, D. A.; Aulenbach, B. T.; Campbell, D. H.; Clow, D. W.; Mast, M. A.; Walker, J. F.; Hunt, R. J.; Troester, J. W.; Larsen, M. C.

    2004-12-01

    We used combinations of hydrometric, chemical, and isotopic evidence to evaluate linkages between upland and riparian zones at the 5 small watersheds of the U.S. Geological Survey Water Energy and Biogeochemical Budget (WEBB) program. These sites span a broad range of climate and topography. At Sleepers River, Vermont, snowmelt induced the water table on hillslopes to rise into the highly transmissive upper soil. The close timing of the groundwater and stream hydrographs suggests a large contribution of hillslope water to the stream. However, the chemistry of these upland groundwaters indicates that only limited areas of convergent groundwater flow directly contribute to streamflow. At Panola Mountain, Georgia, a thin saturated zone develops on the hillslope during large rainstorms. This hillslope groundwater is chemically distinct from riparian groundwater, and transits the riparian zone near land surface with little mixing. Based on chemical mixing analysis, the hillslope contributes up to 30% of the streamwater during moderate to large-sized rainstorms. The Trout Lake site in Wisconsin is a low-lying landscape in highly conductive sandy glacial outwash.Hillslope water chemistry is considerably more dilute (i.e. less evolved) than the regional groundwater that supplies baseflow. The lack of chemical response in streamwater during storms suggests that hillslope water makes a minimal contribution relative to regional groundwater flow. In the alpine/subalpine watershed of Loch Vale, Colorado, much of the subsurface flow occurs on steep slopes of talus. Water in the talus flow has a wide range of residence times. The talus deposits are biogeochemically active and play an important role in maintaining summer baseflow, regulating seasonal changes in streamwater chemistry, and exporting nitrogen from atmospheric deposition. The tropical Icacos watershed in the Luquillo mountains of Puerto Rico receives 4 meters of rainfall annually and has high physical and chemical weathering rates. Streamwater chemistry during baseflow is strongly controlled by groundwater interaction with weathered bedrock. Most hillslope runoff occurs through near-surface macropores with limited soil interaction. This source dominates during storms resulting in stream chemistry that resembles that of the extremely dilute precipitation.We will compare these field observations at each site with the aid of TOPMODEL-based simulation of residence times and observed water quality on the hillslope and riparian saturated zones.

  9. Silurian and Devonian in Vietnam—Stratigraphy and facies

    NASA Astrophysics Data System (ADS)

    Thanh, Tống Duy; Phương, Tạ Hoàng; Janvier, Philippe; Hùng, Nguyễn Hữu; Cúc, Nguyễn Thị Thu; Dương, Nguyễn Thùy

    2013-09-01

    Silurian and Devonian deposits in Viet Nam are present in several zones and regions, including Quang Ninh, East Bac Bo, and West Bac Bo Zones of the Bac Bo Region, the Dien Bien-Nghe An and Binh Tri Thien Zones of the Viet-Lao Region, and the South Trung Bo, and Western Nam Bo Zones of the South Viet Nam Region (Fig. 1). The main lithological features and faunal composition of the Silurian and Devonian Units in all these zones are briefly described. The Silurian consists of deep-water deposits of the upper parts of the Co To and Tan Mai Formations in the Quang Ninh Zone, the upper parts of the Phu Ngu Formation in the East Bac Bo Zone and the upper parts of the Long Dai and Song Ca Formations in the Viet-Lao Region. Shallow water facies Silurian units containing benthic faunas are more widely distributed, including the upper part of the Sinh Vinh and Bo Hieng Formations in the West Bac Bo Zone, the Kien An Formation in the Quang Ninh Zone, and, in the Viet-Lao Region, the Dai Giang Formation and the upper part of the Tay Trang Formation. No Lower and Middle Devonian deposits indicate deep water facies, but they are characterized by different shallow water facies. Continental to near shore, deltaic facies characterize the Lower Devonian Song Cau Group in the East Bac Bo Zone, the Van Canh Formation in the Quang Ninh Zone, and the A Choc Formation in the Binh Tri Thien Zone. Similar facies also occur in the Givetian Do Son Formation of the Quang Ninh Zone, and the Tan Lap Formation in the East Bac Bo Zone, and consist of coarse terrigenous deposits—cross-bedded conglomerates, sandstone, etc. Most Devonian units are characterized by shallow marine shelf facies. Carbonate and terrigenous-carbonate facies dominate, and terrigenous facies occur in the Lower and Middle Devonian sections in some areas only. The deep-water-like facies is characteriztic for some Upper Devonian formations in the Bac Bo (Bang Ca and Toc Tat Formations) and Viet-Lao Regions (Thien Nhan and Xom Nha Formations). These formations contain cherty shale or siliceous limestone, and fossils consist of conodonts, but there are also brachiopods and other benthos. They were possibly deposited in a deep water environment on the slope of the continental shelf. Most Devonian units distributed in the North and the Central Viet Nam consist of self shallow water sediments, and apparently they were deposited in a passive marginal marine environment. The coarse clastic continental or subcontinental deposits are distributed only in some areas of the East Bac Bo and of the Quang Ninh zones of the Bac Bo Region, and in the south of the Binh Tri Thien Zone. This situation suggests the influence of the Caledonian movement at the end of the Silurian period that called the Guangxi movement in South China.

  10. Perfusion Scintigraphy and Patient Selection for Lung Volume Reduction Surgery

    PubMed Central

    Chandra, Divay; Lipson, David A.; Hoffman, Eric A.; Hansen-Flaschen, John; Sciurba, Frank C.; DeCamp, Malcolm M.; Reilly, John J.; Washko, George R.

    2010-01-01

    Rationale: It is unclear if lung perfusion can predict response to lung volume reduction surgery (LVRS). Objectives: To study the role of perfusion scintigraphy in patient selection for LVRS. Methods: We performed an intention-to-treat analysis of 1,045 of 1,218 patients enrolled in the National Emphysema Treatment Trial who were non–high risk for LVRS and had complete perfusion scintigraphy results at baseline. The median follow-up was 6.0 years. Patients were classified as having upper or non–upper lobe–predominant emphysema on visual examination of the chest computed tomography and high or low exercise capacity on cardiopulmonary exercise testing at baseline. Low upper zone perfusion was defined as less than 20% of total lung perfusion distributed to the upper third of both lungs as measured on perfusion scintigraphy. Measurements and Main Results: Among 284 of 1,045 patients with upper lobe–predominant emphysema and low exercise capacity at baseline, the 202 with low upper zone perfusion had lower mortality with LVRS versus medical management (risk ratio [RR], 0.56; P = 0.008) unlike the remaining 82 with high perfusion where mortality was unchanged (RR, 0.97; P = 0.62). Similarly, among 404 of 1,045 patients with upper lobe–predominant emphysema and high exercise capacity, the 278 with low upper zone perfusion had lower mortality with LVRS (RR, 0.70; P = 0.02) unlike the remaining 126 with high perfusion (RR, 1.05; P = 1.00). Among the 357 patients with non–upper lobe–predominant emphysema (75 with low and 282 with high exercise capacity) there was no improvement in survival with LVRS and measurement of upper zone perfusion did not contribute new prognostic information. Conclusions: Compared with optimal medical management, LVRS reduces mortality in patients with upper lobe–predominant emphysema when there is low rather than high perfusion to the upper lung. PMID:20538961

  11. Lithostratigraphy, biostratigraphy and chemostratigraphy of Upper Cretaceous sediments from southern Tanzania: Tanzania drilling project sites 21-26

    NASA Astrophysics Data System (ADS)

    Jiménez Berrocoso, Álvaro; MacLeod, Kenneth G.; Huber, Brian T.; Lees, Jacqueline A.; Wendler, Ines; Bown, Paul R.; Mweneinda, Amina K.; Isaza Londoño, Carolina; Singano, Joyce M.

    2010-04-01

    The 2007 drilling season by the Tanzania drilling project (TDP) reveals a much more expanded Upper Cretaceous sequence than was recognized previously in the Lindi region of southern Tanzania. This TDP expedition targeted recovery of excellently preserved microfossils (foraminifera and calcareous nannofossils) for Late Cretaceous paleoclimatic, paleoceanographic and biostratigraphic studies. A total of 501.17 m of core was drilled at six Upper Cretaceous sites (TDP Sites 21, 22, 23, 24, 24B and 26) and a thin Miocene-Pleistocene section (TDP Site 25). Microfossil preservation at all these sites is good to excellent, with foraminifera often showing glassy shells and consistently good preservation of small and delicate nannofossil taxa. In addition to adding to our knowledge of the subsurface geology, new surface exposures were mapped and the geological map of the region is revised herein. TDP Sites 24, 24B and 26 collectively span the upper Albian to lower-middle Turonian (planktonic foraminiferal Planomalina buxtorfi- Whiteinella archaeocretacea Zones and calcareous nannofossil zones UC0a-UC8a). The bottom of TDP Site 21 is barren, but the rest of the section represents the uppermost Cenomanian-Coniacian ( W. archaeocretacea- Dicarinella concavata Zones and nannofossil zones UC5c-UC10). Bulk organic δ 13C data suggest recovery of part of Ocean Anoxic Event 2 (OAE2) from these four sites. In the upper part of this interval, the lower Turonian nannofossil zones UC6a-7 are characterized by a low-diversity nannoflora that may be related to OAE2 surface-water conditions. TDP Site 22 presents a 122-m-thick, lower-middle Turonian ( W. archaeocretacea- Helvetoglobotruncana helvetica Zones) sequence that includes the nannofossil zones UC6a(-7?), but invariable isotopic curves. Further, a lower to upper Campanian ( Globotruncana ventricosa- Radotruncana calcarata Zones and nannofossil subzones UC15b TP-UC15d TP) succession was drilled at TDP Site 23. Lithologies of the new sites include thin units of gray, medium to coarse sandstones, separating much thicker intervals of dark claystones with organic-rich laminated parts, irregular silty to fine sandstone partings, and rare inoceramid and ammonite debris. These lithofacies are interpreted to have been deposited in outer shelf and upper slope settings and indicate relatively stable sedimentary conditions during most of the Late Cretaceous on the Tanzanian margin.

  12. The temperature dependence of ponded infiltration under isothermal conditions

    USGS Publications Warehouse

    Constantz, J.; Murphy, F.

    1991-01-01

    A simple temperature-sensitive modification to the Green and Ampt infiltration equation is described; this assumes that the temperature dependence of the hydraulic conductivity is reciprocally equal to the temperature dependence of the viscosity of liquid water, and that both the transmission zone saturation and the wetting front matric potential gradient are independent of temperature. This modified Green and Ampt equation is compared with ponded, isothermal infiltration experiments run on repacked columns of Olympic Sand and Aiken Loam at 5, 25, and 60??C. Experimental results showed increases in infiltration rates of at least 300% between 5 and 60??C for both soil materials, with subsequent increases in cumulative infiltration of even greater magnitudes for the loam. There is good agreement between measured and predicted initial infiltration rates at 25??C for both soil materials, yet at 60??C, the predicted results overestimate initial infiltration rates for the sand and underestimate initial rates for the loam. Measurements of the wetting depth vs. cumulative infiltration indicate that the transmission zone saturation increased with increasing temperature for both soil materials. In spite of this increased saturation with temperature, the final infiltration rates at both 25 and 60??C were predicted accurately using the modified Green and Ampt equation. This suggests that increased saturation occurred primarily in dead-end pore spaces, so that transmission zone hydraulic conductivities were unaffected by these temperature-induced changes in saturation. In conclusion, except for initial infiltration rates at 60??C, the measured influence of temperature on infiltration rates was fully accounted for by the temperature dependence of the viscosity of liquid water. ?? 1991.

  13. Porosity determination from 2-D resistivity method in studying the slope failures

    NASA Astrophysics Data System (ADS)

    Maslinda, Umi; Nordiana, M. M.; Bery, A. A.

    2017-07-01

    Slope failures have become the main focus for infrastructures development on hilly areas in Malaysia especially the development of tourism and residential. Lack of understanding and information of the subsoil conditions and geotechnical issues are the main cause of the slope failures. The failures happened are due to a combination of few factors such as topography, climate, geology and land use. 2-D resistivity method was conducted at the collapsed area in Selangor. The 2-D resistivity was done to study the instability of the area. The collapsed occurred because of the subsurface materials was unstable. Pole-dipole array was used with 5 m minimum electrode spacing for the 2-D resistivity method. The data was processed using Res2Dinv software and the porosity was calculated using Archie's law equation. The results show that the saturated zone (1-100 Ωm), alluvium or highly weathered rock (100-1000 Ωm), boulders (1600-7000 Ωm) and granitic bedrock (>7000 Ωm). Generally, the slope failures or landslides occur during the wet season or after rainfall. It is because of the water infiltrate to the slope and cause the saturation of the slope which can lead to landslides. Then, the porosity of saturated zone is usually high because of the water content. The area of alluvium or highly weathered rock and saturated zone have high porosity (>20%) and the high porosity also dominated at almost all the collapsed area which means that the materials with porosity >20% is potential to be saturated, unstable and might trigger slope failures.

  14. Hydrogeology and the distribution of salinity in the Floridan aquifer system, Palm Beach County, Florida

    USGS Publications Warehouse

    Reese, R.S.; Memberg, S.J.

    2000-01-01

    The virtually untapped Floridan aquifer system is considered to be a supplemental source of water for public use in the highly populated coastal area of Palm Beach County. A recent study was conducted to delineate the distribution of salinity in relation to the local hydrogeology and assess the potential processes that might control (or have affected) the distribution of salinity in the Floridan aquifer system. The Floridan aquifer system in the study area consists of the Upper Floridan aquifer, middle confining unit, and Lower Floridan aquifer and ranges in age from Paleocene to Oligocene. Included at its top is part of a lowermost Hawthorn Group unit referred to as the basal Hawthorn unit. The thickness of this basal unit is variable, ranging from about 30 to 355 feet; areas where this unit is thick were paleotopographic lows during deposition of the unit. The uppermost permeable zones in the Upper Floridan aquifer occur in close association with an unconformity at the base of the Hawthorn Group; however, the highest of these zones can be up in the basal unit. A dolomite unit of Eocene age generally marks the top of the Lower Floridan aquifer, but the top of this dolomite unit has a considerable altitude range: from about 1,200 to 2,300 feet below sea level. Additionally, where the dolomite unit is thick, its top is high and the middle confining unit of the Floridan aquifer system, as normally defined, probably is not present. An upper zone of brackish water and a lower zone of water with salinity similar to that of seawater (saline-water zone) are present in the Floridan aquifer system. The brackish-water and saline-water zones are separated by a transition zone (typically 100 to 200 feet thick) in which salinity rapidly increases with depth. The transition zone was defined by using a salinity of 10,000 mg/L (milligrams per liter) of dissolved-solids concentration (about 5,240 mg/L of chloride concentration) at its top and 35,000 mg/L of dissolved-solids concentration (about 18,900 mg/L of chloride concentration) at its base. The base of the brackish-water zone and the top of the saline-water zone were approximately determined mostly by means of resistivity geophysical logs. The base of the brackish-water zone in the study area ranges from about 1,600 feet below sea level near the coast to almost 2,200 feet below sea level in extreme southwestern Palm Beach County. In an area that is peripheral to Lake Okeechobee, the boundary unexpectedly rises to perhaps as shallow as 1,800 feet below sea level. In an upper interval of the brackish-water zone within the Upper Floridan aquifer, chloride concentration of water ranges from 490 to 8,000 mg/L. Chloride concentration correlates with the altitude of the basal contact of the Hawthorn Group, with concentration increasing as the altitude of this contact decreases. Several areas of anomalous salinity where chloride concentration in this upper interval is greater than 3,000 mg/L occur near the coast. In most of these areas, salinity was found to decrease with depth from the upper interval to a lower interval within the brackish-water zone: a reversal of the normal salinity trend within the zone. These areas are also characterized by an anomalously low altitude of the base of the brackish-water zone, and a much greater thickness of the transition zone than normal. These anomalies could be the result of seawater preferentially invading zones of higher permeability in the Upper Floridan aquifer during Pleistocene high stands of sea level and incomplete flushing of this high salinity water by the present-day flow system.

  15. Seismic Tomography of the Arabian-Eurasian Collision Zone and Surrounding Areas

    DTIC Science & Technology

    2010-05-20

    zone. The crustal models correlate well with geologic and tectonic features. The upper mantle tomograms show the images of the subducted Neotethys...We first obtain Pn and Sn velocities using local and regional arrival time data. Second, we obtain the 3-D crustal P and S velocity models...teleseismic tomography provides a high-resolution, 3-D P-wave velocity model for the crust, upper mantle, and the transition zone. The crustal models

  16. SAGUARO: a finite-element computer program for partially saturated porous flow problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Gartling, D.K.; Larson, D.E.

    1983-06-01

    SAGUARO is a finite element computer program designed to calculate two-dimensional flow of mass and energy through porous media. The media may be saturated or partially saturated. SAGUARO solves the parabolic time-dependent mass transport equation which accounts for the presence of partially saturated zones through the use of highly non-linear material characteristic curves. The energy equation accounts for the possibility of partially saturated regions by adjusting the thermal capacitances and thermal conductivities according to the volume fraction of water present in the local pores. Program capabilities, user instructions and a sample problem are presented in this manual.

  17. Identifying riparian zones appropriate for installation of saturated buffers: A multi-watershed assessment

    USDA-ARS?s Scientific Manuscript database

    Saturated riparian buffers are a new type of conservation practice that divert a portion of subsurface tile drainage from discharge to surface water into distribution pipes that discharge tile water into riparian soils. This enables natural processes of biological uptake and denitrification to decre...

  18. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity

    USDA-ARS?s Scientific Manuscript database

    Soil water retention curve (SWRC) and saturated hydraulic conductivity (SHC) are key hydraulic properties for unsaturated zone hydrology and groundwater. Not only are the SWRC and SHC measurements time-consuming, their results are scale dependent. Although prediction of the SWRC and SHC from availab...

  19. Pilot-scale vadose zone microbial biobarriers removed nitrate leaching from a cattle corral

    USDA-ARS?s Scientific Manuscript database

    activities that involve animal wastes can result in the contamination of subsurface soils by nitrates. In saturated or nearly saturated soils microbial biobarriers are a common method used to remove contaminants from water. This field study was conducted beneath a cattle pen in northeast Colorado a...

  20. A Numerical Investigation of Metabolic Reductive Dechlorination in DNAPL Source Zones

    DTIC Science & Technology

    2005-01-01

    APPENDICES ..................................................................................... 249 APPENDIX A UTCHEM VALIDATION...using UTCHEM ............................................................... 82 Table IV.2: Statistics for saturation distribution metrics in 2-D and...Saturation profiles simulated in (a) 2D using UTCHEM and (b) in the same 2D slice extracted from a 3D UTCHEM simulation

  1. Brittle deformation during Alpine basal accretion and the origin of seismicity nests above the subduction interface

    NASA Astrophysics Data System (ADS)

    Menant, Armel; Angiboust, Samuel; Monié, Patrick; Oncken, Onno; Guigner, Jean-Michel

    2018-04-01

    Geophysical observations on active subduction zones have evidenced high seismicity clusters at 20-40 km depth in the fore-arc region whose origin remains controversial. We report here field observations of pervasive pseudotachylyte networks (interpreted as evidence for paleo-seismicity) in the now-exhumed Valpelline continental unit (Dent Blanche complex, NW. Alps, Italy), a tectonic sliver accreted to the upper plate at c. 30 km depth during the Paleocene Alpine subduction. Pre-alpine granulite-facies paragneiss from the core of the Valpelline unit are crosscut by widespread, mm to cm-thick pseudotachylyte veins. Co-seismic heating and subsequent cooling led to the formation of Ti-rich garnet rims, ilmenite needles, Ca-rich plagioclase, biotite microliths and hercynite micro-crystals. 39Ar-40Ar dating yields a 51-54 Ma age range for these veins, thus suggesting that frictional melting events occurred near peak burial conditions while the Valpelline unit was already inserted inside the duplex structure. In contrast, the base of the Valpelline unit underwent synchronous ductile and brittle, seismic deformation under water-bearing conditions followed by a re-equilibration at c. 40 Ma (39Ar-40Ar on retrograded pseudotachylyte veins) during exhumation-related deformation. Calculated rheological profiles suggest that pseudotachylyte veins from the dry core of the granulite unit record upper plate micro-seismicity (Mw 2-3) formed under very high differential stresses (>500 MPa) while the sheared base of the unit underwent repeated brittle-ductile deformation at much lower differential stresses (<40 MPa) in a fluid-saturated environment. These results demonstrate that some of the seismicity clusters nested along and above the plate interface may reflect the presence of stiff tectonic slivers rheologically analogous to the Valpelline unit acting as repeatedly breaking asperities in the basal accretion region of active subduction zones.

  2. Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific oxygen minimum zones

    NASA Astrophysics Data System (ADS)

    Tiano, Laura; Garcia-Robledo, Emilio; Dalsgaard, Tage; Devol, Allan H.; Ward, Bess B.; Ulloa, Osvaldo; Canfield, Donald E.; Peter Revsbech, Niels

    2014-12-01

    Highly sensitive STOX O2 sensors were used for determination of in situ O2 distribution in the eastern tropical north and south Pacific oxygen minimum zones (ETN/SP OMZs), as well as for laboratory determination of O2 uptake rates of water masses at various depths within these OMZs. Oxygen was generally below the detection limit (few nmol L-1) in the core of both OMZs, suggesting the presence of vast volumes of functionally anoxic waters in the eastern Pacific Ocean. Oxygen was often not detectable in the deep secondary chlorophyll maximum found at some locations, but other secondary maxima contained up to 0.4 μmol L-1. Directly measured respiration rates were high in surface and subsurface oxic layers of the coastal waters, reaching values up to 85 nmol L-1 O2 h-1. Substantially lower values were found at the depths of the upper oxycline, where values varied from 2 to 33 nmol L-1 O2 h-1. Where secondary chlorophyll maxima were found the rates were higher than in the oxic water just above. Incubation times longer than 20 h, in the all-glass containers, resulted in highly increased respiration rates. Addition of amino acids to the water from the upper oxycline did not lead to a significant initial rise in respiration rate within the first 20 h, indicating that the measurement of respiration rates in oligotrophic Ocean water may not be severely affected by low levels of organic contamination during sampling. Our measurements indicate that aerobic metabolism proceeds efficiently at extremely low oxygen concentrations with apparent half-saturation concentrations (Km values) ranging from about 10 to about 200 nmol L-1.

  3. Karst system vadose zone hydrodynamics highlighted by an integrative geophysical and hydrogeological monitoring

    NASA Astrophysics Data System (ADS)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Rochez, G.; Kaufmann, O.

    2015-12-01

    The vadose zone of karst systems plays an important role on the water dynamics. In particular, temporary perched aquifers can appear in the subsurface due to changes of climate conditions, diminished evapotranspiration and differences of porosity relative to deeper layers. It is therefore crucial, but challenging, to separate the hydrological signature of the vadose zone from the one of the saturated zone for understanding hydrological processes that occur in the vadose zone. Although many difficulties are usually encountered when studying karst environments due to their heterogeneities, cave systems offer an outstanding opportunity to investigate vadose zone from the inside with various techniques. We present results covering two years of hydrogeological and geophysical monitoring at the Rochefort Cave Laboratory (RCL), located in the Variscan fold-and-thrust belt (Belgium), a region that shows many karstic networks within Devonian limestone units. Hydrogeological data such as flows and levels monitoring or tracer tests performed in both vadose and saturated zones bring valuable information on the hydrological context of the studied area. Combining those results with geophysical measurements allows validating and imaging them with more integrative techniques. A microgravimetric monitoring involves a superconducting gravimeter continuously measuring at the surface of the RCL. Early in 2015, a second relative gravimeter was installed in the underlying cave system located 35 meters below the surface. This set up allows highlighting vadose gravity changes. These relative measurements are calibrated using an absolute gravimeter. 12 additional stations (7 at the surface, 5 in the cave) are monitored on a monthly basis by a spring gravimeter. To complete these gravimetric measurements, the site has been equipped with a permanent Electrical Resistivity Tomography (ERT) monitoring system comprising an uncommon array of surface, borehole and cave electrodes. Although such an unconventional ERT setup is challenging in terms of data processing and interpretation, it provides valuable data for inferring variations of the vadose zone saturation rate.

  4. Abrupt Upper-Plate Tilting Upon Slab-Transition-Zone Collision

    NASA Astrophysics Data System (ADS)

    Crameri, F.; Lithgow-Bertelloni, C. R.

    2017-12-01

    During its sinking, the remnant of a surface plate crosses and interacts with multiple boundaries in Earth's interior. The most-prominent dynamic interaction arises at the upper-mantle transition zone where the sinking plate is strongly affected by the higher-viscosity lower mantle. Within our numerical model, we unravel, for the first time, that this very collision of the sinking slab with the transition zone induces a sudden, dramatic downward tilt of the upper plate towards the subduction trench. The slab-transition zone collision sets parts of the higher-viscosity lower mantle in motion. Naturally, this then induces an overall larger return flow cell that, at its onset, tilts the upper plate abruptly by around 0.05 degrees and over around 10 Millions of years. Such a significant and abrupt variation in surface topography should be clearly visible in temporal geologic records of large-scale surface elevation and might explain continental-wide tilting as observed in Australia since the Eocene or North America during the Phanerozoic. Unravelling this crucial mantle-lithosphere interaction was possible thanks to state-of-the-art numerical modelling (powered by StagYY; Tackley 2008, PEPI) and post-processing (powered by StagLab; www.fabiocrameri.ch/software). The new model that is introduced here to study the dynamically self-consistent temporal evolution of subduction features accurate subduction-zone topography, robust single-sided plate sinking, stronger plates close to laboratory values, an upper-mantle phase transition and, crucially, simple continents at a free surface. A novel, fully-automated post-processing includes physical model diagnostics like slab geometry, mantle flow pattern, upper-plate tilt angle and trench location.

  5. Optical Benson: Following the Impact of Melt Season Progression Using Landsat and Sentinel 2 - Snow Zone Formation Imaged

    NASA Astrophysics Data System (ADS)

    Fahnestock, M. A.; Shuman, C. A.; Alley, K. E.

    2017-12-01

    Snow pit observations on a glaciologically-focussed surface traverse in Greenland allowed Benson [1962, SIPRE (now CRREL) Research Report 70] to define a series of snow zones based on the extent of post-depositional diagenesis of the snowpack. At high elevations, Benson found fine-grained "dry snow" where melt (at that time) was absent year-round, followed down-elevation by a "percolation zone" where surface melt penetrated the snowpack, then a "wet snow zone" where firn became saturated during the peak of the melt season, and finally "superimposed ice" and "bare ice" zones where refrozen surface melt and glacier ice were exposed in the melt season. These snow zones can be discriminated in winter synthetic aperture radar (SAR) imagery of the ice sheet (e.g. Fahnestock et al. 2001), but summer melt reduces radar backscatter and makes it difficult to follow the progression of diagenesis beyond the initial indications of surface melting. While some of the impacts of surface melt (especially bands of blue water-saturated firn) are observed from time to time in optical satellite imagery, it has only become possible to map effects of melt over the course of a summer season with the advent of large-data analysis tools such as Google Earth Engine and the inclusion of Landsat and Sentinel-2 data streams in these tools. A map of the maximum extent of this blue saturated zone through the 2016 melt season is shown in the figure. This image is a true color (RGB) composite, but each pixel in the image shows the color of the surface when the "blueness" of the pixel was at a maximum. This means each pixel can be from a different satellite image acquisition than adjacent pixels - but it also means that the maximum extent of the saturated firn (Benson's wet snow zone) is visible. Also visible are percolation, superimposed and bare ice zones. This analysis, using Landsat 8 Operational Land Imager data, was performed using Google Earth Engine to access and analyze the entire melt season's data. Similar spatial analyses for other years in the record, combined with pixel-by-pixel analysis of each time series through the year, can be used to track the progression and overall effect of the melt season in each year. This view of the progression of a melt season provides a new set of tools to help understand changing surface conditions for ice sheets and glaciers globally.

  6. Method of operating a coal gasifier

    DOEpatents

    Blaskowski, Henry J.

    1979-01-01

    A method of operating an entrained flow coal gasifier which comprises the steps of firing coal at two levels in a combustion zone with near stoichiometric air, removing molten ash from the combustion zone, conveying combustion products upwardly from the combustion zone through a reduction zone, injecting additional coal into the combustion products in the reduction zone and gasifying at least a portion of the coal to form low BTU gas, conveying the gas to a point of use, including also reducing gasifier output by modifying the ratio of air to coal supplied to the upper level of the combustion zone so that the ratio becomes increasingly substoichiometric thereby extending the gasification of coal from the reduction zone into the upper level of the combustion zone, and maintaining the lower level of coal in the combustion zone at near stoichiometric conditions so as to provide sufficient heat to maintain effective slagging conditions.

  7. PHT3D-UZF: A reactive transport model for variably-saturated porous media

    USGS Publications Warehouse

    Wu, Ming Zhi; Post, Vincent E. A.; Salmon, S. Ursula; Morway, Eric D.; Prommer, H.

    2016-01-01

    A modified version of the MODFLOW/MT3DMS-based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably-saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D-UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated-zone flow (UZF1) package. A volume-averaged approach similar to the method used in UZF-MT3DMS was adopted. The PHREEQC-based computation of chemical processes within PHT3D-UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional-scale applications, UZF1 simulates downward-only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably-saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.

  8. Geology, hydrology, and water quality of the Tracy-Dos Palos area, San Joaquin Valley, California

    USGS Publications Warehouse

    Hotchkiss, W.R.; Balding, G.O.

    1971-01-01

    The Tracy-Dos Palos area includes about 1,800 square miles on the northwest side of the San Joaquin Valley. The Tulare Formation of Pliocene and Pleistocene age, terrace deposits of Pleistocene age, and alluvium and flood-basin deposits of Pleistocene and Holocene age constitute the fresh ground-water reservoir Pre-Tertiary and Tertiary sedimentary and crystalline rocks, undifferentiated, underlie the valley and yield saline water. Hydrologically most important, the Tulare Formation is divided into a lower water-bearing zone confined by the Corcoran Clay Member and an upper zone that is confined, semiconfined, and unconfined in different parts of the area. Alluvium and flood-basin deposits are included in the upper zone. Surficial alluvium and flood-basin deposits contain a shallow water-bearing zone. Lower zone wells were flowing in 1908, but subsequent irrigation development caused head declines and land subsidence. Overdraft in both zones ended in 1951 with import of surface water. Bicarbonate water flows into the area from the Sierra Nevada and Diablo Range. Diablo Range water is higher in sulfate, chloride, and dissolved solids. Upper zone water averages between 400 and 1,200 mg/l (milligrams per liter) dissolved solids and water hardness generally exceeds 180 mg/l as calcium carbonate. Nitrate, fluoride, iron, and boron occur in excessive concentrations in water from some wells. Dissolved constituents in lower zone water generally are sodium chloride and sodium sulfate with higher dissolved solids concentration than water from the upper zone. The foothills of the Diablo Range provide favorable conditions for artificial recharge, but shallow water problems plague about 50 percent of the area and artificial recharge is undesirable at this time.

  9. Planktonic foraminifers and radiolarians from the Coniacian-santonian deposits of the Mt. Ak-Kaya, Crimean Mountains, Ukraine

    NASA Astrophysics Data System (ADS)

    Korchagin, O. A.; Bragina, L. G.; Bragin, N. Yu.

    2012-02-01

    The first data on the distribution of planktonic foraminifers and radiolarians in the Mt. Ak-Kaya section, the central Crimean Mountains, are considered. According to the analyzed distribution of foraminifers, the Upper Cretaceous deposits of the section are subdivided into three biostratigraphic units: the Marginotruncana austinensis-Globotruncana desioi (presumably upper Coniacian), Sigalia carpatica (uppermost Coniacian-lower Santonian), and Contusotruncana fornicata-Marginotruncana marginata (upper Santonian) beds. Subdivisions substantiated by distribution of radiolarians are the Alievium praegallowayi-Crucella plana (upper Coniacian-lower Santonian), Alievium gallowayi-Crucella espartoensis (the upper Santonian excluding its uppermost part), and Dictyocephalus (Dictyocryphalus) (?) legumen-Spongosaturninus parvulus (the uppermost Santonian) beds. The Contusotruncana fornicata-Marginotruncana marginata Beds are concurrent to the middle part of the Marsupites laevigatus Zone coupled with the Marsupites testudinarius Zone (the uppermost Santonian). The Alievium gallowayi-Crucella espartoensis Beds are correlative with the upper part of the Alievium gallowayi Zone in the Californian radiolarian zonation. The cooccurring assemblages of planktonic foraminifers and radiolarians provide a possibility to correlate the Coniacian-Santonian deposits within the Crimea-Caucasus region.

  10. Upper limit for the effect of elastic bending stress on the saturation magnetization of L a 0.8 S r 0.2 Mn O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qiang; Chen, A. P.; Guo, Erjia J.

    In this study, using polarized neutron reflectometry, we measured the influence of elastic bending stress on the magnetization depth profile of a La 0.8Sr 0.2MnO 3 (LSMO) epitaxial film grown on a SrTiO 3 substrate. The elastic bending strain of ±0.03% has no obvious effect on the magnetization depth profile at saturation. This result is in stark contrast to that of (La 1-xPr x)1-yCayMnO 3 (LPCMO) films for which strain of ±0.01% produced dramatic changes in the magnetization profile and Curie temperature. We attribute the difference between the influence of strain on the saturation magnetization in LSMO (weak or none)more » and LPCMO (strong) to a difference in the ability of LSMO (weak or none) and LPCMO (strong) to phase separate. Our observation provides an upper limit of tuning LSMO saturation magnetization via elastic strain effect.« less

  11. Upper limit for the effect of elastic bending stress on the saturation magnetization of L a 0.8 S r 0.2 Mn O 3

    DOE PAGES

    Wang, Qiang; Chen, A. P.; Guo, Erjia J.; ...

    2018-01-31

    In this study, using polarized neutron reflectometry, we measured the influence of elastic bending stress on the magnetization depth profile of a La 0.8Sr 0.2MnO 3 (LSMO) epitaxial film grown on a SrTiO 3 substrate. The elastic bending strain of ±0.03% has no obvious effect on the magnetization depth profile at saturation. This result is in stark contrast to that of (La 1-xPr x)1-yCayMnO 3 (LPCMO) films for which strain of ±0.01% produced dramatic changes in the magnetization profile and Curie temperature. We attribute the difference between the influence of strain on the saturation magnetization in LSMO (weak or none)more » and LPCMO (strong) to a difference in the ability of LSMO (weak or none) and LPCMO (strong) to phase separate. Our observation provides an upper limit of tuning LSMO saturation magnetization via elastic strain effect.« less

  12. Upper crustal structure beneath East Java from ambient noise tomography: A preliminary result

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martha, Agustya Adi; Graduate Research on Earthquakes and Active Tectonics, Institut Teknologi Bandung, Bandung; Widiyantoro, Sri

    East Java has a fairly complex geological structure. Physiographically East Java can be divided into three zones, i.e. the Southern Mountains zone in the southern part, the Kendeng zone in the middle part, and the Rembang zone in the northern part. Most of the seismic hazards in this region are due to processes in the upper crust. In this study, the Ambient Noise Tomography (ANT) method is used to image the upper crustal structure beneath East Java. We have used seismic waveform data recorded by 8Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 16 portable seismographs installed formore » 2 to 8 weeks. The data were processed to obtain waveforms fromnoise cross-correlation between pairs of seismographic stations. Our preliminary results indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly as shown by our tomographic images.« less

  13. Imaging the crustal magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii

    USGS Publications Warehouse

    Okubo, Paul G.; Benz, Harley M.; Chouet, Bernard A.

    1997-01-01

    Three-dimensional seismic P-wave traveltime tomography is used to image the magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii. High-velocity bodies (>6.4 km/s) in the upper 9 km of the crust beneath the summits and rift zones of the volcanoes correlate with zones of high magnetic intensities and are interpreted as solidified gabbro-ultramafic cumulates from which the surface volcanism is derived. The proximity of these high-velocity features to the rift zones is consistent with a ridge-spreading model of the volcanic flank. Southeast of the Hilina fault zone, along the south flank of Kilauea, low-velocity material (<6.0 km/s) is observed extending to depths of 9–11 km, indicating that the Hilina fault may extend possibly as deep as the basal decollement. Along the southeast flank of Mauna Loa, a similar low-velocity zone associated with the Kaoiki fault zone is observed extending to depths of 6–8 km. These two upper crustal low-velocity zones suggest common stages in the evolution of the Hawaiian shield volcanoes in which these fault systems are formed as a result of upper crustal deformation in response to magma injection within the volcanic edifice.

  14. The Architecture and Frictional Properties of Faults in Shale

    NASA Astrophysics Data System (ADS)

    De Paola, N.; Imber, J.; Murray, R.; Holdsworth, R.

    2015-12-01

    The geometry of brittle fault zones in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement < 3 m) cut exhumed oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm. Brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates, suggesting that slow, stable sliding faulting should occur within the protolith rocks and slip zone gouges. Experiments at seismic speed (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1), suggesting that seismic ruptures may efficiently propagate in the slip zone of fluid-saturated shale faults. Stable sliding in faults in shale can cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence, limiting oil and gas production during reservoir stimulation. However, fluid saturated conditions can favour seismic slip propagation, with fast and efficient creation of new fracture areas. These processes are very effective at dilational jogs, where fluid circulation may be enhanced, facilitating oil and gas production.

  15. Partially to fully saturated flow through smooth, clean, open fractures: qualitative experimental studies

    NASA Astrophysics Data System (ADS)

    Jones, Brendon R.; Brouwers, Luke B.; Dippenaar, Matthys A.

    2018-05-01

    Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.

  16. Thermal conductivity, bulk properties, and thermal stratigraphy of silicic tuffs from the upper portion of hole USW-G1, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lappin, A.R.; VanBuskirk, R.G.; Enniss, D.O.

    1982-03-01

    Thermal-conductivity and bulk-property measurements were made on welded and nonwelded silicic tuffs from the upper portion of Hole USW-G1, located near the southwestern margin of the Nevada Test Site. Bulk-property measurements were made by standard techniques. Thermal conductivities were measured at temperatures as high as 280{sup 0}C, confining pressures to 10 MPa, and pore pressures to 1.5 MPa. Extrapolation of measured saturated conductivities to zero porosity suggests that matrix conductivity of both zeolitized and devitrified tuffs is independent of stratigraphic position, depth, and probably location. This fact allows development of a thermal-conductivity stratigraphy for the upper portion of Hole G1.more » Estimates of saturated conductivities of zeolitized nonwelded tuffs and devitrified tuffs below the water table appear most reliable. Estimated conductivities of saturated densely welded devitrified tuffs above the water table are less reliable, due to both internal complexity and limited data presently available. Estimation of conductivity of dewatered tuffs requires use of different air thermal conductivities in devitrified and zeolitized samples. Estimated effects of in-situ fracturing generally appear negligible.« less

  17. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.

    PubMed

    Kim, Juyoung; Kim, Heonki; Annable, Michael D

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Characterization of NAPL source zone architecture and dissolution kinetics in heterogeneous porous media using magnetic resonance imaging.

    PubMed

    Zhang, Changyong; Werth, Charles J; Webb, Andrew G

    2007-05-15

    A direct visualization method using magnetic resonance imaging (MRI) was developed to characterize sand grain size distribution, nonaqueous phase liquid (NAPL) source zone architecture, and aqueous flowpaths in a three-dimensional (3-D) flowcell (26.5 cm x 10.5 cm x 10.5 cm) packed with a heterogeneous distribution of five different sand fractions. All images were acquired at a resolution of 0.1875 cm x 0.1875 cm x 0.225 cm. A 1H image of pore water resolved the heterogeneous permeability field; grain size differences as small as 0.1 mm could be distinguished. A time series of 1H images of water doped with the paramagnetic tracer MnCl2 were acquired and used to obtain voxel-scale breakthrough curves. Water preferentially flowed through coarse sands before NAPL release. After NAPL release, the flow bypassed NAPLzones, and bypassing was more evident for high NAPL saturation zones. A time series of 19F images of NAPL were acquired and used to determine voxel-scale NAPL saturation (Sn) during dissolution. Results show that 93% of NAPL mass was in the coarsest sand, most NAPL was trapped as pools and not as residual ganglia, NAPL saturation increased with depth, and the NAPL dissolution front moved vertically from the top to the bottom of the flowcell during the first 170 pore volumes of waterflushed. NAPL component effluent concentrations initially increased due to the development of flow in zones with decreasing NAPL saturation. Flowpath images suggest that this occurs as NAPL transitions from pools (Sn > 0.15) to residual ganglia. The results highlight the importance of flow bypassing and provide the opportunity to develop more accurate NAPL dissolution models.

  19. CO2 content of andesitic melts at graphite-saturated upper mantle conditions with implications for redox state of oceanic basalt source regions and remobilization of reduced carbon from subducted eclogite

    NASA Astrophysics Data System (ADS)

    Eguchi, James; Dasgupta, Rajdeep

    2017-03-01

    We have performed experiments to determine the effects of pressure, temperature and oxygen fugacity on the CO2 contents in nominally anhydrous andesitic melts at graphite saturation. The andesite composition was specifically chosen to match a low-degree partial melt composition that is generated from MORB-like eclogite in the convective, oceanic upper mantle. Experiments were performed at 1-3 GPa, 1375-1550 °C, and fO2 of FMQ -3.2 to FMQ -2.3 and the resulting experimental glasses were analyzed for CO2 and H2O contents using FTIR and SIMS. Experimental results were used to develop a thermodynamic model to predict CO2 content of nominally anhydrous andesitic melts at graphite saturation. Fitting of experimental data returned thermodynamic parameters for dissolution of CO2 as molecular CO2: ln( K 0) = -21.79 ± 0.04, Δ V 0 = 32.91 ± 0.65 cm3mol-1, Δ H 0 = 107 ± 21 kJ mol-1, and dissolution of CO2 as CO3 2-: ln (K 0 ) = -21.38 ± 0.08, Δ V 0 = 30.66 ± 1.33 cm3 mol-1, Δ H 0 = 42 ± 37 kJ mol-1, where K 0 is the equilibrium constant at some reference pressure and temperature, Δ V 0 is the volume change of reaction, and Δ H 0 is the enthalpy change of reaction. The thermodynamic model was used along with trace element partition coefficients to calculate the CO2 contents and CO2/Nb ratios resulting from the mixing of a depleted MORB and the partial melt of a graphite-saturated eclogite. Comparison with natural MORB and OIB data suggests that the CO2 contents and CO2/Nb ratios of CO2-enriched oceanic basalts cannot be produced by mixing with partial melts of graphite-saturated eclogite. Instead, they must be produced by melting of a source containing carbonate. This result places a lower bound on the oxygen fugacity for the source region of these CO2-enriched basalts, and suggests that fO2 measurements made on cratonic xenoliths may not be applicable to the convecting upper mantle. CO2-depleted basalts, on the other hand, are consistent with mixing between depleted MORB and partial melts of a graphite-saturated eclogite. Furthermore, calculations suggest that eclogite can remain saturated in graphite in the convecting upper mantle, acting as a reservoir for C.

  20. Can compliant fault zones be used to measure absolute stresses in the upper crust?

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.; Fialko, Y.

    2009-04-01

    Geodetic and seismic observations reveal long-lived zones with reduced elastic moduli along active crustal faults. These fault zones localize strain from nearby earthquakes, consistent with the response of a compliant, elastic layer. Fault zone trapped wave studies documented a small reduction in P and S wave velocities along the Johnson Valley Fault caused by the 1999 Hector Mine earthquake. This reduction presumably perturbed a permanent compliant structure associated with the fault. The inferred changes in the fault zone compliance may produce a measurable deformation in response to background (tectonic) stresses. This deformation should have the same sense as the background stress, rather than the coseismic stress change. Here we investigate how the observed deformation of compliant zones in the Mojave Desert can be used to constrain the fault zone structure and stresses in the upper crust. We find that gravitational contraction of the coseismically softened zones should cause centimeters of coseismic subsidence of both the compliant zones and the surrounding region, unless the compliant fault zones are shallow and narrow, or essentially incompressible. We prefer the latter interpretation because profiles of line of sight displacements across compliant zones cannot be fit by a narrow, shallow compliant zone. Strain of the Camp Rock and Pinto Mountain fault zones during the Hector Mine and Landers earthquakes suggests that background deviatoric stresses are broadly consistent with Mohr-Coulomb theory in the Mojave upper crust (with μ ≥ 0.7). Large uncertainties in Mojave compliant zone properties and geometry preclude more precise estimates of crustal stresses in this region. With improved imaging of the geometry and elastic properties of compliant zones, and with precise measurements of their strain in response to future earthquakes, the modeling approach we describe here may eventually provide robust estimates of absolute crustal stress.

  1. 78 FR 74009 - Safety Zone; Nike Fireworks, Upper New York Bay, Ellis Island, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2013-0962] Safety Zone; Nike Fireworks, Upper New York Bay, Ellis Island, NY AGENCY: Coast Guard, DHS. ACTION: Notice of... published in the Federal Register on November 9, 2011 (76 FR 69614). [[Page 74010

  2. In Situ Bioremediation of Perchlorate in Vadose Zone Source Areas

    DTIC Science & Technology

    2011-01-01

    agricultural bags (e.g., ITRC, 2008; Evans et al., 2008). Phytoremediation has also been tested for soil treatment (ITRC, 2008). However, these...within the saturated zone (through in situ bioremediation or groundwater extraction and ex-situ treatment), phytoremediation , which is unlikely to

  3. Evolution of crustal stress, pressure and temperature around shear zones during orogenic wedge formation: a 2D thermo-mechanical numerical study

    NASA Astrophysics Data System (ADS)

    Markus Schmalholz, Stefan; Jaquet, Yoann

    2016-04-01

    We study the formation of an orogenic wedge during lithospheric shortening with 2D numerical simulations. We consider a viscoelastoplastic rheology, thermo-mechanical coupling by shear heating and temperature-dependent viscosities, gravity and erosion. In the initial model configuration there is either a lateral temperature variation at the model base or a lateral variation in crustal thickness to generate slight stress variations during lithospheric shortening. These stress variations can trigger the formation of shear zones which are caused by thermal softening associated with shear heating. We do not apply any kind of strain softening, such as reduction of friction angle with progressive plastic strain. The first major shear zone that appears during shortening crosscuts the entire crust and initiates the asymmetric subduction/underthrusting of mainly the mechanically strong lower crust. After some deformation, the first shear zone in the upper crust is abandoned, the deformation propagates towards the foreland and a new shear zone forms only in the upper crust. The shear zone propagation occurs several times where new shear zones form in the upper crust and the mechanically strong top of the lower crust acts as detachment horizon. We calculate the magnitudes of the maximal and minimal principal stresses and of the mean stress (or dynamic pressure), and we record also the temperature for several marker points in the upper and lower crust. We analyse the evolution of stresses and temperature with burial depth and time. Deviatoric stresses (half the differential stress) in the upper crust are up to 200 MPa and associated shear heating in shear zones ranges between 40 - 80 °C. Lower crustal rocks remain either at the base of the orogenic wedge at depths of around 50 km or are subducted to depths of up to 120 km, depending on their position when the first shear zone formed. Largest deviatotric stresses in the strong part of the lower crust are about 1000 MPa and maximal shear heating in shear zones is approximately 200 °C. Marker points can migrate through the main shear zone in the lower crust which remains active throughout lithospheric shortening. Some pressure-temperature paths show an anti-clockwise evolution. The impact of various model parameters on the results is discussed as well as applications of the results to geological data.

  4. Low-Q structure related to partially saturated pores within the reservoir beneath The Geysers area in the northern California

    NASA Astrophysics Data System (ADS)

    Matsubara, M.

    2011-12-01

    A large reservoir is located beneath The Geysers geothermal area, northern California. Seismic tomography revealed high-velocity (high-V) and low-Vp/Vs zones in the reservoir (Julian et al., 1996) and a decrease of Vp/Vs from 1991 to 1998 (Guasekera et al., 2003) owing to withdrawal of steam from the reservoir. I perform attenuation tomography in this region to investigate the state of vapor and liquid within the reservoir. The target region, 38.5-39.0°N and 122.5-123°W, covers The Geysers area. I use seismograms of 1,231 events whose focal mechanism are determined among 65,810 events recorded by the Northern California Earthquake Data Center from 2002 to 2008 in the target region. The band-pass filtered seismograms are analyzed for collecting the maximum amplitude data. There are 26 stations that have a three-component seismometer among 47 seismic stations. I use the P- and S-wave maximum amplitudes during the two seconds after the arrival of those waves in order to avoid coda effects. A total of 8,545 P- and 1,168 S-wave amplitude data for 949 earthquakes recorded at 47 stations are available for the analysis using the attenuation tomographic method derived from the velocity tomographic method (Matsubara et al., 2005, 2008) in which spatial velocity correlation and station corrections are introduced to the original code of Zhao et al. (1992). I use 3-D velocity structure obtained by Thurber et al. (2009). The initial Q value is set to 150, corresponding to the average Q of the northern California (Ford et al., 2010). At sea level, low-Q zones are found extending from the middle of the steam reservoir within the main greywacke to the south part of the reservoir. At a depth of 1 km below sea level, a low-Q zone is located solely in the southern part of the reservoir. However, at a depth of 2 km a low-Q zone is located beneath the northern part of the reservoir. At depths of 1 to 3 km a felsite batholith in the deeper portions of the reservoir, and it corresponds with a high-Q zone. A vertical cross section shows the low-Q zone is consistent with the reservoir as it extends through the main greywacke and into the uppermost part of the felsite. Most of the felsite has high-Q, however, the portion of the reservoir that extends into the felsite has low-Q. The Geysers geothermal area is bounded by Collayomi fault zone to the northeast and the Mercuryville fault zone to the southwest. The Geysers Peak fault runs from northwest to southeast about 3 km southwest of the Mercuryville fault. The Mercuryville fault dips to northeast and the Geysers Peak fault dips to southwest. High-Q zone is located between these faults and the width of this zone broadens as the depth increases corresponding to the fault geometry. The presence of liquid water introduces high-Vp/Vs, however, steam rich zones become low-Vp/Vs. Near the transition zone between the water and steam, laboratory experiments indicate that the amplitude becomes extremely small (Ito et al., 1979). A partially saturated zone has lower Q than a fully saturated zone, and a dry zone has high-Q. A low-Q zone with low-Vp/Vs corresponding to the reservoir indicates that the reservoir is partially saturated with steam and water near transition zone.

  5. Effect of Interannual Variability on the Ocean Acidification-induced Habitat Restriction of the Humboldt Current System.

    NASA Astrophysics Data System (ADS)

    Franco, A. C.; Gruber, N.; Munnich, M.

    2016-02-01

    The Humboldt Current System (HCS) is one of the most productive ecosystems in the world. This high productivity is supported by a large input of nutrients from the subsurface layers to the surface due to year-round upwelling. However, upwelling also supplies waters with low pH and low aragonite saturation state potentially affecting many organisms, especially those that calcify. The influence, extent and source of upwelled water varies substantially on interannual timescales in association with the El Niño/Southern Oscillation (ENSO) phenomenon, accentuating productivity during La Niña events and dampening it during El Niño, altering the dynamics of the whole ecosystem. On top of this natural variability, the continuing acidification of the upper ocean in response to raising atmospheric CO2 may decrease pH further and increase the volume of water corrosive to aragonite in this region, leading to a progressively smaller suitable habitat for sensitive organisms. Here we use an eddy-resolving basin-scale ocean model that covers the whole Pacific Ocean with higher resolution near the coast off South America ( 6 km) to investigate the role of ENSO events on low aragonite saturation episodes and productivity variations. We compare 2 simulations: a hindcast simulation that spans the last 30 years and a future scenario that represents year 2090 (following IPCC's "business-as-usual" scenario). We found that in the region off Peru, the sole effect of increasing atmospheric CO2 to 840 matm shoals the annual average aragonite saturation depth to 30 m, creating a year round presence of aragonite undersaturated water in the euphotic zone. We then contrast the effect on primary productivity and the aragonite saturation state of at least eight El Niño and eight La Niña episodes that have been reported for the past 30 years, in an attempt to answer the question: does habitat availability under future ocean acidification will resemble a pervasive La Niña-like state?

  6. Method for improving dissolution efficiency in gas-absorption and liquid extraction processes. [Patent application

    DOEpatents

    Kanak, B.E.; Stephenson, M.J.

    1980-01-11

    A method is described for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.

  7. Method for improving dissolution efficiency in gas-absorption and liquid extraction processes

    DOEpatents

    Kanak, Brant E.; Stephenson, Michael J.

    1981-01-01

    This invention is a method for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.

  8. Role of deep crustal fluids in the genesis of intraplate earthquakes in the Kachchh region, northwestern India

    NASA Astrophysics Data System (ADS)

    Pavan Kumar, G.; Mahesh, P.; Nagar, Mehul; Mahender, E.; Kumar, Virendhar; Mohan, Kapil; Ravi Kumar, M.

