Sample records for upper sediment layers

  1. Sediment Flux of Particulate Organic Phosphorus in the Open Black Sea

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. V.; Kukushkin, A. S.

    2018-03-01

    The interannual variation of the monthly average (weighted average) concentrations of particulate organic phosphorus (PPOM) in the photosynthetic layer, oxycline, redox zone, and H2S zone in the open Black Sea is estimated based on long-term observation data. The suspension sedimentation rates from the studied layers are assessed using model calculations and published data. The annual variation of PPOM sediment fluxes from the photosynthetic layer, oxycline, redox zone, and upper H2S zone to the anaerobic zone of the sea and the correspondingly annual average values are estimated for the first time. A regular decrease in the PPOM annual average flux with depth in the upper active layer is demonstrated. A correlation between the annual average values of PPOM sediment flux from the photosynthetic layer and ascending phosphate flux to this layer is shown, which suggests their balance in the open sea. The results are discussed in terms of the phosphorus biogeochemical cycle and the concept of new and regenerative primary production in the open Black Sea.

  2. Sedimentation from flocculated suspensions in the presence of settling-driven gravitational interface instabilities

    NASA Astrophysics Data System (ADS)

    Rouhnia, Mohamad; Strom, Kyle

    2015-09-01

    We experimentally examine sedimentation from a freshwater suspension of clay flocs overlying saltwater in the presence of gravitational instabilities. The study seeks to determine: (1) if flocculation hampers or alters interface instability formation; (2) how the removal rates of sediment from the buoyant layer compare to those predicted by individual floc settling; and (3) whether or not it is possible to develop a model for effective settling velocity. The experiments were conducted in a tank at isothermal conditions. All experiments were initially stably stratified but later developed instabilities near the interface that grew into downward convecting plumes of fluid and sediment. Throughout, we measured sediment concentration in the upper and lower layers, floc size, and plume descent rates. The data showed that flocculation modifies the mixture settling velocity, and therefore shifts the mode of interface instability from double-diffusive (what one would expect from unflocculated clay) to settling-driven leaking and Rayleigh-Taylor instability formation. Removal rates of sediment from the upper layer in the presence of these instabilities were on the same order of magnitude as those predicted by individual floc settling. However, removal rates were found to better correlate with the speed of the interface plumes. A simple force-balance model was found to be capable of reasonably describing plume velocity based on concentration in the buoyant layer. This relation, coupled with a critical Grashof number and geometry relations, allowed us to develop a model for the effective settling velocity of the mixture based solely on integral values of the upper layer.

  3. The relative contribution of near-bed vs. intragravel horizontal transport to fine sediment accumulation processes in river gravel beds

    NASA Astrophysics Data System (ADS)

    Casas-Mulet, Roser; Lakhanpal, Garima; Stewardson, Michael J.

    2018-02-01

    Understanding flow-sediment interactions is important for comprehending river functioning. Fine sediment accumulation processes, in particular, have key implications for ecosystem health. However, the amount of fines generated by intragravel flows and later accumulated in gravel streambeds may have been underestimated, as the hydraulic-related driving transport mechanisms in play are not clearly identified. Specifically, the relative contribution of fines from upper vs. lower sediment layers in gravel beds is not well understood. By recreating flooded and dewatered conditions in an experimental flume filled with natural sediment, we estimated such contributions by observing and collecting intragravel transported fines that were later accumulated into a void in the middle of the sediment matrix. Near-bed transport in the upper sediment layers (named Brinkman load) during flooded conditions accounted for most (90%) of the accumulated fines. Intragravel transport in the lower sediment layers (named Interstitial load) was the sole source of transport and accumulation during dewatered conditions with steeper hydraulic gradients. Interstitial load accounted for 10% of the total transport during flooded conditions. Although small, such estimations demonstrate that hydraulic-gradient transport in the lower sediment layers occurs in spite of the contradicting analytical assessments. We provide a case study to challenge the traditional approaches of assessing intragravel transport, and a useful framework to understand the origin and relative contribution of fine sediment accumulation in gravel beds. Such knowledge will be highly useful for the design of monitoring programs aiding river management, particularly in regulated rivers.

  4. Influence of silver nanoparticles on benthic oxygen consumption of microbial communities in freshwater sediments determined by microelectrodes.

    PubMed

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Yao, Yu; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2017-05-01

    The increased use of silver nanoparticles (AgNPs) will inevitably result in the release of these particles into aquatic environments, with sediments as a substantial sink. However, we do not know whether AgNPs present potential impacts in sediment functioning. In this study, a microcosm approach was constructed, and the potential impacts of AgNPs and PVP-coated AgNPs on oxygen consumption in freshwater sediments (collected from Taihu Lake) were determined using oxygen microelectrodes. To our knowledge, this is the first time that microelectrodes have been used to estimate the impacts of AgNPs in sediments. The steady-state oxygen microprofiles showed that environmental relevant concentration (1 mg/L nano-Ag) did not lead to an apparent change in the oxygen consumption rates of benthic microbial communities in sediment. The addition of 10 mg/L uncoated AgNPs resulted in remarkable differences in the oxygen concentration profiles within 4-5 h and significantly inhibited the oxygen consumption of benthic microbial communities in the upper sediment layer (∼1 mm) after 100 h. Simultaneously, an increase of oxygen consumption in sediment lower zones was observed. These results may suggest that aerobic microorganisms in the upper layer of the sediment reduced metabolic activity to avoid the toxic stress from AgNPs. Concomitantly, facultative aerobes below the metabolically active upper layer switched from fermentation or anaerobic respiration to aerobic respiration as oxygen bioavailability increased in the lower zones of the sediment. In addition, PVP coating reduced the nanotoxicity of AgNPs in benthic microorganisms due to the decreased dissolution of AgNPs in the filtered overlying water, a phenomenon that merits further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Continuous Probabilistic Modeling of Tracer Stone Dispersal in Upper Regime

    NASA Astrophysics Data System (ADS)

    Hernandez Moreira, R. R.; Viparelli, E.

    2017-12-01

    Morphodynamic models that specifically account for the non-uniformity of the bed material are generally based on some form of the active layer approximation. These models have proven to be useful tools in the study of transport, erosion and deposition of non-uniform bed material in the case of channel bed aggradation and degradation. However, when local spatial effects over short time scales compared to those characterizing the changes in mean bed elevation dominate the vertical sediment fluxes, as is the presence of bedforms, active layer models cannot capture key details of the sediment transport process. To overcome the limitations of active layer based models, Parker, Paola and Leclair (PPL) proposed a continuous probabilistic modeling frameworks in which the sediment exchange between the bedload transport and the mobile bed is described in terms of probability density functions of bed elevation, entrainment and deposition. Here we present the implementation of a modified version of the PPL modeling framework for the study of tracer stones dispsersal in upper regime bedload transport conditions (i.e. upper regime plane bed at the transition between dunes and antidunes, downstream migrating antidunes and upper regime plane bed with bedload transport in sheet flow mode) in which the probability functions are based on measured time series of bed elevation fluctuations. The extension to the more general case of mixtures of sediments differing in size is the future development of the proposed work.

  6. The Upper Laacher See Tephra in Lake Geneva sediments: Paleoenvironmental and paleoclimatological implications

    USGS Publications Warehouse

    Moscariello, A.; Costa, F.

    1997-01-01

    Microstratigraphical analysis of Late glacial lacustrine sediments from Geneva Bay provided evidence of a tephra layer within the upper Aller??d biozone. The layer consists of alkali feldspar, quartz, plagioclase. amphibole, pyroxene, opaques, titanite and glass shards. Electron microprobe analyses and morphological study of glass shards allowed correlation with the upper part of the Laacher See Tephra of the Laacher See volcano (Eifel Mountains, Germany). Sedimentological features of enclosing lacustrine sediments suggest that a momentary decrease in precipitation occurred in the catchment area and consequent reduction in detrital supply in the lake, after the ash fall-out. This has been interpreted as the environmental response to a momentary cooling following the Laacher See Tephra aerosols emission. Comparison with Sedimentological features characterizing the Aller??d-Younger Dryas transition highlights the sensitivity of Lake Geneva system in recording both short and long-terms climate-induced environmental changes.

  7. Turbidity Currents With Equilibrium Basal Driving Layers: A Mechanism for Long Runout

    NASA Astrophysics Data System (ADS)

    Luchi, R.; Balachandar, S.; Seminara, G.; Parker, G.

    2018-02-01

    Turbidity currents run out over 100 km in lakes and reservoirs, and over 1,000 km in the ocean. They do so without dissipating themselves via excess entrainment of ambient water. Existing layer-averaged formulations cannot capture this. We use a numerical model to describe the temporal evolution of a turbidity current toward steady state under condition of zero net sediment flux at the bed. The flow self-partitions itself into two layers. The lower "driving layer" approaches an invariant flow thickness, velocity profile, and suspended sediment concentration profile that sequesters nearly all of the suspended sediment. This layer can continue indefinitely at steady state over a constant bed slope. The upper "driven layer" contains a small fraction of the suspended sediment. The devolution of the flow into these two layers likely allows the driving layer to run out long distances.

  8. Technogenic and natural radionuclides in the bottom sediments of the Sea of Azov: regularities of distribution and application to the study of pollutants accumulation chronology

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. N.; Fedorov, Yu A.; Yaroslavtsev, V. M.

    2018-01-01

    The study of pollutants vertical distribution in seabed sediments is of high interest as they conserve the information on the chronology of pollution level in the past. In the present paper, the results of layer by layer study of Cs-137, Am-241, Pb-210 specific activities as well as concentrations of petroleum components, lead and mercury in 48 sediment cores of the Sea of Azov, the Don River and the Kuban River are examined. In most sediment cores, two peaks of Cs-137 and Am-241 are detected. The upper of them was formed due to the Chernobyl accident in 1986 and the other is related to the global nuclear fallout of 1960s. The specific activity of naturally occurring atmospheric Lead-210 decreases exponentially with the sediment core depth. However, it is influenced by fluvial run-off, coastal erosion, Radium-226 and Radon-222 decay. The data on the radionuclides distribution in the seabed sediments is used to date them. According to the results of dating, most of petroleum components, lead and mercury quantities are concentrated in the upper sediment layer formed in the last 50 to 70 years i.e. in the period of the most important anthropogenic pressure.

  9. Sediment tracing in the upper Hunter catchment using elemental and mineralogical compositions: Implications for catchment-scale suspended sediment (dis)connectivity and management

    NASA Astrophysics Data System (ADS)

    Fryirs, Kirstie; Gore, Damian

    2013-07-01

    River bed colmation layers clog the interstices of gravel-bed rivers, impeding the vertical exchange of water and nutrients that drives ecosystem function in the hyporheic zone. In catchments where fine-grained sediment supply has increased since human disturbance, understanding sediment provenance and the (dis)connectivity of supply allows practitioners to target sediment source problems and treat them within catchment management plans. Release of alluvial fine-grained sediment from channel bank erosion since European settlement has resulted in the formation of a colmation layer along the upper Hunter River at Muswellbrook, eastern Australia. X-ray fluorescence spectrometry (XRF) and X-ray diffractometry (XRD) are used to determine the elemental and mineralogical signatures of colmation layer and floodplain sediment sources across this 4480 km2 catchment. This sediment tracing technique is used to construct a picture of how suspended sediment supply and (dis)connectivity operates in this catchment. In this system, the primary source areas are subcatchments in which sediments are stored largely in partly confined floodplain pockets, but from which sediment supply is unimpeded and directly connected to the receiving reach. Subcatchments in which alluvial sediment storage is significant — and which contain large, laterally unconfined valleys — are essentially 'switched off' or disconnected from the receiving reach. This is because large sediment sinks act to trap fine-grained sediment before it reaches the receiving reach, forming a buffer along the sediment conveyor belt. Given the age structure of floodplains in the receiving reach, this pattern of source area contributions and (dis)connectivity must have occurred throughout the Holocene.

  10. Observations of the R reflector and sediment interface reflection at the Shallow Water '06 Central Site.

    PubMed

    Choi, Jee Woong; Dahl, Peter H; Goff, John A

    2008-09-01

    Acoustic bottom-interacting measurements from the Shallow Water '06 experiment experiment (frequency range 1-20 kHz) are presented. These are co-located with coring and stratigraphic studies showing a thin (approximately 20 cm) higher sound speed layer overlaying a thicker (approximately 20 m) lower sound speed layer ending at a high-impedance reflector (R reflector). Reflections from the R reflector and analysis of the bottom reflection coefficient magnitude for the upper two sediment layers confirm both these features. Geoacoustic parameters are estimated, dispersion effects addressed, and forward modeling using the parabolic wave equation undertaken. The reflection coefficient measurements suggest a nonlinear attenuation law for the thin layer of sandy sediments.

  11. Transient electromagnetic study of basin fill sediments in the Upper San Pedro Basin, Mexico

    USGS Publications Warehouse

    Bultman, M.W.; Gray, F.

    2011-01-01

    The Upper San Pedro River Basin in Mexico and the United States is an important riparian corridor that is coming under increasing pressure from growing populations and the associated increase in groundwater withdrawal. Several studies have produced three-dimensional maps of the basin fill sediments in the US portion of the basin but little work has been done in the Mexican portion of the basin. Here, the results of a ground-based transient electromagnetic (TEM) survey in the Upper San Pedro Basin, Mexico are presented. These basin fill sediments are characterized by a 10-40 m deep unsaturated surficial zone which is composed primarily of sands and gravels. In the central portion of the basin this unsaturated zone is usually underlain by a shallow clay layer 20-50 m thick. Beneath this may be more clay, as is usually the case near the San Pedro River, or interbedded sand, silt, and clay to a depth of 200-250 m. As you move away from the river, the upper clay layer disappears and the amount of sand in the sediments increases. At 1-2 km away from the river, sands can occupy up to 50% of the upper 200-250 m of the sediment fill. Below this, clays are always present except where bedrock highs are observed. This lower clay layer begins at a depth of about 200 m in the central portion of the basin (250 m or more at distances greater than 1-2 km from the river) and extends to the bottom of most profiles to depths of 400 m. While the depth of the top of this lower clay layer is probably accurate, its thickness observed in the models may be overestimated due to the relatively low magnetic moment of the TEM system used in this study. The inversion routine used for interpretation is based on a one-dimensional geologic model. This is a layer based model that is isotropic in both the x and y directions. Several survey soundings did not meet this requirement which invalidates the inversion process and the resulting interpretation at these locations. The results from these locations were rejected. ?? 2011 Springer-Verlag (outside the USA).

  12. Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment.

    PubMed

    Wurzbacher, Christian; Fuchs, Andrea; Attermeyer, Katrin; Frindte, Katharina; Grossart, Hans-Peter; Hupfer, Michael; Casper, Peter; Monaghan, Michael T

    2017-04-08

    Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to 137 Cs dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. Community β-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO 2 and CH 4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea.

  13. Origin and migration of trace elements in the surface sediments of Majuro Atoll, Marshall Islands.

    PubMed

    Ito, Lisa; Omori, Takayuki; Yoneda, Minoru; Yamaguchi, Toru; Kobayashi, Ryuta; Takahashi, Yoshio

    2018-07-01

    The sediments of Majuro Atoll, Marshall Islands, consist of bioclastic materials, including foraminifera and coral debris. The sedimentary depth profiles of elements showed that various elements including zinc (Zn) and copper (Cu) were enriched in the upper layers of the islands of Majuro Atoll. Carbon-14 dating revealed that the sedimentation of the upper layer was completed before 1670 and 542 cal BP in Laura and Calalen, respectively. The enriched elements could be categorized by their origins: (a) terrestrial elements transported as dust (aluminum (Al) and rare earth elements (REEs)); (b) anthropogenic elements (Zn and Cu); and (c) elements supplied by seabirds (phosphorus (P)). From the results of the total amount of Al supplied to sediments for ca. 2000 years, Al in Majuro Atoll was suggested to be airborne origin. The enrichment factors of the elements normalized to Al concentration of continental crust showed that REEs were also transported as dust, while Zn and Cu were mainly of anthropogenic origin. The speciation analysis by X-ray absorption near-edge structure (XANES) showed the presence of Zn-Cu alloys originated from industrial products. It was also revealed that Zn was enriched in the surface due to anthropogenic emission after urbanization on Majuro Atoll and fixed by carbonate and phosphate at the upper layer, which inhibits migration of Zn into the deeper layer and its release to the groundwater and costal water. Hence, the fixation of heavy metals at the surface prevents their exposure to aquatic organisms and residents via fresh groundwater in the island. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Sound Propagation in Shallow Water with an Inhomogeneous GAS-Saturated Bottom

    NASA Astrophysics Data System (ADS)

    Grigor'ev, V. A.; Petnikov, V. G.; Roslyakov, A. G.; Terekhina, Ya. E.

    2018-05-01

    We present the methods and results of numerical experiments studying the low-frequency sound propagation in one of the areas of the Arctic shelf with a randomly inhomogeneous gas-saturated bottom. The characteristics of the upper layer of bottom sedimentary rocks (sediments) used in calculations were obtained during a 3D seismic survey and trial drilling of the seafloor. We demonstrate the possibilities of substituting in numerical simulation a real bottom with a fluid homogeneous half-space where the effective value of the sound speed is equal to the average sound speed in the bottom, with averaging along the sound propagation path to a sediment depth of 0.6 wavelength in the bottom. An original technique is proposed for estimating the sound speed propagation in an upper inhomogeneous sediment layer. The technique is based on measurements of acoustic wave attenuation in water during waveguide propagation.

  15. Mass-physical properties of surficial sediments on the Rhoˆne continental margin: implications for the nepheloid benthic layer

    NASA Astrophysics Data System (ADS)

    Chassefiere, Bernard

    1990-09-01

    Mass-physical properties of the surficial (upper 5 m) sediments on the Gulf of Lions continental margin were analysed, from more than 100 short (1 m) and longer (5 m) cores obtained during several cruises. Data include water content, unit weight, Atterberg limits (liquid limit, plastic limit, plasticity index), shear strength and compression index, and are used to determine: first, the mass property distribution, according to the main parameters influencing mass-physical properties; the relationships between these properties and the nepheloid layer on the shelf. The shoreline (lagoons) and inner shelf are characterized by low density and shear strength and high water content deposits, due to electrochemical flocculation of the sediment. The outer shelf is blanketed by higher density and shear strength and lower water content deposits generated by normal settling of suspended particles. On the inner shelf, during river peak discharges, a short-term thin bottom layer of "yogurt-like" [ FASS (1985) Geomarine Letters, 4, 147-152; FASS (1986) Continental Shelf Research, 6, 189-208] fluid-mud (unit weight lower than 1.3 mg m -3) is supplied, by a bottom nepheloid layer. During stormy periods, this "yogurt-like" layer (about 10 cm thick) partly disappears by resuspension of suspended particulate matter; this is advected, in the bottom nepheloid layer, over the shelf and the canyons within the upper slope.

  16. Small-scale seismogenic soft sediment deformation (Hirlatzhöhle, Upper Austria)

    NASA Astrophysics Data System (ADS)

    Salomon, Martina Lan; Grasemann, Bernhard; Plan, Lukas; Gier, Susanne

    2014-05-01

    The Hirlatz Cave lies in the Dachstein Massif about 2 km SW of Hallstatt, in the Upper Austrian Salzkammergut. With a length of 101 km, this karst cave, located in the Dachstein nappe (Northern Calcareous Alps), is the second largest known cave system in Austria. Within the cave, in the so-called Lehmklamm, located 2.8 km southeast of the cave entrance, laminated (mm-scale) Quaternary clay-sized sediments with interbedded fine-grained sandy layers are preserved. In these layers, numerous soft sediment deformation structures are preserved in many layers. The unconsolidated sediments show rhythmic layering of brighter, carbonate and quartz rich, and darker, more clay mineral rich horizontal varve-like layers, that are assumed to be fluvio-lacustrine deposits. The present study focuses on a very detailed documentation of an approximately 6.8 x 3 m vertical outcrop that was cut by a small brook. Centimeter to millimeter sized water escape structures (intruded cusps and flame structures), folds (detachment folds, fault bend folds) and faults (normal faults, fault propagation folds, bookshelf faults) are described. Because of the geometric analogy to seismogenic structures which have been described at two orders of magnitude larger scales from areas close to the Dead Sea Fault, we suggest that the formation of the investigated soft-sediment structures was also triggered by seismic events. The structures were mainly formed by three different mechanism: (i) North directed gravitational gliding near the sediment surface; (ii) Liquefaction resulting in a density discontinuity and decreasing in shear strength within in the stratified layers; (iii) Extensional faulting that cut through the stratified layers. Observations of coarsening upwards into sandy layers on the top of the outcrop and current ripple indicate a north-directed flow under phreatic conditions, which is opposite to the present flow direction of the vadose water in the cave. The fact that deformation and erosion mostly occur in the uppermost meter of the outcrop wall suggests a higher seismic activity and at least periodically higher flow rates during sedimentation of the younger deposits. Since several extremely deformed layers occur between undeformed ones, we suggest that deformation of the layers occurred only in the uppermost highly water saturated sediments and that several seismic events lead to the formation of the observed structures. A possible source responsible for the seismic event is the Salzach-Ennstal-Mariazeller-Puchberger (SEMP) strike-slip fault, which accommodates the active extrusion of the Eastern Alps towards the Pannonian Basin.

  17. The effects of thick sediment upon continental breakup: seismic imaging and thermal modeling of the Salton Trough, southern California

    NASA Astrophysics Data System (ADS)

    Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.; Driscoll, N. W.; Kell, A. M.; Kent, G. M.; Harding, A. J.; Gonzalez-Fernandez, A.; Lázaro-Mancilla, O.

    2015-12-01

    Continental rifting ultimately creates a deep accommodation space for sediment. When a major river flows into a late-stage rift, thick deltaic sediment can change the thermal regime and alter the mechanisms of extension and continental breakup. The Salton Trough, the northernmost rift segment of the Gulf of California plate boundary, has experienced the same extension as the rest of the Gulf, but is filled to sea level by sediment from the Colorado River. Unlike the southern Gulf, seafloor spreading has not initiated. Instead, seismicity, high heat flow, and minor volcanoes attest to ongoing rifting of thin, transitional crust. Recently acquired controlled-source seismic refraction and wide-angle reflection data in the Salton Trough provide constraints upon crustal architecture and active rift processes. The crust in the central Salton Trough is only 17-18 km thick, with a strongly layered but relatively one-dimensional structure for ~100 km in the direction of plate motion. The upper crust includes 2-4 km of Colorado River sediment. Crystalline rock below the sediment is interpreted to be similar sediment metamorphosed by the high heat flow and geothermal activity. Meta-sediment extends to at least 9 km depth. A 4-5 km thick layer in the middle crust is either additional meta-sediment or stretched pre-existing continental crust. The lowermost 4-5 km of the crust is rift-related mafic magmatic intrusion or underplating from partial melting in the hot upper mantle. North American lithosphere in the Salton Trough has been almost or completely rifted apart. The gap has been filled by ~100 km of new transitional crust created by magmatism from below and sedimentation from above. These processes create strong lithologic, thermal, and rheologic layering. While heat flow in the rift is very high, rapid sedimentation cools the upper crust as compared to a linear geotherm. Brittle extension occurs within new meta-sedimentary rock. The lower crust, in comparison, is maintained hot and weak by the overlying sedimentary thermal blanket. The lower crust stretches by ductile flow and magmatism is not localized. In this passive rift driven by distant plate motions, rapid sedimentation and its thermal effects delay final breakup of the crust and the onset of seafloor spreading.

  18. Archaeal diversity and the extent of iron and manganese pyritization in sediments from a tropical mangrove creek (Cardoso Island, Brazil)

    NASA Astrophysics Data System (ADS)

    Otero, X. L.; Lucheta, A. R.; Ferreira, T. O.; Huerta-Díaz, M. A.; Lambais, M. R.

    2014-06-01

    Even though several studies on the geochemical processes occurring in mangrove soils and sediments have been performed, information on the diversity of Archaea and their functional roles in these ecosystems, especially in subsurface environments, is scarce. In this study, we have analyzed the depth distribution of Archaea and their possible relationships with the geochemical transformations of Fe and Mn in a sediment core from a tropical mangrove creek, using 16S rRNA gene profiling and sequential extraction of different forms of Fe and Mn. A significant shift in the archaeal community structure was observed in the lower layers (90-100 cm), coinciding with a clear decrease in total organic carbon (TOC) content and an increase in the percentage of sand. The comparison of the archaeal communities showed a dominance of methanogenic Euryarchaeota in the upper layers (0-20 cm), whereas Crenarchaeota was the most abundant taxon in the lower layers. The dominance of methanogenic Euryarchaeota in the upper layer of the sediment suggests the occurrence of methanogenesis in anoxic microenvironments. The concentrations of Fe-oxyhydroxides in the profile were very low, and showed positive correlation with the concentrations of pyrite and degrees of Fe and Mn pyritization. Additionally, a partial decoupling of pyrite formation from organic matter concentration was observed, suggesting excessive Fe pyritization. This overpyritization of Fe can be explained either by the anoxic oxidation of methane by sulfate and/or by detrital pyrite tidal transportation from the surrounding mangrove soils. The higher pyritization levels observed in deeper layers of the creek sediment were also in agreement with its Pleistocenic origin.

  19. Crustal Stretching Style and Lower Crust Flow of the South China Sea Northern Margin

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Dong, D.; Runlin, D.

    2017-12-01

    There is a controversy about crustal stretching style of the South China Sea (SCS) northern margin mainly due to considerable uncertainty of stretching factor estimation, for example, as much as 40% of upper crust extension (Walsh et al., 1991) would be lost by seismic profiles due to poor resolution. To discover and understand crustal stretching style and lower crustal flow on the whole, we map the Moho and Conrad geometries based on gravity inversion constrained by deep seismic profiles, then according to the assumption of upper and lower crust initial thickness, upper and lower crust stretching factors are estimated. According to the comparison between upper and lower crust stretching factors, the SCS northern margin could be segmented into three parts, (1) sediment basins where upper crust is stretched more than lower crust, (2) COT regions where lower crust is stretched more than upper crust, (3) other regions where the two layers have similar stretching factors. Stretching factor map shows that lower crust flow happened in both of COT and sediment basin regions where upper crust decouples with lower crust due to high temperature. Pressure contrast by sediment loading in basins and erosion in sediment-source regions will lead to lower crust flow away from sediment sink to source. Decoupled and fractured upper crust is stretched further by sediment loading and the following compensation would result in relatively thick lower crust than upper crust. In COT regions with thin sediment coverage, low-viscosity lower crust is easier to thin in extensional environment, also the lower crust tends to flow away induced by magma upwelling. Therefore, continental crust on the margin is not stretching in a constant way but varies with the tectonic setting changes. This work is supported by National Natural Science Foundation of China (Grant No. 41506055, 41476042) and Fundamental Research Funds for the Central Universities China (No.17CX02003A).

  20. Redox processes as revealed by voltammetry in the surface sediments of the Gotland Basin, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Yücel, Mustafa; Dale, Andy; Sommer, Stefan; Pfannkuche, Olaf

    2014-05-01

    Sulfur cycling in marine sediments undergoes dramatic changes with changing redox conditions of the overlying waters. The upper sediments of the anoxic Gotland Basin, central Baltic Sea represent a dynamic redox environment with extensive mats of sulfide oxidizing bacteria covering the seafloor beneath the chemocline. In order to investigate sulfur redox cycling at the sediment-water interface, sediment cores were sampled over a transect covering 65 - 174 m water depth in August-September 2013. High resolution (0.25 mm minimum) vertical microprofiles of electroactive redox species including dissolved sulfide and iron were obtained with solid state Au-Hg voltammetric microelectrodes. This approach enabled a fine-scale comparison of porewater profiles across the basin. The steepest sulfide gradients (i.e. the highest sulfide consumption) occurred within the upper 10 mm in sediments covered by surficial mats (2.10 to 3.08 mmol m-2 day-1). In sediments under permanently anoxic waters (>140m), voltammetric signals for Fe(II) and aqueous FeS were detected below a subsurface maximum in dissolved sulfide, indicating a Fe flux originating from older, deeper sedimentary layers. Our results point to a unique sulfur cycling in the Gotland basin seafloor where sulfide accumulation is moderated by sulfide oxidation at the sediment surface and by FeS precipitation in deeper sediment layers. These processes may play an important role in minimizing benthic sulfide fluxes to bottom waters around the major basins of the Baltic Sea.

  1. A shift in the biogenic silica of sediment in the Larsen B continental shelf, off the Eastern Antarctic Peninsula, resulting from climate change.

    PubMed

    Sañé, Elisabet; Isla, Enrique; Bárcena, María Ángeles; DeMaster, David J

    2013-01-01

    In 2002, section B of the Larsen ice shelf, off of the Eastern Antarctic Peninsula, collapsed and created the opportunity to study whether the changes at the sea surface left evidence in the sedimentary record. Biogenic silica is major constituent of Antarctic marine sediment, and its presence in the sediment column is associated with diatom production in the euphotic zone. The abundance of diatom valves and the number of sponge spicules in the biogenic silica was analyzed to determine how the origin of the biogenic silica in the upper layers of the sediment column responded to recent environmental changes. Diatom valves were present only in the upper 2 cm of sediment, which roughly corresponds to the period after the collapse of the ice shelf. In contrast, sponge spicules, a more robust form of biogenic silica, were also found below the upper 2 cm layer of the sediment column. Our results indicate that in this region most of the biogenic silica in the sedimentary record originated from sponge spicules rather than diatoms during the time when the sea surface was covered by the Larsen ice shelf. Since the collapse of the ice shelf, the development of phytoplankton blooms and the consequent influx of diatom debris to the seabed have shifted the biogenic silica record to one dominated by diatom debris, as occurs in most of the Antarctic marine sediment. This shift provides further evidence of the anthropogenic changes to the benthic habitats of the Antarctic and will improve the interpretation of the sedimentary record in Polar Regions where these events occur.

  2. Geologic columns for the ICDP-USGS Eyreville A and B cores, Chesapeake Bay impact structure: Sediment-clast breccias, 1096 to 444 m depth

    USGS Publications Warehouse

    Edwards, L.E.; Powars, D.S.; Gohn, G.S.; Dypvik, H.

    2009-01-01

    The Eyreville A and B cores, recovered from the "moat" of the Chesapeake Bay impact structure, provide a thick section of sediment-clast breccias and minor stratified sediments from 1095.74 to 443.90 m. This paper discusses the components of these breccias, presents a geologic column and descriptive lithologic framework for them, and formalizes the Exmore Formation. From 1095.74 to ??867 m, the cores consist of nonmarine sediment boulders and sand (rare blocks up to 15.3 m intersected diameter). A sharp contact in both cores at ??867 m marks the lowest clayey, silty, glauconitic quartz sand that constitutes the base of the Exmore Formation and its lower diamicton member. Here, material derived from the upper sediment target layers, as well as some impact ejecta, occurs. The block-dominated member of the Exmore Formation, from ??855-618.23 m, consists of nonmarine sediment blocks and boulders (up to 45.5 m) that are juxtaposed complexly. Blocks of oxidized clay are an important component. Above 618.23 m, which is the base of the informal upper diamicton member of the Exmore Formation, the glauconitic matrix is a consistent component in diamicton layers between nonmarine sediment clasts that decrease in size upward in the section. Crystalline-rock clasts are not randomly distributed but rather form local concentrations. The upper part of the Exmore Formation consists of crudely fining-upward sandy packages capped by laminated silt and clay. The overlap interval of Eyreville A and B (940-??760 m) allows recognition of local similarities and differences in the breccias. ?? 2009 The Geological Society of America.

  3. Diagenetic changes of lignin compounds in a more than 0.6 million-year-old lacustrine sediment (Lake Biwa, Japan)

    NASA Astrophysics Data System (ADS)

    Ishiwatari, Ryoshi; Uzaki, Minoru

    1987-02-01

    A vertical profile of lignin in the upper 700 m layer of a 1400 m sediment core of Lake Biwa, an oligotrophic freshwater lake in Japan, was determined using a CuO oxidative degradation method. The results indicated that lignin is found throughout the core, demonstrating lignin to be very stable for over 0.6 million years. Moreover, the upper 250 m (approximately 0.6 million years old) segment of the sediment core was investigated to determine the apparent long term degradation rate of lignin. A downward lignin concentration decrease is observed over the upper 250 m of the core which corresponds to a calculated half life of at least approximately 40 × 10 4 years, assuming that lignin decrease is due to its in situ degradation (diagenesis).

  4. Characterization of a complex near-surface structure using well logging and passive seismic measurements

    NASA Astrophysics Data System (ADS)

    Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara

    2016-04-01

    We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.

  5. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.

  6. Insights on the first peopling of Europe from magnetostratigraphy of the Pleistocene lithic tool-bearing Kozarnika cave sediments, Bulgaria

    NASA Astrophysics Data System (ADS)

    Monesi, E.; Muttoni, G.; Sirakov, N.; Kent, D. V.; Guadelli, J. L.; Scardia, G.; Zerboni, A.; Ferrara, E.

    2017-12-01

    We present a new sedimentological profile and a magnetostratigraphy of the tool-bearing Kozarnika cave sediments from Bulgaria. Modal analysis of cave infilling sedimentary texture indicates that most of the layers are produced by reworked wind-blown sediment (loess). We found evidence for a relatively thick and well defined normal magnetic polarity in the upper-middle part of the section interpreted as a record of the Brunhes Chron, followed downsection by reverse polarity directions. The Brunhes-Matuyama boundary (0.78 Ma) is placed in the upper part of Layer 13 Lower. The lowermost levels with Lower Paleolithic tools are close to - or possibly straddling the - Brunhes-Matuyama boundary. Our results are in substantial agreement with the age of onset of loess deposition in the Danube valley, which occurred shortly before the Brunhes-Matuyama boundary. Moreover, our data fit well with the hypothesis that hominins first entered Europe across a Danube-Po migration conduit during the late Early Pleistocene.

  7. In situ measurement of radioactive contamination of bottom sediments.

    PubMed

    Zhukouski, A; Anshakou, O; Kutsen, S

    2018-04-30

    A gamma spectrometric method is presented for in situ radiation monitoring of bottom sediments with contaminated layer of unknown thickness to be determined. The method, based on the processing of experimental spectra using the results of their simulation by the Monte Carlo method, is proposed and tested in practice. A model for the transport of gamma radiation from deposited radionuclides 137 Cs and 134 Cs to a scintillation detection unit located on the upper surface of the contaminated layer of sediments is considered. The relationship between the effective radius of the contaminated site and the thickness of the layer has been studied. The thickness of the contaminated layer is determined by special analysis of experimental and thickness-dependent simulated spectra. The technique and algorithm developed are verified as a result of full-scale studies performed with the submersible gamma-spectrometer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Acoustic Velocity Of The Sediments Offshore Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, C.; Liu, C.; Huang, P.