    2017-05-01

    Fluids play a prominent role in the genesis of earthquakes, particularly in intraplate settings. In this study, we present evidence for a highly heterogeneous nature of electrical conductivity in the crust and uppermost mantle beneath the Kachchh rift basin of northwestern India, which is host to large, deadly intraplate earthquakes. We interpret our results of high conductive zones inferred from magnetotelluric and 3-D local earthquake tomography investigations in terms of a fluid reservoir in the upper mantle. The South Wagad Fault (SWF) imaged as a near-vertical north dipping low resistivity zone traversing the entire crust and an elongated south dipping conductor demarcating the North Wagad Fault (NWF) serve as conduits for fluid flow from the reservoir to the middle to lower crustal depths. Importantly, the epicentral zone of the 2001 main shock is characterized as a fluid saturated zone at the rooting of NWF onto the SWF.Plain Language SummaryFluids play a significant role in generation of earthquakes in intraplate and interplate settings. However, knowledge of the nature, origin, and localization of crustal fluids in stable continental interiors (intraplate) remains uncertain. The Kachchh rift basin of northwestern India is host to large, deadly intraplate earthquakes like those in 1819 (Mw7.8) and 2001 (Mw7.7). In the present study we carried out extensive geophysical investigations to understand the cause for seismic activity in the region. The study provides the evidence for the presence of fluids in the seismically active intraplate region of northwest India. This study demonstrates that the dynamics of mantle fluids controlled by geological faults could lead to large and moderate-sized earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EP%26S...70...66Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EP%26S...70...66Y"><span>Resistivity characterisation of Hakone volcano, Central Japan, by three-dimensional magnetotelluric inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoshimura, Ryokei; Ogawa, Yasuo; Yukutake, Yohei; Kanda, Wataru; Komori, Shogo; Hase, Hideaki; Goto, Tada-nori; Honda, Ryou; Harada, Masatake; Yamazaki, Tomoya; Kamo, Masato; Kawasaki, Shingo; Higa, Tetsuya; Suzuki, Takeshi; Yasuda, Yojiro; Tani, Masanori; Usui, Yoshiya</p> <p>2018-04-01</p> <p>On 29 June 2015, a small phreatic eruption occurred at Hakone volcano, Central Japan, forming several vents in the Owakudani geothermal area on the northern slope of the central cones. Intense earthquake swarm activity and geodetic signals corresponding to the 2015 eruption were also observed within the Hakone caldera. To complement these observations and to characterise the shallow resistivity structure of Hakone caldera, we carried out a three-dimensional inversion of magnetotelluric measurement data acquired at 64 sites across the region. We utilised an unstructured tetrahedral mesh for the inversion code of the edge-based finite element method to account for the steep topography of the region during the inversion process. The main features of the best-fit three-dimensional model are a bell-shaped conductor, the bottom of which shows good agreement with the upper limit of seismicity, beneath the central cones and the Owakudani geothermal area, and several buried bowl-shaped conductive zones beneath the Gora and Kojiri areas. We infer that the main bell-shaped conductor represents a hydrothermally altered zone that acts as a cap or seal to resist the upwelling of volcanic fluids. Enhanced volcanic activity may cause volcanic fluids to pass through the resistive body surrounded by the altered zone and thus promote brittle failure within the resistive body. The overlapping locations of the bowl-shaped conductors, the buried caldera structures and the presence of sodium-chloride-rich hot springs indicate that the conductors represent porous media saturated by high-salinity hot spring waters. The linear clusters of earthquake swarms beneath the Kojiri area may indicate several weak zones that formed due to these structural contrasts.[Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160014504','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160014504"><span>Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.</p> <p>2015-01-01</p> <p>Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780034743&hterms=angular+velocity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dangular%2Bvelocity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780034743&hterms=angular+velocity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dangular%2Bvelocity"><span>Single-axis gyroscopic motion with uncertain angular velocity about spin axis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Singh, S. N.</p> <p>1977-01-01</p> <p>A differential game approach is presented for studying the response of a gyro by treating the controlled angular velocity about the input axis as the evader, and the bounded but uncertain angular velocity about the spin axis as the pursuer. When the uncertain angular velocity about the spin axis desires to force the gyro to saturation a differential game problem with two terminal surfaces results, whereas when the evader desires to attain the equilibrium state the usual game with single terminal manifold arises. A barrier, delineating the capture zone (CZ) in which the gyro can attain saturation and the escape zone (EZ) in which the evader avoids saturation is obtained. The CZ is further delineated into two subregions such that the states in each subregion can be forced on a definite target manifold. The application of the game theoretic approach to Control Moment Gyro is briefly discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001BVol...63..462D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001BVol...63..462D"><span>Vesicular komatiites, 3.5-Ga Komati Formation, Barberton Greenstone Belt, South Africa: inflation of submarine lavas and origin of spinifex zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dann, Jesse</p> <p>2001-08-01</p> <p>Komatiites of the 3.5-Ga Komati Formation are ultramafic lavas (>23% MgO) erupted in a submarine, lava plain environment. Newly discovered vesicular komatiites have vesicular upper crusts disrupted by synvolcanic structures that are similar to inflation-related structures of modern lava flows. Detailed outcrop maps reveal flows with upper vesicular zones, 2-15 m thick, which were (1) rotated by differential inflation, (2) intruded by dikes from the interior of the flow, (3) extended, forming a flooded graben, and/or (4) entirely engulfed. The largest inflated structure is a tumulus with 20 m of surface relief, which was covered by a compound flow unit of spinifex flow lobes. The lava that inflated and rotated the upper vesicular crust did not vesiculate, but crystallized as a thick spinifex zone with fist-size skeletal olivine. Instead of representing rapidly cooled lava, the spinifex zone cooled slowly beneath an insulating upper crust during inflation. Overpressure of the inflating lava may have inhibited vesiculation. This work describes the oldest vesicular komatiites known, illustrates the first field evidence for inflated structures in komatiite flows, proposes a new factor in the development of spinifex zones, and concludes that the inflation model is useful for understanding the evolution of komatiite submarine flow fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/138332','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/138332"><span>Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Karasaki, K.; Galloway, D.</p> <p>1991-06-01</p> <p>The planned high-level nuclear waste repository at Yucca Mountain, Nevada, would exist in unsaturated, fractured welded tuff. One possible contaminant pathway to the accessible environment is transport by groundwater infiltrating to the water table and flowing through the saturated zone. Therefore, an effort to characterize the hydrology of the saturated zone is being undertaken in parallel with that of the unsaturated zone. As a part of the saturated zone investigation, there wells-UE-25c{number_sign}1, UE-25c{number_sign}2, and UE-25c{number_sign}3 (hereafter called the c-holes)-were drilled to study hydraulic and transport properties of rock formations underlying the planned waste repository. The location of the c-holes ismore » such that the formations penetrated in the unsaturated zone occur at similar depths and with similar thicknesses as at the planned repository site. In characterizing a highly heterogeneous flow system, several issues emerge. (1) The characterization strategy should allow for the virtual impossibility to enumerate and characterize all heterogeneities. (2) The methodology to characterize the heterogeneous flow system at the scale of the well tests needs to be established. (3) Tools need to be developed for scaling up the information obtained at the well-test scale to the larger scale of the site. In the present paper, the characterization strategy and the methods under development are discussed with the focus on the design and analysis of the field experiments at the c-holes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H33C1615L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H33C1615L"><span>Dynamic Kinetics of Nitrogen Cycle in Groundwater-Surface Water Interaction Zone at Hanford Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Y.; Liu, C.; Liu, Y.; Xu, F.; Yan, A.; Shi, L.; Zachara, J. M.; Gao, Y.; Qian, W.; Nelson, W.; Fredrickson, J.; Zhong, L.; Thompson, C.</p> <p>2015-12-01</p> <p>Nitrogen cycle carried out by microbes is an important geobiological process that has global implications for carbon and nitrogen cycling and climate change. This presentation describes a study of nitrogen cycle in groundwater-surface water interaction zone (GSIZ) at the US Department of Energy's Hanford Site. Groundwater at Hanford sites has long been documented with nitrate contamination. Nearby Columbia River stage changes of up to 3 m every day because of daily discharge fluctuation from upstream Priest Rapids Dam; resulting an exchange of groundwater and surface water in a short time period. Yet, nitrogen cycle in the GSIZ at Hanford Site remains unclear. Column studies have been used to identify nitrogen metabolism pathways and investigate kinetics of nitrogen cycle in groundwater saturated zone, surface water saturated zone, and GSIZ. Functional gene and protein abundances were determined by qPCR and PRISM-SRM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing for sensitive selected reaction monitoring) to identify key enzymatic reactions and metabolic pathways of nitrogen cycle. The results showed that dissimilatory nitrate reduction to ammonium (DNRA) competed with denitrification under anaerobic conditions, reducing 30% of NO3- to NH4+, a cation strongly retained on the sediments. As dissolved oxygen intruded the anaerobic zone with river water, NH4+ was oxidized to NO3-, increasing the mobility of NO3-. Multiplicative Monod models were established to describe nitrogen cycle in columns fed with O2 depleted synthetic groundwater and O2 saturated synthetic river water, respectively. The two models were then coupled to predict the dynamic kinetics of nitrogen cycle in GSIZ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6635007-trace-fossils-sedimentology-late-cretaceous-progradational-barrier-island-sequence-bearpaw-horseshoe-canyon-formations-dorothy-alberta','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6635007-trace-fossils-sedimentology-late-cretaceous-progradational-barrier-island-sequence-bearpaw-horseshoe-canyon-formations-dorothy-alberta"><span>Trace fossils and sedimentology of a Late Cretaceous Progradational Barrier Island sequence: Bearpaw and Horseshoe Canyon Formations, Dorothy, Alberta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Saunders, T.D.; Pemberton, A.G.; Ranger, M.J.</p> <p></p> <p>A well-exposed example of a regressive barrier island succession crops out in the Alberta badlands along the Red Deer River Valley. In the most landward (northwestern) corner of the study area, only shallow-water and subaerial deposits are represented and are dominated by tidal inlet related facies. Seaward (southeast), water depth increases and the succession is typified by open-marine beach to offshore-related facies arranged in coarsening-upward progradational sequence. Detailed sedimentologic and ichnologic analyses of this sequence have allowed for its division into three distinct environmental zones (lower, middle, and upper). The lower zone comprises a laterally diverse assemblage of storm-influenced, lowermore » shoreface through offshore deposits. Outcrop in the northeast is dominated by thick beds of hummocky and/or swaley cross-stratified storm sand. In the southeast, storm events have only minor influence. This lower zone contains a wide diversity of well-preserved trace fossils whose distribution appears to have been influenced by gradients in wave energy, bottom stagnation, and the interplay of storm and fair-weather processes. The middle zone records deposition across an upper shoreface environment. Here, horizontal to low-angle bedding predominates, with interspersed sets of small- and large-scale cross-bedding increasing toward the top. A characteristic feature of the upper part of this zone is the lack of biogenic structures suggesting deposition in an exposed high-energy surf zone. The upper zone records intertidal to supratidal progradation of the shoreline complex. Planar-laminated sandstone forms a distinct foreshore interval above which rhizoliths and organic material become increasingly abundant, marking transition to the backshore. A significant feature of this zone is the occurrence of an intensely bioturbated interval toward the top of the foreshore.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA557219','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA557219"><span>DARLA: Data Assimilation and Remote Sensing for Littoral Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-09-30</p> <p>measurements from the Surf Zone Optics (SZO) experiment in September, 2011. Since optical reflectance saturates for surf zone bubble depths greater than...Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents...pilot experiment at Duck, NC during the Surf Zone Optics DRI Experiment in September, 2010 and participated in planning of the upcoming RIVET DRI</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47854','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47854"><span>Multi-scale streambed topographic and discharge effects on hyporheic at the stream network scale in confined streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Alessandra Marzadri; Daniele Tonina; James A. McKean; Matthew G. Tiedemann; Rohan M. Benjankar</p> <p>2014-01-01</p> <p>The hyporheic zone is the volume of the streambed sediment mostly saturated with stream water. It is the transitional zone between stream and shallow-ground waters and an important ecotone for benthic species, including macro-invertebrates, microorganisms, and some fish species that dwell in the hyporheic zone for parts of their lives. Most hyporheic analyses are...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/1483/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/1483/report.pdf"><span>Geology and ground-water resources of the upper Lodgepole Creek drainage basin, Wyoming, with a section on chemical quality of the water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bjorklund, Louis Jay; Krieger, R.A.; Jochens, E.R.</p> <p>1959-01-01</p> <p>The principal sources of ground-water supply in the upper Lodgepole Creek drainage basin-the part of the basin west of the Wyoming-Nebraska State line-are the Brule formation of Oligocene age, the Arikaree formation of Miocene age, the Ogallala formation of Pliocene age, and the unconsolidated deposits of Quaternary age. The Brule formation is a moderately hard siltstone that generally is not a good aquifer. However, where it is fractured or where the upper part consists of pebbles of reworked siltstone, it will yield large quantities of water to wells. Many wells in the Pine Bluffs lowland, at the east end of the area, derive water from the Brule. The Arikaree formation, which consists of loosely to moderately cemented fine sand, will yield small quantities of water to wells but is not thick enough or permeable enough to supply sufficient water for irrigation. Only a few wells derive water from it. The Ogallala formation consists of lenticular beds of clay, silt, sand, and gravel which, in part, are cemented with calcium carbonate. Only the lower part of the formation is saturated. Nearly all the wells in the upland part of the area tap the Ogallala, but they supply water in amounts sufficient for domestic and stock use only. Two of the wells have a moderately large discharge, and other wells of comparable discharge probably could be drilled in those parts of the upland where the saturated part of the Ogallala is fairly thick. Most of the unconsolidated deposits of Quaternary age are very permeable and, where a sufficient thickness is saturated, will yield large quantities of water to wells. These deposits are a significant source of water supply in the southeastern part of the area. The Chadron formation of Oligocene age, which underlies the Brule formation, is a medium- to coarse-grained sandstone where it crops out in the Islay lowland. No wells tap the Chadron, but it probably would yield small quantities of water to wells. It lies at a relatively shallow depth beneath most of the Islay lowland, near the west end of the area, and at a depth of about 800 feet beneath the Pine Bluffs lowland. In the latter area it probably is finer grained and may not be permeable enough to yield water to wells. All the ground water in the area is derived from precipitation. It is estimated that about 5 percent of the precipitation infiltrates directly to the zone of saturation. The remainder either is evaporated immediately; is retained by the soil, later to be evaporated or transpired; or is discharged by overland flow to the surface drainage courses. Most of the water that reaches the surface drainage courses eventually sinks to the zone of saturation or is evaporated. The slope of the water table and the movement of ground water are generally eastward. The depth to water ranges from less than 10 feet in parts of the valley to about 300 feet in the upland areas. In much of the Pine Bluffs lowland, the depth to water is less than 50 feet. Ground water not pumped from wells within the area is discharged by evapotranspiration where the water table is close to the land surface, by outflow into streams, or by underflow eastward beneath the State line. The chemical quality of ground water from the principal sources is remarkably uniform, and the range in concentration of dissolved constituents is narrow. In general, the water is of the calcium bicarbonate type, is hard (hardness as CaC03 is as high as 246 ppm), and contains less than about 400 parts per million of dissolved solids, which is a moderate mineralization. Silica constitutes a large proportion of the dissolved solids. The water is suitable for irrigation and, except for iron in water from some wells that tap the Ogallala formation, meets the drinking water standards of the U.S. Public Health Service for chemical constituents. Because the water is siliceous, alkaline, and hard, it is unsuitable for many industrial uses unless treated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.H51G0935K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.H51G0935K"><span>Geophysical Responses of Hydrocarbon-impacted Zones at the Various Contamination Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, C.; Ko, K.; Son, J.; Kim, J.</p> <p>2008-12-01</p> <p>One controlled experiment and two field surveys were conducted to investigate the geoelectrical responses of hydrocarbon-contaminated zones, so called smeared zone, on the geophysical data at the hydrocarbon- contaminated sites with various conditions. One controlled physical model experiment with GPR using fresh gasoline and two different 3-D electrical resistivity investigations at the aged sites. One field site (former military facilities for arms maintenance) was mainly contaminated with lubricating oils and the other (former gas station) was contaminated with gasoline and diesel, respectively. The results from the physical model experiment show that GPR signals were enhanced when LNAPL was present as a residual saturation in the water-saturated system due to less attenuation of the electromagnetic energy through the soil medium of the hydrocarbon-impacted zone (no biodegradation), compared to when the medium was saturated with only water (no hydrocarbon impaction). In the former gas station site, 3-D resistivity results demonstrate that the highly contaminated zones were imaged with low resistivity anomalies since the biodegradation of petroleum hydrocarbons has been undergone for many years, causing the drastic increase in the TDS at the hydrocarbon-impacted zones. Finally, 3-D resistivity data obtained from the former military maintenance site show that the hydrocarbon-contaminated zones show high resistivity anomalies since the hydrocarbons such as lubricating oils at the contaminated soils were not greatly influenced by microbial degradation and has relatively well kept their original physical properties of high electrical resistivity. The results of the study illustrated that the hydrocarbon-impacted zones under various contamination conditions yielded various geophysical responses which include (1) enhanced GPR amplitudes at the fresh LNAPL (Gasoline to middle distillates) spill sites, (2) low electrical resistivity anomalies due to biodegradation at the aged LNAPL- impacted sites, and (3) high electrical resistivity anomalies at the fresh or aged sites contaminated with residual products of crude oils (lubricating oils). The study results also show that the geophysical methods, as a non-invasive sounding technique, can be effectively applied to mapping hydrocarbon-contaminated zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189180','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189180"><span>Modeling unsaturated zone flow and runoff processes by integrating MODFLOW-LGR and VSF, and creating the new CFL package</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Borsia, I.; Rossetto, R.; Schifani, C.; Hill, Mary C.</p> <p>2013-01-01</p> <p>In this paper two modifications to the MODFLOW code are presented. One concerns an extension of Local Grid Refinement (LGR) to Variable Saturated Flow process (VSF) capability. This modification allows the user to solve the 3D Richards’ equation only in selected parts of the model domain. The second modification introduces a new package, named CFL (Cascading Flow), which improves the computation of overland flow when ground surface saturation is simulated using either VSF or the Unsaturated Zone Flow (UZF) package. The modeling concepts are presented and demonstrated. Programmer documentation is included in appendices.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.208..918Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.208..918Z"><span>Dependence of shear wave seismoelectrics on soil textures: a numerical study in the vadose zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zyserman, F. I.; Monachesi, L. B.; Jouniaux, L.</p> <p>2017-02-01</p> <p>In this work, we study seismoelectric conversions generated in the vadose zone, when this region is traversed by a pure SH wave. We assume that the soil is a 1-D partially saturated lossy porous medium and we use the van Genuchten's constitutive model to describe the water saturation profile. Correspondingly, we extend Pride's formulation to deal with partially saturated media. In order to evaluate the influence of different soil textures we perform a numerical analysis considering, among other relevant properties, the electrokinetic coupling, coseismic responses and interface responses (IRs). We propose new analytical transfer functions for the electric and magnetic field as a function of the water saturation, modifying those of Bordes et al. and Garambois & Dietrich, respectively. Further, we introduce two substantially different saturation-dependent functions into the electrokinetic (EK) coupling linking the poroelastic and the electromagnetic wave equations. The numerical results show that the electric field IRs markedly depend on the soil texture and the chosen EK coupling model, and are several orders of magnitude stronger than the electric field coseismic ones. We also found that the IRs of the water table for the silty and clayey soils are stronger than those for the sandy soils, assuming a non-monotonous saturation dependence of the EK coupling, which takes into account the charged air-water interface. These IRs have been interpreted as the result of the jump in the viscous electric current density at the water table. The amplitude of the IR is obtained using a plane SH wave, neglecting both the spherical spreading and the restriction of its origin to the first Fresnel zone, effects that could lower the predicted values. However, we made an estimation of the expected electric field IR amplitudes detectable in the field by means of the analytical transfer functions, accounting for spherical spreading of the SH seismic waves. This prediction yields a value of 15 μV m-1, which is compatible with reported values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53C3101W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53C3101W"><span>Emplacement model of obsidian-rhyolite magma deduced from complete internal section of the Akaishiyama lava, Shirataki, northern Hokkaido, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wada, K.; Sano, K.</p> <p>2016-12-01</p> <p>Simultaneously explosive and effusive eruptions of silicic magmas has shed light on the vesiculation and outgassing history of ascending magmas in the conduit and emplacement model of obsidian-rhyolite lavas (Castro et al., 2014; Shipper et al, 2013). As well as the knowledge of newly erupted products such as 2008-2009 Chaitén and 2011-2012 Cordón Caule eruptions, field and micro-textural evidences of well-exposed internal structure of obsidian-rhyolite lava leads to reveal eruption processes of silicic magmas. The Shirataki monogenetic volcano field, 2.2 million year age, northern Hokkaido, Japan, contains many outcrops of obsidian and vesiculated rhyolite zones (SiO2=76.7-77.4 wt.%). Among their outcrops, Akaishiyama lava shows good exposures of internal sections from the top to the bottom along the Kyukasawa valley with thickness of about 190 meters, showing the symmetrical structure comprising a upper clastic zone (UCZ; 5m thick), an upper dense obsidian zone (UDO; 15m), an upper banded obsidian zone (UBO; 70-80m), a central rhyolite zone (CR; 65m), a lower banded obsidian zone (LBO; 15m), a lower dense obsidian zone (LDO; 20m), and a lower clastic zone (LCZ; 3m). The upper banded obsidian zone is characterized by existence of spherulite concentration layers with tuffisite veins and rhyolite enclaves. Spherulites consisting of albite, cristobalaite and obsidian glass, are clustered in the dense obsidian. Tuffisite veins show brecciated obsidians in tuffaceous matrix, showing an outgassing path during the emplacement of obsidian lava. Perpendicular dip of spherulite parallel rows indicates the banded zone itself was the domain of vent area. From the observation of these occurrences in the internal section and rock texture, we show the qualitative formation model of Shirataki obsidian-rhyolite lava.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811177C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811177C"><span>Rheological structure of the lithosphere in plate boundary strike-slip fault zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.</p> <p>2016-04-01</p> <p>How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault systems support the prediction for constant shear strength (˜10 MPa) throughout the lithosphere; the stress magnitude is controlled by the shear strength of the upper crustal faults. Fault rupture in the upper crust induces displacement rate loading of the upper mantle, which in turn, causes strain localization in the mantle shear zone beneath the strike-slip fault. Such forced localization leads to higher stresses and strain rates in the shear zone compared to the surrounding rocks. Low mantle viscosity within the shear zone is critical for facilitating mantle flow, which induces widespread crustal deformation and displacement loading. The lithospheric feedback model suggests that strike-slip fault zones are not mechanically stratified in terms of shear stress, and that it is the time-dependent interaction of the different lithospheric layers - rather than their relative strengths - that governs the rheological behavior of the plate boundary, strike-slip fault zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/tm/2006/tm6a19/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/tm/2006/tm6a19/"><span>Documentation of the Unsaturated-Zone Flow (UZF1) Package for modeling Unsaturated Flow Between the Land Surface and the Water Table with MODFLOW-2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Niswonger, Richard G.; Prudic, David E.; Regan, R. Steven</p> <p>2006-01-01</p> <p>Percolation of precipitation through unsaturated zones is important for recharge of ground water. Rain and snowmelt at land surface are partitioned into different pathways including runoff, infiltration, evapotranspiration, unsaturated-zone storage, and recharge. A new package for MODFLOW-2005 called the Unsaturated-Zone Flow (UZF1) Package was developed to simulate water flow and storage in the unsaturated zone and to partition flow into evapotranspiration and recharge. The package also accounts for land surface runoff to streams and lakes. A kinematic wave approximation to Richards? equation is solved by the method of characteristics to simulate vertical unsaturated flow. The approach assumes that unsaturated flow occurs in response to gravity potential gradients only and ignores negative potential gradients; the approach further assumes uniform hydraulic properties in the unsaturated zone for each vertical column of model cells. The Brooks-Corey function is used to define the relation between unsaturated hydraulic conductivity and water content. Variables used by the UZF1 Package include initial and saturated water contents, saturated vertical hydraulic conductivity, and an exponent in the Brooks-Corey function. Residual water content is calculated internally by the UZF1 Package on the basis of the difference between saturated water content and specific yield. The UZF1 Package is a substitution for the Recharge and Evapotranspiration Packages of MODFLOW-2005. The UZF1 Package differs from the Recharge Package in that an infiltration rate is applied at land surface instead of a specified recharge rate directly to ground water. The applied infiltration rate is further limited by the saturated vertical hydraulic conductivity. The UZF1 Package differs from the Evapotranspiration Package in that evapotranspiration losses are first removed from the unsaturated zone above the evapotranspiration extinction depth, and if the demand is not met, water can be removed directly from ground water whenever the depth to ground water is less than the extinction depth. The UZF1 Package also differs from the Evapotranspiration Package in that water is discharged directly to land surface whenever the altitude of the water table exceeds land surface. Water that is discharged to land surface, as well as applied infiltration in excess of the saturated vertical hydraulic conductivity, may be routed directly as inflow to specified streams or lakes if these packages are active; otherwise, this water is removed from the model. The UZF1 Package was tested against the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model for a vertical unsaturated flow problem that includes evapotranspiration losses. This report also includes an example in which MODFLOW-2005 with the UZF1 Package was used to simulate a realistic surface-water/ground-water flow problem that includes time and space variable infiltration, evapotranspiration, runoff, and ground-water discharge to land surface and to streams. Another simpler problem is presented so that the user may use the input files as templates for new problems and to verify proper code installation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMMR33A2640A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMMR33A2640A"><span>High strain rate behavior of saturated and non-saturated sandstone: implications for earthquake mechanisms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aben, F. M.; Doan, M. L.; Gratier, J. P.; Renard, F.</p> <p>2015-12-01</p> <p>Damage zones of active faults control their resistance to rupture and transport properties. Hence, knowing the damage's origin is crucial to shed light on the (paleo)seismic behavior of the fault. Coseismic damage in the damage zone occurs by stress-wave loading of a passing earthquake rupture tip, resulting in dynamic (high strain rate) loading and subsequent dynamic fracturing or pulverization. Recently, interest in this type of damage has increased and several experimental studies were performed on dry rock specimens to search for pulverization-controlling parameters. However, the influence of fluids in during dynamic loading needs to be constrained. Hence, we have performed compressional dynamic loading experiments on water saturated and oven dried Vosges sandstone samples using a Split Hopkinson Pressure Bar apparatus. Due to the high porosity in these rocks, close to 20%, the effect of fluids should be clear. Afterwards, microstructural analyses have been applied on thin sections. Water saturated samples reveal dynamic mechanical behavior that follows linear poro-elasticity for undrained conditions: the peak strength of the sample decreases by 30-50% and the accumulated strain increases relative to the dry samples that were tested under similar conditions. The mechanical behavior of partially saturated samples falls in between. Microstructural studies on thin section show that fractures are restricted to some quartz grains while other quartz grains remain intact, similar to co-seismically damaged sandstones observed in the field. Most deformation is accommodated by inter-granular processes, thereby appointing an important role to the cement matrix in between grains. Intra-granular fracture damage is highest for the saturated samples. The presence of pore fluids in the rocks lower the dynamic peak strength, especially since fast dynamic loading does not allow for time-dependent fluid dissipation. Thus, fluid-saturated rocks would show undrained mechanical behavior, creating local overpressure in the pore that breaks the inter-granular cement. This strength-decreasing effect provides an explanation for the presence of pulverized and coseismically damaged rocks at depth and extends the range of dynamic stress where dynamic damage can occur in fault zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/1839l/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/1839l/report.pdf"><span>Geology and ground-water resources of Fillmore County, Nebraska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Keech, Charles Franklin; Dreeszen, V.H.</p> <p>1968-01-01</p> <p>Fillmore County, an area 24 miles square, lies in the eastern part of the Nebraska loess plain. Although tributaries of the Big Blue River have eroded valleys into this plain, much of the original surface is intact. Broad flats and numerous shallow undrained depressions characterize the plain. The county is underlain by unconsolidated deposits of Quaternary age to depths ranging from about 80 to 450 feet. The upper part of this depositional sequence consists largely of wind-deposited clayey silt, and the lower part of stream-deposited sand and gravel. In part of the county, deposits of glacial till also are included. The Quaternary deposits mantle an eroded surface of marine-deposited strata of Cretaceous age. The lower deposits of Quaternary age are saturated and constitute a highly productive aquifer throughout much of the county. The saturated zone ranges from about 20 to 350 feet in thickness. Replenishment to this aquifer, derived principally from precipitation, is believed to average about 1.4 inches per year. Because the quantity of ground water pumped per year exceeds the average annual quantity of recharge, some of the water used for irrigation is from storage. Consequently, water levels in wells .are declining. This trend is likely to continue. The ground water is of the calcium bicarbonate type and is hard, but it is chemically suitable for irrigation use on most soils in the county.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012HESS...16..631G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012HESS...16..631G"><span>A porewater-based stable isotope approach for the investigation of subsurface hydrological processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garvelmann, J.; Külls, C.; Weiler, M.</p> <p>2012-02-01</p> <p>Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid mountainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of pore water at various points along two fall lines of a pasture hillslope in the southern Black Forest, Germany. The Porewater-based Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along transects at the hillslope. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in streamwater during base flow conditions indicating the importance of the groundwater component in the catchment. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016028','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016028"><span>The role of soil processes in determining mechanisms of slope failure and hillslope development in a humid-tropical forest eastern Puerto Rico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Simon, A.; Larsen, M.C.; Hupp, C.R.</p> <p>1990-01-01</p> <p>Translational failures, with associated downslope earthflow components and shallow slides, appear to be the primary mechanism of hillslope denudation in the humid tropical forests of the mountains of eastern Puerto Rico. In-situ weathering of quartz diorite and marine-deposited volcaniclastics produces residual soil (saprolite; up to 21 m deep) / weathered rock profiles. Discontinuous zones of contrasting density and permeability particularly in quartz-diorite slopes at 0.5 m, and between 3 and 7 m, create both pathways and impedances for water that can result in excess pore pressures and, ultimately, aid in determining the location of failure planes and magnitudes of slope failures. In combination with relict fractures which create planes of weakness within the saprolite, and the potential significance of tensile stresses in the upper zone of saprolite (hypothesized to be caused by subsurface soil creep), shear failure can then occur during or after periods of heavy rainfall. Results of in-situ shear-strength testing show negative y-intercepts on the derived Mohr-Coulomb failure envelopes (approximately 50% of all tests) that are interpreted as apparent tensile stresses. Observation of tension cracks 1-2 m deep support the test data. Subsurface soil creep can cause extension of the soil and the development of tensile stresses along upper-slope segments. Shear-strength data support this hypothesis for both geologic types. Apparent values of maximum and mean tensile stress are greatest along upper slopes (16.5 and 6.29 kPa). Previously documented maximum rates of downslope movement coincided with local minima of shear strength, and the shear-strength minimum for all tests was located near 0.5 m below land surface, the shallow zone of contrasting permeabilities. These results indicate that subsurface soil creep, a slow semi-continuous process, may exert a profound influence on rapid, shallow slope failures in saprolitic soils. Data indicate that cove slopes in quartz diorite tend to be the most unstable when saturation levels reach 75%. Deep failures (7 m deep) appear the most critical but not the most frequent because pore pressure build-up will occur more rapidly in the upper perched zone of translocated clays before reaching the lower zone between 3 and 7 m. Frequent shallow failures could reduce the probability of deeper failures by removing overburden and reducing shear stress at depth. Deep failures are more likely to result from storm events of great duration and intensity. Sixty-six 'naturally occurring' and more than 100 'road-related' landslides were mapped. Forest elevations exceed 1000 m, but the majority of these failures were found between 600 and 800 m in elevation. This appears to be the area where there is sufficient concentration of subsurface water to result in excess pore pressures. The high percentage of slope failures in the 600-800-m range, relative to the percentage at higher elevations, suggests that differences in soil-water processes are responsible for the form of these mountain slopes. Steep linear segments are maintained at higher elevations. Slope angles are reduced in the 600-800-m range by frequent shallow slides, creating a largely concave surface. In combination, slope segments above 800 m, and those between 600 and 800 m, produce the characteristic form of the mountains of eastern Puerto Rico. ?? 1990.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSAES..78..116L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSAES..78..116L"><span>Tethyan calpionellids in the Neuquén Basin (Argentine Andes), their significance in defining the Jurassic/Cretaceous boundary and pathways for Tethyan-Eastern Pacific connections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>López-Martínez, Rafael; Aguirre-Urreta, Beatriz; Lescano, Marina; Concheyro, Andrea; Vennari, Verónica; Ramos, Victor A.</p> <p>2017-10-01</p> <p>The study of calpionellid distribution in the well-documented Las Loicas section of the Vaca Muerta Formation in the Neuquén Basin, Argentine Andes, allows the recognition of the upper part of the Crassicollaria Zone and the lower part of Calpionella Zone across the Jurassic/Cretaceous boundary. The Crassicollaria Zone, Colomi Subzone (Upper Tithonian) is composed of Calpionella alpina Lorenz, Crassicollaria colomi Doben, Crassicollaria parvula Remane, Crassicollaria massutiniana (Colom), Crassicollaria brevis Remane, Tintinnopsella remanei (Borza) and Tintinnopsella carpathica (Murgeanu and Filipescu). The Calpionella Zone, Alpina Subzone (Lower Berriasian) is indicated by the explosion of the small and globular form of Calpionella alpina dominating over very scarce Crassicollaria massutiniana. The FAD of Nannoconus wintereri can be clearly correlated with the upper part of Crassicollaria Zone and the FAD of Nannoconus kamptneri minor with the Calpionella Zone. Additional studies are necessary to establish a more detailed calpionellid biozonation and its correlation with other fossil groups. The present work confirms similar calpionellid bioevents in westernmost Tethys (Cuba and Mexico) and the Andean region, strengthening the Paleo-Pacific-Tethyan connections through the Hispanic Corridor already known from other fossil groups.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=240369','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=240369"><span>Performance Evaluation of Automated Passive Capillary Sampler for Estimating Water Drainage in the Vadose Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820014250','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820014250"><span>Electron microprobe study of lunar and planetary zoned plagioclase feldspars: An analytical and experimental study of zoning in plagioclase</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, R. K.; Lofgren, G. E.</p> <p>1982-01-01</p> <p>Natural and experimentally grown zoned plagioclase feldspars were examined by electron microprobe. The analyses revealed discontinuous, sector, and oscillary chemical zoning superimposed on continuous normal or reverse zoning trends. Postulated mechanisms for the origin of zoning are based on either physical changes external to the magma (P, T, H2O saturation) or kinetic changes internal to the magma (diffusion, supersaturation, growth rate). Comparison of microprobe data on natural zoned plagioclase with zoned plagioclase grown in controlled experiments show that it may be possible to distinguish zonal development resulting from physio-chemical changes to the bulk magma from local kinetic control on the growth of individual crystals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/2391/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/2391/report.pdf"><span>Geohydrology and evaluation of water-resource potential of the upper Floridan Aquifer in the Albany area, southwestern Georgia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Torak, L.J.; Davis, G.S.; Strain, G.A.; Herndon, J.G.</p> <p>1993-01-01</p> <p>In the Albany area of southwestern Georgia, the Upper Floridan aquifer lies entirely within the Dougherty Plain district of the Coastal Plain physiographic province, and consists of the Ocala Limestone of late Eocene age. The aquifer is divided throughout most of the study area into an upper and a lower lithologic unit, which creates an upper and a lower water-bearing zone. The lower waterbearing zone consists of alternating layers of sandy limestone and medium-brown, recrystallized dolomitic limestone, and ranges in thickness from about 50 ft to 100 ft. It is highly fractured and exhibits well-developed permeability by solution features that are responsible for transmitting most of the ground water in the aquifer. Transmissivity of the lower water-bearing zone ranges from about 90,000 to 178,000 ft2/d. The upper water-bearing zone is a finely crystallized-to-oolitic, locally dolomitic limestone having an average thickness of about 60 ft. Transmissivities are considerably less in the upper water-bearing zone than in the lower water-bearing zone. The Upper Floridan aquifer is overlain by about 20-120 ft of undifferentiated overburden consisting of fine-to-coarse quartz sand and noncalcareous clay. A clay zone about 10-30 ft thick may be continuous throughout the southwestern part of the Albany area and, where present, causes confinement of the Upper Floridan aquifer and creates perched ground water after periods of heavy rainfall. The Upper Floridan aquifer is confined below by the Lisbon Formation, a mostly dolomitic limestone that contains trace amounts of glauconite. The Lisbon Formation is at least 50 ft thick in the study area and acts as an impermeable base to the Upper Floridan aquifer. The quality of ground water in the Upper Floridan aquifer is suitable for most uses; wells generally yield water of the hard, calcium-bicarbonate type that meets the U.S. Environmental Protection Agency's Primary or Secondary Drinking-Water Regulations. The water-resource potential of the Upper Floridan aquifer was evaluated by compiling results of drilling and aquifer testing in the study area, and by conducting computer simulations of the ground-water flow system under the seasonally low conditions of November 1985, and under conditions of pumping within a 12-mi 2 area located southwest of Albany. Results of test drilling, aquifer testing, and water-quality analyses indicate that, in the area southwest of Albany, geohydrologic conditions in the Upper Floridan aquifer, undifferentiated overburden, and Lisbon Formation were favorable for the aquifer to provide a large quantity of water without having adverse effects on the groundwater system. The confinement of the Upper Floridan aquifer by the undifferentiated overburden and the rural setting of the area of potential development decrease the likelihood that chemical constituents will enter the aquifer during development of the ground-water resources. Computer simulations of ground-water flow in the Upper Floridan aquifer, incorporating conditions for regional flow across model boundaries, leakage from rivers and other surface-water features, and vertical leakage from the undifferentiated overburden, were conducted by using a finite-element model for ground-water flow in two dimensions. Comparison of computed and measured water levels in the Upper Floridan aquifer for November 1985 at 74 locations indicated that computed water levels generally were within 5 ft of the measured values, which is the accuracy to which measured water levels were known. Water-level altitudes ranged from about 260 ft to 130 ft above sea level in the study area during calibration. Aquifer discharge to the Flint River downstream from the Lake Worth dam was computed by the calibrated model to be about 1 billion gallons per day; about 300 million gallons per day (Mgal/d) greater than was measured for similar lowflow conditions. The excess computed discharge was attributed partially to stream withdrawals for</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005GeoRL..32.4313S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005GeoRL..32.4313S"><span>Dielectric method of high-resolution gas hydrate estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Y. F.; Goldberg, D.</p> <p>2005-02-01</p> <p>In-situ dielectric properties of natural gas hydrate are measured for the first time in the Mallik 5L-38 Well in the Mackenzie Delta, Canada. The average dielectric constant of the hydrate zones is 9, ranging from 5 to 20. The average resistivity is >5 ohm.m in the hydrate zones, ranging from 2 to 10 ohm.m at a 1.1 GHz dielectric tool frequency. The dielectric logs show similar trends with sonic and induction resistivity logs, but exhibits inherently higher vertical resolution (<5 cm). The average in-situ hydrate saturation in the well is about 70%, ranging from 20% to 95%. The dielectric estimates are overall in agreement with induction estimates but the induction log tends to overestimate hydrate content up to 15%. Dielectric estimates could be used as a better proxy of in-situ hydrate saturation in modeling hydrate dynamics. The fine-scale structure in hydrate zones could help reveal hydrate formation history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866967','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866967"><span>In-situ remediation system and method for contaminated groundwater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Corey, John C.; Looney, Brian B.; Kaback, Dawn S.</p> <p>1989-01-01</p> <p>A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7273640','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7273640"><span>In-situ remediation system and method for contaminated groundwater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Corey, J.C.; Looney, B.B.; Kaback, D.S.</p> <p>1989-05-23</p> <p>A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like. 3 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29733121','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29733121"><span>Assessing species saturation: conceptual and methodological challenges.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Olivares, Ingrid; Karger, Dirk N; Kessler, Michael</p> <p>2018-05-07</p> <p>Is there a maximum number of species that can coexist? Intuitively, we assume an upper limit to the number of species in a given assemblage, or that a lineage can produce, but defining and testing this limit has proven problematic. Herein, we first outline seven general challenges of studies on species saturation, most of which are independent of the actual method used to assess saturation. Among these are the challenge of defining saturation conceptually and operationally, the importance of setting an appropriate referential system, and the need to discriminate among patterns, processes and mechanisms. Second, we list and discuss the methodological approaches that have been used to study species saturation. These approaches vary in time and spatial scales, and in the variables and assumptions needed to assess saturation. We argue that assessing species saturation is possible, but that many studies conducted to date have conceptual and methodological flaws that prevent us from currently attaining a good idea of the occurrence of species saturation. © 2018 Cambridge Philosophical Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1141803','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1141803"><span>Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Brainard, James R.; Coplen, Amy K</p> <p>2005-11-01</p> <p>Over the last decade, dairy farms in New Mexico have become an important component to the economy of many rural ranching and farming communities. Dairy operations are water intensive and use groundwater that otherwise would be used for irrigation purposes. Most dairies reuse their process/green water three times and utilize lined lagoons for temporary storage of green water. Leakage of water from lagoons can pose a risk to groundwater quality. Groundwater resource protection infrastructures at dairies are regulated by the New Mexico Environment Department which currently relies on monitoring wells installed in the saturated zone for detecting leakage of wastemore » water lagoon liners. Here we present a proposal to monitor the unsaturated zone beneath the lagoons with soil water solution samplers to provide early detection of leaking liners. Early detection of leaking liners along with rapid repair can minimize contamination of aquifers and reduce dairy liability for aquifer remediation. Additionally, acceptance of vadose zone monitoring as a NMED requirement over saturated zone monitoring would very likely significantly reduce dairy startup and expansion costs. Acknowledgment Funding for this project was provided by the Sandia National Laboratories Small Business Assistance Program« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H43C1044M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H43C1044M"><span>Improved solution for saturated-unsaturated flow to a partially penetrating well in a compressible unconfined aquifer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mishra, P. K.; Neuman, S. P.</p> <p>2009-12-01</p> <p>Tartakovsky and Neuman [2007] developed an analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering an unsaturated zone of infinite thickness. In their solution three-dimensional, axially symmetric unsaturated flow was described by a linearized version of Richards’ equation in which both relative hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value. Both exponential functions were characterized by a common exponent. We present an improved solution in which relative hydraulic conductivity and water content are characterized by separate parameters and the unsaturated zone has finite thickness. Our four-parameter representation of these functions is more flexible than the three-parameter version of Mathias and Butler [2006], who consider flow in the unsaturated zone to be strictly vertical and the pumping well to be fully penetrating. We investigate the effects of unsaturated zone thickness and constitutive parameters on drawdown in the unsaturated and saturated zones as functions of position and time. We then use our new solution to analyze data from synthetic and real pumping tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G43C..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G43C..06H"><span>Fault rocks as indicators of slip behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayman, N. W.</p> <p>2017-12-01</p> <p>Forty years ago, Sibson ("Fault rocks and fault mechanisms", J. Geol. Soc. Lon., 1977) explored plastic flow mechanisms in the upper and lower crust which he attributed to deformation rates faster than tectonic ones, but slower than earthquakes. We can now combine observations of natural fault rocks with insights from experiments to interpret a broad range of length and time scales of fault slip in more detail. Fault rocks are generally weak, with predominantly frictionally stable materials in some fault segments, and more unstable materials in others. Both upper and lower crustal faults contain veins and mineralogical signatures of transiently elevated fluid pressure, and some contain relicts of pseudotachylite and bear other thermal-mechanical signatures of seismic slip. Varying strain rates and episodic-tremor-and-slip (ETS) have been attributed to fault zones with varying widths filled with irregular foliations, veins, and dismembered blocks of varying sizes. Particle-size distributions and orientations in gouge appear to differ between locked and creeping faults. These and other geologic observations can be framed in terms of constitutive behaviors derived from experiments and modeling. The experimental correlation of velocity-dependence with microstructure and the behavior of natural fault-rocks under shear suggest that friction laws may be applied liberally to fault-zone interpretation. Force-chains imaged in stress-sensitive granular aggregates or in numerical simulations show that stick-slip behavior with stress drops far below that of earthquakes can occur during quasi-periodic creep, yet localize shear in larger, aperiodic events; perhaps the systematic relationship between sub-mm shear bands and surrounding gouge and/or cataclasites causes such slip partitioning in nature. Fracture, frictional sliding, and viscous creep can experimentally produce a range of slip behavior, including ETS-like events. Perhaps a similar mechanism occurs to cause ETS at the up-dip limit of faults where water-saturated, highly porous sedimentary aggregates are incorporated into fault zones. Forty years on, fault-rock studies continue to refine a model for fault slip that continuously encompasses the full range of lithospheric depths and seismic to geologic time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15757751','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15757751"><span>Meiofauna as descriptor of tourism-induced changes at sandy beaches.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gheskiere, Tom; Vincx, Magda; Weslawski, Jan Marcin; Scapini, Felicita; Degraer, Steven</p> <p>2005-08-01</p> <p>Tourism has long been considered as a 'clean industry' with almost no negative effects on the environment. This study demonstrated, in two different coastal systems (Mediterranean and Baltic), that tourism related activities are particularly affecting the sandy beach meio- and nematofauna in the upper beach zone, the specific ecotone in which many meiofauna species from both the marine and the terrestrial environment congregate. Tourist upper beaches are characterized by a lower % total organic matter (%TOM), lower densities, lower diversities (absence of Insecta, Harpacticoida, Oligochaeta, terrestrial nematodes and marine Ironidae nematodes) and higher community stress compared to nearby non-tourist locations. The %TOM was found to be the single most important factor for the observed differences in meiofauna assemblage structure at tourist versus non-tourist beaches in both the Mediterranean and the Baltic region. The free-living nematode assemblages from tourist upper zones depart significantly from expectations based on random selections from the regional nematode species pool. Furthermore upper zone assemblages are characterised by a low species diversity consisting of taxonomically closely related nematode species with r-strategist features. Generally, faunal differences between tourist and non-tourist beaches are decreasing towards the lower beach zones.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/864478','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/864478"><span>Zone separator for multiple zone vessels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Jones, John B.</p> <p>1983-02-01</p> <p>A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/249777-recognition-delineation-paleokarst-zones-use-wireline-logs-bitumen-saturated-upper-devonian-grosmont-formation-northeastern-alberta-canada','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/249777-recognition-delineation-paleokarst-zones-use-wireline-logs-bitumen-saturated-upper-devonian-grosmont-formation-northeastern-alberta-canada"><span>Recognition and delineation of Paleokarst zones by the use of wireline logs in the bitumen-saturated upper Devonian Grosmont formation of Northeastern Alberta, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dembicki, E.A.; Machel, H.G.</p> <p>1996-05-01</p> <p>The Upper Devonian Grosmont Formation in northeastern Alberta, Canada, is a shallow-marine carbonate platform complex that was subaerially exposed for hundreds of millions of years between the Mississippian(?) and Cretaceous. During this lengthy exposure period, an extensive karst system developed that is characterized by an irregular erosional surface, meter-size (several feet) dissolution cavities, collapse breccias, sinkholes, paleosols, and fractures. The karsted Grosmont Formation, which contains giant reserves of bitumen, sub-crops beneath Cretaceous clastic sediments of the giant Athabasca tar sands deposit. The paleokarst in the Grosmont Formation can be recognized on wireline logs in relatively nonargillaceous carbonate intervals (<30 APImore » units on the gamma-ray log) as excursions of the caliper log, off-scale neutron-density porosity readings, and severe cycle skipping of the acoustic log. The paleokarst is more prevalent in the upper units of the Grosmont Formation, and the effects of karstification decrease toward stratigraphically older and deeper units. The paleokarst usually occurs within 35 m (115 ft) of the erosional surface. The reservoir properties of the Grosmont Formation (e.g., thickness, porosity, permeability, and seal effectiveness) are significantly influenced by karstification. Depending upon the location, karstification has either benefited or degraded the reservoir characteristics. Benefits include porosity values greater than 40% (up to 100% in caverns) and permeability values of 30,000 md in severely fractured intervals. Detrimental reservoir characteristics include erosion, porosity and permeability reduction, and seal ineffectiveness.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023661','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023661"><span>Atrazine retention and degradation in the vadose zone at a till plain site in central Indiana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bayless, E.R.</p> <p>2001-01-01</p> <p>The vadose zone was examined as an environmental compartment where significant quantities of atrazine and its degradation compounds may be stored and transformed. The vadose zone was targeted because regional studies in the White River Basin indicated a large discrepancy between the mass of atrazine applied to fields and the amount of the pesticide and its degradation compounds that are measured in ground and surface water. A study site was established in a rotationally cropped field in the till plain of central Indiana. Data were gathered during the 1994 growing season to characterize the site hydrogeology and the distribution of atrazine, desethylatrazine, deisopropylatrazine, didealkylatrazine and hydroxyatrazine in runoff, pore water, and ground water. The data indicated that atrazine and its degradation compounds were transported from land surface to a depth of 1.5 m within 60 days of application, but were undetected in the saturated zone at nearby monitoring wells. A numerical model was developed, based on the field data, to provide information about processes that could retain and degrade atrazine in the vadose zone. Simulations indicated that evapotranspiration is responsible for surface directed soil-moisture flow during much of the growing season. This process causes retention and degradation of atrazine in the vadose zone. Increased residence time in the vadose zone leads to nearly complete transformation of atrazine and its degradation products to unquantified degradation compounds. As a result of mascropore flow, small quantities of atrazine and its degradation compounds may reach the saturated zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710714B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710714B"><span>Eddy covariance and lysimeter measurements of moisture fluxes over supraglacial debris</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brock, Benjamin</p> <p>2015-04-01</p> <p>Supraglacial debris covers have the potential to evaporate large quantities of water derived from either sub-debris ice melt or precipitation. Currently, knowledge of evaporation and condensation rates in supraglacial debris is limited due to the difficulty of making direct measurements. This paper presents eddy covariance and lysimeter measurements of moisture fluxes made over a 0.2 m debris layer at Miage debris covered glacier, Italian Alps, during the 2013 ablation season. The meteorological data are complimented by reflectometer measurements of volumetric water fraction in the saturated and vadose zones of the debris layer. The lysimeters were designed specifically to mimic the debris cover and were embedded within the debris matrix, level with the surface. Over the ablation season, the latent heat flux is dominated by evaporation, and the flux magnitude closely follows the daily cycle of daytime solar heating and night time radiative cooling of debris. Mean flux values are of the order of 1 kg m-2 day-1, but often higher for short periods following rainfall. Condensation rates are relatively small and restricted to night time and humid conditions when the debris-atmosphere vapour pressure gradient reverses due to relatively warm air overlying cold debris. The reflectometer measurements provide evidence of vertical water movement through capillary rise in the upper part of the fine-grained debris layer, just above the saturated horizon, and demonstrate how debris bulk water content increases after rainfall. The latent heat flux responds directly to changes in wind speed, indicating that atmospheric turbulence can penetrate porous upper debris layers to the saturated horizon. Hence, vertical sorting of debris sediments and antecedent rainfall are important in determining evaporation rates, in addition to current meteorological conditions. Comparison of lysimeter measurements with rainfall data provides an estimate that between 45% and 89% of rainfall is evaporated directly back to the atmosphere. Rainfall evaporation rates increase with debris impermeability and temperature, with highest rates occurring when a shower falls on hot debris. If these point measurements are representative of larger scales, evaporation rates of the order of 1000 tonnes km-2 day-1 are implied, with higher rates following rainfall. This has important implications for downstream runoff, sub-debris ice melt rates (due to consumption of evaporative latent heat energy) and, possibly, convective atmospheric processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJCEM..19..129J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJCEM..19..129J"><span>Magnetic-saturation zone model for two semipermeable cracks in magneto-electro-elastic medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jangid, Kamlesh</p> <p>2018-03-01</p> <p>Extension of the PS model (Gao et al. [1]) in piezoelectric materials and the SEMPS model (Fan and Zhao [2]) in MEE materials, is proposed for two semi-permeable cracks in a MEE medium. It is assumed that the magnetic yielding occurs at the continuation of the cracks due to the prescribed loads. We have model these crack continuations as the zones with cohesive saturation limit magnetic induction. Stroh's formalism and complex variable techniques are used to formulate the problem. Closed form analytical expressions are derived for various fracture parameters. A numerical case study is presented for BaTiO3 - CoFe2O4 ceramic cracked plate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820047264&hterms=geothermal+gradient&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgeothermal%2Bgradient','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820047264&hterms=geothermal+gradient&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgeothermal%2Bgradient"><span>The Ivrea zone as a model for the distribution of magnetization in the continental crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wasilewski, P.; Fountain, D. M.</p> <p>1982-01-01</p> <p>Units are identified within the Ivrea zone of northern Italy exhibiting magnetic susceptibilities greater than 0.0005 cgs, saturation magnetization values above 0.009 emu/cu cm, and Curie points as high as 570-580 C. Amphibolites from the granulite-amphibolite facies transition, and the mafic-ultramafic granulite facies lithologies exhibit high values of initial susceptibility and saturation remanence, are laterally continuous, and may be considered as a deep crustal source for long-wavelength anomalies in low-geothermal gradient areas. Evidence is presented which suggests that such mafic-ultramafic bodies as those exposed in the Toce valley were synmetamorphic additions to the base of the crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027242','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027242"><span>Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Katz, B.G.; Chelette, A.R.; Pratt, T.R.</p> <p>2004-01-01</p> <p>Concerns regarding ground-water contamination in the Woodville Karst Plain have arisen due to a steady increase in nitrate-N concentrations (0.25-0.90 mg/l) during the past 30 years in Wakulla Springs, a large regional discharge point for water (9.6 m3/s) from the Upper Floridan aquifer (UFA). Multiple isotopic and chemical tracers were used with geochemical and lumped-parameter models (exponential mixing (EM), dispersion, and combined exponential piston flow) to assess: (1) the sources and extent of nitrate contamination of ground water and springs, and (2) mean transit times (ages) of ground water. Delta 15N-NO3 values (1.7-13.8???) indicated that nitrate in ground water originated from localized sources of inorganic fertilizer and human/animal wastes. Nitrate in spring waters (??15N-NO3=5.3-8.9???) originated from both inorganic and organic N sources. Nitrate-N concentrations (1.0 mg/l) were associated with shallow wells (open intervals less than 15 m below land surface), elevated nitrate concentrations in deeper wells are consistent with mixtures of water from shallow and deep zones in the UFA as indicated from geochemical mixing models and the distribution of mean transit times (5-90 years) estimated using lumped-parameter flow models. Ground water with mean transit times of 10 years or less tended to have higher dissolved organic carbon concentrations, lower dissolved solids, and lower calcite saturation indices than older waters, indicating mixing with nearby surface water that directly recharges the aquifer through sinkholes. Significantly higher values of pH, magnesium, dolomite saturation index, and phosphate in springs and deep water (>45 m) relative to a shallow zone (<45 m) were associated with longer ground-water transit times (50-90 years). Chemical differences with depth in the aquifer result from deep regional flow of water recharged through low permeability sediments (clays and clayey sands of the Hawthorn Formation) that overlie the UFA upgradient from the karst plain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAfES.101..282J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAfES.101..282J"><span>The Lindi Formation (upper Albian-Coniacian) and Tanzania Drilling Project Sites 36-40 (Lower Cretaceous to Paleogene): Lithostratigraphy, biostratigraphy and chemostratigraphy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiménez Berrocoso, Álvaro; Huber, Brian T.; MacLeod, Kenneth G.; Petrizzo, Maria Rose; Lees, Jacqueline A.; Wendler, Ines; Coxall, Helen; Mweneinda, Amina K.; Falzoni, Francesca; Birch, Heather; Haynes, Shannon J.; Bown, Paul R.; Robinson, Stuart A.; Singano, Joyce M.</p> <p>2015-01-01</p> <p>The 2009 Tanzania Drilling Project (TDP) expedition to southeastern Tanzania cored a total of 572.3 m of sediments at six new mid-Cretaceous to mid-Paleocene boreholes (TDP Sites 36, 37, 38, 39, 40A, 40B). Added to the sites drilled in 2007 and 2008, the new boreholes confirm the common excellent preservation of planktonic and benthic foraminifera and calcareous nannofossils from core samples that will be used for biostratigraphy, evolutionary studies, paleoceanography and climatic reconstructions from the Tanzanian margin, with implications elsewhere. The new sites verify the presence of a relatively expanded Upper Cretaceous succession in the region that has allowed a new stratigraphic unit, named here as the Lindi Formation (Fm), to be formally defined. The Lindi Fm (upper Albian to Coniacian), extending ∼120 km between Kilwa and Lindi, comprises a 335-m-thick, outer-shelf to upper-slope unit, consisting of dark gray claystone and siltstone interbeds, common finely-laminated intervals, minor cm-thick sandstones and up to 2.6% organic carbon in the Turonian. A subsurface, composite stratotype section is proposed for the Lindi Fm, with a gradational top boundary with the overlying Nangurukuru Fm (Santonian to Maastrichtian) and a sharp bottom contact with underlying upper Albian sandstones. The section cored at TDP Sites 36 and 38 belongs to the Lindi Fm and are of lower to middle Turonian age (planktonic foraminifera Whiteinella archaeocretacea to Helvetoglobotruncana helvetica Zones and nannofossils subzones UC6b ± UC7). The lower portion of TDP Site 39 (uppermost part of the Lindi Fm) is assigned to the lower to upper Coniacian (planktonic foraminifera Dicarinella concavata Zone and nannofossils zone UC 10), while the remaining part of this site is attributed to the Coniacian-Santonian transition and younger Santonian (planktonic foraminifera D. asymetrica Zone and upper part of nannofossils zone UC10). TDP Site 37 recovered relatively expanded (150 m thick), monotonous calcareous claystones from the lower to upper Maastrichtian (planktonic foraminifera Pseudoguembelina palpebra to Abathomphalus mayaroensis Zones and nannofossils zones UC19 to UC20aTP) that were separated by a hiatus and/or a faulted contact from overlying brecciated carbonates of the Selandian (middle Paleocene: PF Zone P3 and nannofossil zone NP5). The lower portion of TDP Sites 40A and 40B recovered sandstones and conglomerates barren of microfossils. Their overlying parts were assigned to incomplete sections of the nannofossil zones NC6A to NC8 (uppermost Barremian to lower Albian). Benthic foraminiferal assemblages allowed the Barremian to lower Aptian to be identified in TDP Sites 40A and 40B, while the upper Aptian to middle Albian (Hedbergella trocoidea to Ticinella primula Zones) were assigned using planktonic foraminifera. Cores recovered at TDP 39 (Coniacian-Santonian) and at TDP Sites 40A and 40B (Barremian-middle Albian) represent the first time that these two intervals have been continuously cored and publicly documented in Tanzania. Bulk sediment isotope records generated for the new sites show lower δ18Ocarb values in the Turonian and Santonian (∼-3.5‰ to -5‰) than in the Maastrichtian (∼-3‰), a situation consistent with extreme global warmth in the older intervals and cooling toward the end of the Cretaceous. Also, similar to Turonian sites from previous TDP expeditions, a negative δ13Corg excursion was detected across the W. archaeocretacea-H. helvetica boundary of TDP Site 36 (close to, but above, the Cenomanian-Turonian boundary). This excursion probably responded to local processes in the region, but it is unknown whether they were related to the recovery phase from Ocean Anoxic Event 2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.C11A1062U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.C11A1062U"><span>Origin Of Methane Gas And Migration Through The Gas Hydrate Stability Zone Beneath The Permafrost Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uchida, T.; Waseda, A.; Namikawa, T.</p> <p>2005-12-01</p> <p>In 1998 and 2002 Mallik wells were drilled at Mackenzie Delta in the Canadian Arctic that clarified the characteristics of gas hydrate-dominant sandy layers at depths from 890 to 1110 m beneath the permafrost zone. Continuous downhole well log data as well as visible gas hydrates have confirmed pore-space hydrate as intergranular pore filling within sandy layers whose saturations are up to 80% in pore volume, but muddy sediments scarcely contain. Plenty of gas hydrate-bearing sand core samples have been obtained from the Mallik wells. According to grain size distributions pore-space hydrate is dominant in medium- to very fine-grained sandy strata. Methane gas accumulation and original pore space large enough to occur within host sediments may be required for forming highly saturated gas hydrate in pore system. The distribution of a porous and coarser-grained host rock should be one of the important factors to control the occurrence of gas hydrate, as well as physicochemical conditions. Subsequent analyses in sedimentology and geochemistry performed on gas hydrate-bearing sandy core samples also revealed important geologic and sedimentological controls on the formation and concentration of natural gas hydrate. This appears to be a similar mode for conventional oil and gas accumulations. It is necessary for investigating subsurface fluid flow behaviors to evaluate both porosity and permeability of gas hydrate-bearing sandy sediments, and the measurements of water permeability for them indicate that highly saturated sands may have permeability of a few millidarcies. The isotopic data of methane show that hydrocarbon gas contained in gas hydrate is generated by thermogenic decomposition of kerogen in deep mature sediments. Based on geochemical and geological data, methane is inferred to migrate upward closely associated with pore water hundreds of meters into and through the hydrate stability zone partly up to the permafrost zone and the surface along faults and permeable sandy pathways. It should be remarked that there are many similar features in appearance and characteristics between the terrestrial and deep marine areas such as Nankai Trough with observations of well-interconnected and highly saturated pore-space hydrate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JCHyd..25...39P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JCHyd..25...39P"><span>A composite numerical model for assessing subsurface transport of oily wastes and chemical constituents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Wade, S. C.; Saleem, Z. A.</p> <p>1997-02-01</p> <p>Subsurface fate and transport models are utilized to predict concentrations of chemicals leaching from wastes into downgradient receptor wells. The contaminant concentrations in groundwater provide a measure of the risk to human health and the environment. The level of potential risk is currently used by the U.S. Environmental Protection Agency to determine whether management of the wastes should conform to hazardous waste management standards. It is important that the transport and fate of contaminants is simulated realistically. Most models in common use are inappropriate for simulating the migration of wastes containing significant fractions of nonaqueous-phase liquids (NAPLs). The migration of NAPL and its dissolved constituents may not be reliably predicted using conventional aqueous-phase transport simulations. To overcome this deficiency, an efficient and robust regulatory assessment model incorporating multiphase flow and transport in the unsaturated and saturated zones of the subsurface environment has been developed. The proposed composite model takes into account all of the major transport processes including infiltration and ambient flow of NAPL, entrapment of residual NAPL, adsorption, volatilization, degradation, dissolution of chemical constituents, and transport by advection and hydrodynamic dispersion. Conceptually, the subsurface is treated as a composite unsaturated zone-saturated zone system. The composite simulator consists of three major interconnected computational modules representing the following components of the migration pathway: (1) vertical multiphase flow and transport in the unsaturated zone; (2) areal movement of the free-product lens in the saturated zone with vertical equilibrium; and (3) three-dimensional aqueous-phase transport of dissolved chemicals in ambient groundwater. Such a composite model configuration promotes computational efficiency and robustness (desirable for regulatory assessment applications). Two examples are presented to demonstrate the model verification and a site application. Simulation results obtained using the composite modeling approach are compared with a rigorous numerical solution and field observations of crude oil saturations and plume concentrations of total dissolved organic carbon at a spill site in Minnesota, U.S.A. These comparisons demonstrate the ability of the present model to provide realistic depiction of field-scale situations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DSRI..134...12G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DSRI..134...12G"><span>Particulate sulfur-containing lipids: Production and cycling from the epipelagic to the abyssopelagic zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gašparović, Blaženka; Penezić, Abra; Frka, Sanja; Kazazić, Saša; Lampitt, Richard S.; Holguin, F. Omar; Sudasinghe, Nilusha; Schaub, Tanner</p> <p>2018-04-01</p> <p>There are major gaps in our understanding of the distribution and role of lipids in the open ocean especially with regard to sulfur-containing lipids (S-lipids). Here, we employ a powerful analytical approach based on high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to elucidate depth-related S-lipid production and molecular transformations in suspended particulate matter from the Northeast Atlantic Ocean in this depth range. We show that within the open-ocean environment S-lipids contribute up to 4.2% of the particulate organic carbon, and that up to 95% of these compounds have elemental compositions that do not match those found in the Nature Lipidomics Gateway database (termed "novel"). Among the remaining 5% of lipids that match the database, we find that sulphoquinovosyldiacylglycerol (SQDG) are efficiently removed while sinking through the mesopelagic zone. The relative abundance of other assigned lipids (sulphoquinovosylmonoacylglycerol (SQMG), sulfite and sulfate lipids, Vitamin D2 and D3 derivatives, and sphingolipids) did not change substantially with depth. The novel S-lipids, represented by hundreds of distinct elemental compositions (160-300 molecules at any one depth), contribute increasingly to the lipid and particulate organic matter pools with increased depth. Depth-related transformations cause (i) incomplete degradation/transformation of unsaturated S-lipids which leads to the depth-related accumulation of the refractory saturated compounds with reduced molecular weight (average 455 Da) and (ii) formation of highly unsaturated S-lipids (average abyssopelagic molecular double bond equivalents, DBE=7.8) with lower molecular weight (average 567 Da) than surface S-lipids (average 592 Da). A depth-related increase in molecular oxygen content is observed for all novel S-lipids and indicates that oxidation has a significant role in their transformation while (bio)hydrogenation possibly impacts the formation of saturated compounds. The instrumentation approach applied here represents a step change in our comprehension of marine S-lipid diversity and the potential role of these compounds in the oceanic carbon cycle. We describe a very much higher number of compounds than previously reported, albeit at the level of elemental composition and fold-change quantitation with depth, rather than isomeric confirmation and absolute quantitation of individual lipids. We emphasize that saturated S-lipids have the potential to transfer carbon from the upper ocean to depth and hence are significant vectors for carbon sequestration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMNS34A..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMNS34A..05F"><span>Airborne Magnetic and Electromagnetic Data map Rock Alteration and Water Content at Mount Adams, Mount Baker and Mount Rainier, Washington: Implications for Lahar Hazards and Hydrothermal Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finn, C. A.; Deszcz-Pan, M.; Horton, R.; Breit, G.; John, D.</p> <p>2007-12-01</p> <p>High resolution helicopter-borne magnetic and electromagnetic (EM) data flown over the rugged, ice-covered, highly magnetic and mostly resistive volcanoes of Mount Rainier, Mount Adams and Mount Baker, along with rock property measurements, reveal the distribution of alteration, water and hydrothermal fluids that are essential to evaluating volcanic landslide hazards and understanding hydrothermal systems. Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows. Intense hydrothermal alteration significantly reduces the magnetization and resistivity of volcanic rock resulting in clear recognition of altered rock by helicopter magnetic and EM measurements. Magnetic and EM data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region, in the central core of Mount Adams north of the summit, and in much of the central cone of Mount Baker. We identify the Sunset Amphitheater region and steep cliffs at the western edge of the central altered zone at Mount Adams as likely sources for future debris flows. In addition, the EM data identified water-saturated rocks in the upper 100-200 m of the three volcanoes. The water-saturated zone could extend deeper, but is beyond the detection limits of the EM data. Water in hydrothermal fluids reacts with the volcanic rock to produce clay minerals. The formation of clay minerals and presence of free water reduces the effective stress, thereby increasing the potential for slope failure, and acts, with entrained melting ice, as a lubricant to transform debris avalanches into lahars. Therefore, knowing the distribution of water is also important for hazard assessments. Finally, modeling requires extremely low resistivities (< 20 ohm-m) that laboratory electrical resistivity measurements indicate are most easily explained by sulfuric acid solutions permeating altered rocks. The acid is the result of oxidation of magmatic H2S to sulfuric acid and highlights the continued alteration of volcanoes during periods of relative quiescence. Our results demonstrate that high resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock and shallow pore water and hydrothermal fluids within active stratovolcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GCarp..67..543F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GCarp..67..543F"><span>Upper Tithonian ammonites (Himalayitidae Spath, 1925 and Neocomitidae Salfeld, 1921) from Charens (Drôme, France)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frau, Camille; Bulot, Luc G.; Wimbledon, William A. P.; Ifrim, Christina</p> <p>2016-12-01</p> <p>This contribution focuses on the Perisphinctoidea ammonite taxa from the Upper Tithonian at Charens (Drôme, south-east France). Emphasis is laid on five genera that belong to the families Himalayitidae and Neocomitidae. We document the precise vertical range of the index-species Micracanthoceras microcanthum, and a comparative ontogenetic- biometric analysis sheds new light on its range of variation and dimorphism as compared to the bestknown Spanish populations. As herein understood, the lower boundary of the M. microcanthum Zone (base of the Upper Tithonian) is fixed at the FAD of its index species. The faunal assemblages and species distribution of the P. andreaei Zone are rather similar to those described at the key-section of Le Chouet as confirmed by the co-occurrence of the genera Protacanthodiscus, Boughdiriella and Pratumidiscus. New palaeontological evidence supports the view that the basal Neocomitidae Busnardoiceras busnardoi was derived from Protacanthodiscus andreaei in the upper part of the P. andreaei Zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10175023','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10175023"><span>QA/QC requirements for physical properties sampling and analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Innis, B.E.</p> <p>1993-07-21</p> <p>This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories alsomore » measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025236','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025236"><span>Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wang, Chun-Yong; Chan, W.W.; Mooney, W.D.</p> <p>2003-01-01</p> <p>Using P and S arrival times from 4625 local and regional earthquakes recorded at 174 seismic stations and associated geophysical investigations, this paper presents a three-dimensional crustal and upper mantle velocity structure of southwestern China (21??-34??N, 97??-105??E). Southwestern China lies in the transition zone between the uplifted Tibetan plateau to the west and the Yangtze continental platform to the east. In the upper crust a positive velocity anomaly exists in the Sichuan Basin, whereas a large-scale negative velocity anomaly exists in the western Sichuan Plateau, consistent with the upper crustal structure under the southern Tibetan plateau. The boundary between these two anomaly zones is the Longmen Shan Fault. The negative velocity anomalies at 50-km depth in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with temperature and composition variations in the upper mantle. The Red River Fault is the boundary between the positive and negative velocity anomalies at 50-km depth. The overall features of the crustal and the upper mantle structures in southwestern China are a low average velocity, large crustal thickness variations, the existence of a high-conductivity layer in the crust or/and upper mantle, and a high heat flow value. All these features are closely related to the collision between the Indian and the Asian plates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26627811','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26627811"><span>The ambient acoustic environment in Laguna San Ignacio, Baja California Sur, Mexico.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Seger, Kerri D; Thode, Aaron M; Swartz, Steven L; Urbán, Jorge R</p> <p>2015-11-01</p> <p>Each winter gray whales (Eschrichtius robustus) breed and calve in Laguna San Ignacio, Mexico, where a robust, yet regulated, whale-watching industry exists. Baseline acoustic environments in LSI's three zones were monitored between 2008 and 2013, in anticipation of a new road being paved that will potentially increase tourist activity to this relatively isolated location. These zones differ in levels of both gray whale usage and tourist activity. Ambient sound level distributions were computed in terms of percentiles of power spectral densities. While these distributions are consistent across years within each zone, inter-zone differences are substantial. The acoustic environment in the upper zone is dominated by snapping shrimp that display a crepuscular cycle. Snapping shrimp also affect the middle zone, but tourist boat transits contribute to noise distributions during daylight hours. The lower zone has three source contributors to its acoustic environment: snapping shrimp, boats, and croaker fish. As suggested from earlier studies, a 300 Hz noise minimum exists in both the middle and lower zones of the lagoon, but not in the upper zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29086149','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29086149"><span>Altitude effects on technology and productivity of small bovine farms (milk meat) in Veracruz (Gulf of Mexico).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ruíz-Guevara, C; De León-González, F; Soriano-Robles, R; Pérez-Carrera, A L; García-Hernández, L A</p> <p>2018-03-01</p> <p>The dual-purpose bovine system represents 98.4% of the bovine livestock of Veracruz, the main cattle-producing state of Mexico. This system supplies calves to meat companies, a sector in which Veracruz has been the national leader in the last decade. The objective of the present study was to analyze the effect of the altitudinal zonation of farms on livestock technology and productivity in a microbasin of the Gulf of Mexico where small farms predominate. Structured interviews were applied to producers located in three altitudinal zones (at average altitudes of 50, 140, and 450 m, respectively, for lower, middle, and upper zones). Sample size was 135 farms having similar land surface (within a range of 15-22 ha). The results indicated multiple differences among farms located in the three zones. Farms in the middle and lower zones presented higher productive indicators than those in the upper zone. Differences in herd structure and management resulted in important differences in productivity, income, and profits in milk and calf production. We concluded from this study that altitudinal zonation in Veracruz had a clear effect on the differentiation of small farms, which are representative of dual-purpose cattle. The upper zone performs cattle activity under conditions with greater disadvantages in the analyzed region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035615','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035615"><span>Microbial abundance in the deep subsurface of the Chesapeake Bay impact crater: Relationship to lithology and impact processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cockell, Charles S.; Gronstal, Aaron L.; Voytek, Mary A.; Kirshtein, Julie D.; Finster, Kai; Sanford, Ward E.; Glamoclija, Mihaela; Gohn, Gregroy S.; Powars, David S.; Horton, J. Wright</p> <p>2009-01-01</p> <p>Asteroid and comet impact events are known to cause profound disruption to surface ecosystems. The aseptic collection of samples throughout a 1.76-km-deep set of cores recovered from the deep subsurface of the Chesapeake Bay impact structure has allowed the study of the subsurface biosphere in a region disrupted by an impactor. Microbiological enumerations suggest the presence of three major microbiological zones. The upper zone (127–867 m) is characterized by a logarithmic decline in microbial abundance from the surface through the postimpact section of Miocene to Upper Eocene marine sediments and across the transition into the upper layers of the impact tsunami resurge sediments and sediment megablocks. In the middle zone (867–1397 m) microbial abundances are below detection. This zone is predominantly quartz sand, primarily composed of boulders and blocks, and it may have been mostly sterilized by the thermal pulse delivered during impact. No samples were collected from the large granite block (1096–1371 m). The lowest zone (below 1397 m) of increasing microbial abundance coincides with a region of heavily impact-fractured, hydraulically conductive suevite and fractured schist. These zones correspond to lithologies influenced by impact processes. Our results yield insights into the influence of impacts on the deep subsurface biosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoJI.202..850J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoJI.202..850J"><span>Seismoelectric couplings in a poroelastic material containing two immiscible fluid phases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jardani, A.; Revil, A.</p> <p>2015-08-01</p> <p>A new approach of seismoelectric imaging has been recently proposed to detect saturation fronts in which seismic waves are focused in the subsurface to scan its heterogeneous nature and determine saturation fronts. Such type of imaging requires however a complete modelling of the seismoelectric properties of porous media saturated by two immiscible fluid phases, one being usually electrically insulating (for instance water and oil). We combine an extension of Biot dynamic theory, valid for porous media containing two immiscible Newtonian fluids, with an extension of the electrokinetic theory based on the notion of effective volumetric charge densities dragged by the flow of each fluid phase. These effective charge densities can be related directly to the permeability and saturation of each fluid phase. The coupled partial differential equations are solved with the finite element method. We also derive analytically the transfer function connecting the macroscopic electrical field to the acceleration of the fast P wave (coseismic electrical field) and we study the influence of the water content on this coupling. We observe that the amplitude of the co-seismic electrical disturbance is very sensitive to the water content with an increase in amplitude with water saturation. We also investigate the seismoelectric conversions (interface effect) occurring at the water table. We show that the conversion response at the water table can be identifiable only when the saturation contrasts between the vadose and saturated zones are sharp enough. A relatively dry vadose zone represents the best condition to identify the water table through seismoelectric measurements. Indeed, in this case, the coseismic electrical disturbances are vanishingly small compared to the seismoelectric interface response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016607','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016607"><span>Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: II. Some general geologic applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hemley, J.J.; Hunt, J.P.</p> <p>1992-01-01</p> <p>The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/ofr03-201/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/ofr03-201/"><span>Sequence-Stratigraphic Analysis of the Regional Observation Monitoring Program (ROMP) 29A Test Corehole and Its Relation to Carbonate Porosity and Regional Transmissivity in the Floridan Aquifer System, Highlands County, Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ward, W. C.; Cunningham, K.J.; Renken, R.A.; Wacker, M.A.; Carlson, J.I.</p> <p>2003-01-01</p> <p>An analysis was made to describe and interpret the lithology of a part of the Upper Floridan aquifer penetrated by the Regional Observation Monitoring Program (ROMP) 29A test corehole in Highlands County, Florida. This information was integrated into a one-dimensional hydrostratigraphic model that delineates candidate flow zones and confining units in the context of sequence stratigraphy. Results from this test corehole will serve as a starting point to build a robust three-dimensional sequence-stratigraphic framework of the Floridan aquifer system. The ROMP 29A test corehole penetrated the Avon Park Formation, Ocala Limestone, Suwannee Limestone, and Hawthorn Group of middle Eocene to Pliocene age. The part of the Avon Park Formation penetrated in the ROMP 29A test corehole contains two composite depositional sequences. A transgressive systems tract and a highstand systems tract were interpreted for the upper composite sequence; however, only a highstand systems tract was interpreted for the lower composite sequence of the deeper Avon Park stratigraphic section. The composite depositional sequences are composed of at least five high-frequency depositional sequences. These sequences contain high-frequency cycle sets that are an amalgamation of vertically stacked high-frequency cycles. Three types of high-frequency cycles have been identified in the Avon Park Formation: peritidal, shallow subtidal, and deeper subtidal high-frequency cycles. The vertical distribution of carbonate-rock diffuse flow zones within the Avon Park Formation is heterogeneous. Porous vuggy intervals are less than 10 feet, and most are much thinner. The volumetric arrangement of the diffuse flow zones shows that most occur in the highstand systems tract of the lower composite sequence of the Avon Park Formation as compared to the upper composite sequence, which contains both a backstepping transgressive systems tract and a prograding highstand systems tract. Although the porous and permeable layers are not thick, some intervals may exhibit lateral continuity because of their deposition on a broad low-relief ramp. A thick interval of thin vuggy zones and open faults forms thin conduit flow zones mixed with relatively thicker carbonate-rock diffuse flow zones between a depth of 1,070 and 1,244 feet below land surface (bottom of the test corehole). This interval is the most transmissive part of the Avon Park Formation penetrated in the ROMP 29A test corehole and is included in the highstand systems tract of the lower composite sequence. The Ocala Limestone is considered to be a semiconfining unit and contains three depositional sequences penetrated by the ROMP 29A test corehole. Deposited within deeper subtidal depositional cycles, no zones of enhanced porosity and permeability are expected in the Ocala Limestone. A thin erosional remnant of the shallow marine Suwannee Limestone overlies the Ocala Limestone, and permeability seems to be comparatively low because moldic porosity is poorly connected. Rocks that comprise the lower Hawthorn Group, Suwannee Limestone, and Ocala Limestone form a permeable upper zone of the Upper Floridan aquifer, and rocks of the lower Ocala Limestone and Avon Park Formation form a permeable lower zone of the Upper Floridan aquifer. On the basis of a preliminary analysis of transmissivity estimates for wells located north of Lake Okeechobee, spatial relations among groups of relatively high and low transmissivity values within the upper zone are evident. Upper zone transmissivity is generally less than 10,000 feet squared per day in areas located south of a line that extends through Charlotte, Sarasota, DeSoto, Highlands, Polk, Osceola, Okeechobee, and St. Lucie Counties. Transmissivity patterns within the lower zone of the Avon Park Formation cannot be regionally assessed because insufficient data over a wide areal extent have not been compiled.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMMR33B2330H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMMR33B2330H"><span>Self-limiting advection caused by the development of a dissolution/precipitation zone and implications for the fate of leaky wells in CO2 sequestration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huerta, N. J.; Hesse, M. A.; Bryant, S. L.; Strazisar, B. R.</p> <p>2013-12-01</p> <p>Leaking wells that penetrate a geologic CO2 sequestration site provide a potential direct pathway for the escape of CO2 to an overlying aquifer or even back into the atmosphere. Leakage is a highly coupled system, involving transport of CO2-saturated brine and reaction of carbonic acid with the cement that encases wells. Carbonic acid attacks cement phases to dissolve calcium rich components and raise the fluid pH. Our experiments show that total dissolution of the cement matrix, which would lead to self-enhancing leakage, is prevented by an amorphous aluminosilicate phase that remains after dissolution to constrain fluid flux. Conversely, self-limiting behavior develops in a zone where pH is sufficiently high for carbonate minerals to become insoluble and precipitate. Extrapolation of these bench-scale observations indicates that a barrier of carbonate precipitation would develop as more CO2-saturated brine leaks along a well. The process of sealing of the pathway and the timescale of sealing are critical for any risk assessment of the sequestration operation. Using numerical models to interpret the experiments, we find a lag in self-limiting behavior which is controlled by the saturation state of carbonate phases. Sufficient residence time is crucial for the development of the precipitation zone. Precipitation need not seal uniformly across an entire fracture, only in dominant flow paths. Simply growing the width of a zone of precipitation is insufficient to capture the self-limiting behavior we observe in experiments. To seal, the precipitating material must also accumulate and grow into the open fracture space and close the aperture. Closure rate is a function of the initial leak path conductivity, pressure differential (which controls fluid flux), leak path length, and CO2-saturation in the brine. Combining these results with risk assessment tools that incorporate the well development history will give stakeholders a tool to quantitatively predict well leakage for candidate sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.213..603Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.213..603Y"><span>A Bayesian method to quantify azimuthal anisotropy model uncertainties: application to global azimuthal anisotropy in the upper mantle and transition zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, K.; Beghein, C.</p> <p>2018-04-01</p> <p>Seismic anisotropy is a powerful tool to constrain mantle deformation, but its existence in the deep upper mantle and topmost lower mantle is still uncertain. Recent results from higher mode Rayleigh waves have, however, revealed the presence of 1 per cent azimuthal anisotropy between 300 and 800 km depth, and changes in azimuthal anisotropy across the mantle transition zone boundaries. This has important consequences for our understanding of mantle convection patterns and deformation of deep mantle material. Here, we propose a Bayesian method to model depth variations in azimuthal anisotropy and to obtain quantitative uncertainties on the fast seismic direction and anisotropy amplitude from phase velocity dispersion maps. We applied this new method to existing global fundamental and higher mode Rayleigh wave phase velocity maps to assess the likelihood of azimuthal anisotropy in the deep upper mantle and to determine whether previously detected changes in anisotropy at the transition zone boundaries are robustly constrained by those data. Our results confirm that deep upper-mantle azimuthal anisotropy is favoured and well constrained by the higher mode data employed. The fast seismic directions are in agreement with our previously published model. The data favour a model characterized, on average, by changes in azimuthal anisotropy at the top and bottom of the transition zone. However, this change in fast axes is not a global feature as there are regions of the model where the azimuthal anisotropy direction is unlikely to change across depths in the deep upper mantle. We were, however, unable to detect any clear pattern or connection with surface tectonics. Future studies will be needed to further improve the lateral resolution of this type of model at transition zone depths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CorRe..36...71S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CorRe..36...71S"><span>Higher species richness of octocorals in the upper mesophotic zone in Eilat (Gulf of Aqaba) compared to shallower reef zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shoham, Erez; Benayahu, Yehuda</p> <p>2017-03-01</p> <p>Mesophotic coral-reef ecosystems (MCEs), which comprise the light-dependent communities of corals and other organisms found at depths between 30 and 150 m, have received very little study to date. However, current technological advances, such as remotely operated vehicles and closed-circuit rebreather diving, now enable their thorough investigation. Following the reef-building stony corals, octocorals are the second most common benthic component on many shallow reefs and a major component on deep reefs, the Red Sea included. This study is the first to examine octocoral community features on upper MCEs based on species-level identification and to compare them with the shallower reef zones. The study was carried out at Eilat (Gulf of Aqaba, northern Red Sea), comparing octocoral communities at two mesophotic reefs (30-45 m) and two shallow reef zones (reef flat and upper fore-reef) by belt transects. A total of 30 octocoral species were identified, with higher species richness on the upper MCEs compared to the shallower reefs. Although the MCEs were found to host a higher number of species than the shallower reefs, both featured a similar diversity. Each reef zone revealed a unique octocoral species composition and distinct community structure, with only 16% of the species shared by both the MCEs and the shallower reefs. This study has revealed an almost exclusive dominance of zooxanthellate species at the studied upper MCE reefs, thus indicating an adequate light regime for photosynthesis there. The findings should encourage similar studies on other reefs, aimed at understanding the spatiotemporal features and ecological role of octocorals in reef ecosystems down to the deepest limit of the MCEs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1411a/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1411a/report.pdf"><span>Geology of Paleozoic Rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, Excluding the San Juan Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Geldon, Arthur L.</p> <p>2003-01-01</p> <p>The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone is 0-2,500 feet thick and is composed almost entirely of Upper Devonian to Upper Mississippian limestone, dolomite, and chert. The overlying (Darwin-Humbug) zone is 0-800 feet thick and consists of Upper Mississippian limestone, dolomite, sandstone, shale, gypsum, and solution breccia. The Madison aquifer is overlain conformably by Upper Mississippian and Pennsylvanian rocks. The Madison aquifer in most areas is overlain by Upper Mississippian to Middle Pennsylvanian rocks of the Four Comers confining unit. The lower part of this confining unit, the Belden-Molas subunit, consists of as much as 4,300 feet of shale with subordinate carbonate rocks, sandstone, and minor gypsum. The upper part of the confining unit, the Paradox-Eagle Valley subunit, in most places consists of as much as 9,700 feet of interbedded limestone, dolomite, shale, sandstone, gypsum, anhydrite, and halite. Locally, the evaporitic rocks are deformed into diapirs as much as 15,000 feet thick. The Four Corners confining unit is overlain gradationally to disconformably by Pennsylvanian rocks. The uppermost Paleozoic rocks comprise the Canyonlands aquifer, which is composed of three zones with distinctly different lithologies. The basal (Cutler-Maroon) zone consists of as much as 16,500 feet of Lower Pennsylvanian to Lower Permian sandstone, conglomerate, shale, limestone, dolomite, and gypsum. The middle (Weber-De Chelly) zone consists of as much as 4,000 feet of Middle Pennsylvanian to Lower Permian quartz sandstone with minor carbonate rocks and shale. The upper (Park City-State Bridge) zone consists of as much as 800 feet of Lower to Upper Permian limestone, dolomite, shale, sandstone, phosphorite, chert, and gypsum. The Canyonlands aquifer is overlain disconformably to unconformably by formations of Triassic and Jurassic age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.3100T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.3100T"><span>Auxin efflux facilitator and auxin dynamism responsible for the gravity-regulated development of peg in cucumber seedlings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, Hideyuki; Watanabe, Chiaki; Fujii, Nobuharu; Miyazawa, Yutaka</p> <p></p> <p>Cucumber seedlings develop a protuberance, peg, by which seed coats are pulled out just af-ter germination. The peg is usually formed on the lower side of the transition zone between hypocotyl and root of the seedlings grown in a horizontal position. Our previous spaceflight experiment showed that unilateral positioning of a peg in cucumber seedlings occurred due to its suppression on the upper side of the transition zone because seedlings grown in microgravity developed a peg on each side of the transition zone. We also showed that auxin was a major factor responsible for peg development. There was a redistribution of auxin in the gravistimu-lated transition zone, decreasing IAA level on the upper side, and IAA application induced a peg on both lower and upper sides of the transition zone. In addition, peg was released from its suppression in the seedlings treated with inhibitors of auxin efflux. Namely, two pegs devel-oped in the TIBA-treated seedlings even when they were grown in a horizontal position. These results imply that a reduction of auxin level due to its efflux is required for the suppression of peg development on the upper side of the transition zone in a horizontal position. To under-stand molecular mechanism underlying the negative control of morphogenesis by graviresponse in cucumber seedlings, we isolated cDNAs of auxin efflux facilitators, CsPINs, from cucumber and examined the expressions of their proteins, in relation to the redistribution of endogenous auxin and peg development. We isolated six cDNAs of PIN homologues CsPIN1 to CsPIN6 from cucumber. By immunohistochemical study using some of their anti-bodies, we revealed that CsPIN1 was localized in endodermis, vascular tissue and pith around the transition zone of cucumber seedlings. In cucumber seedlings grown in a vertical position with radicles pointing down, CsPIN1 in endodermal cells was mainly localized on the plasma membrane neighboring vascular bundle but not on the plasma membrane next to the cortex. This CsPIN1 localization could play a role in transporting auxin from cortex to vascular bundle. In both vascular and pith tissues, CsPIN1 was localized on the bottom plasma membrane of the cells, which could allow auxin to move toward the roots. In the seedlings grown in a horizontal position, endoder-mal cells situated above the vascular bundle localized CsPIN1 on the lower plasma membrane, whereas the polarized localization of CsPIN1 in endodermal cells situated below the vascular bundle became less clear. This differential expression of CsPIN1 in the endodermis commenced within 30 min after gravistimulation. We measured endogenous IAA contents in the transi-tion zone of the 24-hour-old seedlings. In the longitudinally halved transition zone of seedlings grown in a horizontal position, free IAA content was significantly lowered in the upper side, compared to that of the lower side or either side of the transition zone in a vertical position. When 24-hour-old seedlings grown in a vertical position were gravistimulated by reorienting them to the horizontal, free IAA in the lower side of the transition zone increased by 30 min after gravistimulation and eventually decreased to the control level by 180 min after gravistim-ulation. IAA content in the upper side of the transition zone did not change much and was comparable to that in the vertical transition zone during 180 min after gravistimulation. Thus, it appears that gravistimulation causes an immediate increase of IAA level in the lower side and its eventual decrease in the upper side of the transition zone. The gravity-induced changes in CsPIN1 localization in endodermal cells could be involved in auxin redistribution that leads to unilateral positioning of a peg in cucumber seedlings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5010301-microstructural-evidence-northeastward-movement-chocolate-mountains-fault-zone-southeastern-california','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5010301-microstructural-evidence-northeastward-movement-chocolate-mountains-fault-zone-southeastern-california"><span>Microstructural evidence for northeastward movement on the Chocolate Mountains fault zone, southeastern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Simpson, C.</p> <p>1990-01-10</p> <p>Microstructural analysis of rocks from the Chocolate Mountains fault zone, Gavilan Hills area, southeastern California, show unequivocal evidence for northeast directed transport of the upper plate gneisses over lower plate Orocopia schists. Samples were taken from transects through the fault zone. Prefaulting fabrics in upper plate gneisses show a strong component of northeast directed rotational deformation under lower amphibolite facies conditions. In contrast, prefaulting lower plate Orocopia schists show strongly coaxial fabrics (minimum stretch value of 2.2) formed at greenschist grade. Mylonitic fabrics associated with the Chocolate Mountains fault are predominantly northeast directed shear bands that are unidirectional (northeastward) inmore » the gneisses but bi-directional in the schists, suggesting a significant component of nonrotational deformation occurred in the Orocopia schists during and after emplacement of the upper plate. The kinematic findings are in agreement with Dillon et al. (1989), who found that the vergence of asymmetrical folds within the fault zone indicates overthrusting to the northeast, toward the craton, in this region. The available evidence favors a single protracted northeastward movement on the Chocolate Mountains fault zone with temperatures waning as deformation proceeded.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...611A..60B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...611A..60B"><span>Double plasma resonance instability as a source of solar zebra emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benáček, J.; Karlický, M.</p> <p>2018-03-01</p> <p>Context. The double plasma resonance (DPR) instability plays a basic role in the generation of solar radio zebras. In the plasma, consisting of the loss-cone type distribution of hot electrons and much denser and colder background plasma, this instability generates the upper-hybrid waves, which are then transformed into the electromagnetic waves and observed as radio zebras. Aims: In the present paper we numerically study the double plasma resonance instability from the point of view of the zebra interpretation. Methods: We use a 3-dimensional electromagnetic particle-in-cell (3D PIC) relativistic model. We use this model in two versions: (a) a spatially extended "multi-mode" model and (b) a spatially limited "specific-mode" model. While the multi-mode model is used for detailed computations and verifications of the results obtained by the "specific-mode" model, the specific-mode model is used for computations in a broad range of model parameters, which considerably save computational time. For an analysis of the computational results, we developed software tools in Python. Results: First using the multi-mode model, we study details of the double plasma resonance instability. We show how the distribution function of hot electrons changes during this instability. Then we show that there is a very good agreement between results obtained by the multi-mode and specific-mode models, which is caused by a dominance of the wave with the maximal growth rate. Therefore, for computations in a broad range of model parameters, we use the specific-mode model. We compute the maximal growth rates of the double plasma resonance instability with a dependence on the ratio between the upper-hybrid ωUH and electron-cyclotron ωce frequency. We vary temperatures of both the hot and background plasma components and study their effects on the resulting growth rates. The results are compared with the analytical ones. We find a very good agreement between numerical and analytical growth rates. We also compute saturation energies of the upper-hybrid waves in a very broad range of parameters. We find that the saturation energies of the upper-hybrid waves show maxima and minima at almost the same values of ωUH/ωce as the growth rates, but with a higher contrast between them than the growth rate maxima and minima. The contrast between saturation energy maxima and minima increases when the temperature of hot electrons increases. Furthermore, we find that the saturation energy of the upper-hybrid waves is proportional to the density of hot electrons. The maximum saturated energy can be up to one percent of the kinetic energy of hot electrons. Finally we find that the saturation energy maxima in the interval of ωUH/ωce = 3-18 decrease according to the exponential function. All these findings can be used in the interpretation of solar radio zebras.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAsGe...5..323S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAsGe...5..323S"><span>Shallow groundwater investigation using time-domain electromagnetic (TEM) method at Itay El-Baroud, Nile Delta, Egypt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shaaban, H.; El-Qady, G.; Al-Sayed, E.; Ghazala, H.; Taha, A. I.</p> <p>2016-12-01</p> <p>The Nile Delta is one of the oldest known ancient delta, largest and most important depositional complex in the Mediterranean sedimentary basin. Furthermore, it is a unique site in Egypt that is suitable for accumulation and preservation of the Quaternary sediments. In this work we applied time-domain electromagnetic (TEM) method to investigate the Quaternary sediments sequence as well as detecting the groundwater aquifer in the area of study. A suite of 232 TEM sounding at 43 stations were carried out using a ;SIROTEM MK-3; time-domain electromagnetic system. A simple coincident loop configuration, in which the same loop transmits and receives signals, was employed with loop side length of 25 m. The 1-D modeling technique was applied to estimate the depth and the apparent resistivity of the interpreted geoelectrical data. Based on the interpretation of the acquired geophysical data, four geoelectric cross-sections were constructed. These sections show that the Upper Quaternary sequence consists of three geoelectric layers. The Holocene Nile mud is separated into two layers: the agricultural root zone (Layer 1) and thick water saturated mud (Layer 2). The Upper Pleistocene sandy aquifer (Layer 3) is very complicated non-linear boundary. This aquifer is the most important unit since it is considered as the main water bearing unit in the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAsGe...7...84N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAsGe...7...84N"><span>Slope failures evaluation and landslides investigation using 2-D resistivity method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nordiana, M. M.; Azwin, I. N.; Nawawi, M. N. M.; Khalil, A. E.</p> <p>2018-06-01</p> <p>Slope failure is a complex phenomenon that may caused to landslides. Buildings and infrastructure such as transportation facilities and pipelines located within the boundaries of a landslide can be damaged or destroyed. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. Six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed. The data were processed using Res2Dinv and surfer10 software to evaluate the subsurface characteristics. The 2-D resistivity results show that the subsurface consist of two main zones. The first zone was alluvium or highly weathered with resistivity value of 100-1000 Ω m and depth of >30 m. This zone consists of saturated area with resistivity value of 1-100 Ω m and boulders with resistivity value of 1200-7000 Ω m. The second zone with resistivity value of >7000 Ω m was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. This will cause to low strength of soil, debris flow and movement of earth. On the basis of the case examples described, 2-D resistivity method is categorized into desirable and useful method in determination of slope failure and future assessments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.995a2076N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.995a2076N"><span>2-D Electrical Resistivity Tomography (ERT) Assessment of Ground Failure in Urban Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nordiana, M. M.; Bery, A. A.; Taqiuddin, Z. M.; Jinmin, M.; Abir, I. A.</p> <p>2018-04-01</p> <p>This study was carried out to assess the foundation defects around an urban area in Selangor, Malaysia using 2-D electrical resistivity tomography (ERT). The affected structure is a three storey houses and having severe foundation-based cracks. Six 2-D ERT survey lines with 5 m minimum electrode spacing using Pole-dipole array were executed parallel to building’s wall. Four boreholes were conducted to identify the depth to competent layer to verify the 2-D ERT results. Inversion model of 2-D resistivity show that the study area consists of two main zones. The first zone is a low resistivity value (<100 Ωm), which appears to be a zone that is fully saturated with sandy silt and this could be an influence factor the increasing water level because sandy silt is highly permeable in nature and alluvium (silt, sand and clay), boulder (1200-3500 Ωm) or highly weathered with the resistivity values of 100-1000 Ωm at 20-70 m depth. The second zone is the granite bedrock of more than 3500 Ωm with depth greater than 70 m. These results were complimented and confirmed by borehole records. The ERT and borehole record suggest that the clay, sand, saturated zone, highly weathered zone and boulders at foundation depths may lead to ground movements which affected the stability of the building.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015963','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015963"><span>Effect of soil moisture on the sorption of trichloroethene vapor to vadose-zone soil at picatinny arsenal, New Jersey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smith, J.A.; Chiou, C.T.; Kammer, J.A.; Kile, D.E.</p> <p>1990-01-01</p> <p>This report presents data on the sorption of trichloroethene (TCE) vapor to vadose-zone soil above a contaminated water-table aquifer at Picatinny Arsenal in Morris County, NJ. To assess the impact of moisture on TCE sorption, batch experiments on the sorption of TCE vapor by the field soil were carried out as a function of relative humidity. The TCE sorption decreases as soil moisture content increases from zero to saturation soil moisture content (the soil moisture content in equilibrium with 100% relative humidity). The moisture content of soil samples collected from the vadose zone was found to be greater than the saturation soil-moisture content, suggesting that adsorption of TCE by the mineral fraction of the vadose-zone soil should be minimal relative to the partition uptake by soil organic matter. Analyses of soil and soil-gas samples collected from the field indicate that the ratio of the concentration of TCE on the vadose-zone soil to its concentration in the soil gas is 1-3 orders of magnitude greater than the ratio predicted by using an assumption of equilibrium conditions. This apparent disequilibrium presumably results from the slow desorption of TCE from the organic matter of the vadose-zone soil relative to the dissipation of TCE vapor from the soil gas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1263519','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1263519"><span>Investigation on porosity and permeability change of Mount Simon sandstone (Knox County, IN, USA) under geological CO 2 sequestration conditions: a numerical simulation approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Liwei; Soong, Yee; Dilmore, Robert M.</p> <p></p> <p>In this paper, a numerical model was developed to simulate reactive transport with porosity and permeability change of Mount Simon sandstone (samples from Knox County, IN) after 180 days of exposure to CO 2-saturated brine under CO 2 sequestration conditions. The model predicted formation of a high-porosity zone adjacent to the surface of the sample in contact with bulk brine, and a lower porosity zone just beyond that high-porosity zone along the path from sample/bulk brine interface to sample core. The formation of the high porosity zone was attributed to dissolution of quartz and muscovite/illite, while the formation of themore » lower porosity zone adjacent to the aforementioned high porosity zone was attributed to precipitation of kaolinite and feldspar. The model predicted a 40% permeability increase for the Knox sandstone sample after 180 days of exposure to CO 2-saturated brine, which was consistent with laboratory-measured permeability results. Model-predicted solution chemistry results were also found to be consistent with laboratory-measured solution chemistry data. Finally, initial porosity, initial feldspar content and the exponent n value (determined by pore structure and tortuosity) used in permeability calculations were three important factors affecting permeability evolution of sandstone samples under CO 2 sequestration conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1263519-investigation-porosity-permeability-change-mount-simon-sandstone-knox-county-usa-under-geological-co-sequestration-conditions-numerical-simulation-approach','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1263519-investigation-porosity-permeability-change-mount-simon-sandstone-knox-county-usa-under-geological-co-sequestration-conditions-numerical-simulation-approach"><span>Investigation on porosity and permeability change of Mount Simon sandstone (Knox County, IN, USA) under geological CO 2 sequestration conditions: a numerical simulation approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhang, Liwei; Soong, Yee; Dilmore, Robert M.</p> <p>2016-01-14</p> <p>In this paper, a numerical model was developed to simulate reactive transport with porosity and permeability change of Mount Simon sandstone (samples from Knox County, IN) after 180 days of exposure to CO 2-saturated brine under CO 2 sequestration conditions. The model predicted formation of a high-porosity zone adjacent to the surface of the sample in contact with bulk brine, and a lower porosity zone just beyond that high-porosity zone along the path from sample/bulk brine interface to sample core. The formation of the high porosity zone was attributed to dissolution of quartz and muscovite/illite, while the formation of themore » lower porosity zone adjacent to the aforementioned high porosity zone was attributed to precipitation of kaolinite and feldspar. The model predicted a 40% permeability increase for the Knox sandstone sample after 180 days of exposure to CO 2-saturated brine, which was consistent with laboratory-measured permeability results. Model-predicted solution chemistry results were also found to be consistent with laboratory-measured solution chemistry data. Finally, initial porosity, initial feldspar content and the exponent n value (determined by pore structure and tortuosity) used in permeability calculations were three important factors affecting permeability evolution of sandstone samples under CO 2 sequestration conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033531','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033531"><span>A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Teh, S.Y.; DeAngelis, D.L.; Sternberg, L.D.S.L.; Miralles-Wilhelm, F. R.; Smith, T.J.; Koh, H. L.</p> <p>2008-01-01</p> <p>Sharp boundaries typically separate the salinity tolerant mangroves from the salinity intolerant hardwood hammock species, which occupy the similar geographical areas of southern Florida. Evidence of strong feedback between tree community-type and the salinity of the unsaturated (vadose) zone of the soil suggests that a severe disturbance that significantly tilts the salinity in the vadose zone might cause a shift from one vegetation type to the other. In this study, a model based upon the feedback dynamics between vegetation and salinity of the vadose zone of the soil was used to take account of storm surge events to investigate the mechanisms that by which this large-scale disturbance could affect the spatial pattern of hardwood hammocks and mangroves. Model simulation results indicated that a heavy storm surge that completely saturated the vadose zone at 30 ppt for 1 day could lead to a regime shift in which there is domination by mangroves of areas previously dominated by hardwood hammocks. Lighter storm surges that saturated the vadose zone at less than 7 ppt did not cause vegetation shifts. Investigations of model sensitivity analysis indicated that the thickness of the vadose zone, coupled with precipitation, influenced the residence time of high salinity in the vadose zone and therefore determined the rate of mangrove domination. The model was developed for a southern Florida coastal ecosystem, but its applicability may be much broader. ?? 2008 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4819040','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4819040"><span>New biostratigraphic data on an Upper Hauterivian–Upper Barremian ammonite assemblage from the Dolomites (Southern Alps, Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lukeneder, Alexander</p> <p>2012-01-01</p> <p>A biostratigraphic subdivision, based on ammonites, is proposed for the Lower Cretaceous pelagic to hemipelagic succession of the Puez area (Southern Alps, Italy). Abundant ammonites enable recognition of recently established Mediterranean ammonite zones from the upper Hauterivian Balearites balearis Zone (Crioceratites krenkeli Subzone) to the upper Barremian Gerhardtia sartousiana Zone (Gerhardtia sartousiana Subzone). Ammonites are restricted to the lowermost part of the Puez Formation, the Puez Limestone Member (ca. 50 m; marly limestones; Hauterivian–Barremian). Numerous ammonite specimens are documented for the first time from the Southern Alps (e.g., Dolomites). Ammonite abundances are clearly linked to sea-level changes from Late Hauterivian to mid Late Barremian times. Abundance and diversity peaks occur during phases of high sea-level pulses and the corresponding maximum flooding surfaces (P. mortilleti/P. picteti and G. sartousiana zones). The ammonite composition of the Puez Formation sheds light on the Early Cretaceous palaeobiogeography of the Dolomites. It also highlights the palaeoenvironmental evolution of basins and plateaus and provides insights into the faunal composition and distribution within the investigated interval. The intermittent palaeogeographic situation of the Puez locality during the Early Cretaceous serves as a key for understanding Mediterranean ammonite distribution. PMID:27087716</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6437B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6437B"><span>The upper-mantle transition zone beneath the Chile-Argentina flat subduction zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bagdo, Paula; Bonatto, Luciana; Badi, Gabriela; Piromallo, Claudia</p> <p>2016-04-01</p> <p>The main objective of the present work is the study of the upper mantle structure of the western margin of South America (between 26°S and 36°S) within an area known as the Chile-Argentina flat subduction zone. For this purpose, we use teleseismic records from temporary broad band seismic stations that resulted from different seismic experiments carried out in South America. This area is characterized by on-going orogenic processes and complex subduction history that have profoundly affected the underlying mantle structure. The detection and characterization of the upper mantle seismic discontinuities are useful to understand subduction processes and the dynamics of mantle convection; this is due to the fact that they mark changes in mantle composition or phase changes in mantle minerals that respond differently to the disturbances caused by mantle convection. The discontinuities at a depth of 410 km and 660 km, generally associated to phase changes in olivine, vary in width and depth as a result of compositional and temperature anomalies. As a consequence, these discontinuities are an essential tool to study the thermal and compositional structure of the mantle. Here, we analyze the upper-mantle transition zone discontinuities at a depth of 410 km and 660 km as seen from Pds seismic phases beneath the Argentina-Chile flat subduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=reaction&pg=5&id=EJ1171059','ERIC'); return false;" href="https://eric.ed.gov/?q=reaction&pg=5&id=EJ1171059"><span>Complicating Silence: A Case Study Investigation of Optimal Student Writing Ecologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lampi, Jodi P.; Wilson, Nancy Effinger; Armstrong, Sonya L.</p> <p>2018-01-01</p> <p>In this article, the authors report on a study designed to explore college students' experiences in two writing environments, or ecologies: a media-free, silent zone and a media-saturated zone. Participants shared varying reactions to both environments. Some individuals found media distracting while writing, and others found it to be an energy…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7394S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7394S"><span>Glutenite bodies sequence division of the upper Es4 in northern Minfeng zone of Dongying Sag, Bohai Bay Basin, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shao, Xupeng</p> <p>2017-04-01</p> <p>Glutenite bodies are widely developed in northern Minfeng zone of Dongying Sag. Their litho-electric relationship is not clear. In addition, as the conventional sequence stratigraphic research method drawbacks of involving too many subjective human factors, it has limited deepening of the regional sequence stratigraphic research. The wavelet transform technique based on logging data and the time-frequency analysis technique based on seismic data have advantages of dividing sequence stratigraphy quantitatively comparing with the conventional methods. Under the basis of the conventional sequence research method, this paper used the above techniques to divide the fourth-order sequence of the upper Es4 in northern Minfeng zone of Dongying Sag. The research shows that the wavelet transform technique based on logging data and the time-frequency analysis technique based on seismic data are essentially consistent, both of which divide sequence stratigraphy quantitatively in the frequency domain; wavelet transform technique has high resolutions. It is suitable for areas with wells. The seismic time-frequency analysis technique has wide applicability, but a low resolution. Both of the techniques should be combined; the upper Es4 in northern Minfeng zone of Dongying Sag is a complete set of third-order sequence, which can be further subdivided into 5 fourth-order sequences that has the depositional characteristics of fine-upward sequence in granularity. Key words: Dongying sag, northern Minfeng zone, wavelet transform technique, time-frequency analysis technique ,the upper Es4, sequence stratigraphy</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26824710','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26824710"><span>Focal Epilepsy: MR Imaging of Nonhemodynamic Field Effects by Using a Phase-cycled Stimulus-induced Rotary Saturation Approach with Spin-Lock Preparation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kiefer, Claus; Abela, Eugenio; Schindler, Kaspar; Wiest, Roland</p> <p>2016-07-01</p> <p>Purpose To investigate whether nonhemodynamic resonant saturation effects can be detected in patients with focal epilepsy by using a phase-cycled stimulus-induced rotary saturation (PC-SIRS) approach with spin-lock (SL) preparation and whether they colocalize with the seizure onset zone and surface interictal epileptiform discharges (IED). Materials and Methods The study was approved by the local ethics committee, and all subjects gave written informed consent. Eight patients with focal epilepsy undergoing presurgical surface and intracranial electroencephalography (EEG) underwent magnetic resonance (MR) imaging at 3 T with a whole-brain PC-SIRS imaging sequence with alternating SL-on and SL-off and two-dimensional echo-planar readout. The power of the SL radiofrequency pulse was set to 120 Hz to sensitize the sequence to high gamma oscillations present in epileptogenic tissue. Phase cycling was applied to capture distributed current orientations. Voxel-wise subtraction of SL-off from SL-on images enabled the separation of T2* effects from rotary saturation effects. The topography of PC-SIRS effects was compared with the seizure onset zone at intracranial EEG and with surface IED-related potentials. Bayesian statistics were used to test whether prior PC-SIRS information could improve IED source reconstruction. Results Nonhemodynamic resonant saturation effects ipsilateral to the seizure onset zone were detected in six of eight patients (concordance rate, 0.75; 95% confidence interval: 0.40, 0.94) by means of the PC-SIRS technique. They were concordant with IED surface negativity in seven of eight patients (0.88; 95% confidence interval: 0.51, 1.00). Including PC-SIRS as prior information improved the evidence of the standard EEG source models compared with the use of uninformed reconstructions (exceedance probability, 0.77 vs 0.12; Wilcoxon test of model evidence, P < .05). Nonhemodynamic resonant saturation effects resolved in patients with favorable postsurgical outcomes, but persisted in patients with postsurgical seizure recurrence. Conclusion Nonhemodynamic resonant saturation effects are detectable during interictal periods with the PC-SIRS approach in patients with epilepsy. The method may be useful for MR imaging-based detection of neuronal currents in a clinical environment. (©) RSNA, 2016 Online supplemental material is available for this article.