    2004-12-01

    Along the Manila Trench south of 21øXN, deep-sea sediments are being underthrusted beneath the Taiwan accretionary prism which is composed of the Kaoping Slope and Hengchun Ridge. Offshore southwestern Taiwan, foreland sediments and Late Miocene strata of the Tainan Basin are being accreted onto the fold-and thrust belt of the syn-collision accretionary wedge of the Kaoping Slope. The Kaoping Slope consists of thick Neogene to Recent siliciclastics deformed by fold-and-thrust structures and mud diapers. These Pliocene-Quaternary sediments deposited in the Kaoping Shelf and upper slope area are considered to be paleo-channel deposits confined by NNE-SSW trend mud diapiric structure. Seismic P-wave velocities of the sediment deposited in the Kaoping Shelf and Kaoping Slope area are derived from mutichannel seismic reflection data and wide-angle reflection and refraction profiles collected by sonobuoys. Sediment velocity structures constrained from mutichannel seismic reflection data using velocity spectrum analysis method and that derived from sonobuoy data using tau-sum inversion method are compared, and they both provide consistent velocity structures. Seismic velocities were analyzed along the seismic profile from the surface to maximum depths of about 2.0 km below the seafloor. Our model features a sediment layer1 with 400 ms in thickness and a sediment layer2 with 600 ms in thickness. For the shelf sediments, we observe a linear interval velocity trend of V=1.53+1.91T in layer1, and V=1.86+0.87T in layer2, where T is the one way travel time within the layer. For the slop sediment, the trend of V=1.47+1.93T in layer1, and V=1.70+1.55T in layer2. The layer1¡¦s velocities gradients are similar between the shelf (1.91 km/sec2) and the slope(1.93 km/sec2). It means layer1 distributes over the slope and shelf widely. The result of the sediment velocity gradients in this area are in good agreement with that reported for the south Atlantic continental margins.

  9. Uranium and plutonium in anoxic marine sediments of the Santiago River mouth (Eastern Pacific, Mexico).

    PubMed

    Almazán-Torres, María Guadalupe; Ordóñez-Regil, Eduardo; Ruiz-Fernández, Ana Carolina

    2016-11-01

    The uranium (U) and plutonium (Pu) content with depth in a sediment core collected in the continental shelf off the mouth of the Santiago River in the Mexican Pacific was studied to evaluate the contamination effects of the effluent of the Santiago-Lerma River as it moves into the sea. The large mass of terrestrial detritus delivered by the river influences the physicochemical and geochemical processes in the seafloor. Abnormal concentrations of U and Pu in sediments were examined as indicative of the effects of anoxic conditions. One of the indicators of pollution of seawater is the bacterial activity of the shallow seabed layer; and among the prevailing bacteria, the magnetotactic ones induce the formation of euhedral and framboidal shapes (pyrite). These pyrite entities are by-products of anoxic environments loaded with decomposing detrital material and are very abundant in the surface layers of the sediment core analyzed. The pyrite formation is the result of a biochemical reaction between iron and organic sulphur reduced by bacteria, and the pyrite entities precipitate to the seafloor. In the same upper zone of the profile, 238 U is readily immobilized, while 234 U is oxidized and dissolved in seawater by the effect of hot atom chemistry. This may cause the activity ratio (AR) 234 U/ 238 U disequilibrium (near 0.41). Furthermore, in the shallow layer of the sediment core, an abnormally high concentration of 239+240 Pu was detected. In this upper layer, the activity concentrations found were 3.19 Bq kg -1 for 238 U, 1.32 kg -1 for 234 U and 2.78 Bq kg -1 for 239+240 Pu. In the lower fractions of the sediment core, normal values of AR 234 U/ 238 U (≈1) were found, with traces of 239+240 Pu. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Vertical and lateral flux on the continental slope off Pakistan: correlation of sediment core and trap results

    NASA Astrophysics Data System (ADS)

    Schulz, H.; von Rad, U.

    2014-06-01

    Due to the lack of bioturbation, the varve-laminated muds from the oxygen minimum zone (OMZ) off Pakistan provide a unique opportunity to precisely determine the vertical and lateral sediment fluxes in the nearshore part of the northeastern Arabian Sea. West of Karachi (Hab area), the results of two sediment trap stations (EPT and WPT) were correlated with 16 short sediment cores on a depth transect crossing the OMZ. The top of a distinct, either reddish- or light-gray silt layer, 210Pb-dated as AD 1905 ± 10, was used as an isochronous stratigraphic marker bed to calculate sediment accumulation rates. In one core, the red and gray layer were separated by a few (5-10) thin laminae. According to our varve model, this contributes < 10 years to the dating uncertainty, assuming that the different layers are almost synchronous. We directly compared the accumulation rates with the flux rates from the sediment traps that collected the settling material within the water column above. All traps on the steep Makran continental slope show exceptionally high, pulsed winter fluxes of up to 5000 mg m-2 d-1. Based on core results, the flux at the seafloor amounts to 4000 mg m-2 d-1 and agrees remarkably well with the bulk winter flux of material, as well as with the flux of the individual bulk components of organic carbon, calcium carbonate and opal. However, due to the extreme mass of remobilized matter, the high winter flux events exceeded the capacity of the shallow traps. Based on our comparisons, we argue that high-flux events must occur regularly during winter within the upper OMZ off Pakistan to explain the high accumulations rates. These show distribution patterns that are a negative function of water depth and distance from the shelf. Some of the sediment fractions show marked shifts in accumulation rates near the lower boundary of the OMZ. For instance, the flux of benthic foraminifera is lowered but stable below ~1200-1300 m. However, flux and sedimentation in the upper eastern Makran area are dominated by the large amount of laterally advected fine-grained material and by the pulsed nature of the resuspension events at the upper margin during winter.

  11. Relationship between the parent material and the soil, in plain and mountainous areas

    NASA Astrophysics Data System (ADS)

    Kerek, Barbara; Kuti, Laszlo; Dobos, Timea; Vatai, Jozsef; Szentpetery, Ildiko

    2013-04-01

    One of the most important tasks of the soil is the nutrition of plants. This function is determinated by those parts of the geological media on what is the soil situated and from what the soil was formed (those two can be different). Soil can be formed definitely just from sediment, so it is more proper to speak about parent material than parent rock. Soil forming sediment is defined as the loose sediment on the surface, which is the upper layer of near-surface rocks in flat and hilly regions, and it is the upper layer of the sediment-ensemble situated on the undisturbed bedrock in mountainous areas. Considering its origin, these sediments could be autochthon or allochton. Soil forming is determinated, besides other factors (climate, elevation, vegetation, etc.), by the parent material, which has a crucial influence on the type, quality and fertility of soils through its mineral composition, physical and chemical characteristics. Agrogeological processes happen in the superficial loose sediments in mountainous areas, but the underlying solid rock (where on the surface or close to it, there is solid rock), has an effect on them. The plain and hilly regions covered by thick loose sediment and the areas build up by solid rock and covered with thinner loose sediment in mountainous areas should be searched separately. In plain areas the near-surface formations have to be studied as a whole down to the saturated zone, but at least to 10 m. In regions of mountain and mountain fronts, the thickness, the composition and genetics of the young unconsolidated sediments situated above the older solid rocks have a vital importance, and also the relations among the soils, soil forming sediments and the base rocks have to be understood.

  12. The Character and Formation of Elongated Depressions on the Upper Bulgarian Slope

    NASA Astrophysics Data System (ADS)

    Xu, Cuiling; Greinert, Jens; Haeckel, Matthias; Bialas, Jörg; Dimitrov, Lyubomir; Zhao, Guangtao

    2018-06-01

    Seafloor elongated depressions are indicators of gas seepage or slope instability. Here we report a sequence of slopeparallel elongated depressions that link to headwalls of sediment slides on upper slope. The depressions of about 250 m in width and several kilometers in length are areas of focused gas discharge indicated by bubble-release into the water column and methane enriched pore waters. Sparker seismic profiles running perpendicular and parallel to the coast, show gas migration pathways and trapped gas underneath these depressions with bright spots and seismic blanking. The data indicate that upward gas migration is the initial reason for fracturing sedimentary layers. In the top sediment where two young stages of landslides can be detected, the slopeparallel sediment weakening lengthens and deepens the surficial fractures, creating the elongated depressions in the seafloor supported by sediment erosion due to slope-parallel water currents.

  13. [Calculation of environmental dredging depth of heavy sediments in Zhushan Bay of Taihu Lake metal polluted].

    PubMed

    Jiang, Xia; Wang, Wen-Wen; Wang, Shu-Hang; Jin, Xiang-Can

    2012-04-01

    Horizontal distribution of heavy metals in surface sediments of Zhushan Bay was investigated, and core sediment samples were collected in the representative area. Core sediments were divided into oxide layer (A), polluted layer (B), upper polluted transition layer(C1), lower polluted transition layer(C2) and normal mud layer(D) from top to bottom. The change of total contents of Cr, Ni, Cu, Zn, As, Cd, Hg, Pb and contents of biological available Cr, Ni, Cu, Zn, As, Cd, Pb with depths were analyzed. Ecological risk assessment of heavy metals in sediments was done by potential ecological risk index method. At last, environmental dredging depth was calculated. The results shows that the contents of Cr, Ni, Cu, Zn, As, Cd, Hg, Pb are 30.56-216.58, 24.07-59.95, 16.71-140.30, 84.31-193.43, 3.39-22.30, 0.37-1.59, 0.00-0.80 and 9.67-99.35 mg x kg(-1), respectively. The average concentrations of Cr, Ni, Cu, Zn, As, Cd, Hg, Pb are 79.74, 37.74, 44.83, 122.39, 10.39, 0.77, 0.14 and 40.08 mg x kg(-1), respectively. Heavy metals in the surface sediments of Zhushan Bay mainly distribute in the west bank and the estuaries of Taige canal, Yincun Port, and Huanshan River,and Cd pollution is relatively serious. There is an accumulative effect of heavy metals in Zhushan Bay, and the contents of biological available metals decrease with depths. Ecological risk grades of Cd in layer A and B are high, and the comprehensive potential ecological risk grades of each layer are in middle or low. The environmental dredging layers are A and B, and the average dredging depth is 0.39 m.

  14. Resistivity profiling for mapping gravel layers that may control contaminant migration at the Amargosa Desert Research Site, Nevada

    USGS Publications Warehouse

    Lucius, Jeffrey E.; Abraham, Jared D.; Burton, Bethany L.

    2008-01-01

    Gaseous contaminants, including CFC 113, chloroform, and tritiated compounds, move preferentially in unsaturated subsurface gravel layers away from disposal trenches at a closed low-level radioactive waste-disposal facility in the Amargosa Desert about 17 kilometers south of Beatty, Nevada. Two distinct gravel layers are involved in contaminant transport: a thin, shallow layer between about 0.5 and 2.2 meters below the surface and a layer of variable thickness between about 15 and 30 meters below land surface. From 2003 to 2005, the U.S. Geological Survey used multielectrode DC and AC resistivity surveys to map these gravel layers. Previous core sampling indicates the fine-grained sediments generally have higher water content than the gravel layers or the sediments near the surface. The relatively higher electrical resistivity of the dry gravel layers, compared to that of the surrounding finer sediments, makes the gravel readily mappable using electrical resistivity profiling. The upper gravel layer is not easily distinguished from the very dry, fine-grained deposits at the surface. Two-dimensional resistivity models, however, clearly identify the resistive lower gravel layer, which is continuous near the facility except to the southeast. Multielectrode resistivity surveys provide a practical noninvasive method to image hydrogeologic features in the arid environment of the Amargosa Desert.

  15. Coupled geophysical characterization of shallow fluvio-clastic sediments in Agwagune, southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Akpan, Anthony E.; Ekwok, Stephen E.; Ebong, Ebong D.; George, Anthony M.; Okwueze, Emeka E.

    2018-07-01

    Geophysical investigation performed using electrical resistivity tomography (ERT), vertical electrical sounding (VES), seismic refraction (SRF) and ground penetrating radar (GPR) techniques were used to constrain and characterize shallow lithologic units in the Cross River bank (CRB) in southeastern Nigeria. Results show that the upper layer sediments comprise a 3-5-layered lithostratigraphic sequence with high clayey content. Around the Cross River bank (CRB), the top sediments consist of loose, silty and clayey sands with low resistivities (<150 Ωm) and low P-wave velocities (300-1000 m/s). These attenuating sediments have no reasonable continuity beyond the vicinity of the CRB. The low attenuating indurated silts/sands characterized by low resistivities (<25 Ωm) and high P-wave velocities (1000-2400 m/s) underlie the first layer around in the CRB. Localized microstructures (e.g., fractures) trending east-west, and saturated sand-filled channels truncate their lateral continuities. The lacustrine clays characterized by low resistivities (<15 Ωm) and high P-wave velocities (>2400 m/s) make up the third layer. The clayey sediments impede vertical percolation of groundwater forcing it to accumulate at the bottom of the second layer resulting in high static water levels of <3 m within the CRB and >5 m elsewhere. Hydraulic gradient in the Cross River bed (CRBD) and in the coastal groundwater drives groundwater flow into the CRBD through macropores. The sediments become unstable when these macropores become enlarged as more materials are continuously transmitted through them.

  16. Stable carbon and oxygen isotope record of central Lake Erie sediments

    USGS Publications Warehouse

    Tevesz, M.J.S.; Spongberg, A.L.; Fuller, J.A.

    1998-01-01

    Stable carbon and oxygen isotope data from mollusc aragonite extracted from sediment cores provide new information on the origin and history of sedimentation in the southwestern area of the central basin of Lake Erie. Sediments infilling the Sandusky subbasin consist of three lithologic units overlying glacial deposits. The lowest of these is a soft gray mud overlain by a shell hash layer containing Sphaerium striatinum fragments. A fluid mud unit caps the shell hash layer and extends upwards to the sediment-water interface. New stable isotope data suggest that the soft gray mud unit is of postglacial, rather than proglacial, origin. These data also suggest that the shell hash layer was derived from erosional winnowing of the underlying soft gray mud layer. This winnowing event may have occurred as a result of the Nipissing flood. The Pelee-Lorain moraine, which forms the eastern boundary of the Sandusky subbasin, is an elevated area of till capped by a sand deposit that originated as a beach. The presence of both the shell hash layer and relict beach deposit strengthens the interpretation that the Nipissing flood was a critical event in the development of the southwestern area of the central basin of Lake Erie. This event, which returned drainage from the upper lakes to the Lake Erie basin, was a dominant influence on regional stratigraphy, bathymetry, and depositional setting.

  17. Sedimentation History of Halfway Creek Marsh, Upper Mississippi River National Wildlife and Fish Refuge, Wisconsin, 1846-2006

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Knox, James C.; Schubauer-Berigan, Joseph P.

    2007-01-01

    The history of overbank sedimentation in the vicinity of Halfway Creek Marsh near La Crosse, Wis., was examined during 2005?06 by the U.S. Geological Survey and University of Wisconsin?Madison as part of a broader study of sediment and nutrient loadings to the Upper Mississippi River bottomlands by the U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, and U.S. Geological Survey. Historical sedimentation patterns and rates were interpreted from field-scale topographic surveys and sediment cores collected from the marsh and upstream flood plains. Historical maps and aerial photographs were used to establish the timing of disturbances and to document changes in channel patterns after Euro-American settlement (post 1846). Episodic overbank sedimentation patterns and rates were linked to watershed agricultural activity, large floods, artificial levee construction, channel alterations, and dam failures over the past 160 years. These forces affected sedimentation on and between levees, the development of alluvial fans and flood-plain splays, and the general pattern of flood-plain sedimentation through the upper and lower marsh. Historical overbank deposits, episodically deposited after about 1860, are as much as 6 feet thick in the upper marsh and as much as 4 feet thick in the lower marsh, representing a total volume of approximately 1.8 million cubic yards. These stratified deposits consist of multiple layers of silt and clay, very fine to fine sand, and some medium to very coarse sand. Coarse-grained deposits are associated with flood-plain splays caused by breaches in artificial levees during large floods. Estimated sedimentation rates were highest from 1919 to 1936 [26,890 cubic yards per year (yd3/yr)] and exceeded by about 30 times the 1846?85 rate of 920 yd3/yr and exceeded by 7 times the 1994?2006 rate of 3,740 yd3/yr. The 1994?2006 sedimentation rate was the lowest since Euro-American settlement, but natural levees along the 1994?2006 channel of Halfway Creek through the lower marsh continued to form and are currently (2006) about 1 foot higher than the surrounding marsh. Natural levee building in the lower marsh from 1994?2006 was accentuated by the lack of overbank sediment storage in the upper marsh. The historical storage of sediment in the upper and lower marsh affects modern streamflow and sediment transport processes of Halfway Creek and Sand Lake Coulee through the marsh, and it also affects marsh vegetation and wildlife habitat. Results from this investigation will help improve the understanding of how past overbank sedimentation patterns continue to influence modern and future water quality, sediment transport, nutrient loads, and water-related resources in riparian habitats common to the Upper Mississippi River National Wildlife and Fish Refuge.

  18. Release of Methane from Bering Sea Sediments During the Last Glacial Period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mea Cook; Lloyd Keigwin

    2007-11-30

    Several lines of evidence suggest that during times of elevated methane flux the sulfate-methane transition zone (SMTZ) was positioned near the sediment-water interface. We studied two cores (from 700 m and 1457 m water depth) from the Umnak Plateau region. Anomalously low d13C and high d18O in benthic and planktonic foraminifera in these cores are the consequence of diagenetic overgrowths of authigenic carbonates. There are multiple layers of authigenic-carbonate-rich sediment in these cores, and the stable isotope compositions of the carbonates are consistent with those formed during anaerobic oxidation of methane (AOM). The carbonate-rich layers are associated with biomarkers producedmore » by methane-oxidizing archaea, archaeol and glyceryl dibiphytanyl glyceryl tetraether (GDGT). The d13C of the archaeol and certain GDGTs are isotopically depleted. These carbonate- and AOM-biomarker-rich layers were emplaced in the SMTZ during episodes when there was a high flux of methane or methane-rich fluids upward in the sediment column. The sediment methane in the Umnak Plateau region appears to have been very dynamic during the glacial period, and interacted with the ocean-atmosphere system at millennial time scales. The upper-most carbonate-rich layers are in radiocarbon-dated sediment deposited during interstitials 2 and 3, 28-20 ka, and may be associated with the climate warming during this time.« less

  19. Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion

    NASA Astrophysics Data System (ADS)

    Maldonado, Sergio; Borthwick, Alistair G. L.

    2018-02-01

    We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119, 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.

  20. Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion.

    PubMed

    Maldonado, Sergio; Borthwick, Alistair G L

    2018-02-01

    We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119 , 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.

  1. Geochemical effects of rapid sedimentation in aquatic systems: Minimal diagenesis and the preservation of historical metal signatures

    USGS Publications Warehouse

    Callender, E.

    2000-01-01

    Rapid sedimentation exerts a pronounced influence on early sedimentary diagenesis in that there is insufficient time for a sediment particle to equilibrate in any one sediment layer before that layer may be displaced vertically by another layer. These sedimentation patterns are common in surface-water reservoirs whose sedimentation rates (1-10 cm yr-1) are several orders of magnitude greater than those for natural lakes (0.01-0.5 cm yr-1). Two examples of the effects of rapid sedimentation on geochemical metal signatures are presented here. Interstitial-water data (Fe) from two sites in the Cheyenne River Embayment of Lake Oahe on the Missouri River illustrate the effects of changing sedimentation rates on dissolved species. Rapid burial during high-flow yrs appears to limit early sedimentary diagenesis to aerobic respiration. Solid-phase metal data (Pb) from a site in Pueblo Reservoir on the upper Arkansas River in Colorado appear to record historical releases by flooding of abandoned mine sites upstream in Leadville, Colorado. Interstitial-water ammonia and ferrous Fe data indicate that at least one interval at depth in the sediment where solid metal concentrations peak is a zone of minimal diagenesis. The principal diagenetic reactions that occur in these sediments are aerobic respiration and the reduction of Mn and Fe oxides. Under slower sedimentation conditions, there is sufficient time for particulate organic matter to decompose and create a diagenetic environment where metal oxides may not be stable. The quasi-steady-state interstitial Fe profiles from Tidal Potomac River sediments are an example of such a situation. This occurs primarily because the residence time of particles in the surficial sediment column is long enough to allow benthic organisms and bacteria to perform their metabolic functions. When faster sedimentation prevails, there is less time for these metabolic reactions to occur since the organisms do not occupy a sediment layer for any length of time. Also, the quantity and quality of the organic matter input to the sediment layer is important in that reservoirs often receive more terrestrial organic matter than natural lakes and this terrestrial organic matter is generally more refractory than autochthonous aquatic organic matter.

  2. A bilayer model for bedload sediment transport as generalization of Exner models

    NASA Astrophysics Data System (ADS)

    Escalante, Cipriano; Fernandez-Nieto, Enrique; Morales de Luna, Tomas; Narbona Reina, Gladys

    2017-04-01

    Sediment can be transported in several ways by the action of a river. During low transport stages, particles move by sliding and rolling over the surface of the bed. This type of transport is usually called bedload transport. The usual approach to model these phenomena is to use the Saint-Venant-Exner model (SVE) which consists in a shallow water model coupled with a morphodynamical component for the bedload transport. The bedload transport depends on an empirical flux. Nevertheless, this approach presents some drawbacks, for instance, gravitational effects for bedload transport is neglected and the momentum equation for the sediment is missing. In this work we present a two-layer shallow water type model in order to better describe bedload transport. We consider an upper layer consisting in clear water and a lower layer which accounts for the sediment material. This allows to better describe the phenomena. The key point is the definition of the friction laws between the two layers. The model is a generalization of classic models as it allows to recover SVE system when the ratio between the hydrodynamic and morphodynamic time scales is small, as commonly done to derive SVE models.

  3. Methane Concentrations and Biogeochemistry in Lake Sediments from Stordalen Mire, Sub-Arctic Sweden

    NASA Astrophysics Data System (ADS)

    Halloran, M.; DeStasio, J.; Erickson, L.; Johnson, J. E.; Varner, R. K.; Setera, J.; Prado, M. F.; Wik, M.; Crill, P. M.

    2013-12-01

    Lake sediments are an important global carbon sink of both allochthonous and autochthonous inputs. However, lakes are also known to emit carbon in gaseous form, most often as methane (CH4) or carbon dioxide (CO2), which are potent greenhouse gases. As northern latitudes warm, it is increasingly important to understand these gases and the sediments that store them. In July of 2013 we took 48 cores at 16 sites throughout three lakes surrounding a mire underlain by degrading permafrost in sub-arctic Sweden. The goal was to characterize the sedimentology and geochemistry of the lake sediments to better understand the production, distribution, and flux of CO2 and CH4 from these lakes. Villasjön is a shallow lake less than 1.5 meters deep, Mellan Harrsjön has a maximum depth of 7 meters and is stream-fed, and Inre Harrsjön has a maximum depth of 5 meters and is connected to Mellan Harrsjön. Published radiocarbon dates suggest that all three lakes formed approximately 3400 years ago. At each sample site, we retrieved 2 to 4 cores from the lake bottom, approximately 40-80 cm in length. The cores were sub-sampled for measurements of bulk TOC, TC, TN, TS, and CaCO3 (by difference) using a CHNS Elemental Analyzer, and grain size using a laser particle size analyzer. Headspace CO2 and CH4 by gas chromatography and infrared gas analysis (IRGA) yielded production rates and CH4 sediment concentrations. Dissolved inorganic carbon (DIC) from porewater extractions were analyzed using IRGA and stable carbon isotopes of DIC were analyzed via a Quantum Cascade Laser. The recovered sediments in the cores from all three lakes were composed of three layers: an upper layer of organic rich sediment (30-40 cm thick), a middle transition layer of mixed organic and lithogenic materials (5-10 cm thick), and a deep layer of grey lithogenic clay with less organic carbon (of variable thickness). Preliminary results from the 12 Villasjön sites indicate that CH4 is present and produced from the organic-rich layer in the upper 20-40 cm of the sediment. TOC values in this lake range from <1 to 44 wt. %. The TOC maximum (approximately 20-40 wt. %) consistently occurred at the same depth as the methane maximum, centered at ~20 cm. A TOC minimum zone (approximately 0-5 wt. %) occurs from 35-80 cm. Particle size distributions in this lake are dominated by silt and sand size fractions (>4 um). Calcium carbonate (CaCO3) concentrations varied, but the maximum always occurred in the upper 20 cm of the core. Core sites with known high lake surface methane fluxes from bubble trap measurements also show high methane concentrations in the sediment, high DIC concentrations in the pore fluids, and δ 13C signatures of CO2 ranging from 0 to 10, consistent with methanogenesis. Similar results are expected from the integration of pending sediment methane profiles with these data from the other two lakes: Mellan Harrsjön and Inre Harrsjön. Future work, including 14C dating, microbial community profiling, and δ13C signatures of CH4 will yield more insight into the biogeochemical mechanisms that regulate sediment methane distributions. 13C isotopes of methane and DIC should indicate if methane consumption through AOM or diffusion is controlling its distribution.

  4. Numerical modelling of the role of salt in continental collision: An application to the southeast Zagros fold-and-thrust belt

    NASA Astrophysics Data System (ADS)

    Ghazian, Reza Khabbaz; Buiter, Susanne J. H.

    2014-09-01

    The Zagros fold-and-thrust belt formed in the collision of Arabia with Central Iran. Its sedimentary sequence is characterised by the presence of several weak layers that may control the style of folding and thrusting. We use 2-D thermo-mechanical models to investigate the role of salt in the southeast Zagros fold-and-thrust belt. We constrain the crustal and lithospheric thickness, sedimentary stratification, convergence velocity, and thermal structure of the models from available geological and geophysical data. We find that the thick basal layer of Hormuz salt in models on the scale of the upper-mantle decouples the overlying sediments from the basement and localises deformation in the sediments by trench-verging shear bands. In the collision stage of the models, basement dips with + 1° towards the trench. Including the basal Hormuz salt improves the fit of predicted topography to observed topography. We use the kinematic results and thermal structure of this large-scale model as the initial conditions of a series of upper-crustal-scale models. These models aim to investigate the effects of basal and intervening weak layers, salt strength, basal dip, and lateral salt distribution on deformation style of the simply folded Zagros. Our results show that in addition to the Hormuz salt at the base of the sedimentary cover, at least one intervening weak layer is required to initiate fold-dominated deformation in the southeast Zagros. We find that an upper-crustal-scale model, with a basal and three internal weak layers with viscosities between 5 × 1018 and 1019 Pa s, and a basement that dips + 1° towards the trench, best reproduces present-day topography and the regular folding of the sedimentary layers of the simply folded Zagros.

  5. Reflection of acoustic wave from the elastic seabed with an overlying gassy poroelastic layer

    NASA Astrophysics Data System (ADS)

    Chen, Weiyun; Wang, Zhihua; Zhao, Kai; Chen, Guoxing; Li, Xiaojun

    2015-10-01

    Based on the multiphase poroelasticity theory, the reflection characteristics of an obliquely incident acoustic wave upon a plane interface between overlying water and a gassy marine sediment layer with underlying elastic solid seabed are investigated. The sandwiched gassy layer is modelled as a porous material with finite thickness, which is saturated by two compressible and viscous fluids (liquid and gas). The closed-form expression for the amplitude ratio of the reflected wave, called reflection coefficient, is derived theoretically according to the boundary conditions at the upper and lower interfaces in our proposed model. Using numerical calculation, the influences of layer thickness, incident angle, wave frequency and liquid saturation of sandwiched porous layer on the reflection coefficient are analysed, respectively. It is revealed that the reflection coefficient is closely associated with incident angle and sandwiched layer thickness. Moreover, in different frequency ranges, the dependence of the wave reflection characteristics on moisture (or gas) variations in the intermediate marine sediment layer is distinguishing.

  6. Stratigraphy and paleoenvironment of Miocene phosphatic rocks in the East San Francisco Bay region, California

    USGS Publications Warehouse

    Hill, James M.

    1979-01-01

    A stratigraphic study of the Monterey Group in the East San Francisco Bay Region, California, indicates that a depositional basin began to subside in early to middle Miocene time. The Miocene sea transgressed from the west or southwest, and the area subsided to a possible water depth of 500 to 2,500 m. The Monterey Group within the study area is a time-transgressive sequence of six sandstone and shale formations. Stratigraphic cycles of interbedded sandstone and shale formations are related to the amount of terrigenous sediment input into the basin as well as the depositional environment. During periods of low terrigenous sedimentation, biogenetic sedimentation in the form of diatomite layers were interbedded with hemipelagic muds and thin turbidite sands. These diatom-rich sediments were probably deposited within the upper bathyal zone (180 to 500 m) and, during lithification, diagenetically altered to form siliceous shales and cherts. As terrigenous sedimentation increased, probably due to periodic uplift east of the study area, biogenetic sedimentation was masked until finer grained sediment at a lower rate of deposition reoccurred. As the basin filled and a higher energy environment prevailed; coarse-grained sediment was again deposited until a lower energy environment resumed. Three types of inorganic phosphate are present within the study area: nodular, Pelletal, and pebbles of sandy phosphatic mudstone. The nodular phosphate is associated with the siliceous shale formations and formed within diatomite layers before compaction and lithification. The other two types of phosphate are found within the sandstone formations and probably originated in a shallower, higher energy environment than the siliceous shales. Faulting was active during middle to late Miocene time. The change in stratigraphic thickness across the Mission fault is 350 m which may approximate the vertical (?) displacement along this fault. This displacement took place in middle to upper Miocene time and apparently caused erosion of the upper formations of the Monterey Group on the west side of the Mission fault before the Briones Formation was deposited in late Miocene time. Depositional thinning of the Monterey Group in the southern portion of the study area may imply that the Hayward and Calaveras faults were also active at this time.

  7. Sediment texture and metal contamination in the Venice Lagoon (Italy): A snapshot before the installation of the MOSE system

    NASA Astrophysics Data System (ADS)

    Zonta, Roberto; Botter, Margherita; Cassin, Daniele; Bellucci, Luca Giorgio; Pini, Roberto; Dominik, Janusz

    2018-05-01

    Sediments of the Venice Lagoon down to 50 cm depth were investigated to assess sediment texture and metal contamination status, before the construction and activation of the MOSE system, which is intended to prevent the periodical flood events affecting the lagoon and the city of Venice. 380 cores were collected in shallow-water areas of the lagoon, and analysed along their vertical profile to determine grain-size distribution and concentrations of some major and trace elements (Al, As, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn), total carbon and organic carbon. Radionuclide analyses (137Cs, 210Pb) were performed on 15 cores in an attempt to establish sediment chronology and determine radionuclide inventories in erosional and depositional areas. On the whole-lagoon scale, strong depletion of particles <31 μm in diameter (from medium silt to clay fractions) was observed in sediments down to 10 cm depth in comparison to deeper layers. This depletion characterised both erosional and depositional areas, and may be caused by increased water dynamics and resuspension of sediment due to anthropogenic activities. The apparent sediment accumulation rate determined with 210Pbxs in depositional areas was estimated at 0.2-0.4 cm y-1. In the majority of cores, 210Pbxs inventories were lower than expected from atmospheric fallout, suggesting its export along with fine particles. The different sediment characteristics in terms of grain-size distribution and organic carbon content observed in the upper layer with respect to the deeper ones reflect the modification of the sedimentary balance in recent years. The loss of fine particles, even from sediments in depositional areas of the northern part of the lagoon, may herald changes in local sediment texture leading to a further depletion of morphodiversity, which in turn may lead to the reduction or loss of important lagoon habitats. On the whole-lagoon scale, the prevalently lithogenic elements (Al, As, Cr, Fe, Mn, Ni) decreased towards the top of the cores, reflecting the depletion of fine particles in the upper sediment layer due to winnowing in non-confined lagoon areas. In contrast, partly anthropogenic elements (Cu, Hg, Pb, Zn) increased up to the subsurface sediment layers (5-10 and/or 10-20 cm) as an effect of increasing pollutant inputs until a certain time in the past. Enrichment Factors (EF) were calculated from 9 cores, comparing concentrations in the "pre-industrial" (>100 years ago) and recent (surface layer, 0-5 cm) sediments. The mostly lithogenic elements were not enriched (EF ˜ 1), whereas the partly anthropogenic elements showed slight (Cu and Pb, EF ˜ 1.2) to significant (Hg and Zn, EF ˜ 2) enrichment. The shallow waters on the landward side (particularly close to freshwater inputs), the area nearby the industrial district of Porto Marghera and a small zone adjacent to the city of Chioggia were identified as the main pollutant accumulation sites. Mercury was the only element potentially harmful for aquatic life. Its concentration in the biologically active surface sediment layer (0-5 cm) exceeded the NOAA Effects Range-Median (ERM) value in 27% of samples, corresponding to 20% of the shallow-water surface area. The collected data set represents a valuable reference for monitoring the impact of the construction and operation of the MOSE system on the sediment features of the Venice Lagoon.

  8. Modeling the transition between upper plane bed regime and sheet flow without an active layer formulation. Preliminary results.

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Hernandez Moreira, R. R.; Blom, A.

    2015-12-01

    A perusal of the literature on bedload transport revealed that, notwithstanding the large number of studies on bedform morphology performed in the past decades, the upper plane bed regime has not been thoroughly investigated and the distinction between the upper plane bed and sheet flow transport regimes is still poorly defined. Previous experimental work demonstrated that the upper plane bed regime is characterized by long wavelength and small amplitude bedforms that migrate downstream. These bedforms, however, were not observed in experiments on sheet flow transport suggesting that the upper plane bed and the sheet flow are two different regimes. We thus designed and performed experiments in a sediment feed flume in the hydraulic laboratory of the Department of Civil and Environmental Engineering at the University of South Carolina at Columbia to study the transition from upper plane bed to sheet flow regime. Periodic measurements of water surface and bed elevation, bedform geometry and thicknesses of the bedload layer were performed by eyes, and with cameras, movies and a system of six ultrasonic probes that record the variations of bed elevation at a point over time. We used the time series of bed elevations to determine the probability functions of bed elevation. These probability functions are implemented in a continuous model of river morphodynamics, i.e. a model that does not use the active layer approximation to describe the sediment fluxes between the bedload and the deposit and that should thus be able to capture the details of the vertical and streamwise variation of the deposit grain size distribution. This model is validated against the experimental results for the case of uniform material. We then use the validated model in the attempt to study if and how the spatial distribution of grain sizes in the deposit changes from upper plane bed regime to sheet flow and if these results are influenced by the imposed rates of base level rise.

  9. Characterization and migration of oil and solids in oily sludge during centrifugation.

    PubMed

    Wang, Jun; Han, Xu; Huang, Qunxing; Ma, Zengyi; Chi, Yong; Yan, Jianhua

    2018-05-01

    The migration behaviors of oil, water and solids in sludge during centrifugation were elaborated. Size distribution, surface topography and lypohydrophilic properties were studied in detail. The average size of solids was 61 μm in original sludge, 31 μm in upper layer and 235 μm in bottom layer. The result shows that solvent is essential to separate oil phase into molecular light and weight fractions during centrifugation. With solvent/oil ratio increases from 1:2, 1:1, 2:1 to 5:1, molecular weight in upper layer decreases from 1044, 1043, 1020 to 846 combined with that in bottom layer increases. A model was proposed to calculate the oil residue content in solid phases after sedimentation. The findings of this paper provide information for optimizing the oil recovery and clean treatment.