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.V21A1956N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.V21A1956N"><span>Chemical variations in the Triple Group of the Skaergaard intrusion: insights for the mineralization and crystallization process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nielsen, T. F.; Bernstein, S.</p> <p>2009-12-01</p> <p>The 54 Ma. old Skaergaard intrusion ( East Greenland) is a type example for fractionation of basaltic melt along the Fenner Trend. The Triple Group is the upper most 100 m of the Middle Zone and consists of FeTi-oxide rich layered gabbro with three distinct leugabbro layers 2-5 m thick ( L-layers; L1-L3, 2-5m thick) and a less marked layer (L0) c.20 m below L1. These are the most marked of many such layers. Apart from the pronounced layering the lower part of the Triple Group also hosts a world class Au-PGE mineralization. The mineralization is perfectly concordant with the L-layers, and the Triple Group invites investigation of the relationship between host and mineralization. The mineralization includes 5 main levels defined by palladium concentration. The chemical variation across the mineralization is covered by ca. 250 bulk major and trace element compositions, each representing 25cm of stratigraphy giving a continuum of ca. 60m. Proportions of normative plagioclase (plag) and pyroxene (px, including cpx and opx) are complementary, except in mineralized gabbro which is rich in FeTi-oxides. Cumulus ilmenite (ilm) is strongly enriched in layers (7m apart). They occur in both plag- and px-rich gabbro, whereas magnetite (mt) shows no simple correlation with ilm and is mainly a poikilitic intercumulus phase. The L-layers are composed of an upper part rich in plag and px and poor in FeTi-oxides, and a lower part rich in plag and FeTi-oxides and poor in px. The marked breaks in the mineralogy in the L-layers separate one layered succession from the next. The layered successions consist of a lower oxide-poor px-plag adcumulate, followed by complex mesocratic orthocumulate with poikilitic interstitial FeTi-oxide, and an upper part of increasingly simple plag-rich adcumulate with decreasing content of interstitial mt. The Au-PGE mineralized levels are found in the complex FeTi-rich gabbros at and in the base of the leucogabbro layers. The stratigraphic variation in density and densities of melt and liquidus phases suggest plag to have neutral buoyancy (floating), whereas all other phases would sink. The repeated successions are suggested to be the result of repeated “self-stratification” in the mush zone at the crystallization front, characterized by separation of px and plag leaving a transitional zone enriched in Fe-rich melt. In this melt, crystallization of mt led to S-saturation and formation of immiscible sulfide globules (30µm) in which PGE-minerals crystallize. During solidification, residual or immiscible Si-rich melt and volatiles rose from the transitional zone and took Au, Ag, Pt, Te, As, Pb, Sb, Sn, a.o. along to the main magma above and at late stage to granophyric veins. The Fe-enriched gabbros in the transitional zone are commonly accepted as average gabbros, but are in the Triple Group mixes of cumulus phases and evolved Fe-rich melt and should be used with care in the modeling of lines of liquid descent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915158Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915158Z"><span>Lagtime of river systems to changes in pollutant load on the catchment: a regional scale assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Żurek, Anna J.; Różański, Kazimierz; Witczak, Stanisław</p> <p>2017-04-01</p> <p>Transport of conservative contaminants through groundwater systems (e.g. nitrate under oxidized conditions) is significantly delayed when compared to movement of those contaminants through surface water compartments. Characteristic time scales of groundwater movement may easily reach tens or hundreds of years. This results in large lagtimes of contaminant transport in the subsurface. These lagtimes are particularly important when response of river basins to measures aimed at recovery of good groundwater status is considered. Incorporating lagtime principles into water quality regulations may result in more realistic expectations when such policies are designed and implemented. The lagtime of contaminant transport in the subsurface with respect to transport through surface and near-surface (drainage) runoff can be separated into two components: (i) the delay associated with travel time of water (and contaminants) through the unsaturated zone, and (ii) the delay linked to time scales of groundwater flow, from the recharge area down to the discharge zone (river). Thus, the travel time of water through unsaturated and saturated zones can be considered a quantitative measure of the lagtime. Lagtime in the unsaturated zone on the territory of Poland was assessed on the basis of the existing Groundwater Vulnerability Map of Poland (GVMP) (Witczak et al., 2007; 2011). The adopted approach relies on MRT (Mean Residence Time) of water in the strata separating the saturated aquifer from the land surface, as an integrated vulnerability index. In the framework of GVMP, the MRT is calculated as turnover time of the infiltrating water in the vadose zone. The piston-flow type of water movement through the unsaturated zone is considered. The lagtime in the saturated zone (Tsat) can be approximated by travel time of water, flowing along the local hydraulic gradient to the closest river. The lagtime of river systems with respect to changes in pollutant load on the catchment is a sum of the travel time of water through the unsaturated zone (MRT) and the travel time associated with movement of water in the saturated zone (Tsat). Preliminary assessments of total lagtime (MRT + Tsat) suggest that for the territory of Poland the mean value of the total lagtime of conservative contaminant is in the order of 25 years, with the range of 10 to 60 years corresponding to one standard deviation. References: Witczak S. (Ed.) (2011). Groundwater Vulnerability Map of Poland. Ministerstwo Środowiska. Warszawa. Witczak S., Duda R., Zurek A. (2007). The Polish concept of groundwater vulnerability mapping. [In:] Witkowski A.J., Kowalczyk A., Vrba J., Groundwater Vulnerability Assessment and Mapping, Selected Papers on Hydrogeology 11, 45-59. Acknowledgements. The work was carried out as part of the project BONUS Soils2Sea and the statutory funds of the AGH University of Science and Technology (projects No.11.11.140.797 and 11.11.220.01).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1207/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1207/report.pdf"><span>Middle Triassic molluscan fossils of biostratigraphic significance from the Humboldt Range, northwestern Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Silberling, Norman J.; Nichols, K.M.</p> <p>1982-01-01</p> <p>Cephalopods and bivalves of the genus Daonella occur at certain levels throughout the Middle Triassic section in the Humboldt Range, northwestern Nevada. These fossiliferous strata are assigned to the Fossil Hill Member and upper member of the Prida Formation, which here forms the oldest part of the Star Peak Group. The distribution and abundance of fossils within the section is uneven, partly because of original depositional patterns within the dominantly calcareous succession and partly because of diagenetic secondary dolomitization and hydrothermal metamorphism in parts of the range.Lower and middle Anisian fossil localities are restricted to the northern part of the range and are scattered, so that only three demonstrably distinct stratigraphic levels are represented. Cephalopods from these localities are characteristic of the Caurus Zone and typify the lower and upper parts of the Hyatti Zone, a new zonal unit whose faunas have affinity with those from the older parts of the Varium Zone in Canada.The upper Anisian and lowermost Ladinian, as exposed in the vicinity of Fossil Hill in the southern part of the range, are extremely fossiliferous. Cephalopod and Daonella shells form a major component of many of the limestone interbeds in the calcareous fine-grained clastic section here. Stratigraphically controlled bedrock collections representing at least 20 successive levels have been made from the Fossil Hill area, which is the type locality for the Rotelliformis, Meeki, and Occidentalis Zones of the upper Anisian and the Subasperum Zone of the lower Ladinian. Above the Subasperum Zone fossils are again scarce; upper Ladinian faunas representing the Daonella lommeli beds occur at only a few places in the upper member of the Prida Formation.Although unevenly fossiliferous, the succession of Middle Triassic cephalopod and Daonella faunas in the Humboldt Range is one of the most complete of any known in the world. Newly collected faunas from this succession provide the basis for revising the classic monograph on Middle Triassic marine invertebrates of North America published in 1914 by J. P. Smith and based largely on stratigraphically uncontrolled collections from the Humboldt Range. Taxonomic treatment of these collections, old and new, from the Humboldt Range provides the documentation necessary to establish this Middle Triassic succession as a biostratigraphic standard of reference.Of the 68 species of ammonites described or discussed, 4 are from the lower Anisian, 20 from the middle Anisian, 39 from the upper Anisian, 4 from the lower Ladinian, and 1 from the upper Ladinian. A few additional ammonite species from other localities in Nevada are also treated in order to clarify their morphologic characteristics and stratigraphic occurrence. Other elements in the Middle Triassic molluscan faunas of the Humboldt Range comprise five species of nautiloids and three of coleoids from the middle and upper Anisian parts of the section. Eight more or less stratigraphically restricted species of Daonella occur in the upper Anisian and Ladinian.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B41C1955P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B41C1955P"><span>Depth dependent microbial carbon use efficiency in the capillary fringe as affected by water table fluctuations in a column incubation experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pronk, G. J.; Mellage, A.; Milojevic, T.; Smeaton, C. M.; Rezanezhad, F.; Van Cappellen, P.</p> <p>2017-12-01</p> <p>Microbial growth and turnover of soil organic carbon (SOC) depend on the availability of electron donors and acceptors. The steep geochemical gradients in the capillary fringe between the saturated and unsaturated zones provide hotspots of soil microbial activity. Water table fluctuations and the associated drying and wetting cycles within these zones have been observed to lead to enhanced turnover of SOC and adaptation of the local microbial communities. To improve our understanding of SOC degradation under changing moisture conditions, we carried out an automated soil column experiment with integrated of hydro-bio-geophysical monitoring under both constant and oscillating water table conditions. An artificial soil mixture composed of quartz sand, montmorillonite, goethite and humus was used to provide a well-defined system. This material was inoculated with a microbial community extracted from a forested riparian zone. The soils were packed into 6 columns (60 cm length and 7.5 cm inner diameter) to a height of 45 cm; and three replicate columns were incubated under constant water table while another three were saturated and drained monthly. The initial soil development, carbon cycling and microbial community development were then characterized during 10 months of incubation. This system provides an ideal artificial gradient from the saturated to the unsaturated zone to study soil development from initially homogeneous materials and the same microbial community composition under controlled conditions. Depth profiles of SOC and microbial biomass after 329 days of incubation showed a depletion of carbon in the transition drying and wetting zone that was not associated with higher accumulation of microbial biomass, indicating a lower carbon use efficiency of the microbial community established within the water table fluctuation zone. This was supported by a higher ATP to microbial biomass carbon ratio within the same zone. The findings from this study highlight the importance of considering the effects of transient soil moisture and oxygen availability on microbial mediated SOC transformations. The effects of these changes in carbon use efficiency need to be included in soil models in order to accurately predict SOC turnover.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22328208','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22328208"><span>Factors influencing the QMF resolution for operation in stability zones 1 and 3.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Syed, Sarfaraz U A H; Hogan, Thomas; Gibson, John; Taylor, Stephen</p> <p>2012-05-01</p> <p>This study uses a computer model to simulate a quadrupole mass filter (QMF) instrument under different operating conditions for Mathieu stability zones 1 and 3. The investigation considers the factors that limit the maximum resolution (R(max)), which can be obtained for a given QMF for a particular value of scan line. Previously, QMF resolution (R) has been found to be dependent on number (N) of radio frequency (rf) cycles experienced by the ions in the mass filter, according to R = N(n)/K, where n and K are the constants. However, this expression does not predict the limit to QMF resolution observed in practice and is true only for the linear regions of the performance curve for QMF operation in zone 1 and zone 3 of the stability diagram. Here we model the saturated regions of the performance curve for QMF operation in zone 1 according to R = q(1 - 2c(N))/∆q, where c is a constant and ∆q is the width of the intersection of the operating scan line with the stability zone 1, measured at q-axis of the Mathieu stability diagram. Also by careful calculations of the detail of the stability tip of zone 1, the following relationship was established between R(max) and percentage U/V ratio: R(max) = q/(0.9330-0.00933U/V). For QMF operation in zone 3 the expression R = a - bc(N) simulates well the linear and saturated regions of the performance curve for a range of operational conditions, where a, b, and c are constants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA548015','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA548015"><span>Numerical Simulation of Ultra-Fast Pulse Propagation in Two-Photon Absorbing Medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-08-01</p> <p>physical problems including coherent- and incoherent regimes of optical power limiting, saturation, CEP effects, soliton formation etc. It can be also...coherent- and incoherent regimes of optical power limiting, saturation, CEP effects, electromagnetically induced transparency, soliton formation etc...experimental data ( dark blue); Upper panel - 1PA spectrum; Lower panel - 2PA cross section spectrum. The parameter values used are shown in Table 1. 10</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29161314','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29161314"><span>Conventional and technical diving surveys reveal elevated biomass and differing fish community composition from shallow and upper mesophotic zones of a remote United States coral reef.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Muñoz, Roldan C; Buckel, Christine A; Whitfield, Paula E; Viehman, Shay; Clark, Randy; Taylor, J Christopher; Degan, Brian P; Hickerson, Emma L</p> <p>2017-01-01</p> <p>The world's coral reefs appear to be in a global decline, yet most previous research on coral reefs has taken place at depths shallower than 30 m. Mesophotic coral ecosystem (depths deeper than ~30 m) studies have revealed extensive, productive habitats and rich communities. Despite recent advances, mesophotic coral ecosystems remain understudied due to challenges with sampling at deeper depths. The few previous studies of mesophotic coral ecosystems have shown variation across locations in depth-specific species composition and assemblage shifts, potentially a response to differences in habitat or light availability/water clarity. This study utilized scuba to examine fish and benthic communities from shallow and upper mesophotic (to 45 m) zones of Flower Garden Banks National Marine Sanctuary (FGBNMS, 28°0'N; 93°50'W) from 2010-2012. Dominant planktivores were ubiquitous in shallow and upper mesophotic habitats, and comparisons with previous shallow research suggest this community distribution has persisted for over 30 years. Planktivores were abundant in shallow low-relief habitats on the periphery of the coral reef, and some of these sites that contained habitat transitioning from high to low relief supported high biomass of benthic predators. These peripheral sites at FGBNMS may be important for the trophic transfer of oceanic energy to the benthic coral reef. Distinct differences between upper mesophotic and shallow communities were also observed. These included greater overall fish (as well as apex predator) biomass in the upper mesophotic, differences in apex predator community composition between depth zones, and greater percent cover of algae, rubble, sand, and sponges in the upper mesophotic. Greater fish biomass in the upper mesophotic and similar fish community composition between depth zones provide preliminary support that upper mesophotic habitats at FGBNMS have the capacity to serve as refugia for the shallow-water reefs. Diving surveys of the upper mesophotic and shallow-water coral reef have revealed valuable information concerning the reef fish community in the northern Gulf of Mexico, with implications for the conservation of apex predators, oceanic coral reefs, and the future management of FGBNMS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5697833','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5697833"><span>Conventional and technical diving surveys reveal elevated biomass and differing fish community composition from shallow and upper mesophotic zones of a remote United States coral reef</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Buckel, Christine A.; Whitfield, Paula E.; Viehman, Shay; Clark, Randy; Taylor, J. Christopher; Degan, Brian P.; Hickerson, Emma L.</p> <p>2017-01-01</p> <p>The world’s coral reefs appear to be in a global decline, yet most previous research on coral reefs has taken place at depths shallower than 30 m. Mesophotic coral ecosystem (depths deeper than ~30 m) studies have revealed extensive, productive habitats and rich communities. Despite recent advances, mesophotic coral ecosystems remain understudied due to challenges with sampling at deeper depths. The few previous studies of mesophotic coral ecosystems have shown variation across locations in depth-specific species composition and assemblage shifts, potentially a response to differences in habitat or light availability/water clarity. This study utilized scuba to examine fish and benthic communities from shallow and upper mesophotic (to 45 m) zones of Flower Garden Banks National Marine Sanctuary (FGBNMS, 28°0ʹN; 93°50ʹW) from 2010–2012. Dominant planktivores were ubiquitous in shallow and upper mesophotic habitats, and comparisons with previous shallow research suggest this community distribution has persisted for over 30 years. Planktivores were abundant in shallow low-relief habitats on the periphery of the coral reef, and some of these sites that contained habitat transitioning from high to low relief supported high biomass of benthic predators. These peripheral sites at FGBNMS may be important for the trophic transfer of oceanic energy to the benthic coral reef. Distinct differences between upper mesophotic and shallow communities were also observed. These included greater overall fish (as well as apex predator) biomass in the upper mesophotic, differences in apex predator community composition between depth zones, and greater percent cover of algae, rubble, sand, and sponges in the upper mesophotic. Greater fish biomass in the upper mesophotic and similar fish community composition between depth zones provide preliminary support that upper mesophotic habitats at FGBNMS have the capacity to serve as refugia for the shallow-water reefs. Diving surveys of the upper mesophotic and shallow-water coral reef have revealed valuable information concerning the reef fish community in the northern Gulf of Mexico, with implications for the conservation of apex predators, oceanic coral reefs, and the future management of FGBNMS. PMID:29161314</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S43D0884G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S43D0884G"><span>Spatial Distribution of Seismic Anisotropy in the Crust in the Northeast Front Zone of Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Y.; Wang, Q.; SHI, Y.</p> <p>2017-12-01</p> <p>There are orogenic belts and strong deformation in northeastern zone of Tibetan Plateau. The media in crust and in the upper mantle are seismic anisotropic there. This study uses seismic records by permanent seismic stations and portable seismic arrays, and adopts analysis techniques on body waves to obtain spatial anisotropic distribution in northeastern front zone of Tibetan Plateau. With seismic records of small local earthquakes, we study shear-wave splitting in the upper crust. The polarization of fast shear wave (PFS) can be obtained, and PFS is considered parallel to the strike of the cracks, as well as the direction of maximum horizontal compressive stress. However, the result shows the strong influence from tectonics, such as faults. It suggests multiple-influence including stress and fault. Spatial distribution of seismic anisotropy in study zone presents the effect in short range. PFS at the station on the strike-slip fault is quite different to PFS at station just hundreds of meters away from the fault. With seismic records of teleseismic waveforms, we obtained seismic anisotropy in the whole crust by receiver functions. The PFS directions from Pms receiver functions show consistency, generally in WNW. The time-delay of slow S phases is significant. With seismic records of SKS, PKS and SKKS phases, we can detect seismic anisotropy in the upper mantle by splitting analysis. The fast directions of these phases also show consistency, generally in WNW, similar to those of receiver functions, but larger time-delays. It suggests significant seismic anisotropy in the crust and crustal deformation is coherent to that in the upper mantle.Seismic anisotropy in the upper crust, in the whole crust and in the upper mantle are discussed both in difference and tectonic implications [Grateful to the support by NSFC Project 41474032].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7128P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7128P"><span>Fracture properties from tight reservoir outcrop analogues with application to geothermal exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Philipp, Sonja L.; Reyer, Dorothea; Afsar, Filiz; Bauer, Johanna F.; Meier, Silke; Reinecker, John</p> <p>2015-04-01</p> <p>In geothermal reservoirs, similar to other tight reservoirs, fluid flow may be intensely affected by fracture systems, in particular those associated with fault zones. When active (slipping) the fault core, that is, the inner part of a fault zone, which commonly consists of breccia or gouge, can suddenly develop high permeability. Fault cores of inactive fault zones, however, may have low permeabilities and even act as flow barriers. In the outer part of a fault zone, the damage zone, permeability depends mainly on the fracture properties, that is, the geometry (orientation, aperture, density, connectivity, etc.) of the fault-associated fracture system. Mineral vein networks in damage zones of deeply eroded fault zones in palaeogeothermal fields demonstrate their permeability. In geothermal exploration, particularly for hydrothermal reservoirs, the orientation of fault zones in relation to the current stress field as well as their internal structure, in particular the properties of the associated fracture system, must be known as accurately as possible for wellpath planning and reservoir engineering. Here we present results of detailed field studies and numerical models of fault zones and associated fracture systems in palaeogeo¬thermal fields and host rocks for geothermal reservoirs from various stratigraphies, lithologies and tectonic settings: (1) 74 fault zones in three coastal sections of Upper Triassic and Lower Jurassic age (mudstones and limestone-marl alternations) in the Bristol Channel Basin, UK. (2) 58 fault zones in 22 outcrops from Upper Carboniferous to Upper Cretaceous in the Northwest German Basin (siliciclastic, carbonate and volcanic rocks); and (3) 16 fault zones in 9 outcrops in Lower Permian to Middle Triassic (mainly sandstone and limestone) in the Upper Rhine Graben shoulders. Whereas (1) represent palaeogeothermal fields with mineral veins, (2) and (3) are outcrop analogues of reservoir horizons from geothermal exploration. In the study areas of palaeo¬geothermal fields in the Bristol Channel (1), all mineral veins, most of which are extension fractures, are of calcite. They are clearly associated with the faults and indicate that geothermal water was transported along the then-active faults into the host rocks with evidence of injection as hydrofractures. Layers with contrasting mechanical properties (in particular, stiffnesses), however, acted as stress barriers and lead to fracture arrest. Along some faults, veins propagated through the barriers along faults to shallower levels. In the Northwest German Basin (2) there are pronounced differences between normal-fault zones in carbonate and clastic rocks. Only in carbonate rocks clear damage zones occur, characterized by increased fracture frequencies and high amounts of fractures with large apertures. On the Upper Rhine Graben shoulders (3) damage zones in Triassic Muschelkalk limestones are well developed; fault cores are narrow and comprise breccia, clay smear, host rock lenses and mineralization. A large fault zone in Triassic Bunter sandstone shows a clearly developed fault core with fault gouge, slip zones, deformation bands and host rock lenses, a transition zone with mostly disturbed layering and highest fracture frequency, and a damage zone. The latter damage zone is compared to the damage zone of a large Bunter sandstone fault zone currently explored for geothermal energy production. The numerical models focus on stress field development, fracture propagation and associated permeability changes. These studies contribute to the understanding of the hydromechanical behaviour of fault zones and related fluid transport in fractured reservoirs complementing predictions based on geophysical measurements. Eventually we aim at classifying and quantifying fracture system properties in fault zones to improve exploration and exploitation of geothermal reservoirs. Acknowledgements The authors appreciate the support of 'Niedersächsisches Ministerium für Wissen¬schaft und Kultur' and 'Baker Hughes' within the gebo research project (http://www.gebo-nds.de), the Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMU; FKZ: 0325302, AuGE) and the Deutsche Forschungsgemeinschaft. GeoEnergy GmbH, Karlsruhe, is thanked for explorational data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1129864-microbial-distributions-detected-oligonucleotide-microarray-across-geochemical-zones-associated-methane-marine-sediments-from-ulleung-basin','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1129864-microbial-distributions-detected-oligonucleotide-microarray-across-geochemical-zones-associated-methane-marine-sediments-from-ulleung-basin"><span>Microbial distributions detected by an oligonucleotide microarray across geochemical zones associated with methane in marine sediments from the Ulleung Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Briggs, Brandon R; Graw, Michael; Brodie, Eoin L</p> <p>2013-11-01</p> <p>The biogeochemical processes that occur in marine sediments on continental margins are complex; however, from one perspective they can be considered with respect to three geochemical zones based on the presence and form of methane: sulfate–methane transition (SMTZ), gas hydrate stability zone (GHSZ), and free gas zone (FGZ). These geochemical zones may harbor distinct microbial communities that are important in biogeochemical carbon cycles. The objective of this study was to describe the microbial communities in sediments from the SMTZ, GHSZ, and FGZ using molecular ecology methods (i.e. PhyloChip microarray analysis and terminal restriction fragment length polymorphism (T-RFLP)) and examining themore » results in the context of non-biological parameters in the sediments. Non-metric multidimensional scaling and multi-response permutation procedures were used to determine whether microbial community compositions were significantly different in the three geochemical zones and to correlate samples with abiotic characteristics of the sediments. This analysis indicated that microbial communities from all three zones were distinct from one another and that variables such as sulfate concentration, hydrate saturation of the nearest gas hydrate layer, and depth (or unmeasured variables associated with depth e.g. temperature, pressure) were correlated to differences between the three zones. The archaeal anaerobic methanotrophs typically attributed to performing anaerobic oxidation of methane were not detected in the SMTZ; however, the marine benthic group-B, which is often found in SMTZ, was detected. Within the GHSZ, samples that were typically closer to layers that contained higher hydrate saturation had indicator sequences related to Vibrio-type taxa. These results suggest that the biogeographic patterns of microbial communities in marine sediments are distinct based on geochemical zones defined by methane.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7144468-burnable-absorber-arrangement-fuel-bundle','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7144468-burnable-absorber-arrangement-fuel-bundle"><span>Burnable absorber arrangement for fuel bundle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Crowther, R.L.; Townsend, D.B.</p> <p>1986-12-16</p> <p>This patent describes a boiling water reactor core whose operation is characterized by a substantial proportion of steam voids with concomitantly reduced moderation toward the top of the core when the reactor is in its hot operating condition. The reduced moderation leads to slower burnup and greater conversion ratio in an upper core region so that when the reactor is in its cold shut down condition the resulting relatively increased moderation in the upper core region is accompanied by a reactivity profile that peaks in the upper core region. A fuel assembly is described comprising; a component of fissile materialmore » distributed over a substantial axial extent of the fuel assembly; and a component of neutron absorbing material having an axial distribution characterized by an enhancement in an axial zone of the fuel assembly, designated the cold shutdown control zone, corresponding to at least a portion of the axial region of the core when the cold shutdown reactivity peaks. The aggregate amount of neutron absorbing material in the cold shutdown zone of the fuel assembly is greater than the aggregate amount of neutron absorbing material in the axial zones of the fuel assembly immediately above and immediately below the cold shutdown control zone whereby the cold shutdown reactivity peak is reduced relative to the cold shutdown reactivity in the zones immediately above and immediately below the cold shutdown control zone. The cold shutdown zone has an axial extent measured from the bottom of the fuel assembly in the range between 68-88 percent of the height of the fissile material in the fuel assembly.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890011956','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890011956"><span>How many upper Eocene microspherule layers: More than we thought</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hazel, Joseph E.</p> <p>1988-01-01</p> <p>The scientific controversy over the origin of upper Eocene tektites, microtektites and other microspherules cannot be logically resolved until it is determined just how many events are involved. The microspherule-bearing beds in marine sediments have been dated using standard biozonal techniques. Although a powerful stratigraphic tool, zonal biostratigraph has its limitations. One is that if an event, such as a microspherule occurrence, is observed to occur in a zone at one locality and then a similar event observed in the same zone at another locality, it still may be unwarranted to conclude that these events exactly correlate. To be in a zone a sample only need be between the fossil events that define the zone boundaries. It is often very difficult to accurately determine where within a zone one might be. Further, the zone defining events do not everywhere occur at the same points in time. That is, the ranges of the defining taxa are not always filled. Thus, the length of time represented by a zone (but not, of course, its chronozone) can vary from place to place. These problems can be offset by use of chronostratigraphic modelling techniques such as Graphic Correlation. This technique was used to build a Cretaceous and Cenozoic model containing fossil, magnetopolarity, and other events. The scale of the model can be demonstrated to be linear with time. This model was used to determine the chronostratigraphic position of upper Eocene microspherule layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ECSS..150...67H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ECSS..150...67H"><span>Local extirpations and regional declines of endemic upper beach invertebrates in southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hubbard, D. M.; Dugan, J. E.; Schooler, N. K.; Viola, S. M.</p> <p>2014-10-01</p> <p>Along the world's highly valued and populous coastlines, the upper intertidal zones of sandy beach ecosystems and the biodiversity that these zones support are increasingly threatened by impacts of human activities, coastal development, erosion, and climate change. The upper zones of beaches typically support invertebrates with restricted distributions and dispersal, making them particularly vulnerable to habitat loss and fragmentation. We hypothesized that disproportionate loss or degradation of these zones in the last century has resulted in declines of upper shore macroinvertebrates in southern California. We identified a suite of potentially vulnerable endemic upper beach invertebrates with direct development, low dispersal and late reproduction. Based on the availability of printed sources and museum specimens, we investigated historical changes in distribution and abundance of two intertidal isopod species (Tylos punctatus, Alloniscus perconvexus) in southern California. Populations of these isopods have been extirpated at numerous historically occupied sites: T. punctatus from 16 sites (57% decrease), and A. perconvexus from 14 sites (64% decrease). During the same period, we found evidence of only five colonization events. In addition, the northern range limit of the southern species, T. punctatus, moved south by 31 km (8% of range on California mainland) since 1971. Abundances of T. punctatus have declined on the mainland coast; only three recently sampled populations had abundances >7000 individuals m-1. For A. perconvexus populations, abundances >100 individuals m-1 now appear to be limited to the northern part of the study area. Our results show that numerous local extirpations of isopod populations have resulted in regional declines and in greatly reduced population connectivity in several major littoral cells of southern California. Two of the six major littoral cells (Santa Barbara and Zuma) in the area currently support 74% of the remaining isopod populations. These isopods persist primarily on relatively remote, ungroomed, unarmored beaches with restricted vehicle access and minimal management activity. These predominantly narrow, bluff-backed beaches also support species-rich upper beach assemblages, suggesting these isopods can be useful indicators of biodiversity. The high extirpation rates of isopod populations on the southern California mainland over the last century provide a compelling example of the vulnerability of upper beach invertebrates to coastal urbanization. Climate change and sea level rise will exert further pressures on upper beach zones and biota in southern California and globally. In the absence of rapid implementation of effective conservation strategies, our results suggest many upper intertidal invertebrate species are at risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/870235','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/870235"><span>Vapor port and groundwater sampling well</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hubbell, Joel M.; Wylie, Allan H.</p> <p>1996-01-01</p> <p>A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/170465','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/170465"><span>Vapor port and groundwater sampling well</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hubbell, J.M.; Wylie, A.H.</p> <p>1996-01-09</p> <p>A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186249','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186249"><span>Evidence for an upper mantle low velocity zone beneath the southern Basin and Range-Colorado Plateau transition zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Benz, H.M.; McCarthy, J.</p> <p>1994-01-01</p> <p>A 370-km-long seismic refraction/wide-angle reflection profile recorded during the Pacific to Arizona Crustal Experiment (PACE) detected an upper mantle P-wave low-velocity zone (LVZ) in the depth range 40 to 55 km beneath the Basin and Range in southern Arizona. Interpretation of seismic data places constraints on the sub-crustal lithosphere of the southern Basin and Range Province, which is important in light of the active tectonics of the region and the unknown role of the sub-crustal lithosphere in the development of the western United States. Forward travel time and synthetic seismogram techniques are used to model this shallow upper mantle LVZ. Modeling results show that the LVZ is defined by a 5% velocity decrease relative to a Pn velocity of 7.95 km s−1, suggesting either a ∼3–5% mafic partial melt or high-temperature, sub-solidus peridotite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013IzPSE..49..392K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013IzPSE..49..392K"><span>Seismicity in the platform regions of Ukraine in the zones of anomalous electrical conductivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kushnir, A. N.; Kulik, S. N.; Burakhovich, T. K.</p> <p>2013-05-01</p> <p>It is established for the first time that there are several regions in Ukraine, in which the earthquakes occurring within platform territory are correlated to the anomalous conductive structures in the Earth's crust and upper mantle. These regions are identified as (1) Donbass and the eastern part of the Dnieper-Donetsk Depression (DDD); (2) eastern margin of the Ingulets-Krivoi Rog suture zone in the area of the Krivoi Rog-Kremenchug fault zone; (3) the western part of the Cis-Azov megablock; (4) the western boundary of the Ukrainian Shield and its slope; (5) North Dobruja and Pre-Dobrujan Depression. The reconstructed tree-dimensional (3D) geoelectrical models of the Earth's crust and upper mantle feature anomalously low values of electric resistivity. The earthquake sources in the platform areas of Ukraine are localized above the top and in the upper parts of the crustal anomalies of electrical conductivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016775','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016775"><span>Paleogeographic implications of an erosional remnant of Paleogene rocks southwest of the Sur-Nacimiento Fault Zone, southern Coast Ranges, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vedder, J.G.; McLean, H.; Stanley, R.G.; Wiley, T.J.</p> <p>1991-01-01</p> <p>A small tract of heretofore-unrecognized Paleogene rocks lies about 30 km northeast of Santa Maria and 1 km southwest of the Sur-Nacimiento fault zone near upper Pine Creek. This poorly exposed assemblage of rocks is less than 50 m thick, lies unconformably on regionally distributed Upper Cretaceous submarine-fan deposits, and consists of three units: fossiliferous lower Eocene mudstone, Oligocene(?) conglomerate, and basaltic andesite that has a radiometric age of 26.6 ?? 0.5 Ma. Both the sedimentary and igneous constituents in the Paleogene sequence are unlike those of known sequences on either side of the Sur-Nacimiento fault zone. The Paleogene sedimentary rocks near upper Pine Creek presumably are remnants of formerly widespread early Eocene bathyal deposits and locally distributed Oligocene(?) fluvial deposits southwest of the fault zone. The 26.6 Ma basaltic andesite, however, may not have extended much beyond its present outcrops. An episode of Oligocene(?) displacement is required by the contrast in thicknesses, depositional patterns, and paleobathymetry of the juxtaposed rock sequences. -from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1965c0006X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1965c0006X"><span>The pectinate zone is stiff and the arcuate zone determines passive basilar membrane mechanics in the gerbil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xia, Hongyi; Steele, Charles R.; Puria, Sunil</p> <p>2018-05-01</p> <p>The gerbil basilar membrane (BM) differs from other mammalian BMs in that the lower collagen-fiber layer of the pectinate zone (PZ) forms an arch, the upper fiber layer is flat, and ground substance separates the two layers. The role of this arch has been unknown, but can be elucidated by models. In the standard simple beam model (SBM), the upper and lower collagen-fiber layers of the BM are represented as a single layer in both the PZ and the arcuate zone (AZ). In our new arch-beam model (ABM), the upper fiber layer is flat, the lower layer forms an arch in the PZ, and the two layers combine to form the flat portion of the BM in the AZ. This design is incorporated into a 3D finite-element tapered-box model of the cochlea with viscous fluid. We find in the model that the PZ rotates as a rigid body, so its specific properties have little influence, while the AZ thickness and collagen volume fraction primarily determine passive BM mechanics.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V51C2675B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V51C2675B"><span>Crystal accumulation and compositional trends in a calc-alkaline batholith: implications for correlation of plutonic and volcanic rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnes, C. G.; Coint, N.</p> <p>2013-12-01</p> <p>The Wooley Creek batholith is a tilted, calc-alkaline intrusive complex in the Klamath Mountain province, California, that can be divided into two main zones: lower (~159.2 × 0.2 Ma) and upper (~158.2 × 0.3 Ma), separated by a central transition zone. The lower zone consists of multiple intrusive units of gabbro through tonalite, with minor mafic synplutonic dikes and intrusive melagabbro and pyroxenite. Major and trace element data plot in two groups: a mafic group that encompasses pyroxenite to diorite, and a tonalitic group. For each group, Mg/Fe in augite was used to determine the approximate composition of equilibrium melt and then major element mass balance was used to calculate proportions of cumulate phases and melt. For the mafic group, no single parental magma can be identified, which is consistent with assembly via many magma batches. However, the most mafic rocks were derived from basaltic andesite magmas and represent 30 to 100% cumulate augite + opx × plagioclase × olivine. Interstitial melt in the tonalitic group was dacitic, and mass balance indicates from 30 to 80% cumulate pyroxenes + plagioclase × accessory apatite and Fe-Ti oxides. The parental magma was probably silicic andesite. The upper zone varies gradationally from structurally low quartz diorite to uppermost granite. Upper zone magmas ';leaked' to form dacitic to rhyodacitic ';roof dikes'. Previous work (Coint et al., Geosphere, in press) showed that the upper zone formed from an approximately homogeneous magma body and that compositional variation was related to upward percolation of melt. Mass balance supports this interpretation and indicates that (1) the parental magmas were andesitic, (2) structurally low rocks are 15 to 65 % cumulate hornblende + plagioclase × pyroxene, and (3) high-level granite and granodiorite are the fractionated products of this accumulation. These results show that the upper zone is a good example of fractional crystallization within a moderate-sized magma body (≥ 160 km3) in which both cumulates and differentiates are readily identified. In contrast, differentiates related to lower-zone cumulate rocks are rare, presumably because they intruded higher crustal levels and/or erupted. We conclude that compositional trends of lower-zone rocks are dominated by crystal accumulation and do not accurately reflect magmatic evolution owing to loss of differentiated magmas. If this process is common in such plutons, then the use of bulk-rock compositions to identify consanguineous plutonic and volcanic rocks will be difficult, at best.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27676147','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27676147"><span>Validation of Body Volume Acquisition by Using Elliptical Zone Method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chiu, C-Y; Pease, D L; Fawkner, S; Sanders, R H</p> <p>2016-12-01</p> <p>The elliptical zone method (E-Zone) can be used to obtain reliable body volume data including total body volume and segmental volumes with inexpensive and portable equipment. The purpose of this research was to assess the accuracy of body volume data obtained from E-Zone by comparing them with those acquired from the 3D photonic scanning method (3DPS). 17 male participants with diverse somatotypes were recruited. Each participant was scanned twice on the same day by a 3D whole-body scanner and photographed twice for the E-Zone analysis. The body volume data acquired from 3DPS was regarded as the reference against which the accuracy of the E-Zone was assessed. The relative technical error of measurement (TEM) of total body volume estimations was around 3% for E-Zone. E-Zone can estimate the segmental volumes of upper torso, lower torso, thigh, shank, upper arm and lower arm accurately (relative TEM<10%) but the accuracy for small segments including the neck, hand and foot were poor. In summary, E-Zone provides a reliable, inexpensive, portable, and simple method to obtain reasonable estimates of total body volume and to indicate segmental volume distribution. © Georg Thieme Verlag KG Stuttgart · New York.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15952347','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15952347"><span>Colloid-facilitated transport of cesium in variably saturated Hanford sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Gang; Flury, Markus; Harsh, James B; Lichtner, Peter C</p> <p>2005-05-15</p> <p>Radioactive 137Cs has leaked from underground waste tanks into the vadose zone at the Hanford Reservation in south-central Washington State. There is concern that 137Cs, currently located in the vadose zone, can reach the groundwater. In this study, we investigated whether, and to what extent, colloidal particles can facilitate the transport of 137Cs at Hanford. We used colloidal materials isolated from Hanford sediments. Transport experiments were conducted under variably saturated, steady-state flow conditions in repacked, 20 cm long Hanford sediment columns, with effective water saturations ranging from 0.2 to 1.0. Cesium, pre-associated with colloids, was stripped off during transport through the sediments. The higher the flow rates, the less Cs was stripped off, indicating in part that Cs desorption from carrying colloids was a residence-time-dependent process. Depending on the flow rate, up to 70% of the initially sorbed Cs desorbed from colloidal carriers and was captured in the stationary sediments. Less Cs was stripped off colloids under unsaturated than under saturated flow conditions at similar flow rates. This phenomenon was likely due to the reduced availability of sorption sites for Cs on the sediments as the water content decreased and water flow was divided between mobile and immobile regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=258669','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=258669"><span>Least-cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>In 2007, the hypoxic zone in the Gulf of Mexico, measuring 20,720 km**2, was one of the two largest reported since measurement of the zone began in 1985. The extent of the hypoxic zone is related to nitrogen and phosphorous loadings originating on agricultural fields in the upper Midwest. This stud...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030816','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030816"><span>Comparative velocity structure of active Hawaiian volcanoes from 3-D onshore-offshore seismic tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.; Peters, L.; Benesh, N.</p> <p>2007-01-01</p> <p>We present a 3-D P-wave velocity model of the combined subaerial and submarine portions of the southeastern part of the Island of Hawaii, based on first-arrival seismic tomography of marine airgun shots recorded by the onland seismic network. Our model shows that high-velocity materials (6.5-7.0??km/s) lie beneath Kilauea's summit, Koae fault zone, and the upper Southwest Rift Zone (SWRZ) and upper and middle East Rift Zone (ERZ), indicative of magma cumulates within the volcanic edifice. A separate high-velocity body of 6.5-6.9??km/s within Kilauea's lower ERZ and upper Puna Ridge suggests a distinct body of magma cumulates, possibly connected to the summit magma cumulates at depth. The two cumulate bodies within Kilauea's ERZ may have undergone separate ductile flow seaward, influencing the submarine morphology of Kilauea's south flank. Low velocities (5.0-6.3??km/s) seaward of Kilauea's Hilina fault zone, and along Mauna Loa's seaward facing Kao'iki fault zone, are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. Loihi seamount shows high-velocity anomalies beneath the summit and along the rift zones, similar to the interpreted magma cumulates below Mauna Loa and Kilauea volcanoes, and a low-velocity anomaly beneath the oceanic crust, probably indicative of melt within the upper mantle. Around Kilauea's submarine flank, a high-velocity anomaly beneath the outer bench suggests the presence of an ancient seamount that may obstruct outward spreading of the flank. Mauna Loa's southeast flank is also marked by a large, anomalously high-velocity feature (7.0-7.4??km/s), interpreted to define an inactive, buried volcanic rift zone, which might provide a new explanation for the westward migration of Mauna Loa's current SWRZ and the growth of Kilauea's SWRZ. ?? 2007 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAsGe...6..256M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAsGe...6..256M"><span>Joint application of Geoelectrical Resistivity and Ground Penetrating Radar techniques for the study of hyper-saturated zones. Case study in Egypt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mesbah, Hany S.; Morsy, Essam A.; Soliman, Mamdouh M.; Kabeel, Khamis</p> <p>2017-06-01</p> <p>This paper presents the results of the application of the Geoelectrical Resistivity Sounding (GRS) and Ground Penetrating Radar (GPR) for outlining and investigating of surface springing out (flow) of groundwater to the base of an service building site, and determining the reason(s) for the zone of maximum degree of saturation; in addition to provide stratigraphic information for this site. The studied economic building is constructed lower than the ground surface by about 7 m. A Vertical Electrical Sounding (VES) survey was performed at 12 points around the studied building in order to investigate the vertical and lateral extent of the subsurface sequence, three VES's were conducted at each side of the building at discrete distances. And a total of 9 GPR profiles with 100- and 200-MHz antennae were conducted, with the objective of evaluating the depth and the degree of saturation of the subsurface layers. The qualitative and quantitative interpretation of the acquired VES's showed easily the levels of saturations close to and around the studied building. From the interpretation of GPR profiles, it was possible to locate and determine the saturated layers. The radar signals are penetrated and enabled the identification of the subsurface reflectors. The results of GPR and VES showed a good agreement and the integrated interpretations were supported by local geology. Finally, the new constructed geoelectrical resistivity cross-sections (in contoured-form), are easily clarifying the direction of groundwater flow toward the studied building.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5800547-effects-steam-injection-sandstone-reservoir-etchegoin-formation-buena-vista-field-california','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5800547-effects-steam-injection-sandstone-reservoir-etchegoin-formation-buena-vista-field-california"><span>The effects of steam injection in a sandstone reservoir (Etchegoin Formation), Buena Vista field, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Grant, C.W.; Reed, A.A.</p> <p>1991-03-01</p> <p>At Buena Vista field, California, 120 ft of post-steamflood core, spanning the middle Pliocene Wilhelm Member of the Etchegoin Formation, was taken to assess the influence of stratigraphy on light-oil steamflood (LOSF) processes and to determine what steam-rock reactions occurred and how these affected reservoir properties. High-quality steam (600F (300C)) had been injected ({approximately}1,700 psi) into mixed tidal flat and estuarine facies in an injector well located 55 ft from the cored well. Over a period of 20 months, steam rapidly channeled through a thin ({approximately}7 ft), relatively permeable (1-1,000 md), flaser-bedded sandstone unit. Conductive heating above this permeable unitmore » produced, in the vicinity of the cored well, a 35-ft steam-swept zone (oil saturation = 0), overlain by a 29-ft steam-affected zone in which oil saturation had been reduced to 13%, far below the presteam saturation of 30%. Steam-induced alteration ('artificial diagenesis') of the clay-rich reservoir rock was recognized using SEM, petrography, and X-ray diffraction. Salient dissolution effects were the complete to partial removal of siliceous microfossils, Fe-dolomite, volcanic rock fragments, and labile heavy minerals. The artificial diagenetic effects are first encountered in the basal 6 ft of the 29-ft steam-affected zone. Based on the distribution of the authigenic phases, the authors conclude that the reactions took place, or were at least initiated, in the steam condensate bank ahead of the advancing steam front. Although these changes presumably reduced permeability, the steamflood process was effective in reducing oil saturation to zero in the steam-contacted portion of the reservoir.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAfES.121..108K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAfES.121..108K"><span>Mapping global vulnerability index in mining sectors: A case study Moulares-Redayef aquifer system, southwestern Tunisia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khelif, Nadia; Jmal, Ikram; Bouri, Salem</p> <p>2016-09-01</p> <p>Contrary to the DRASTIC model grouping together the saturated and unsaturated zones to compute a global intrinsic vulnerability index, the global vulnerability index method incorporates both hydrogeological and hydrochemical data for a comprehensive index mapping for the saturated zones. This concept depends on the behavior and the uses of the groundwater. The main aim of this study is to propose a scientific basis for sustainable land use planning and groundwater management of the Moulares-Reayef aquifer, located in Southwestern Tunisia. The overexploitation of this aquifer causes the threat of groundwater quality by various sources of pollution. The global vulnerability index was applied in the Moulares-Reayef aquifer. The results show that the most favorable zones to pollutant percolation are situated along the wadis (Tabaddit, Zallaz, Berka, …) which are drained by continuous discharges. The global vulnerability values were correlated with nitrates values for validation. It revealed a significant correlation showing that high values of nitrates occurred in highly vulnerable zones with a value of 0.69 for the Pearson coefficient. The global vulnerability evaluation shows that the aquifer is characterized by high vertical vulnerability and high susceptibility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010MSSP...24.1711D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010MSSP...24.1711D"><span>On-off nonlinear active control of floor vibrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Díaz, Iván M.; Reynolds, Paul</p> <p>2010-08-01</p> <p>Human-induced floor vibrations can be mitigated by means of active control via an electromagnetic proof-mass actuator. Previous researchers have developed a system for floor vibration comprising linear velocity feedback control (LVFC) with a command limiter (saturation in the command signal to avoid actuator overloading). The performance of this control is highly dependent on the linear gain utilised, which has to be designed for a particular excitation and might not be optimum for other excitations. This work explores the use of on-off nonlinear velocity feedback control (NLVFC) as the natural evolution of LVFC when high gains and/or significant vibration level are present together with saturation in the control law. Firstly, the describing function tool is employed to analyse the stability properties of: (1) LVFC with saturation, (2) on-off NLVFC with a dead zone and (3) on-off NLVFC with a switching-off function. Particular emphasis is paid to the resulting limit cycle behaviour and the design of appropriate dead zone and switching-off levels to avoid it. Secondly, experimental trials using the three control laws are conducted on a laboratory test floor. The results corroborate the analytical stability predictions. The pros of on-off NLVFC are that no gain has to be chosen and maximum actuator energy is delivered to cancel the vibration. In contrast, the requirement to select a dead zone or switching-off function provides a drawback in its application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29859430','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29859430"><span>Assessing the fate of explosives derived nitrate in mine waste rock dumps using the stable isotopes of oxygen and nitrogen.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hendry, M Jim; Wassenaar, Leonard I; Barbour, S Lee; Schabert, Marcie S; Birkham, Tyler K; Fedec, Tony; Schmeling, Erin E</p> <p>2018-05-29</p> <p>Ammonium nitrate (NH 4 NO 3 ) mixed with fuel oil is a common blasting agent used to fragment rock into workable size fractions at mines throughout the world. The decomposition and oxidation of undetonated explosives can result in high NO 3 - concentrations in waters emanating from waste rock dumps. We used the stable isotopic composition of NO 3 - (δ 15 N- and δ 18 O-NO 3 - ) to define and quantify the controls on NO 3 - composition in waste rock dumps by studying water-unsaturated and saturated conditions at nine coal waste rock dumps located in the Elk Valley, British Columbia, Canada. Estimates of the extent of nitrification of NH 4 NO 3 in oxic zones in the dumps, initial NO 3 - concentrations prior to denitrification, and the extent of NO 3 - removal by denitrification in sub-oxic to anoxic zones are provided. δ 15 N data from unsaturated waste rock dumps confirm NO 3 - is derived from blasting. δ 15 N- and δ 18 O-NO 3 - data show extensive denitrification can occur in saturated waste rock and in localized zones of elevated water saturation and low oxygen concentrations in unsaturated waste rock. At the mine dump scale, the extent of denitrification in the unsaturated waste rock was inferred from water samples collected from underlying rock drains. Copyright © 2018. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PEPI..279...67C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PEPI..279...67C"><span>3D seismic modeling in geothermal reservoirs with a distribution of steam patch sizes, permeabilities and saturations, including ductility of the rock frame</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Bellezza, Cinzia</p> <p>2018-06-01</p> <p>Seismic propagation in the upper part of the crust, where geothermal reservoirs are located, shows generally strong velocity dispersion and attenuation due to varying permeability and saturation conditions and is affected by the brittleness and/or ductility of the rocks, including zones of partial melting. From the elastic-plastic aspect, the seismic properties (seismic velocity, quality factor and density) depend on effective pressure and temperature. We describe the related effects with a Burgers mechanical element for the shear modulus of the dry-rock frame. The Arrhenius equation combined to the octahedral stress criterion define the Burgers viscosity responsible of the brittle-ductile behaviour. The effects of permeability, partial saturation, varying porosity and mineral composition on the seismic properties is described by a generalization of the White mesoscopic-loss model to the case of a distribution of heterogeneities of those properties. White model involves the wave-induced fluid flow attenuation mechanism, by which seismic waves propagating through small-scale heterogeneities, induce pressure gradients between regions of dissimilar properties, where part of the energy of the fast P-wave is converted to slow P (Biot)-wave. We consider a range of variations of the radius and size of the patches and thin layers whose probability density function is defined by different distributions. The White models used here are that of spherical patches (for partial saturation) and thin layers (for permeability heterogeneities). The complex bulk modulus of the composite medium is obtained with the Voigt-Reuss-Hill average. Effective pressure effects are taken into account by using exponential functions. We then solve the 3D equation of motion in the space-time domain, by approximating the White complex bulk modulus with that of a set of Zener elements connected in series. The Burgers and generalized Zener models allows us to solve the equations with a direct grid method by the introduction of memory variables. The algorithm uses the Fourier pseudospectral method to compute the spatial derivatives. It is tested against an analytical solution obtained with the correspondence principle. We consider two main cases, namely the same rock frame (uniform porosity and permeability) saturated with water and a distribution of steam patches, and water-saturated background medium with thin layers of dissimilar permeability. Our model indicates how seismic properties change with the geothermal reservoir temperature and pressure, showing that both seismic velocity and attenuation can be used as a diagnostic tool to estimate the in situ conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031927','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031927"><span>A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Becken, M.; Ritter, O.; Park, S.K.; Bedrosian, P.A.; Weckmann, U.; Weber, M.</p> <p>2008-01-01</p> <p>Magnetotelluric (MT) data from 66 sites along a 45-km-long profile across the San Andreas Fault (SAF) were inverted to obtain the 2-D electrical resistivity structure of the crust near the San Andreas Fault Observatory at Depth (SAFOD). The most intriguing feature of the resistivity model is a steeply dipping upper crustal high-conductivity zone flanking the seismically defined SAF to the NE, that widens into the lower crust and appears to be connected to a broad conductivity anomaly in the upper mantle. Hypothesis tests of the inversion model suggest that upper and lower crustal and upper-mantle anomalies may be interconnected. We speculate that the high conductivities are caused by fluids and may represent a deep-rooted channel for crustal and/or mantle fluid ascent. Based on the chemical analysis of well waters, it was previously suggested that fluids can enter the brittle regime of the SAF system from the lower crust and mantle. At high pressures, these fluids can contribute to fault-weakening at seismogenic depths. These geochemical studies predicted the existence of a deep fluid source and a permeable pathway through the crust. Our resistivity model images a conductive pathway, which penetrates the entire crust, in agreement with the geochemical interpretation. However, the resistivity model also shows that the upper crustal branch of the high-conductivity zone is located NE of the seismically defined SAF, suggesting that the SAF does not itself act as a major fluid pathway. This interpretation is supported by both, the location of the upper crustal high-conductivity zone and recent studies within the SAFOD main hole, which indicate that pore pressures within the core of the SAF zone are not anomalously high, that mantle-derived fluids are minor constituents to the fault-zone fluid composition and that both the volume of mantle fluids and the fluid pressure increase to the NE of the SAF. We further infer from the MT model that the resistive Salinian block basement to the SW of the SAFOD represents an isolated body, being 5-8km wide and reaching to depths >7km, in agreement with aeromagnetic data. This body is separated from a massive block of Salinian crust farther to the SW. The NE terminus of resistive Salinian crust has a spatial relationship with a near-vertical zone of increased seismic reflectivity ???15km SW of the SAF and likely represents a deep-reaching fault zone. ?? 2008 The Authors Journal compilation ?? 2008 RAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1066/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1066/"><span>Summary of hydrologic testing of the Floridan aquifer system at Hunter Army Airfield, Chatham County, Georgia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Williams, Lester J.</p> <p>2010-01-01</p> <p>A 1,168-foot deep test well was completed at Hunter Army Airfield in the summer of 2009 to investigate the potential of using the Lower Floridan aquifer as a source of water supply to satisfy increased needs as a result of base expansion and increased troop levels. The U.S. Geological Survey conducted hydrologic testing at the test site including flowmeter surveys, packer-slug tests, and aquifer tests of the Upper and Lower Floridan aquifers. Flowmeter surveys were completed at different stages of well construction to determine the depth and yield of water-bearing zones and to identify confining beds that separate the main producing aquifers. During a survey when the borehole was open to both the upper and lower aquifers, five water-bearing zones in the Upper Floridan aquifer supplied 83.5 percent of the total pumpage, and five water-bearing zones in the Lower Floridan aquifer supplied the remaining 16.5 percent. An upward gradient was indicated from the ambient flowmeter survey: 7.6 gallons per minute of groundwater was detected entering the borehole between 750 and 1,069 feet below land surface, then moved upward, and exited the borehole into lower-head zones between 333 and 527 feet below land surface. During a survey of the completed Lower Floridan well, six distinct water-producing zones were identified; one 17-foot-thick zone at 768-785 feet below land surface yielded 47.9 percent of the total pumpage while the remaining five zones yielded between 2 and 15 percent each. The thickness and hydrologic properties of the confining unit separating the Upper and Lower Floridan aquifers were determined from packer tests and flowmeter surveys. This confining unit, which is composed of rocks of Middle Eocene age, is approximately 160 feet thick with horizontal hydraulic conductivities determined from four slug tests to range from 0.2 to 3 feet per day. Results of two separate slug tests within the middle confining unit were both 2 feet per day. Aquifer testing indicated the Upper Floridan aquifer had a transmissivity of 40,000 feet squared per day, and the Lower Floridan aquifer had a transmissivity of 10,000 feet squared per day. An aquifer test conducted on the combined aquifer system, when the test well was open from 333 to 1,112 feet, gave a transmissivity of 50,000 feet squared per day. Additionally, during the 72-hour test of the Lower Floridan aquifer, a drawdown response was observed in the Upper Floridan aquifer wells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1909b0042E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1909b0042E"><span>Triggering effect of mining at different horizons in the rock mass with excavations. Mathematical modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eremin, M. O.; Makarov, P. V.</p> <p>2017-12-01</p> <p>On the basis of a quite simple structural model of rock mass, containing coal seams on two horizons, coal mining is numerically modeled. A finite difference numerical technique is applied. At first, mining starts at the upper horizon and then moves to the lower horizon. It is shown that a mining process at the lower horizon has a significant triggering influence on the growth of damage zones in the roof and floor at the upper horizon. The features of spatiotemporal migration of deformation activity are studied numerically. Foci of large-scale fracture are located at the boundary of the seismic silence zone and the zone where the deformation activity migrates. This boundary has an additional characteristic: the maximum gradient of rock pressure is observed in this zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2004/5238/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2004/5238/"><span>Recharge processes in an alluvial aquifer riparian zone, Norman Landfill, Norman, Oklahoma, 1998-2000</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scholl, Martha; Christenson, Scott; Cozzarelli, Isabelle; Ferree, Dale; Jaeshke, Jeanne</p> <p>2005-01-01</p> <p>Analyses of stable isotope profiles (d2H and d18O) in the saturated zone, combined with water-table fluctuations, gave a comprehensive picture of recharge processes in an alluvial aquifer riparian zone. At the Norman Landfill U.S. Geological Survey Toxic Substances Hydrology research site in Norman, Oklahoma, recharge to the aquifer appears to drive biodegradation, contributing fresh supplies of electron acceptors for the attenuation of leachate compounds from the landfill. Quantifying recharge is a first step in studying this process in detail. Both chemical and physical methods were used to estimate recharge. Chemical methods included measuring the increase in recharge water in the saturated zone, as defined by isotopic signature, specific conductance or chloride measurements; and infiltration rate estimates using storm event isotopic signatures. Physical methods included measurement of water-table rise after individual rain events and on an approximately monthly time scale. Evapotranspiration rates were estimated using diurnal watertable fluctuations; outflux of water from the alluvial aquifer during the growing season had a large effect on net recharge at the site. Evaporation and methanogenesis gave unique isotopic signatures to different sources of water at the site, allowing the distinction of recharge using the offset of the isotopic signature from the local meteoric water line. The downward movement of water from large, isotopically depleted rain events in the saturated zone yielded recharge rate estimates (2.2 - 3.3 mm/day), and rates also were determined by observing changes in thickness of the layer of infiltrated recharge water at the top of the saturated zone (1.5 - 1.6 mm/day). Recharge measured over 2 years (1998-2000) in two locations at the site averaged 37 percent of rainfall, however, part of this water had only a short residence time in the aquifer. Isotopes showed recharge water entering the ground-water system in winter and spring, then being removed during the growing season by phreatophyte transpiration. Recharge timing was variable over the course of the study; July and August were the only months that had no recharge in both years. Recharge to the aquifer from the slough (wetland pond) was estimated at one location using the isotopic signature of water affected by evaporation. Recharge was correlated with the rainfall amount over the period of estimation, suggesting that recharge from the slough to the downgradient aquifer was an episodic process, corresponding to elevated water levels in the slough after large rain events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5271T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5271T"><span>Deformation localization forming and destruction over a decompression zone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turuntaev, Sergey; Kondratyev, Viktor</p> <p>2017-04-01</p> <p>Development of a hydrocarbon field is accompanied by deformation processes in the surrounding rocks. In particular, a subsidence of oil strata cap above a decompression zone near producing wells causes changes in the stress-strain state of the upper rocks. It was shown previously, that the stress spatial changes form a kind of arch structures. The shear displacements along the arch surfaces can occur, and these displacements can cause a collapse of casing or even man-made earthquakes. We present here the results of laboratory simulation of such a phenomenon. A laboratory setup was made in the form of narrow box 30x30x5 cm3 in size with a hole (0.6 cm in diameter) in its bottom. As a model of porous strata, a foam-rubber layer of 4.0 -10.5cm in thick was used, which was saturated with water. The foam was sealed to the bottom of the box; the upper part of the box was filled by the dry sand. The sand was separated from the foam by thin polyethylene film to prevent the sand wetting. For visualization the sand deformations, the front wall of the box was made transparent and the sand was marked by horizontal strips of the colored sand. In the experiments, the water was pumped out the foam layer through the bottom hole. After pumping-out 50 ml of the water, the localization of sand deformations above the sink hole became noticeable; after pumping-out 100 ml of the water, the localized deformation forms an arch. At the same time, there was no displacement on the upper surface of the sand. To amplify the localization effect, the foam was additionally squeezed locally. In this case, three surfaces of the localized deformation appeared in the sand. The vertical displacements decreased essentially with height, but they reached the upper layers of the sand. An influence of vibration on arches forming was investigated. Several types of vibrators were used, they were placed inside the sand or on the front side of the box. Resulting accelerations were measured by the accelerometers placed into the sand. It was found, that if the amplitudes of the accelerations are equal or greater than 0.37g, the localized deformation did not appear near the vibrator location, but arose at some distance from it. If the vibration amplitudes exceed the threshold value 0.39g everywhere in the sand, the deformation localization did not occur. When the vibrator is displaced from the center of the model, the localization vanished near its position.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPIE.9032E..0KS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPIE.9032E..0KS"><span>Muscle tissue saturation in humans studied with two non-invasive optical techniques: a comparative study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shaharin, Alfi; Krite Svanberg, Emilie; Ellerström, Ida; Subash, Arman Ahamed; Khoptyar, Dmitry; Andersson-Engels, Stefan; Åkeson, Jonas</p> <p>2013-11-01</p> <p>Muscle tissue saturation (StO2) has been measured with two non-invasive optical techniques and the results were compared. One of the techniques is widely used in the hospitals - the CW-NIRS technique. The other is the photon timeof- flight spectrometer (pTOFS) developed in the Group of Biophotonics, Lund University, Sweden. The wavelengths used in both the techniques are 730 nm and 810 nm. A campaign was arranged to perform measurements on 21 (17 were taken for comparison) healthy adult volunteers (8 women and 13 men). Oxygen saturations were measured at the right lower arm of each volunteer. To observe the effects of different provocations on the oxygen saturation a blood pressure cuff was attached in the upper right arm. For CW-NIRS, the tissue saturation values were in the range from 70-90%, while for pTOFS the values were in the range from 55-60%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SedG..364..228B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SedG..364..228B"><span>The Devils Mountain Fault zone: An active Cascadia upper plate zone of deformation, Pacific Northwest of North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrie, J. Vaughn; Greene, H. Gary</p> <p>2018-02-01</p> <p>The Devils Mountain Fault Zone (DMFZ) extends east to west from Washington State to just south of Victoria, British Columbia, in the northern Strait of Juan de Fuca of Canada and the USA. Recently collected geophysical data were used to map this fault zone in detail, which show the main fault trace, and associated primary and secondary (conjugate) strands, and extensive northeast-southwest oriented folding that occurs within a 6 km wide deformation zone. The fault zone has been active in the Holocene as seen in the offset and disrupted upper Quaternary strata, seafloor displacement, and deformation within sediment cores taken close to the seafloor expression of the faults. Data suggest that the present DMFZ and the re-activated Leech River Fault may be part of the same fault system. Based on the length and previously estimated slip rates of the fault zone in Washington State, the DMFZ appears to have the potential of producing a strong earthquake, perhaps as large as magnitude 7.5 or greater, within 2 km of the city of Victoria.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/28027','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/28027"><span>Preliminary appraisal of the geohydrologic aspects of drainage wells, Orlando area, central Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kimrey, Joel O.</p> <p>1978-01-01</p> <p>The Floridan aquifer contains two highly transmissive cavernous zones in the Orlando area: an upper producing zone about 150-600 feet below land surface; and a lower producing zone about 1,100-1,500 feet below land surface. Natural head differences are downward and there is hydraulic connection between the two producing zones. Drainage wells are finished open-end into the upper producing zone and emplace surface waters directly into that zone by gravity. Quantitatively, their use constitutes an effective method of artificial recharge. Their negative aspects relate to the probably poor, but unknown, quality of the recharge water. Caution is suggested in drawing definite and final conclusions on the overall geohydrologic and environmental effects of drainage wells prior to the collection and interpretation of a considerable quantity of new data. Though few ground-water pollution problems have been documented to date, the potential for such pollution should be seriously considered in light of the prob-able continuing need to use drainage wells; the probable volumes and quality of water involved; and the hydraulic relations between the two producing zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://jfr.geoscienceworld.org/content/29/4/318.abstract','USGSPUBS'); return false;" href="http://jfr.geoscienceworld.org/content/29/4/318.abstract"><span>Cretaceous planktic foraminiferal biostratigraphy of the Calera Limestone, Northern California, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sliter, W.V.</p> <p>1999-01-01</p> <p>The Calera Limestone is the largest, most stratigraphically extensive limestone unit of oceanic character included in the Franciscan Complex of northern California. The aim of this paper is to place the Calera Limestone at its type locality (Rockaway Beach, Pacifica) in a high-resolution biostratigraphy utilizing planktic foraminifers studied in thin section. A section, about 110 m-thick, was measured from the middle thrust slice exposed by quarrying on the southwest side of Calera Hill at Pacifica Quarry. Lithologically, the section is divided in two units; a lower unit with 73 m of black to dark-grey limestone, black chert and tuff, and an upper unit with 36.8 m of light-grey limestone and medium-grey chert. Two prominent black-shale layers rich in organic carbon occur 11 m below the top of the lower black unit and at the boundary with overlying light-grey unit, yielding a total organic content (TOC) of 4.7% and 1.8% t.w., respectively. The fossiliferous Calera Limestone section measured at Pacifica Quarry, from the lower black shale, contains eleven zones and three subzones that span approximately 26 m.y. from the early Aptian to the late Cenomanian. The zones indentified range from the Globigerinelloides blowi Zone to the Dicarinella algeriana Subzone of the Rotalipora cushmani Zone. Within this biostratigraphic interval, the Ticinella bejaouaensis and Hedbergella planispira Zones at the Aptian/Albian boundary are missing as are the Rotalipora subticinensis Subzone of the Biticinella breggiensis Zone and the overlying Rotalipora ticinensis Zone in the late Albian owing both to low-angle thrust faulting and to unconformities. The abundance and preservation of planktic foraminifers are poor in the lower part and improve only within the upper G. algerianus Zone. The faunal relationship indicate that the lower black shale occurs in the upper part of the G. blowi Zone and correlates with the Selli Event recognized at global scale in the early Aptian. The upper black shale occurs at or near the boundary between the G. ferreolensis and G. algerianus Zone in the late Aptian. This black layer, or Thalmann Event as named here, seems to represent the sedimentary expression, at the scale of Permanente Terrane, of a global perturbation of the carbon cycle.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866048','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866048"><span>Apparatus for adjusting and maintaining the humidity of gas at a constant value within a closed system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Abernathy, Bethel R.; Walters, Ronald R.</p> <p>1986-01-01</p> <p>The humidity of a gas within a closed system is maintained at constant level by providing a saturated salt solution within a lower chamber in communication with an upper chamber conjointly defined by upper and lower container sections in sealing contact with each other to establish a closed container. A partition wall separates the salt solution from the test region in the upper chamber. A tube extending through the partition plate allows humidified gas to pass from the lower to the upper chamber. A glass wool plug or membranous material within the tube prevents migration of salt into the test region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5582275','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5582275"><span>Apparatus for adjusting and maintaining the humidity of gas at a constant value within a closed system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Abernathy, B.R.; Walters, R.R.</p> <p>1985-08-05</p> <p>The humidity of a gas within a closed system is maintained at constant level by providing a saturated salt solution within a lower chamber in communication with an upper chamber conjointly defined by upper and lower container sections in sealing contact with each other to establish a closed container. A partition wall separates the salt solution from the test region in the upper chamber. A tube extending through the partition plate allows humidified gas to pass from the lower to the upper chamber. A glass wool plug or membranous material within the tube prevents migration of salt into the test region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T23E2728B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T23E2728B"><span>Sandbox Simulations of the Evolution of a Subduction Wedge following Subduction Initiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brandon, M. T.; Ma, K. F.; DeWolf, W.</p> <p>2012-12-01</p> <p>Subduction wedges at accreting subduction zones are bounded by a landward dipping pro-shear zone (= subduction thrust) and a seaward-dipping retro-shear zone in the overriding plate. For the Cascadia subduction zone, the surface trace of the retro-shear zone corresponds to the east side of the Coast Ranges of Oregon and Washington and the Insular Mountains of Vancouver Island. This coastal high or forearc high shows clear evidence of long-term uplift and erosion along its entire length, indicating that it is an active part of the Cascadia subduction wedge. The question addressed here is what controls the location of the retro-shear zone? In the popular double-sided wedge model of Willet et al (Geology 1993), the retro-shear zone remains pinned to the S point, which is interpreted to represent where the upper-plate Moho intersects the subduction zone. For this interpretation, the relatively strong mantle is considered to operate as a flat backstop. That model, however. is somewhat artificial in that the two plates collide in a symmetric fashion with equal crustal thicknesses on both sides. Using sandbox experiments, we explore a more realistic configuration where the upper and lower plate are separated by a gentle dipping (10 degree) pro-shear zone, to simulate the initial asymmetric geometry of the subduction thrust immediately after initiation of subduction. The entire lithosphere must fail along some plane for subduction to begin and this failure plane must dip in the direction of subduction. Thus, the initial geometry of the overriding plate is better approximated as a tapered wedge than as a layer of uniform thickness, as represented in the Willett et al models. We demonstrate this model using time-lapse movies of a sand wedge above a mylar subducting plate. We use particle image velocimetry (PIV) to show the evolution of strain and structure within the overriding plate. Material accreted to the tapered end of the overriding plate drives deformation and causes the retro-shear zone to propagate rearward with time. The main conclusion is that the rearward propagation will cease only when 1) the retro shear zone reaches the S point (i.e. the mantle cutoff in the upper plate) or 2) the erosion outflux from the subduction wedge matches the accretionary influx. Given the location of the upper plate Moho at Cascadia, it seems that erosion is the control factor in pinning the retro shear zone there.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V53B2623L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V53B2623L"><span>Growth of early continental crust by water-present eclogite melting in subduction zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laurie, A.; Stevens, G.</p> <p>2011-12-01</p> <p>The geochemistry of well preserved Paleo- to Meso-Archaean Tonalite-Trondhjemite-Granodiorite (TTG) suite rocks, such as the ca 3.45 Ga trondhjemites from the Barberton greenstone belt in South Africa, provides insight into the origins of Earth's early felsic continental crust. This is particularly well demonstrated by the high-Al2O3 variety of these magmas, such as the Barberton rocks, where the geochemistry requires that they are formed by high pressure (HP) melting of a garnet-rich metamafic source. This has been interpreted as evidence for the formation of these magmas by anatexis of the upper portions of slabs within Archaean subduction zones. Most of the experimental data relevant to Archaean TTG genesis has been generated by studies of fluid-absent melting of metabasaltic sources. However, water drives arc magmatism within Phanerozoic subduction zones and thus, understanding the behaviour of water in Archaean subduction zones, may have considerable value for understanding the genesis of these TTG magmas. Consequently, this study investigates the role of HP water-present melting of an eclogite-facies starting material, in the production of high-Al2O3 type TTG melts. Water-saturated partial melting experiments were conducted between 1.9 and 3.0GPa; and, 870°C and 900°C. The melting reaction is characterized by the breakdown of sodic Cpx, together with Qtz and H2O, to form melt in conjunction with a less sodic Cpx: Qtz + Cpx1 + Grt1 + H2O = Melt + Cpx2 + Grt2. In many of the experimental run products, melt segregated efficiently from residual crystals, allowing for the measurement of a full range of trace elements via Laser Ablation Inductively Coupled Plasma Mass Spectroscopy. The experimental glasses produced by this study have the compositions of peraluminous trondhjemites; and they are light rare earth element, Zr and Sr enriched; and heavy rare earth element, Y and Nb depleted. The compositions of the experimental glasses are similar to high-Al2O3 type Archaean TTG rocks in general and similar to the Barberton trondhjemites in particular. Additionally, due to Cpx being a major reactant, Ni and Cr contents of the glasses are high and match those of high-Al2O3 type TTG compositions. This challenges the notion that this aspect of TTG geochemistry indicates interaction of the magma with the mantle wedge. Consequently, we propose that water-present melting of an eclogitic source is a viable mechanism for the genesis of Paleo- to Meso-Archaean felsic continental crust. Importantly, this mechanism of TTG formation involves the upper surface of the subducting slab acting as an anatectic capture site for metamorphic fluid which evolved from cooler domains slightly deeper within the hydrated upper portion of the slab. This explains both TTG genesis and the lack of characteristic products of mantle wedge metasomatism, such as andesites, concurrent with TTG magmatism of this type during the Paleo- to Meso-Archaean. Cooling of the upper mantle by only a small amount towards to end of the Archaean Eon acted to "turn off" water-present melting of the slab, allowing water to metasomatise the mantle wedge and induce calc-alkaline magmatism in association with volcanic arcs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029238','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029238"><span>Nitrogen transport and transformations in a coastal plain watershed: Influence of geomorphology on flow paths and residence times</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tesoriero, Anthony J.; Spruill, Timothy B.; Mew, H.E.; Farrell, Kathleen M.; Harden, Stephen L.</p> <p>2005-01-01</p> <p>Nitrogen transport and groundwater-surface water interactions were examined in a coastal plain watershed in the southeastern United States. Groundwater age dates, calculated using chlorofluorocarbon and tritium concentrations, along with concentrations of nitrogen species and other redox-active constituents, were used to evaluate the fate and transport of nitrate. Nitrate is stable only in recently recharged (<10 years) water found in the upper few meters of saturated thickness in the upland portion of a surficial aquifer. Groundwater with a residence time between 10 and 30 years typically has low nitrate and elevated excess N2 concentrations, indications that denitrification has reduced nitrate concentrations. Groundwater older than 30 years also has low nitrate concentrations but contains little or no excess N2, suggesting that this water did not contain elevated concentrations of nitrate along its flow path. Nitrate transport to streams varies between first- and third-order streams. Hydrologic, lithologic, and chemical data suggest that the surficial aquifer is the dominant source of flow and nitrate to a first-order stream. Iron-reducing conditions occur in groundwater samples from the bed and banks of the first-order stream, suggesting that direct groundwater discharge is denitrified prior to entering the stream. However, nitrogen from the surficial aquifer is transported directly to the stream via a tile drain that bypasses these reduced zones. In the alluvial valley of a third-order stream the erosion of a confining layer creates a much thicker unconfined alluvial aquifer with larger zones of nitrate stability. Age dating and chemical information (SiO 2, Na/K ratios) suggest that water in the alluvial aquifer is derived from short flow paths through the riparian zone and/or from adjacent streams during high-discharge periods. Copyright 2005 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Tecto..35.1177H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Tecto..35.1177H"><span>Mechanical anisotropy control on strain localization in upper mantle shear zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herwegh, Marco; Mercolli, Ivan; Linckens, Jolien; Müntener, Othmar</p> <p>2016-05-01</p> <p>Mantle rocks at oceanic spreading centers reveal dramatic rheological changes from partially molten to solid-state ductile to brittle deformation with progressive cooling. Using the crustal-scale Wadi al Wasit mantle shear zone (SZ, Semail ophiolite, Oman), we monitor such changes based on quantitative field and microstructural investigations combined with petrological and geochemical analyses. The spatial distribution of magmatic dikes and high strain zones gives important information on the location of magmatic and tectonic activity. In the SZ, dikes derived from primitive melts (websterites) are distributed over the entire SZ but are more abundant in the center; dikes from more evolved, plagioclase saturated melts (gabbronorites) are restricted to the SZ center. Accordingly, harzburgite deformation fabrics show a transition from protomylonite (1100°C), mylonite (900-800°C) to ultramylonite (<700°C) and a serpentine foliation (<500°C) from the SZ rim to the center. The spatial correlation between solid-state deformation fabrics and magmatic features indicates progressive strain localization in the SZ on the cooling path. Three stages can be discriminated: (i) Cycles of melt injection (dunite channels and websterite dikes) and solid-state deformation (protomylonites-mylonites; 1100-900°C), (ii) dominant solid-state deformation in harzburgite mylonites (900-800°C) with some last melt injections (gabbronorites) and ultramylonites (<700°C), and (iii) infiltration of seawater inducing a serpentine foliation (<500°C) followed by cataclasis during obduction. The change of these processes in space and time indicates that early dike-related ridge-parallel deformation controls the onset of the entire strain localization history promoting nucleation sites for different strain weakening processes as a consequence of changing physicochemical conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27106208','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27106208"><span>Effects of hydrogeological properties on sea-derived benzene transport in unconfined coastal aquifers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Wei-Ci; Ni, Chuen-Fa; Tsai, Chia-Hsing; Wei, Yi-Ming</p> <p>2016-05-01</p> <p>This paper presents numerical investigations on quantifying the hydrodynamic effects of coastal environment factors, including tidal fluctuations, beach slopes, hydraulic conductivity, and hydraulic gradients on sea-derived benzene transport in unconfined coastal aquifers. A hydrologic transport and mixed geochemical kinetic/equilibrium reactions in saturated-unsaturated media model was used to simulate the spatial and temporal behaviors of the density flow and benzene transport for various hydrogeological conditions. Simulation results indicated that the tidal fluctuations lead to upper saline plumes (USPs) near the groundwater and seawater interfaces. Such local circulation zones trapped the seaward benzene plumes and carried them down in aquifers to the depth depending on the tide amplitudes and beach slopes across the coastal lines. Comparisons based on different tidal fluctuations, beach slopes, hydraulic conductivity, and hydraulic gradient were systematically conducted and quantified. The results indicated that areas with USPs increased with the tidal amplitude and decreased with the increasing beach slope. However, the variation of hydraulic conductivity and hydraulic gradient has relatively small influence on the patterns of flow fields in the study. The increase of the USP depths was linearly correlated with the increase of the tidal amplitudes. The benzene reactive transport simulations revealed that the plume migrations are mainly controlled by the local flow dynamics and constrained in the USP circulation zones. The self-cleaning process of a coastal aquifer is time-consuming, typically requiring double the time of the contamination process that the benzene plume reach the bottom of a USP circulation zone. The presented systematic analysis can provide useful information for rapidly evaluating seaward contaminants along a coastal line with available hydrogeological properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1338390-metabolism-induced-caco-biomineralization-during-reactive-transport-micromodel-implications-porosity-alteration','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1338390-metabolism-induced-caco-biomineralization-during-reactive-transport-micromodel-implications-porosity-alteration"><span>Metabolism-Induced CaCO 3 Biomineralization During Reactive Transport in a Micromodel: Implications for Porosity Alteration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Singh, Rajveer; Yoon, Hongkyu; Sanford, Robert A.; ...</p> <p>2015-09-08</p> <p>We investigated the ability of Pseudomonas stutzeri strain DCP-Ps1 to drive CaCO 3 biomineralization in a microfluidic flowcell (i.e., micromodel) that simulates subsurface porous media. Results indicate that CaCO 3 precipitation occurs during NO 3 – reduction with a maximum saturation index (SI calcite) of ~1.56, but not when NO 3 – was removed, inactive biomass remained, and pH and alkalinity were adjusted to SI calcite ~ 1.56. CaCO 3 precipitation was promoted by metabolically active cultures of strain DCP-Ps1, which at similar values of SIcalcite, have a more negative surface charge than inactive strain DCP-Ps1. A two-stage NO 3more » – reduction (NO 3 – → NO 2 – → N 2) pore-scale reactive transport model was used to evaluate denitrification kinetics, which was observed in the micromodel as upper (NO 3 – reduction) and lower (NO 2 – reduction) horizontal zones of biomass growth with CaCO 3 precipitation exclusively in the lower zone. Our model results are consistent with two biomass growth regions and indicate that precipitation occurred in the lower zone because the largest increase in pH and alkalinity is associated with NO 2 – reduction. CaCO 3 precipitates typically occupied the entire vertical depth of pores and impacted porosity, permeability, and flow. This study provides a framework for incorporating microbial activity in biogeochemistry models, which often base biomineralization only on SI (caused by biotic or abiotic reactions) and, thereby, underpredict the extent of this complex process. Furthermore, these results have wide-ranging implications for understanding reactive transport in relevance to groundwater remediation, CO 2 sequestration, and enhanced oil recovery.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012277','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012277"><span>Geophysical investigations in deep horizontal holes drilled ahead of tunnelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Carroll, R.D.; Cunningham, M.J.</p> <p>1980-01-01</p> <p>Deep horizontal drill holes have been used since 1967 by the Defense Nuclear Agency as a primary exploration tool for siting nuclear events in tunnels at the Nevada Test Site. The U.S. Geological Survey had developed geophysical logging techniques for obtaining resistivity and velocity in these holes, and to date 33 horizontal drill holes in excess of 300 m in depth have been successfully logged. The deepest hole was drilled to a horizontal depth of 1125 m. The purposes of the logging measurements are to define clay zones, because of the unstable ground conditions such zones can present to tunnelling, and to define zones of partially saturated rock, because of the attenuating effects such zones have on the shock wave generated by the nuclear detonation. Excessive attenuation is undesirable because the shock wave is used as a tunnel closure mechanism to contain debris and other undesirable explosion products. Measurements are made by pumping resistivity, sonic and geophone probes down the drill string and out of the bit into the open hole. Clay zones are defined by the electrical resistivity technique based on empirical data relating the magnitude of the resistivity measurement to qualitative clay content. Rock exhibiting resistivity of less than 20 ??-m is considered potentially unstable, and resistivities less than 10 ??-m indicate appreciable amounts of clay are present in the rock. Partially saturated rock zones are defined by the measurement of the rock sound speed. Zones in the rock which exhibit velocities less than 2450 m/sec are considered of potential concern. ?? 1980.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28069237','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28069237"><span>Nucleation kinetics from metastable zone widths for sonocrystallization of l-phenylalanine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hazi Mastan, T; Lenka, Maheswata; Sarkar, Debasis</p> <p>2017-05-01</p> <p>This study investigates the effect of ultrasound on metastable zone width (MSZW) during crystallization of l-phenylalanine from aqueous solution. The solubility of l-phenylalanine in water was measured gravimetrically in the temperature range of 293.15-333.15K. The MSZW was measured by conventional polythermal method for four different cooling rates at five different saturation temperatures in absence and presence of ultrasound. The MSZW increased with increase in cooling rates and decreased with increase in saturation temperature. The application of ultrasound considerably reduced the MSZW for all the experiments. The obtained MSZW data are analysed using four different approaches to calculate various nucleation parameters. In presence of ultrasound, the apparent nucleation order decreased and nucleation rate constant increased significantly. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850021594','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850021594"><span>Turbulence and wave particle interactions in solar-terrestrial plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dulk, G. A.; Goldman, M. V.; Toomre, J.</p> <p>1985-01-01</p> <p>Activities in the following study areas are reported: (1) particle and wave processes in solar flares; (2) solar convection zone turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection zone, leading to the excitation of internal gravity waves there. Lastly, linear saturation of electron-beam-driven Langmuir waves by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic waves in inhomogeneous media, and the effect of magnetic fields on stellar oscillation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159008','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159008"><span>Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Warren, Ean; Bekins, Barbara A.</p> <p>2015-01-01</p> <p>Crude oil at a spill site near Bemidji, Minnesota has been undergoing aerobic and anaerobic biodegradation for over 30 years, creating a 150–200 m plume of primary and secondary contaminants. Microbial degradation generates heat that should be measurable under the right conditions. To measure this heat, thermistors were installed in wells in the saturated zone and in water-filled monitoring tubes in the unsaturated zone. In the saturated zone, a thermal groundwater plume originates near the residual oil body with temperatures ranging from 2.9 °C above background near the oil to 1.2 °C down gradient. Temperatures in the unsaturated zone above the oil body were up to 2.7 °C more than background temperatures. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. Enthalpy calculations and observations demonstrate that the temperature increases primarily result from aerobic methane oxidation in the unsaturated zone above the oil. Methane oxidation rates at the site independently estimated from surface CO2 efflux data are comparable to rates estimated from the observed temperature increases. The results indicate that temperature may be useful as a low-cost measure of activity but care is required to account for the correct heat-generating reactions, other heat sources and the effects of focused recharge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNS51B..07P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNS51B..07P"><span>Hydrostratigraphy of a Sand Aquifer from Combined ERT and GPR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Papadimitrios, K. S.; Ferris, G.; Bank, C.</p> <p>2015-12-01</p> <p>Overlapping resistivity and ground-penetrating radar transects were collected on a shallow sand aquifer. The study area covers about 150 by 150 m, and the water table depth in that area ranges from as shallow as 30 cm to over 2m. Electric resistivity tomography shows layers of resistances which we relate to the vadose zone (above 1200 Ohm.m), the saturated zone (approx. 300 Ohm.m), and underlying aquitard (above 1200 Ohm.m, made of glacial till). The resistivity sections fail to capture the topography of the sand-till boundary seen in collected radargrams (e.g., from 80 to 120 ns over a 30 m horizontal distance). Converting radar travel times to thickness of the aquifer requires knowledge of water table depth as well as radar velocity in both the saturated and unsaturated sands. Water table depth can be taken from resistivity pseudosections as well as local piezometers. Radar velocities can be estimated based on the properties of the local sand and assuming 100% saturation. In merging the results from the two datasets we are able to map local hydrostratigraphy and aquifer geometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28630912','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28630912"><span>A nearly water-saturated mantle transition zone inferred from mineral viscosity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fei, Hongzhan; Yamazaki, Daisuke; Sakurai, Moe; Miyajima, Nobuyoshi; Ohfuji, Hiroaki; Katsura, Tomoo; Yamamoto, Takafumi</p> <p>2017-06-01</p> <p>An open question for solid-earth scientists is the amount of water in Earth's interior. The uppermost mantle and lower mantle contain little water because their dominant minerals, olivine and bridgmanite, have limited water storage capacity. In contrast, the mantle transition zone (MTZ) at a depth of 410 to 660 km is considered to be a potential water reservoir because its dominant minerals, wadsleyite and ringwoodite, can contain large amounts of water [up to 3 weight % (wt %)]. However, the actual amount of water in the MTZ is unknown. Given that water incorporated into mantle minerals can lower their viscosity, we evaluate the water content of the MTZ by measuring dislocation mobility, a property that is inversely proportional to viscosity, as a function of temperature and water content in ringwoodite and bridgmanite. We find that dislocation mobility in bridgmanite is faster by two orders of magnitude than in anhydrous ringwoodite but 1.5 orders of magnitude slower than in water-saturated ringwoodite. To fit the observed mantle viscosity profiles, ringwoodite in the MTZ should contain 1 to 2 wt % water. The MTZ should thus be nearly water-saturated globally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H23G0946Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H23G0946Y"><span>Soil Moisture Flow and Nitrate Movement Simulation through Deep and Heterogeneous Vadose Zone using Dual-porosity Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yadav, B. K.; Tomar, J.; Harter, T.</p> <p>2014-12-01</p> <p>We investigate nitrate movement from non-point sources in deep, heterogeneous vadose zones, using multi-dimensional variably saturated flow and transport simulations. We hypothesize that porous media heterogeneity causes saturation variability that leads to preferential flow systems such that a significant portion of the vadose zone does not significantly contribute to flow. We solve Richards' equation and the advection-dispersion equation to simulate soil moisture and nitrate transport regimes in plot-scale experiments conducted in the San Joaquin Valley, California. We compare equilibrium against non-equilibrium (dual-porosity) approaches. In the equilibrium approach we consider each soil layer to have unique hydraulic properties as a whole, while in the dual-porosity approach we assume that large fractions of the porous flow domain are immobile. However we consider exchange of water and solute between mobile and immobile zone using the appropriate mass transfer terms. The results indicate that flow and transport in a nearly 16 m deep stratified vadose zone comprised of eight layers of unconsolidated alluvium experiences highly non-uniform, localized preferential flow and transport patterns leading to accelerated nitrate transfer. The equilibrium approach largely under-predicted the leaching of nitrate to groundwater while the dual-porosity approach showed higher rates of nitrate leaching, consistent with field observations. The dual-porosity approach slightly over-predicted nitrogen storage in the vadose zone, which may be the result of limited matrix flow or denitrification not accounted for in the model. Results of this study may be helpful to better predict fertilizer and pesticide retention times in deep vadose zone, prior to recharge into the groundwater flow system. Keywords: Nitrate, Preferential flow, Heterogeneous vadose zone, Dual-porosity approach</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR52A..02Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR52A..02Z"><span>Reaction between hydrous wadsleyite and iron: Implication for water distribution in Earth's transition zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, F.; Li, J.; Liu, J.; Dong, J.</p> <p>2017-12-01</p> <p>The mantle transition zone (TZ) is considered as a potential water reservoir due to large capacities of wadsleyite and ringwoodite to store water in the structures. Whether it is a hydrous layer or an empty reservoir, however, is still under debate. Because the TZ may contain metallic iron1, 2 and water is an oxidizing agent at > 5 GPa, the stability of coexisting iron and TZ hydrous phases needs to be examined. In this study, we conducted multi-anvil experiments on iron with synthetic hydrous wadsleyite or forsterite and water under TZ pressure-temperature conditions. Similar rapid reactions were observed for both types of starting materials, producing ferropericlase, iron-bearing wadsleyite or ringwoodite, and iron hydride. The results imply that a hydrous TZ is incompatible with a reduced state, and that water distribution of TZ is confined to subducting slabs and slab-mantle boundaries, where water or hydrous phases in slab must oxidize the adjacent mantle before they can hydrate the silicates. In contrast, the bulk transition zone may be mostly dry. The iron hydride produced from this slab-mantle interaction may sink to greater depths due to their low melting temperature3, thus providing a pathway for hydrogen to enter the lower mantle and core. References 1. O'Neill HSC, McCammon C, Canil D, Rubie D, Ross C, Seifert F. Mossbauer spectroscopy of mantle transition zone phases and determination of minimum Fe3+ content. American Mineralogist 1993, 78(3-4): 456-460. 2. Rohrbach A, Ballhaus C, Golla-Schindler U, Ulmer P, Kamenetsky VS, Kuzmin DV. Metal saturation in the upper mantle. Nature 2007, 449(7161): 456-458. 3. Sakamaki K, Takahashi E, Nakajima Y, Nishihara Y, Funakoshi K, Suzuki T, et al. Melting phase relation of FeH x up to 20GPa: Implication for the temperature of the Earth's core. Physics of the Earth and Planetary Interiors 2009, 174(1): 192-201.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2016/1063/ofr20161063.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2016/1063/ofr20161063.pdf"><span>Structure of the 1906 near-surface rupture zone of the San Andreas Fault, San Francisco Peninsula segment, near Woodside, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.</p> <p>2016-07-08</p> <p>High-resolution seismic-reflection and refraction images of the 1906 surface rupture zone of the San Andreas Fault near Woodside, California reveal evidence for one or more additional near-surface (within about 3 meters [m] depth) fault strands within about 25 m of the 1906 surface rupture. The 1906 surface rupture above the groundwater table (vadose zone) has been observed in paleoseismic trenches that coincide with our seismic profile and is seismically characterized by a discrete zone of low P-wave velocities (Vp), low S-wave velocities (Vs), high Vp/Vs ratios, and high Poisson’s ratios. A second near-surface fault strand, located about 17 m to the southwest of the 1906 surface rupture, is inferred by similar seismic anomalies. Between these two near-surface fault strands and below 5 m depth, we observed a near-vertical fault strand characterized by a zone of high Vp, low Vs, high Vp/Vs ratios, and high Poisson’s ratios on refraction tomography images and near-vertical diffractions on seismic-reflection images. This prominent subsurface zone of seismic anomalies is laterally offset from the 1906 surface rupture by about 8 m and likely represents the active main (long-term) strand of the San Andreas Fault at 5 to 10 m depth. Geometries of the near-surface and subsurface (about 5 to 10 m depth) fault zone suggest that the 1906 surface rupture dips southwestward to join the main strand of the San Andreas Fault at about 5 to 10 m below the surface. The 1906 surface rupture forms a prominent groundwater barrier in the upper 3 to 5 m, but our interpreted secondary near-surface fault strand to the southwest forms a weaker barrier, suggesting that there has been less or less-recent near-surface slip on that strand. At about 6 m depth, the main strand of the San Andreas Fault consists of water-saturated blue clay (collected from a hand-augered borehole), which is similar to deeply weathered serpentinite observed within the main strand of the San Andreas Fault at nearby sites. Multiple fault strands in the area of the 1906 surface rupture may account for variations in geologic slip rates calculated from several paleoseismic sites along the Peninsula segment of the San Andreas Fault.t.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007Tecto..26.3015G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007Tecto..26.3015G"><span>Fabric evolution across a discontinuity between lower and upper crustal domains from field, microscopic, and anisotropy of magnetic susceptibility studies in central eastern Eritrea, NE Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghebreab, W.; Kontny, A.; Greiling, R. O.</p> <p>2007-06-01</p> <p>In the Neoproterozoic East African Orogen (EAO) of Eritrea, lower to middle crustal high-grade metamorphic rocks are juxtaposed against low-grade upper crustal rocks along diffuse tectonic contact zones or discontinuities. In the central eastern part of Eritrea, such a tectonic zone is exposed as a low-angle shear zone separating two distinct high- and low-grade domains, the Ghedem and Bizen, respectively. Integrated field, microfabric, and anisotropy of magnetic susceptibility (AMS) studies show that this low-angle shear zone formed during late deformation, D2, with top-to-the-E/SE sense of motion. The hanging wall upper crustal volcanosedimentary schists are mainly paramagnetic and the footwall middle crustal mylonitized orthogneisses are mainly ferrimagnetic. Magnetic fabric studies revealed a good agreement between metamorphic/mylonitic and magnetic foliations (Kmin) and helped to explain fabric development in the shear zone. The magnetic lineations (Kmax) reflect stretching lineations where stretched mineral aggregates dominate fine-grained mylonitic matrices and intersection lineations where microstructural studies revealed two fabric elements. AMS directional plots indicate that the orientations of the magnetic lineation and of the pole to the magnetic foliation vary systematically across the shear zone. While Kmax axes form two broad maxima oriented approximately N-S and E-W, the Kmin axes change from subhorizontal, generally westward inclination in the west to moderate to steep inclination in the direction of tectonic movement to the east. Because there is a systematic change in inclination of Kmin for individual samples, all samples together form a fairly well defined cluster distribution. The distribution of Kmin in combination with the E-W scattered plot of the Kmax is in accordance with the E/SE flow of mylonites over exhumed Damas core complex in the late Neoproterozoic. During the Cenozoic, the Red Sea rift-related detachments exploited the late orogenic shear zone, indicating that the discontinuities between ductile middle and brittle upper crustal layers in the region are reactivated low-angle shear zones and possible sites of core complexes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040089612&hterms=Zea+Mays&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DZea%2BMays%2BL.','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040089612&hterms=Zea+Mays&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DZea%2BMays%2BL."><span>The locations and amounts of endogenous ions and elements in the cap and elongating zone of horizontally oriented roots of Zea mays L.: an electron-probe EDS study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, R.; Cameron, I. L.; Hunter, K. E.; Olmos, D.; Smith, N. K.</p> <p>1987-01-01</p> <p>We used quantitative electron-probe energy-dispersive x-ray microanalysis to localize endogenous Na, Cl, K, P, S, Mg and Ca in cryofixed and freeze-dried cryosections of the cap (i.e. the putative site of graviperception) and elongating zone (i.e. site of gravicurvature) of horizontally oriented roots of Zea mays. Ca, Na, Cl, K and Mg accumulate along the lower side of caps of horizontally oriented roots. The most dramatic asymmetries of these ions occur in the apoplast, especially the mucilage. We could not detect any significant differences in the concentrations of these ions in the central cytoplasm of columella cells along the upper and lower sides of caps of horizontally-oriented roots. However, the increased amounts of Na, Cl, K and Mg in the longitudinal walls of columella cells along the lower side of the cap suggest that these ions may move down through the columella tissue of horizontally-oriented roots. Ca also accumulates (largely in the mucilage) along the lower side of the elongating zone of horizontally-oriented roots, while Na, P, Cl and K tend to accumulate along the upper side of the elongating zone. Of these ions, only K increases in concentration in the cytoplasm and longitudinal walls of cortical cells in the upper vs lower sides of the elongating zone. These results indicate that (1) gravity-induced asymmetries of ions differ significantly in the cap and elongating zone of graviresponding roots, (2) Ca accumulates along the lower side of the cap and elongating zone of graviresponding roots, (3) increased growth of the upper side of the elongating zone of horizontally-oriented roots correlates positively with increased amounts of K in the cytoplasm and longitudinal walls of cortical cells, and (4) the apoplast (especially the mucilage) may be an important component of the pathway via which ions move in graviresponding rots of Zea mays. These results are discussed relative to mechanisms for graviperception and gravicurvature of roots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1987/4097/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1987/4097/report.pdf"><span>Measuring and computing natural ground-water recharge at sites in south-central Kansas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sophocleous, M.A.; Perry, C.A.</p> <p>1987-01-01</p> <p>To measure the natural groundwater recharge process, two sites in south-central Kansas were instrumented with sensors and data microloggers. The atmospheric-boundary layer and the unsaturated and saturated soil zones were monitored as a single regime. Direct observations also were used to evaluate the measurements. Atmospheric sensors included an anemometer, a tipping-bucket rain gage, an air-temperature thermistor, a relative-humidity probe, a net radiometer, and a barometric-pressure transducer. Sensors in the unsaturated zone consisted of soil-temperature thermocouples, tensiometers coupled with pressure transducers and dial gages, gypsum blocks, and a neutron-moisture probe. The saturated-zone sensors consisted of a water-level pressure transducer, a conventional float gage connected to a variable potentiometer, soil thermocouples, and a number of multiple-depth piezometers. Evaluation of the operation of these sensors and recorders indicates that certain types of equipment, such as pressure transducers, are very sensitive to environmental conditions. A number of suggestions aimed at improving instrumentation of recharge investigations are outlined. Precipitation and evapotranspiration data, taken together with soil moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperature, water table hydrographs, and water level changes in nearby wells, describe the recharge process. Although the two instrumented sites are located in sand-dune environments in area characterized by a shallow water table and a sub-humid continental climate, a significant difference was observed in the estimated total recharge. The estimates ranged from less than 2.5 mm at the Zenith site to approximately 154 mm at the Burrton site from February to June 1983. The principal reasons that the Burrton site had more recharge than the Zenith site were more precipitation, less evapotranspiration, and a shallower depth to the water table. Effective recharge took place only during late winter and spring. No summer or fall recharge was observed at either site during the observation period of this study. (Author 's abstract)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25444116','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25444116"><span>Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vero, S E; Ibrahim, T G; Creamer, R E; Grant, J; Healy, M G; Henry, T; Kramers, G; Richards, K G; Fenton, O</p> <p>2014-12-01</p> <p>The true efficacy of a programme of agricultural mitigation measures within a catchment to improve water quality can be determined only after a certain hydrologic time lag period (subsequent to implementation) has elapsed. As the biophysical response to policy is not synchronous, accurate estimates of total time lag (unsaturated and saturated) become critical to manage the expectations of policy makers. The estimation of the vertical unsaturated zone component of time lag is vital as it indicates early trends (initial breakthrough), bulk (centre of mass) and total (Exit) travel times. Typically, estimation of time lag through the unsaturated zone is poor, due to the lack of site specific soil physical data, or by assuming saturated conditions. Numerical models (e.g. Hydrus 1D) enable estimates of time lag with varied levels of input data. The current study examines the consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates using simulated and actual soil profiles. Results indicated that: greater temporal resolution (from daily to hourly) of meteorological data was more critical as the saturated hydraulic conductivity of the soil decreased; high clay content soils failed to converge reflecting prevalence of lateral component as a contaminant pathway; elucidation of soil hydraulic properties was influenced by the complexity of soil physical data employed (textural menu, ROSETTA, full and partial soil water characteristic curves), which consequently affected time lag ranges; as the importance of the unsaturated zone increases with respect to total travel times the requirements for high complexity/resolution input data become greater. The methodology presented herein demonstrates that decisions made regarding input data and landscape position will have consequences for the estimated range of vertical travel times. Insufficiencies or inaccuracies regarding such input data can therefore mislead policy makers regarding the achievability of water quality targets. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4437D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4437D"><span>An analysis of seismic hazard in the Upper Rhine Graben enlightened by the example of the New Madrid seismic zone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doubre, Cécile; Masson, Frédéric; Mazzotti, Stéphane; Meghraoui, Mustapha</p> <p>2014-05-01</p> <p>Seismic hazard in the "stable" continental regions and low-level deformation zones is one of the most difficult issues to address in Earth sciences. In these zones, instrumental and historical seismicity are not well known (sparse seismic networks, seismic cycle too long to be covered by the human history, episodic seismic activity) and many active structures remain poorly characterized or unknown. This is the case of the Upper Rhine Graben, the central segment of the European Cenozoic rift system (ECRIS) of Oligocene age, which extends from the North Sea through Germany and France to the Mediterranean coast over a distance of some 1100 km. Even if this region has already experienced some destructive earthquakes, its present-day seismicity is moderate and the deformation observed by geodesy is very small (below the current measurement accuracy). The strain rate does not exceed 10-10 and paleoseismic studies indicate an average return period of 2.5 to 3 103 ka for large earthquakes. The largest earthquake known for this zone is the 1356 Basel earthquake, with a magnitude generally estimated about 6.5 (Meghraoui et al., 2001) but recently re-evaluated between 6.7 and 7.1 (Fäh et al et al., 2009). A comparison of the Upper Rhine Graben with equivalent regions around the world could help improve our evaluation of seismic hazard of this region. This is the case of the New Madrid seismic zone, one of the best studied intraplate system in central USA, which experienced an M 7.0 - 7.5 earthquake in 1811-1812 and shares several characteristics with the Upper Rhine Graben, i.e. the general framework of inherited geological structures (reactivation of a failed rift / graben), seismicity patterns (spatial variability of small and large earthquakes), the null or low rate of deformation, and the location in a "stable" continental interior. Looking at the Upper Rhine Graben as an analogue of the New Madrid seismic zone, we can re-evaluate its seismic hazard and consider the possibility of an earthquake of magnitude 7 or greater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027370','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027370"><span>Upper Neogene stratigraphy and tectonics of Death Valley - A review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Knott, J.R.; Sarna-Wojcicki, A. M.; Machette, M.N.; Klinger, R.E.</p> <p>2005-01-01</p> <p>New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to < 1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe-Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ???3.3 Ma the Furnace Creek basin was a northwest-southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique-normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post -3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast-southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone. ?? 2005 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194529','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194529"><span>Overview of the magnetic signatures of the Palaeoproterozoic Rustenburg Layered Suite, Bushveld Complex, South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cole, Janine; Finn, Carol A.; Webb, Susan J.</p> <p>2013-01-01</p> <p>Aeromagnetic data clearly delineate the mafic rocks of the economically significant Bushveld Igneous Complex. This is mainly due to the abundance of magnetite in the Upper Zone of the Rustenburg Layered Suite of the Bushveld, but strongly remanently magnetised rocks in the Main Zone also contribute significantly in places. In addition to delineating the extent of the magnetic rocks in the complex, the magnetic anomalies also provide information about the dip and depth of these units. The presence of varying degrees of remanent magnetisation in most of the magnetic lithologies of the Rustenburg Layered Suite complicates the interpretation of the data. The combination of available regional and high resolution airborne magnetic data with published palaeomagnetic data reveals characteristic magnetic signatures associated with the different magnetic lithologies in the Rustenburg Layered Suite. As expected, the ferrogabbros of the Upper Zone cause the highest amplitude magnetic anomalies, but in places subtle features within the Main Zone can also be detected. A marker with strong remanent magnetisation located in the Main Zone close to the contact with the Upper Zone is responsible for very high amplitude negative anomalies in the southern parts of both the eastern and western lobes of the Bushveld Complex. Prominent anomalies are not necessarily related to a specific lithology, but can result from the interaction between anomalies caused by differently magnetised bodies.The magnetic data provided substantial information at different levels of detail, ranging from contacts between zones, and layering within zones, to magnetite pipes dykes and faults that can have an impact on mine planning. Finally, simple modelling of the magnetic data supports the concept of continuous mafic rocks between the western and eastern lobes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T43H..07K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T43H..07K"><span>Consequences of Rift Propagation for Spreading in Thick Oceanic Crust in Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karson, J. A.</p> <p>2015-12-01</p> <p>Iceland has long been considered a natural laboratory for processes related to seafloor spreading, including propagating rifts, migrating transforms and rotating microplates. The thick, hot, weak crust and subaerial processes of Iceland result in variations on the themes developed along more typical parts of the global MOR system. Compared to most other parts of the MOR, Icelandic rift zones and transform faults are wider and more complex. Rift zones are defined by overlapping arrays of volcanic/tectonic spreading segments as much as 50 km wide. The most active rift zones propagate N and S away from the Iceland hot spot causing migration of transform faults. A trail of crust deformed by bookshelf faulting forms in their wakes. Dead or dying transform strands are truncated along pseudofaults that define propagation rates close to the full spreading rate of ~20 mm/yr. Pseudofaults are blurred by spreading across wide rift zones and laterally extensive subaerial lava flows. Propagation, with decreasing spreading toward the propagator tips causes rotation of crustal blocks on both sides of the active rift zones. The blocks deform internally by the widespread reactivation of spreading-related faults and zones of weakness along dike margins. The sense of slip on these rift-parallel strike-slip faults is inconsistent with transform-fault deformation. These various deformation features as well as subaxial subsidence that accommodate the thickening of the volcanic upper crustal units are probably confined to the brittle, seismogenic, upper 10 km of the crust. At least beneath the active rift zones, the upper crust is probably decoupled from hot, mechanically weak middle and lower gabbroic crust resulting in a broad plate boundary zone between the diverging lithosphere plates. Similar processes may occur at other types of propagating spreading centers and magmatic rifts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27460103','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27460103"><span>Inter-Rater Agreement of Auscultation, Palpable Fremitus, and Ventilator Waveform Sawtooth Patterns Between Clinicians.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Berry, Marc P; Martí, Joan-Daniel; Ntoumenopoulos, George</p> <p>2016-10-01</p> <p>Clinicians often use numerous bedside assessments for secretion retention in participants who are receiving invasive mechanical ventilation. This study aimed to evaluate inter-rater agreement between clinicians when using standard clinical assessments of secretion retention and whether differences in clinician experience influenced inter-rater agreement. Seventy-one mechanically ventilated participants were assessed by a research clinician and by one of 13 ICU clinicians. Each clinician conducted a standardized assessment of lung auscultation, palpation for chest-wall (rhonchal) fremitus, and ventilator inspiratory/expiratory flow-time waveforms for the sawtooth pattern. On the presence of breath sounds, agreement ranged from absolute to moderate in the upper zones and the lower zones, respectively. Kappa values for abnormal and adventitious lung sounds achieved moderate agreement in the upper zones, less than chance agreement to substantial agreement in the middle zones, and moderate agreement to almost perfect agreement in the lower zones. Moderate to almost perfect agreement was established for palpable fremitus in the upper zones, moderate to substantial agreement in the middle zones, and less than chance to moderate agreement in the lower zones. Inter-rater agreement on the presence of expiratory sawtooth pattern identification showed moderate agreement. The level of percentage agreement between the research and ICU clinicians for each respiratory assessment studied did not relate directly to level of clinical experience. Inter-rater agreement for all assessments showed variability between lung regions but maintained reasonable percentage agreement in mechanically ventilated participants. The level of percentage agreement achieved between clinicians did not directly relate to clinical experience for all respiratory assessments. Therefore, these respiratory assessments should not necessarily be viewed in isolation but interpreted within the context of a full clinical assessment. Copyright © 2016 by Daedalus Enterprises.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880065829&hterms=coastal+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcoastal%2Bzone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880065829&hterms=coastal+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcoastal%2Bzone"><span>Coastal Zone Color Scanner atmospheric correction - Influence of El Chichon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gordon, Howard R.; Castano, Diego J.</p> <p>1988-01-01</p> <p>The addition of an El Chichon-like aerosol layer in the stratosphere is shown to have very little effect on the basic CZCS atmospheric correction algorithm. The additional stratospheric aerosol is found to increase the total radiance exiting the atmosphere, thereby increasing the probability that the sensor will saturate. It is suggested that in the absence of saturation the correction algorithm should perform as well as in the absence of the stratospheric layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007GPC....55..155K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007GPC....55..155K"><span>Biostratigraphy and event stratigraphy in Iran around the Permian Triassic Boundary (PTB): Implications for the causes of the PTB biotic crisis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kozur, H. W.