  10. Historic mass movements recorded in the sediments of Hallstätter See (Upper Austria) - natural hazards at a UNESCO World Cultural Heritage Site

    NASA Astrophysics Data System (ADS)

    Lauterbach, Stefan; Strasser, Michael; Tjallingii, Rik; Spötl, Christoph; Brauer, Achim

    2017-04-01

    Human activity associated with salt mining in Hallstatt (Upper Austria) can be traced back to the Neolithic and underground salt mining in the area is documented since the Middle Bronze Age. The cultural importance of this salt mining and the wealth of archaeological artefacts - particularly from the epoch of the Early Iron Age, for which Hallstatt became the eponym - has been recognized already 20 years ago by assigning the status of a UNESCO World Cultural Heritage Site to the Hallstatt area. Mining activity is well documented for prehistoric times and known to have been repeatedly affected by large mass movements, destroying mining facilities, for example, at the end of the Bronze Age and during the Late Iron Age. In contrast, evidence of mining activity in the Common Era until the late 13th century AD is scarce, which could be related to socio-economic changes as well as mass movement activity, possibly biasing the archaeological record. Within a project aiming at reconstructing past flood activity of the Traun River, a major tributary of the Danube, a ca. 16-m-long sediment core has been recovered from Hallstätter See. The sediments are continuously cm- to sub-mm-scale laminated, reflecting seasonally variable detrital input by the Traun River and the smaller tributaries. However, an outstanding feature of the sediment record are two meter-scale event layers. The upper one is characterized by a basal mass-transport deposit of 2.50 m thickness, containing folded laminated sediments, homogeneous sediments with liquefaction structures and large stones of up to 4 cm in diameter, which is overlain by a co-genetic turbidite of 1.50 m thickness. From the lower event layer only the topmost part of the turbiditic sequence was recovered, revealing a (minimum) thickness of 1.50 m. Based on their sedimentological characteristics, both event layers are interpreted as the subaqueous continuation of large-scale mass movements, which occurred during the last 2000 years and likely originated from the Plassen Massif where the Hallstatt salt mining area is located. This indicates that past mass movement activity not only threatened prehistoric salt mining, but repeatedly occurred during the Common Era, which could possibly explain the lack of archaeological evidence for mining activity between the Late Iron Age and the late 13th century AD.

  11. Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Winkler, Gerfried; Wagner, Thomas; Pauritsch, Marcus; Birk, Steffen; Kellerer-Pirklbauer, Andreas; Benischke, Ralf; Leis, Albrecht; Morawetz, Rainer; Schreilechner, Marcellus G.; Hergarten, Stefan

    2016-06-01

    More than 2,600 relict rock glaciers are known in the Austrian Alps but the knowledge of their hydraulic properties is severely limited. The relict Schöneben Rock Glacier (Niedere Tauern Range, Austria), with an extension of 0.17 km2, was investigated based on spring data (2006-2014) and seismic refraction survey. Spring-discharge hydrographs and natural and artificial tracer data suggest a heterogeneous aquifer with a layered internal structure for the relict rock glacier. The discharge behavior exhibits a fast and a delayed flow component. The spring discharge responds to recharge events within a few hours but a mean residence time of several months can also be observed. The internal structure of the rock glacier (up to several tens of meters thick) consists of: an upper blocky layer with a few meters of thickness, which lacks fine-grained sediments; a main middle layer with coarse and finer-grained sediments, allowing for fast flow; and an approximately 10-m-thick basal till layer as the main aquifer body responsible for the base flow. The base-flow component is controlled by (fine) sandy to silty sediments with low hydraulic conductivity and high storage capacity, exhibiting a difference in hydraulic conductivity to the upper layer of about three orders of magnitude. The high storage capacity of relict rock glaciers has an impact on water resources management in alpine catchments and potentially regulates the risk of natural hazards such as floods and related debris flows. Thus, the results highlight the importance of such aquifer systems in alpine catchments.

  12. Sedimentary record of sub-glacial outburst floods at Laurentian Fan

    NASA Astrophysics Data System (ADS)

    Leng, Wei; von Dobeneck, Tilo

    2016-04-01

    Large-scale glacial meltwater discharge could be widely recognized off the eastern Canadian continental margin. At Laurentian Fan, sub-glacial outburst floods eroded Permian-Carboniferous redbeds at Gulf of St. Lawrence and then delivered the reddish sediments by Laurentian Channel. Sedimentary record from four gravity cores (GeoB18514-2, 18515-1, 18516-2 and 18517-1) at the SW slope of the Grand Banks of Newfoundland revealed the major depositional processes since Heinrich event 2 (ca. 22 ka). In the cores, the upper thick Holocene olive-grey silty mud units overly IRD-rich Heinrich 1 layer, five reddish units are distinguished in the lower part. Reddish units get proportionally thinner along the SW slope at higher and more distal positions; instead, separating olive-grey layers get thicker with height and distance. Reddish and olive grey units have sharp boundaries and no signs of erosion. Mean grain size changes abruptly from coarse in grey layers to fine in reddish layers, terrigenous elements (as Al, K, Ti, Fe) and clays (Al/Si) are highly elevated in reddish layers and low in Heinrich layers, which are instead enriched in detrital continental carbonates. Both Heinrich layers and reddish layers have enhanced magnetic susceptibility, but Heinrich layer have higher ferromagnetic (SIRM) content (mafic rocks), while reddish layers have more hematite (HIRM). These five reddish layers differ from event to event, which seems to reflect different mixing ratios of event-related and background sedimentation. This mixing will allow estimating event-specific sedimentation rates. Using mixing ratio combined with 14C dating data could contribute to estimate the sedimentation rate and duration of outburst floods, which could help to build ice sheet retreat history and find the connection with paleoclimate changes.

  13. Metalliferous sediments from Eolo Seamount (Tyrrhenian Sea): Hydrothermal deposition and re-deposition in a zone of oxygen depletion

    USGS Publications Warehouse

    Dekov, V.M.; Kamenov, George D.; Savelli, C.; Stummeyer, Jens; Thiry, M.; Shanks, Wayne C.; Willingham, A.L.; Boycheva, T.B.; Rochette, P.; Kuzmann, E.; Fortin, D.; Vertes, A.

    2009-01-01

    A sediment core taken from the south-east slope of the Eolo Seamount is composed of alternating red-brown and light-brown to bluish-grey layers with signs of re-deposition in the middle-upper section. The red-brown layers are Fe-rich metalliferous sediments formed as a result of low-temperature (??? 77????C) hydrothermal discharge, whereas the bluish-grey layers most probably originated from background sedimentation of Al-rich detrital material. The metalliferous layers are composed mainly of Si-rich goethite containing some Al. Co-precipitation of hydrothermally released SiO44- and Fe2+ as amorphous or poorly crystalline Fe-Si-oxyhydroxides explains the high Si concentration in goethite. The elevated Al content of the goethite is fairly unusual, but reflects the extremely high background Al content of the Tyrrhenian seawater due to the high eolian terrigenous flux from the Sahara desert. The Sr and Nd isotope data suggest that the Eolo metalliferous sediments are the product of a 3-component mixture: hydrothermal fluid, seawater, and detrital material (Saharan dust and Aeolian Arc material). The enrichment in Fe, P, As, Mo, Cd, Be, Sb, W, Y, V, depletion in REE and transition elements (Cu, Co, Ni, Zn) and the REE distribution patterns support the low-temperature hydrothermal deposition of the metalliferous layers. The hydrothermal field is located in a seawater layer of relative O2 depletion, which led to a significant fractionation of the hydrothermally emitted Fe and Mn. Fe-oxyhydroxides precipitated immediately around the vents whereas Mn stayed in solution longer and the Mn-oxides precipitated higher up on the seamount slope in seawater with relatively higher O2 levels. High seismic activity led to sediment re-deposition and slumping of the Mn-rich layers down slope and mixing with the Fe-rich layers. ?? 2009 Elsevier B.V. All rights reserved.

  14. Ciliate diversity and distribution patterns in the sediments of a seamount and adjacent abyssal plains in the tropical Western Pacific Ocean.

    PubMed

    Zhao, Feng; Filker, Sabine; Stoeck, Thorsten; Xu, Kuidong

    2017-09-12

    Benthic ciliates and the environmental factors shaping their distribution are far from being completely understood. Likewise, deep-sea systems are amongst the least understood ecosystems on Earth. In this study, using high-throughput DNA sequencing, we investigated the diversity and community composition of benthic ciliates in different sediment layers of a seamount and an adjacent abyssal plain in the tropical Western Pacific Ocean with water depths ranging between 813 m and 4566 m. Statistical analyses were used to assess shifts in ciliate communities across vertical sediment gradients and water depth. Nine out of 12 ciliate classes were detected in the different sediment samples, with Litostomatea accounting for the most diverse group, followed by Plagiopylea and Oligohymenophorea. The novelty of ciliate genetic diversity was extremely high, with a mean similarity of 93.25% to previously described sequences. On a sediment depth gradient, ciliate community structure was more similar within the upper sediment layers (0-1 and 9-10 cm) compared to the lower sediment layers (19-20 and 29-30 cm) at each site. Some unknown ciliate taxa which were absent from the surface sediments were found in deeper sediments layers. On a water depth gradient, the proportion of unique OTUs was between 42.2% and 54.3%, and that of OTUs shared by all sites around 14%. However, alpha diversity of the different ciliate communities was relatively stable in the surface layers along the water depth gradient, and about 78% of the ciliate OTUs retrieved from the surface layer of the shallowest site were shared with the surface layers of sites deeper than 3800 m. Correlation analyses did not reveal any significant effects of measured environmental factors on ciliate community composition and structure. We revealed an obvious variation in ciliate community along a sediment depth gradient in the seamount and the adjacent abyssal plain and showed that water depth is a less important factor shaping ciliate distribution in deep-sea sediments unlike observed for benthic ciliates in shallow seafloors. Additionally, an extremely high genetic novelty of ciliate diversity was found in these habitats, which points to a hot spot for the discovery of new ciliate species.

  15. A method for the division of the conglomerate depositional cycle under Milankovitch cycles

    NASA Astrophysics Data System (ADS)

    Chen, Panpan; Fang, Nianqiao; Li, Cunlei; Liu, Jianmei

    2017-06-01

    The conglomerate layer at the upper section of the 4th member of the Shahejie formation ({{{{S}}}4}{{u}}) of the Yongan district at the Donying depression is a well-developed sedimentation of several periods. It lacks stable muddy layers and sophisticated classification of the sedimentation periods and the proportion of sedimentary layering in each period has long been a difficult task for geologists. In addressing this problem, this paper attempts to introduce the theory of climatic cycles driven by astronomical periods from astronomical stratigraphy on the basis of the characteristics of the sedimentation under the turbidity current in the region of study. Through studying the conditions for the formation of the conglomerate layer and the factors of control, we pinpoint the formation of the layer in chronology and differentiate the cycle interface and correlation in the same formation period. Milankovitch analysis is conducted on the sedimentation of the conglomerate layer in the region of study to determine if the stratigraphy cycle of the region is primarily controlled by the eccentricity cycle and calculate MSC1 and MSC2 thicknesses of 189.3 m and 78.05 m, respectively. Milankovitch theory is the primary tool used in the analysis, in conjunction with petrographic analysis. The stratum at the {{{{S}}}4}{{u}} is classified into four IV-grade sequences and 11 V-grade sequences. The information on the dominant cycle frequency is used for wave filtering of the well logs and to determine the significant Milankovitch wave log. With the data from this curve, we may compare the stratigraphy cycle with the characteristics of the standard cycle and classify and compare the sedimentation periods of the conglomerate layers in further detail.

  16. Shallow groundwater investigation using time-domain electromagnetic (TEM) method at Itay El-Baroud, Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Shaaban, H.; El-Qady, G.; Al-Sayed, E.; Ghazala, H.; Taha, A. I.

    2016-12-01

    The Nile Delta is one of the oldest known ancient delta, largest and most important depositional complex in the Mediterranean sedimentary basin. Furthermore, it is a unique site in Egypt that is suitable for accumulation and preservation of the Quaternary sediments. In this work we applied time-domain electromagnetic (TEM) method to investigate the Quaternary sediments sequence as well as detecting the groundwater aquifer in the area of study. A suite of 232 TEM sounding at 43 stations were carried out using a ;SIROTEM MK-3; time-domain electromagnetic system. A simple coincident loop configuration, in which the same loop transmits and receives signals, was employed with loop side length of 25 m. The 1-D modeling technique was applied to estimate the depth and the apparent resistivity of the interpreted geoelectrical data. Based on the interpretation of the acquired geophysical data, four geoelectric cross-sections were constructed. These sections show that the Upper Quaternary sequence consists of three geoelectric layers. The Holocene Nile mud is separated into two layers: the agricultural root zone (Layer 1) and thick water saturated mud (Layer 2). The Upper Pleistocene sandy aquifer (Layer 3) is very complicated non-linear boundary. This aquifer is the most important unit since it is considered as the main water bearing unit in the study area.

  17. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured in the experiment. The comprehensive scale of the Monterey Coordinated Canyon Experiment allows us to integrate sediment traps with ADCP instrument data and seafloor core samples, which provides important new data to constrain how, when, and what sediment is transported through submarine canyons and how this is archived in seafloor deposits.

  18. Mg/Ca of planktonic foraminifer Pulleniatina obliquiloculata as a thermocline temperature proxy: results from sediment trap experiments in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Sagawa, T.; Saito, T.; Irino, T.

    2017-12-01

    Multi-species approach of planktonic foraminiferal Mg/Ca thermometry has been applied to marine sediments to reconstruct past change of the upper ocean thermal structure. Depth of thermocline and thickness of mixed layer depth in the western equatorial Pacific are of particular interest in terms of the relationship between global climate and ocean heat content in that region. One of questions arising from this approach is which species and calibration are suitable for reconstructing thermocline temperature variations in the past. Knowledge about depth habitat and response of shell Mg/Ca to temperature change is essential to answer this question. Sediment trap experiment has great advantages that allow evaluating seasonal and inter-annual variation of depth habitat of planktonic foraminifera in natural environment. In this study, we analyzed stable isotopes and Mg/Ca of Pulleniatina obliquiloculata collected by two sediment traps moored on the equator in the western and central Pacific during 1999-2002. We estimated habitat depth by comparing the calcification temperature, which is calculated from oxygen isotope, and instrumental data collected by moored buoys in the studied region. The estimated habitat depth of P. obliquiloculata is 100-150 m, which corresponds to the upper thermocline in this region. The habitat depth in western site (175E) is slightly deeper than central Pacific site (160W), probably reflecting thicker mixed layer and deeper thermocline in the western site. Although relationship between Mg/Ca and δ18O-derived calcification temperature is not statistically significant, Mg/Ca values give reasonable temperatures for the upper thermocline when calculated using calibration of Anand et al. (2003). The results of this study confirms the potential of P. obliquiloculata Mg/Ca as a thermocline temperature proxy.

  19. Annually laminated lake sediments as recorders of flood events: evidence from combining monitoring and calibration

    NASA Astrophysics Data System (ADS)

    Kämpf, Lucas; Brauer, Achim; Mueller, Philip; Güntner, Andreas; Merz, Bruno

    2015-04-01

    The relation of changing climate and the occurrence of strong flood events has been controversially debated over the last years. One major limitation in this respect is the temporal extension of instrumental flood time series, rarely exceeding 50-100 years, which is too short to reflect the full range of natural climate variability in a region. Therefore, geoarchives are increasingly explored as natural flood recorders far beyond the range of instrumental flood time series. Annually laminated (varved) lake sediments provide particularly valuable archives since (i) lakes form ideal traps in the landscape continuously recording sediment flux from the catchment and (ii) individual flood events are recorded as detrital layers and can be dated with seasonal precision by varve counting. Despite the great potential of varved lake sediments for reconstructing long flood time series, there are still some confinements with respect to their interpretation due to a lack in understanding processes controlling the formation of detrital layers. For this purpose, we investigated the formation of detrital flood layers in Lake Mondsee (Upper Austria) in great detail by monitoring flood-related sediment flux and comparing detrital layers in sub-recent sediments with river runoff data. Sediment flux at the lake bottom was trapped over a three-year period (2011-2013) at two locations in Lake Mondsee, one located 0.9 km off the main inflow (proximal) and one in a more distal position at a distance of 2.8 km. The monitoring data include 26 floods of different amplitude (max. hourly discharge=10-110 cbm/s) which triggered variable fluxes of catchment sediment to the lake floor (4-760 g/(sqm*d)). The comparison of runoff and sediment data revealed empiric runoff thresholds for triggering significant detrital sediment influx to the proximal (20 cbm/s) and distal lake basin (30 cbm/s) and an exponential relation between runoff amplitude and the amount of deposited sediment. A succession of 20 sub-millimetre to maximum 8 mm thick flood-triggered detrital layers, deposited between 1976 and 2005, was detected in two varved surface sediment cores from the same locations as the sediment traps. Calibration of the detrital layer record with river runoff data revealed empirical thresholds for flood layer deposition. These thresholds are higher than those for trapped sediment flux but, similarly to the trap results, increasing from the proximal (50-60 cbm/s; daily mean=40 cbm/s) to the distal lake basin (80 cbm/s, 2 days>40 cbm/s). Three flood events above the threshold for detrital layer formation in the proximal and one in the distal lake basin were also recorded in the monitoring period. These events resulted in exceptional sediment transfer to the lake of more than 400 g/sqm at both sites, which is therefore interpreted as the minimum sediment amount for producing a visible detrital layer.

  20. Are the Element Budget and the Occurrence of Polymetallic Nodules influenced by Fluids Circulating through the Oceanic Crust or/and Sediments?

    NASA Astrophysics Data System (ADS)

    Heller, C.; Kuhn, T.

    2016-12-01

    Hydrothermal fluids can extract significant amounts of heat from oceanic lithosphere by lateral fluid flow through permeable basaltic crust of an age of up to 65 Ma. Fluid recharge and discharge occur at basement outcrops in between impermeable pelagic sediments. Recharge of oxic seawater causes upward oxygen diffusion into sediments overlying the permeable basalt in areas proximal to recharge sites. It is suggested that this oxygen have a strong impact on sediments and Mn nodules during fluid exposure time. The aim of this study is to investigate if and how fluid flow through oceanic crust influence the distribution and element budget of the Mn nodules. For that purpose, Mn nodules were examined which were collected during the research cruise SO240 in the equatorial NE Pacific at sites with and without faults in the upper basement and overlying sediments. Faults are thought to be preferred fluid pathways. Nodules were found on the sediment surface as well as in the sediment and consist of different nm- to µm-thick, dense and porous layers. The geochemical composition of bulk nodules and single nodule layers were determined by XRF, ICP-MS/OES and by high resolution analyses with EMPA and LA-ICP-MS. Dense layers have low Mn/Fe ratios (<4) and high concentrations of Co, Zr and REY, while porous layers are characterized by high Mn/Fe ratios (> 10) and high Ni+Cu and Li concentrations (Koschinsky et al., 2010; Kuhn et al., 2010). The different compositions depends on different formation processes of the layers. Dense layers are formed by element precipitation from oxygen rich seawater and/or pore water and are called hydrogenetic, while porous layers were formed by precipitation from almost oxygen-free (suboxic) pore water (Burns & Burns, 1978; Glasby, 2006) and are called diagenetic (Halbach et al., 1988). Preliminary results show that there are significant differences between the geochemical composition of nodules grown at sediment surface and those found within sediments. Compared to surface nodules, buried nodules are enriched in Co and W, but has lower concentration of Mo, Ba, Zn, Li. Distribution of Rare Earth Elements (REY) are also different. Especially, the element distribution in the bulk samples and the single layers of the buried nodules could be used to find a possible influence of circulating fluids on nodule formation.

  1. Ries Bunte Breccia revisited: Indications for the presence of water in Itzing and Otting drill cores and implications for the emplacement process

    NASA Astrophysics Data System (ADS)

    Pietrek, Alexa; Kenkmann, Thomas

    2016-07-01

    We reassessed two drill cores of the Bunte Breccia deposits of the Ries crater, Germany. The objectives of our study were the documentation of evidence for water in the Bunte Breccia, the evaluation of how that water influenced the emplacement processes, and from which preimpact water reservoir it was derived. The Bunte Breccia in both cores can be structured into a basal layer composed mainly of local substrate material, overlain by texturally and compositionally diverse, crater-derived breccia units. The basal layer is composed of the youngest sediments (Tertiary clays and Upper Jurassic limestone) and has a razor-sharp boundary to the upper breccia units, which are composed of older rocks of Upper Jurassic to Upper Triassic age. Sparse material exchange occurred between the basal layer and the rest of the Bunte Breccia. Fluids predominantly came from the Tertiary and the Upper Triassic sandstone formation. In the basal layer, Tertiary clays were subjected to intense, ductile deformation, indicating saturation with water. This suggests that water was mixed into the matrix, creating a fluidized basal layer with a strong shear localization. In the upper units, Upper Triassic sandstones are intensely deformed by granular flow. The texture requires that the rocks were disaggregated into granular sand. Vaporization of pore water probably aided fragmentation of these rocks. In the Otting core, hot suevite (T > 600 °C) covered the Bunte Breccia shortly after its emplacement. Vertically oriented gas escape pipes in suevite partly emanate directly at the contact to the Bunte Breccia. They indicate that the Bunte Breccia contained a substantial amount of water in the upper part that was vaporized and escaped through these vents.

  2. Model selection and Bayesian inference for high-resolution seabed reflection inversion.

    PubMed

    Dettmer, Jan; Dosso, Stan E; Holland, Charles W

    2009-02-01

    This paper applies Bayesian inference, including model selection and posterior parameter inference, to inversion of seabed reflection data to resolve sediment structure at a spatial scale below the pulse length of the acoustic source. A practical approach to model selection is used, employing the Bayesian information criterion to decide on the number of sediment layers needed to sufficiently fit the data while satisfying parsimony to avoid overparametrization. Posterior parameter inference is carried out using an efficient Metropolis-Hastings algorithm for high-dimensional models, and results are presented as marginal-probability depth distributions for sound velocity, density, and attenuation. The approach is applied to plane-wave reflection-coefficient inversion of single-bounce data collected on the Malta Plateau, Mediterranean Sea, which indicate complex fine structure close to the water-sediment interface. This fine structure is resolved in the geoacoustic inversion results in terms of four layers within the upper meter of sediments. The inversion results are in good agreement with parameter estimates from a gravity core taken at the experiment site.

  3. The effect of sediment thermal conductivity on vertical groundwater flux estimates

    NASA Astrophysics Data System (ADS)

    Sebok, Eva; Müller, Sascha; Engesgaard, Peter; Duque, Carlos

    2015-04-01

    The interaction between groundwater and surface water is of great importance both from ecological and water management perspective. The exchange fluxes are often estimated based on vertical temperature profiles taken from shallow sediments assuming a homogeneous standard value of sediment thermal conductivity. Here we report on a field investigation in a stream and in a fjord, where vertical profiles of sediment thermal conductivity and temperatures were measured in order to, (i) define the vertical variability in sediment thermal conductivity, (ii) quantify the effect of heterogeneity in sediment thermal conductivity on the estimated vertical groundwater fluxes. The study was carried out at field sites located in Ringkøbing fjord and Holtum stream in Western Denmark. Both locations have soft, sandy sediments with an upper organic layer at the fjord site. First 9 and 12 vertical sediment temperature profiles up to 0.5 m depth below the sediment bed were collected in the fjord and in the stream, respectively. Later sediment cores of 0.05 m diameter were removed at the location of the temperature profiles. Sediment thermal conductivity was measured in the sediment cores at 0.1 m intervals with a Decagon KD2 Pro device. A 1D flow and heat transport model (HydroGeoSphere) was set up and vertical groundwater fluxes were estimated based on the measured vertical sediment temperature profiles by coupling the model with PEST. To determine the effect of heterogeneity in sediment thermal conductivity on estimated vertical groundwater fluxes, the model was run by assigning (i) a homogeneous thermal conductivity for all sediment layers, calculated as the average sediment thermal conductivity of the profile, (ii) measured sediment thermal conductivities to the different model layers. The field survey showed that sediment thermal conductivity over a 0.5 m profile below the sediment bed is not uniform, having the largest variability in the fjord where organic sediments were also present. Using the measured sediment thermal conductivity for the different model layers instead of a homogeneous distribution did not result in a better fit between observed and simulated sediment temperature profiles. The estimated groundwater fluxes however were greatly affected by using the measured thermal conductivities resulting in changes of ± 45% in estimated vertical fluxes.

  4. An experimental study of the role of particle diffusive convection on the residence time of volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Deal, E.; Carazzo, G.; Jellinek, M.

    2013-12-01

    The longevity of volcanic ash clouds generated by explosive volcanic plumes is difficult to predict. Diffusive convective instabilities leading to the production of internal layering are known to affect the stability and longevity of these clouds, but the detailed mechanisms controlling particle dynamics and sedimentation are poorly understood. We present results from a series of analog experiments reproducing diffusive convection in a 2D (Hele-Shaw) geometry, which allow us to constrain conditions for layer formation, sedimentation regime and cloud residence time as a function of only the source conditions. We inject a turbulent particle-laden jet sideways into a tank containing a basal layer of salt water and an upper layer of fresh water, which ultimately spreads as a gravity current. After the injection is stopped, particles in suspension settle through the cloud to form particle boundary layers (PBL) at the cloud base. We vary the initial particle concentration of the plume and the injection velocity over a wide range of conditions to identify and characterize distinct regimes of sedimentation. Our experiments show that convective instabilities driven as a result of differing diffusivities of salt and particles lead to periodic layering over a wide range of conditions expected in nature. The flux of particles from layered clouds and the thicknesses of the layers are understood using classical theory for double diffusive convection adjusted for the hydrodynamic diffusion of particles. Although diffusive convection increases sedimentation rates for the smallest particles (<30 μm) its overall effect is to extend the cloud residence time to several hours by maintaining larger particles in suspension within the layers, which is several orders of magnitude longer than expected when considering individual settling rates.

  5. Some popular medicinal plants and diseases of the Upper Palaeolithic in Western Georgia.

    PubMed

    Martkoplishvili, Inga; Kvavadze, Eliso

    2015-05-26

    Palynological studies of cultural layers of cave sediments have been used in order to better understand traditional practices. The Upper Palaeolithic in Georgia (36,000-11,000 cal. BP) provides a rich source of such material. However, up to day from such sediments the identification of medicinal plants has hardly been achieved. Large quantities of pollen most notably from entomophilous taxa in fossil spectra can serve as a tool to identify traditionally important species. As these plants are used in modern popular medicine on the territory of Georgia (like Achillea millefolium L., Artemisia annua L., Artemisia absinthium L., Centaurea jacea L., Urtica dioica L.) can be served as an indirect evidence for their medicinal relevance from the Palaeolithic Period up to days. Their modern uses may point that the main diseases during the Upper Palaeolithic were the same as today. The Upper Palaeolithic sediments were studied palynologically come from four caves: Dzudzuana, Satsurblia, Kotias Klde and Bondi. Modern sediments were investigated from 6 caves. Fossil and modern samples were taken according to the standard procedure in palynology. The laboratory treatment was carried out as follows: first, 50g of the sample was boiled in 10% KOH. At the second stage, centrifuging of the material in cadmium liquid was performed. At the final stage, acetolysis treatment was used. Pollen of A. absinthium L. (Asteraceae), A. annua L. (Asteraceae), A. millefolium L. (Asteraceae), C. jacea L. (Asteraceae), and U. dioica L. (Urticaceae) are identified to species level. This species are not edible and are popular in present-day folk medicine. In the Upper Palaeolithic layers, significant amounts of studies species pollen were recorded in the cave, likely due to their flowering branches being brought in by humans for use. Detailed consideration of the pharmacological characteristics of the examined species showed that almost all of them have anti-inflammatory, antibacterial, antimicrobial and antipyretic activity. The fossil pollen complex of medicinal herbs, dominated by A. millefolium and Artemisia (A. annua and A. absinthium), suggests that the ancient population living in the studied caves could have been prone to malaria, rheumatism and gastrointestinal diseases. In the Upper Palaeolithic, the population inhabiting cave sites might have suffered from gout and callouses. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Constraining the velocity structure of the Juan de Fuca plate from ridge to trench with a 2D tomographic study of wide angle OBS data

    NASA Astrophysics Data System (ADS)

    Boulahanis, B.; Canales, J. P.; Carbotte, S. M.; Carton, H. D.; Han, S.; Nedimovic, M. R.

    2016-12-01

    We conduct a two-dimensional travel time tomography study of a cross-plate, 300-km long, ocean bottom seismometer (OBS) transect collected as part of the Ridge to Trench (R2T) program to investigate the structure, evolution and state of hydration of the Juan de Fuca (JdF) plate from the ridge axis to subduction at the Cascadia margin offshore Washington. Our study employs the methodology of Korenaga et al. (2000) to derive a P-wave velocity model using wide-angle data from 15 OBSs spaced on average 15 km apart, spanning from the Endeavour segment of the JdF ridge to the Cascadia accretionary prism. A top down modeling approach is employed, first assessing velocities of the sediment layer, then the crust, and finally the upper mantle; at each stage of the inversion we fix the structure of the overlaying layers. Quality of data fit is evaluated using the root mean square value of the difference between predicted and observed travel times normalized by pick uncertainty. Previous studies provide a well-resolved multi-channel seismic (MCS) reflection image of this transect (Han et al., 2016), affording good constraints of the location of basement and Moho reflectors while allowing for comparison of the relationship between velocities and crustal structure. MCS results along this transect suggest evidence of little bending faulting confined to the sediment and upper-middle crust. An initial velocity model of the sediment layer above igneous crust is constructed utilizing the MCS derived sediment velocities. A one-dimensional velocity starting model of the oceanic crust is generated using the results of Horning et al. (in press) from a quasi-parallel cross-plate transect also acquired as part of the R2T study. Seismic velocities are compared to predicted velocities for crustal and mantle lithologies at temperatures estimated from a plate-cooling model and are used to provide constraints on water contents in these layers.

  7. Paleopedological research of the dynamics alteration in environment of the Lover Volga region in the last macrocycle

    NASA Astrophysics Data System (ADS)

    Bagrova, Svetlana; Makeev, Alexander; Rusakov, Alexey; Yanina, Tatiana; Kurbanov, Redzhep

    2017-04-01

    Caspian Sea reflects in its development global climate changes, glacial-interglacial rhythms in Russian plains and mountain areas. It is stratigraphic region for drawing up a single stratigraphic and paleogeographic plan of the Upper Pleistocene of Northern Eurasia. To date, accumulated a considerable amount of material on the Quaternary history of Ponto-Caspian, based on stratigraphic, paleogeographic and geomorphological studies. However, paleopedological work in the region have been starting for the first time. Studying paleopedology in soil-sediment thickness have paramount importance, as they can reliably break down the steps of the surface on which stabilization was carried out paedogenesis with further sedimentation, and allow us to trace the stages of evolution of the environment of the region. The site (Srednyaya Akhtuba) located on the left bank of the Akhtuba River, 20 km from the Volzhsky city, the upper part of Lower Volga region. This marine terrace represented by 6 paedogenetic levels, including 7 soils (MIS1-MIS5) (Yanina, 2014) separated by sediments (precipitation) of different structure and genesis. The upper part of the section (0-150 cm) presented by a typical for the dry steppe area soil Kastanzem (WRB, 2014) (MIS1). Parent rock material is a great pack (>1m) of the Caspian marine sediments, represented by a series of layers of chocolate clays (MIS2) with interbedding of sands. Lower, is a pack (520-670 cm), formed during Atelian regression of the Caspian Sea (MIS3-MIS4), presented by one well-developed soil with truncated humus horizon and two loessic layers with signs of soil formation (rhizolithes, manganese nodule, cryogenesis structure and etc) MIS3 stage. The lower part of Atel-Ahtuba strata (910-1530 cm) is presented by carbonate loess without noticeable pedogenetic transformation. From a depth of 1530 cm begins thick layer of loess-soil series, presented by MIS5a-e Mezin pedocomplex, dedicated to the Late Khazar-Girkan transgression, with three well-preserved soils. The upper soil, Gleyic Phaeozem, has accretionary humus horizon (about 1 m), many krotovinas, and network of frost wedges 40-50 cm. Wedges start in the overlying Atel-Akhtuba loess layer indicating the beginning of the last glacial cycle (MIS4). The middle soil, Gleyic Chernozem, has first 5 cm humus horizon intermixed with Bg horizon of the upper soil (welded paleosol). Until the middle of the profile (1740 cm) are the end of the loess permafrost wedges. Gleyic features are due to seasonal overflooding. The lower soil of Mezin pedocomplex (MIS5e), Mollic Calcic Gleysol, formed in loess sediments accumulated during penultimate glaciation (MIS6) and has reworked upper boundary (10-13 cm), well-defined humus horizon with gley process. Three soils of Mezin pedocomplex have common features: semi terrestrial genesis with gleyic features due to long-term seasonal overflooding; well developed humus horizons and complex assemblage of carbonate neoformations, formed under steppe environment. Pedogenetic horizons serve as good stratigraphic markers that will help to correlate late Pleistocene soil-sedimentary sequences of the whole Caspian-Azov-Black sea region, East European Plain and link it with global stratigraphic schemes. Detailed analytical and further field studies are required to reveal further pedogenetic response to environmental changes in the area. Research was supported by Russian Science Foundation, project 14-17-00705

  8. Multivariate analysis and geochemical approach for assessment of metal pollution state in sediment cores.

    PubMed

    Jamshidi-Zanjani, Ahmad; Saeedi, Mohsen

    2017-07-01

    Vertical distribution of metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, Cd, and Li) in four sediment core samples (C 1 , C 2 , C 3 , and C 4 ) from Anzali international wetland located southwest of the Caspian Sea was examined. Background concentration of each metal was calculated according to different statistical approaches. The results of multivariate statistical analysis showed that Fe and Mn might have significant role in the fate of Ni and Zn in sediment core samples. Different sediment quality indexes were utilized to assess metal pollution in sediment cores. Moreover, a new sediment quality index named aggregative toxicity index (ATI) based on sediment quality guidelines (SQGs) was developed to assess the degree of metal toxicity in an aggregative manner. The increasing pattern of metal pollution and their toxicity degree in upper layers of core samples indicated increasing effects of anthropogenic sources in the study area.

  9. Flux and distribution of methane (CH4) in the Gunsan Basin of the southeastern Yellow Sea, off the Western Korea.

    PubMed

    Lee, Jun-Ho; Woo, Han Jun; Son, Seung-Kyu; Kim, Moonkoo; Lee, Dong-Hun; Tsunogai, Urumu; Jeong, Kap-Sik

    2018-04-16

    The flux and distribution of methane (CH 4 ) was investigated in the seawater column at 14 stations in the Gunsan Basin, the southeastern part of Yellow Sea from 2013 to 2015. Here CH 4 is concentrated 2.4-4.7 (3.4 ± 0.7) nM in the surface and 2.5-7.4 (5.2 ± 1.7) nM in the bottom layer. The CH 4 saturation ratios ranged from 65.5% to 295.5% (162.6 ± 68.7), comprising the mean sea-to-air CH 4 flux of 3.8 to 25.3 (15.6 ± 5.5) µM m -2 d -1 . Methane concentration was largely different in the upper and the lower seawater layers that is separated by the thermocline of which depth is variable (20-60 m) depending on the time of sampling. The concentration of seawater dissolved CH 4 is high between the bottom surface of the thermocline layer and the sea floor. Generally it tends to decrease from the south-westernmost part of the basin toward the west coast of Korea. This distribution pattern of CH 4 seems to result from the CH 4 supply by decomposition of organic matters produced in the upper seawater layer that is superimposed by the larger supply from the underlying sediment layer especially beneath the thermocline. The latter is manifested by ubiquitous CH 4 seeps from the seafloor sediments.

  10. Accumulation and persistence of chlorobiphenyls, organochlorine pesticides and faecal sterols at the Garroch Head sewage sludge disposal site, Firth of Clyde.