</p> <p>2007-01-01</p> <p>The conodont succession and stratigraphic events around the Permian-Triassic boundary (PTB) have been investigated in detail in the open sea deposits of Iran (Abadeh and Shahreza in central Iran, and Jolfa and Zal in northwestern Iran). This investigation produced a very detailed conodont zonation from the Clarkina nodosa Zone up to the Isarcicella isarcica Zone. All significant events have been accurately located and dated within this zonation, and the duration of most of these conodont zones has been calculated by cross-correlation with continental lake deposits that display obvious Milankovitch cyclicity. The unusually short duration of all conodont zones in the interval from the C. nodosa up to the Hindeodus parvus Zone indicates that there was persistent high ecological stress during this time interval. Most of the conodont zones can be accurately correlated with South China. In the interval from the C. hauschkei Zone to the H. parvus Zone, even correlation with the Arctic is possible. Within three thin stratigraphic intervals, the Changhsingian (Dorashamian) warm water conodont fauna of the C. subcarinata lineage is replaced by a cool water fauna with small H. typicalis, rare Merrillina sp., and cool water Clarkina that have very widely spaced denticles. The uppermost cool water fauna horizon comprises the lower C. zhangi Zone and can be accurately correlated with continental beds by recognition of a short reversed magnetozone below the long uppermost Permian-lowermost Triassic normal magnetozone. In Iran and Transcaucasia, this short reversed zone comprises the upper C. changxingensis- C. deflecta Zone and most of the C. zhangi Zone. Its top lies 50 cm below the top of the Paratirolites Limestone (s.s.) in the Dorasham 2 section, which is at the beginning of the upper quarter of the C. zhangi Zone. In the Germanic Basin, this short palaeomagnetic interval comprises the lower and the basal part of the upper Fulda Formation. On the Russian Platform, the Nedubrovo Formation belongs to this short reversed magnetic interval. In its upper part (corresponding to the top of the lower C. zhangi Zone, see above) there is a fallout of mafic tuffs from the Siberian Trap event that originated about 3000 km away in eruption centres in the Siberian Tungusska Basin. In the Germanic Basin and in Iran, this horizon contains volcanic microsphaerules. Thus, a direct correlation can be made between the immigration of a cool water fauna into the tropical realm and an exceptionally strong interval of explosive activity during the Siberian Trap volcanic episode. These faunal changes are the same as those found at the base of the Boundary Clay, suggesting that a short cooling event at this horizon also was due to intense volcanism. Additional influence by a bolide impact cannot be excluded. Most of the events in the interval from the C. nodosa up to the I. isarcica Zone (upper Changhsingian to middle Gangetian) in the Iranian sections can be also observed in other marine sections (e.g., in Meishan) and even in continental sections of the Germanic Basin. Of particular significance is the fact that, in the investigated Iranian sections, the PTB lies either in red sediments or in light grey sediments (as in Abadeh) that contain an ostracod fauna indicative of highly oxygenated bottom waters. Therefore, anoxia cannot be the reason for the PTB extinction event in this region, even though anoxia does cause locally or regionally elsewhere an overprint on the extinction event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23399408','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23399408"><span>Occasional large emissions of nitrous oxide and methane observed in stormwater biofiltration systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grover, Samantha P P; Cohan, Amanda; Chan, Hon Sen; Livesley, Stephen J; Beringer, Jason; Daly, Edoardo</p> <p>2013-11-01</p> <p>Designed, green infrastructures are becoming a customary feature of the urban landscape. Sustainable technologies for stormwater management, and biofilters in particular, are increasingly used to reduce stormwater runoff volumes and peaks as well as improve the water quality of runoff discharged into urban water bodies. Although a lot of research has been devoted to these technologies, their effect in terms of greenhouse gas fluxes in urban areas has not been yet investigated. We present the first study aimed at quantifying greenhouse gas fluxes between the soil of stormwater biofilters and the atmosphere. N2O, CH4, and CO2 were measured periodically over a year in two operational vegetated biofiltration cells at Monash University in Melbourne, Australia. One cell had a saturated zone at the bottom, and compost and hardwood mulch added to the sandy loam filter media. The other cell had no saturated zone and was composed of sandy loam. Similar sedges were planted in both cells. The biofilter soil was a small N2O source and a sink for CH4 for most measurement events, with occasional large emissions of both N2O and CH4 under very wet conditions. Average N2O fluxes from the cell with the saturated zone were almost five-fold greater (65.6 μg N2O-N m(-2) h(-1)) than from the other cell (13.7 μg N2O-N m(-2) h(-1)), with peaks up to 1100 μg N2O-N m(-2) h(-1). These N2O fluxes are of similar magnitude to those measured in other urban soils, but with larger peak emissions. The CH4 sink strength of the cell with the saturated zone (-3.8 μg CH4-C m(-2) h(-1)) was lower than the other cell (-18.3 μg CH4-C m(-2) h(-1)). Both cells of the biofilter appeared to take up CH4 at similar rates to other urban lawn systems; however, the biofilter cells displayed occasional large CH4 emissions following inflow events, which were not seen in other urban systems. CO2 fluxes increased with soil temperature in both cells, and in the cell without the saturated zone CO2 fluxes decreased as soil moisture increased. Other studies of CO2 fluxes from urban soils have found both similar and larger CO2 emissions than those measured in the biofilter. The results of this study suggest that the greenhouse gas footprint of stormwater treatment warrant consideration in the planning and implementation of engineered green infrastructures. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JAfES..70...36J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JAfES..70...36J"><span>Lithostratigraphy, biostratigraphy and chemostratigraphy of Upper Cretaceous and Paleogene sediments from southern Tanzania: Tanzania Drilling Project Sites 27-35</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jimènez Berrocoso, Àlvaro; Huber, Brian T.; MacLeod, Kenneth G.; Petrizzo, Maria Rose; Lees, Jacqueline A.; Wendler, Ines; Coxall, Helen; Mweneinda, Amina K.; Falzoni, Francesca; Birch, Heather; Singano, Joyce M.; Haynes, Shannon; Cotton, Laura; Wendler, Jens; Bown, Paul R.; Robinson, Stuart A.; Gould, Jeremy</p> <p>2012-07-01</p> <p>The 2008 Tanzania Drilling Project (TDP) expedition recovered common planktonic foraminifera (PF), calcareous nannofossils (CN) and calcareous dinoflagellates with extraordinary shell preservation at multiple Cenomanian-Campanian sites that will be used for paleoclimatic, paleoceanographic, and biostratigraphic studies. New cores confirm the existence of a more expanded and continuous Upper Cretaceous sequence than had previously been documented in the Lindi and Kilwa regions of southeastern coastal Tanzania. This TDP expedition cored 684.02 m at eight Upper Cretaceous sites (TDP Sites 28-35) and a thin Paleocene section (TDP Site 27). TDP Sites 29, 30, 31 and 34 together span the lowermost Turonian to Coniacian (PF Whiteinella archaeocretacea to Dicarinella concavata Zones and CN Zones UC6a-9b), with TDP Site 31 being the most biostratigraphically complete Turonian section found during TDP drilling. A discontinuous section from the Santonian-upper Campanian (PF D. asymetrica to Radotruncana calcarata Zones and CN Zones UC12-16) was collectively recovered at TDP Sites 28, 32 and 35, while thin sequences of the lower Cenomanian (PF Thalmanninella globotruncanoides Zone and CN subzones UC3a-b) and middle Paleocene (Selandian; PF Zone P3a and CN Zone NP5) were cored in TDP Sites 33 and 27, respectively. Records of δ13Corg and δ13Ccarb from bulk sediments generated for all the Cretaceous sites show largely stable values through the sections. Only a few parallel δ13Corg and δ13Ccarb shifts have been found and they are interpreted to reflect local processes. The δ18Ocarb record, however, is consistent with Late Cretaceous cooling trends from the Turonian into the Campanian. Lithologies of these sites include thick intervals of claystones and siltstones with locally abundant, finely-laminated fabrics, irregular occurrences of thin sandstone layers, and sporadic bioclastic debris (e.g., inoceramids, ammonites). Minor lithologies represent much thinner units of up to medium-grained, massive sandstones. The %CaCO3 (∼5-40%) and %Corg (∼0.1-2%) are variable, with the highest %CaCO3 in the lower Campanian and the highest %Corg in the Turonian. Lithofacies analysis suggests that deposition of these sediments occurred in outer shelf-upper slope, a setting that agrees well with inferences from benthic foraminifera and calcareous dinoflagellates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8242Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8242Y"><span>Denitrification constitutes an import N sink in subtropical N-saturated forests - a nitrate dual isotope study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Lonfei; Zhu, Jing; Mulder, Jan; Dörsch, Peter</p> <p>2016-04-01</p> <p>Forests in China receive variable but increasing amounts of nitrogen from the atmosphere causing N saturation and nitrate runoff. Surprisingly high N-retention has been reported from subtropical forests, suggesting active mechanisms of N removal. Here we report a multi-site study of 15N and 18O abundances in soil nitrate (NO3-) across seven forested catchments spanning from temperate to subtropical China. In each catchment, samples were taken on one date during one or two summer along the hydrological continuum comprising hillslope positions and riparian zones. We had found previously in an intensive multi-year study at one of the sites, that the spatial pattern of summertime 15N and 18O in soil nitrate was remarkably stable across climatically distinct years, suggesting persistent N removal by denitrification at the foot of hill slopes and in groundwater discharge zones (Yu et al., submitted). In the present study, we extended the scope to five subtropical Chinese catchments and compared them with two temperate forests. Our data confirm the general pattern of efficient nitrification on hillslopes and strong denitrification in riparian zones in the subtropical catchments but not in the temperate ones. This is likely because high summer rainfalls at the monsoonal sites connect N mineralization and oxidation in upland positions with NO3- reduction in ground water discharge zones via NO3- runoff, rendering subtropical forests an efficient sink for reactive N with implications for regional N budgets. The impact of N deposition level, hydrology and edaphic factors on the predictive power of nitrate isotope signatures for N removal processes will be discussed. Yu L, Zhu J, Mulder J, Dörsch P: Spatiotemporal patterns in dual nitrate isotopes reveal efficient N transformation and denitrification along a hydrological continuum in N-saturated, subtropical forest. Submitted</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18676059','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18676059"><span>Investigation of surfactant-enhanced mass removal and flux reduction in 3D correlated permeability fields using magnetic resonance imaging.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Changyong; Werth, Charles J; Webb, Andrew G</p> <p>2008-09-10</p> <p>Magnetic resonance imaging (MRI) was used to visualize the NAPL source zone architecture before and after surfactant-enhanced NAPL dissolution in three-dimensional (3D) heterogeneously packed flowcells characterized by different longitudinal correlation lengths: 2.1 cm (aquifer 1) and 1.1 cm (aquifer 2). Surfactant flowpaths were determined by imaging the breakthrough of a paramagnetic tracer (MnCl(2)) analyzed by the method of moments. In both experimental aquifers, preferential flow occurred in high permeability materials with low NAPL saturations, and NAPL was preferentially removed from the top of the aquifers with low saturation. Alternate flushing with water and two surfactant pulses (5-6 pore volumes each) resulted in approximately 63% of NAPL mass removal from both aquifers. However, overall reduction in mass flux (Mass Flux 1) exiting the flowcell was lower in aquifer 2 (68%) than in aquifer 1 (81%), and local effluent concentrations were found to increase by as high as 120 times at local sampling ports from aquifer 2 after surfactant flushing. 3D MRI images of NAPL revealed that NAPL migrated downward and created additional NAPL source zones in previously uncontaminated areas at the bottom of the aquifers. The additional NAPL source zones were created in the direction transverse to flow in aquifer 2, which explains the higher mass flux relative to aquifer 1. Analysis using a total trapping number indicates that mobilization of NAPL trapped in the two coarsest sand fractions is possible when saturation is below 0.5 and 0.4, respectively. Results from this study highlight the potential impacts of porous media heterogeneity and NAPL source zone architecture on advanced in-situ flushing technologies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5569857-geophysical-characteristics-hydrothermal-systems-kilauea-volcano-hawaii','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5569857-geophysical-characteristics-hydrothermal-systems-kilauea-volcano-hawaii"><span>Geophysical characteristics of the hydrothermal systems of Kilauea volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kauahikaua, J.</p> <p>1993-08-01</p> <p>Clues to the structure of Kilauea volcano can be obtained from spatial studies of gravity, magnetic, and seismic velocity variations. The rift zones and summit are underlain by dense, magnetic, and seismic velocity variations. The rift zones and summit are underlain by dense, magnetic, high P-wave-velocity rocks at depths of about 2 km less. The gravity and seismic velocity studies indicate that the rift structures are broad, extending farther to the north than to the south of the surface features. The magnetic data allow separation into a narrow, highly-magnetized, shallow zone and broad, flanking, magnetic lows. The patterns of gravity,more » magnetic variations, and seismicity document the southward migration of the upper east rift zone. Regional, hydrologic features of Kilauea can be determined from resistivity and self-potential studies. High-level groundwater exists beneath Kilauea summit to elevations of +800 m within a triangular area bounded by the west edge of the upper southwest rift zone, the east edge of the upper east rift zone, and the Koa'e fault system. High-level groundwater is present within the east rift zone beyond the triangular summit area. Self-potential mapping shows that areas of local heat produce local fluid circulation in the unconfined aquifer (water table). Shallow seismicity and surface deformation indicate that magma is intruding and that fractures are forming beneath the rift zones and summit area. Heat flows of 370--820 mW/m[sup 2] are calculated from deep wells within the lower east rift zone. The estimated heat input rate for Kilauea of 9 gigawatts (GW) is at least 25 times higher than the conductive heat loss as estimated from the heat flow in wells extrapolated over the area of the summit caldera and rift zones. 115 refs., 13 figs., 1 tab.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H34A..04L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H34A..04L"><span>Monitoring CO2 Intrusion in shallow aquifer using complex electrical methods and a novel CO2 sensitive Lidar-based sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leger, E.; Dafflon, B.; Thorpe, M.; Kreitinger, A.; Laura, D.; Haivala, J.; Peterson, J.; Spangler, L.; Hubbard, S. S.</p> <p>2016-12-01</p> <p>While subsurface storage of CO2 in geological formations offers significant potential to mitigate atmospheric greenhouse gasses, approaches are needed to monitor the efficacy of the strategy as well as possible negative consequences, such as leakage of CO2 or brine into groundwater or release of fugitive gaseous CO2. Groundwater leakages can cause subsequent reactions that may also be deleterious. For example, a release of dissolved CO2 into shallow groundwatersystems can decrease groundwater pH which can potentiallymobilize naturally occurring trace metals and ions. In this perspective, detecting and assessing potential leak requires development of novel monitoring techniques.We present the results of using surface electrical resistivity tomography (ERT) and a novel CO2 sensitive Lidar-based sensor to monitor a controlled CO2 release at the ZeroEmission Research and Technology Center (Bozeman, Montana). Soil temperature and moisture sensors, wellbore water quality measurements as well as chamber-based CO2 flux measurements were used in addition to the ERT and a novel Lidar-based sensor to detect and assess potential leakage into groundwater, vadose zone and atmosphere. The three-week release wascarried out in the vadose and the saturated zones. Well sampling of pH and conductivity and surface CO2 fluxes and concentrations measurements were acquired during the release and are compared with complex electricalresistivity time-lapse measurements. The novel Lidar-based image of the CO2 plume were compared to chamber-based CO2 flux and concentration measurements. While a continuous increase in subsurface ERT and above ground CO2 was documented, joint analysis of the above and below ground data revealed distinct transport behavior in the vadose and saturated zones. Two type of transport were observed, one in the vadoze zone, monitored by CO2 flux chamber and ERT, and the other one in the saturated zone, were ERT and wellsampling were carried. The experiment suggests how a range of geophysical, remote sensing, hydrological and geochemical measurement approaches can be optimally configured to detect the distribution and explore behavior of possible CO2 leakages in distinct compartments, including groundwater, vadose zone, and atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70046561','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70046561"><span>Revision of Fontes & Garnier's model for the initial 14C content of dissolved inorganic carbon used in groundwater dating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Han, Liang-Feng; Plummer, Niel</p> <p>2013-01-01</p> <p>The widely applied model for groundwater dating using 14C proposed by Fontes and Garnier (F&G) (Fontes and Garnier, 1979) estimates the initial 14C content in waters from carbonate-rock aquifers affected by isotopic exchange. Usually, the model of F&G is applied in one of two ways: (1) using a single 13C fractionation factor of gaseous CO2 with respect to a solid carbonate mineral, εg/s, regardless of whether the carbon isotopic exchange is controlled by soil CO2 in the unsaturated zone, or by solid carbonate mineral in the saturated zone; or (2) using different fractionation factors if the exchange process is dominated by soil CO2 gas as opposed to solid carbonate mineral (typically calcite). An analysis of the F&G model shows an inadequate conceptualization, resulting in underestimation of the initial 14C values (14C0) for groundwater systems that have undergone isotopic exchange. The degree to which the 14C0 is underestimated increases with the extent of isotopic exchange. Examples show that in extreme cases, the error in calculated adjusted initial 14C values can be more than 20% modern carbon (pmc). A model is derived that revises the mass balance method of F&G by using a modified model conceptualization. The derivation yields a “global” model both for carbon isotopic exchange dominated by gaseous CO2 in the unsaturated zone, and for carbon isotopic exchange dominated by solid carbonate mineral in the saturated zone. However, the revised model requires different parameters for exchange dominated by gaseous CO2 as opposed to exchange dominated by solid carbonate minerals. The revised model for exchange dominated by gaseous CO2 is shown to be identical to the model of Mook (Mook, 1976). For groundwater systems where exchange occurs both in the unsaturated zone and saturated zone, the revised model can still be used; however, 14C0 will be slightly underestimated. Finally, in carbonate systems undergoing complex geochemical reactions, such as oxidation of organic carbon, radiocarbon ages are best estimated by inverse geochemical modeling techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS43B..06Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS43B..06Y"><span>Methane Recycling During Burial of Methane Hydrate-Bearing Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>You, K.; Flemings, P. B.</p> <p>2017-12-01</p> <p>We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with methane recycling, such as the formation of free gas zone, concentrated hydrate zone, bottom simulating reflector, and overpressured zone around the BHSZ, and gas venting at seafloor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/13302','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/13302"><span>Water movement in the unsaturated zone at a low-level radioactive-waste burial site near Barnwell, South Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dennehy, K.F.; McMahon, P.B.</p> <p>1987-01-01</p> <p>Four unsaturated zone monitoring sites and a meteorologic station were installed at the low level radioactive waste burial site near Barnwell, South Carolina, to investigate the geohydrologic and climatologic factors affecting water movement in the unsaturated zone. The study site is located in the Atlantic Coastal Plain. The unsaturated zone consists of a few centimeters to > 1 m of surface sand, underlain by up to 15 m of clayey sand. Two monitoring sites were installed in experimental trenches and two were installed in radioactive waste trenches. Two different trench designs were evaluated at the monitoring sites. A meteorologic station was used to measure precipitation and to calculate actual evapotranspiration using the Bowen ratio method. Soil-moisture tensiometers, soil-moisture conductance probes, and temperature sensors were used to monitor soil-water movement in and adjacent to the trenches. Tracer tests using sodium chloride were conducted at each monitoring site. Data collection at the monitoring sites began in January 1982 and continued until early May 1984. Tensiometer data show that the unsaturated materials had their highest percent saturations in the winter and spring. Saturations in the backfill sand varied from 20 to 100%. They varied from about 75 to 100% in the adjacent undisturbed and overlying compacted clayey sand. Additionally, because tensiometer data indicate negligible water storage changes in the unsaturated zone, it is estimated that approximately 43 cm of recharge reached the water table. During 1984, the rise and fall of ponded water in an experimental trench was continuously monitored with a digital recorder. A cross-sectional finite element model of variably saturated flow was used to test the conceptual model of water movement in the unsaturated zone and to illustrate the effect of trench design on water movement into the experimental trenches. Monitoring and model results show that precipitation on trenches infiltrated the trench cap and moved vertically into the trench backfill material. The trench construction practice of placing a compacted clayey-sand barrier around the trench greatly inhibits soil water from entering the trench. (Author 's abstract)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA623716','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA623716"><span>Prevalence of Prehospital Hypoxemia and Oxygen Use in Trauma Patients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-10-01</p> <p>and included participants by applying a study-specific pulse oximeter (Nonin PalmSat 2500; Nonin Medical, Plymouth, Minnesota); this oximeter is...of week. In addition, the heart rate and oxygen saturation mea- sures that were recorded by the study-specific pulse oximeter were downloaded. After...Supplemental Oxygen Administration 95% cr N % Lower Upper Pulse Oximeter Oxygen 86 38.4 32.2 44.9 Saturation :0;90% (Hypoxemia) TBI 22 9.8 6.5 14.3</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFMGC12A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFMGC12A..06S"><span>The Frio Brine Pilot Experiment Managing CO2 Sequestration in a Brine Formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sakurai, S.</p> <p>2005-12-01</p> <p>Funded by the U.S. Department of Energy National Energy Technology Laboratory, the Frio Brine Pilot Experiment was begun in 2002. The increase in greenhouse gas emissions, such as carbon dioxide (CO2), is thought to be a major cause of climate change. Sequestration of CO2 in saline aquifers below and separate from fresh water is considered a promising method of reducing CO2 emissions. The objectives of the experiment are to (1) demonstrate CO2 can be injected into a brine formation safely; (2) measure subsurface distribution of injected CO2; (3) test the validity of conceptual, hydrologic, and geochemical models, and (4) develop experience necessary for larger scale CO2 injection experiments. The Bureau of Economic Geology (BEG) is the leading institution on the project and is collaborating with many national laboratories and private institutes. BEG reviewed many saline formations in the US to identify candidates for CO2 storage. The Frio Formation was selected as a target that could serve a large part of the Gulf Coast and site was selected for a brine storage pilot experiment in the South Liberty field, Dayton, Texas. Most wells were drilled in the 1950's, and the fluvial sandstone of the upper Frio Formation in the Oligocene is our target, at a depth of 5,000 ft. An existing well was used as the observation well. A new injection well was drilled 100 ft away, and 30 ft downdip from the observation well. Conventional cores were cut, and analysis indicated 32 to 35 percent porosity and 2,500 md permeability. Detailed core description was valuable as better characterization resulted in design improvements. A bed bisecting the interval originally thought to be a significant barrier to flow is a sandy siltstone having a permeability of about 100 md. As a result, the upper part of the sandstone was perforated. Because of changes in porosity, permeability, and the perforation zone, input for the simulation model was updated and the model was rerun to estimate timing of CO2 breakthrough and saturation changes. A pulsed neutron tool was selected as the primary wireline log for monitoring saturation changes, because of high formation water salinity, along with high porosity. Baseline logs were recorded as preinjection values. We started injection of CO2 on October 4, 2004, and injected 1,600 tons of CO2 for 10 days. Breakthrough of CO2 to the observation well was observed on the third day by geochemical measurement of recovered fluids, including gas analysis and decreased pH value. Multiple capture logs were run to monitor saturation changes. The first log run after CO2 breakthrough on the fourth day showed a significant decrease in sigma was recorded within the upper part of the porous section (6 ft) correlative with the injection interval. Postinjection logs were compared with baseline logs to determine CO2 distribution as CO2 migrated away from the injection point. The dipole acoustic tool was used to estimate saturation changes to improve geophysical data interpretation using VSP and crosswell tomography. Compared with the baseline log, wireline sonic log made 3 months later showed a weak and slower arrival of compressional wave over the perforated interval. Results from crosswell tomography data also showed changes in compressional velocity. Successful measurement of plume evolution documents an effective method to monitor CO2 in reservoirs and document migration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008216','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008216"><span>Towards a Model Climatology of Relative Humidity in the Upper Troposphere for Estimation of Contrail and Contrail-Induced Cirrus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Selkirk, Henry B.; Manyin, M.; Ott, L.; Oman, L.; Benson, C.; Pawson, S.; Douglass, A. R.; Stolarski, R. S.</p> <p>2011-01-01</p> <p>The formation of contrails and contrail cirrus is very sensitive to the relative humidity of the upper troposphere. To reduce uncertainty in an estimate of the radiative impact of aviation-induced cirrus, a model must therefore be able to reproduce the observed background moisture fields with reasonable and quantifiable fidelity. Here we present an upper tropospheric moisture climatology from a 26-year ensemble of simulations using the GEOS CCM. We compare this free-running model's moisture fields to those obtained from the MLS and AIRS satellite instruments, our most comprehensive observational databases for upper tropospheric water vapor. Published comparisons have shown a substantial wet bias in GEOS-5 assimilated fields with respect to MLS water vapor and ice water content. This tendency is clear as well in the GEOS CCM simulations. The GEOS-5 moist physics in the GEOS CCM uses a saturation adjustment that prevents supersaturation, which is unrealistic when compared to in situ moisture observations from MOZAIC aircraft and balloon sondes as we will show. Further, the large-scale satellite datasets also consistently underestimate super-saturation when compared to the in-situ observations. We place these results in the context of estimates of contrail and contrail cirrus frequency.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.1904G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.1904G"><span>Reactive Gas transport in soil: Kinetics versus Local Equilibrium Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geistlinger, Helmut; Jia, Ruijan</p> <p>2010-05-01</p> <p>Gas transport through the unsaturated soil zone was studied using an analytical solution of the gas transport model that is mathematically equivalent to the Two-Region model. The gas transport model includes diffusive and convective gas fluxes, interphase mass transfer between the gas and water phase, and biodegradation. The influence of non-equilibrium phenomena, spatially variable initial conditions, and transient boundary conditions are studied. The objective of this paper is to compare the kinetic approach for interphase mass transfer with the standard local equilibrium approach and to find conditions and time-scales under which the local equilibrium approach is justified. The time-scale of investigation was limited to the day-scale, because this is the relevant scale for understanding gas emission from the soil zone with transient water saturation. For the first time a generalized mass transfer coefficient is proposed that justifies the often used steady-state Thin-Film mass transfer coefficient for small and medium water-saturated aggregates of about 10 mm. The main conclusion from this study is that non-equilibrium mass transfer depends strongly on the temporal and small-scale spatial distribution of water within the unsaturated soil zone. For regions with low water saturation and small water-saturated aggregates (radius about 1 mm) the local equilibrium approach can be used as a first approximation for diffusive gas transport. For higher water saturation and medium radii of water-saturated aggregates (radius about 10 mm) and for convective gas transport, the non-equilibrium effect becomes more and more important if the hydraulic residence time and the Damköhler number decrease. Relative errors can range up to 100% and more. While for medium radii the local equilibrium approach describes the main features both of the spatial concentration profile and the time-dependence of the emission rate, it fails completely for larger aggregates (radius about 100 mm). From the comparative study of relevant scenarios with and without biodegradation it can be concluded that, under realistic field conditions, biodegradation within the immobile water phase is often mass-transfer limited and the local equilibrium approach assuming instantaneous mass transfer becomes rather questionable. References Geistlinger, H., Ruiyan Jia, D. Eisermann, and C.-F. Stange (2008): Spatial and temporal variability of dissolved nitrous oxide in near-surface groundwater and bubble-mediated mass transfer to the unsaturated zone, J. Plant Nutrition and Soil Science, in press. Geistlinger, H. (2009) Vapor transport in soil: concepts and mathematical description. In: Eds.: S. Saponari, E. Sezenna, and L. Bonoma, Vapor emission to outdoor air and enclosed spaces for human health risk assessment: Site characterization, monitoring, and modeling. Nova Science Publisher. Milano. Accepted for publication.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4203505','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4203505"><span>CONTINUOUSLY SENSITIVE BUBBLE CHAMBER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Good, R.H.</p> <p>1959-08-18</p> <p>A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1993/4137/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1993/4137/report.pdf"><span>Potential for ground-water contamination from movement of wastewater through the unsaturated zone, upper Mojave River Basin, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Umari, A.M.; Martin, P.M.; Schroeder, R.A.; Duell, L.F.; Fay, R.G.</p> <p>1993-01-01</p> <p>Septic-tank wastewater disposed in 30-foot-deep seepage pits (dry wells) at 46,000 residences is estimated to equal 18 percent of the natural recharge to the sole-source aquifer in the rapidly developing upper Mojave River Basin (Victor Valley) in the high desert northeast of Los Angeles. Vertical rates of movement of the wastewater wetting front through the unsaturated zone at three newly occupied residences ranged from 0.07 to 1.0 foot per day. These rates translate to traveltimes of several months to several years for the wastewater wetting front to reach the water table and imply that wastewater from many disposal systems already has reached the water table, which averages about 150 feet below land surface in the Victor Valley. As wastewater percolates from seepage pits into the adjacent unsaturated zone, the nitrogen present in reduced form is rapidly converted to nitrate. Analyses on soil-core extracts and soil moisturefrom suction lysimeters installed beneath the seepage pits at eight residences showed that nitrate concentrations and nitrate/ chloride ratios generally become lower with increasing depth. The intervals of greatest decline seemed to coincide with finer soil texture or were near the water table. Nitrate-reducing bacteria were tested for and found to be present in soil cores from two residences. Sparse nitrogen-15 data from suction lysimeters at one of these residences, where thenitrate concentration decreased by about one-half at a depth of 200 feet, indicate that the nitrate decline was accompanied by nitrogen-15 enrichment in the residual nitrate with an isotope-separation factor of about -10 permil. Despite the potential input of abundant nitrogen with the domestic wastewater recharge, nitrate concentrations in the area's ground water are generally low. The absence of high nitrate concentrations in the ground water is consistent with the existence of denitrification, a microbial nitrogen-removal mechanism, as wastewater moves through the thick unsaturated zone and mixes with the ground water. The observed low nitrate concentrations also could be explained by a dilution by vertical mixing in the saturated zone and retention of the wastewater in the unsaturated zone. Results of a single-cell mixing model that allows nitrate from wastewater to be mixedinstantaneously with the underlying ground water suggest that measurable increases in nitrate concentration should be expected within 5 to 10 years after wastewater reaches the water table if the mixing depth is less than 100 feet. Although high fecal-coliform densities were measured in wastewater from septic tanks and seepage pits, removal of these enteric bacteria in the unsaturated zone is very effective, as was indicated by their absence in soil only a few feet from the seepage pits. In testing for organic priority pollutants in wastewater, 17 of 85 compounds were detected. Most compounds detected were present in low concentrations, except at one residence where the concentration of three compounds exceeded 100 micrograms per liter. These high concentrations may be a consequence of disposal practices unique to this residence. Extractable organic priority pollutants were not found in any soil cores taken adjacent to seepage pits and, therefore, are not of concern.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16775263','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16775263"><span>Melorheostosis involving the cervical and upper thoracic spine: radiographic, CT, and MR imaging findings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Motimaya, A M; Meyers, S P</p> <p>2006-01-01</p> <p>Melorheostosis, an uncommon mesenchymal dysplasia, rarely affects the axial skeleton. We describe the imaging findings of melorheostosis involving the cervical and upper thoracic spine. Radiographs and CT showed unilateral well-marginated undulating zones of cortical hyperostosis involving multiple vertebrae that were contiguous with a coalescent ossified right paravertebral mass. MR imaging showed zones of signal intensity void on all pulse sequences without contrast enhancement. Conservative management was elected because of lack of interval clinical and imaging changes for 8 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003WRR....39.1225S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003WRR....39.1225S"><span>Are faults preferential flow paths through semiarid and arid vadose zones?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sigda, John M.; Wilson, John L.</p> <p>2003-08-01</p> <p>Numerous faults crosscut the poorly lithified, basin-fill sands found in New Mexico's Rio Grande rift and in other extensional regimes. The deformational processes that created these faults sharply reduced both fault porosity and fault saturated hydraulic conductivity by altering grains and pores, particularly in structures referred to as deformation bands. The resulting pore distribution changes, which create barriers to saturated flow, should enhance fault unsaturated flow relative to parent sand under the relatively dry conditions of the semiarid southwest. We report the first measurements of unsaturated hydraulic properties for undisturbed fault materials, using samples from a small-displacement normal fault and parent sands in the Bosque del Apache Wildlife Refuge, central New Mexico. Fault samples were taken from a narrow zone of deformation bands. The unsaturated flow apparatus (UFA) centrifuge system was used to measure both relative permeability and moisture retention curves. We compared these relations and fitted hydraulic conductivity-matric potential models to test whether the fault has significantly different unsaturated hydraulic properties than its parent sand. Saturated conductivity is 3 orders of magnitude less in the fault than the undeformed sand. As matric potential decreases from 0 to -200 cm, unsaturated conductivity decreases roughly 1 order of magnitude in the fault but 5-6 orders of magnitude in undeformed sands. Fault conductivity is greater by 2-6 orders of magnitude at matric potentials between -200 and -1000 cm, which are typical potentials for semiarid and arid vadose zones. Fault deformation bands have much higher air-entry matric potential values than parent sands and remain close to saturation well after the parent sands have begun to approach residual moisture content. Under steady state, one-dimensional, gravity-driven flow conditions, moisture transport and solute advection is 102-106 times larger in the fault material than parent sands. Faults are sufficiently conductive to hasten the downward movement of water and solutes through vadose-zone sands under semiarid and arid conditions like those in the Rio Grande rift, thereby potentially enhancing recharge, contaminant migration, and diagenesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvD..95h3014V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvD..95h3014V"><span>Upper limit set by causality on the tidal deformability of a neutron star</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Oeveren, Eric D.; Friedman, John L.</p> <p>2017-04-01</p> <p>A principal goal of gravitational-wave astronomy is to constrain the neutron star equation of state (EOS) by measuring the tidal deformability of neutron stars. The tidally induced departure of the waveform from that of a point particle [or a spinless binary black hole (BBH)] increases with the stiffness of the EOS. We show that causality (the requirement that the speed of sound be less than the speed of light for a perfect fluid satisfying a one-parameter equation of state) places an upper bound on tidal deformability as a function of mass. Like the upper mass limit, the limit on deformability is obtained by using an EOS with vsound=c for high densities and matching to a low density (candidate) EOS at a matching density of order nuclear saturation density. We use these results and those of Lackey et al. [Phys. Rev. D 89, 043009 (2014), 10.1103/PhysRevD.89.043009] to estimate the resulting upper limit on the gravitational-wave phase shift of a black hole-neutron star (BHNS) binary relative to a BBH. Even for assumptions weak enough to allow a maximum mass of 4 M⊙ (a match at nuclear saturation density to an unusually stiff low-density candidate EOS), the upper limit on dimensionless tidal deformability is stringent. It leads to a still more stringent estimated upper limit on the maximum tidally induced phase shift prior to merger. We comment in an appendix on the relation among causality, the condition vsound<c , and the condition d p /d ɛ <1 for the effective EOS governing the equilibrium star.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22654335-spontaneous-formation-surface-magnetic-structure-from-large-scale-dynamo-strongly-stratified-convection','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22654335-spontaneous-formation-surface-magnetic-structure-from-large-scale-dynamo-strongly-stratified-convection"><span>SPONTANEOUS FORMATION OF SURFACE MAGNETIC STRUCTURE FROM LARGE-SCALE DYNAMO IN STRONGLY STRATIFIED CONVECTION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Masada, Youhei; Sano, Takayoshi, E-mail: ymasada@auecc.aichi-edu.ac.jp, E-mail: sano@ile.osaka-u.ac.jp</p> <p></p> <p>We report the first successful simulation of spontaneous formation of surface magnetic structures from a large-scale dynamo by strongly stratified thermal convection in Cartesian geometry. The large-scale dynamo observed in our strongly stratified model has physical properties similar to those in earlier weakly stratified convective dynamo simulations, indicating that the α {sup 2}-type mechanism is responsible for the dynamo. In addition to the large-scale dynamo, we find that large-scale structures of the vertical magnetic field are spontaneously formed in the convection zone (CZ) surface only in cases with a strongly stratified atmosphere. The organization of the vertical magnetic field proceedsmore » in the upper CZ within tens of convective turnover time and band-like bipolar structures recurrently appear in the dynamo-saturated stage. We consider several candidates to be possibly be the origin of the surface magnetic structure formation, and then suggest the existence of an as-yet-unknown mechanism for the self-organization of the large-scale magnetic structure, which should be inherent in the strongly stratified convective atmosphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29905791','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29905791"><span>Microbial ecology of deep-sea hypersaline anoxic basins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Merlino, Giuseppe; Barozzi, Alan; Michoud, Grégoire; Ngugi, David Kamanda; Daffonchio, Daniele</p> <p>2018-07-01</p> <p>Deep hypersaline anoxic basins (DHABs) are unique water bodies occurring within fractures at the bottom of the sea, where the dissolution of anciently buried evaporites created dense anoxic brines that are separated by a chemocline/pycnocline from the overlying oxygenated deep-seawater column. DHABs have been described in the Gulf of Mexico, the Mediterranean Sea, the Black Sea and the Red Sea. They are characterized by prolonged historical separation of the brines from the upper water column due to lack of mixing and by extreme conditions of salinity, anoxia, and relatively high hydrostatic pressure and temperatures. Due to these combined selection factors, unique microbial assemblages thrive in these polyextreme ecosystems. The topological localization of the different taxa in the brine-seawater transition zone coupled with the metabolic interactions and niche adaptations determine the metabolic functioning and biogeochemistry of DHABs. In particular, inherent metabolic strategies accompanied by genetic adaptations have provided insights on how prokaryotic communities can adapt to salt-saturated conditions. Here, we review the current knowledge of the diversity, genomics, metabolisms and ecology of prokaryotes in DHABs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri024033/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri024033/"><span>Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lee, Terrie Mackin</p> <p>2002-01-01</p> <p>In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large amounts of ground-water inflow, and (2) the location of ground-water catchments that could be managed to safeguard lake water quality. Knowledge of how ground-water catchments are related to lakes could be used by water-resource managers to recommend setback distances for septic tank drain fields, agricultural land uses, and other land-use practices that contribute nutrients and major ions to lakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1043460','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1043460"><span>Pena blanca natural analogue project: summary of activities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Levy, Schon S; Goldstein, Steven J; Abdel - Fattah, Amr I</p> <p>2010-12-08</p> <p>The inactive Nopal I uranium mine in silicic tuff north of Chihuahua City, Chihuahua, Mexico, was studied as a natural analogue for an underground nuclear-waste repository in the unsaturated zone. Site stratigraphy was confirmed from new drill core. Datafrom site studies include chemical and isotopic compositions of saturated- and unsaturated-zone waters. A partial geochronology of uranium enrichment and mineralization was established. Evidence pertinent to uranium-series transport in the soil zone and changing redox conditions was collected. The investigations contributed to preliminary, scoping-level performance assessment modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/2463/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/2463/report.pdf"><span>Geochemical and hydrologic controls on phosphorus transport in a sewage-contaminated sand and gravel aquifer near Ashumet Pond, Cape Cod, Massachusetts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Walter, Donald A.; Rea, Brigid A.; Stollenwerk, Kenneth G.; Savoie, Jennifer G.</p> <p>1996-01-01</p> <p>Currently (1993), about 170 kg/yr of phosphorus discharges into Ashumet Pond on Cape Cod from a plume of sewage-contaminated ground water. Phosphorus in the plume is mobile in two distinct geochemical environments--an anoxic zone containing dissolved iron and a suboxic zone containing dissolved oxygen. Phosphorus mobility in the suboxic zone is due to saturation of available sorption sites. Phosphorus loading to Ashumet Pond may increase significantly after sewage disposal is stopped due to phosphorus desorption from sediment surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AcGeP..66..671E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AcGeP..66..671E"><span>The benthic macrofauna from the Lower Maastrichtian chalk of Kronsmoor (northern Germany, Saturn quarry): taxonomic outline and palaeoecologic implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Engelke, Julia; Esser, Klaus J. K.; Linnert, Christian; Mutterlose, Jörg; Wilmsen, Markus</p> <p>2016-12-01</p> <p>The benthic macroinvertebrates of the Lower Maastrichtian chalk of Saturn quarry at Kronsmoor (northern Germany) have been studied taxonomically based on more than 1,000 specimens. Two successive benthic macrofossil assemblages were recognised: the lower interval in the upper part of the Kronsmoor Formation (Belemnella obtusa Zone) is characterized by low abundances of macroinvertebrates while the upper interval in the uppermost Kronsmoor and lowermost Hemmoor formations (lower to middle Belemnella sumensis Zone) shows a high macroinvertebrate abundance (eight times more than in the B. obtusa Zone) and a conspicuous dominance of brachiopods. The palaeoecological analysis of these two assemblages indicates the presence of eight different guilds, of which epifaunal suspension feeders (fixo-sessile and libero-sessile guilds), comprising approximately half of the trophic nucleus of the lower interval, increased to a dominant 86% in the upper interval, including a considerable proportion of rhynchonelliform brachiopods. It is tempting to relate this shift from the lower to the upper interval to an increase in nutrient supply and/or a shallowing of the depositional environment but further data including geochemical proxies are needed to fully understand the macrofossil distribution patterns in the Lower Maastrichtian of Kronsmoor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41D0702M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41D0702M"><span>Field Measurements and Modeling of the Southeast Greenland Firn Aquifer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, O. L.; Solomon, D. K.; Miège, C.; Voss, C. I.; Koenig, L.; Forster, R. R.; Schmerr, N. C.; Montgomery, L. N.; Legchenko, A.; Ligtenberg, S.</p> <p>2016-12-01</p> <p>An extensive firn aquifer forms in southeast Greenland as surface meltwater percolates through the upper seasonal snow and firn layers to depth and saturates open pore spaces. The firn aquifer is found at depths from about 10 to 35 m below the snow surface in areas with high accumulation rates and high melt rates. The firn aquifer retains significant volume of meltwater and heat within the ice sheet. The first-ever hydrologic and geochemical measurements from several boreholes drilled into the aquifer have been made 50 km upstream of Helheim Glacier terminus in SE Greenland. This field data is used with a version of the SUTRA groundwater simulator that represents the freeze/thaw process to model the hydrologic and thermal conditions of the ice sheet, including aquifer water recharge, lateral flow, and discharge. Meltwater generation during the summer season is modeled using degree day methods, and meltwater recharge to the aquifer (10-70 cm/year) is calculated using water level fluctuations and volumetric flow measurements (3e-7 to 5e-6 m3/s). Aquifer hydrologic parameters, including hydraulic conductivity (2e-5 to 4e -4 m/s), storativity, and specific discharge (3e-7 to 5e-6 m/s), are estimated from aquifer pumping tests and tracer experiments. In situ measurements were obtained using a novel heated piezometer, which advances downward through the unsaturated and saturated zones of the aquifer by melting the surrounding firn. Innovative modeling approaches blending unsaturated and saturated groundwater flow modeling and ice thermodynamics indicate the importance of surface topography controls on fluid flow within the aquifer, and forecast the nature and volume of aquifer water discharge into crevasses at the edge of the ice sheet. This pioneering study is crucial to understanding the aquifer's influence on mass balance estimates of the ice sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGeo..100...33K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGeo..100...33K"><span>Reconciling laboratory and observational models of mantle rheology in geodynamic modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>King, Scott D.</p> <p>2016-10-01</p> <p>Experimental and geophysical observations constraining mantle rheology are reviewed with an emphasis on their impact on mantle geodynamic modelling. For olivine, the most studied and best-constrained mantle mineral, the tradeoffs associated with the uncertainties in the activation energy, activation volume, grain-size and water content allow the construction of upper mantle rheology models ranging from nearly uniform with depth to linearly increasing from the base of the lithosphere to the top of the transition zone. Radial rheology models derived from geophysical observations allow for either a weak upper mantle or a weak transition zone. Experimental constraints show that wadsleyite and ringwoodite are stronger than olivine at the top of the transition zone; however the uncertainty in the concentration of water in the transition zone precludes ruling out a weak transition zone. Both observational and experimental constraints allow for strong or weak slabs and the most promising constraints on slab rheology may come from comparing inferred slab geometry from seismic tomography with systematic studies of slab morphology from dynamic models. Experimental constraints on perovskite and ferropericlase strength are consistent with general feature of rheology models derived from geophysical observations and suggest that the increase in viscosity through the top of the upper mantle could be due to the increase in the strength of ferropericlase from 20-65 GPa. The decrease in viscosity in the bottom half of the lower mantle could be the result of approaching the melting temperature of perovskite. Both lines of research are consistent with a high-viscosity lithosphere, a low viscosity either in the upper mantle or transition zone, and high viscosity in the lower mantle, increasing through the upper half of the lower mantle and decreasing in the bottom half of the lower mantle, with a low viscosity above the core. Significant regions of the mantle, including high-stress regions of the lower mantle, may be in the dislocation creep (power-law) regime. Due to our limited knowledge of mantle grain size, the best hope to resolve the question of whether a region is in diffusion creep (Newtonian rheology) or dislocation or grain-boundary creep (power-law rheology), may be the presence of absence of seismic anisotropy, because there is no mechanism to rotate crystals in diffusion creep which would be necessary to develop anisotropy from lattice preferred orientation. While non-intuitive, the presence or absence of a weak region in the upper mantle has a profound effect on lower mantle flow. With an asthenosphere, the lower mantle organizes into a long-wavelength plan form with one or two (degree 1 or degree 2) large downwellings and updrafts, which may contain a cluster of plumes. The boundary between the long-wavelength lower mantle flow and upper region flow may be deeper, likely 800-1200 km, than the usually assumed base of the transition zone. There are competing hypotheses as to whether this change in flow pattern is caused by a change in rheology, composition, or phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..245b2063S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..245b2063S"><span>Need to Identify Parameters of Concrete in the Weakest Zone of the Industrial Floor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stawiski, Bohdan; Radzik, Łukasz</p> <p>2017-10-01</p> <p>The ways in which industrial floors are exploited leads to the requirement for the highest strength of their upper zone. Physical phenomena occurring during the compaction and hardening of the concrete cause different strength distributions. In the top zone of industrial floors, the strength is significantly lower (over a dozen MPa) than the strength in the bottom zone (several dozen MPa). Standard tests of control samples do not detect this fact. Processes for the application and finishing of embedded mineral-aggregate hardeners (dry shakes) can be regarded as uncontrolled. The effects of the use of dry shakes are not evaluated. In combination with the phenomenon of bleeding, they often fail by delamination. This paper presents the results of industrial floor testing. The ultrasonic pulse velocity method with dry point contact transducers was used. The results show how upper layer strength was reduced, and how dry shakes application affected the strength of the floor. The strength distribution in hardened concrete, which delaminated from the rest of the floor was presented as well. The extension of compulsory control tests of concrete samples was proposed. In the authors’ opinion, particular attention should be paid to 3 centimetres of the upper layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAfES.101..322M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAfES.101..322M"><span>Late Devonian conodonts and event stratigraphy in northwestern Algerian Sahara</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahboubi, Abdessamed; Gatovsky, Yury</p> <p>2015-01-01</p> <p>Conodonts recovered from the Late Devonian South Marhouma section comprise 5 genera with 31 species (3 undetermined). The fauna establishes the presence of MN Zones 5, undifferentiated 6/7, 8/10 for the Middle Frasnian, the MN Zones 11, 12, 13 for the Upper Frasnian as well as the Early through Late triangularis Zones in the basal Famennian. The outcropping lithological succession is one of mostly nodular calcilutites alternating with numerous marly and shaly deposits, which, in the lower and upper part, comprise several dysoxic dark shale intervals. Among these the Upper Kellwasser horizon can be precisely dated and as such the presence of the terminal Frasnian Kellwasser Event is recognized for the first time in Algeria. Both the Middlesex and Rhinestreet Events cannot yet be precisely located, but supposedly occur among the dark shale horizons in the lower part of the section. However, their assignment to a precise level has so far not been established. Though poor in conodont abundance the South Marhouma section provides first evidence of the presence of several Montagne Noire conodont zones within the so far widely unstudied Frasnian of the Ougarta Chain. As such it is considered representative for the northwestern Algerian Saoura region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2017/1010/ofr20171010.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2017/1010/ofr20171010.pdf"><span>Saltwater intrusion in the Floridan aquifer system near downtown Brunswick, Georgia, 1957–2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cherry, Gregory S.; Peck, Michael</p> <p>2017-02-16</p> <p>IntroductionThe Floridan aquifer system (FAS) consists of the Upper Floridan aquifer (UFA), an intervening confining unit of highly variable properties, and the Lower Floridan aquifer (LFA). The UFA and LFA are primarily composed of Paleocene- to Oligocene-age carbonate rocks that include, locally, Upper Cretaceous rocks. The FAS extends from coastal areas in southeastern South Carolina and continues southward and westward across the coastal plain of Georgia and Alabama, and underlies all of Florida. The thickness of the FAS varies from less than 100 feet (ft) in aquifer outcrop areas of South Carolina to about 1,700 ft near the city of Brunswick, Georgia.Locally, in southeastern Georgia and the Brunswick– Glynn County area, the UFA consists of an upper water-bearing zone (UWBZ) and a lower water-bearing zone (LWBZ), as identified by Wait and Gregg (1973), with aquifer test data indicating the upper zone has higher productivity than the lower zone. Near the city of Brunswick, the LFA is composed of two permeable zones: an early middle Eocene-age upper permeable zone (UPZ) and a highly permeable lower zone of limestone (LPZ) of Paleocene and Late Cretaceous age that includes a deeply buried, cavernous, saline water-bearing unit known as the Fernandina permeable zone. Maslia and Prowell (1990) inferred the presence of major northeast–southwest trending faults through the downtown Brunswick area based on structural analysis of geophysical data, northeastward elongation of the potentiometric surface of the UFA, and breaches in the local confining unit that influence the area of chloride contamination. Pronounced horizontal and vertical hydraulic head gradients, caused by pumping in the UFA, allow saline water from the FPZ to migrate upward into the UFA through this system of faults and conduits.Saltwater was first detected in the FAS in wells completed in the UFA near the southern part of the city of Brunswick in late 1957. By the 1970s, a plume of groundwater with high chloride concentrations had migrated northward toward two major industrial pumping centers, and since 1965, chloride concentrations have steadily increased in the northern part of the city. In 1978, data obtained from a 2,720-ft-deep test well (33H188) drilled south of the city showed water with a chloride concentration of 33,000 milligrams per liter (mg/L), suggesting the saltwater source was located below the UFA in the Fernandina permeable zone (FPZ) of the LFA.All U.S. Geological Survey (USGS) data collected for this study, including groundwater levels in wells and water-chemistry data, are available in the USGS National Water Information System.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T43B3054B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T43B3054B"><span>Upper-Mantel Earthquakes in the Australia-Pacific Plate Boundary Zone and the Roots of the Alpine Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boese, C. M.; Warren-Smith, E.; Townend, J.; Stern, T. A.; Lamb, S. H.</p> <p>2016-12-01</p> <p>Seismicity in the upper mantle in continental collision zones is relatively rare, but observed around the world. Temporary seismometer deployments have repeatedly detected mantle earthquakes at depths of 40-100 km within the Australia-Pacific plate boundary zone beneath the South Island of New Zealand. Here, the transpressive Alpine Fault constitutes the primary plate boundary structure linking subduction zones of opposite polarity farther north and south. The Southern Alps Microearthquake Borehole Array (SAMBA) has been operating continuously since November 2008 along a 50 km-long section of the central Alpine Fault, where the rate of uplift of the Southern Alps is highest. To date it has detected more than 40 small to moderate-sized mantle events (1≤ML≤3.9). The Central Otago Seismic Array (COSA) has been in operation since late 2012 and detected 15 upper mantle events along the sub-vertical southern Alpine Fault. Various mechanisms have been proposed to explain the occurrence of upper mantle seismicity in the South Island, including intra-continental subduction (Reyners 1987, Geology); high shear-strain gradients due to depressed geotherms and viscous deformation of mantle lithosphere (Kohler and Eberhart-Phillips 2003, BSSA); high strain rates resulting from plate bending (Boese et al. 2013, EPSL), and underthrusting of the Australian plate (Lamb et al. 2015, G3). Focal mechanism analysis reveals a variety of mechanisms for the upper mantle events but predominantly strike-slip and reverse faulting. In this study, we apply spectral analysis to better constrain source parameters for these mantle events. These results are interpreted in conjunction with new information about crustal structure and low-frequency earthquakes near the Moho and in light of existing velocity, attenuation and resistivity models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJEaS.104.1759O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJEaS.104.1759O"><span>Structural evolution of the Sarandí del Yí Shear Zone, Uruguay: kinematics, deformation conditions and tectonic significance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oriolo, S.; Oyhantçabal, P.; Heidelbach, F.; Wemmer, K.; Siegesmund, S.</p> <p>2015-10-01</p> <p>The Sarandí del Yí Shear Zone is a crustal-scale shear zone that separates the Piedra Alta Terrane from the Nico Pérez Terrane and the Dom Feliciano Belt in southern Uruguay. It represents the eastern margin of the Río de la Plata Craton and, consequently, one of the main structural features of the Precambrian basement of Western Gondwana. This shear zone first underwent dextral shearing under upper to middle amphibolite facies conditions, giving rise to the reactivation of pre-existing crustal fabrics in the easternmost Piedra Alta Terrane. Afterwards, pure-shear-dominated sinistral shearing with contemporaneous magmatism took place under lower amphibolite to upper greenschist facies conditions. The mylonites resulting from this event were then locally reactivated by a cataclastic deformation. This evolution points to strain localization under progressively retrograde conditions with time, indicating that the Sarandí del Yí Shear Zone represents an example of a thinning shear zone related to the collisional to post-collisional evolution of the Dom Feliciano Belt that occurred between the Meso- to Neoproterozoic (>600 Ma) and late Ediacaran-lower Cambrian times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T22E..07P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T22E..07P"><span>Trench curvature initiation: Upper plate strain pattern and volcanism Insights from the Lesser Antilles arc, St Barthélemy Island, FWI.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Philippon, M. M.; Legendre, L.; Münch, P.; Léticée, J. L.; Lebrun, J. F.; Maincent, G.; Mazabraud, Y.</p> <p>2017-12-01</p> <p>Upper plate deformation pattern reflect the mechanical behavior of subduction zones. In this study, we focus on the consequence of the entrance of a buoyant plateau within the Caribbean subduction zone during Eocene by studying the oldest cropping out rocks of the Lesser Antilles volcanic arc. Based on novel geochronological ages and available bio-stratigraphic data we show that St Barthélemy Island was built during three successive volcanic events over the Mid- Eocene to Oligo-Miocene time span. We show that magmatism is mainly Oligocene, not Eocene. Moreover, we demonstrate that tholeitic and calc-alkaline magmatism co-existed all along the arc activity. And ultimately we evidence a westward migration of the volcanism at the island scale. Furthermore, We demonstrate that during 21 Ma, the built of theses volcanoes, the stress regime evolves from pure to radial extension with a sub-horizontal σ3 showing N30° mean trend. To conclude, our novel results invalidate the chronological, geochemical and spatial evolution of the island arc magmatism formerly proposed in the early eighties. Indeed, arc magmatism in St Barthélemy was mainly related to the West-dipping Lesser Antilles subduction zone and not to the South-dipping Greater Antilles subduction and upper plate deformation evolution observed at local scale reflects large scale mechanical behavior of the Lesser Antilles subduction zone. A two steps restoration of the regional deformation shows that the switch from pure parallel to the trench extension to radial extension within the Caribbean upper plate reflects trench curvature that followed the entrance of the Bahamas bank in the Greater Antilles subduction zone and its collision.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22133843-tomography-plasma-flows-upper-solar-convection-zone-using-time-distance-inversion-combining-ridge-phase-speed-filtering','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22133843-tomography-plasma-flows-upper-solar-convection-zone-using-time-distance-inversion-combining-ridge-phase-speed-filtering"><span>TOMOGRAPHY OF PLASMA FLOWS IN THE UPPER SOLAR CONVECTION ZONE USING TIME-DISTANCE INVERSION COMBINING RIDGE AND PHASE-SPEED FILTERING</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Svanda, Michal, E-mail: michal@astronomie.cz; Astronomical Institute, Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-18000 Prague 8</p> <p>2013-09-20</p> <p>The consistency of time-distance inversions for horizontal components of the plasma flow on supergranular scales in the upper solar convection zone is checked by comparing the results derived using two k-{omega} filtering procedures-ridge filtering and phase-speed filtering-commonly used in time-distance helioseismology. I show that both approaches result in similar flow estimates when finite-frequency sensitivity kernels are used. I further demonstrate that the performance of the inversion improves (in terms of a simultaneously better averaging kernel and a lower noise level) when the two approaches are combined together in one inversion. Using the combined inversion, I invert for horizontal flows inmore » the upper 10 Mm of the solar convection zone. The flows connected with supergranulation seem to be coherent only for the top {approx}5 Mm; deeper down there is a hint of change of the convection scales toward structures larger than supergranules.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995JAfES..21..633W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995JAfES..21..633W"><span>Retrogressive hydration of calc-silicate xenoliths in the eastern Bushveld complex: evidence for late magmatic fluid movement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wallmach, T.; Hatton, C. J.; De Waal, S. A.; Gibson, R. L.</p> <p>1995-11-01</p> <p>Two calc-silicate xenoliths in the Upper Zone of the Bushveld complex contain mineral assemblages which permit delineation of the metamorphic path followed after incorporation of the xenoliths into the magma. Peak metamorphism in these xenoliths occurred at T=1100-1200°C and P <1.5 kbar. Retrograde metamorphism, probably coinciding with the late magmatic stage, is characterized by the breakdown of akermanite to monticellite and wollastonite at 700°C and the growth of vesuvianite from melilite. The latter implies that water-rich fluids (X CO 2 <0.2) were present and probably circulating through the cooling magmatic pile. In contrast, calc-silicate xenoliths within the lower zones of the Bushveld complex, namely in the Marginal and Critical Zones, also contain melilite, monticellite and additional periclase with only rare development of vesuvianite. This suggests that the Upper Zone cumulate pile was much 'wetter' in the late-magmatic stage than the earlier-formed Critical and Marginal Zone cumulate piles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ocgy...58..240P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ocgy...58..240P"><span>Sediment Flux of Particulate Organic Phosphorus in the Open Black Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parkhomenko, A. V.; Kukushkin, A. S.</p> <p>2018-03-01</p> <p>The interannual variation of the monthly average (weighted average) concentrations of particulate organic phosphorus (PPOM) in the photosynthetic layer, oxycline, redox zone, and H2S zone in the open Black Sea is estimated based on long-term observation data. The suspension sedimentation rates from the studied layers are assessed using model calculations and published data. The annual variation of PPOM sediment fluxes from the photosynthetic layer, oxycline, redox zone, and upper H2S zone to the anaerobic zone of the sea and the correspondingly annual average values are estimated for the first time. A regular decrease in the PPOM annual average flux with depth in the upper active layer is demonstrated. A correlation between the annual average values of PPOM sediment flux from the photosynthetic layer and ascending phosphate flux to this layer is shown, which suggests their balance in the open sea. The results are discussed in terms of the phosphorus biogeochemical cycle and the concept of new and regenerative primary production in the open Black Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/10194730-naturally-fractured-tight-gas-reservoir-detection-optimization-quarterly-report-april-june','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/10194730-naturally-fractured-tight-gas-reservoir-detection-optimization-quarterly-report-april-june"><span>Naturally fractured tight gas reservoir detection optimization. Quarterly report, April--June 1994</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>1994-07-01</p> <p>Geologic assessment of the basin during the third quarter possessed several major objectives. The first task was to test the validity of the gas-centered basin model for the Piceance Basin. The second objective was to define the location and variability of gas-saturated zones within the Williams Fork and Iles Formation reservoir horizons. A third objective was to prepare an updated structure map of the Piceance Basin on the top of the Iles Formation (Rollins Sandstone) to take advantage of new data provided by ten years of drilling activity throughout the basin. The first two objectives formed the core of themore » ARI poster session presented at the AAPG annual meeting in Denver. The delineation of the gas and water-saturated zone geometries for the Williams Fork and Iles Formations in the basin was presented in the form of a poster session at the AAPG Annual meeting held in Denver in mid-June. The poster session outlined the nature of the gas-centered basin geometry and demonstrated the gas and water-saturated conditions for the Williams Fork, Cozzette and Corcoran reservoir horizons throughout the basin. Initial and cumulative production data indicate that these reservoir horizons are gas-saturated in most of the south-central and eastern basin. The attached report summarizes the data and conclusions of the poster session.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010pcms.confE..84V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010pcms.confE..84V"><span>Line - organised convection putting fire to forest area of Halkidiki, Northern Greece</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vlachou, M.; Brikas, D.; Pytharoulis, I.</p> <p>2010-09-01</p> <p>The organisation of convection in a line often coincides with the end of heat waves in the Southern Balkans. This was indeed the case on the 21st of August 2006, when the tail of an eastward moving cold front put an end to the preceding heat wave and, at the same time, triggered thunderstorms and windstorms in Southern Bulgaria and Northern Greece. The associated electric activity initiated a fire in Kassandra, Halkidiki, Greece. Due to the prolonged drought and the strong winds, the fire spread quickly. It lasted for three days, costing two human lives, burning an extended forest area, as well as destroying hotels and resort facilities. Availabla data are: i) European Centre for Medium - range Weather Forecasts (ECMWF) analyses, ii) RADAR reflectivity data from the Weather Modification Dept. of the Hellenic Agricultural Insurance Organisation and iii) surface and upper air data from the airport ‘Makedonia’ of Thessaloniki, Greece. The heat wave, that affected Greece during the 5 - day period prior to the line convection, was associated with the establishment of a hot, but very stable at low levels, boundary layer, probably modified part of the Saharan air layer, advected to the area of interest. Destabilisation occurred due to surface heating, as well as upper level cold air advection. From the synoptic point of view, upward motion prevails under the inflection point of the subtropical and polar jet streams, indicating once more how important are, for upper level divergence, the curvature changes along the flow. In the meso-α scale, the line convection formed along and just ahead of a shallow, frontogenetically active cold frontal zone. Hence, the line under study may be called a squall line. It is suggested that such zones play a key role in triggering severe weather in the same area, as well as cyclogenesis in the Mediterranean area. Previous studies have shown numerous severe weather events to occur along such zones. In the meso-β scale, the line under study fits the 2-D model of squall lines, as transverse vertical cross sections show. On the isentropic level, as the system moves eastward, warm low level air flows in from the east - southeast, whereas cold upper level air is ingested from the north. The hourly sea level pressure field exhibits pre - squall and wake lows and a meso - high, the classic features observed before, after and during the passage of a squall line, respectively. More interestingly, the succession of clouds and associated weather was typical of a squall line. Convective activity peaked suddenly to the cumulonimbus level, with no cumulus clouds observed prior to the squall line. The lack of a dense observing network, as far as upper air and even surface observations are concerned, limits the study of the meso-β features of the squall line (movement etc.). The lack of Doppler RADAR data precludes the representation of the transverse circulation across the line. However, it is hoped that the present study adds to the research on severe weather in the Mediterranean, as it highlights the crucial role of synoptic - meso-α scale features. In view of the failure of the operational global NWP models (ECMWF, NCEP GFS) to predict squall line associated precipitation, which fell even in the form of hail, forecasters’ attention is drawn upon convergence zones, especially low level frontogenetically active ones. It is suggested that summertime convection is rather dynamically than thermodynamically driven, this general rule applying even to non-frontal convection. Equivalently, convection is more likely to occur when the dynamics promote boundary layer convergence and upward motion, rather than when the thermodynamics favor air parcel ascent and saturation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI41B..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI41B..06T"><span>Interaction of the Cyprus/Tethys Slab With the Mantle Transition Zone Beneath Anatolia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, D. A.; Rost, S.; Taylor, G.; Cornwell, D. G.</p> <p>2017-12-01</p> <p>The geodynamics of the eastern Mediterranean are dominated by northward motion of the Arabian/African continents and subduction of the oldest oceanic crust on the planet along the Aegean and Cyprean trenches. These slabs have previously been imaged using seismic tomography on a continental scale, but detailed information regarding their descent from upper to lower mantle and how they interact with the mantle transition zone have been severely lacking. The Dense Array for North Anatolia (DANA) was a 73 station passive seismic deployment active between 2012-2013 with the primary aim of imaging shallow structure beneath the North Anatolian Fault. However, we exploit the exceptional dataset recorded by DANA to characterise a region where the Cyprus Slab impinges upon the mantle transition zone beneath northern Turkey, providing arguably the most detailed view of a slab as it transits from the upper to lower mantle. We map varying depths and amplitudes of the transition zone seismic discontinuities (`410', `520' and `660') in 3D using over 1500 high quality receiver functions over an area of approximately 200km x 300km. The `410' is observed close to its predicted depth, but the `660' is depressed to >670 km across the entirety of the study region. This is consistent with an accumulation of cold subducted material at the base of the upper mantle, and the presence of a `520' discontinuity in the vicinity of the slab surface also suggests that the slab is present deep within the transition zone. Anomalous low velocity layers above and within the transition zone are constrained and may indicate hydration and ongoing mass/fluid flux between upper and lower mantle in the presence of subduction. The results of the study have implications not only for the regional geodynamics of Anatolia, but also for slab dynamics globally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI31B2633P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI31B2633P"><span>Slab geometry of the South American margin from joint inversion of body waves and surface waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Porritt, R. W.; Ward, K. M.; Porter, R. C.; Portner, D. E.; Lynner, C.; Beck, S. L.; Zandt, G.</p> <p>2016-12-01</p> <p>The western margin of South America is a long subduction zone with a complex, highly three -dimensional geometry. The first order structure of the slab has previously been inferred from seismicity patterns and locations of volcanoes, but confirmation of the slab geometry by seismic imaging for the entire margin has been limited by either shallow, lithospheric scale models or broader, upper mantle images, often defined on a limited spatial footprint. Here, we present new teleseismic tomographic SV seismic models of the upper mantle from 10°S to 40°S along the South American subduction zone with resolution to a depth of 1000 km as inferred from checkerboard tests. In regions near the Peru Bolivia border (12°S to 18°S) and near central Chile and western Argentina (29.5°S to 33°S) we jointly invert the multi-band direct S and SKS relative delay times with Rayleigh wave phase velocities from ambient noise and teleseismic surface wave tomography. This self-consistent model provides information from the upper crust to below the mantle transition zone along the western margin in these two regions. This consistency allows tracing the slab from the South American coastline to the sub-transition zone upper mantle. From this model we image several features, but most notable is a significant eastward step near the southern edge of the margin (24°-30° S). West of this step, a large high shear velocity body is imaged in the base of and below the transition zone. We suggest this may be a stagnant slab, which is descending into the lower mantle now that it is no longer attached to the surface. This suggests a new component to the subduction history of western South America when an older slab lead the convergence before anchoring in the transition zone, breaking off from the surface, and being overtaken by the modern, actively subducting slab now located further east.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080008189','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080008189"><span>Zone heating for fluidized bed silane pyrolysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Iya, Sridhar K. (Inventor)</p> <p>1987-01-01</p> <p>An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower reaction zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=90430&Lab=NRMRL&keyword=electromagnetic&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=90430&Lab=NRMRL&keyword=electromagnetic&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>APPLICATION OF THE ELECTROMAGNETIC BOREHOLE FLOWMETER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Spatial variability of saturated zone hydraulic properties has important implications with regard to sampling wells for water quality parameters, use of conventional methods to estimate transmissivity, and remedial system design. Characterization of subsurface heterogeneity requ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI51C0322B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI51C0322B"><span>Mapping the influence of the deep Nazca slab on the geometry of the 660-km discontinuity beneath stable South America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bianchi, M. B. D.; Assumpcao, M.; Julià, J.</p> <p>2017-12-01</p> <p>The fate of the deep Nazca subducted plate is poorly mapped under stable South America. Transition zone thickness and position is greatly dependent on mantle temperature and so is influenced by the colder Nazca plate position. We use a database of 35,000 LQT deconvolved receiver function traces to image the mantle transition zone and other upper mantle discontinuities under different terranes of stable South American continent. Data from the entire Brazilian Seismographic Network database, consisting of more than 80 broadband stations supplemented by 35 temporary stations deployed in west Brazil, Argentina, Paraguay, Bolivia and Uruguay were processed. Our results indicates that upper mantle velocities are faster than average under stable cratons and that most of the discontinuities are positioned with small variations in respect to nominal depths, except in places were the Nazca plate interacts with the transition zone. Under the Chaco-Pantanal basin the Nazca plate appears to be trapped in the transition zone for more than 1000 km with variations of up to 30 km in 660 km discontinuity topography under this region consistent with global tomographic models. Additional results obtained from SS precursor analysis of South Sandwich Islands teleseismic events recorded at USArray stations indicates that variations of transition zones thickness occur where the Nazca plate interacts with the upper mantle discontinuities in the northern part of Stable South American continent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMDI51C1883T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMDI51C1883T"><span>Mantle transition zone structure beneath the Canadian Shield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, D. A.; Helffrich, G. R.; Bastow, I. D.; Kendall, J. M.; Wookey, J.; Eaton, D. W.; Snyder, D. B.</p> <p>2010-12-01</p> <p>The Canadian Shield is underlain by one of the deepest and most laterally extensive continental roots on the planet. Seismological constraints on the mantle structure beneath the region are presently lacking due to the paucity of stations in this remote area. Presented here is a receiver function study on transition zone structure using data from recently deployed seismic networks from the Hudson Bay region. High resolution images based on high signal-to-noise ratio data show clear arrivals from the 410 km and 660 km discontinuities, revealing remarkably little variation in transition zone structure. Transition zone thickness is close to the global average (averaging 245 km across the study area), and any deviations in Pds arrival time from reference Earth models can be readily explained by upper-mantle velocity structure. The 520 km discontinuity is not a ubiquitous feature, and is only weakly observed in localised areas. These results imply that the Laurentian root is likely confined to the upper-mantle and if any mantle downwelling exists, possibly explaining the existence of Hudson Bay, it is also confined to the upper 400 km. Any thermal perturbations at transition zone depths associated with the existence of the root, whether they be cold downwellings or elevated temperatures due to the insulating effect of the root, are thus either non-existent or below the resolution of the study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9771R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9771R"><span>Seismoelectric field measurements in unconsolidated sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabbel, Wolfgang; Iwanowski-Strahser, Katja; Strahser, Matthias; Dzieran, Laura; Thorwart, Martin</p> <p>2017-04-01</p> <p>Seismoelectric (SE) prospecting has the potential of determining hydraulic permeability in situ. However, the SE response of geological interfaces (IR) is influenced also by porosity, saturation and salinity. We present examples of SE surveys of near-surface unconsolidated sediments showing clear IR arrivals from the shallow groundwater table and laterally consistent IR arrivals from interfaces inside the vadoze zone. Theses measurements are complemented by seismic, GPR and geoelectric surveys for constraining bulk porosity, water saturation and salinity. They show that porosity and water content change at the interfaces generating IR arrivals. The combination of these methods enables us to estimate permeability contrast associated with major IR arrivals via numerical modeling of SE waveform amplitudes. In case of the analyzed field example this contrast is estimated to be of the order of 10 within the vadoze zone and of 100 at the aquifer-aquitard interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28272882','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28272882"><span>Inside Story of Gas Processes within Stormwater Biofilters: Does Greenhouse Gas Production Tarnish the Benefits of Nitrogen Removal?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Deletic, Ana; Hatt, Belinda E; Fletcher, Tim D</p> <p>2017-04-04</p> <p>Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N 2 O) and methane (CH 4 ) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH 4 and N 2 O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N 2 O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH 4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N 2 O accounted for <1.5% of the incoming total nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N 2 O or CH 4 in biofilter effluent appears relatively low.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29374329','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29374329"><span>Using electrical resistivity tomography to assess the effectiveness of managed aquifer recharge in a salinized coastal aquifer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>García-Menéndez, Olga; Ballesteros, Bruno J; Renau-Pruñonosa, Arianna; Morell, Ignacio; Mochales, Tania; Ibarra, Pedro I; Rubio, Félix M</p> <p>2018-01-27</p> <p>Over 40 years, the detrital aquifer of the Plana de Castellón (Spanish Mediterranean coast) has been subjected to seawater intrusion because of long dry periods combined with intensive groundwater exploitation. Against this backdrop, a managed artificial recharge (MAR) scheme was implemented to improve the groundwater quality. The large difference between the electrical conductivity (EC) of the ambient groundwater (brackish water due to marine intrusion) and the recharge water (freshwater) meant that there was a strong contrast between the resistivities of the brackish water saturated zone and the freshwater saturated zone. Electrical resistivity tomography (ERT) can be used for surveying similar settings to evaluate the effectiveness of artificial recharge schemes. By integrating geophysical data with lithological information, EC logs from boreholes, and hydrochemical data, we can interpret electrical resistivity (ER) with groundwater EC values and so identify freshwater saturated zones. Using this approach, ERT images provided a high-resolution spatial characterization and an accurate picture of the shape and extent of the recharge plume of the MAR site. After 5 months of injection, a freshwater plume with an EC of 400-600 μS/cm had formed that extended 400 m in the W-E direction, 250 m in the N-S direction, and to a depth of 40 m below piezometric level. This study also provides correlations between ER values with different lithologies and groundwater EC values that can be used to support other studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25726856','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25726856"><span>Sampling of the anterior apical region results in increased cancer detection and upgrading in transrectal repeat saturation biopsy of the prostate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Seles, Maximilian; Gutschi, Thomas; Mayrhofer, Katrin; Fischereder, Katja; Ehrlich, Georg; Gallé, Guenter; Gutschi, Stefan; Pachernegg, Oliver; Pummer, Karl; Augustin, Herbert</p> <p>2016-04-01</p> <p>To evaluate whether biopsy cores taken via a transrectal approach from the anterior apical region of the prostate in a repeat-biopsy population can result in an increased overall cancer detection rate and in more accurate assessment of the Gleason score. The study was a prospective, randomised (end-fire vs side-fire ultrasound probe) evaluation of 288 men by repeat transrectal saturation biopsy with 28 cores taken from the transition zone, base, mid-lobar, anterior and the anterior apical region located ventro-laterally to the urethra of the peripheral zone. The overall prostate cancer detection rate was 44.4%. Improvement of the overall detection rate by 7.8% could be achieved with additional biopsies of the anterior apical region. Two tumours featuring a Gleason score 7 could only be detected in the anterior apical region. In three cases (2.34%) Gleason score upgrading was achieved by separate analysis of each positive core of the anterior apical region. A five-fold higher cancer detection rate in the anterior apical region compared with the transition zone could be shown. Sampling of the anterior apical region results in higher overall cancer detection rate in repeat transrectal saturation biopsies of the prostate. Specimens from this region can detect clinically significant cancer, improve accuracy of the Gleason Scoring and therefore may alter therapy. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28708617','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28708617"><span>Using one filter stage of unsaturated/saturated vertical flow filters for nitrogen removal and footprint reduction of constructed wetlands.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morvannou, Ania; Troesch, Stéphane; Esser, Dirk; Forquet, Nicolas; Petitjean, Alain; Molle, Pascal</p> <p>2017-07-01</p> <p>French vertical flow constructed wetlands (VFCW) treating raw wastewater have been developed successfully over the last 30 years. Nevertheless, the two-stage VFCWs require a total filtration area of 2-2.5 m 2 /P.E. Therefore, implementing a one-stage system in which treatment performances reach standard requirements is of interest. Biho-Filter ® is one of the solutions developed in France by Epur Nature. Biho-Filter ® is a vertical flow system with an unsaturated layer at the top and a saturated layer at the bottom. The aim of this study was to assess this new configuration and to optimize its design and operating conditions. The hydraulic functioning and pollutant removal efficiency of three different Biho-Filter ® plants commissioned between 2011 and 2012 were studied. Outlet concentrations of the most efficient Biho-Filter ® configuration are 70 mg/L, 15 mg/L, 15 mg/L and 25 mg/L for chemical oxygen demand (COD), 5-day biological oxygen demand (BOD 5 ), total suspended solids (TSS) and total Kjeldahl nitrogen (TKN), respectively. Up to 60% of total nitrogen is removed. Nitrification efficiency is mainly influenced by the height of the unsaturated zone and the recirculation rate. The optimum recirculation rate was found to be 100%. Denitrification in the saturated zone works at best with an influent COD/NO 3 -N ratio at the inflet of this zone larger than 2 and a hydraulic retention time longer than 0.75 days.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pdf/of/ofr99308/+','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pdf/of/ofr99308/+"><span>Physical stratigraphy, paleontology, and magnetostratigraphy of the USGS-Santee Coastal Reserve core (CHN-803), Charleston County, South Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Edwards, Lucy E.; Gohn, G.S.; ,; Prowell, D.C.; Bybell, L.M.; Bardot, L.P.; Firth, J.V.; Huber, B.T.; Frederiksen, N.O.; MacLeod, K.G.</p> <p>1999-01-01</p> <p>The Santee Coastal Reserve core, a 545-ft-deep corehole in northeastern Charleston County, South Carolina, recovered sediments of Late Cretaceous, Paleocene, Eocene, and Quaternary age. The deepest sediments, the Donoho Creek Formation (545-475.7 ft), consist of 69.3 ft of muddy calcareous sand of marine origin. This formation is placed within the upper Campanian calcareous nannofossil Subzone CC 22c. The overlying Peedee Formation (475.7-367.1 ft) in the core consists of 108.6 ft of silty clay of marine origin. It is placed in upper Maastrichtian calcareous nannofossil Subzones CC 25b, CC 26a, and CC 26b. Combined fossil and paleomagnetic information indicates nearly continuous deposition. Foraminifers indicate an outer neritic paleobathymetric setting. The Rhems Formation sensu stricto (367.1-267.3 ft) consists of 99.8 ft of silty clay, muddy sand, and minor calcite-cemented, shelly sand of marine origin. It is apparently the product of rapid sediment accumulation during a short period of time in the early Paleocene (calcareous nannofossil Zone NP 1). The upper part of the Rhems Formation sensu Bybell and others (1998) (267.3-237.4 ft) consists of 29.9 ft of calcite-cemented muddy sand and burrowed fine sand of marine origin. It is placed in calcareous nannofossil Zone NP 4 and, because it shows normal polarity, likely represents the upper part of the lower Paleocene. This unit may be correlative with the lower part of the Lower Bridge Member of the Williamsburg Formation in its type area. The Lower Bridge Member of the Williamsburg Formation (237.4-125.0 ft) has an unconformable contact at 205.0 ft that divides the member into lower muddy sand beds and upper calcareous clay beds. Both are placed in the upper Paleocene calcareous nannofossil Zone NP 5. The Chicora Member of the Williamsburg Formation (125-51.5 ft) consists of 73.5 ft of muddy, shelly sand of marine origin. It is poorly dated but includes late Paleocene nannofossils (Zones NP 5 and NP 6). A mollusk-bryozoan limestone (51.5-42.0 ft) above the Chicora Member of the Williamsburg yields early Eocene calcareous nannofossils representing both Zone NP 9/10 and Zone NP 12, together with pollen and dinocysts that are younger. Sediments of middle and late Eocene, Oligocene, Miocene, and Pliocene ages were not recovered in the Santee Coastal Reserve core. The upper 42.0 ft of sediments represent Quaternary deposits and are included in the Wando Formation (42.0-28.0 ft) and the informal Silver Bluff beds (28.0-0 ft).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1222/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1222/report.pdf"><span>Upper Cretaceous subsurface stratigraphy and structure of coastal Georgia and South Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Valentine, Page C.</p> <p>1982-01-01</p> <p>Upper Cretaceous subsurface stratigraphy and structure of coastal Georgia and South Carolina is based on the study of 24 wells along two transects, one extending across the seaward-dipping sedimentary basin termed the 'Southeast Georgia Embayment' northeastward to the crest of the Cape Fear Arch, and the other alined east-west, parallel to the basin axis and including the COST GE-l well on the Outer Continental Shelf. A new biostratigraphic analysis, using calcareous nannofossils, of the Fripp Island, S.C., well and reinterpretations of the Clubhouse Crossroads corehole 1, South Carolina, and other wells in South Carolina, Georgia, and northernmost Florida have made possible the comparison and reevaluation of stratigraphic interpretations of the region made by G. S. Gohn and others in 1978 and 1980 and by P. M. Brown and others in 1979. The present study indicates that within the Upper Cretaceous section the stratigraphic units formerly assigned a Cenomanian (Eaglefordian and Woodbinian) age are Coniacian (Austinian) and Turonian (Eaglefordian) in age. A previously described hiatus encompassing Coniacian and Turonian time is not present. More likely, a hiatus is probably present in the upper Turonian, and major gaps in the record are present within the Cenomanian and between the Upper Cretaceous and the pre-Cretaceous basement. After an erosional episode in Cenomanian time that affected the section beneath eastern Georgia and South Carolina, Upper Cretaceous marine clastic and carbonate rocks were deposited on a regionally subsiding margin that extended to the present Blake Escarpment. In contrast, during Cenozoic time, especially in the Eocene, subsidence and sedimentation rates were uneven across the margin. A thick progradational sequence of carbonate rocks accumulated in the Southeast Georgia Embayment and also built the present Continental Shelf, whereas farther offshore a much thinner layer of sediments was deposited on the Blake Plateau. There is no general agreement on the exact placement of the Cenomanian-Turonian boundary in Europe or the United States Western Interior, and the widespread Sciponoceras gracile ammonite zone represents an interval of equivocal age between accepted Cenomanian and Turonian strata. The extinction of the foraminifer genus Rotalipora took place within the Sciporwceras gracile zone; it is used here to identify the Cenomanian-Turonian boundary. Pollen zone IV (Complexiopollis-Atlantopollis assemblage zone) is an important and widespread biostratigraphic unit characterized by a distinctive spore and pollen flora. It is consistently associated with lower Turonian calcareous nannofossils on the Atlantic continental margin; these nannofossil assemblages are also present in pollen zone IV, in strata that encompass the Sciponoceras gracile zone and the lower part of the Mytiloides labiatus zone in the Gulf Coastal Plain at Dallas, Tex.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1345843-water-table-dynamics-biogeochemical-cycling-shallow-variably-saturated-floodplain','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1345843-water-table-dynamics-biogeochemical-cycling-shallow-variably-saturated-floodplain"><span>Water table dynamics and biogeochemical cycling in a shallow, variably-saturated floodplain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Yabusaki, Steven B.; Wilkins, Michael J.; Fang, Yilin; ...</p> <p>2017-02-20</p> <p>Three-dimensional variably saturated flow and multicomponent biogeochemical reactive transport modeling, based on published and newly generated data, is used to better understand the interplay of hydrology, geochemistry, and biology controlling the cycling of carbon, nitrogen, oxygen, iron, sulfur, and uranium in a shallow floodplain. In this system, aerobic respiration generally maintains anoxic groundwater below an oxic vadose zone until seasonal snowmelt-driven water table peaking transports dissolved oxygen (DO) and nitrate from the vadose zone into the alluvial aquifer. The response to this perturbation is localized due to distinct physico-biogeochemical environments and relatively long time scales for transport through the floodplainmore » aquifer and vadose zone. Naturally reduced zones (NRZs) containing sediments higher in organic matter, iron sulfides, and non-crystalline U(IV) rapidly consume DO and nitrate to maintain anoxic conditions, yielding Fe(II) from FeS oxidative dissolution, nitrite from denitrification, and U(VI) from nitrite-promoted U(IV) oxidation. Redox cycling is a key factor for sustaining the observed aquifer behaviors despite continuous oxygen influx and the annual hydrologically induced oxidation event. Furthermore, depth-dependent activity of fermenters, aerobes, nitrate reducers, sulfate reducers, and chemolithoautotrophs (e.g., oxidizing Fe(II), S compounds, and ammonium) is linked to the presence of DO, which has higher concentrations near the water table.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A34C2670V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A34C2670V"><span>Setting an Upper Limit on Gas Exchange Through Sea-Spray</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vlahos, P.; Monahan, E. C.; Andreas, E. L.</p> <p>2016-02-01</p> <p>Air-sea gas exchange parameterization is critical to understanding both climate forcing and feedbacks and is key in biogeochemistry cycles. Models based on wind speed have provided empirical estimates of gas exchange that are useful though it is likely that at high wind speeds of over 10 m/s there are important gas exchange parameters including bubbles and sea spray that have not been well constrained. Here we address the sea-spray component of gas exchange at these high wind speeds to set sn upper boundary condition for the gas exchange of the six model gases including; nobel gases helium, neon and argon, diatomic gases nitrogen and oxygen and finally, the more complex gas carbon dioxide. Estimates are based on the spray generation function of Andreas and Monahan and the gases are tested under three scenarios including 100 percent saturation and complete droplet evaporation, 100 percent saturation and a more realistic scenario in which a fraction of droplets evaporate completely, a fraction evaporate to some degree and a fraction returns to the water side without significant evaporation. Finally the latter scenario is applied to representative under saturated concentrations of the gases.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6308R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6308R"><span>Extensional deformation of the Guadalquivir Basin: rate of WSW-ward tectonic displacement from Upper Tortonian sedimentary rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roldán, Francisco J.; Azañón, Jose Miguel; Rodríguez-Fernández, Jose; María Mateos, Rosa</p> <p>2016-04-01</p> <p>The Guadalquivir Basin (Upper Tortonian-Quaternary sedimentary infilling) has been considered the foreland basin of the Betic Orogen built up during its collision with the Sudiberian margin. The basin is currently restricted to its westernmost sector, in the Cadiz Gulf, because the Neogene-Quaternary uplift of the Betic Cordillera has produced the emersion of their central and eastern parts. The upper Tortonian chronostratigraphic unit is the oldest one and it was indistinctly deposited on the South Iberian paleomargin and the External units from the Betic Cordillera. However, these rocks are undeformed on the Sudiberian paleomargin while they are deeply affected by brittle deformation on the External Betic Zone. Outcrops of Upper Tortonian sedimentary rocks on External Betic Zone are severely fragmented showing allocthonous characters with regard to those located on the Sudiberian paleomargin. This post- Upper Tortonian deformation is not well known in the External Zones of the Cordillera where the most prominent feature is the ubiquity of a highly deformed tecto-sedimentary unit outcropping at the basement of the Guadalquivir sedimentary infilling. This tecto-sedimentary unit belongs to the Mass Wasting Extensional Complex (Rodríguez-Fernández, 2014) formed during the collision and westward migration of the Internal Zone of the Betic Cordillera (15-8,5 Ma). In the present work, we show an ensemble of tectonic, geophysical and cartographic data in order to characterize the post-Upper Tortonian deformation. For this, seismic reflection profiles have been interpreted with the help of hidrocarbon boreholes to define the thickness of the Upper Tortonian sedimentary sequence. All these data provide an estimation of the geometrical and kinematic characteristics of the extensional faults, direction of movement and rate of displacement of these rocks during Messinian/Pliocene times. References Rodríguez-Fernández, J., Roldan, F. J., J.M. Azañón y Garcia-Cortes, A. 2013. EL colapso gravitacional del frente orogénico alpino en el Dominio Subbético durante el Mioceno medio-superior: El Complejo Extensional Subbético. Boletín Geológico y Minero, 124 (3): 477-504</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.6209R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.6209R"><span>Structure of the Sumatra wedge affected by the 26th December 2004 :Effects of the lower plate volcanic ridges.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rangin, C.; Sibuet, J. C.; Lin, J. Y.; Le Pichon, X.</p> <p>2009-04-01</p> <p>Detailed swath-bathymetry, coupled with echo-sounder data were collected offshore the northern tip of Sumatra over the rupture area of the 26th December 2004 Mw=9.2 earthquake during the Sumatra aftershock cruise. 20 ocean bottom seismometers were also deployed in the northern Sumatra area., and more than 1000 events were identified during the 12 days recording period. We mapped recently active steeply dipping thrust fault zone within the western termination of the Sunda accreted wedge. Main N10°W trending out of sequence thrust fault zones with a discrete westward vergency and some component of dextral strike-slip motion were continuously mapped within the wedge, on the basis of bathymetry and low frequency sounder profiles. The interplate boundary does not appear to extend into the frontal part of the wedge but most probably merges in its central part along these major faults, the Lower and Upper Splay Faults. After relocation, the seismicity shows different pattern in each side of this Upper Splay Fault. East of this boundary, beneath the Aceh basin, the earthquake depths ranged from 30 to 60 km allow us to illustrate the subducted plate. In the western part, the aftershock distribution is strongly influenced by the N-S orientated oceanic fracture zones. Two clusters of earthquakes between 10 and 50 km in depth trending along N-S direction are observed in the lower wedge that we interpret to be reactive fracture zones. The lower wedge is interpreted as the northern prolongation below the wedge of the lower plate NS oceanic fracture zone ridges affected by NS trending left lateral strike-slip faults. This wedge outer ridge is in the process of being transferred to the upper plate. On the other hand the central ridge is interpreted as possible stacked volcanic ridge slivers already incorporated into the upper plate along the subduction buttress (the inner ridge of the wedge). We propose that the tectonic interaction of the volcanic Indian Ocean fracture ridges of the subducted plate with the leading edge of the upper Sunda plate subduction zone is an active tectonic transfer process of oceanic material to the upper plate. The proposed emergence of the interplate boundary into the middle part of the wedge along the Lower Splay Fault, could have favoured the formation of the giant Sumatra tsunami at moderate water depth. This docking and temporary stacking of these volcanic ridges before their subduction at depth, is favoured by the strong oblique convergence that prevails up to the Bengal basin into the north.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7012355','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7012355"><span>Gasification of black liquor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kohl, A.L.</p> <p>1987-07-28</p> <p>A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866319','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866319"><span>Gasification of black liquor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kohl, Arthur L.</p> <p>1987-07-28</p> <p>A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H11H1234Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H11H1234Y"><span>Quasi 3D modeling of water flow and solute transport in vadose zone and groundwater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yakirevich, A.; Kuznetsov, M.; Weisbrod, N.; Pachepsky, Y. A.</p> <p>2013-12-01</p> <p>The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One commonly used simplification is based on the assumption that lateral flow and transport in unsaturated zone is insignificant unless the capillary fringe is involved. In such cases the flow and transport in the unsaturated zone above groundwater level can be simulated as a 1D phenomenon, whereas through groundwater they are viewed as 2D or 3D phenomena. A new approach for a numerical scheme for 3D variably saturated flow and transport is presented. A Quasi-3D approach allows representing flow in the 'vadose zone - aquifer' system by a series of 1D Richards' equations solved in variably-saturated zone and by 3D-saturated flow equation in groundwater (modified MODFLOW code). The 1D and 3D equations are coupled at the phreatic surface in a way that aquifer replenishment is calculated using the Richards' equation, and solving for the moving water table does not require definition of the specific yield parameter. The 3D advection-dispersion equation is solved in the entire domain by the MT3D code. Using implicit finite differences approximation to couple processes in the vadose zone and groundwater provides mass conservation and increase of computational efficiency. The above model was applied to simulate the impact of irrigation on groundwater salinity in the Alto Piura aquifer (Northern Peru). Studies on changing groundwater quality in arid and semi-arid lands show that irrigation return flow is one of the major factors contributing to aquifer salinization. Existing mathematical models do not account explicitly for the solute recycling during irrigation on a daily scale. Recycling occurs throughout the unsaturated and saturated zones, as function of the solute mass extracted from pumping wells. Salt concentration in irrigation water is calculated at each time step as a function of concentration of both surface water and groundwater extracted at specific locations. Three scenarios were considered: (i) use of furrow irrigation and groundwater extraction (the present situation); (ii) increase of groundwater pumping by 50% compared to the first scenario; and (iii) transition from furrow irrigation to drip irrigation, thus decreasing irrigation volume by around 60% compared to the first scenario. Results indicate that in different irrigation areas, the simulated increase rates of total dissolved solids in groundwater vary from 3 to17 mg/L/ year, depending on hydrogeological and hydrochemical conditions, volumes of water extracted, and proportion between surface water and groundwater applied. The transition from furrow irrigation to drip irrigation can decrease the negative impact of return flow on groundwater quality; however drip irrigation causes faster simulated soil salinization compared to furrow irrigation. The quasi 3D modeling appeared to be efficient in elucidating solute recycling effects on soil and groundwater salinity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA08186.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA08186.html"><span>Reminder of Ages Past</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2006-05-26</p> <p>Rhea displays a prominent scar in this view from Cassini. A large and ancient impact basin can be seen at upper right. The giant feature occurs within a terrain that appears rugged and which likely is saturated with other smaller craters</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17813913','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17813913"><span>Forearc deformation and great subduction earthquakes: implications for cascadia offshore earthquake potential.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCaffrey, R; Goldfinger, C</p> <p>1995-02-10</p> <p>The maximum size of thrust earthquakes at the world's subduction zones appears to be limited by anelastic deformation of the overriding plate. Anelastic strain in weak forearcs and roughness of the plate interface produced by faults cutting the forearc may limit the size of thrust earthquakes by inhibiting the buildup of elastic strain energy or slip propagation or both. Recently discovered active strike-slip faults in the submarine forearc of the Cascadia subduction zone show that the upper plate there deforms rapidly in response to arc-parallel shear. Thus, Cascadia, as a result of its weak, deforming upper plate, may be the type of subduction zone at which great (moment magnitude approximately 9) thrust earthquakes do not occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002SoSyR..36..492M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002SoSyR..36..492M"><span>How Many Convective Zones Are There in the Atmosphere of Venus?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moroz, V. I.; Rodin, A. V.</p> <p>2002-11-01</p> <p>The qualitative characteristics of the vertical structure of the atmospheres of Venus and the Earth essentially differ. For instance, there are at least two, instead of one, zones with normal (thermal) convection on Venus. The first one is near the surface (a boundary layer); the second is at the altitudes of the lower part of the main cloud layer between 49 and 55 km. Contrary to the hypotheses proposed by Izakov (2001, 2002), the upper convective zone prevents energy transfer from the upper clouds to the subcloud atmosphere by ``anomalous turbulent heat conductivity.'' It is possible, however, that the anomalous turbulent heat conductivity takes part in the redistribution of the heat fluxes within the lower (subcloud) atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRB..119.8594P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRB..119.8594P"><span>Widespread gas hydrate instability on the upper U.S. Beaufort margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phrampus, Benjamin J.; Hornbach, Matthew J.; Ruppel, Carolyn D.; Hart, Patrick E.</p> <p>2014-12-01</p> <p>The most climate-sensitive methane hydrate deposits occur on upper continental slopes at depths close to the minimum pressure and maximum temperature for gas hydrate stability. At these water depths, small perturbations in intermediate ocean water temperatures can lead to gas hydrate dissociation. The Arctic Ocean has experienced more dramatic warming than lower latitudes, but observational data have not been used to study the interplay between upper slope gas hydrates and warming ocean waters. Here we use (a) legacy seismic data that constrain upper slope gas hydrate distributions on the U.S. Beaufort Sea margin, (b) Alaskan North Slope borehole data and offshore thermal gradients determined from gas hydrate stability zone thickness to infer regional heat flow, and (c) 1088 direct measurements to characterize multidecadal intermediate ocean warming in the U.S. Beaufort Sea. Combining these data with a three-dimensional thermal model shows that the observed gas hydrate stability zone is too deep by 100 to 250 m. The disparity can be partially attributed to several processes, but the most important is the reequilibration (thinning) of gas hydrates in response to significant (~0.5°C at 2σ certainty) warming of intermediate ocean temperatures over 39 years in a depth range that brackets the upper slope extent of the gas hydrate stability zone. Even in the absence of additional ocean warming, 0.44 to 2.2 Gt of methane could be released from reequilibrating gas hydrates into the sediments underlying an area of ~5-7.5 × 103 km2 on the U.S. Beaufort Sea upper slope during the next century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018APhy...64..331G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018APhy...64..331G"><span>Sound Propagation in Shallow Water with an Inhomogeneous GAS-Saturated Bottom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grigor'ev, V. A.; Petnikov, V. G.; Roslyakov, A. G.; Terekhina, Ya. E.</p> <p>2018-05-01</p> <p>We present the methods and results of numerical experiments studying the low-frequency sound propagation in one of the areas of the Arctic shelf with a randomly inhomogeneous gas-saturated bottom. The characteristics of the upper layer of bottom sedimentary rocks (sediments) used in calculations were obtained during a 3D seismic survey and trial drilling of the seafloor. We demonstrate the possibilities of substituting in numerical simulation a real bottom with a fluid homogeneous half-space where the effective value of the sound speed is equal to the average sound speed in the bottom, with averaging along the sound propagation path to a sediment depth of 0.6 wavelength in the bottom. An original technique is proposed for estimating the sound speed propagation in an upper inhomogeneous sediment layer. The technique is based on measurements of acoustic wave attenuation in water during waveguide propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QuIP...16..144Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QuIP...16..144Y"><span>Noisy metrology: a saturable lower bound on quantum Fisher information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yousefjani, R.; Salimi, S.; Khorashad, A. S.</p> <p>2017-06-01</p> <p>In order to provide a guaranteed precision and a more accurate judgement about the true value of the Cramér-Rao bound and its scaling behavior, an upper bound (equivalently a lower bound on the quantum Fisher information) for precision of estimation is introduced. Unlike the bounds previously introduced in the literature, the upper bound is saturable and yields a practical instruction to estimate the parameter through preparing the optimal initial state and optimal measurement. The bound is based on the underling dynamics, and its calculation is straightforward and requires only the matrix representation of the quantum maps responsible for encoding the parameter. This allows us to apply the bound to open quantum systems whose dynamics are described by either semigroup or non-semigroup maps. Reliability and efficiency of the method to predict the ultimate precision limit are demonstrated by three main examples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21I2271S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21I2271S"><span>Convective Hydration and Dehydration in the Tropical Upper Troposphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schoeberl, M. R.; Pfister, L.; Ueyama, R.; Jensen, E. J.; Avery, M. A.; Dessler, A. E.</p> <p>2017-12-01</p> <p>As air moves up through the tropical tropopause layer (TTL), water vapor condenses and ice falls out irreversibly dehydrating the air. Convection penetrates the TTL changing the concentration of water vapor. Using a Lagrangian model, we find that convection hydrates the local TTL if the air is sub-saturated, and dehydrates the air if the layer is super-saturated. We analyze the frequency and location of both types of convective events using our forward domain filling trajectory model with satellite observed convection. We find that hydration events exceed dehydration events at all levels above 360K although because few convective events penetrate to the upper TTL, the net water vapor impact weakens with altitude. Maps of hydration and dehydration events show that both types of events occur where convection is strongest The average, convection above 360K adds about 0.5 ppmv of water to the stratosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26764828','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26764828"><span>Formation of bubbly horizon in liquid-saturated porous medium by surface temperature oscillation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goldobin, Denis S; Krauzin, Pavel V</p> <p>2015-12-01</p> <p>We study nonisothermal diffusion transport of a weakly soluble substance in a liquid-saturated porous medium in contact with a reservoir of this substance. The surface temperature of the porous medium half-space oscillates in time, which results in a decaying solubility wave propagating deep into the porous medium. In this system, zones of saturated solution and nondissolved phase coexist with ones of undersaturated solution. The effect is first considered for the case of annual oscillation of the surface temperature of water-saturated ground in contact with the atmosphere. We reveal the phenomenon of formation of a near-surface bubbly horizon due to temperature oscillation. An analytical theory of the phenomenon is developed. Further, the treatment is extended to the case of higher frequency oscillations and the case of weakly soluble solids and liquids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2009/1175/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2009/1175/"><span>Estimation of Unsaturated Zone Traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, Using a Source-Responsive Preferential-Flow Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ebel, Brian A.; Nimmo, John R.</p> <p>2009-01-01</p> <p>Traveltimes for contaminant transport by water from a point in the unsaturated zone to the saturated zone are a concern at Rainier Mesa and Shoshone Mountain in the Nevada Test Site, Nevada. Where nuclear tests were conducted in the unsaturated zone, contaminants must traverse hundreds of meters of variably saturated rock before they enter the saturated zone in the carbonate rock, where the regional groundwater system has the potential to carry them substantial distances to a location of concern. The unsaturated-zone portion of the contaminant transport path may cause a significant delay, in addition to the time required to travel within the saturated zone, and thus may be important in the overall evaluation of the potential hazard from contamination. Downward contaminant transport through the unsaturated zone occurs through various processes and pathways; this can lead to a broad distribution of contaminant traveltimes, including exceedingly slow and unexpectedly fast extremes. Though the bulk of mobile contaminant arrives between the time-scale end members, the fastest contaminant transport speed, in other words the speed determined by the combination of possible processes and pathways that would bring a measureable quantity of contaminant to the aquifer in the shortest time, carries particular regulatory significance because of its relevance in formulating the most conservative hazard-prevention scenarios. Unsaturated-zone flow is usually modeled as a diffusive process responding to gravity and pressure gradients as mediated by the unsaturated hydraulic properties of the materials traversed. The mathematical formulation of the diffuse-flow concept is known as Richards' equation, which when coupled to a solute transport equation, such as the advection-dispersion equation, provides a framework to simulate contaminant migration in the unsaturated zone. In recent decades awareness has increased that much fluid flow and contaminant transport within the unsaturated zone takes place as preferential flow, faster than would be predicted by the coupled Richards' and advection-dispersion equations with hydraulic properties estimated by traditional means. At present the hydrologic community has not achieved consensus as to whether a modification of Richards' equation, or a fundamentally different formulation, would best quantify preferential flow. Where the fastest contaminant transport speed is what needs to be estimated, there is the possibility of simplification of the evaluation process. One way of doing so is by a two-step process in which the first step is to evaluate whether significant preferential flow and solute transport is possible for the media and conditions of concern. The second step is to carry out (a) a basic Richards' and advection-dispersion equation analysis if it is concluded that preferential flow is not possible or (b) an analysis that considers only the fastest possible preferential-flow processes, if preferential flow is possible. For the preferential-flow situation, a recently published model describable as a Source-Responsive Preferential-Flow (SRPF) model is an easily applied option. This report documents the application of this two-step process to flow through the thick unsaturated zones of Rainier Mesa and Shoshone Mountain in the Nevada Test Site. Application of the SRPF model involves distinguishing between continuous and intermittent water supply to preferential flow paths. At Rainier Mesa and Shoshone Mountain this issue is complicated by the fact that contaminant travel begins at a location deep in the subsurface, where there may be perched water that may or may not act like a continuous supply, depending on such features as the connectedness of fractures and the nature of impeding layers. We have treated this situation by hypothesizing both continuous and intermittent scenarios for contaminant transport to the carbonate aquifer and reporting estimation of the fastest speed for both of th</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/964260','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/964260"><span>Estimation of unsaturated zone traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential-flow model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Brian A. Ebel; John R. Nimmo</p> <p>2009-09-11</p> <p>Traveltimes for contaminant transport by water from a point in the unsaturated zone to the saturated zone are a concern at Rainier Mesa and Shoshone Mountain in the Nevada Test Site, Nevada. Where nuclear tests were conducted in the unsaturated zone, contaminants must traverse hundreds of meters of variably saturated rock before they enter the saturated zone in the carbonate rock, where the regional groundwater system has the potential to carry them substantial distances to a location of concern. The unsaturated-zone portion of the contaminant transport path may cause a significant delay, in addition to the time required to travelmore » within the saturated zone, and thus may be important in the overall evaluation of the potential hazard from contamination. Downward contaminant transport through the unsaturated zone occurs through various processes and pathways; this can lead to a broad distribution of contaminant traveltimes, including exceedingly slow and unexpectedly fast extremes. Though the bulk of mobile contaminant arrives between the time-scale end members, the fastest contaminant transport speed, in other words the speed determined by the combination of possible processes and pathways that would bring a measureable quantity of contaminant to the aquifer in the shortest time, carries particular regulatory significance because of its relevance in formulating the most conservative hazard-prevention scenarios. Unsaturated-zone flow is usually modeled as a diffusive process responding to gravity and pressure gradients as mediated by the unsaturated hydraulic properties of the materials traversed. The mathematical formulation of the diffuse-flow concept is known as Richards' equation, which when coupled to a solute transport equation, such as the advection-dispersion equation, provides a framework to simulate contaminant migration in the unsaturated zone. In recent decades awareness has increased that much fluid flow and contaminant transport within the unsaturated zone takes place as preferential flow, faster than would be predicted by the coupled Richards' and advection-dispersion equations with hydraulic properties estimated by traditional means. At present the hydrologic community has not achieved consensus as to whether a modification of Richards' equation, or a fundamentally different formulation, would best quantify preferential flow. Where the fastest contaminant transport speed is what needs to be estimated, there is the possibility of simplification of the evaluation process. One way of doing so is by a two-step process in which the first step is to evaluate whether significant preferential flow and solute transport is possible for the media and conditions of concern. The second step is to carry out (a) a basic Richards' and advection-dispersion equation analysis if it is concluded that preferential flow is not possible or (b) an analysis that considers only the fastest possible preferential-flow processes, if preferential flow is possible. For the preferential-flow situation, a recently published model describable as a Source-Responsive Preferential-Flow (SRPF) model is an easily applied option. This report documents the application of this two-step process to flow through the thick unsaturated zones of Rainier Mesa and Shoshone Mountain in the Nevada Test Site. Application of the SRPF model involves distinguishing between continuous and intermittent water supply to preferential flow paths. At Rainier Mesa and Shoshone Mountain this issue is complicated by the fact that contaminant travel begins at a location deep in the subsurface, where there may be perched water that may or may not act like a continuous supply, depending on such features as the connectedness of fractures and the nature of impeding layers. We have treated this situation by hypothesizing both continuous and intermittent scenarios for contaminant transport to the carbonate aquifer and reporting estimation of the fastest speed for both of these end members.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGE....13..994N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGE....13..994N"><span>Evaluating Bangestan reservoirs and targeting productive zones in Dezful embayment of Iran</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nasseri, Aynur; Jafar Mohammadzadeh, Mohammad; HashemTabatabaee, Seyyed</p> <p>2016-12-01</p> <p>A progressive stepwise procedure was adopted to evaluate the main reservoirs of the Bangestan group in a southwestern oil field of Iran. In order to identify productive zones, the results of lithofacies and well tops correlation were assessed using well log and core data. Accordingly the resulting zonation based on lithofacies revealed inaccurate results. Therefore, in order to limit the uncertainty of zonation, well tops correlations were considered. For this purpose, boundaries of reservoirs were precisely defined and well logs correlation was carried out based on geological information and full set logs. The resulting well tops correlation indicates the presence of several reservoirs such as Ilam and Sarvak formations, and each of these has several zones. Among them, the Ilam formation is recognized as the best reservoir in the field and the Sarvak formation in the second priority for oil production. Due to changes in the facies trend of the Sarvak formation, more than Ilam, the Sarvak formation was mostly considered in this study. Subsequently the Ilam formation was divided into four zones, among them (Ilam-Upper, Ilam- Main, Ilam-Poor) were identified as the oil reservoir units. Similarly, the Sarvak formation was also divided into 11 units, where the Sarvak-L2b unit was identified as the oil-bearing reservoir in the formation. Furthermore, in order to contribute for better analysis of the depositional environment and to improve the understanding of its lateral and vertical variations, 3D modeling of reservoir units was established, which lead to limit the uncertainty in evaluation. Based on the well correlation results, deep and thickness maps, porosity, water saturation and the hydrocarbon column assessments were prepared, in addition the distribution of petrophysical parameters was also evaluated. Finally, an oil reserve estimation was carried out based on volumetric estimation and its corresponding distribution maps in different reservoir units of the formation were presented. This study indicates that the consecutive sequential approach to the problem, by self controlling the process, lead to the detection of the Sarvak-L2b unit as one of the productive zones in the field. This zone also indicates favorable conditions for high productivity in central areas of the field where the reservoir has a high quality for production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.482...93L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.482...93L"><span>Seismic evidence for water transport out of the mantle transition zone beneath the European Alps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Zhen; Park, Jeffrey; Karato, Shun-ichiro</p> <p>2018-01-01</p> <p>The mantle transition zone has been considered a major water reservoir in the deep Earth. Mass transfer across the transition-zone boundaries may transport water-rich minerals from the transition zone into the water-poor upper or lower mantle. Water release in the mantle surrounding the transition zone could cause dehydration melting and produce seismic low-velocity anomalies if some conditions are met. Therefore, seismic observations of low-velocity layers surrounding the transition zone could provide clues of water circulation at mid-mantle depths. Below the Alpine orogen, a depressed 660-km discontinuity has been imaged clearly using seismic tomography and receiver functions, suggesting downwellings of materials from the transition zone. Multitaper-correlation receiver functions show prominent ∼0.5-1.5% velocity reductions at ∼750-800-km depths, possibly caused by partial melting in the upper part of lower mantle. The gap between the depressed 660-km discontinuity and the low-velocity layers is consistent with metallic iron as a minor phase in the topmost lower mantle reported by laboratory studies. Velocity drops atop the 410-km discontinuity are observed surrounding the Alpine orogeny, suggesting upwelling of water-rich rock from the transition zone in response to the downwelled materials below the orogeny. Our results provide evidence that convective penetration of the mantle transition zone pushes hydrated minerals both upward and downward to add hydrogen to the surrounding mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17015549','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17015549"><span>Achieved versus intended pulse oximeter saturation in infants born less than 28 weeks' gestation: the AVIOx study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hagadorn, James I; Furey, Anne M; Nghiem, Tuyet-Hang; Schmid, Christopher H; Phelps, Dale L; Pillers, De-Ann M; Cole, Cynthia H</p> <p>2006-10-01</p> <p>The objective of this study was to document pulse oximeter saturation levels achieved in the first 4 weeks of life in infants who were born at < 28 weeks' gestation, compared with the levels that were targeted by local policy, and examine factors that are associated with compliance with the target range. Infants who were < 28 weeks' gestation and < or = 96 hours of age were enrolled in a prospective, multicenter cohort study. Oximetry data were collected with masked signal-extraction oximeters for a 72-hour period in each of the first 4 weeks of life. Data were compared with the pulse oximeter saturation target range prescribed by local institutional policy. Factors that were associated with intended range compliance were identified with hierarchical modeling. Fourteen centers from 3 countries enrolled 84 infants with mean +/- SD birth weight of 863 +/- 208 g and gestational age of 26 +/- 1.4 weeks. Oxygen saturation policy limits ranged between 83% and 92% for lower limits and 92% and 98% for upper limits. For infants who received respiratory support, median pulse oximeter saturation level achieved was 95%. Center-specific medial levels were within the intended range at 12 centers. Centers maintained infants within their intended range 16% to 64% of the time but were above range 20% to 73% of the time. In hierarchical modeling, wider target ranges, higher target range upper limits, presence of a policy of setting oximeter alarms close to the target range limits, and lower gestational age were associated with improved target range compliance. Success with maintaining the intended pulse oximeter saturation range varied substantially among centers, among patients within centers, and for individual patients over time. Most noncompliance was above the intended range. Methods for improving compliance and the effect of improved compliance on neonatal outcomes require additional research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.459..352M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.459..352M"><span>Experimental, in-situ carbon solution mechanisms and isotope fractionation in and between (C-O-H)-saturated silicate melt and silicate-saturated (C-O-H) fluid to upper mantle temperatures and pressures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mysen, Bjorn</p> <p>2017-02-01</p> <p>Our understanding of materials transport processes in the Earth relies on characterizing the behavior of fluid and melt in silicate-(C-O-H) systems at high temperature and pressure. Here, Raman spectroscopy was employed to determine structure of and carbon isotope partitioning between melts and fluids in alkali aluminosilicate-C-O-H systems. The experimental data were recorded in-situ while the samples were at equilibrium in a hydrothermal diamond anvil cell at temperatures and pressures to 825 °C and >1300 MPa, respectively. The carbon solution equilibrium in both (C-O-H)-saturated melt and coexisting, silicate-saturated (C-O-H) fluid is 2CO3 + H2O + 2Qn + 1 = 2HCO3 + 2Qn. In the Qn-notation, the superscript, n, is the number of bridging oxygen in silicate structural units. At least one oxygen in CO3 and HCO3 groups likely is shared with silicate tetrahedra. The structural behavior of volatile components described with this equilibrium governs carbon isotope fractionation factors between melt and fluid. For example, the ΔH equals 3.2 ± 0.7 kJ/mol for the bulk 13C/12C exchange equilibrium between fluid and melt. From these experimental data, it is suggested that at deep crustal and upper mantle temperatures and pressures, the δ13C-differences between coexisting silicate-saturated (C-O-H) fluid and (C-O-H)-saturated silicate melts may change by more than 100‰ as a function of temperature in the range of magmatic processes. Absent information on temperature and pressure, the use of carbon isotopes of mantle-derived magma to derive isotopic composition of magma source regions in the Earth's interior, therefore, should be exercised with care.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H53H1579T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H53H1579T"><span>Simulating Salt Movement using a Coupled Salinity Transport Model in a Variably Saturated Agricultural Groundwater System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tavakoli Kivi, S.; Bailey, R. T.; Gates, T. K.</p> <p>2017-12-01</p> <p>Salinization is one of the major concerns in irrigated agricultural fields. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. To assess the different strategies for salt remediation, we present a reactive transport model (UZF-RT3D) coupled with a salinity equilibrium chemistry module for simulating the fate and transport of salt ions in a variably-saturated agricultural groundwater system. The developed model accounts not for advection, dispersion, nitrogen and sulfur cycling, oxidation-reduction, sorption, complexation, ion exchange, and precipitation/dissolution of salt minerals. The model is applied to a 500 km2 region within the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. The model is tested against salt ion concentrations in the saturated zone, total dissolved solid concentrations in the unsaturated zone, and salt groundwater loading to the Arkansas River. The model now can be used to investigate salinity remediation strategies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019033','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019033"><span>Three-dimensional models of deformation near strike-slip faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>ten Brink, Uri S.; Katzman, Rafael; Lin, J.