    PubMed

    Kelly, A G

    1995-01-01

    The sediment concentrations of organic carbon, faecal sterols, individual chlorobiphenyl congeners and organochlorine pesticides have been measured in seabed cores from the sewage sludge disposal area at Garroch Head in the Firth of Clyde. The measurements confirm the accumulative nature of the site with high levels of sedimentary faecal sterols (152 mg kg(-1) coprostanol). Levels of chlorobiphenyls, DDT compounds and dieldrin in surface sediment were elevated by factors of 12, 40 and 120, respectively, over those observed at a site remote from the effects of dumping. Total chlorobiphenyl levels of 515 microg kg(-1) Arochlor 1254 in surface sediment were comparable to levels found in other areas heavily contaminated with sewage sludge. The 20-cm depth of heavily sludge-contaminated sediment overlays a mixed sludge/basal sediment layer some 10 cm in depth. Levels of organochlorine contaminants were elevated to depths of 90 cm in the sediment, suggesting that the surface layer is a source of contaminants to the deeper sediment. Within the upper 15-20 cm sediment in the disposal area, chlorobiphenyls are conservative, the variation in their concentration with respect to depth being related to historical input. Lindane and possibly dieldrin, and hexachlorobenzene are not conservative. Faecal sterols are removed in sub-surface sediment, in contrast to conservative behaviour previously found at other sewage polluted sites.

  11. New insights into the paleolake sequence of Baumkirchen (Austria): multiple lake phases and a minor ice advance during MIS 4?

    NASA Astrophysics Data System (ADS)

    Barrett, Samuel; Starnberger, Reinhard; Spötl, Christoph; Brauer, Achim; Tjallingii, Rik; Dulski, Peter; Abfalterer, Christof

    2015-04-01

    The sequence of pre-LGM lacustrine sediments at Baumkirchen (Austria) provides a key record in Alpine Quaternary stratigraphy. These sediments from within the boundary of the Alps potentially provide unique insights into the regional paleoclimate. Recent drilling revealed at least ~250m (the base was not reached) of almost entirely mm- to cm-scale lacustrine sediments. The laminated sediments are comprised of alternations between clayey silt and event layers of medium silt to fine sand. The sequence is interrupted only by a short section of gravel supported in an unlaminated clay-rich matrix. Optically stimulated luminescence dating identifies two distinct sequences: the upper sequence spanning mid-late Marine Isotope Stage (MIS) 3 (~33 to ~45 ka BP), agreeing with existing calibrated radiocarbon ages, and the lower section dating to MIS 4 (~59 to ~73 ka BP). Whether the hiatus is an erosional unconformity, or if the sequences represent two separate lake phases is unclear. Although the precise location of the hiatus is hard to identify, the gravel-rich section lies at the very top of the lower sequence. Pebbles in these gravels are largely angular and contain a significant proportion of non-local, regional lithologies. Such gravels are absent in the remainder of the entire 250 m-thick sequence and hence suggest a unique event rather than e.g. an interfingering local delta gravel foresets with the basin sediments. The gravels are therefore likely to be ice-rafted debris from icebergs from nearby glaciers calving into the lake. This therefore represents the first sedimentological evidence of a MIS 4 ice advance in the Eastern Alps. X-ray fluorescence analysis (ITRAX core scanning) of event layers indicates a strong change in the geochemical composition from generally K, Zr and Ti-rich layers in the upper sequence to mainly Ca and/or Si-rich layers in the lower sequence. X-ray diffraction analysis shows the Ca and Si signals to be controlled by carbonate (both calcite and dolomite) and quartz, respectively. This suggests a change in dominant sediment source and may indicate a change in catchment or paleolake configuration, re-raising the long outstanding question of how the lake or lakes were dammed.

  12. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific.

    PubMed

    Deng, Yinan; Ren, Jiangbo; Guo, Qingjun; Cao, Jun; Wang, Haifeng; Liu, Chenhui

    2017-11-28

    Deep-sea sediments contain high concentrations of rare earth element (REE) which have been regarded as a huge potential resource. Understanding the marine REE cycle is important to reveal the mechanism of REE enrichment. In order to determine the geochemistry characteristics and migration processes of REE, seawater, porewater and sediment samples were systematically collected from the western Pacific for REE analysis. The results show a relatively flat REE pattern and the HREE (Heavy REE) enrichment in surface and deep seawater respectively. The HREE enrichment distribution patterns, low concentrations of Mn and Fe and negative Ce anomaly occur in the porewater, and high Mn/Al ratios and low U concentrations were observed in sediment, indicating oxic condition. LREE (Light REE) and MREE (Middle REE) enrichment in upper layer and depletion of MREE in deeper layer were shown in porewater profile. This study suggests that porewater flux in the western Pacific basin is a minor source of REEs to seawater, and abundant REEs are enriched in sediments, which is mainly caused by the extensive oxic condition, low sedimentation rate and strong adsorption capacity of sediments. Hence, the removal of REEs of porewater may result in widespread REE-rich sediments in the western Pacific basin.

  13. Sedimentation, bioturbation, and sedimentary fabric evolution on a modern mesotidal mudflat: A multi-tracer study of processes, rates, and scales

    NASA Astrophysics Data System (ADS)

    Bentley, Samuel J.; Swales, Andrew; Pyenson, Benjamin; Dawe, Justin

    2014-03-01

    A study of muddy tidal-flat sedimentation and bioturbation was undertaken in the Waitetuna Arm of Raglan Harbor, New Zealand, to evaluate the physical and biological processes that control cycling of sediment between the intertidal seabed and sediment-water interface, and also the formation of tidal flat sedimentary fabric and fine-scale stratigraphy. Cores were collected along an intertidal transect, and analyzed for sedimentary fabric, 210Pb and 7Be radiochemical distributions, and grain size. At the same locations, a new approach for time-series core-X-radiography study was undertaken (spanning 191 days), using magnetite-rich sand as a tracer for sedimentation and bioturbation processes in shallow tidal flat sediments. Sedimentary fabric consists of a shallow stratified layer overlying a deeper zone of intensely bioturbated shelly mud. Bioadvection mixes the deeper zone and contributes fine sediment to the surface stratified layer, via biodeposition. Physical resuspension and deposition of surface muds by wave and tidal flow are also likely contributors to formation of the surficial stratified layer, but physical stratification is not observed below this depth. The deliberate tracer study allowed calculation of bioadvection rates that control strata formation, and can be used to model diagenetic processes. Results suggest that the upper ˜15 cm of seabed can be fully mixed over timescales <1.75 y. Such mixing will erase pre-existing sedimentary fabric and transport buried sediment and chemical compounds back to the tidal-flat surface. Shallow biodiffusion also exists, but produces much slower and shallower mass transport. Best fits for 210Pb profiles using a diagenetic bioadvection/sedimentation model and independently measured tiered bioadvection rates suggest that sediment accumulation rates (SARs) on the tidal flat are ˜0.25 cm/y, near the low end of contemporary New Zealand muddy intertidal SARs. Frequent deposition and erosion of the surface layer demonstrates that long-term sediment accumulation captures only a small fraction of sediment deposited at any one time. Model results also suggest that our magnetite tracer method may slightly underestimate short-term shallow mixing rates (demonstrated by 7Be profiles), and slightly overestimate longer-term, deeper bioturbation rates (demonstrated by 210Pb profiles).

  14. Numerical Analysis of Ground-Water Flow and Salinity in the Ewa Area, Oahu, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Souza, William R.; Bolke, Edward I.; Bauer, Glenn R.

    1996-01-01

    The coastal plain in the Ewa area of southwestern Oahu, Hawaii, is part of a larger, nearly continuous sedimentary coastal plain along Oahu's southern coast. The coastal sediments are collectively known as caprock because they impede the free discharge of ground water from the underlying volcanic aquifers. The caprock is a layered sedimentary system consisting of interbedded marine and terrestrial sediments of both high and low permeability. Before sugarcane cultivation ended in late 1994, shallow ground water from the upper limestone unit, which is about 60 to 200 feet thick, was used primarily for irrigation of sugarcane. A cross-sectional ground-water flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in the Ewa area. Controls considered were: (1) overall caprock hydraulic conductivity, (2) stratigraphic variations of hydraulic conductivity in the caprock, and (3) recharge. In addition, the effects of a marina excavation were evaluated. Within the caprock, variations in hydraulic conductivity, caused by caprock stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of ground-water flow and the distribution of water levels and salinity. Model results also show that a reduction of recharge will result in increased salinity throughout the caprock with the greatest change in the upper limestone layer. In addition, the model indicates that excavation of an ocean marina will lower water levels in the upper limestone layer. Results of cross-sectional modeling confirm the general ground-water flow pattern that would be expected in the layered sedimentary system in the Ewa caprock. Ground-water flow is: (1) predominantly upward in the low-permeability sedimentary units, and (2) predominantly horizontal in the high-permeability sedimentary units.

  15. Methanogenesis in the sediment of the acidic Lake Caviahue in Argentina

    NASA Astrophysics Data System (ADS)

    Koschorreck, Matthias; Wendt-Potthoff, Katrin; Scharf, Burkhard; Richnow, Hans H.

    2008-12-01

    The biogeochemistry of methane in the sediments of Lake Caviahue was examined by geochemical analysis, microbial activity assays and isotopic analysis. The pH in the water column was 2.6 and increased up to a pH of 6 in the deeper sediment pore waters. The carbon isotope composition of CH 4 was between - 65 and - 70‰ which is indicative for the biological origin of the methane. The enrichment factor ɛ increased from - 46‰ in the upper sediment column to more than - 80 in the deeper sediment section suggesting a transition from acetoclastic methanogenesis to CO 2 reduction with depth. In the most acidic surface layer of the sediment (pH < 4) methanogenesis is inhibited as suggested by a linear CH 4 concentration profile, activity assays and MPN analysis. The CH 4 activity assays and the CH 4 profile indicate that methanogenesis in the sediment of Lake Caviahue was active below 40 cm depth. At that depth the pH was above 4 and sulfate reduction was sulfate limited. Methane was diffusing with a flux of 0.9 mmol m - 2 d - 1 to the sediment surface where it was probably oxidized. Methanogenesis contributed little to the sediments carbon budget and had no significant impact on lake water quality. The high biomass content of the sediment, which was probably caused by the last eruption of Copahue Volcano, supported high rates of sulfate reduction which probably raised the pH and created favorable conditions for methanogens in deeper sediment layers.

  16. Estimation of Nutrients Flux of Water-sediment Interface in the Chukchi Sea, the Western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, H.

    2016-02-01

    Nutrients regeneration in pore water is one of the important ways to supply nutrients of upper water column in the shelf. The pore water in sediment of the central Chukchi Sea continental shelf, showed a typical benthic distribution of nutrients at water-sediment interface, in where physical and bioturbation was weak. The nutrient samples in multi-tubular short column sediment and water column were obtained from the Forth Chinese National Arctic Research Expedition, to measure the nutrient concentrations of pore water, overlying water and water column. The results show that, the typical distribution can be separated into three layers. The first layer is the exponential increasing layer (I), in which the concentrations of nutrients increased rapidly with depth. Then was the steady layer (II), the sediment demineralization was equal to the nutrient transference and nutrients' concentrations were substantially constant at this stage. The third layer was a slowly descending layer (III), in which NO3- and PO43- were reduced by bacteria and lost oxygen ions due to organic materials degradation depleting oxygen. By a two-layer mode and the Fick's first law of diffusion, diffusive fluxes of silicate, phosphate and nitrate in R06 station of the Chukchi Sea shelf can be calculated, and the fluxes were 1.660 mmol/(m2 · d), 0.008 mmol/(m2 · d) and 0.117 mmol/(m2 · d), respectively. The diffusive fluxes of silicate for CC1, R06, C07 and S23 stations were 3.101 mmol/(m2 · d), 1.660 mmol/(m2 · d), 1.307 mmol/(m2 · d) and mmol/(m2 · d), respectively, which show obvious distribution characteristics with latitude. Distribution of N * in the pore water suggested that a strong denitrification process in sedimentary environment of the Chukchi Sea shelf, which is an important sink for nitrate.

  17. Molecular and stable isotopic evidence for the occurrence of nitrite-dependent anaerobic methane-oxidizing bacteria in the mangrove sediment of Zhangjiang Estuary, China.

    PubMed

    Zhang, Manping; Luo, Yi; Lin, Li'an; Lin, Xiaolan; Hetharua, Buce; Zhao, Weijun; Zhou, Mengkai; Zhan, Qing; Xu, Hong; Zheng, Tianling; Tian, Yun

    2018-03-01

    Nitrite-dependent anaerobic methane oxidation (n-damo), which is mediated by "Candidatus Methylomirabilis oxyfera-like" bacteria, is unique in linking the carbon and nitrogen cycles. However, the niche and activity of n-damo bacteria in the mangrove ecosystem have not been confirmed. Here, we report the occurrence of the n-damo process in the mangrove wetland of the Zhangjiang Estuary, China. The widespread occurrence of n-damo bacteria in mangrove wetland was confirmed using real-time quantitative polymerase chain reaction (qPCR) assay, which showed that the abundance of Methylomirabilis oxyfera-like bacterial 16S rRNA and pmoA genes ranged from 2.43 × 10 6 to 2.09 × 10 7 and 2.07 × 10 6 to 3.38 × 10 7 copies per gram of dry soil in the examined sediment cores. The highest amount of targeting genes was all detected in the upper layer (0-20 cm). Phylogenetic analyses of n-damo bacterial 16S rRNA and pmoA genes illustrated the depth-specific distribution and high diversity of n-damo bacteria in the mangrove wetland. Stable isotope experiments further confirmed the occurrence of n-damo in the examined mangrove sediments, and the potential n-damo rates ranged from 25.93 to 704.08 nmol CO 2 per gram of dry soil per day at different depths of the sediment cores, with the n-damo being more active in the upper layer of the mangrove sediments. These results illustrate the existence of active M. oxyfera-like bacteria and indicate that the n-damo process is a previously overlooked microbial methane sink in the mangrove wetlands.

  18. Extreme Events on a Low-Gradient River and Delta: Evidence for Sediment Mass Movements on the Subaqueous Delta and a Mechanism for Creating Hyperpycnal Flow onto the Shelf

    NASA Astrophysics Data System (ADS)

    Dellapenna, T. M.; Carlin, J. A.; Williams, J. R.

    2016-02-01

    The Brazos River empties into the Gulf of Mexico (GOM) forming a wave-influenced, muddy, subaqueous delta (SAD). Recent research in the estuarine reach of the river and on the SAD, however, found evidence for significant mass wasting of the delta-front and potential evidence of hyperpycnal flow, a processes typically associated with higher gradient and higher sediment yield rivers. The study used high-resolution geophysics on the SAD and water-column profiling in the lower river to investigate the transfer to and fate of fluvial sediment on the shelf. The SAD side scan mosaic combined with core data reveal that the eastern portion was dominated by exposed relict, consolidated sediment; an erosional scarp along the upper shoreface; and a thinning of the Holocene strata immediately downslope of the scarp. Holocene strata thickness increases into deeper water. These features suggest sediment mass wasting on the delta front. After rapidly prograding during the early and mid 20th century, reductions in sediment load due anthropogenic influences, and a shift in the primary depocenter lead to erosion on these abandoned portions of the delta. During an elevated fluvial discharge event, a >1 m thick fluid mud layer was found along a 6 km span of the river 2 km upstream from the mouth. The river's salt wedge was shown to inhibit sediment export from the river to the GOM, and facilitate deposition of mud in the lower river. We believe that the mud layer in the lower river builds during moderate and low discharge periods and remobilized during increased discharge, potentially resulting in hyperpyncnal flow to the shelf. We observed suspended sediment concentrations up to 100 g/l in the fluid mud layer during this event. While our observations did not capture the transition from fluid mud to hyperpycnal flow, we believe that with persistent increased discharge the fluid mud layer could transition to hyperpycnal flow.

  19. Geology and geologic history of the Moscow-Pullman basin, Idaho and Washington, from late Grande Ronde to late Saddle Mountains time

    USGS Publications Warehouse

    Bush, John H; Garwood, Dean L; Dunlap, Pamela

    2016-01-01

    The Moscow-Pullman basin, located on the eastern margin of the Columbia River flood basalt province, consists of a subsurface mosaic of interlayered Miocene sediments and lava flows of the Imnaha, Grande Ronde, Wanapum, and Saddle Mountains Basalts of the Columbia River Basalt Group. This sequence is ~1800 ft (550 m) thick in the east around Moscow, Idaho, and exceeds 2300 ft (700 m) in the west at Pullman, Washington. Most flows entered from the west into a topographic low, partially surrounded by steep mountainous terrain. These flows caused a rapid rise in base level and deposition of immature sediments. This field guide focuses on the upper Grande Ronde Basalt, Wanapum Basalt, and sediments of the Latah Formation.Late Grande Ronde flows terminated midway into the basin to begin the formation of a topographic high that now separates a thick sediment wedge of the Vantage Member to the east of the high from a thin layer to the west. Disrupted by lava flows, streams were pushed from a west-flowing direction to a north-northwest orientation and drained the basin through a gap between steptoes toward Palouse, Washington. Emplacement of the Roza flow of the Wanapum Basalt against the western side of the topographic high was instrumental in this process, plugging west-flowing drainages and increasing deposition of Vantage sediments east of the high. The overlying basalt of Lolo covered both the Roza flow and Vantage sediments, blocking all drainages, and was in turn covered by sediments interlayered with local Saddle Mountains Basalt flows. Reestablishment of west-flowing drainages has been slow.The uppermost Grande Ronde, the Vantage, and the Wanapum contain what is known as the upper aquifer. The water supply is controlled, in part, by thickness, composition, and distribution of the Vantage sediments. A buried channel of the Vantage likely connects the upper aquifer to Palouse, Washington, outside the basin. This field guide locates outcrops; relates them to stratigraphic well data; outlines paleogeographic basin evolution from late Grande Ronde to the present time; and notes structures, basin margin differences, and features that influence upper aquifer water supply.

  20. Role of the bottom sediments immediately beneath the lake water-groundwater interface in the transport and removal of cyanobacteria, cyanophage, and dissolved organic carbon during natural lake-bank filtration at a kettle pond subject to harmful algal blooms

    NASA Astrophysics Data System (ADS)

    Harvey, R. W.; Metge, D. W.; LeBlanc, D. R.; Underwood, J. C.; Aiken, G.; McCobb, T. D.; Jasperse, J.

    2015-12-01

    Bank filtration has proven to be a sustainable, cost-effective method of removing cyanobacteria and their harmful toxins from surface water during filtration through bottom and aquifer sediments. The biologically active layer of sediments immediately beneath the sediment-water interface (colmation layer) is believed to be particularly important in this process. An in situ experiment was conducted that involved assessing the transport behaviors of bromide (conservative tracer), Synechococcus sp. IU625 (cyanobacterium, 2.6 ± 0.2 µm), AS-1 (tailed cyanophages, 110 nm long), MS2 (coliphages, 26 nm diameter), and carboxylate-modified microspheres (1.7 µm diameter) introduced to the colmation layer using a bag-and-barrel (Lee-type) seepage meter. The constituents were monitored as they advected through the colmation layer and underlying aquifer sediments at Ashumet Pond in Cape Cod, MA, a mesotrophic kettle pond that recharges a portion of a sole-source, drinking water aquifer. Because the pond DOC includes the various cyanotoxins produced during harmful algal bloom senescence, the DOC and aforementioned colloids were tracked concomitantly. The tracer test constituents were monitored as they advected across the pond water-groundwater interface and through the underlying aquifer sediments under natural-gradient conditions past push-points samplers placed at ~30-cm intervals along a 1.2-m-long, diagonally downward flow path. More than 99% of the microspheres, IU625, MS2, AS-1, and ~42% of the pond DOC were removed in the colmation layer (upper 25 cm of poorly sorted bottom sediments) at two test locations characterized by dissimilar seepage rates (1.7 vs. 0.26 m d-1). Retention profiles in recovered core material indicated that >82% of the attached IU625 were in the top 3 cm of bottom sediments. The colmation layer was also responsible for rapid changes in the character of the DOC and was more effective (by 3 orders of magnitude) at removing microspheres than was the underlying 30-cm-long segment of sediment. A follow-up study conducted the following year at the same location demonstrated that removal of the top 5 cm of sediment resulted in a six-fold decrease in the efficiency of the near-surface bottom sediments for filtering out Synechococcus, cyanophage, and well-characterized microspheres.

  1. Clean-up and disposal process of polluted sediments from urban rivers.

    PubMed

    He, P J; Shao, L M; Gu, G W; Bian, C L; Xu, C

    2001-10-01

    In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.

  2. Sedimentary processes on the Storfjorden trough-mouth fan during last deglaciation phase: the role of subglacial meltwater plumes on continental margin sedimentation

    NASA Astrophysics Data System (ADS)

    Lucchi, Renata G.; Camerlenghi, Angelo; Colmenero-Hidalgo, Elena; Sierro, Francisco J.; Bárcena, Maria Angeles; Flores, José-Abel; Urgeles, Roger; Macrı, Patrizia; Sagnotti, Leonardo; Caburlotto, Andrea

    2010-05-01

    The continental margin of the Southern Storfjorden trough-mouth fan was investigated within the SVAIS project (BIO Hesperides cruise, August 2007) as a Spanish contribution to IPY Activity N. 367 (Neogene ice streams and sedimentary processes on high- latitude continental margins - NICE STREAMS). The objectives were to investigate the glacially-dominated late-Neogene-Quaternary sedimentary architecture of the NW Barents Sea continental margin and reconstruct its sedimentary system in response to natural climate change. The paleo-ice streams in Storfjorden had a small catchment area draining ice from the southern Spitsbergen and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. Here ground truthing recovered the last few thousands years sedimentary sequence thought to represent last deglaciation phase. Detailed palaeostratigraphic investigations together with paleomagnetic and rock magnetic analyses and AMS dating define the constraints for high-resolution inter-core correlation and dating. Most of the cores contain at the base gravity-mass deposits including debris flows and over-consolidated glacigenic diamicton. Mass deposits are overlain by an oxidized interval originated at the release and sink of fresh, cold and oxygenated melt-waters at the inception of the deglaciation phase. On the upper slope the oxidized interval is overlain by several meters of finely-stratified sediments composed of sandy-silt layers cyclically recurring within finer-grained laminated silty-clay sediments. Textural and compositional analyses suggest preferential deposition by settling from meltwater sediment-laden plumes (plumites) occurred during deglaciation with coarser layers representing episodes of subglacial meltwater discharge (glacial hyperpycnal flows) accompanying the ice streams retreat. The laminated sequence is truncated at uppermost part by a more recent gravity-mass deposit that possibly removed part of the younger sequence. In the deeper part of the slope the plumites consist of crudely laminated, terrigenous and almost barren sediments. Here the sedimentary sequence is topped by intensively bioturbated, bioclasts-bearing silty-clays representing the most recent interglacial sedimentation. On the continental shelf, the upper sedimentary sequence contains dispersed cm-thick bivalve's shells suggesting an oxygenated and nutrient-rich environment (interglacial) overlaying an interval of terrigenous, barren sediments (deglaciation). Here the short core's length suggests the presence of stiffer/coarser sediments at the base that could not be sampled. The seismic stratigraphy indicates that the slope is formed by alternating debris flow deposits and layered sediments corresponding into our cores to the fast-deposited, low-density, terrigenous plumites. Bathymetric and seismic data revealed the presence of widespread submarine landslides restricted to the southernmost part of Storfjorden continental slope. Geotechnical investigation are in progress in order to understand if such layered deposits can act on the slope as a possible preferential weak horizon favoring sediment failure.

  3. Mechanical Stability of Stratified Sediments along the upper continental Slope off Vesterålen, northern Norway - Insights from in situ CPTU Tests

    NASA Astrophysics Data System (ADS)

    Voelker, D.; Stegmann, S.; Kreiter, S.; L'Heureux, J. S.; Vanneste, M. W. B.; Baeten, N. J.; Knudsen, S.; Rise, L.; Longva, O.; Brendryen, J.; Haflidason, H.; Chand, S.; Mörz, T.; Kopf, A.

    2015-12-01

    High-resolution single channel-seismic data (3.5 kHz) reveal small-scale submarine landslide structures and superficial deformation features (e.g. tension cracks) along the gently dipping (3°) upper continental slope west of the Vesterålen Archipelago off northern Norway. Previous laboratory-based geotechnical studies attest that the slope is per sestable and that seismic events in an order of magnitude M5.7 may have triggered the slope sediments to fail. Here we present geotechnical in situ data (sedimentary strength, pore pressure), which were obtained with RV Poseidon in summer 2014 using the static CPTU system GOST. The CPTU system provided high-resolution geotechnical profiles of the uppermost sediments to a maximum penetration depth of ~ 20 m at six sites within the landslide features and beside them in undisturbed slope sediments as reference. The CPTU data reveal the occurrence of mechanically weaker zones (MWZ) by the drop of sedimentary strength. These zones are interbedded by coarser, more competent layers. The occurrence of sensitive fine-grained material may be responsible for the loss of strength in the deeper portion (appx. 12 to 18 m below seafloor). An 1D infinite pseudo-static stability analysis attests that the mechanically weaker zones (MWZ) correlate well with portions, where the Factor of Safety (FoS) ≤ 1 (meta-stable to unstable) indicates permanent deformation or failure in case additional dynamic load is induced by an earthquake. Thus, the mechanically weak layers can be considered as one important pre-condition for landslide activity. In conclusion, the integration of in situ CPTU data with geophysical data improves soil characterization and hence foster a better understanding of the pre-conditioning factors for slope instability at the upper continental slope off Vesterålen. Risk assessment for the present-day slope off Vesterålen is particularly crucial, because the opening of the region for offshore oil and gas exploration is controversially debated.

  4. Evaluation of a pumping test of the Snake River Plain aquifer using axial-flow numerical modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Gary S.; Frederick, David B.; Cosgrove, Donna M.

    2002-06-01

    The Snake River Plain aquifer in southeast Idaho is hosted in a thick sequence of layered basalts and interbedded sediments. The degree to which the layering impedes vertical flow has not been well understood, yet is a feature that may exert a substantial control on the movement of contaminants. An axial-flow numerical model, RADFLOW, was calibrated to pumping test data collected by a straddle-packer system deployed at 23 depth intervals in four observation wells to evaluate conceptual models and estimate properties of the Snake River Plain aquifer at the Idaho National Engineering and Environmental Laboratory. A delayed water-table response observed in intervals beneath a sediment interbed was best reproduced with a three-layer simulation. The results demonstrate the hydraulic significance of this interbed as a semi-confining layer. Vertical hydraulic conductivity of the sediment interbed was estimated to be about three orders of magnitude less than vertical hydraulic conductivity of the lower basalt and upper basalt units. The numerical model was capable of representing aquifer conceptual models that could not be represented with any single analytical technique. The model proved to be a useful tool for evaluating alternative conceptual models and estimating aquifer properties in this application.

  5. Dynamics of floodplain lakes in the Upper Amazon Basin during the late Holocene

    NASA Astrophysics Data System (ADS)

    Quintana-Cobo, Isabel; Moreira-Turcq, Patricia; Cordeiro, Renato C.; Aniceto, Keila; Crave, Alain; Fraizy, Pascal; Moreira, Luciane S.; Duarte Contrera, Julia Maria de Aguiar; Turcq, Bruno

    2018-01-01

    To better understand the impact of channel migration processes and climate change on the depositional dynamics of floodplain lakes of the upper Amazon Basin during the late Holocene, we collected three sediment cores from floodplain lakes of the Ucayali River and one from the Marañón River. The cores were dated with 14C, radiographed and described. Bulk density, grain size analysis and total organic carbon (TOC) were determined. The results show that sedimentation in Ucayali floodplain lakes was marked by variations during the late Holocene, with periods of intense hydrodynamic energy and abrupt accumulations, a gap in the record between about 2870 and 690 cal yr BP, and periods of more lacustrine conditions. These changes in sedimentation were associated with variations in the river's influence related to changes in its meandering course (2870 cal yr BP) and a period of severe flooding between 3550 and 3000 cal yr BP. Lake Lagarto on the Marañón River floodplain exhibits a different sedimentary environment of low hydrodynamics with palm trees and macrophytes. Apparently, the lake has not experienced intense migration processes during the last 600 cal yr BP (base of the core). Nevertheless, the river sediment flux to the lake was important from 600 to 500 cal yr BP, although it decreased thereafter until the present. This decrease in the mineral accumulation rate indicates a decrease in river discharge since 500 cal yr BP, which coincides with precipitation records from the central Andes. In the upper part of the three Ucayali floodplain cores, a 30- to 250-cm-thick layer of reworked sediments has been deposited since 1950 AD (post-bomb). In Lake Carmen, this layer is associated with invasion of the lake by the levee of a migrating meander of the Ucayali. In Lakes Hubos and La Moringa, however, the river is still far away and the deposition must be interpreted as the result of extreme flooding. The beginning of the Ucayali meander migration is dated back to 2000 AD, suggesting that these extreme floods could be very recent and linked to hydrologic extremes registered instrumentally in the Amazon Basin.

  6. The Saguenay Fjord, Quebec, Canada: Integrating marine geotechnical and geophysical data for spatial seismic slope stability and hazard assessment

    USGS Publications Warehouse

    Urgeles, R.; Locat, J.; Lee, H.J.; Martin, F.

    2002-01-01

    In 1996 a major flood occurred in the Saguenay region, Quebec, Canada, delivering several km3 of sediment to the Saguenay Fjord. Such sediments covered large areas of the, until then, largely contaminated fjord bottom, thus providing a natural capping layer. Recent swath bathymetry data have also shown that sediment landslides are widely present in the upper section of the Saguenay Fjord, and therefore, should a new event occur, it would probably expose the old contaminated sediments. Landslides in the Upper Saguenay Fjord are most probably due to earthquakes given its proximity to the Charlevoix seismic region and to that of the 1988 Saguenay earthquake. In consequence, this study tries to characterize the permanent ground deformations induced by different earthquake scenarios from which shallow sediment landslides could be triggered. The study follows a Newmark analysis in which, firstly, the seismic slope performance is assessed, secondly, the seismic hazard analyzed, and finally an evaluation of the seismic landslide hazard is made. The study is based on slope gradients obtained from EM1000 multibeam bathymetry data as well as water content and undrained shear strength measurements made in box and gravity cores. Ground motions integrating local site conditions were simulated using synthetic time histories. The study assumes the region of the 1988 Saguenay earthquake as the most likely source area for earthquakes capable of inducing large ground motions in the Upper Saguenay region. Accordingly, we have analyzed several shaking intensities to deduce that generalized sediment displacements will begin to occur when moment magnitudes exceed 6. Major displacements, failure, and subsequent landslides could occur only from earthquake moment magnitudes exceeding 6.75. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths

    PubMed Central

    Tenzer, R.; Gladkikh, V.

    2014-01-01

    We analyze the density distribution of marine sediments using density samples taken from 716 drill sites of the Deep Sea Drilling Project (DSDP). The samples taken within the upper stratigraphic layer exhibit a prevailing trend of the decreasing density with the increasing ocean depth (at a rate of −0.05 g/cm3 per 1 km). Our results confirm findings of published studies that the density nonlinearly increases with the increasing sediment depth due to compaction. We further establish a 3D density model of marine sediments and propose theoretical models of the ocean-sediment and sediment-bedrock density contrasts. The sediment density-depth equation approximates density samples with an average uncertainty of about 10% and better represents the density distribution especially at deeper sections of basin sediments than a uniform density model. The analysis of DSDP density data also reveals that the average density of marine sediments is 1.70 g/cm3 and the average density of the ocean bedrock is 2.9 g/cm3. PMID:24744686

  8. Historical trends of perfluoroalkyl substances (PFASs) in dated sediments from semi-enclosed bays of Korea.

    PubMed

    Shen, Aihua; Lee, Sunggyu; Ra, Kongtae; Suk, Dongwoo; Moon, Hyo-Bang

    2018-03-01

    Information is scarce on historical trends of perfluoroalkyl substances (PFASs) in the coastal environment. In this study, four sediment cores were collected from semi-enclosed bays of Korea to investigate the pollution history, contamination profiles, and environmental burden of PFASs. The total PFAS concentrations in sediment cores ranged from 6.61 to 821 pg/g dry weight. The highest concentrations of PFASs were found in surface or sub-surface sediments, indicating on-going contamination by PFASs. Historical trends in PFASs showed a clear increase since the 1980s, which was consistent with the global PFAS consumption pattern. Concentrations of PFASs were dependent on the organic carbon content in sediment cores. PFOS and longer-chain PFASs were predominant in all of the sediment cores. In particular, a large proportion of longer-chain PFASs was observed in the upper layers of the sediment cores from industrialized coastal regions. Inventories and fluxes estimated for PFASs were similar to those for PCDD/Fs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Impacts of the Changjiang diluted water on sinking processes of particulate organic matters in the East China Sea

    NASA Astrophysics Data System (ADS)

    Sukigara, Chiho; Mino, Yoshihisa; Tripathy, Sarat Chandra; Ishizaka, Joji; Matsuno, Takeshi

    2017-12-01

    Intensive surveys with repeated CTD and microstructure turbulent observations, water and sediments sampling as well as onboard incubation and sediment trap experiments were conducted to reveal the nitrogen budget in the center of the East China Sea (ECS) during July 2010 and 2011. Low salinity water (Changjiang Diluted Water, CDW) covered the study area in 2010, but not in 2011. Higher chlorophyll a (chl. a) concentration, primary productivity, and downward particle flux in the upper layer were observed in 2010 than those in 2011. Existence of the CDW resulted in a steep pycnocline and an associated subsurface chl. a maximum (SCM) layer directly beneath the CDW. From chemical analyses of particulate carbon and nitrogen contents and isotope ratios, it became apparent that the particles sunk out the euphotic zone in 2010 was primarily originated in the CDW layer and secondly in the SCM layer. Whereas, in 2011, sinking particles were originated in the surface layer but a part of them were decomposed in the bottom of pycnocline. Our findings indicate that the CDW would supply particles into the deep layer and contribute to the downward transport of materials and the efficiency of biological pump in the ECS.

  10. Modeling seasonal variability of carbonate system parameters at the sediment -water interface in the Baltic Sea (Gdansk Deep)

    NASA Astrophysics Data System (ADS)

    Protsenko, Elizaveta; Yakubov, Shamil; Lessin, Gennady; Yakushev, Evgeniy; Sokołowski, Adam

    2017-04-01

    A one-dimensional fully-coupled benthic pelagic biogeochemical model BROM (Bottom RedOx Model) was used for simulations of seasonal variability of biogeochemical parameters in the upper sediment, Bottom Boundary Layer and the water column in the Gdansk Deep of the Baltic Sea. This model represents key biogeochemical processes of transformation of C, N, P, Si, O, S, Mn, Fe and the processes of vertical transport in the water column and the sediments. The hydrophysical block of BROM was forced by the output calculated with model GETM (General Estuarine Transport Model). In this study we focused on parameters of carbonate system at Baltic Sea, and mainly on their distributions near the sea-water interface. For validating of BROM we used field data (concentrations of main nutrients at water column and porewater of upper sediment) from the Gulf of Gdansk. The model allowed us to simulate the baseline ranges of seasonal variability of pH, Alkalinity, TIC and calcite/aragonite saturation as well as vertical fluxes of carbon in a region potentially selected for the CCS storage. This work was supported by project EEA CO2MARINE and STEMM-CCS.

  11. Performance of double-layer biofilter packed with coal fly ash ceramic granules in treating highly polluted river water.