</p> <p>1996-01-01</p> <p>We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the "shear zone." Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194857','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194857"><span>Three-dimensional models of deformation near strike-slip faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>ten Brink, Uri S.; Katzman, Rafael; Lin, Jian</p> <p>1996-01-01</p> <p>We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the “shear zone.” Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMGP41A0238K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMGP41A0238K"><span>Magnetic Hysteresis of Deep-Sea Sediments in Korea Deep Ocean Study(KODOS) Area, NE Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, K.; Park, C.; Yoo, C.</p> <p>2001-12-01</p> <p>The KODOS area within the Clarion-Clipperton fracture zone (C-C zone) is surrounded by the Hawaiian and Line Island Ridges to the west and the central American continent to the east. Topography of the seafloor consists of flat-topped abyssal hills and adjacent abyssal troughs, both of which run parallel in N-S direction. Sediments from the study area consist mainly of biogenic sediments. Latitudinal zonation of sedimentary facies was caused by the accumulation of biogenic materials associated with the equatorial current system and movement of the Pacific plate toward the north or northwest. The KODOS area belongs to the latitudinal transition zone having depositional characteristics between non-fossiliferous pelagic clay-dominated zone and calcareous sediment-dominated zone. The box core sediments of the KODOS area are analyzed in an attempt to obtain magnetic hysteresis information and to elucidate the relationship between hysteresis property and lithological facies. Variations in magnetic hysteresis parameters with unit layers reflect the magnetic grain-size and concentrations within the sediments. The ratios of remanant coercivity/coercive force (Hcr/Hc) and saturation remnance/saturation magnetization (Mrs/Ms) indicate that coarse magnetic grains are mainly distributed in dark brown sediments (lower part of the sediment core samples) reflecting high Hcr/Hc and low Mrs/Ms ratios. These results are mainly caused by dissolution differences with core depth. From the plotting of the ratios of hyteresis parameters, it is indicated that magnetic minerals in cubic samples are in pseudo-single domain (PSD) state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25444120','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25444120"><span>Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rivett, Michael O; Dearden, Rachel A; Wealthall, Gary P</p> <p>2014-12-01</p> <p>A detailed field-scale investigation of processes controlling the architecture, persistence and dissolution of a 20 to 45year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source zone located within a heterogeneous sand/gravel aquifer at a UK industrial site is presented. The source zone was partially enclosed by a 3-sided cell that allowed detailed longitudinal/fence transect monitoring along/across a controlled streamtube of flow induced by an extraction well positioned at the cell closed end. Integrated analysis of high-resolution DNAPL saturation (Sn) (from cores), dissolved-phase plume concentration (from multilevel samplers), tracer test and permeability datasets was undertaken. DNAPL architecture was determined from soil concentration data using partitioning calculations. DNAPL threshold soil concentrations and low Sn values calculated were sensitive to sorption assumptions. An outcome of this was the uncertainty in demarcation of secondary source zone diffused and sorbed mass that is distinct from trace amounts of low Sn DNAPL mass. The majority of source mass occurred within discrete lenses or pools of DNAPL associated with low permeability geological units. High residual saturation (Sn>10-20%) and pools (Sn>20%) together accounted for almost 40% of the DNAPL mass, but only 3% of the sampled source volume. High-saturation DNAPL lenses/pools were supported by lower permeability layers, but with DNAPL still primarily present within slightly more permeable overlying units. These lenses/pools exhibited approximately linearly declining Sn profiles with increasing elevation ascribed to preferential dissolution of the uppermost DNAPL. Bi-component partitioning calculations on soil samples confirmed that the dechlorination product cDCE (cis-dichloroethene) was accumulating in the TCE DNAPL. Estimated cDCE mole fractions in the DNAPL increased towards the DNAPL interface with the uppermost mole fraction of 0.04 comparable to literature laboratory data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4tonnes per annum over a 16m(2) cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies. Copyright © 2014. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JCHyd.170...95R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JCHyd.170...95R"><span>Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rivett, Michael O.; Dearden, Rachel A.; Wealthall, Gary P.</p> <p>2014-12-01</p> <p>A detailed field-scale investigation of processes controlling the architecture, persistence and dissolution of a 20 to 45 year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source zone located within a heterogeneous sand/gravel aquifer at a UK industrial site is presented. The source zone was partially enclosed by a 3-sided cell that allowed detailed longitudinal/fence transect monitoring along/across a controlled streamtube of flow induced by an extraction well positioned at the cell closed end. Integrated analysis of high-resolution DNAPL saturation (Sn) (from cores), dissolved-phase plume concentration (from multilevel samplers), tracer test and permeability datasets was undertaken. DNAPL architecture was determined from soil concentration data using partitioning calculations. DNAPL threshold soil concentrations and low Sn values calculated were sensitive to sorption assumptions. An outcome of this was the uncertainty in demarcation of secondary source zone diffused and sorbed mass that is distinct from trace amounts of low Sn DNAPL mass. The majority of source mass occurred within discrete lenses or pools of DNAPL associated with low permeability geological units. High residual saturation (Sn > 10-20%) and pools (Sn > 20%) together accounted for almost 40% of the DNAPL mass, but only 3% of the sampled source volume. High-saturation DNAPL lenses/pools were supported by lower permeability layers, but with DNAPL still primarily present within slightly more permeable overlying units. These lenses/pools exhibited approximately linearly declining Sn profiles with increasing elevation ascribed to preferential dissolution of the uppermost DNAPL. Bi-component partitioning calculations on soil samples confirmed that the dechlorination product cDCE (cis-dichloroethene) was accumulating in the TCE DNAPL. Estimated cDCE mole fractions in the DNAPL increased towards the DNAPL interface with the uppermost mole fraction of 0.04 comparable to literature laboratory data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4 tonnes per annum over a 16 m2 cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.430..129K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.430..129K"><span>Crustal-scale shear zones and heterogeneous structure beneath the North Anatolian Fault Zone, Turkey, revealed by a high-density seismometer array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kahraman, Metin; Cornwell, David G.; Thompson, David A.; Rost, Sebastian; Houseman, Gregory A.; Türkelli, Niyazi; Teoman, Uğur; Altuncu Poyraz, Selda; Utkucu, Murat; Gülen, Levent</p> <p>2015-11-01</p> <p>Continental scale deformation is often localised along strike-slip faults constituting considerable seismic hazard in many locations. Nonetheless, the depth extent and precise geometry of such faults, key factors in how strain is accumulated in the earthquake cycle and the assessment of seismic hazard, are poorly constrained in the mid to lower crust. Using a dense broadband network of 71 seismic stations with a nominal station spacing of 7 km in the vicinity of the 1999 Izmit earthquake we map previously unknown small-scale structure in the crust and upper mantle along this part of the North Anatolian Fault Zone (NAFZ). We show that lithological and structural variations exist in the upper, mid and lower crust on length scales of less than 10 km and less than 20 km in the upper mantle. The surface expression of the NAFZ in this region comprises two major branches; both are shown to continue at depth with differences in dip, depth extent and (possibly) width. We interpret a <10 km wide northern branch that passes downward into a shear zone that traverses the entire crust and penetrates the upper mantle to a depth of at least 50 km. The dip of this structure appears to decrease west-east from ∼90° to ∼65° to the north over a distance of 30 to 40 km. Deformation along the southern branch may be accommodated over a wider (>10 km) zone in the crust with a similar variation of dip but there is no clear evidence that this shear zone penetrates the Moho. Layers of anomalously low velocity in the mid crust (20-25 km depth) and high velocity in the lower crust (extending from depths of 28-30 km to the Moho) are best developed in the Armutlu-Almacik block between the two shear zones. A mafic lower crust, possibly resulting from ophiolitic obduction or magmatic intrusion, can best explain the coherent lower crustal structure of this block. Our images show that strain has developed in the lower crust beneath both northern and southern strands of the North Anatolian Fault. Our new high resolution images provide new insights into the structure and evolution of the NAFZ and show that a small and dense passive seismic network is able to image previously undetectable crust and upper mantle heterogeneity on lateral length scales of less than 10 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H13B0938W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H13B0938W"><span>Investigating the influence of DNAPL spill characteristics on source zone architecture and mass removal in pool-dominated source zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wallace, K. A.; Abriola, L.; Chen, M.; Ramsburg, A.; Pennell, K. D.; Christ, J.</p> <p>2009-12-01</p> <p>Multiphase, compositional simulators were employed to investigate the spill characteristics and subsurface properties that lead to pool-dominated, dense non-aqueous phase liquid (DNAPL) source zone architectures. DNAPL pools commonly form at textural interfaces where low permeability lenses restrict the vertical migration of DNAPL, allowing for DNAPL to accumulate, reaching high saturation. Significant pooling has been observed in bench-scale experiments and field settings. However, commonly employed numerical simulations rarely predict the pooling suspected in the field. Given the importance of pooling on the efficacy of mass recovery and the down-gradient contaminant signal, it is important to understand the predominant factors affecting the creation of pool-dominated source zones and their subsequent mass discharge. In this work, contaminant properties, spill characteristics and subsurface permeability were varied to investigate the factors contributing to the development of a pool-dominated source zone. DNAPL infiltration and entrapment simulations were conducted in two- and three-dimensional domains using the University of Texas Chemical Compositional (UTCHEM) simulator. A modified version of MT3DMS was then used to simulate DNAPL dissolution and mass discharge. Numerical mesh size was varied to investigate the importance of numerical model parameters on simulations results. The temporal evolution of commonly employed source zone architecture metrics, such as the maximum DNAPL saturation, first and second spatial moments, and fraction of DNAPL mass located in pools, was monitored to determine how the source zone architecture evolved with time. Mass discharge was monitored to identify the link between source zone architecture and down-gradient contaminant flux. Contaminant characteristics and the presence of extensive low permeability lenses appeared to have the most influence on the development of a pool-dominated source zone. The link between DNAPL mass recovery and contaminant mass discharge was significantly influenced by the fraction of mass residing in DNAPL pools. The greater the fraction of mass residing in DNAPL pools the greater the likelihood for significant reductions in contaminant mass discharge at modest levels of mass removal. These results will help guide numerical and experimental studies on the remediation of pool-dominated source zones and will likely guide future source zone characterization efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T23F0678F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T23F0678F"><span>Linkages Between the Megathrust and Upper-plate Deformation: Lessons From the Deformational Dichotomy of the 2016 Kaikoura New Zealand Earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furlong, K. P.; Herman, M. W.</p> <p>2017-12-01</p> <p>Following the 2016 Mw 7.8 Kaikoura earthquake, the nature of the coseismic rupture was unclear. Seismological and tsunami evidence pointed to significant involvement of the subduction megathrust, while geodetic and field observations pointed to a shallow set of intra-crustal faults as the main participants during the earthquake. It now appears that the Kaikoura earthquake produced synchronous faulting on the plate boundary subduction interface - the megathrust - and on a suite of crustal faults above the rupture zone in the overlying plate. This Kaikoura-style earthquake, involving synchronous ruptures on multiple components of the plate boundary, may be an important mode of plate boundary deformation affecting seismic hazard along subduction zones. Here we propose a model to explain how these upper-plate faults are loaded during the periods between megathrust earthquakes and subsequently can rupture synchronously with the megathrust. Between megathrust earthquakes, horizontal compression, driven by plate convergence, locks the upper-plate faults, particularly those at higher angles to the convergence direction and the oblique plate motion of the subducting Pacific plate deforms the upper-plate in bulk shear. During the time interval of megathrust rupture, two things happen which directly affect the stress conditions acting on these upper-plate faults: (1) slip on the megathrust and the associated `rebound' of the upper plate reduces the compressive or normal stress acting on the upper plate faults, and (2) the base of the upper plate faults (and the upper plate itself) is decoupled from the slab in the region above rupture area. The reduction in normal stress acting on these faults increases their Coulomb Stress state to strongly favor strike-slip fault slip, and the basal decoupling of the upper plate allows it to undergo nearly complete stress recovery in that region; enabling the occurrence of very large offsets on these faults - offsets that exceed the slip on the plate interface. With these results it is clear that the 2016 Kaikoura NZ earthquake represents a mode of subduction zone rupture that must be considered in other regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188416','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188416"><span>Frictional strength of wet and dry montmorillonite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Morrow, Carolyn A.; Moore, Diane E.; Lockner, David A.</p> <p>2017-01-01</p> <p>Montmorillonite is a common mineral in fault zones, and its low strength relative to other common gouge minerals is important in many models of fault rheology. However, the coefficient of friction, μ, varies with degree of saturation and is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. We measured μ of both saturated and oven-dried montmorillonite at normal stresses up to 700 MPa. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure. For saturated samples, μ increased from 0.10 to 0.28 with applied effective normal stress, while for dry samples μ decreased from 0.78 to 0.45. The steady state rate dependence of friction, (a − b), was positive, promoting stable sliding. The wide disparity in reported frictional strengths can be attributed to experimental procedures that promote differing degrees of partial saturation or overpressured pore fluid conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080012362','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080012362"><span>Reactor for fluidized bed silane decomposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Iya, Sridhar K. (Inventor)</p> <p>1989-01-01</p> <p>An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.C13A0262U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.C13A0262U"><span>Concentration of Natural Gas Hydrate Beneath the Permafrost Zone: Implications for Geochemical and Hydrologic Investigations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uchida, T.; Waseda, A.; Namikawa, T.</p> <p>2004-12-01</p> <p>Gas hydrates are ice-like solids made of water molecules containing various gas molecules. The geological evaluations have suggested worldwide methane contents of gas hydrate beneath deep sea floors as well as permafrost-related zones to about twice the total reserves of conventional and unconventional hydrocarbon. Scientific and economic interests are increasing in gas hydrate as a new energy resource and a potential greenhouse gas. In 1998 and 2002 Mallik wells were drilled in the Canadian Arctic that clarified the characteristics of gas hydrate-dominant layers at depths from 890 to 1110 m beneath the permafrost zone. Continuous downhole well log data, anomalies of chloride contents in pore waters, core temperature depression as well as visible gas hydrates have confirmed the highly saturated pore-space hydrate as intergranular pore filling within sandy layers, whose saturations are higher than 70% in pore volume. Muddy sediments scarcely contain gas hydrate. The Nankai Trough runs along the Japanese Island, where forearc basins and accretionary prisms developed extensively and BSRs (bottom simulating reflectors) have been recognized widely. The METI Nankai Trough wells in 2000 also revealed the presence of pore-space hydrate filling intergranular pore of sandy layers. It is remarked that there are many similar features in appearance and characteristics between the Mallik and Nankai Trough areas with observations of well-interconnected and highly saturated pore-space hydrate. It is necessary for evaluating subsurface fluid flow behaviors to know both porosity and permeability of gas hydrate-bearing sandy sediments, and measurements of water permeability for them indicate that highly saturated sands may have permeability of a few millidarcies. Subsequent analyses in sedimentology and geochemistry performed on gas hydrate-bearing sands revealed important geologic and sedimentologic controls on the formation and concentration of gas hydrate. It is suggested that the distribution of a porous and coarser-grained sandy sediments is one of the most important factors to control the occurrence of gas hydrates, as well as physicochemical conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5100019-eighth-report-normandy-archaeological-project-excavations-eoff-site-aaron-shelton-site-duke-site','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5100019-eighth-report-normandy-archaeological-project-excavations-eoff-site-aaron-shelton-site-duke-site"><span>Eighth report of the Normandy Archaeological Project: 1975 excavations at the Eoff I site (40CF32), Aaron Shelton site (40CF69) and the Duke I site (40CF97)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Faulkner, C.H.; McCollough, C.R.</p> <p></p> <p>This report discusses the research conducted during the last full field season for the Normandy Archaeological Project. There was a deep sense of urgency to use all available resources to continue to test crucial hypotheses about subsistence and settlement patterns of the Middle Woodland and Mississippian cultures in the lower and upper reservoir zones. The most salient of these hypotheses were prehistoric agricultural societies in the upper Duck Valley, and exploitative strategies of prehistoric hunters and gatherers in the upper Duck Valley differed in the lower and upper reservoir zones. Since the early Mississippian Banks phase and the late Middlemore » Woodland Owl Hollow phase exhibited evidence for both food production and permanent settlement in the lower reservoir zone, a continued attempt was made to excavate those sites on which components of these two phase were found. Additional community pattern data and chronometric dates for the Banks phase were also sought since previously obtained radiocarbon assays indicated this was one of the earliest Mississippian cultures in the Middle South. The study of the origins and local development of this culture was also given priority status in Normandy Research. 145 refs., 33 figs., 94 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981SedG...30..173C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981SedG...30..173C"><span>Genetic implications of the trace element distribution pattern in the upper knox carbonate rocks, copper ridge district, East Tennessee</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Churnet, Habte G.; Misra, Kula C.</p> <p>1981-11-01</p> <p>The Lower Ordovician, Upper Knox Group rocks (the Kingsport and Mascot formations) in the Copper Ridge district consist predominantly of fine-grained dolostones, medium and coarser grained dolostones, and limestones. Dolomite crystals of medium and coarser grained dolostones show up to eight cathodoluminescent zones of variable width and intensity. Electron microprobe analyses indicate that the zoning is related to variation in Fe/Mn ratios, the brighter luminescent zones corresponding to lower ratios. Superposed on this growth zoning is a compositional zoning characterized by a general increase in Fe from core to rim of individual dolomite crystals. Field and petrographic studies (Churnet, 1979; Churnet et al., 1981) indicate that the fine-grained dolostones formed in supratidal to upper intratidal environments, whereas the precursor lime muds of the limestones as well as of the medium and coarser grained dolostones formed in shallow subtidal to lower intertidal environments. The large areal extent of the dolostones must have required a regionally abundant source of Mg such as marine water. Yet, both limestones and dolostones have low Na and Sr contents suggestive of their formation in solutions more dilute than normal marine water. It is proposed that the fine-grained dolostones formed by aggradation of initially very fine-grained dolostones in presence of fresh water, and that the limestones stabilized and the medium and coarser grained dolostones formed in environments of mixed marine and fresh waters. Considered in the light of ordering of partition coefficients, such a mixing model can account for the observed correlation pattern of trace elements (especially, SMn and SrFe) as well as the Fe distribution in the zoned dolomite crystals. Variation of the partition coefficient of Mn due to fluctuations in the relative proportions of fresh and marine waters in the diagenetic solution may explain the different Fe/Mn ratios observed in the growth zones (luminescence bands) of zoned dolomite crystals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/water-research/three-dimensional-subsurface-flow-fate-and-transport-microbes-and-chemicals-3dfatmic','PESTICIDES'); return false;" href="https://www.epa.gov/water-research/three-dimensional-subsurface-flow-fate-and-transport-microbes-and-chemicals-3dfatmic"><span>Three-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (3DFATMIC) Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>This model simulates subsurface flow, fate and transport of contaminants that are undergoing chemical or biological transformations. The model is applicable to transient conditions in both saturated and unsaturated zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/water-research/two-dimensional-subsurface-flow-fate-and-transport-microbes-and-chemicals-2dfatmic','PESTICIDES'); return false;" href="https://www.epa.gov/water-research/two-dimensional-subsurface-flow-fate-and-transport-microbes-and-chemicals-2dfatmic"><span>Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>This model simulates subsurface flow, fate, and transport of contaminants that are undergoing chemical or biological transformations. This model is applicable to transient conditions in both saturated and unsaturated zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10508068','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10508068"><span>Use of the [(14)C]leucine incorporation technique to measure bacterial production in river sediments and the epiphyton.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fischer, H; Pusch, M</p> <p>1999-10-01</p> <p>Bacterial production is a key parameter for the understanding of carbon cycling in aquatic ecosystems, yet it remains difficult to measure in many aquatic habitats. We therefore tested the applicability of the [(14)C]leucine incorporation technique for the measurement of bulk bacterial production in various habitats of a lowland river ecosystem. To evaluate the method, we determined (i) extraction efficiencies of bacterial protein from the sediments, (ii) substrate saturation of leucine in sediments, the biofilms on aquatic plants (epiphyton), and the pelagic zone, (iii) bacterial activities at different leucine concentrations, (iv) specificity of leucine uptake by bacteria, and (v) the effect of the incubation technique (perfused-core incubation versus slurry incubation) on leucine incorporation into protein. Bacterial protein was best extracted from sediments and precipitated by hot trichloroacetic acid treatment following ultrasonication. For epiphyton, an alkaline-extraction procedure was most efficient. Leucine incorporation saturation occurred at 1 microM in epiphyton and 100 nM in the pelagic zone. Saturation curves in sediments were difficult to model but showed the first level of leucine saturation at 50 microM. Increased uptake at higher leucine concentrations could be partly attributed to eukaryotes. Addition of micromolar concentrations of leucine did not enhance bacterial electron transport activity or DNA replication activity. Similar rates of leucine incorporation into protein calculated for whole sediment cores were observed after slurry and perfused-core incubations, but the rates exhibited strong vertical gradients after the core incubation. We conclude that the leucine incorporation method can measure bacterial production in a wide range of aquatic habitats, including fluvial sediments, if substrate saturation and isotope dilution are determined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=91586','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=91586"><span>Use of the [14C]Leucine Incorporation Technique To Measure Bacterial Production in River Sediments and the Epiphyton</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fischer, Helmut; Pusch, Martin</p> <p>1999-01-01</p> <p>Bacterial production is a key parameter for the understanding of carbon cycling in aquatic ecosystems, yet it remains difficult to measure in many aquatic habitats. We therefore tested the applicability of the [14C]leucine incorporation technique for the measurement of bulk bacterial production in various habitats of a lowland river ecosystem. To evaluate the method, we determined (i) extraction efficiencies of bacterial protein from the sediments, (ii) substrate saturation of leucine in sediments, the biofilms on aquatic plants (epiphyton), and the pelagic zone, (iii) bacterial activities at different leucine concentrations, (iv) specificity of leucine uptake by bacteria, and (v) the effect of the incubation technique (perfused-core incubation versus slurry incubation) on leucine incorporation into protein. Bacterial protein was best extracted from sediments and precipitated by hot trichloroacetic acid treatment following ultrasonication. For epiphyton, an alkaline-extraction procedure was most efficient. Leucine incorporation saturation occurred at 1 μM in epiphyton and 100 nM in the pelagic zone. Saturation curves in sediments were difficult to model but showed the first level of leucine saturation at 50 μM. Increased uptake at higher leucine concentrations could be partly attributed to eukaryotes. Addition of micromolar concentrations of leucine did not enhance bacterial electron transport activity or DNA replication activity. Similar rates of leucine incorporation into protein calculated for whole sediment cores were observed after slurry and perfused-core incubations, but the rates exhibited strong vertical gradients after the core incubation. We conclude that the leucine incorporation method can measure bacterial production in a wide range of aquatic habitats, including fluvial sediments, if substrate saturation and isotope dilution are determined. PMID:10508068</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJWC.14009002P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJWC.14009002P"><span>Influence of obstacles on bubbles rising in water-saturated sand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poryles, Raphaël; Varas, Germán; Vidal, Valérie</p> <p>2017-06-01</p> <p>This work investigates the dynamics of air rising through a water-saturated sand confined in a Hele- Shaw cell in which a circular obstacle is trapped. The air is injected at constant flow rate through a single nozzle at the bottom center of the cell. Without obstacle, in a similar configuration, previous studies pointed out the existence of a fluidized zone generated by the central upward gas motion which entrains two granular convection rolls on its sides. Here, a circular obstacle which diameter is of the order of the central air channel width is trapped at the vertical of the injection nozzle. We analyze the influence of the obstacle location on the size of the fluidized zone and its impact on the morphology of the central air channel. Finally, we quantify the variations of the granular free surface. Two configurations with multiple obstacles are also considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2007/3007/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2007/3007/"><span>Ground-water recharge in humid areas of the United States: A summary of Ground-Water Resources Program studies, 2003-2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Delin, Geoffrey N.; Risser, Dennis W.</p> <p>2007-01-01</p> <p>Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21404664','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21404664"><span>[Distribution characteristics of dissolved oxygen and mechanism of hypoxia in the upper estuarine zone of the Daliaohe River].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Li-Na; Li, Zheng-Yan; Zhang, Xue-Qing</p> <p>2011-01-01</p> <p>Based on field surveys in the upper estuarine zone of the Daliaohe River in Spring and Summer of 2009, the spatial and temporal distributions of dissolved oxygen were analyzed and the mechanism of hypoxia were preliminarily discussed. The results indicated that DO concentrations were higher in the river mouth and lower in the upper reaches, higher in surface layers and lower in bottom concerning its spatial distribution. For its temporal distribution, DO concentrations were higher in daytime and lower at night, higher in Spring and lower in Summer. The DO concentrations in the upper estuarine zone of the Daliaohe River in Summer ranged between 1.36-4.77 mg/L with an average of 3.44 mg/L. The concentrations in the lower reaches were higher with an average of 3.94 mg/L. A large hypoxia area was recorded in Summer in the upper reaches of the estuary starting from about 45 km away from the river gate with an average DO concentration of 2.33 mg/L and a minimum of 1.36 mg/L. The correlation analysis showed that DO concentration was significantly correlated with nutrients and permanganate index. Excessive discharge of nutrients and organic pollutants were, therefore, main factors causing hypoxia, and water column stratification due to temperature rise in Summer in surface layers led to further reduction of DO in bottom layers of the water.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011WRR....47.5553M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011WRR....47.5553M"><span>Saturated-unsaturated flow to a well with storage in a compressible unconfined aquifer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mishra, Phoolendra Kumar; Neuman, Shlomo P.</p> <p>2011-05-01</p> <p>Mishra and Neuman (2010) developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or unsaturated zones. Their solution accounts for horizontal as well as vertical flows in each zone. It represents unsaturated zone constitutive properties in a manner that is at once mathematically tractable and sufficiently flexible to provide much improved fits to standard constitutive models. In this paper we extend the solution of [2010] to the case of a finite diameter pumping well with storage; investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the [1980]- [1976] model; use our solution to analyze 11 transducer-measured drawdown records from a seven-day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada; validate our parameter estimates against manually-measured drawdown records in 14 other piezometers at Borden; and compare (a) our estimates of aquifer parameters with those obtained on the basis of all these records by [2008], (b) on the basis of 11 transducer-measured drawdown records by [2007], (c) our estimates of van Genuchten-Mualem parameters with those obtained on the basis of laboratory drainage data from the site by [1992], and (d) our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well. We also use our solution to analyze 11 transducer-measured drawdown records from a 7 day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada. We validate our parameter estimates against manually measured drawdown records in 14 other piezometers at Borden. We compare our estimates of aquifer parameters with those obtained on the basis of all these records by Moench (2008) and on the basis of 11 transducer-measured drawdown records by Endres et al. (2007), and we compare our estimates of van Genuchten-Mualem parameters with those obtained on the basis of laboratory drainage data from the site by Akindunni and Gillham (1992); finally, we compare our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJEaS.106...43P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJEaS.106...43P"><span>Provenance of upper Triassic sandstone, southwest Iberia (Alentejo and Algarve basins): tracing variability in the sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pereira, M. F.; Ribeiro, C.; Gama, C.; Drost, K.; Chichorro, M.; Vilallonga, F.; Hofmann, M.; Linnemann, U.</p> <p>2017-01-01</p> <p>Laser ablation ICP-MS U-Pb analyses have been conducted on detrital zircon of Upper Triassic sandstone from the Alentejo and Algarve basins in southwest Iberia. The predominance of Neoproterozoic, Devonian, Paleoproterozoic and Carboniferous detrital zircon ages confirms previous studies that indicate the locus of the sediment source of the late Triassic Alentejo Basin in the pre-Mesozoic basement of the South Portuguese and Ossa-Morena zones. Suitable sources for the Upper Triassic Algarve sandstone are the Upper Devonian-Lower Carboniferous of the South Portuguese Zone (Phyllite-Quartzite and Tercenas formations) and the Meguma Terrane (present-day in Nova Scotia). Spatial variations of the sediment sources of both Upper Triassic basins suggest a more complex history of drainage than previously documented involving other source rocks located outside present-day Iberia. The two Triassic basins were isolated from each other with the detrital transport being controlled by two independent drainage systems. This study is important for the reconstruction of the late Triassic paleogeography in a place where, later, the opening of the Central Atlantic Ocean took place separating Europe from North America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-08-31/pdf/2010-21616.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-08-31/pdf/2010-21616.pdf"><span>75 FR 53193 - Safety Zone; Mississippi River, Mile 427.3 to 427.5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-08-31</p> <p>... Zone; Mississippi River, Mile 427.3 to 427.5 AGENCY: Coast Guard, DHS. ACTION: Temporary final rule... River, Mile 427.3 to 427.5, extending the entire width of the river. This safety zone is needed to... 5, 2010 the City of Keithsburg will be conducting a fireworks display at mile 427.4 on the Upper...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70118021','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70118021"><span>The morphology, processes, and evolution of Monterey Fan: a revisit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gardner, James V.; Bohannon, Robert G.; Field, Michael E.; Masson, Douglas G.</p> <p>2010-01-01</p> <p>Long-range (GLORIA) and mid-range (TOBI) sidescan imagery and seismic-reflection profiles have revealed the surface morphology and architecture of the complete Monterey Fan. The fan has not developed a classic wedge shape because it has been blocked for much of its history by Morro Fracture Zone. The barrier has caused the fan to develop an upper-fan and lower-fan sequence that are distinctly different from one another. The upper-fan sequence is characterized by Monterey and Ascension Channels and associated Monterey Channel-levee system. The lower-fan sequence is characterized by depositional lobes of the Ascension, Monterey, and Sur-Parkington-Lucia systems, with the Monterey depositional lobe being the youngest. Presently, the Monterey depositional lobe is being downcut because the system has reached a new, lower base level in the Murray Fracture Zone. A five-step evolution of Monterey Fan is presented, starting with initial fan deposition in the Late Miocene, about 5.5 Ma. This first stage was one of filling bathymetric lows in the oceanic basement in what was to become the upper-fan segment. The second stage involved filling the bathymetric low on the north side of Morro Fracture Zone, and probably not much sediment was transported beyond the fracture zone. The third stage witnessed sediment being transported around both ends of Morro Fracture Zone and initial sedimentation on the lower-fan segment. During the fourth stage Ascension Channel was diverted into Monterey Channel, thereby cutting off sedimentation to the Ascension depositional lobe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/10577','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/10577"><span>Municipal water supplies in Lee County, Florida, 1974</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>O'Donnell, T. H.</p> <p>1977-01-01</p> <p>In 1974 the total pumpage for Lee County, Fla., municipal supplies reached 5,700 Mgal (million gallons annually), an increase of 54 percent over 1970 levels. Pumpage from individual sources included: Caloosahatchee River, 1,312 Mgal; water-table aquifer, 2,171 Mgal; the water-bearing zone in the Tamiami Formation, 340 Mgal; the water-bearing zone in the upper part of the Hawthorn Formation, 1,399 Mgal; the saline water zones in the lower part of the Hawthorn Formation and the Suwannee Limestone, 483 Mgal. Among the various sources, the water-table aquifer showed the greatest increase in municipal pumpage over 1970 levels (60 percent) while the saline zones in the lower part of the Hawthorn Formation and Suwannee Limestone showed the least (40 percent). Intensive pumpage from the water bearing zone in the upper part of the Hawthorn Formation has caused a progressive decline in water levels in wells tapping that zone. The quality of fresh ground water in areas unaffected by intrusion of saline water, generally meets all the recommended limits of the Environmental Protection Agency. The chemical treatment processes utilized by water plants in the county are generally effective in producing finished water that meets EPA preliminary drinking water standards. (Woodard-USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22617157-new-scenario-saturation-low-threshold-two-plasmon-parametric-decay-instability-extraordinary-wave-inhomogeneous-plasma-magnetic-traps','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22617157-new-scenario-saturation-low-threshold-two-plasmon-parametric-decay-instability-extraordinary-wave-inhomogeneous-plasma-magnetic-traps"><span>On a new scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an extraordinary wave in the inhomogeneous plasma of magnetic traps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gusakov, E. Z., E-mail: Evgeniy.Gusakov@mail.ioffe.ru; Popov, A. Yu., E-mail: a.popov@mail.ioffe.ru; Irzak, M. A., E-mail: irzak@mail.ioffe.ru</p> <p></p> <p>The most probable scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an electron cyclotron extraordinary wave has been analyzed. Within this scenario two upperhybrid plasmons at frequencies close to half the pump wave frequency radially trapped in the vicinity of the local maximum of the plasma density profile are excited due to the excitation of primary instability. The primary instability saturation results from the decays of the daughter upper-hybrid waves into secondary upperhybrid waves that are also radially trapped in the vicinity of the local maximum of the plasma density profile and ion Bernstein waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.211.1032E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.211.1032E"><span>Deciphering the 3-D distribution of fluid along the shallow Hikurangi subduction zone using P- and S-wave attenuation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eberhart-Phillips, Donna; Bannister, Stephen; Reyners, Martin</p> <p>2017-11-01</p> <p>We use local earthquake velocity spectra to solve for the 3-D distribution of P- and S-wave attenuation in the shallow Hikurangi subduction zone in the North Island of New Zealand to gain insight into how fluids control both the distribution of slip rate deficit and slow-slip events at the shallow plate interface. Qs/Qp gives us information on the 3-D distribution of fluid saturation, which we can compare with the previously determined 3-D distribution of Vp/Vs, which gives information on pore fluid pressure. The Hikurangi margin is unusual, in that a large igneous province (the Hikurangi Plateau) is being subducted. This plateau has had two episodes of subduction-first at 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates. We find that in the southern part of the subduction zone, where there is a large deficit in slip rate at the plate interface, the plate interface region is only moderately fluid-rich because the underlying plateau had already had an episode of dehydration during Gondwana subduction. But fluid pressure is relatively high, due to an impermeable terrane in the upper plate trapping fluids below the plate interface. The central part of the margin, where the slip rate deficit is very low, is the most fluid-rich part of the shallow subduction zone. We attribute this to an excess of fluid from the subducted plateau. Our results suggest this part of the plateau has unusually high fracture permeability, on account of it having had two episodes of bending-first at the Gondwana trench and now at the Hikurangi Trough. Qs/Qp is consistent with fluids migrating across the plate interface in this region, leaving it drained and producing high fluid pressure in the overlying plate. The northern part of the margin is a region of heterogeneous deficit in slip rate. Here the Hikurangi Plateau is subducting for the first time, so there is less fluid available from its dehydration than in the central region. Fluid pressure in the overlying plate is high, but Qs/Qp indicates that it is not uniformly fluid-rich. This heterogeneity is consistent with the rough topography of the plateau, including seamounts which entrain fluid-rich sediments. Deep slow-slip events in the southern part of the margin occur where the Moho of the overlying plate meets the plate interface, as typically seen in other deep slow-slip events worldwide. But in the central and northern parts of the margin, the locations of shallow slow-slip events appear to be controlled by a shallow brittle-viscous transition within the fluid-rich upper plate. There is also evidence that a major fault zone in the overlying plate might bleed off some of the high fluid pressure promoting slow-slip events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S53C0711G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S53C0711G"><span>Imaging the deep structures of the convergent plates along the Ecuadorian subduction zone through receiver function analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galve, A.; Charvis, P.; Regnier, M. M.; Font, Y.; Nocquet, J. M.; Segovia, M.</p> <p>2017-12-01</p> <p>The Ecuadorian subduction zone was affected by several large M>7.5 earthquakes. While we have low resolution on the 1942, 1958 earthquakes rupture zones extension, the 2016 Pedernales earthquake, that occurs at the same location than the 1942 earthquake, give strong constraints on the deep limit of the seismogenic zone. This downdip limit is caused by the onset of plasticity at a critical temperature (> 350-450 °C for crustal materials, or serpentinized mantle wedge, and eventually > 700 °C for dry mantle). However we still don't know exactly where is the upper plate Moho and therefore what controls the downdip limit of Ecuadorian large earthquakes seismogenic zone. For several years Géoazur and IG-EPN have maintained permanent and temporary networks (ADN and JUAN projects) along the margin to register the subduction zone seismological activity. Although Ecuador is not a good place to perform receiver function due to its position with respect to the worldwide teleseismic sources, the very long time deployment compensate this issue. We performed a frequency dependent receiver function analysis to derive (1) the thickness of the downgoing plate, (2) the interplate depth and (3) the upper plate Moho. These constraints give the frame to interpretation on the seismogenic zone of the 2016 Pedernales earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020723','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020723"><span>Magnetic Susceptibility and Mineral Zonations Controlled by Provenance in Loess along the Illinois and Central Mississippi River Valleys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grimley, D.A.; Follmer, L.R.; McKay, E.D.</p> <p>1998-01-01</p> <p>Magnetic susceptibility (MS) patterns have proven useful for regional stratigraphic correlations of zones within thick, oxidized Peoria and Roxana Silts along the Illinois and Central Mississippi River valleys for more than 350 km. Variations in MS of C horizon loess are controlled by silt-sized magnetite content and are interpreted to reflect changes in sediment provenance due to fluctuations of the Superior and Lake Michigan glacier lobes and the diversion of the Mississippi River to its present course. Grain size distributions and scanning electron microscopic observations indicate that stratigraphic changes in MS are not significantly influenced by eolian sorting or diagenetic dissolution, respectively. Three compositional zones (lower, middle, and upper) are delineated within Peoria Silt which usually can be traced in the field by MS, the occurrence of clay beds, interstadial soils, and/or subtle color changes. These zones can be correlated with, but are generally of more practical use than, previously studied dolomite zones (McKay, 1977) or clay mineral zones (Frye et al., 1968). However, mineralogical analyses can help to substantiate zone boundaries when in question. MS and compositional zones may indirectly record a climatic signal, primarily through the effect that global cooling has had on ice lobe fluctuations in the Upper Mississippi drainage basin. ?? 1998 University of Washington.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EP%26S...62..401Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EP%26S...62..401Y"><span>Audio-frequency magnetotelluric imaging of the Hijima fault, Yamasaki fault system, southwest Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamaguchi, S.; Ogawa, Y.; Fuji-Ta, K.; Ujihara, N.; Inokuchi, H.; Oshiman, N.</p> <p>2010-04-01</p> <p>An audio-frequency magnetotelluric (AMT) survey was undertaken at ten sites along a transect across the Hijima fault, a major segment of the Yamasaki fault system, Japan. The data were subjected to dimensionality analysis, following which two-dimensional inversions for the TE and TM modes were carried out. This model is characterized by (1) a clear resistivity boundary that coincides with the downward projection of the surface trace of the Hijima fault, (2) a resistive zone (>500 Ω m) that corresponds to Mesozoic sediment, and (3) shallow and deep two highly conductive zones (30-40 Ω m) along the fault. The shallow conductive zone is a common feature of the Yamasaki fault system, whereas the deep conductor is a newly discovered feature at depths of 800-1,800 m to the southwest of the fault. The conductor is truncated by the Hijima fault to the northeast, and its upper boundary is the resistive zone. Both conductors are interpreted to represent a combination of clay minerals and a fluid network within a fault-related fracture zone. In terms of the development of the fluid networks, the fault core of the Hijima fault and the highly resistive zone may play important roles as barriers to fluid flow on the northeast and upper sides of the conductive zones, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1982/0700/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1982/0700/report.pdf"><span>Occurrence and use of ground water in the Venice-Englewood area, Sarasota and Charlotte counties, Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sutcliffe, Horace; Thompson, Thomas H.</p> <p>1983-01-01</p> <p>In a 75-square-mile area of coastal Sarasota and Charlotte Counties, demand for water is increasing. Groundwater, the principal source of supply, is distributed largely by public water systems. Principal water-bearing formations in descending order, include the surficial aquifer, artesian zone 1 in the Tamiami Formation, zone 2 in the upper part of the Hawthorn Formation, zone 3 in the lower part of the Hawthorn Formation and upper part of the Tampa Limestone, and zones 4 and 5 which comprise the Floridan aquifer. The surficial aquifer, except near tidewater, provides limited supplies of freshwater to wells. Artesian zone 1 is the major aquifer for public supply. It is contaminated by saline water in some areas, either as a result of inundation by storm-driven tides or by upwar leakage of mineralized water from underlying aquifers through uncased or improperly constructed wells. The city of Venice obtains some water from zone 2, but the water is brackish in much of the area. The water is suitable for irrigation in parts of the area. Except for local use of water for watering livestock and maintaining ponds, the water from zones 3, 4, and 5 is little used because of its poor quality. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhDT........70Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhDT........70Y"><span>Petrologic and chemical changes in ductile shear zones as a function of depth in the continental crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xin-Yue</p> <p></p> <p>Petrologic and geochemical changes in ductile shear zones are important for understanding deformational and geochemical processes of the continental crust. This study examines three shear zones that formed under conditions varying from lower greenschist facies to upper amphibolite facies in order to document the petrologic and geochemical changes of deformed rocks at various metamorphic grades. The studied shear zones include two greenschist facies shear zones in the southern Appalachians and an upper amphibolite facies shear zone in southern Ontario. The mylonitic gneisses and mylonites in the Roses Mill shear zone of central Virginia are derived from a ferrodiorite protolith and characterized by a lower greenschist facies mineral assemblage. Both pressure solution and recrystallization were operative deformation mechanisms during mylonitization in this shear zone. Strain-driven dissolution and solution transfer played an important role in the mobilization of felsic components (Si, Al, K, Na, and Ca). During mylonitization, 17% to 32% bulk rock volume losses of mylonites are mainly attributed to removal of these mobile felsic components by a fluid phase. Mafic components (Fe, Mg, Ti, Mn and P) and trace elements, REE, Y, V and Sc, were immobile. At Rosman, North Carolina, the Brevard shear zone (BSZ) shows a deformational transition from the coarse-grained Henderson augen gneiss (HAG) to proto-mylonite, mylonite and ultra-mylonite. The mylonites contain a retrograde mineral assemblage as a product of fluid-assisted chemical breakdown of K-feldspar and biotite at higher greenschist facies conditions. Recrystallization and intra-crystalline plastic deformation are major deformation mechanisms in the BSZ. Fluid-assisted mylonitization in the BSZ led to 6% to 23% bulk volume losses in mylonites. During mylonitization, both major felsic and mafic elements and trace elements, Rb, Sr, Zr, V, Sc, and LREE were mobile; however, the HREEs were likely immobile. A shear zone in the Parry Sound domain, Ontario, formed at upper amphibolite facies conditions. The deformation process of the shear zone involves fully plastic deformation and high-temperature dynamic recrystallization and annealing recovery of both quartz and plagioclase. Geochemical evidence indicates that the chemical changes in the deformed rocks resulted from mixing of mafic and felsic layers together with fluid-assisted mass transfer within the shear zone. A geochemical model that incorporates closed-system two-component mixing with open-system mass transfer can well explain the observed major and trace element data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/wri99-4090/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/wri99-4090/"><span>Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gingerich, Stephen B.</p> <p>1999-01-01</p> <p>The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high-elevation saturated zone. Total average daily ground-water discharge from the high-elevation saturated zone upstream of 1,200 feet altitude is greater than 38 million gallons per day, all of which is eventually removed from the streams by surface-water diversion systems. Perennial streamflow has been measured at altitudes greater than 3,000 feet in several of the streams. Discharge from the high-elevation saturated zone is persistent even during periods of little rainfall. The total average annual streamflow of the gaged streams east of Keanae Valley is about 109 million gallons per day at about 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast nor at higher altitudes. All of the base flow measured east of Keanae Valley represents ground-water discharge from the vertically extensive freshwater-lens system. Total average daily ground-water discharge to gaged streams upstream of 1,200 feet altitude is about 27 million gallons per day. About 19 million gallons per day of ground water discharges through the Kula and Hana Volcanics between about 500 feet and 1,300 feet altitude in the gaged stream sub-basins. About 13 million gallons per day of this discharge is in Hanawi Stream. The total ground-water discharge above 500 feet altitude in this part of the study area is greater than 56 million gallons per day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.3635C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.3635C"><span>Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection-diffusion equation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cholet, Cybèle; Charlier, Jean-Baptiste; Moussa, Roger; Steinmann, Marc; Denimal, Sophie</p> <p>2017-07-01</p> <p>The aim of this study is to present a framework that provides new ways to characterize the spatio-temporal variability of lateral exchanges for water flow and solute transport in a karst conduit network during flood events, treating both the diffusive wave equation and the advection-diffusion equation with the same mathematical approach, assuming uniform lateral flow and solute transport. A solution to the inverse problem for the advection-diffusion equations is then applied to data from two successive gauging stations to simulate flows and solute exchange dynamics after recharge. The study site is the karst conduit network of the Fourbanne aquifer in the French Jura Mountains, which includes two reaches characterizing the network from sinkhole to cave stream to the spring. The model is applied, after separation of the base from the flood components, on discharge and total dissolved solids (TDSs) in order to assess lateral flows and solute concentrations and compare them to help identify water origin. The results showed various lateral contributions in space - between the two reaches located in the unsaturated zone (R1), and in the zone that is both unsaturated and saturated (R2) - as well as in time, according to hydrological conditions. Globally, the two reaches show a distinct response to flood routing, with important lateral inflows on R1 and large outflows on R2. By combining these results with solute exchanges and the analysis of flood routing parameters distribution, we showed that lateral inflows on R1 are the addition of diffuse infiltration (observed whatever the hydrological conditions) and localized infiltration in the secondary conduit network (tributaries) in the unsaturated zone, except in extreme dry periods. On R2, despite inflows on the base component, lateral outflows are observed during floods. This pattern was attributed to the concept of reversal flows of conduit-matrix exchanges, inducing a complex water mixing effect in the saturated zone. From our results we build the functional scheme of the karst system. It demonstrates the impact of the saturated zone on matrix-conduit exchanges in this shallow phreatic aquifer and highlights the important role of the unsaturated zone on storage and transfer functions of the system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.487..201C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.487..201C"><span>Evidence for fluid and melt generation in response to an asthenospheric upwelling beneath the Hangai Dome, Mongolia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Comeau, Matthew J.; Käufl, Johannes S.; Becken, Michael; Kuvshinov, Alexey; Grayver, Alexander V.; Kamm, Jochen; Demberel, Sodnomsambuu; Sukhbaatar, Usnikh; Batmagnai, Erdenechimeg</p> <p>2018-04-01</p> <p>The Hangai Dome, Mongolia, is an unusual high-elevation, intra-continental plateau characterized by dispersed, low-volume, intraplate volcanism. Its subsurface structure and its origin remains unexplained, due in part to a lack of high-resolution geophysical data. Magnetotelluric data along a ∼610 km profile crossing the Hangai Dome were used to generate electrical resistivity models of the crust and upper mantle. The crust is found to be unexpectedly heterogeneous. The upper crust is highly resistive but contains several features interpreted as ancient fluid pathways and fault zones, including the South Hangai fault system and ophiolite belt that is revealed to be a major crustal boundary. South of the Hangai Dome a clear transition in crustal properties is observed which reflects the rheological differences across accreted terranes. The lower crust contains discrete zones of low-resistivity material that indicate the presence of fluids and a weakened lower crust. The upper mantle contains a large low-resistivity zone that is consistent with the presence of partial melt within an asthenospheric upwelling, believed to be driving intraplate volcanism and supporting uplift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17271030','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17271030"><span>Automated agitation management accounting for saturation dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rudge, A D; Chase, J G; Shaw, G M; Lee, D</p> <p>2004-01-01</p> <p>Agitation-sedation cycling in critically ill is damaging to patient health and increases length of and cost. A physiologically representative model of the agitation-sedation system is used as a platform to evaluate feedback controllers offering improved agitation management. A heavy-derivative controller with upper and infusion rate bounds maintains minimum plasma concentrations through a low constant infusion, and minimizes outbursts of agitation through strong, timely boluses. controller provides improved agitation management using from 37 critically ill patients, given the saturation of effect at high concentration. Approval was obtained the Canterbury Ethics Board for this research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1997/4095/wri19974095.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1997/4095/wri19974095.pdf"><span>Results of borehole geophysical logging and aquifer-isolation tests conducted in the John Wagner and Sons, Inc. former production well, Ivyland, Pennsylvania</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sloto, Ronald A.</p> <p>1997-01-01</p> <p>A suite of borehole geophysical logs and heat-pulse-flowmeter measurements run in the former production well at the John Wagner and Sons, Inc. plant indicate two zones of borehole flow. In the upper part of the well, water enters the borehole through a fracture at 90 ft (feet) below floor level, moves upward, and exits the borehole through a fracture at 72 ft below floor level. Water also enters the borehole through fractures at 205-213, 235, and 357 ft below floor level; moves downward; and exits the borehole through fractures at 450-459, 468-470, and 483-490 ft below floor level. Five zones were selected for aquifer-isolation (packer) tests on the basis of borehole geophysical logs. The zones were isolated using a straddle-packer assembly. The lowermost three zones (below 248, 223 to 248, and 198 to 223 ft below floor level) were hydraulically isolated from zones above and below. Specific capacities were 0.12, 0.034, and 0.15 gallons per minute per foot, respectively. The hydrograph from zone 2 (223 to 248 ft below floor level) showed interference from a nearby pumping well. For the upper two zones (81 to 106 and 57 to 81 ft below floor level), similar drawdowns in the isolated zone and the zones above and below the isolated zone indicate that these fractures are hydraulically connected outside the borehole in the unconfined part of the Stockton Formation. The specific capacity of zones 4 and 5 are similar—0.82 and 0.61, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H11F1268M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H11F1268M"><span>Bubble-facilitated VOC transport: Laboratory experiments and numerical modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mumford, K. G.; Soucy, N. C.</p> <p>2017-12-01</p> <p>Most conceptual and numerical models of vapor intrusion assume that the transport of volatile organic compounds (VOCs) from the source to near the building foundation is a diffusion-limited processes. However, the transport of VOCs by mobilized gas bubbles through the saturated zone could lead to increased rates of transport and advection through the unsaturated zone, thereby increasing mass flux and risks associated with vapor intrusion. This mobilized gas could be biogenic (methanogenic) but could also result from the partitioning of VOC to trapped atmospheric gases in light non-aqueous phase liquid (LNAPL) smear zones. The potential for bubble-facilitated VOC transport to increase mass flux was investigated in a series of 1D and 2D laboratory experiments. Pentane source zones were emplaced in sand using sequential drainage and imbibition steps to mimic a water table fluctuation and trap air alongside LNAPL residual. This source was placed below an uncontaminated, water saturated sand (occlusion zone) and a gravel-sized (glass beads) unsaturated zone. Water was pumped laterally through the source zone and occlusion zone to deliver the dissolved gases (air) that are required for the expansion of trapped gas bubbles. Images from 2D flow cell experiments were used to demonstrate fluid rearrangement in the source zone and gas expansion to the occlusion zone, and 1D column experiments were used to measure gas-phase pentane mass flux. This flux was found to be 1-2 orders of magnitude greater than that measured in diffusion-dominated control columns, and showed intermittent behavior consistent with bubble transport by repeated expansion, mobilization, coalescence and trapping. Numerical simulation results under a variety of conditions using an approach that couples macroscopic invasion percolation with mass transfer (MIP-MT) between the aqueous and gas phases will also be presented. The results of this study demonstrate the potential for bubble-facilitated transport to increase transport rates linked to vapor intrusion, and will serve as a basis for further development of conceptual and numerical models to investigate the conditions under which this mechanism may play an important role.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186668','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186668"><span>Widespread gas hydrate instability on the upper U.S. Beaufort margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Phrampus, Benjamin J.; Hornbach, Matthew J.; Ruppel, Carolyn D.; Hart, Patrick E.</p> <p>2014-01-01</p> <p>The most climate-sensitive methane hydrate deposits occur on upper continental slopes at depths close to the minimum pressure and maximum temperature for gas hydrate stability. At these water depths, small perturbations in intermediate ocean water temperatures can lead to gas hydrate dissociation. The Arctic Ocean has experienced more dramatic warming than lower latitudes, but observational data have not been used to study the interplay between upper slope gas hydrates and warming ocean waters. Here we use (a) legacy seismic data that constrain upper slope gas hydrate distributions on the U.S. Beaufort Sea margin, (b) Alaskan North Slope borehole data and offshore thermal gradients determined from gas hydrate stability zone thickness to infer regional heat flow, and (c) 1088 direct measurements to characterize multidecadal intermediate ocean warming in the U.S. Beaufort Sea. Combining these data with a three-dimensional thermal model shows that the observed gas hydrate stability zone is too deep by 100 to 250 m. The disparity can be partially attributed to several processes, but the most important is the reequilibration (thinning) of gas hydrates in response to significant (~0.5°C at 2σ certainty) warming of intermediate ocean temperatures over 39 years in a depth range that brackets the upper slope extent of the gas hydrate stability zone. Even in the absence of additional ocean warming, 0.44 to 2.2 Gt of methane could be released from reequilibrating gas hydrates into the sediments underlying an area of ~5–7.5 × 103 km2 on the U.S. Beaufort Sea upper slope during the next century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25108178','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25108178"><span>Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Geng, Xiaolong; Boufadel, Michel C; Xia, Yuqiang; Li, Hailong; Zhao, Lin; Jackson, Nancy L; Miller, Richard S</p> <p>2014-09-01</p> <p>A numerical study was undertaken to investigate the effects of waves on groundwater flow and associated inland-released solute transport based on tracer experiments in a laboratory beach. The MARUN model was used to simulate the density-dependent groundwater flow and subsurface solute transport in the saturated and unsaturated regions of the beach subjected to waves. The Computational Fluid Dynamics (CFD) software, Fluent, was used to simulate waves, which were the seaward boundary condition for MARUN. A no-wave case was also simulated for comparison. Simulation results matched the observed water table and concentration at numerous locations. The results revealed that waves generated seawater-groundwater circulations in the swash and surf zones of the beach, which induced a large seawater-groundwater exchange across the beach face. In comparison to the no-wave case, waves significantly increased the residence time and spreading of inland-applied solutes in the beach. Waves also altered solute pathways and shifted the solute discharge zone further seaward. Residence Time Maps (RTM) revealed that the wave-induced residence time of the inland-applied solutes was largest near the solute exit zone to the sea. Sensitivity analyses suggested that the change in the permeability in the beach altered solute transport properties in a nonlinear way. Due to the slow movement of solutes in the unsaturated zone, the mass of the solute in the unsaturated zone, which reached up to 10% of the total mass in some cases, constituted a continuous slow release of solutes to the saturated zone of the beach. This means of control was not addressed in prior studies. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>