    PubMed

    Jing, Zhaoqian; Li, Yu-You; Cao, Shiwei; Liu, Yuyu

    2012-09-01

    To improve trickling filters' denitrification efficiency, a biofilter with a trickling upper layer and a submerged lower layer was developed and applied in treating highly polluted river water. It was packed with porous coal fly ash ceramic granules. Its start-up characteristics, influence of hydraulic loading rates (HLR), carbon/nitrogen (C/N) ratio and filter depth on pollutants removal were investigated. The results indicated this biofilter was started quickly in 16 days with river sediment as inoculum. Alternating nitrification and denitrification were achieved when water flowed downwards. COD and nitrogen were mainly removed in the upper layer and the lower layer, respectively. With HLR of 4.0-5.0m(3)/(m(2)d), chemical oxygen demand (COD), ammonium (NH(4)(+)-N) and total nitrogen (TN) in the effluent were below 50, 5 and 15 mg/L, respectively. This biofilter removed more than 80% of COD, 85% of NH(4)(+)-N and 60% of TN with C/N ratios ranging from 6 to 10. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Using Kettle Lake Records to Date and Interpret Holocene Ash Deposition in Upper Cook Inlet, Anchorage, AK

    NASA Astrophysics Data System (ADS)

    Werner, A.; Kathan, K. M.; Kaufman, D. S.; Hancock, J. R.; Waythomas, C. F.; Wallace, K. L.

    2004-12-01

    Fourteen sediment cores recovered from three kettle lakes (Goose, Little Campbell and Lorraine) near Anchorage, AK were used to document and date Holocene volcanic ash deposition in the upper Cook Inlet area. Small lakes (<0.5 km2) with small (<1.5 km2), low relief (<50 m), and well-vegetated drainage areas were selected in order to minimize ash remobilization by mass wasting and fluvial processes. The resulting stratigraphic records are interpreted as primary terpha-fall stratigraphies. Relative to the surrounding lacustrine sediments, the ash layers exhibit low organic-matter content (as determined by loss-on-ignition, LOI), high magnetic susceptibility (MS), increased density (X-radiographs), and bubble-wall glass shards. Some ash layers are up to 1 cm thick (macrotephra) consisting of pure glass, some occur as light bands, while others (microtephra) can only be located using non-visual techniques (MS, LOI and X-radiography). The thinnest microtephras observed occur either as discrete (1 mm) layers or diffuse laminations composed of tephra mixed with ambient lake sediment. Forty-five AMS C-14 dates on terrestrial macro fossils were used to constrain sedimentation-rate models for the cores, and to assign absolute ages to ash units. Comparison of inferred tephra ages corroborates our intra and inter basin stratigraphic correlations (+/- 200 yrs) based on physical and MS stratigraphy. Ten out of 12 macrotephras can be confidently correlated among all three lakes, whereas, two of the prominent tephras occur in one basin but not in the others. This suggests subtle differences in ash plume extents or differences in tephra preservation between lakes. A total of 24 Holocene ash units (12 macro and 12 micro) have been recognized and dated in the Anchorage area, suggesting an ash-fall frequency of about 2.4/1000 yrs. By comparison, historical records suggest more frequent ash-fall events (120/1000 yrs). Our data indicate that, either the ash layers are not consistently preserved in the kettle basins, or more likely, these records lack the resolution to differentiate closely spaced ash-fall events. Core top stratigraphies support the latter interpretation: The 10-12 historically observed ash-fall events are represented by two diffuse zones in the upper 15 cm of the cores. As such, ash records from small kettle lakes should be regarded as conservative statements of ash deposition. Further, ash plumes can have narrow geographic distributions and ash-fall thicknesses can change markedly over short distances. Therefore distal ash-fall stratigraphies underestimate eruption frequencies.

  13. The Effects of Rapid Sedimentation upon Continental Breakup: Kinematic and Thermal Modeling of the Salton Trough, Southern California, Based upon Recent Seismic Images

    NASA Astrophysics Data System (ADS)

    Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.

    2016-12-01

    The Salton Seismic Imaging Project (SSIP) illuminated crustal and upper mantle structure of the Salton Trough, the northern-most rift segment of the Gulf of California plate boundary. The crust is 17-18 km thick and homogeneous for 100 km in the plate motion direction. New crust is being created by distributed rift magmatism, Colorado River sedimentation, and metamorphism of the sediment. A 5 km thick pre-existing crustal layer may still exist. The crust has not broken apart to enable initiation of seafloor spreading. A one-dimensional time-dependent kinematic and thermal model was developed to simulate these observations. We assume that all crustal layers are stretched uniformly during extension. Distributed mafic magmatism and sedimentation are added simultaneously to compensate for the crustal thinning. The ratio of magmatism to sedimentation is constrained by the seismic observations. Heat is transported by thermal conduction and by advection due to stretching of the crust. A constant temperature boundary at the Moho is used to represent partial melting in the upper mantle. Assuming a constant plate motion rate, the zone of active rifting extends linearly with time. The crustal thickness and internal structure also evolve with time. The model constraints are the observed seismic structure and heat flow. The model rapidly reaches quasi-steady state, and could continue for many millions of years. The observed seismic structure and heat flow are reproduced after 3 Myr. The yield strength profile calculated from lithology and model temperature indicates that ductile deformation in the middle and lower crust dominates the crustal rheology. Rapid sedimentation delays crustal breakup and the initiation of seafloor spreading by maintaining the thickness of the crust and keeping it predominantly ductile. This process probably occurs wherever a large river flows into an active rift driven by far-field extension. It may have built passive margins in many locations globally, such as the Gulf of Mexico. This type of passive margin consists of mostly new crust created by magmatism and metamorphism of sediment. Along such margins, metamorphosed sediment could be misinterpreted as stretched pre-existing continental crust.

  14. The modern Kaoping transient fan offshore SW Taiwan: Morphotectonics and development

    NASA Astrophysics Data System (ADS)

    Hsiung, Kan-Hsi; Yu, Ho-Shing; Chiang, Cheng-Shing

    2018-01-01

    Using bathymetry and seismic reflection profiles, this study examined and determined the transient nature of the Kaoping Fan located in the topographically complex slope offshore southwest Taiwan. Kaoping Fan is located west of the lower reach of the Kaoping Canyon at the lower Kaoping Slope, ranging from 2,200 to 3,000 m water depth, and has a relatively small areal extent restricted in the topographic lows confined by structural highs due to mud diapiric uplifting and thrust faulting. Kaoping Fan shows an asymmetrical triangular fan-shaped bathymetric feature elongated in an NW-SE direction but with a strong skew toward the east. The fan deposits consist of three main seismic facies: layered high-amplitude reflections in the upper section and stratified, parallel to sub-parallel low-amplitude reflections with variable continuity and channel fill facies in the lower section. In the absence of ground-truthing from core data, the seismic patterns suggest that the Kaoping Fan recorded the onset of channelized and over-bank deposits in the lower part and layered turbidite facies in the upper part subsequently. The development of the Kaoping Fan can be divided into three stages in terms of canyon activities and fan-feeding processes. Initially, Kaoping Fan was mainly fed by a point sediment source at the apex of the fan. Secondly, Kaoping Fan was maintained as a slope fan, mainly fed laterally by over-spilled sediments from the canyon. Finally, the Kaoping Canyon completely passes through the Kaoping Fan and supplies over-spilled sediments laterally, forming a transient fan with canyon incision and sediment by-passing. The accumulation of sediments and the growth of Kaoping Fan are primarily controlled by inherited complex paleo-topography and the evolution of Kaoping Canyon. The sediment delivery system of Kaoping Fan is characterized by lateral supply of over-spilling sediment flows and sediments bypassing to and beyond the base of slope. The Kaoping Fan together with the ponded Fangliao Fan in the topographically complex Kaoping Slope can be used as a type model for evaluating the topographic effects on the development of submarine fans on complex slopes in general.

  15. Short-term environmental impact of clam dredging in coastal waters (south of Portugal): chemical disturbance and subsequent recovery of seabed.

    PubMed

    Falcão, M; Gaspar, M B; Caetano, M; Santos, M N; Vale, C

    2003-12-01

    The physical and chemical changes in sediment and near bottom water caused by clam dredging were examined during July and September 1999, at two locations Vilamoura (VL) and Armona (AR), south coast of Portugal. Sediment cores and near bottom water were collected simultaneously before dredging (control samples) and within short time intervals (min-h) after dredging. After dredging operations, microphytobenthos coming from the path were accumulated in the re-worked sediment (ridge). Chlorophyll a in superficial sediment increased from 1.2 microg x g(-1) before dredging to 1.7 microg x g(-1) after dredging and these higher values remained for a few hours. However, the expected increase of chlorophyll a in near bottom water due to re-suspension was not observed. After sediment disturbance an instantaneous sorption of phosphorus onto iron oxides occurred in the upper sediment layers (from 2 to 3 micromol x g(-1) before dredging to 4-5 micromol x g(-1) after dredging). A microcosm experiment showed that after sediment disturbance HPO(4)(2-) dissolved in pore water decreased from 40 to 10 microM being simultaneously sorbed onto iron oxides formed in the top layer of sediment. The ammonium, nitrates, organic nitrogen, phosphate and silicate dissolved in pore water decreased immediately after dredging activity and simultaneously an increase in near bottom water was sporadically observed. Generally, the re-establishment of seabed was reached within a short time (min-h), at both stations (VL and AR).

  16. Microbial abundance in the deep subsurface of the Chesapeake Bay impact crater: Relationship to lithology and impact processes

    USGS Publications Warehouse

    Cockell, Charles S.; Gronstal, Aaron L.; Voytek, Mary A.; Kirshtein, Julie D.; Finster, Kai; Sanford, Ward E.; Glamoclija, Mihaela; Gohn, Gregroy S.; Powars, David S.; Horton, J. Wright

    2009-01-01

    Asteroid and comet impact events are known to cause profound disruption to surface ecosystems. The aseptic collection of samples throughout a 1.76-km-deep set of cores recovered from the deep subsurface of the Chesapeake Bay impact structure has allowed the study of the subsurface biosphere in a region disrupted by an impactor. Microbiological enumerations suggest the presence of three major microbiological zones. The upper zone (127–867 m) is characterized by a logarithmic decline in microbial abundance from the surface through the postimpact section of Miocene to Upper Eocene marine sediments and across the transition into the upper layers of the impact tsunami resurge sediments and sediment megablocks. In the middle zone (867–1397 m) microbial abundances are below detection. This zone is predominantly quartz sand, primarily composed of boulders and blocks, and it may have been mostly sterilized by the thermal pulse delivered during impact. No samples were collected from the large granite block (1096–1371 m). The lowest zone (below 1397 m) of increasing microbial abundance coincides with a region of heavily impact-fractured, hydraulically conductive suevite and fractured schist. These zones correspond to lithologies influenced by impact processes. Our results yield insights into the influence of impacts on the deep subsurface biosphere.

  17. First findings of dinocysts in the upper Oligocene Turtas formation in Southern Tyumen oblast (West Siberia)

    NASA Astrophysics Data System (ADS)

    Kuzmina, O. B.; Shurygin, B. N.

    2016-04-01

    A new occurrence of dinocysts Pseudokomewuia in continental Cenosoic (Oligocene-Miocene) rocks of the West Siberian plain is identified. A complex of palynomorphs with dominant microphytoplankton (dinocysts) was found for the first time in the lacustrine-marsh sediments of the south of Tyumen oblast. The variable composition of the complex with Pseudokomewuia aff. laevigata He and Pseudokomewuia aff. granulata He species is traced upward through the section. The layers that correspond to the maximum abundance of Pseudokomewuia (akme) are distinguished and correlated with sections studied previously, which are located in the Barabinsk lithofacial region. Sediments with dinocysts are compared with sediments of the same age from North America, Northern Europe, and Southern China.

  18. Sedimentation in Lake Elgygytgyn, NE Russia, during the past 340.000 years

    NASA Astrophysics Data System (ADS)

    Juschus, O.; Melles, M.; Wennrich, V.; Nowaczyk, N.; Brigham-Grette, J.; Minyuk, P.

    2009-12-01

    In spring 2009, an ICDP drilling operation on Lake Elgygytgyn, located in a 3.6 Myr old meteorite impact crater in NE Siberia, penetrated 312 m of lake sediments above a suevite layer and brecciated bedrock. In the uppermost ca. 140 m, the lake sediments according to on-site core descriptions and susceptibility measurements are comparable to those occurring in up to 16.0 m long sediment cores from the central lake part, which were recovered and investigated within the site survey for the drilling project. Assuming comparable sedimentation rates, the upper 80 m of the sediment record may represent the depositional history during the past ca. 3.0 Myr. This poster summarizes the results thus far available from the upper 16 m, in order to illustrate the potential the drilled upper lake sediment record has for reconstructing the environmental and climatic history of the terrestrial Arctic during the Quaternary. Besides two volcanic ash layers and a number of fine-grained turbidites, by far most of the sediments in the central part of Lake Elgygytgyn originate from fluvial and eolian input, and from the biological production in the lake. These pelagic sediments can be distinguished into four depositional units of contrasting lithological and biogeochemical composition, reflecting past environmental conditions associated with relatively warm, peak warm, cold and dry, and cold but more moist climate modes. A relatively warm climate, resulting in complete summer melt of the lake ice cover and seasonal mixing of the water column, prevailed during the Holocene and Marine Isotope Stages (MIS) 3, 5.1 - 5.3, 6.1, 6.3, 6.5, 7.1 - 7.3, 7.5, 8.1, 8.3 and 9.1. MIS 5.5 (Eemian) and 9.5 were characterized by significantly enhanced aquatic primary production and organic matter supply from the catchment, indicating peak warm conditions. During MIS 2, 5.4, 6.2, 6.6, 8.2, 8.4, and 10 the climate was cold and dry, leading to perennial lake ice cover, little regional snowfall, and a stagnant water body. A cold but more moist climate during most of MIS 4, 6.4 and 7.4 is thought to have produced more snow cover on the perennial ice, strongly reducing light penetration and biogenic primary production in the lake. While the cold-warm pattern during the past three glacial-interglacial cycles is probably controlled by changes in regional summer insolation, differences in the intensity of the warm phases and in the degree of aridity (changing snowfall) during cold phases likely were due to changes in atmospheric circulation patterns.

  19. Detrital magnetization of laboratory-redeposited sediments

    NASA Astrophysics Data System (ADS)

    Valet, Jean-Pierre; Tanty, Cyrielle; Carlut, Julie

    2017-07-01

    We conducted several redeposition experiments in laboratory using natural and artificial sediments in order to investigate the role of grain size and lithology on sedimentary remanence acquisition. The role of grain size was investigated by using sorted sediment from natural turbidites. Taking advantage of the magnetic grain size distribution within turbidites, we compared redeposition experiments performed with coarse magnetic grains taken from the bottom layers of a turbidite with fine grains from the upper layers of the same turbidite. In order to document the magnetization acquired for increasing sediment concentrations that is analogous to increasing depth in the sediment column, the samples were frozen at temperatures between -5 and -10 °C. Magnetization acquisition behaved similarly in both situations, so that little smearing of the palaeomagnetic signal should be linked to grain size variability within this context. Other series of experiments were aimed at investigating the influence of lithology. We used clay or carbonated sediments that were combined with magnetic separates from basaltic rocks or with single-domain biogenic magnetite. The experiments revealed that the magnetization responded differently with clay and carbonates. Clay rapidly inhibited alignment of magnetic grains at low concentrations and, therefore, significant magnetization lock-in occurred despite large water contents, perhaps even within the bioturbated layer. Extension of the process over a deeper interval contributes to smear the geomagnetic signal and therefore to alter the palaeomagnetic record. In carbonates, the magnetization was acquired within a narrow window of 45-50 per cent sediment concentration, therefore, little smearing of the geomagnetic signal can be expected. Finally, experiments on carbonate sediments and biogenic magnetite with increasing field intensities indicate that magnetization acquisition is linear with respect to field intensity. Altogether, the results suggest that sediments with dominant carbonate content should be favoured for records of geomagnetic field changes provided that the minor clay fraction does not vary excessively. They confirm the advantage of using cultures of magnetotactic bacteria for redeposition experiments.

  20. A bench-scale assessment for phosphorus release control of sediment by an oxygen-releasing compound (ORC).

    PubMed

    Yang, Jie; Lin, Feng K; Yang, Lei; Hua, Dan Y

    2015-01-01

    The effects of oxygen-releasing compound (ORC) on the control of phosphorus (P) release as well as the spatial and temporal distribution of P fractions in sediment were studied through a bench-scale test. An ORC with an extended oxygen-releasing capacity was prepared. The results of the oxygen-releasing test showed that the ORC provided a prolonged period of oxygen release with a highly effective oxygen content of 60.6% when compared with powdery CaO2. In the bench-scale test, an ORC dose of 180 g·m(-2) provided a higher inhibition efficiency for P release within 50 days. With the application of the ORC, the dissolved oxygen (DO) concentration and redox potential (ORP) of the overlying water were notably improved, and the dissolved total phosphorus (DTP) was maintained below 0.689 mg·L(-1) compared to 2.906 mg·L(-1) without the ORC treatment. According to the P fractions distribution, the summation of all detectable P fractions in each sediment layer exhibited an enhanced accumulation tendency with the application of ORC. Higher phosphorus retention efficiencies were observed in the second and third layers of sediment from days 10 to 20 with the ORC. Phosphorus was trapped mainly in the form of iron bound P (Fe-P) and organically bound P (O-P) in sediment with the ORC, whereas the effects of the ORC on exchangeable P (EX-P), apatite-associated P (A-P) and detrital P (De-P) in the sediment sample were not significant. The microbial activities of the sediment samples demonstrated that both the dehydrogenase activity (DHA) and alkaline phosphatase activity (APA) in the upper sediment layer increased with the ORC treatment, which indicated that the mineralization of P was accelerated and the microbial biomass was increased. As the accumulation of P suppressed the release of P, the sediment exhibited an increased P retention efficiency with the application of the ORC.

  1. Mediterranean undercurrent sandy contourites, Gulf of Cadiz, Spain

    USGS Publications Warehouse

    Hans, Nelson C.; Baraza, J.; Maldonado, A.

    1993-01-01

    The Pliocene-Quaternary pattern of contourite deposits on the eastern Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are perpendicular to slope contours and the Mediterranean undercurrent that has flowed northwestward parallel to the slope contours and down valleys between the ridges since the late Miocene opening of the Strait of Gibraltar. Coincident with the northwestward decrease in undercurrent speeds from the Strait there is the following northwestward gradation of sediment facies associations: (1) upper slope facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor facies is composed of gravelly, shelly coarse to medium sand lags and large sand dunes on the valley margins. Compared to this, the northwestern drift contains coarse silt interbeds and the adjacent valley floors exhibit small to medium sand dunes of fine sand. Further northwestward, sediment drift grades to biogenous silt near the Faro Drift at the Portuguese border. Because of the complex pattern of contour-parallel and valley-perpendicular flow paths of the Mediterranean undercurrent, the larger-scale bedforms and coarser-grained sediment of valley facies trend perpendicular to the smaller-scale bedforms and finer-grained contourite deposits of adjacent sediment drift facies. The bottom-current deposits of valleys and the contourites of the Cadiz slope intervalley areas are distinct from turbidite systems. The valley sequences are not aggradational like turbidite channel-levee complexes, but typically exhibit bedrock walls against ridges, extensive scour and fill into adjacent contourites, transverse bedform fields and bioclastic lag deposits. Both valley and contourite deposits exhibit reverse graded bedding and sharp upper bed contacts in coarse-grained layers, low deposition rates, and a regional pattern of bedform zones, textural variation, and compositional gradation. The surface sandy contourite layer of 0.2-1.2 m thickness that covers the Gulf of Cadiz slope has formed during the present Holocene high sea level because high sea level results in maximum water depth over the Gibraltar sill and full development of the Mediterranean undercurrent. The late Pleistocene age of the mud underlying the surface sand sheet correlates with the age of the last sea-level lowstand and apparent weak Mediterranean undercurrent development. Thus, the cyclic deposition of sand or mud layers and contourite or drape sequences appear to be related to late Pliocene and Quaternary sea-level changes and Mediterranean water circulation patterns. Since its Pliocene origin, the contourite sequence has had low deposition rates of < 5 cm/1000y on the upper slope and < 13 cm/1000y in the middle slope sediment drift. ?? 1993.

  2. Importance of the colmation layer in the transport and removal of cyanobacteria, viruses, and dissolved organic carbon during natural lake-bank filtration

    USGS Publications Warehouse

    Harvey, Ronald W.; Metge, David W.; LeBlanc, Denis R.; Underwood, Jennifer C.; Aiken, George R.; Butler, Kenna D.; McCobb, Timothy D.; Jasperse, Jay

    2015-01-01

    This study focused on the importance of the colmation layer in the removal of cyanobacteria, viruses, and dissolved organic carbon (DOC) during natural bank filtration. Injection-and-recovery studies were performed at two shallow (0.5 m deep), sandy, near-shore sites at the southern end of Ashumet Pond, a waste-impacted, kettle pond on Cape Cod, MA, that is subject to periodic blooms of cyanobacteria and continuously recharges a sole-source drinking-water aquifer. The experiment involved assessing the transport behaviors of bromide (conservative tracer), Synechococcus sp. IU625 (cyanobacterium, 2.6 ± 0.2 µm), AS-1 (tailed cyanophage, 110 nm long), MS2 (coliphage, 26 nm diameter), and carboxylate-modified microspheres (1.7 µm diameter) introduced to the colmation layer using a bag-and-barrel (Lee-type) seepage meter. The injectate constituents were tracked as they were advected across the pond water–groundwater interface and through the underlying aquifer sediments under natural-gradient conditions past push-point samplers placed at ∼30-cm intervals along a 1.2-m-long, diagonally downward flow path. More than 99% of the microspheres, IU625, MS2, AS-1, and ∼44% of the pond DOC were removed in the colmation layer (upper 25 cm of poorly sorted bottom sediments) at two test locations characterized by dissimilar seepage rates (1.7 vs. 0.26 m d−1). Retention profiles in recovered core material indicated that >82% of the attached IU625 were in the top 3 cm of bottom sediments. The colmation layer was also responsible for rapid changes in the character of the DOC and was more effective (by three orders of magnitude) at removing microspheres than was the underlying 20-cm-thick segment of sediment.

  3. The formation of giant clastic extrusions at the end of the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Kirkham, Christopher; Cartwright, Joe; Hermanrud, Christian; Jebsen, Christopher

    2018-01-01

    This paper documents the discovery of five multi-km scale lensoid bodies that directly overlie the upper surface of the thick (>1 km) Messinian Evaporite sequence. They were identified through the analysis of 3D seismic data from the western Nile Cone. The convergence of the upper and lower bounding reflections of these lensoid bodies, their external and internal reflection configuration, the positive 'depositional' relief at their upper surface, and the stratal relationship with underlying and overlying deposits supports the interpretation that these are giant clastic extrusions. The interpretations combined with the stratal position of these clastic extrusions demonstrate a prior unsuspected link between periods of major environment change and basin hydrodynamics on a plate scale. All five lensoid bodies were extruded onto a single, seismically resolvable marker horizon correlatable with the end of the Messinian Salinity Crisis (Horizon M). It is argued that the source of these clastic extrusions is pre-Messinian in origin, which implies massive sediment remobilisation at depth in the pre-evaporitic succession and intrusion through the thick evaporite layer. We propose that the scale and timing of this dramatic event was primed and triggered by near-lithostatic overpressure in the pre-evaporitic sediments generated through (1) their rapid burial and loading during the Messinian Salinity Crisis and (2) catastrophic re-flooding during its immediate aftermath. The largest of these clastic extrusions has a volume of over c. 116 km3, making it amongst the largest extruded sedimentary bodies described on Earth. The findings extend the understanding of the upper scale of other analogous clastic extrusions such as mud volcanoes and sediment-hosted hydrothermal systems. Following the 2006 eruption of the Lusi sediment-hosted hydrothermal system in Indonesia, an understanding of the upper scale limit of clastic extrusions has even greater societal relevance, in order to increase awareness of the risk posed by the potential size and longevity of future giant clastic extrusions.

  4. Application of cluster and discriminant analyses to diagnose lithological heterogeneity of the parent material according to its particle-size distribution

    NASA Astrophysics Data System (ADS)

    Giniyatullin, K. G.; Valeeva, A. A.; Smirnova, E. V.

    2017-08-01

    Particle-size distribution in soddy-podzolic and light gray forest soils of the Botanical Garden of Kazan Federal University has been studied. The cluster analysis of data on the samples from genetic soil horizons attests to the lithological heterogeneity of the profiles of all the studied soils. It is probable that they are developed from the two-layered sediments with the upper colluvial layer underlain by the alluvial layer. According to the discriminant analysis, the major contribution to the discrimination of colluvial and alluvial layers is that of the fraction >0.25 mm. The results of canonical analysis show that there is only one significant discriminant function that separates alluvial and colluvial sediments on the investigated territory. The discriminant function correlates with the contents of fractions 0.05-0.01, 0.25-0.05, and >0.25 mm. Classification functions making it possible to distinguish between alluvial and colluvial sediments have been calculated. Statistical assessment of particle-size distribution data obtained for the plow horizons on ten plowed fields within the garden indicates that this horizon is formed from colluvial sediments. We conclude that the contents of separate fractions and their ratios cannot be used as a universal criterion of the lithological heterogeneity. However, adequate combination of the cluster and discriminant analyses makes it possible to give a comprehensive assessment of the lithology of soil samples from data on the contents of sand and silt fractions, which considerably increases the information value and reliability of the results.

  5. Unusual folding and rolling of Glacio-Lacustrine sediments, Upper Fraser Canyon, British Columbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, S.

    1987-05-01

    Folding and rolling of graded but unconsolidated sediments by at least 720/sup 0/ produced a structure resembling a large Swiss roll about 6 ft wide and 4 ft high. The sediments were initially horizontal and well sorted, grading from coarse sands to fine silts. About 50 ft away, at the same level, the sediments include irregular layers of poorly sorted, ice-rafted pebbles and boulders. The sequence is unconformably overlain by till. The axis of folding appears to be parallel to the eastern wall of the Fraser Canyon. The outcrop is in the Stevens Pit (sand and gravel) immediately east ofmore » the Trans-Canada Highway, 2 mi south of Lytton, B.C., at an elevation of 1000 ft, approximately 600 ft above the present level of the Fraser River. The sands and silts accumulated in a lake adjacent to the east margin of a stagnant and relatively small glacier occupying the upper part of the Frazer Canyon. Partial or complete melting of small icebergs caused deposition of coarser material. A subsequent cooling trend led to an advance of the glacier, an advance which at this location caused some of the adjacent and by now frozen sediments to be rolled up like an old carpet. Further advance of the glacier caused it to override and thus preserve the deformed sequence.« less

  6. Surface sediment remobilization triggered by earthquakes in the Nankai forearc region

    NASA Astrophysics Data System (ADS)

    Okutsu, N.; Ashi, J.; Yamaguchi, A.; Irino, T.; Ikehara, K.; Kanamatsu, T.; Suganuma, Y.; Murayama, M.

    2017-12-01

    Submarine landslides triggered by earthquakes generate turbidity currents (e.g. Piper et al., 1988; 1999). Recently several studies report that the remobilization of the surface sediment triggered by earthquakes can also generate turbidity currents. However, studies that proposed such process are still limited (e.g. Ikehara et al., 2016; Mchugh et al., 2016; Moernaut et al., 2017). The purpose of this study is to examine those sedimentary processes in the Nankai forearc region, SW Japan using sedimentary records. We collected 46 cm-long multiple core (MC01) and a 6.7 m-long piston core (PC03) from the small basin during the R/V Shinsei Maru KS-14-8 cruise. The small confined basin, which is our study site, block the paths of direct sediment supply from river-submarine canyon system. The sampling site is located at the ENE-WSW elongated basin between the accretionary prism and the forearc basin off Kumano without direct sediment supply from river-submarine canyon system. The basin exhibits a confined basin that captures almost of sediments supplied from outside. Core samples are mainly composed of silty clay or very fine sand. Cs-137 measurement conducted on a MC01 core shows constantly high value at the upper 17 cm section and no detection below it. Moreover, the sedimentary structure is similar to fine-grained turbidite described by Stow and Shanmgam (1980), we interpret the upper 17 cm of MC01 as muddy turbidite. Grain size distribution and magnetic susceptibility also agree to this interpretation. Rapid sediment deposition after 1950 is assumed and the most likely event is the 2004 off Kii peninsula earthquakes (Mw=6.6-7.4). By calculation from extent of provenance area, which are estimated by paleocurrent analysis and bathymetric map, and thickness of turbidite layer we conclude that surface 1 cm of slope sediments may be remobilized by the 2004 earthquakes. Muddy turbidites are also identified in a PC03 core. The radiocarbon age gap of 170 years obtained around 2 mbsf of PC03 core also indicates similar sedimentary process. However, we also obtained large age gap in a thick turbidite layer, indicating remobilization of deeper sediments by landslide. Our results revealed that the studied basin recorded various scales and styles of sediment remobilizations by earthquake shakings.

  7. Orbital SAR and Ground-Penetrating Radar for Mars: Complementary Tools in the Search for Water

    NASA Technical Reports Server (NTRS)

    Campbell, B. A.; Grant, J. A.

    2000-01-01

    The physical structure and compositional variability of the upper martian crust is poorly understood. Optical and infrared measurements probe at most the top few cm of the surface layer and indicate the presence of layered volcanics and sediments, but it is likely that permafrost, hydrothermal deposits, and transient liquid water pockets occur at depths of meters to kilometers within the crust. An orbital synthetic aperture radar (SAR) can provide constraints on surface roughness, the depth of fine-grained aeolian or volcanic deposits, and the presence of strongly absorbing near-surface deposits such as carbonates. This information is crucial to the successful landing and operation of any rover designed to search for subsurface water. A rover-based ground-penetrating radar (GPR) can reveal layering in the upper crust, the presence of erosional or other subsurface horizons, depth to a permafrost layer, and direct detection of near-surface transient liquid water. We detail here the radar design parameters likely to provide the best information for Mars, based on experience with SAR and GPR in analogous terrestrial or planetary environments.

  8. Paleoclimatic investigations during the late Quaternary using gravity core sediments of Lake Hovsgol in Mongolia

    NASA Astrophysics Data System (ADS)

    Cheong, Daekyo; Shin, Seungwon; Park, Yong-Hee; Nam, Seung Il

    2010-05-01

    The Lake Hovsgol is located in northeast Eurasia which is a tectonic lake formed by rifting, and its thick bottom sediments record climatic change of the past. The lake is a suitable site to study a rapid Quaternary climate change. This study includes analysis of smear slides, particle size analysis, data of spectrophotometer and magnetic susceptibility, trace element analysis using XRF core scanner for HS-3, 5 gravity core sediments from the middle southern Lake Hovsgol. HS-3 core sediments were measured for TOC, and HS-5 core was scrutinized for species analysis of ostracods. HS-3 core was obtained at 160 m water depth, and is divided into three sedimentary units. Unit A of HS-3 is characterized by distinct lamination, high sand contents considerably decreasing towards the upper part, and the ostracods are rarely discovered at the upper part of Unit A. Unit B is characterized by weakly lamination, and some ostracods are observed in the lower part, but diatoms are observed in the upper part of Unit B. Also grain size is getting smaller toward the upper part. Unit C consists of fine diatomaceous ooze and contains abundant diatoms. Overall organic contents are high, and lamination with black-colored organic layer is observed in the lower part of Unit C. HS-5 core was obtained at 210 m water depth and is divided into two sedimentary units with faint boundary. Unit A of HS-5 is characterized by lamination and contains abundant diatoms and ostracods. At Unit B, grain size is getting smaller toward the upper part, and occurrence change of ostracods is observed in the upper part. Framboidal pyrite were formed during the diagenesis. Four species of ostracods are observed in the core sediments, i.e. Cytherissa lacustris, Limnocythere inopinate dominate in the lower part, and Candona lepnevae, Leucocythere sp dominates in the upper part. Carbon age dating results show that sediment unit B of HS-5 and unit C of HS-3 containing rare ostracods are similar in age. The reason of low occurrence of ostracods fossils and high content of sand is consistent with that ostracods disappeared as temperature rise or inhabitant change since late LGM. An age of sediment unit B of HS-3 is the Last Deglacial period when organic contents increased obviously and contents of sand decreased as the lake level rose. The change of magnetic susceptibility and Fe/Al, Ca/Al and Si/Al ratio values are observed at 90 cm depth section of HS-3, which indicates that input sediments changed as the lake level fell due to a temporal cooling at Younger Dryas during the Last Deglacial. The age of the sediment unit C of HS-3 is Holocene. At this period, high contents of organic materials were caused by increase of nutrition input because of a thick vegetation cover as temperature rose, and thus diatom blooming. The organic strata containing mica minerals at early Holocene have been formed during fall or stagnation periods of the lake level. We interpreted that those are closely related to the global environmental change.

  9. Coupled Mo-U abundances and isotopes in a small marine euxinic basin: Constraints on processes in euxinic basins

    NASA Astrophysics Data System (ADS)

    Bura-Nakić, Elvira; Andersen, Morten B.; Archer, Corey; de Souza, Gregory F.; Marguš, Marija; Vance, Derek

    2018-02-01

    Sedimentary molybdenum (Mo) and uranium (U) abundances, as well as their isotope systematics, are used to reconstruct the evolution of the oxygenation state of the surface Earth from the geological record. Their utility in this endeavour must be underpinned by a thorough understanding of their behaviour in modern settings. In this study, Mo-U concentrations and their isotope compositions were measured in the water column, sinking particles, sediments and pore waters of the marine euxinic Lake Rogoznica (Adriatic Sea, Croatia) over a two year period, with the aim of shedding light on the specific processes that control Mo-U accumulation and isotope fractionations in anoxic sediment. Lake Rogoznica is a 15 m deep stratified sea-lake that is anoxic and euxinic at depth. The deep euxinic part of the lake generally shows Mo depletions consistent with near-quantitative Mo removal and uptake into sediments, with Mo isotope compositions close to the oceanic composition. The data also, however, show evidence for periodic additions of isotopically light Mo to the lake waters, possibly released from authigenic precipitates formed in the upper oxic layer and subsequently processed through the euxinic layer. The data also show evidence for a small isotopic offset (∼0.3‰ on 98Mo/95Mo) between particulate and dissolved Mo, even at highest sulfide concentrations, suggesting minor Mo isotope fractionation during uptake into euxinic sediments. Uranium concentrations decrease towards the bottom of the lake, where it also becomes isotopically lighter. The U systematics in the lake show clear evidence for a dominant U removal mechanism via diffusion into, and precipitation in, euxinic sediments, though the diffusion profile is mixed away under conditions of increased density stratification between an upper oxic and lower anoxic layer. The U diffusion-driven precipitation is best described with an effective 238U/235U fractionation of +0.6‰, in line with other studied euxinic basins. Combining the Mo and U systematics in Lake Rogoznica and other euxinic basins, it is apparent that the two different uptake mechanisms of U and Mo can lead to spatially and temporally variable Mo/U and Mo-U isotope systematics that depend on the rate of water renewal versus removal to sediment, the sulfide concentration, and the geometry of the basin. This study further emphasises the potential of combining multiple observations, from Mo-U enrichment and isotope systematics, for disentangling the various processes via which redox conditions control the chemistry of modern and ancient sediments.

  10. Geohydrology of the Aucilla-Suwannee-Ochlockonee River Basin, south-central Georgia and adjacent parts of Florida

    USGS Publications Warehouse

    Torak, Lynn J.; Painter, Jaime A.; Peck, Michael F.

    2010-01-01

    Major streams and tributaries located in the Aucilla-Suwannee-Ochlockonee (ASO) River Basin of south-central Georgia and adjacent parts of Florida drain about 8,000 square miles of a layered sequence of clastic and carbonate sediments and carbonate Coastal Plain sediments consisting of the surficial aquifer system, upper semiconfining unit, Upper Floridan aquifer, and lower confining unit. Streams either flow directly on late-middle Eocene to Oligocene karst limestone or carve a dendritic drainage pattern into overlying Miocene to Holocene sand, silt, and clay, facilitating water exchange and hydraulic connection with geohydrologic units. Geologic structures operating in the ASO River Basin through time control sedimentation and influence geohydrology and water exchange between geohydrologic units and surface water. More than 300 feet (ft) of clastic sediments overlie the Upper Floridan aquifer in the Gulf Trough-Apalachicola Embayment, a broad area extending from the southwest to the northeast through the center of the basin. These clastic sediments limit hydraulic connection and water exchange between the Upper Floridan aquifer, the surficial aquifer system, and surface water. Accumulation of more than 350 ft of low-permeability sediments in the Southeast Georgia Embayment and Suwannee Strait hydraulically isolates the Upper Floridan aquifer from land-surface hydrologic processes in the Okefenokee Basin physiographic district. Burial of limestone beneath thick clastic overburden in these areas virtually eliminates karst processes, resulting in low aquifer hydraulic conductivity and storage coefficient despite an aquifer thickness of more than 900 ft. Conversely, uplift and faulting associated with regional tectonics and the northern extension of the Peninsular Arch caused thinning and erosion of clastic sediments overlying the Upper Floridan aquifer southeast of the Gulf Trough-Apalachicola Embayment near the Florida-Georgia State line. Limestone dissolution in Brooks and Lowndes Counties, Ga., create karst features that enhance water-transmitting and storage properties of the Upper Floridan aquifer, promoting groundwater recharge and water exchange between the aquifer, land surface, and surface water. Structural control of groundwater flow and hydraulic properties combine with climatic effects and increased hydrologic stress from agricultural pumpage to yield unprecedented groundwater-level decline in the northwestern and central parts of the ASO River Basin. Hydrographs from continuous-record observation wells in these regions document declining groundwater levels, indicating diminished water-resource potential of the Upper Floridan aquifer through time. More than 24 ft of groundwater-level decline occurred along the basin's northwestern boundary with the lower Apalachicola-Chattahoochee-Flint River Basin, lowering hydraulic gradients that provide the potential for groundwater flow into the ASO River Basin and southeastward across the Gulf Trough-Apalachicola Embayment region. Slow-moving groundwater across the trough-embayment region coupled with downward-vertical flow from upper to lower limestone units composing the Upper Floridan aquifer resulted in 40-50 ft of groundwater-level decline since 1969 in southeastern Colquitt County. Multi-year episodes of dry climatic conditions during the 1980s through the early 2000s contributed to seasonal and long-term groundwater-level decline by reducing recharge to the Upper Floridan aquifer and increasing hydrologic stress by agricultural pumpage. Unprecedented and continued groundwater-level decline since 1969 caused 40-50 ft of aquifer dewatering in southeastern Colquitt County that reduced aquifer transmissivity and the ability to supply groundwater to wells, resulting in depletion of the groundwater resource.

  11. Near-Surface Geologic Units Exposed Along Ares Vallis and in Adjacent Areas: A Potential Source of Sediment at the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1997-01-01

    A sequence of layers, bright and dark, is exposed on the walls of canyons, impact craters and mesas throughout the Ares Vallis region, Chryse Planitia, and Xanthe Terra, Mars. Four layers can be seen: two pairs of alternating dark and bright albedo. The upper dark layer forms the top surface of many walls and mesas. The upper dark-bright pair was stripped as a unit from many streamlined mesas and from the walls of Ares Valles, leaving a bench at the top of the lower dark layer, approximately 250 m below the highland surface on streamlined islands and on the walls of Ares Vallis itself. Along Ares Vallis, the scarp between the highlands surface and this bench is commonly angular in plan view (not smoothly curving), suggesting that erosion of the upper dark-bright pair of layers controlled by planes of weakness, like fractures or joints. These near-surface layers in the Ares Vallis area have similar thicknesses, colors, and resistances to erosion to layers exposed near the tops of walls in Valles Marineris (Treiman et al.) and may represent the same pedogenic hardpan units. From this correlation, and from analogies with hardpans on Earth, the light-color layers may be cemented by calcite or gypsum. The dark layers are likely cemented by an iron-bearing mineral. Mars Pathfinder instruments should permit recognition and useful analyses of hardpan fragments, provided that clean uncoated surfaces are accessible. Even in hardpan-cemented materials, it should be possible to determine the broad types of lithologies in the Martian highlands. However, detailed geochemical modeling of highland rocks and soils may be compromised by the presence of hardpan cement minerals.

  12. Reductive reactivity of iron(III) oxides in the east china sea sediments: characterization by selective extraction and kinetic dissolution.

    PubMed

    Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li

    2013-01-01

    Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k' (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k' and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases.

  13. Reductive Reactivity of Iron(III) Oxides in the East China Sea Sediments: Characterization by Selective Extraction and Kinetic Dissolution

    PubMed Central

    Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li

    2013-01-01

    Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k′ (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k′ and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases. PMID:24260377

  14. Bioturbation, advection, and diffusion of a conserved tracer in a laboratory flume

    NASA Astrophysics Data System (ADS)

    Work, P. A.; Moore, P. R.; Reible, D. D.

    2002-06-01

    Laboratory experiments indicating the relative influences of advection, diffusion, and bioturbation on transport of NaCl tracer between a stream and streambed are described. Data were collected in a recirculating flume housing a box filled with test sediments. Peclet numbers ranged from 0 to 1.5. Sediment components included a medium sand (d50 = 0.31 mm), kaolinite, and topsoil. Lumbriculus variegatus were introduced as bioturbators. Conductivity probes were employed to document the flux of the tracer solution out of the bed. Measurements are compared to one-dimensional effective diffusion models assuming one or two horizontal sediment layers. These simple models provide a good indication of tracer half-life in the bed if a suitable effective diffusion coefficient is chosen but underpredict initial flux and overpredict flux at long times. Organism activity was limited to the upper reaches of the sediment test box but eventually exerts a secondary influence on flux from deeper regions.

  15. Holocene Paleolimnological Records from Thule, Northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Corbett, L.; Osterberg, E. C.; Kelly, M. A.; Axford, Y.

    2012-12-01

    Assessing Holocene climatic and environmental variability around the margin of the Greenland Ice Sheet provides important information against which to compare ice sheet margin fluctuations. Here, we report preliminary results from ongoing research in northwestern Greenland. We present records of physical properties of lake sediments and use these to make inferences about the evolution of the lake and its surroundings over the latter half of the Holocene. We collected two sediment cores, 90 and 72 cm in length, from a small (surface area ~0.3 km2), shallow (maximum depth ~4.5 m) lake at 76°33'40''N 68°26'31''W near Thule Air Base in July 2012. The length of the cores was limited by the length of the core barrel and does not reflect the total thickness of sediment in the lake. The lake is situated within the glacial limit and likely formed subsequent to deglaciation of the region during early Holocene time. No glaciers exist within the lake's catchment today; the primary modern source of sediment is a perennial inflow from the west. We developed a preliminary depth-age model using radiocarbon ages of terrestrial organic macrofossils. Thus far, we have analyzed the sediments for magnetic susceptibility and loss-on-ignition. A radiocarbon age of 6069 ± 90 cal yr BP at the base of the core indicates that the sediments preserve a continuous record of middle to late Holocene conditions. The top of both cores consists of a thick (~12 cm) layer of dark gray unlaminated sediments, while the rest of the material in both cores is lighter brown to olive, finely laminated sediment. The upper layer is characterized by low water content (<25%), low loss-on-ignition (<5%), and high magnetic susceptibility (~150-250 x10-6). Conversely, the laminated sediments beneath have higher water content (~40-50%), higher loss-on-ignition (~5-10%), and much lower magnetic susceptibility (<50 x10-6). We hypothesize that the upper, less organic unit may represent a single event in the lake's recent history. We are refining the depth-age model with more radiocarbon ages, measuring grain size and carbon to nitrogen ratios of the sediments, and evaluating possible linkages between the sediment physical properties and precipitation as recorded by annual accumulation in ice cores in northwestern Greenland and Arctic Canada. This project will provide a foundation for future work in Thule investigating Holocene fluctuations of local ice cap and ice sheet margin positions.

  16. Sedimentary condensation and authigenesis

    NASA Astrophysics Data System (ADS)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin (< 1m) beds, which were accumulated during extremely long time periods (> 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and paleoenvironmental change themselves.

  17. The Role of Glaciation in Slope Instability of Arctic Trough Mouth Fans: An Example of the NW Barents Sea

    NASA Astrophysics Data System (ADS)

    Urgeles, R.; Llopart, J.; Lucchi, R.; Rebesco, M.; Brückner, N. W.; Rüther, D. C.; Lantzsch, H.

    2017-12-01

    Submarine slope instability plays a major role in the development of Arctic Trough Mouth Fans (TMFs). TMFs consist of an alternation of rapidly deposited glacigenic debris flows and a sequence of well-layered plumites and hemipelagic sediments. In this sedimentary context, shallow geophysical data and core samples indicate that there is a specific timing (i.e. shortly after the deglaciation phase) for the occurrence of slope failures. High mean sedimentation rates during glacial maxima of up to 18 kg m-2 yr-1 likely allow excess pore pressure to develop in the water rich plumites and hemipelagic sediments deposited in the previous deglacial period, particularly where such plumites attain a significant thickness. Basin numerical models considering the effect of (1) sediment physical properties, (2) polar margin architecture and (3) ice stream sediment dispersal patterns on resulting stresses, fluid flow and slope failure initiation of the Storfjorden Trough Mouth Fan, NW Barents Sea, show that during glacial maxima, ice streams and rapid accumulation of glacigenic debris flows on the slope induce pore pressure build-up in continental shelf/upper slope sediments. The overpressure developed during glacial maxima remains during the deglacial phase. This overpressure combined with downslope stratification of high water content and low shear strength deglacial/interglacial sediments results in a significant decrease in the factor of safety of the upper slope sediments. The position of the submarine landslides in the stratigraphic record suggest, however, that such excess pore pressure is not enough to trigger the slope failures and indicate that earthquakes related to isostatic rebound are likely involved in the final activation.

  18. Atmospheric circulation patterns associated to the variability of River Ammer floods: evidence from observed and proxy data

    NASA Astrophysics Data System (ADS)

    Rimbu, N.; Czymzik, M.; Ionita, M.; Lohmann, G.; Brauer, A.

    2015-09-01

    The relationship between the frequency of River Ammer floods (southern Germany) and atmospheric circulation variability is investigated based on observational Ammer discharge data back to 1926 and a flood layer time series from varved sediments of the downstream Lake Ammersee for the pre-instrumental period back to 1766. A composite analysis reveals that, at synoptic time scales, observed River Ammer floods are associated with enhanced moisture transport from the Atlantic Ocean and the Mediterranean towards the Ammer region, a pronounced trough over Western Europe as well as enhanced potential vorticity at upper levels. We argue that this synoptic scale configuration can trigger heavy precipitation and floods in the Ammer region. Interannual to multidecadal increases in flood frequency as recorded in the instrumental discharge record are associated to a wave-train pattern extending from the North Atlantic to western Asia with a prominent negative center over western Europe. A similar atmospheric circulation pattern is associated to increases in flood layer frequency in the Lake Ammersee sediment record during the pre-instrumental period. We argue that the complete flood layer time-series from Lake Ammersee sediments covering the last 5500 years, contains information about atmospheric circulation variability on inter-annual to millennial time-scales.

  19. Crustal and upper mantle velocity structure of the Salton Trough, southeast California

    USGS Publications Warehouse

    Parsons, T.; McCarthy, J.

    1996-01-01

    This paper presents data and modelling results from a crustal and upper mantle wide-angle seismic transect across the Salton Trough region in southeast California. The Salton Trough is a unique part of the Basin and Range province where mid-ocean ridge/transform spreading in the Gulf of California has evolved northward into the continent. In 1992, the U.S. Geological Survey (USGS) conducted the final leg of the Pacific to Arizona Crustal Experiment (PACE). Two perpendicular models of the crust and upper mantle were fit to wide-angle reflection and refraction travel times, seismic amplitudes, and Bouguer gravity anomalies. The first profile crossed the Salton Trough from the southwest to the northeast, and the second was a strike line that paralleled the Salton Sea along its western edge. We found thin crust (???21-22 km thick) beneath the axis of the Salton Trough (Imperial Valley) and locally thicker crust (???27 km) beneath the Chocolate Mountains to the northeast. We modelled a slight thinning of the crust further to the northeast beneath the Colorado River (???24 km) and subsequent thickening beneath the metamorphic core complex belt northeast of the Colorado River. There is a deep, apparently young basin (???5-6 km unmetamorphosed sediments) beneath the Imperial Valley and a shallower (???2-3 km) basin beneath the Colorado River. A regional 6.9-km/s layer (between ???15-km depth and the Moho) underlies the Salton Trough as well as the Chocolate Mountains where it pinches out at the Moho. This lower crustal layer is spatially associated with a low-velocity (7.6-7.7 km/s) upper mantle. We found that our crustal model is locally compatible with the previously suggested notion that the crust of the Salton Trough has formed almost entirely from magmatism in the lower crust and sedimentation in the upper crust. However, we observe an apparently magmatically emplaced lower crust to the northeast, outside of the Salton Trough, and propose that this layer in part predates Salton Trough rifting. It may also in part result from migration of magmatic spreading centers associated with the southern San Andreas fault system. These spreading centers may have existed east of their current locations in the past and may have influenced the lower crust and upper mantle to the east of the current Salton Trough.

  20. Badenian planktonic foraminifera as climate proxies at the southern margin of the Central Paratethys (Ugljevik, Bosnia and Herzegovina)

    NASA Astrophysics Data System (ADS)

    Theobalt, D.; Mandic, O.

    2012-04-01

    Badenian transgression is well exposed in the open coal pit Bogutovo Selo near Ugljevik in NE Bosnia and Herzegovina, located at the southern margin of the Pannonian Basin. Middle Miocene marine sediments superpose Late Oligocene lignite bearing lacustrine deposits. The studied succession is about 62 m thick and includes the uppermost part of the lake deposits, comprising clays, sands and coal seams, followed by marine sediments. These consist mainly of gray marls, which show some intercalations of thin, dark clay layers, volcanic ash layers and fossiliferous beds as well as carbonate bodies of different thicknesses. The presence of Orbulina suturalis allows a biostratigraphic correlation of the marine transgression horizon with the upper part of the Lower Badenian. 28 planktonic foraminiferal assemblages were investigated using quantitative analysis to evaluate the climate development during the initial marine flooding by the Paratethys Sea. Further on the samples were statistically treated to find out if there are significant differences in assemblages from the marine sediments deposited before and after the initial Serravallian cooling event coinciding with the onset of the Middle Badenian (Wielician) Salinity Crisis. 17 planktonic foraminiferal species were grouped by their palaeoclimatic significance into cool (Globigerina bulloides, G. praebulloides, G. diplostoma, G. concinna, G. tarchanensis, G. falconensis, Turborotalita quinqueloba), temperate (Globorotalia bykovae, G. transsylvanica, G. peripheroronda, Globoturborotalita woodi), warm-temperate (Globigerinella regularis, Tenuitellinata angustiumbilicata) and warm indicators (Globigerinoides trilobus, G. quadrilobatus, Orbulina suturalis, Globoquadrina cf. altispira). The counts were performed mainly on generic level. Upper Lower Badenian (Upper Lagenidae Zone) is represented in the marly succession in the lower part of the section, where the foraminiferal assemblages indicate warmer conditions with high percentages of warm water indicators. A distinct cooling is shown in the uppermost passage of the lower part, which is followed by a 13 m thick carbonate platform of Wielician age. This transition corresponds to the gradual shift from Greenhouse into Icehouse climate after the late Middle Miocene Climatic Optimum. The superposing marly deposits of the late Wielician age (Earliest Serravallian) contain planktonic foraminiferal assemblages that indicate cooler conditions. The general percentage of cool water indicators is much higher than in the lower Badenian sediments.

  1. Microbial interactions in sediment communities.

    PubMed

    Laanbroek, H J; Veldkamp, H

    1982-06-11

    Mineralization of organic matter in aquatic ecosystems with shallow waters occurs to a large extent in their sediments under anoxic conditions. This is achieved by a community of bacteria, which are the catalysts in a sequence of processes. Of the two possible terminal processes, methanogenesis and sulphate reduction, the first usually dominates in freshwater systems, whereas in estuarine and marine sediments electrons are mainly channelled to sulphate. Interactions between sulphate-reducing and methanogenic bacteria are described. Sulphate-reducing bacteria also show interactions with fermentative bacteria. After a brief description of properties of sulphate-reducing and fermentative bacteria occurring in sediments, examples are given of interactions between them. This is followed by the presentation of some results obtained from studies on competition for L-lactate between organisms belonging to both groups. It is shown that sulphate-reducing bacteria could successfully compete for L-lactate when this was available in growth-limiting amounts with sufficient sulphate and iron. Finally, a brief discussion is given of ecological niches of sulphide-oxidizing bacteria thriving in the upper sediment layers.

  2. Geochemistry of Permian rocks from the margins of the Phosphoria Basin

    USGS Publications Warehouse

    Perkins, Robert B.; McIntyre, Brandie; Hein, James R.; Piper, David Z.

    2003-01-01

    The Permian Phosphoria Formation and interbedded units of the Park City Formation and Shedhorn Sandstone in western Wyoming represent deposition along a carbonate ramp at the eastern margin of the Phosphoria Basin, with portions of the Phosphoria units reflecting periods of upwelling and widespread phosphogenesis. Thickness-weighted slab-samples of these units were collected at a maximum interval of 3 m along an 80+ m-length of unweathered core and analyzed for major-, minor-, and trace-element contents. Interpretations of geochemistry were made within the confines of a previously recognized sequence stratigraphy framework. Major shifts in element ratios characteristic of terrigenous debris that occur at sequence boundaries at the base of the Meade Peak and Retort Members of the Phosphoria Formation are attributed to changing sediment sources. Inter-element relationships in the marine fraction indicate that bottom waters of the Phosphoria Basin were predominantly denitrifying during deposition of the Ervay, Grandeur, and Phosphoria sediments, although sulfate-reducing conditions may have existed during deposition of the lower Meade Peak sediments. Oxic conditions were prevalent during deposition of a large part of the Franson Member, which represents sedimentation in a shallow, inner- to back-ramp setting. Variations in sediment facies and organic matter and trace element contents largely reflect changes in Permian sea level. Changes in sea level in basin-margin areas, such as represented by the study section, may have affected the oxidation of settling organic matter, the foci of intersection of upwelling bottom waters with the photic zone, the rate of terrigenous sedimentation, and, ultimately, the overall environment of deposition. Our study suggests that phosphogenesis can occur under lowstand, transgressive, and highstand conditions in marginal areas, assuming water depths sufficient for upwelling to occur. Formation of phosphorite layers under upwelling conditions appears to have been most dependent on a lack of dilution by terrigenous sedimentation and carbonate shoaling. Differences in the geochemistry between two similar environments represented by the upper and lower Phosphoria units are largely attributed to higher rates of diluting terrigenous sediment during deposition of the upper unit. This is consistent with prior interpretations of a more shoreward setting for the upper Phosphoria.

  3. Using lake sediments from Buarvatnet to reconstruct multiple episodic events found at Folgefonn Peninsula, Norway

    NASA Astrophysics Data System (ADS)

    Roethe, T.; Bakke, J.; Støren, E.

    2016-12-01

    Here we present work in progress from Buarvatnet at the Folgefonn Peninsula, located on the west coast of Norway. Earlier work from Buarvatnet indicated several distinct spikes in the Silica count rates, detected by the ITRAX surface XRF-scanner. However, the process behind these distinct spikes was not understood. The arrival of high-resolution and innovative instruments at EARTHLAB, in particular the computed tomography (CT) scanner and grain Morphometer, have the potential to get a process-based understanding of these distinct layers and unravel the frequency and timing of such events. Multiple sediment cores were retrieved using a modified piston corer and a Uwitech corer from Buarvatnet. The sediments have been analysed using a multi-proxy approach and the analyses included magnetic properties, loss-on-ignition, dry bulk density, grain size/shape, geochemical analysis (XRF scanning) and CT-scanning. Accurate age-control will be achieved through 210Pb dating of the top-most sediments and 14C dating of terrestrial macrofossils. The lithostratigraphy of the 3.6 m long master sediment core from Buarvatnet is divided into three distinct units. The lower most unit ( 87 cm) is massive with fine-grained greyish sediments, most likely representing the deglaciation of the area. A 224 cm long unit is found above, characterised as dark brown gyttja with multiple thin layers (sub-mm to cm thick) of fine grained sediments. Also in this unit is two distinct sub-units showing a finer upwards sequence. At top, a gradual transition from dark brown gyttja to grey fine-grained sediments is found in the upper-most 19 cm of the sediment core. In total 16 distinct layers is found in the gyttja sequence, including the two sub-units, based on the lithostratigraphy and the prelimnary results from the magnetic, physical and geochemical properties. A preliminary hypothesis is that these distinct layers are due to outburst floods from a glacier-dammed lake upstream from Buarvatnet. In such a scenario, a bedrock threshold dams the meltwater from the retreating glacier and an outburst flood is triggered when the glacier calves or advances into the lake. Understanding the processes behind the multiple events is therefore important in order to highlight the potential hazards in rapid outburst floods in a warming world.

  4. Tide-driven fluid mud transport in the Ems estuary

    NASA Astrophysics Data System (ADS)

    Becker, Marius; Maushake, Christian; Winter, Christian

    2014-05-01

    The Ems estuary, located at the border between The Netherlands and Germany, experienced a significant change of the hydrodynamic regime during the past decades, as a result of extensive river engineering. With the net sediment transport now being flood-oriented, suspended sediment concentrations have increased dramatically, inducing siltation and formation of fluid mud layers, which, in turn, influence hydraulic flow properties, such as turbulence and the apparent bed roughness. Here, the process-based understanding of fluid mud is essential to model and predict mud accumulation, not only regarding the anthropogenic impact, but also in view of the expected changes of environmental boundary conditions, i.e., sea level rise. In the recent past, substantial progress has been made concerning the understanding of estuarine circulation and influence of tidal asymmetry on upstream sediment accumulation. While associated sediment transport formulations have been implemented in the framework of numerical modelling systems, in-situ data of fluid mud are scarce. This study presents results on tide-driven fluid mud dynamics, measured during four tidal cycles aside the navigation channel in the Ems estuary. Lutoclines, i.e., strong vertical density gradients, were detected by sediment echo sounder (SES). Acoustic Doppler current profiles (ADCP) of different acoustic frequencies were used to determine hydrodynamic parameters and the vertical distribution of suspended sediment concentrations in the upper part of the water column. These continuous profiling measurements were complemented by CTD, ADV, and OBS casts. SES and ADCP profiles show cycles of fluid mud entrainment during accelerating flow, and subsequent settling, and the reformation of a lutocline during decelerating flow and slack water. Significant differences are revealed between flood and ebb phase. Highest entrainment rates are measured at the beginning of the flood phase, associated with strong current shear and rapid vertical mixing, inducing the highest instantaneous suspended sediment flux measured during the tidal cycle. During decelerating flood currents a lutocline is again established at a certain distance above the consolidated river bed. During slack water after the flood phase the concentration gradient increases and the thickness of the fluid mud layer below is constant, also during a significant part of the ebb phase. As water depth decreases during ebb, entrainment occurs only at the upper part of the fluid mud layer. The suspended sediment flux is low compared to the flood phase. These observations are further elaborated using turbulence parameters obtained from ADV and ADCP, explaining the difference between ebb and flood concerning the vertical location of the maximum concentration gradient. This study is funded through DFG-Research Center / Excellence Cluster "The Ocean in the Earth System". The Senckenberg Institute and the Federal Waterways Engineering and Research Institute are acknowledged for technical support.

  5. Evaluation of simulated dredging to control internal phosphorus release from sediments: Focused on phosphorus transfer and resupply across the sediment-water interface.

    PubMed

    Yu, Juhua; Ding, Shiming; Zhong, Jicheng; Fan, Chengxin; Chen, Qiuwen; Yin, Hongbin; Zhang, Lei; Zhang, Yinlong

    2017-08-15

    Sediment dredging is an effective restoration method to control the internal phosphorus (P) loading of eutrophic lakes. However, the core question is that the real mechanism of dredging responsible for sediment internal P release still remains unclear. In this study, we investigated the P exchange across the sediment-water interface (SWI) and the internal P resupply ability from the sediments after dredging. The study is based on a one-year field simulation study in Lake Taihu, China, using a Rhizon soil moisture sampler, high-resolution dialysis (HR-Peeper), ZrO-Chelex diffusive gradients in thin film (ZrO-Chelex DGT), and P fractionation and adsorption isotherm techniques. The results showed low concentration of labile P in the pore water with a low diffusion potential and a low resupply ability from the sediments after dredging. The calculated flux of P from the post-dredged sediments decreased by 58% compared with that of non-dredged sediments. Furthermore, the resupply in the upper 20mm of the post-dredged sediments was reduced significantly after dredging (P<0.001). Phosphorus fractionation analysis showed a reduction of 25% in the mobile P fractions in the post-dredged sediments. Further analysis demonstrated that the zero equilibrium P concentration (EPC 0 ), partitioning coefficient (K p ), and adsorption capacity (Q max ) on the surface sediments increased after dredging. Therefore, dredging could effectively reduce the internal P resupply ability of the sediments. The reasons for this reduction are probably the lower contributions of mobile P fractions, higher retention ability, and the adsorption capacity of P for post-dredged sediments. Overall, this investigation indicated that dredging was capable of effectively controlling sediment internal P release, which could be ascribed to the removal of the surface sediments enriched with total phosphorus (TP) and/or organic matter (OM), coupled with the inactivation of P to iron (Fe) (hydr)oxides in the upper 20mm active layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Anoxic sediments off Central Peru record interannual to multidecadal changes of climate and upwelling ecosystem during the last two centuries

    NASA Astrophysics Data System (ADS)

    Gutiérrez, D.; Sifeddine, A.; Reyss, J. L.; Vargas, G.; Velazco, F.; Salvatteci, R.; Ferreira, V.; Ortlieb, L.; Field, D.; Baumgartner, T.; Boussafir, M.; Boucher, H.; Valdés, J.; Marinovic, L.; Soler, P.; Tapia, P.

    2006-01-01

    High-resolution paleo-environmental and paleo-ecological archives in laminated sequences are present in selected areas from the upper continental Peruvian margin within the oxygen minimum zone. We present initial results of a multidisciplinary study (the PALEOPECES project) that aims to reconstruct environmental and ecosystem variability during the past 200 years from high-resolution records. We report chronology development, sediment structure, elemental, organic, and mineralogical compositions of a box core collected at 300 m depth off Pisco, central Peru. An average sedimentation rate of 2.2 mm y-1 was estimated from downcore excess 210Pb activities for the last 100-150 years. Extending this rate further downcore indicates that a slump located at 52 cm depth from the top of the core can be correlated with a large tsunami that struck the coast of central Peru in 1746. X-ray analyses reveal laminated structures composed of couplets of light and dark laminae. Observations under polarized microscope show that light laminae are dominated by more dense, detrital and terrigenous material, while dark laminae are less dense with greater concentrations of amorphous biogenic silica. Downcore variations in dry bulk density and X-ray radioscopy of gray level show similar patterns, including a major shift at 34 cm depth (ca. mid-nineteenth century). A finely laminated sequence, which may include annual varves, is present between 34 cm depth and the slump layer. Sediment characteristics of the sequence suggest increased seasonality of terrigenous versus biogenous sedimentation during the corresponding period. In addition to a mid-nineteenth century change and considerable multidecadal variability in TOC, there is a positive trend in the past 50 years. Mineralogical analyses from a Fourier Transformed Infrared Spectroscopy (FTIR) of the upper core covering the last 25 years, indicate higher concentrations of the mineral fraction (quartz, feldspar, kaolinite and illite) in layers including large El Niño events (1982-1983, 1986-1987 and 1997-1998), with the largest peak during the 1997-1998 episode. These results confirm that anoxic sediments off Pisco are suitable archives to investigate interannual and decadal changes in oceanographic conditions and climate of the northern Humboldt upwelling system.

  7. Sediment movement and dispersal patterns on the Grand Banks continental shelf and slope were tied to the dynamics of the Laurentide ice-sheet margin

    NASA Astrophysics Data System (ADS)

    Rashid, H.; MacKillop, K.; Piper, D.; Vermooten, M.; Higgins, J.; Marche, B.; Langer, K.; Brockway, B.; Spicer, H. E.; Webb, M. D.; Fournier, E.

    2015-12-01

    The expansion and contraction of the late Pleistocene Laurentide ice-sheet (LIS) was the crucial determining factor for the geomorphic features and shelf and slope sediment mobility on the eastern Canadian continental margin, with abundant mass-transport deposits (MTDs) seaward of ice margins on the upper slope. Here, we report for the first time sediment failure and mass-transport deposits from the central Grand Banks slope in the Salar and Carson petroleum basins. High-resolution seismic profiles and multibeam bathymetry show numerous sediment failure scarps in 500-1600 m water depth. There is no evidence for an ice margin on the upper slope younger than MIS 6. Centimeter-scale X-ray fluorescence analysis (XRF), grain size, and oxygen isotope data from piston cores constrain sediment processes over the past 46 ka. Geotechnical measurements including Atterberg limit tests, vane shear measurements and triaxial and multi-stage isotropic consolidation tests allowed us to assess the instability on the continental margin. Cores with continuous undisturbed stratigraphy in contourite silty muds show normal downcore increase in bulk density and undrained peak shear strength. Heinrich (H) layers are identifiable by a marked increase in the bulk density, high Ca (ppm), increase in iceberg-rafted debris and lighter δ18O in the polar planktonic foram Neogloboquadrina pachyderma (sinistral): with a few C-14 dates they provide a robust chronology. There is no evidence for significant supply of sediment from the Grand Banks at the last-glacial maximum. Mass-transport deposits (MTD) are marked by variability in the bulk density, undrained shear strength and little variation in bulk density or Ca (ppm) values. The MTD are older than 46 ka on the central Grand Banks slope, whereas younger MTDs are present in southern Flemish Pass. Factor of safety calculations suggest the slope is statically stable up to gradients of 10°, but more intervals of silty mud may fail during earthquake-induced cyclic loading based on Atterberg tests. By analogy with the Holocene, contourites deposited in MIS 5e may be particularly silty and form a "weak layer" susceptible to failure.

  8. Sediment Coring of the Proglacial Lake Donguz-Orun (northern Caucasus, Russia)

    NASA Astrophysics Data System (ADS)

    Alexandrin, Mikhail; Solomina, Olga; Kalugin, Ivan; Darin, Andrey; Nesje, Atle

    2014-05-01

    So far, no high-resolution reconstructions of climate and glacier variations based on lake sediment properties are available in Caucasus Mountains. In other presently glaciated regions this approach is proved to be very useful for this purpose (e.g. Nesje et al., 2001, 2011; Bakke, 2005, Nesje, 2009) In this paper we report the first results of the sediment coring of Donguz-Orun Lake (N 43°13'26", E 42°29'35") situated in the upper reaches of Donguz-Orun-Kyol, a tributary of Baksan river in the Elbrus region of Northern Caucasus, a typical proglacial lake dammed by a lateral moraine deposited by the Donguz-Orun Glacier. It is a drainage lake with several inflowing glacial streams and effluent river Donguz-Orun. The surface area is around 105 000 m2 with a water volume of 465 000m3. The average water depth is around 4.5 m, with a maximum water depth of 14 m. The deepest part is found close to the moraine dam in the narrow northern part of the lake. This is normally consistent with this type of glacial lake systems. An intensive gravitational drift of the moraine material towards the lake is observed. These non-rounded moraine boulders constitute a significant part of the lakebed. Lacustrine sediments are present though. The coring campaign from Institute of Geography, Russian Academy of Sciences (August 2012) used a modified piston corer with a 110 mm-diameter plastic tube (Nesje, 1992) mounted on the inflatable catamaran to obtain lake sediments from Lake Donguz-Orun. A 28-cm long core was retrieved from a water depth of around 7 m. The sediments consist of regularly laminated, fine beige clay, with several interlayers of sand. The coring process appeared to be challenging due to the stiffness of clay, which led to extreme bending of the sediment layers in the basal part of the core. The original thickness of the sediments was obviously higher than observed in the core. In order to clarify the recent history of the Donguz-Orun glacier, we used lichenometry and dendrochronology for dating its lateral and terminal moraines. The upper part of the core (0-170 mm) was scanned applying X-ray fluorescent microanalysis using synchrotron radiation and sampled for dating using 137Cs and 210Pb. The assumption that the sediment stratification represents annual layering (spring flood) is generally confirmed with correlation of the Rb/Sr-ratio (that supposedly marks grain-size variations in the sediments) curve and the image of the sediment core. Calculations of Rb/Sr peaks or visual layers yield an accumulation rate of around 2 mm/yr. Analogous results (1.73 mm/yr) are derived from 137Cs-dating. With this high accumulation rate, the sediment core of Lake Donguz-Orun represents an important source of information for high-resolution reconstructions of climatic parameters and glacier variations of the region. The research project of Mikhail Alexandrin is supported by grant# 227470/F11 issued by The Research Council of Norway.

  9. Depositional setting of the Upper Jurassic Hith Anhydrite of the Arabian Gulf: An analog to holocene evaporites of the United Arab Emirates and Lake MacLeod of Western Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsharhan, A.S.; Kendall, C.G.St.C.

    1994-07-01

    The Upper Jurassic Hith Anhydrite is a major hydrocarbon seal in the Arabian Gulf region. Outcrops, core samples from the subsurface, and the literature indicate that the Hith Formation is composed mainly of anhydrite. In most locations where a section of the Hith Formation has been measured, this unit contains less than 20% carbonate much of which is in the form of thin laminations. This lack of carbonate, locally thick layers of salt, and the predominance of anhydrite favor a playa for the setting in which this sediment was accumulated. In fact, much of the Hith has the sedimentary characteristicsmore » of the Holocene Lake MacLeod playa of Western Australia, which is dominated by layers of gypsum and halite (what little carbonate that occurs is found in layers at the base of the section). Locally the Hith appears to have accumulated in a sabkha setting, particularly toward central Abu Dhabi where it pinches out into shallow-water, and peritidal carbonate. This sabkha setting is indicated by the interbedded relationship of the Hith anhydrites with these carbonates and the local predominance of horizontally flattened nodules and enterolithic layers of anhydrite. These latter features match some of the characteristic fabrics found in the Holocene coastal sabkhas of the United Arab Emirates. As with the local occurrences in the Hith, the Holocene sabkhas are dominated by carbonates and are divisible into a series of lateral facies belts. These are also expressed as equivalent vertical layers. Traced from seaward to landward, or from the base of the vertical sequence upward, these facies are characterized by (1) algal mat, (2) a layer of a gypsum crystal mush (3) active anhydrite replacement of gypsum (4) anhydrite with no gypsum mush, and (5) recycled eolianite and storm-washover sediments.« less

  10. Magnetic properties of sediments in cores from the Mandovi estuary, western India: Inferences on provenance and pollution.

    PubMed

    Prajith, A; Rao, V Purnachandra; Kessarkar, Pratima M

    2015-10-15

    Magnetic properties of sediments were investigated in 7 gravity cores recovered along a transect of the Mandovi estuary, western India to understand their provenance and pollution. The maximum magnetic susceptibility of sediments was at least 6 times higher in the upper/middle estuary than in lower estuary/bay. The χfd% and χARM/SIRM of sediments indicated coarse, multi-domain and pseudo-single domain magnetic grains, resembling ore material in the upper/middle estuary and coarse stable single domain (SSD) to fine SSD grains in the lower estuary/bay. Mineralogy parameters indicated hematite and goethite-dominated sediments in the upper/middle estuary and magnetite-dominated sediments in the lower estuary/bay. Two sediment types were discernible because of deposition of abundant ore material in the upper/middle estuary and detrital sediment in the lower estuary/bay. The enrichment factor and Index of geo-accumulation of metals indicated significant to strong pollution with respect to Fe and Mn in sediments from the upper/middle estuary. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Uranium in sediments, mussels (Mytilus sp.) and seawater of the Krka river estuary.

    PubMed

    Cuculić, Vlado; Cukrov, Neven; Barisić, Delko; Mlakar, Marina

    2006-01-01

    The response of an aquatic environment to the decrease of phosphate discharges from a technologically improved transhipment terminal, situated at the Croatian Adriatic coast in the port of Sibenik, has been assessed based on uranium activity and concentration in sediment, seawater and mussels Mytilus sp. The highest 238U activities (485+/-16Bqkg(-1) dry weight) were found in the sediment sample collected from the sampling site closest to the terminal. The maximum concentrations in the sediment samples are above the natural ranges and clearly indicate the harbour activities' influence. The 238U/226Ra activity ratios in sediment samples demonstrate the decreasing trend of phosphate ore input. Mussel samples showed levels of 238U activities in the range from 12.1+/-2.9 to 19.4+/-7.2 Bqkg(-1) dry weight, thus being slightly higher than in normally consumed mussels. Only the seawater, taken just above the bottom sediment at the sampling site closest to the terminal, shows a slightly higher uranium concentration (3.1+/-0.2 microgL(-1)) when compared to the samples taken in upper seawater layers (2.1+/-0.2 microgL(-1)) but is in the range of the concentration level of uranium in natural seawater. Since the transhipment terminal in the port of Sibenik was modernised in 1988, discharge of phosphate ore into the seawater was drastically reduced and, consequently, uranium concentration levels in seawater have decreased. However, enhanced uranium activity levels are still found in deeper sediment layer samples and in mussel.

  12. A method to assess the evolution and recovery of heavy metal pollution in estuarine sediments: Past history, present situation and future perspectives.

    PubMed

    Bárcena, Javier F; Claramunt, Inigo; García-Alba, Javier; Pérez, María Luisa; García, Andrés

    2017-11-15

    A methodology to assess the historical evolution and recovery of heavy metal pollution in estuarine sediments was developed and is presented here. This approach quantifies the distribution of heavy metals in sediment cores, and investigates the influence of anthropogenic activities and/or core locations on the heavy metal pollution, by proposing and using sediment quality indices and polynomial regressions. The method has been applied to the Suances Estuary confirming its suitability as a comprehensive and practical management tool. In this estuary, the evolution of heavy metal pollution (since 1997-1998 to 2015) pointed out the deeper the sediments, the more polluted, indicating a recovery at the upper layers due to the closure and ending of washing discharges from mining, and the reduction of metal loads from industrial wastewaters. In terms of global pollution, the intertidal and subtidal sediments will require 43.1±2.8 and 8.6±0.6years to be unpolluted, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Depositional and deformational history of the Franciscan complex, northernmost California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalto, K.R.

    1990-05-01

    Pervasive extensional shear fractures and curvilinear arrays of clay and silt-filled veins in Franciscan Complex melanges and turbidites formed when Franciscan sediments were unlithified. Sandstone dikes both crosscut and follow fractures. Several scales of extensional faulting account for the juxtaposition of turbidites of different facies and/or with varying degrees of stratal disruption, the formation of sandstone lozenges and pinch-and-swell structures, and the formation of scaly foliation within the matrix of melange units. Within turbidites, the upper laminated portions of beds commonly contain abundant listric microfaults and the more massive lower portions of beds contain sediment-filled vein arrays. Veining and faultingmore » occurred concurrently and resulted in differential extension of upper verses lower portions of beds. The finer sediment in veins reflects both cataclasis and filtering in of clay and silt from vein walls. Most Franciscan rocks record an early pervasive, layer-parallel flattening strain, which may be related to the gravitational collapse of late Mesozoic Franciscan inner trench slope sediments that accompanied accretionary prism expansion resulting from underplating. However, some turbidites record noncoaxial extension that resulted from downslope creep of sediments. At Crescent City, sediment creep resulted in oversteepening of the Franciscan inner trench slope, which, in turn, may have triggered large-scale failure of slope materials resulting in the emplacement of the Crescent City olistostrome. The olistostrome crops out for 12 km along the coast, is up to 600 m thick, is in depositional contact with turbidites, and contains chiefly sandstone, greenstone, chert olistoliths up to 200 m across, and zones of slump-folded turbidites.« less

  14. Hydrogeologic framework of the middle San Pedro watershed, southeastern Arizona

    USGS Publications Warehouse

    Dickinson, Jesse; Kennedy, Jeffrey R.; Pool, D.R.; Cordova, Jeffrey T.; Parker, John T.; Macy, J.P.; Thomas, Blakemore

    2010-01-01

    Water managers in rural Arizona are under increasing pressure to provide sustainable supplies of water despite rapid population growth and demands for environmental protection. This report describes the results of a study of the hydrogeologic framework of the middle San Pedro watershed. The components of this report include: (1) a description of the geologic setting and depositional history of basin fill sediments that form the primary aquifer system, (2) updated bedrock altitudes underlying basin fill sediments calculated using a subsurface density model of gravity data, (3) delineation of hydrogeologic units in the basin fill using lithologic descriptions in driller's logs and models of airborne electrical resistivity data, (4) a digital three-dimensional (3D) hydrogeologic framework model (HFM) that represents spatial extents and thicknesses of the hydrogeologic units (HGUs), and (5) description of the hydrologic properties of the HGUs. The lithologic interpretations based on geophysical data and unit thickness and extent of the HGUs included in the HFM define potential configurations of hydraulic zones and parameters that can be incorporated in groundwater-flow models. The hydrogeologic framework comprises permeable and impermeable stratigraphic units: (1) bedrock, (2) sedimentary rocks predating basin-and-range deformation, (3) lower basin fill, (4) upper basin fill, and (5) stream alluvium. The bedrock unit includes Proterozoic to Cretaceous crystalline rocks, sedimentary rocks, and limestone that are relatively impermeable and poor aquifers, except for saturated portions of limestone. The pre-basin-and-range sediments underlie the lower basin fill but are relatively impermeable owing to cementation. However, they may be an important water-bearing unit where fractured. Alluvium of the lower basin fill, the main water-bearing unit, was deposited in the structural trough between the uplifted ridges of bedrock and (or) pre-basin-and-range sediments. Alluvium of the upper basin fill may be more permeable than the lower basin fill, but it is generally unsaturated in the study area. The lower basin fill stratigraphic unit was delineated into three HGUs on the basis of lithologic descriptions in driller?s logs and one-dimensional (1D) electrical models of airborne transient electromagnetic (TEM) surveys. The interbedded lower basin fill (ILBF) HGU represents an upper sequence having resistivity values between 5 and 40 ohm-m identified as interbedded sand, gravel, and clay in driller?s logs. Below this upper sequence, fine-grained lower basin fill (FLBF) HGU represents a thick silt and clay sequence having resistivity values between 5 and 20 ohm-m. Within the coarse-grained lower basin fill (CLBF) HGU, which underlies the silt and clay of the FLBF, the resistivity values on logs and 1D models increase to several hundred ohm-m and are highly variable within sand and gravel layers. These sequences match distinct resistivity and lithologic layers identified by geophysical logs in the adjacent Sierra Vista subwatershed, suggesting that these sequences are laterally continuous within both the Benson and Sierra Vista subwatersheds in the Upper San Pedro Basin. A subsurface density model based on gravity data was constructed to identify the top of bedrock and structures that may affect regional groundwater flow. The subsurface density model contains six layers having uniform density values, which are assigned on the basis of geophysical logs. The density values for the layers range between 1.65 g/cm3 for unsaturated sediments near the land surface and 2.67 g/cm3 for bedrock. Major features include three subbasins within the study area, the Huachuca City subbasin, the Tombstone subbasin, and the Benson subbasin, which have no expression in surface topography or lithology. Bedrock altitudes from the subsurface density model defined top altitudes of the bedrock HGU. The HFM includes the following HGUs in ascending stratigr

  15. Sediment Resuspension and Transport During Bora in the Western Adriatic Coastal Current

    NASA Astrophysics Data System (ADS)

    Mullenbach, B. L.; Geyer, W. R.; Sherwood, C. R.

    2004-12-01

    The Western Adriatic Coastal Current (WACC) is an important agent for along-shelf transport of sediment and fresh water in the western Adriatic Sea. The WACC is driven by a combination of buoyancy forcing from the Po River (northern Adriatic) and wind forcing from northeasterly Bora winds. The large seasonal pulse of freshwater (during the winter) from the Po River influences WACC strength; however, preliminary results from current measurements and model runs indicate that the WACC responds quickly and strongly to Bora wind events, with a strengthening of the current moving southward. Along-margin sediment transport to the south is significantly increased as a result of Bora wind events, presumably because of enhanced wave resuspension and WACC velocity. Elevated sediment fluxes have been observed in both the upper water column (i.e., core of the WACC) and bottom boundary layer (BBL) during these events, which suggests that wind-driven currents may be coupled with the near-bottom transport. This study addresses the interaction of the WACC with the BBL and the impact of this interaction on sediment transport in the western Adriatic. Two benthic tripods were deployed from November 2002 to June 2003 on an across-shelf transect near the Chienti River (at 10 and 20-m water depth), in the region where WACC begins to intensify (200 km south of Po River). Continuous measurements of suspended sediment concentration and current velocity were recorded in the upper-water column and BBL to document sediment transport events. A time series of sediment fluxes and shear velocities (from currents only, u*c; from waves and currents, u*wc) were calculated from these data. Results show that suspended sediment concentrations near the seabed (few cmab) during Bora wind events are strongly correlated with u*wc, which supports a previous hypothesis that wave resuspension (rather than direct fluvial input) is responsible for much of the suspended sediment available for transport southward of the Po River. In contrast, suspended sediment concentrations farther away from the bed (50 cmab) are highly correlated with u*c, but not with u*wc. These results suggest that WACC velocity during Bora events controls the ability of sediment to escape the wave boundary layer and be suspended farther away from the seabed. This implies that turbulence induced by currents, rather than waves, allows sediment to move higher in the water column and become available for transport by fast-moving currents generated by the WACC, thus producing strong southward sediment fluxes observed during Bora events. Specific mechanisms responsible for the vertical structure of suspended sediment and estimates of vertically integrated fluxes during these Bora events are yet to be established because of the difficulty in estimating suspended sediment concentrations throughout the water column from acoustic data; these issues are still under investigation and progress will be assessed.

  16. The Multi-Stage History of Mt. Sharp

    NASA Technical Reports Server (NTRS)

    Allen, C.; Dapremont, A.

    2013-01-01

    The Curiosity rover is exploring Gale crater and Mt. Sharp, Gale's 5-km high central mound. We are investigating the history of alteration and erosion of Mt. Sharp using orbital imagery, spectroscopy and rover observations. Our results suggest a significant time gap between emplacement of the upper and lower sections of the mound. Crater counts show that the lower mound was formed soon after Gale itself, and that it contains distinct units ranging in altitude from approximately -4,500 to -1,800 m. Spectral data suggest that many units contain phyllosilicates. We found that these clay-bearing rocks occur in distinct layers concentrated below -2,900 m. Parts of the lower mound exhibit a transition from clays to sulfates with increasing altitude. The lower mound shows evidence of flowing water, including canyons and inverted channels. Wind erosion produced km-scale yardangs and scalloped cliffs. Our mapping shows that many yardangs in the lower mound are clay-bearing, with a predominant orientation of around N-S. Curiosity's ground-level images show myriad fine-scale, mainly horizontal layers in the lower mound. The rover has found stream beds and conglomerates, indicating that water once flowed on the crater floor. Drilling near the deepest point in Gale produced abundant clay, providing additional evidence of aqueous alteration. Upper mound units range in altitude from -2,100 m to +500 m, and mantle the lower mound above an angular unconformity. Most upper mound units are composed of layers. The formation age of the upper mound is unknown, since few craters are preserved. Clay-bearing layers are detectable in several locations, mainly at altitudes near -2,000 m. There is no evidence of water flow, but wind erosion has scalloped the surfaces and edges of layers, and fine-scale yardangs are common. Correlations between yardangs and clay spectra are apparent only in the lowermost units of the upper mound. Yardang orientations vary, and include N-S, NW-SE, and NE-SW. Upper mound units resemble the planet-wide Medusae Fossae formation, dated as Hesperian and argued to be composed of ignimbrites. Medusae Fossae layers are easily eroded by wind, and our mapping demonstrates their resemblance to upper mound fine-scale yardangs. The history of Mt. Sharp started with deposition and lithification of sediments shortly after crater formation. Some lower mound layers were partially altered to clays and sulfates, and water formed streams and canyons. Wind erosion of the lower mound produced large-scale yardangs, particularly in clay-rich layers, oriented generally N-S. Upper mound units were emplaced following a considerable period of wind erosion. The absence of water flow on the upper mound suggests that these units were emplaced after atmospheric loss rendered water unstable at the surface. The shift in dominant wind direction, as indicated by yardang orientations, also argues for a time gap between erosion of the lower and upper mound. These observations are consistent with upper mound units being related to the Hesperian Medusae Fossae formation. During 2014 Curiosity is expected to reach the foot of Mt. Sharp and ascend through the clay-rich layers, into the sulfate-rich layers, and possibly past the interface with the upper mound. This will be a unique opportunity to field check geologic models on the surface of Mars.

  17. Osmium isotope evidence for a large Late Triassic impact event

    PubMed Central

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio (187Os/188Osi) of ∼0.477 to unradiogenic values of ∼0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous–Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3–7.8 km in diameter) produced a global decrease in seawater 187Os/188Os ratios in the Late Triassic. PMID:24036603

  18. Nannofossils in upper quaternary bottom sediments of back-arc basins in the southwestern Pacific

    NASA Astrophysics Data System (ADS)

    Dmitrenko, O. B.

    2015-05-01

    The analysis of calcareous nannoplankton assemblages in bottom sediments sampled during Cruise 21 of the R/V Akademik Mstislav Keldysh in three areas located in back-arc basins of the southwestern Pacific (western Woodlark in the Solomon Sea, Manus in the Bismarck Sea, Central Lau) reveal that they belong to the Emiliania huxleyi Acme Zone, the most detailed one in the Gartner's scale of 1977. The content of coccoliths and their taxonomic composition indicate warm subtropical-tropical conditions. Long cores demonstrate a decrease in species diversity reflecting the transition from the cold late Pleistocene to the Holocene. The changes in species diversity and presence/absence of thermophilic representatives indicate transformation of depositional environments with unstable conditions in the water column and bottom layer, seismic activity, and widely developed processes of sediment redistribution and reworking.

  19. Hydrogeology and preliminary assessment of regional flow in the upper Cretaceous and adjacent aquifers in the northern Mississippi embayment

    USGS Publications Warehouse

    Brahana, J.V.; Mesko, T.O.

    1988-01-01

    On a regional scale, the groundwater system of the northern Mississippi embayment is composed of a series of nonindurated clastic sediments that overlie a thick sequence of Paleozoic carbonate, sandstones, and shales. The units that comprise the geohydrologic framework of this study are the alluvium-lower Wilcox Aquifer the Midway confining unit, the Upper Cretaceous aquifer, the Cretaceous-Paleozoic confining unit, and the Ozark-St. Francois aquifer. The Upper Cretaceous aquifer of Late Cretaceous age is the primary focus of this investigation; the study is part of the Gulf Coast Regional Aquifer-System Analysis. A four layer finite-difference groundwater flow model enabled testing of alternative boundary concepts and provide a refined definition of the hydrologic budget of the deep aquifers. The alluvium-lower Wilcox aquifer, the Upper Cretaceous aquifer, and the Ozark-St. Francois aquifer form layers 2 through 4, respectively. Layer 1 is an inactive layer of constant heads representing shallow water levels, which are a major control on recharge to and discharge from the regional system. A matrix of leakance values simulates each confining unit, allowing vertical interchange of water between different aquifers. The model was calibrated to 1980 conditions by using the assumption that 1980 was near steady-state conditions; it was calibrated to simulate observed heads were found to be most sensitive to pumping, and least sensitive to the leakance. By using all available water quality and water level data, alternative boundary conditions were tested by comparing model simulated heads to observed heads. The results of the early modeling effort also contribute to a better understanding of the regional hydrologic budget, indicating that: upward leakage from the Ozark-St. Francois aquifer to the Upper Cretaceous aquifer is about 43 cu ft/sec; upward recharge of about 68 cu ft/sec occurs to the lower Wilcox-alluvium aquifer from the Upper Cretaceous aquifer; and the Midway is an effective regional confining unit. (Author 's abstract)

  20. Flow structure at low momentum ratio river confluences

    NASA Astrophysics Data System (ADS)

    Moradi, Gelare; Rennie, Colin. D.; Cardot, Romain; Mettra, François; Lane, Stuart. N.

    2017-04-01

    The flow structure at river confluences is a complex pattern of fluid motion and can be characterized by the formation of secondary circulation. As river confluences play an essential role on flow hydrodynamics and control the movement of sediment through river networks, there has been substantial attention given to this subject in recent decades. However, there is still much debate over how momentum ratio and sediment transport can control secondary circulation and mixing processes. In particular, studies have tended to assume that there is some equilibrium between the bed morphology present and the flow structures that form in the junction region. However, this overlooks the fact that tributaries may be associated with highly varying sediment supply regimes, especially for shorter and steeper tributaries, with temporal changes in sediment delivery ratios (between the main stem and the tributary) that do not follow exactly changes in momentum ratio. This may lead to bed morphologies that are a function of rates of historical sediment supply during sediment transporting events and not the momentum ratio associated with the junction during its measurement. It is quite possible that tributaries with low flow momentum ratio have a relatively higher sediment delivery ratio, such that the tributary is still able to influence significantly secondary circulation in the main channel, long after the sediment transport event, and despite its low flow momentum during measurement. The focus of this paper is low momentum ratio junctions where it is possible that the tributary can deliver large amounts of sediment. Secondary circulation at junctions is thought to be dominated by streamwise-oriented vortical cells. These cells are produced by the convergence of surface flow towards the centre of the main channel, with descending motion in the zone of maximum flow convergence. Once flow arrives at the bed, it diverges and completes its rotation by an upwelling motion through the surface at the channels margins. Numerical models, laboratory experiments and field studies have confirmed the presence of this motion. However, such studies have focused on situations where the momentum ratio is close to one and there have been fewer investigations of confluences where the momentum ratio is much less than one. This study presents field investigations in two upper Rhône river confluences in Switzerland, using an acoustic Doppler current profiler (aDcp). These two confluences are characterized by low momentum ratios but potentially higher sediment delivery ratios during extreme events. Results show that sediment delivery from the tributary during extreme events leads to the formation of a tributary mouth bar and associated bed discordance as well as a bank attached bar downstream of the tributary. In both cases, this discordant bed forms a two-layer flow and the water from the tributary penetrates into the upper part of the main river water column. This results in a mixing interface that is shifted toward the outer bank. When this mixing layer detaches from the tributary outer bank, it forms a large recirculation region in the upper part of the water column and a pronounced scour hole at this bank. The bank attached bar that forms downstream during sediment supply events leads to substantial curvature of the main channel flow, even when the flow momentum of the tributary is low and helps to shift the zone of deepest main river flow towards the outer bank.

  1. Effects of Low-Permeability Layers in the Hyporheic Zone on Oxygen Consumption Under Losing and Gaining Groundwater Flow Conditions

    NASA Astrophysics Data System (ADS)

    Arnon, S.; Krause, S.; Gomez-Velez, J. D.; De Falco, N.

    2017-12-01

    Recent studies at the watershed scale have demonstrated the dominant role that river bedforms play in driving hyporheic exchange and constraining biogeochemical processes along river corridors. At the reach and bedform scales, modeling studies have shown that sediment heterogeneity significantly modifies hyporheic flow patterns within bedforms, resulting in spatially heterogeneous biogeochemical processes. In this work, we summarize a series of flume experiments to evaluate the effect that low-permeability layers, representative of structural heterogeneity, have on hyporheic exchange and oxygen consumption in sandy streambeds. In this case, we systematically changed the geometry of the heterogeneities, the surface channel flow driving the exchange, and groundwater fluxes (gaining/losing) modulating the exchange. The flume was packed with natural sediments, which were amended with compost to minimize carbon limitations. Structural heterogeneities were represented by continuous and discontinuous layers of clay material. Flow patterns were studied using dye imaging through the side walls. Oxygen distribution in the streambed was measured using planar optodes. The experimental observations revealed that the clay layer had a significant effect on flow patterns and oxygen distribution in the streambed under neutral and losing conditions. Under gaining conditions, the aerobic zone was limited to the upper sections of the bedform and thus was less influenced by the clay layers that were located at a depth of 1-3 cm below the water-sediment interface. We are currently analyzing the results with a numerical flow and transport model to quantify the reactions rates under the different flow conditions and spatial sediment structures. Our preliminary results enable us to show the importance of the coupling between flow conditions, local heterogeneity within the streambed and oxygen consumption along bed forms and are expected to improve our ability to model the effect of stream-groundwater interactions on nutrient cycling.

  2. Importance of the Colmation Layer in the Transport and Removal of Cyanobacteria, Viruses, and Dissolved Organic Carbon during Natural Lake-Bank Filtration.

    PubMed

    Harvey, Ronald W; Metge, David W; LeBlanc, Denis R; Underwood, Jen; Aiken, George R; Butler, Kenna; McCobb, Timothy D; Jasperse, Jay

    2015-09-01

    This study focused on the importance of the colmation layer in the removal of cyanobacteria, viruses, and dissolved organic carbon (DOC) during natural bank filtration. Injection-and-recovery studies were performed at two shallow (0.5 m deep), sandy, near-shore sites at the southern end of Ashumet Pond, a waste-impacted, kettle pond on Cape Cod, MA, that is subject to periodic blooms of cyanobacteria and continuously recharges a sole-source drinking-water aquifer. The experiment involved assessing the transport behaviors of bromide (conservative tracer), sp. IU625 (cyanobacterium, 2.6 ± 0.2 µm), AS-1 (tailed cyanophage, 110 nm long), MS2 (coliphage, 26 nm diameter), and carboxylate-modified microspheres (1.7 µm diameter) introduced to the colmation layer using a bag-and-barrel (Lee-type) seepage meter. The injectate constituents were tracked as they were advected across the pond water-groundwater interface and through the underlying aquifer sediments under natural-gradient conditions past push-point samplers placed at ∼30-cm intervals along a 1.2-m-long, diagonally downward flow path. More than 99% of the microspheres, IU625, MS2, AS-1, and ∼44% of the pond DOC were removed in the colmation layer (upper 25 cm of poorly sorted bottom sediments) at two test locations characterized by dissimilar seepage rates (1.7 vs. 0.26 m d). Retention profiles in recovered core material indicated that >82% of the attached IU625 were in the top 3 cm of bottom sediments. The colmation layer was also responsible for rapid changes in the character of the DOC and was more effective (by three orders of magnitude) at removing microspheres than was the underlying 20-cm-thick segment of sediment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346

    NASA Astrophysics Data System (ADS)

    Tada, Ryuji; Irino, Tomohisa; Ikehara, Ken; Karasuda, Akinori; Sugisaki, Saiko; Xuan, Chuang; Sagawa, Takuya; Itaki, Takuya; Kubota, Yoshimi; Lu, Song; Seki, Arisa; Murray, Richard W.; Alvarez-Zarikian, Carlos; Anderson, William T.; Bassetti, Maria-Angela; Brace, Bobbi J.; Clemens, Steven C.; da Costa Gurgel, Marcio H.; Dickens, Gerald R.; Dunlea, Ann G.; Gallagher, Stephen J.; Giosan, Liviu; Henderson, Andrew C. G.; Holbourn, Ann E.; Kinsley, Christopher W.; Lee, Gwang Soo; Lee, Kyung Eun; Lofi, Johanna; Lopes, Christina I. C. D.; Saavedra-Pellitero, Mariem; Peterson, Larry C.; Singh, Raj K.; Toucanne, Samuel; Wan, Shiming; Zheng, Hongbo; Ziegler, Martin

    2018-12-01

    The Quaternary hemipelagic sediments of the Japan Sea are characterized by centimeter- to decimeter-scale alternation of dark and light clay to silty clay, which are bio-siliceous and/or bio-calcareous to a various degree. Each of the dark and light layers are considered as deposited synchronously throughout the deeper (> 500 m) part of the sea. However, attempts for correlation and age estimation of individual layers are limited to the upper few tens of meters. In addition, the exact timing of the depositional onset of these dark and light layers and its synchronicity throughout the deeper part of the sea have not been explored previously, although the onset timing was roughly estimated as 1.5 Ma based on the result of Ocean Drilling Program legs 127/128. Consequently, it is not certain exactly when their deposition started, whether deposition of dark and light layers was synchronous and whether they are correlatable also in the earlier part of their depositional history. The Quaternary hemipelagic sediments of the Japan Sea were drilled at seven sites during Integrated Ocean Drilling Program Expedition 346 in 2013. Alternation of dark and light layers was recovered at six sites whose water depths are > 900 m, and continuous composite columns were constructed at each site. Here, we report our effort to correlate individual dark layers and estimate their ages based on a newly constructed age model at Site U1424 using the best available paleomagnetic datum and marker tephras. The age model is further tuned to LR04 δ18O curve using gamma ray attenuation density (GRA) since it reflects diatom contents that are higher during interglacial high-stands. The constructed age model for Site U1424 is projected to other sites using correlation of dark layers to form a high-resolution and high-precision paleo-observatory network that allows to reconstruct changes in material fluxes with high spatio-temporal resolutions.

  4. Influence of shear forces on the aggregation and sedimentation behavior of cerium dioxide (CeO2) nanoparticles under different hydrochemical conditions

    NASA Astrophysics Data System (ADS)

    Lv, Bowen; Wang, Chao; Hou, Jun; Wang, Peifang; Miao, Lingzhan; Li, Yi; Ao, Yanhui; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2016-07-01

    This study contributed to a better understanding of the behavior of nanoparticles (NPs) in dynamic water. First, the aggregation behavior of CeO2 NPs at different pH values in various salt solutions was examined to determine the appropriate hydrochemical conditions for hydrodynamics study. Second, the aggregation behavior of CeO2 NPs under different shear forces was investigated at pH 4 and ionic strength 0 in various salt solutions to find out whether shear forces could influence the stability of the nanoparticles and if yes, how. Also, five-stage sedimentation tests were conducted to understand the influence of shear stress on the vertical distribution of CeO2 NPs in natural waters. The aggregation test showed that the shear force could increase the collision efficiency between NPs during aggregation and cause a relatively large mass of NPs to remain in suspension. Consequently, the nanoparticles had a greater possibility of continued aggregation. The sedimentation test under static conditions indicated that a large mass of NPs (>1000 nm) sink to the bottom layer, leaving only small aggregates dispersed in the upper or middle layer of the solution. However, later sedimentation studies under stirring conditions demonstrated that shear forces can disrupt this stratification phenomenon. These results suggest that shear forces can influence the spatial distribution of NPs in natural waters, which might lead to different toxicities of CeO2 NPs to aquatic organisms distributed in the different water layers. This study contributes to a better understanding of nanomaterial toxicology and provides a way for further research.

  5. Vertical distribution of major, minor and trace elements in sediments from mud volcanoes of the Gulf of Cadiz: evidence of Cd, As and Ba fronts in upper layers

    NASA Astrophysics Data System (ADS)

    Carvalho, Lina; Monteiro, Rui; Figueira, Paula; Mieiro, Cláudia; Almeida, Joana; Pereira, Eduarda; Magalhães, Vítor; Pinheiro, Luís; Vale, Carlos

    2018-01-01

    Mud volcanoes are feature of the coastal margins where anaerobic oxidation of methane triggers geochemical signals. Elemental composition, percentage of fine particles and loss on ignition were determined in sediment layers of eleven gravity cores retrieved from four mud volcanoes (Sagres, Bonjardim, Soloviev and Porto) and three undefined structures located on the deep Portuguese margin of the Gulf of Cadiz. Calcium was positively correlated to Sr and inversely to Al as well as to most of the trace elements. Vertical profiles of Ba, Cd and As concentrations, and their ratios to Al, in Porto and Soloviev showed pronounced enhancements in the top 50-cm depth. Sub-surface enhancements were less pronounced in other mud volcanoes and were absent in sediments from the structures. These profiles were interpreted as diagenetic enrichments related to the anaerobic oxidation of methane originated from upward methane-rich fluxes. The observed barium fronts were most likely caused by the presence of barite which precipitated at the sulphate-methane transition zone. Cd and As enrichments have probably resulted from successive dissolution/precipitation of sulphides in response to vertical shifts of redox boundaries.

  6. High resolution analysis of northern Patagonia lake sediments

    NASA Astrophysics Data System (ADS)

    Jarvis, S. W.; Croudace, I. W.; Langdon, P. G.; Rindby, A.

    2009-04-01

    Sediment cores covering the period from the last glacial maximum through the Holocene to the present have been collected from sites in the Chacubuco valley, southern Chile (around 47°08'S, 72°25'W, to the east of the North Patagonian Icecap). Cores were taken from five lakes and one recently dried lake bed. Short cores (0.2 to 0.5m), covering approximately the last two hundred years, were taken from all the lakes. Additionally, long sequences were obtained from one of the lakes and from the dried lake bed, the latter sequence extending back to the last glacial maximum as indicated by thick clay at the base. Each of the lakes are small-medium sized and are open systems situated at 300-1000m above sea level. The shorter cores comprise predominantly clastic gyttja but show a number of distinct changes in colour and chemical composition that suggest major environmental changes over the period of sediment accumulation. This is also reflected in variations in the loss on ignition of samples from the cores and in elemental profiles produced by scanning the cores with the Itrax micro-XRF corescanner at 200μm resolution. The long sequence from the dried lake bed has very low organic content glacial clay at the base, interpreted as last glacial maximum basal clay following determination in the field that this layer exceeded 2m in thickness. Similar sediments occur within a stratigraphically discrete section of approximately 14cm and may relate to a stadial event. The latter section also shows a drop in organic content and appears to be glacial clay incorporating some coarse sandy components indicative of detrital input from the catchment. The second long sequence, from a carbonate lake, includes two mineral layers indicating increased detrital input from the catchment. The deeper and thicker of these layers appears similar to the 14cm layer in the first long sequence, while the upper layer comprises a fine grain size indicative of rock flour and hence also of glacial activity in the catchment. Variation of elemental composition of these ‘glacial' layers is also clear from the Itrax data. It therefore appears that there have been significant reglaciation events in the catchment since the last glacial maximum. Many cores contain tephra layers, identified both visually and from the Itrax scans. Some of these have been confirmed as volcanic ash from the 1991 eruption of Mt Hudson, which at 45°54'S, 72°58'W is the southern-most volcano in the Chilean Andes and only 140km from the study area. Further work is underway to confirm and identify the source and age of other suspected tephra layers. Sediment accumulation rates in the upper parts of the cores are of the order of 1mm/yr (as determined by lead-210, caesium-137 dating and the 1991 Hudson tephra). Given XRF scan resolutions of up to 200μm there is thus the potential for investigation of sub-annual variability. Funding has been obtained to determine carbon-14 dates for the lower parts of the longer cores. The reproducibility and accuracy of the Itrax data has been validated using conventional WD-XRF spectrometry and the work presented will also include geochemical interpretation of the XRF data and comparison with recorded and proxy-inferred climate data for the region.

  7. Primary production export flux in Marguerite Bay (Antarctic Peninsula): Linking upper water-column production to sediment trap flux

    NASA Astrophysics Data System (ADS)

    Weston, Keith; Jickells, Timothy D.; Carson, Damien S.; Clarke, Andrew; Meredith, Michael P.; Brandon, Mark A.; Wallace, Margaret I.; Ussher, Simon J.; Hendry, Katharine R.

    2013-05-01

    A study was carried out to assess primary production and associated export flux in the coastal waters of the western Antarctic Peninsula at an oceanographic time-series site. New, i.e., exportable, primary production in the upper water-column was estimated in two ways; by nutrient deficit measurements, and by primary production rate measurements using separate 14C-labelled radioisotope and 15N-labelled stable isotope uptake incubations. The resulting average annual exportable primary production estimates at the time-series site from nutrient deficit and primary production rates were 13 and 16 mol C m-2, respectively. Regenerated primary production was measured using 15N-labelled ammonium and urea uptake, and was low throughout the sampling period. The exportable primary production measurements were compared with sediment trap flux measurements from 2 locations; the time-series site and at a site 40 km away in deeper water. Results showed ˜1% of the upper mixed layer exportable primary production was exported to traps at 200 m depth at the time-series site (total water column depth 520 m). The maximum particle flux rate to sediment traps at the deeper offshore site (total water column depth 820 m) was lower than the flux at the coastal time-series site. Flux of particulate organic carbon was similar throughout the spring-summer high flux period for both sites. Remineralisation of particulate organic matter predominantly occurred in the upper water-column (<200 m depth), with minimal remineralisation below 200 m, at both sites. This highly productive region on the Western Antarctic Peninsula is therefore best characterised as 'high recycling, low export'.

  8. Salt-water encroachment, geology, and ground-water resources of Savannah area, Georgia and South Carolina

    USGS Publications Warehouse

    Counts, H.B.; Donsky, Ellis

    1964-01-01

    The Savannah area consists of about 2,300 square miles of the Coastal Plain along the coast of eastern Georgia and southeastern South Carolina. Savannah is near the center of the area. Most of the large ground-water developments are in or near Savannah. About 98 percent of the approximately 60 mgd of ground water used is pumped from the principal artesian aquifer, which is composed of about 600 feet of limestone of middle Eocene, Oligocene, and early Miocene ages. Industrial and other wells of large diameter yield as much as 4,200 gpm from the principal artesian aquifer. Pumping tests and flow-net analyses show that the coefficient of transmissibility averages about 200,000 gpd per ft in the immediate Savannah area. The specific capacity of wells in the principal artesian aquifer generally is about 50 gpm per ft of drawdown. The coefficient of storage of the principal artesian aquifer is about 0.0003 in the Savannah area. Underlying the Savannah area are a series of unconsolidated and semiconsolidated sediments ranging in age from Late Cretaceous to Recent. The Upper Cretaceous, Paleocene, and lower Eocene sediments supply readily available and usable water in other parts of the Coastal Plain, but although the character and physical properties of these formations are similar in the Savannah area to the same properties in other areas, the hydraulic and structural conditions appear to be different. Deep test wells are needed to evaluate the ground-water potential of these rocks. The lower part of the sediments of middle Eocene age acts as a confining layer to the vertical movement of water into or out of the principal artesian aquifer. Depending on the location and depth, the principal artesian aquifer consists of from one to five geologic units. The lower boundary of the aquifer is determined by a reduction in permeability and an increase in salt-water content. Although the entire limestone section is considered water bearing, most of the ground water used in the area comes from the upper part of the Ocala limestone of late Eocene age and the limestones of Oligocene age. The greatest volume of water comes from the upper part of the Ocala limestone, but the greatest number of wells are supplied from the rocks of Oligocene age. The Tampa limestone and Hawthorn formation of early Miocene age are generally water bearing; the amount and quality of the water depends on the location. The water from some wells in the Tampa and most of the water from the Hawthorn is high in hydrogen sulfide. In the northeastern part of the area the principal artesian aquifer is close to the land surface. Here the confining layer is thin and in some of the estauaries it may be completely cut through by the scouring action of the streams during tidal fluctuations. In this part of the area artesian groundwater at one time discharged from the aquifer as submarine springs. Now a reverse effect may be occurring; ocean and river water may be entering the aquifer. The silts, clays, and very fine sands of the upper Miocene and Pliocene ( ?) series generally have low permeabilities and form the upper confining layer for the principal artesian aquifer. Although all the sediments overlying the principal artesian aquifer are considered to be part of the confining layer, locally some of the upper units are water bearing. The uppermost geologic units in the Savannah area are sediments of Pliocene ( ?) to Recent age and consist of sands, silts, and clays with shell and gravel beds which are a source of water for shallow wells. The first large ground-water supply from the principal artesian aquifer was developed in 1886 by the city of Savannah. Additional municipal and industrial supplies have been developed since that time. Pumpage progressively increased to a peak of 62 mgd in 1957. Outside of the city and industrial area the 1957 pumpage was about 9 mgd. In 1958 the total pumpage in the Savannah area was about 68 mgd or about 3 mgd less th

  9. Post-depositional redistribution processes and their effects on middle rare earth element precipitation and the cerium anomaly in sediments in the South Korea Plateau, East Sea

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Jeong, Kap-Sik; Cho, Jin Hyung; Lee, Jun Ho; Jang, Seok; Kim, Seong Ryul

    2014-03-01

    We sampled two box-core sediments from the slope of the eastern South Korea Plateau (SKP) in the East Sea (Sea of Japan) at water depths of 1400 and 1700 m. Two chemical fractions of extractable (hydroxylamine/acetic acid) and residual rare earth elements (REEs) together with Al, Ca, Fe, Mg, Mn, P, S, As, Mo, and U were analyzed to assess the post-depositional redistribution of REEs. Extractable Fe and Mn are noticeably abundant in the oxic topmost sediment layer (<3 cm). However, some trace elements (e.g., S, As, Mo, U) are more abundant at depth, where redox conditions are different. Analysis of upper continental crust (UCC)-normalized (La/Gd)UCC, (La/Yb)UCC, and (Ce/Ce*)UCC revealed that the extractable REE is characterized by middle REE (MREE) enrichment and a positive cerium (Ce) anomaly, different from the case of the residual fraction which shows slight enrichment in light REEs (LREEs) with no Ce anomaly. The extractable MREEs seem to have been incorporated into high-Mg calcite during reductive dissolution of Fe oxyhydroxides. In the top sediment layer, the positive Ce anomaly is attributed to Ce oxide, which can be mobilized in deeper oxygen-poor environments and redistributed in the sediment column. In addition, differential concentrations of Ce and other LREEs in pore water appear to result in variable (Ce/Ce*)UCC ratios in the extractable fraction at depth.

  10. Microbial enzymatic activity and secondary production in sediments affected by the sedimentation pulse following the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Ziervogel, Kai; Joye, Samantha B.; Arnosti, Carol

    2016-07-01

    A large fraction of the spilled oil from the Deepwater Horizon (DwH) blowout in April 2010 reached the seafloor via sinking oil aggregates (oil snow) in a massive sedimentation that continued until late summer 2010 (;Dirty blizzard;). We measured heterotrophic microbial metabolic rates as well as porewater and sedimentary geochemical parameters at sites proximate to and distant from the wellhead to investigate microbial responses to the "Dirty Blizzard". Lipase activity and rates of bacterial protein production were highest and leucine-aminopeptidase activity was lowest in 0-2 cm sediment layers at the sites proximate to the wellhead. These results suggest that the presence of the oil snow stimulated benthic microbial enzymatic hydrolysis of oil-derived organic matter that was depleted in peptide substrates at the time of our sampling. The strong gradients in porewater DOC, NH4+, and HPO43- concentrations in the upper 6 cm of the sediments near the wellhead likewise indicate elevated heterotrophic responses to recently-sedimented organic matter. In addition to enhanced microbial activities in the 0-2 cm sediment layers, we found peaks of total organic carbon and elevated microbial metabolic rates down to 10 cm at the sites closest to the wellhead. Our results indicate distinct benthic metabolic responses of heterotrophic microbial communities, even three months after the ending of the "Dirty Blizzard". Compared to other deep-sea environments, however, metabolic rates associated with the recently deposited particulate matter around the wellhead were only moderately enhanced. Oil contaminants at the seafloor may therefore have prolonged residence times, enhancing the potential for longer-term ecological consequences in deep-sea environments.

  11. Prehistoric (Chalcolithic) Eastern Mediterranean tsunami deposit identified offshore central Israel

    NASA Astrophysics Data System (ADS)

    Tyuleneva, Natalia; Braun, Yael; Suchkov, Igor; Goodman-Tchernov, Beverly

    2017-04-01

    The shallow shelf area ( 15-30 m water depth) offshore Israel, bears great potential for paleo-tsunami studies. It was shown in the course of previous research that in these offshore marine deposits, tsunami generated sedimentary layers can be well preserved and readily identified; unlike in onshore sedimentary sequences, which experience continuous exogenous natural and anthropogenic influence. A sediment core, 219 cm long, was obtained from 15.3 m water depth, in about 4 km north of Caesarea. Grain size at 1 cm interval as well as XRD and XRF analyses at coarser resolution were performed. Previously carried out research allowed correlation of two anomalous layers in this core with well described sediment sequences offshore Caesarea. These two events correspond best with the proposed events of 749 AD and 1500 BC. Identified unusual layers in this core bear certain set of proxies that are characteristic for tsunami generated deposits and easily distinguished from the local normal marine setting. The latter is characterized by three dominating mineralogical components, such as carbonaceous sand derived either from biogenic material, namely shell fragments or from eroded limestones and dolomites that outcrop the mountains to the east; siliciclastic quartz for the sand fraction and mineral smectite for the clays. The supply of the two latter terrigenous sedimentary components comes from the Nile River, which has been a stable and predominant source of sediments for the past 8 ka. The aim of this study is to characterize the earliest unusual sedimentary layer found down core between 191 and 211 cm. This layer was attributed to a tsunami-generated sedimentary sequence in the studied core. Absolute age determination based on 14C gave the time frame from 5.6 to 6 ka BP, making this event the oldest identified in the Eastern Mediterranean to date. This tsunami corresponds to the Chalcolithic ('Copper Age') cultural period of the region. Prehistoric age of these sediments makes it impossible to correlate these identified tsunami generated sediments with any known tsunami or earthquake, since the event pre dates any written catalogues of the mentioned hazardous events. The results of this study allow to make following conclusions: (1) the unusual sedimentary layer carries indicators, characteristic for tsunami generated sediments in the studied core, such as distinct deviation of granulometric coefficients (mean, median, standard deviation, skewness, kurtosis) and presence of whole, imbricated bivalve mollusks shells; (2) the upper part of tsunami generated layer is characterized by increased content of illite, a characteristic clay mineral for terrestrial sediments; (3) increased content of heavy minerals and such elements as iron, titanium and zirconium at the top of the layer coincide with increased content of coarse sand fraction (541-1821 micron) suggesting deposition in high energy sedimentological setting and influence of a strong backwash wave, carrying terrestrial material to offshore marine environment.

  12. Changes in Depositional Setting Reflect Rising Sealevel in Latest Holocene Sediments of the Hudson River

    NASA Astrophysics Data System (ADS)

    Slagle, A.; Carbotte, S. M.; Ryan, W. B.; Bell, R.; Nitsche, F. O.; McHugh, C. M.

    2002-12-01

    An extensive database of geophysical and sampling data in the Hudson River has been obtained in ten study areas between the New York Harbor and the Troy Dam. These data include bathymetry, bank-to-bank coverage of side-looking sonar imagery, subbottom reflection profiles, sediment cores and grabs. Geophysical properties, including gamma density, magnetic susceptibility and P-wave velocity, have been measured in a 9.3 m Vibracore (SD-30) from the near-channel tidal flats of the Tappan Zee area. Three distinct sedimentary facies have been identified, based on changes in physical properties, lithology and seismic reflections. Facies 1 is an oyster-rich unit with unstratified sediments and high sound velocities, and is found in the upper 1.5 m of core SD-30. Chirp subbottom data, which provide reflectors down to approximately 4 m depth, show a distinct horizon at 1.5 m, supporting the change seen in physical property data and lithology at this depth. A unit characterized by laminated sediments, interbedded with homogeneous layers and coquina layers, is identified as Facies 2 and is found between 1.5 and 6.1 m. This facies has high magnetic susceptibility and the appearance of discrete density cycles. The oldest unit, Facies 3, extends from 6.1 m to the base of the core at 9.3 m. It is made up of oyster-rich, unbedded sediments and thick coquina layers, and is characterized by low magnetic susceptibility. Radiocarbon dating of oysters and bivalves indicates that the different facies in SD-30 correspond to different sedimentation rates, with highest values occurring during deposition of Facies 2. The facies changes and variations in sedimentation rates are attributed to an evolving depositional environment in the tidal flats of the Tappan Zee area due to rising sealevel. Extrapolating from nearby cores that penetrate deeper into the sedimentary record, Facies 3 sits above post-glacial fluvial sands and represents the transition from a fresh to more brackish environment, suitable for development of oyster beds. The laminated sediments of Facies 2 are attributed to infilling of the tidal flats during a rapid rise in sealevel. The lack of laminated sediments and low sedimentation rates of Facies 1 are attributed to the modern wave-base dominated depositional setting in the Tappan Zee area.

  13. A Possible Landing Site for the ExoMars Rover in Aram Dorsum

    NASA Image and Video Library

    2015-07-29

    This image from NASA Mars Reconnaissance Orbiter is part of a proposed landing site in Aram Dorsum for the ExoMars Rover, planned for launch in 2018. Upper layers of light toned sediments have been eroded, leaving a lower surface which appears dark. The retreating sediment scarp slopes would be an important target for the rover if it ends up going to Aram Dorsum. The retreating scarps will be relatively recent compared to the ancient age of the terrain. That means that organic compounds-which is what ExoMars is designed to drill to 2 meters depth and analyze-will not have been exposed to the full effects of solar and galactic radiation for their entire history. Such radiation can break down organic compounds. Prior to this later erosion, the rocks formed in the ancient, Noachian era as alluvial deposits of fine grained sediment. http://photojournal.jpl.nasa.gov/catalog/PIA19859

  14. Tracking recent climate and anthropogenic change in Central America in sediments form the lower fan of the Rio Yaqui, Gulf of California, Mexico

    NASA Astrophysics Data System (ADS)

    Aiello, I. W.; Ravelo, A. C.; Moraes, R.; Swarzenski, P. W.

    2015-12-01

    We report the results of preliminary sedimentologic analyses of a ~3.3m long piston core (P13) collected in the lower fan of the Rio Yaqui (Guaymas Basin, Gulf of California; depth, 1859m) by UNAM's (Universidad Nacional Autónoma de México) research ship El Puma in 2014. The core was collected to test the potential for high-resolution reconstructions of basin-scale paleoclimate in the Pacific and the Mesoamerican region. Shipboard and post-cruise analyses include magnetic susceptibility (MS), smear slide counts and laser diffraction particle size analysis. The core is being analyzed for X-Ray Fluorescence (XRF) and color reflectance, and a 210Pb age model is being constructed. Preliminary results show that Rio Yaqui lower fan sediment differs significantly from that in the Guaymas Basin, which is dominantly diatom ooze. The lower ~2m of core P13 show prominent alternations (~10-20cm) between very-fine-grained, clay intervals characterized by higher MS and mixed diatom and clay intervals, with coarser grain size and lower MS values. In contrast, the upper ~1m has distinctive high MS sand turbidites alternating with diatom-rich layers. Previous core studies from nearby ODP Leg 64 site show sedimentation rates of ~1.2 m/ka; as these sites are further away from the Yaqui delta the sedimentation rates for core P13 should be higher possibly recording only the last few hundred years of sedimentation. Clay/diatom cycles in the lower part of the core could record decadal- or ENSO-scale wet/aridity cycles in the Sonoran Mainland. Conversely, the coarser siliciclastic intervals and the diatom layers in the upper part of the core could reflect the last few decades of land usage in the watershed of the Rio Yaqui, the most important river in the state of Sonora, Mexico. These include large modifications to the river's hydrography (e.g. construction of dams and aqueducts), rapidly expanding mass agricultural practices in the region, and increased eutrophication in the Gulf.

  15. Development of low-ash, planar peat swamps in an alluvial-plain setting: The no. 5 Block beds (westphalian D) of southern West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staub, J.R.; Richards, B.K.

    1993-07-01

    Coals from the No. 5 Block coal beds (Westphalian D) of the central Appalachian basin are noted for their blocky, dull character and their low ash and low sulfur content. The beds are multiple benched, with rock partings separating benches. Individual benches have limited lateral extent and, where thick, are dominated by bright, high-ash coal at the base and dull, low-ash coal in the upper parts. The duller coals contain more exinite-group and inertinite-group macerals than the brighter coals. These coal beds are encased in sandstone units dominated by fining-upward sequences. The overall depositional setting is an alluvial-plain environment withmore » northwest-flowing channels spaced approximately 20 km apart. The channels were flanked by clastic swamps about 7 km wide. Low-ash peat accumulated in areas of the flood plain most distant from the channels. These peat-accumulating swamps were about 8 km across. In a few instances low-frequency flood events introduced fine siliciclastic sediment into the peat swamps, depositing a thin layer of sediment on top of the peat. This sediment layer is thicker where the underlying coal is the thickest. These thick coal areas are topographically lower than surrounding coal areas. This relationship between coal thickness, parting thickness, and topography indicates that these peat swamps were planar at the time of deposition. Individual coal benches contain abundant preserved cellular tissue (telocollinite, semifusinite, and fusinite) at most locations, suggesting that robust vegetation was widespread in the swamps and that the morphology was planar. The high concentrations of exinite-group an inertinite-group macerals in the upper parts of benches resulted from selective decomposition and oxidation of the peat in subaerial and aquatic planar-swamp environments.« less

  16. Low ash, planar peat swamp development in an alluvial plain setting: The No. 5 block beds of southern West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staub, J.R.; Richards, B.K.

    1992-01-01

    Coals from the No. 5 Block beds (Westphalian D) are noted for their low ash and sulfur content. Beds are multiple benched, with rock partings separating individual benches. Benches have limited continuity and, where thick are dominated by bright, high ash coal at the base and dull, low ash coal in their upper portions. The duller coals contain more exinite and inertinite group macerals than the brighter coals. The depositional setting is an alluvial plain environment with channel systems separated by distances of about 20 km. The channel systems were flanked by clastic swamps for distances of up to 7more » km or more on either side. Areas of flood plain most distant from the channels were sites where peat accumulated and these zones were about 8 km across. High energy, low frequency flood events introduced fine grained sediment into the peat swamps resulting in thin layers of sediment being deposited on top of the peat. These sediment layers are thicker in areas where the underlying coal is the thickest. These thick coal areas are topographically negative. This relationship between coal and parting thickness and topography indicates that these peat swamps were low-lying or planar. Individual coal benches contain abundant amounts of preserved cellular tissue (telocollinite, semifusinite, fusinite) at most locations indicating that woody arborescent like vegetation was widespread in the swamps suggesting a planar morphology. The high concentrations of exinite and inertinite group macerals found in the upper portions of individual benches resulted from decomposition and oxidation of the peat in subaerial to aquatic planar swamp environments.« less

  17. Signs of Soft-Sediment Deformation at 'Slickrock'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Geological examination of bedding textures indicates three stratigraphic units in an area called 'Slickrock' located in the martian rock outcrop that NASA's Opportunity examined for several weeks. This is an image Opportunity took from a distance of 2.1 meters (6.9 feet) during the rover's 45th sol on Mars (March 10, 2004) and shows a scour surface or ripple trough lamination. These features are consistent with sedimentation on a moist surface where wind-driven processes may also have occurred.

    [figure removed for brevity, see original site] Figure 1

    In Figure 1, interpretive blue lines indicate boundaries between the units. The upper blue line may coincide with a scour surface. The lower and upper units have features suggestive of ripples or early soft-sediment deformation. The central unit is dominated by fine, parallel stratification, which could have been produced by wind-blown ripples.

    [figure removed for brevity, see original site] Figure 2

    In Figure 2, features labeled with red letters are shown in an enlargement of portions of the image. 'A' is a scour surface characterized by truncation of the underlying fine layers, or laminae. 'B' is a possible soft-sediment buckling characterized by a 'teepee' shaped structure. 'C' shows a possible ripple beneath the arrow and a possible ripple cross-lamination to the left of the arrow, along the surface the arrow tip touches. 'D' is a scour surface or ripple trough lamination. These features are consistent with sedimentation on a moist surface where wind-driven processes may also have occurred.

  18. Modeling the effect of dune sorting on the river long profile

    NASA Astrophysics Data System (ADS)

    Blom, A.

    2012-12-01

    River dunes, which occur in low slope sand bed and sand-gravel bed rivers, generally show a downward coarsening pattern due to grain flows down their avalanche lee faces. These grain flows cause coarse particles to preferentially deposit at lower elevations of the lee face, while fines show a preference for its upper elevations. Before considering the effect of this dune sorting mechanism on the river long profile, let us first have a look at some general trends along the river profile. Tributaries increasing the river's water discharge in streamwise direction also cause a streamwise increase in flow depth. As under subcritical conditions mean dune height generally increases with increasing flow depth, the dune height shows a streamwise increase, as well. This means that also the standard deviation of bedform height increases in streamwise direction, as in earlier work it was found that the standard deviation of bedform height linearly increases with an increasing mean value of bedform height. As a result of this streamwise increase in standard deviation of dune height, the above-mentioned dune sorting then results in a loss of coarse particles to the lower elevations of the bed that are less and even rarely exposed to the flow. This loss of coarse particles to lower elevations thus increases the rate of fining in streamwise direction. As finer material is more easily transported downstream than coarser material, a smaller bed slope is required to transport the same amount of sediment downstream. This means that dune sorting adds to river profile concavity, compared to the combined effect of abrasion, selective transport and tributaries. A Hirano-type mass conservation model is presented that deals with dune sorting. The model includes two active layers: a bedform layer representing the sediment in the bedforms and a coarse layer representing the coarse and less mobile sediment underneath migrating bedforms. The exposure of the coarse layer is governed by the rate of sediment supply from upstream. By definition the sum of the exposure of both layers equals unity. The model accounts for vertical sediment fluxes due to grain flows down the bedform lee face and the formation of a less mobile coarse layer. The model with its vertical sediment fluxes is validated against earlier flume experiments. It deals well with the transition between a plane bed and a bedform-dominated bed. Applying the model to field scale confirms that dune sorting increases river profile concavity.

  19. Numerical simulation of mechanical compaction of deepwater shallow sediments

    NASA Astrophysics Data System (ADS)

    Sun, Jin; Wu, Shiguo; Deng, Jingen; Lin, Hai; Zhang, Hanyu; Wang, Jiliang; Gao, Jinwei

    2018-02-01

    To study the compaction law and overpressure evolution in deepwater shallow sediments, a large-strain compaction model that considers material nonlinearity and moving boundary is formulated. The model considers the dependence of permeability and material properties on void ratio. The modified Cam-Clay model is selected as the constitutive relations of the sediments, and the deactivation/reactivation method is used to capture the moving top surface during the deposition process. A one-dimensional model is used to study the compaction law of the shallow sediments. Results show that the settlement of the shallow sediments is large under their own weight during compaction. The void ratio decreases strictly with burial depth and decreases more quickly near the seafloor than in the deeper layers. The generation of abnormal pressure in the shallow flow sands is closely related to the compaction law of shallow sediments. The two main factors that affect the generation of overpressure in the sands are deposition rate and permeability of overlying clay sediments. Overpressure increases with an increase in deposition rate and a decrease in the permeability of the overlying clay sediment. Moreover, an upper limit for the overpressure exists. A two-dimensional model is used to study the differential compaction of the shallow sediments. The pore pressure will still increase due to the inflow of the pore fluid from the neighboring clay sediment even though the deposition process is interrupted.

  20. Persistence and biodegradation of kerosene in high-arctic intertidal sediment.

    PubMed

    Røberg, Stian; Stormo, Svein Kristian; Landfald, Bjarne

    2007-10-01

    A kerosene type hydrocarbon fraction (equivalent to 7 L m(-2)) was added to enclosures in the surface layer of high-arctic intertidal beach sediment. The experimental spill was repeated in two consecutive years in the period July-September. The rate and extent of hydrocarbon removal and the accompanying bacterial response were monitored for 79 days (2002) and 78 days (2003). The bulk of added kerosene, i.e. 94-98%, was lost from the upper 5 cm layer by putatively abiotic processes within 2 days and a residual fraction in the range 0.6-1.2mg per g dry sediment was stably retained. Concomitant addition of oleophilic fertilizer led to higher initial retention, as 24% of the kerosene remained after 2 days in the presence of a modified, cold-climate adapted version of the well-known Inipol EAP 22 bioremediation agent. In these enclosures, which showed an increase in hydrocarbon-degrader counts from 6.5 x 10(3) to 4.1 x 10(7) per g dry sediment within 8 days, a 17% contribution by biodegradation to subsequent hydrocarbon removal was estimated. Stimulation in hydrocarbon-degrader counts in fertilizer-alone control enclosures was indistinguishable from the stimulation observed with both kerosene and fertilizer present, suggesting that the dynamics in numbers of hydrocarbon-degrading bacteria was primarily impacted by the bioremediation agent.

  1. The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments: A field study

    NASA Astrophysics Data System (ADS)

    van de Velde, Sebastiaan; Lesven, Ludovic; Burdorf, Laurine D. W.; Hidalgo-Martinez, Silvia; Geelhoed, Jeanine S.; Van Rijswijk, Pieter; Gao, Yue; Meysman, Filip J. R.

    2016-12-01

    Electro-active sediments distinguish themselves from other sedimentary environments by the presence of microbially induced electrical currents in the surface layer of the sediment. The electron transport is generated by metabolic activity of long filamentous cable bacteria, in a process referred to as electrogenic sulfur oxidation (e-SOx). Laboratory experiments have shown that e-SOx exerts a large impact on the sediment geochemistry, but its influence on the in situ geochemistry of marine sediments has not been previously investigated. Here, we document the biogeochemical cycling associated with e-SOx in a cohesive coastal sediment in the North Sea (Station 130, Belgian Coastal Zone) during three campaigns (January, March and May 2014). Fluorescence in situ hybridization showed that cable bacteria were present in high densities throughout the sampling period, and that filaments penetrated up to 7 cm deep in the sediment, which is substantially deeper than previously recorded. High resolution microsensor profiling (pH, H2S and O2) revealed the typical geochemical fingerprint of e-SOx, with a wide separation (up to 4.8 cm) between the depth of oxygen penetration and the depth of sulfide appearance. The metabolic activity of cable bacteria induced a current density of 25-32 mA m-2 and created an electrical field of 12-17 mV m-1 in the upper centimeters of the sediment. This electrical field created an ionic drift, which strongly affected the depth profiles and fluxes of major cations (Ca2+, Fe2+) and anions (SO42-) in the pore water. The strong acidification of the pore water at depth resulted in the dissolution of calcium carbonates and iron sulfides, thus leading to a strong accumulation of iron, calcium and manganese in the pore water. While sulfate accumulated in the upper centimeters, no significant effect of e-SOx was found on ammonium, phosphate and silicate depth profiles. Overall, our results demonstrate that cable bacteria can strongly modulate the sedimentary biogeochemical cycling under in situ conditions.

  2. Rock-avalanche and ocean-resurge deposits in the late Eocene Chesapeake Bay impact structure: Evidence from the ICDP-USGS Eyreville cores, Virginia, USA

    USGS Publications Warehouse

    Gohn, G.S.; Powars, D.S.; Dypvik, H.; Edwards, L.E.

    2009-01-01

    An unusually thick section of sedimentary breccias dominated by target-sediment clasts is a distinctive feature of the late Eocene Chesapeake Bay impact structure. A cored 1766-m-deep section recovered from the central part of this marine-target structure by the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) drilling project contains 678 m of these breccias and associated sediments and an intervening 275-m-thick granite slab. Two sedimentary breccia units consist almost entirely of Cretaceous nonmarine sediments derived from the lower part of the target sediment layer. These sediments are present as coherent clasts and as autoclastic matrix between the clasts. Primary (Cretaceous) sedimentary structures are well preserved in some clasts, and liquefaction and fluidization structures produced at the site of deposition occur in the clasts and matrix. These sedimentary breccias are interpreted as one or more rock avalanches from the upper part of the transient-cavity wall. The little-deformed, unshocked granite slab probably was transported as part of an extremely large slide or avalanche. Water-saturated Cretaceous quartz sand below the slab was transported into the seafloor crater prior to, or concurrently with, the granite slab. Two sedimentary breccia units consist of polymict diamictons that contain cobbles, boulders, and blocks of Cretaceous nonmarine target sediments and less common shocked-rock and melt ejecta in an unsorted, unstratified, muddy, fossiliferous, glauconitic quartz matrix. Much of the matrix material was derived from Upper Cretaceous and Paleogene marine target sediments. These units are interpreted as the deposits of debris flows initiated by the resurge of ocean water into the seafloor crater. Interlayering of avalanche and debris-flow units indicates a partial temporal overlap of the earlier avalanche and later resurge processes. A thin unit of stratified turbidite deposits and overlying laminated fine-grained deposits at the top of the section represents the transition to normal shelf sedimentation. ?? 2009 The Geological Society of America.

  3. Impact of the 1993 flood on the distribution of organic contaminants in bed sediments of the Upper Mississippi River

    USGS Publications Warehouse

    Barber, L.B.; Writer, J.H.

    1998-01-01

    The 1500 km Upper Mississippi River (UMR) consists of 29 navigation pools and can be divided into the upper reach (pools 1-4), the middle reach (pools 5-13), and the lower reach (pools 14-26). Comparison of composite bed sediment samples collected from the downstream third of 24 pools before and after the 1993 UMR flood provides fieldscale data on the effect of the flood on sediment organic compound distributions. The sediments were analyzed for organic carbon, coprostanol, polynuclear aromatic hydrocarbons including pyrene, linear alkylbenzene-sulfonates, polychlorinated biphenyls (PCBs), and organochlorine pesticides. Most of the target compounds were detected in all of the sediment samples, although concentrations were generally <1 mg/kg. The highest concentrations typically occurred in the upper reach, an urbanized area on a relatively small river. Pool 4 (Lake Pepin) is an efficient sediment trap, and concentrations of the compounds below pool 4 were substantially lower than those in pools 2-4. Differences in concentrations before and after the 1993 flood also were greatest in the upper reach. In pools 1-4, concentrations of pyrene and PCBs decreased after the flood whereas coprostanol increased. These results suggest that bed sediments stored in the pools were diluted or buried by sediments with different organic compound compositions washed in from urban and agricultural portions of the watershed.The 1500 km Upper Mississippi River (UMR) consists of 29 navigation pools and can be divided into the upper reach (pools 1-4), the middle reach (pools 5-13), and the lower reach (pools 14-26). Comparison of composite bed sediment samples collected from the downstream third of 24 pools before and after the 1993 UMR flood provides field-scale data on the effect of the flood on sediment organic compound distributions. The sediments were analyzed for organic carbon, coprostanol, polynuclear aromatic hydrocarbons including pyrene, linear alkylbenzene-sulfonates, polychlorinated biphenyls (PCBs), and organochlorine pesticides. Most of the target compounds were detected in all of the sediment samples, although concentrations were generally <1 mg/kg. The highest concentrations typically occurred in the upper reach, an urbanized area on a relatively small river. Pool 4 (Lake Pepin) is an efficient sediment trap, and concentrations of the compounds below pool 4 were substantially lower than those in pools 2-4. Differences in concentrations before and after the 1993 flood also were greatest in the upper reach. In pools 1-4, concentrations of pyrene and PCBs decreased after the flood whereas coprostanol increased. These results suggest that bed sediments stored in the pools were diluted or buried by sediments with different organic compound compositions washed in from urban and agricultural portions of the watershed.

  4. A Study on Benthic Foraminifera Assemblages in the Upper Slope off Southwest Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, Jen-Chu; Lin, Andrew T.; Chien, Chih-Wei

    2016-04-01

    This study attempts to establish the spatial distribution of benthic foraminifera in the upper accretionary wedge off SW Taiwan. A few box cores (each core up to 49 cm thick) are retrieved onboard R/V Ocean Researcher I during 1092 cruise in 2014 at water depths ranging from 1,135 to 1,586 m lying in between the Good Weather Ridge and the Yuan-An Ridge. Analyses on grain size reveal that the sediment size ranges from clay to silt for all sites with the exception of YT1 site, where a small percentage of fine sand (< 20%) is found to distribute evenly in a 32 cm-thick box core. Core images from X-radiographs show some layers of foraminifera ooze and rare traces of bioturbation. Age of sedimentation is obtained by using 210Pb dating method. The 210Pb concentration profile decays exponentially down core, indicating sedimentation from suspension. The measured sedimentation rate ranges from 0.47 to 2.4 mm/yr. Site YT1 has the lowest sedimentation rate (around 0.47 mm/yr), leading to high abundance of individual benthic foraminiferal species. Living foraminiferal individuals were distinguished from dead assemblages by Rose Bengal staining method during the cruise. Our results show that the dominant living species of all studied cores is Chilostomella oolina, with subsidiary occurrences of Bulimina aculeata, Bolivinita quadrilateral, and Lenticulina spp. etc. Cluster analysis suggests that the forams have similar spatial distribution pattern at all studied sites, indicating uniform and stable hemipelagic sedimentation. Analyses of dead assemblages reveal a remarkable decrease in the abundance of Bulimina and Uvigerina for the last 100 years at YT-2 site, with increasing abundance of Chilostomella. This indicates that the water masses may have turned from suboxic to dysoxic conditions since c. 100 year ago. This is the first study to report the living benthic foraminifera distribution in water depths up to c. 1,600 m off SW Taiwan, providing a basis for future studies. Keywords: benthic foraminifera, upper slope, Taiwan

  5. Carbon Characteristics and Biogeochemical Processes of Uranium Accumulating Organic Matter Rich Sediments in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Boye, K.; Noel, V.; Tfaily, M. M.; Dam, W. L.; Bargar, J.; Fendorf, S. E.

    2015-12-01

    Uranium plume persistence in groundwater aquifers is a problem on several former ore processing sites on floodplains in the upper Colorado River Basin. Earlier observations by our group and others at the Old Rifle Site, CO, have noted that U concentrations are highest in organic rich, fine-grained, and, therefore, diffusion limited sediment material. Due to the constantly evolving depositional environments of floodplains, surficial organic matter may become buried at various stages of decomposition, through sudden events such as overbank flooding and through the slower progression of river meandering. This creates a discontinuous subsurface distribution of organic-rich sediments, which are hotspots for microbial activity and thereby central to the subsurface cycling of contaminants (e.g. U) and biologically relevant elements (e.g. C, N, P, Fe). However, the organic matter itself is poorly characterized. Consequently, little is known about its relevance in driving biogeochemical processes that control U fate and transport in the subsurface. In an investigation of soil/sediment cores from five former uranium ore processing sites on floodplains distributed across the Upper Colorado River Basin we confirmed consistent co-enrichment of U with organic-rich layers in all profiles. However, using C K-edge X-ray Absorption Spectroscopy (XAS) coupled with Fourier-Transformed Ion-Cyclotron-Resonance Mass-Spectroscopy (FT-ICR-MS) on bulk sediments and density-separated organic matter fractions, we did not detect any chemical difference in the organic rich sediments compared to the surrounding coarser-grained aquifer material within the same profile, even though there were differences in organic matter composition between the 5 sites. This suggests that U retention and reduction to U(IV) is independent of C chemical composition on the bulk scale. Instead it appears to be the abundance of organic matter in combination with a limited O2 supply in the fine-grained material that stimulate anaerobic microbial processes responsible for U enrichment. Thus, the chemical composition of organic matter is subordinate to the physical environment and total organic matter content in controlling U reduction and retention processes.

  6. Impacts of Colonial Deforestation on Sediment Organic Carbon Fluxes and Budget Using Black Carbon Chronology: Waiapu Continental Shelf, New Zealand

    NASA Astrophysics Data System (ADS)

    Wadman, H. M.; Canuel, E. A.; Bauer, J. E.; McNinch, J. E.

    2009-12-01

    Small, mountainous rivers deliver a disproportionate amount of sediment and associated organic matter to coastal regions globally. The Waiapu River, North Island, New Zealand, is characterized by one of the highest sediment yields on earth, providing a model system for studying episodic delivery and preservation of sedimentary organic matter in an energetic, aggradational setting. Hyperpycnal plumes provide the primary mode of sediment delivery, depositing fine-grained sediment as flood layers on the inner shelf. Severe erosion following colonial-era (~1890-1920) slash and burn deforestation increased the sediment yield to the shelf 4- to 5-fold relative to previous levels. Colonial catchment-wide burning also produced black carbon (BC), which may be used to establish chronological control in the heterogeneous inner shelf sediments that are not easily dateable using traditional techniques. While recent work indicates that these inner shelf flood layers sequester ~16-34% of the total fine-grained sediment budget, comparable to the amount preserved on the mid-outer shelf, little is understood about the organic matter associated with these inner shelf sediments. High-resolution seismic reflection data were used to select four representative cores to characterize total sedimentary BC, total organic carbon (TOC) and total nitrogen (TN) sequestered in the inner shelf fine-grained sediments. Soot and graphitic BC (SGBC) was quantified using chemo-thermal oxidation (CTO-375), while coarse-grained BC (CGBC) was quantified using traditional point-counting methodologies. SGBC weight percentages ranged from ~0.01-0.07, and peaked at ~150cm depth in all four cores. This interval corresponds to peak abundance of CGBC as well. The ~150cm interval is interpreted to represent the height of colonial slash and burn deforestation, and is further supported by fining-upward sequences in all of the cores as well as by multiple 14C dates. Overall, SGBC represented an average of 29% (range 7-75%) of the TOC throughout the cores, with the highest levels found in the deforestation layer at ~150cm (average 44%, range 30-75%). A secondary increase in % SGBC was found in the upper 50cm of the cores and is interpreted as increasing global BC production by diesel combustion in the 1970s. TOC and TN weight percentages associated with the fine-sediment fraction did not differ markedly above and below the deforestation layer. TOC and TN associated with the bulk sediment, however, did show increases in weight percent above ~150cm. This suggests that either 1) increases in fine-grained sedimentary organic material associated with the recent increase in sediment yield have been effectively remineralized, or 2) sedimentary organic matter is bimodal in origin (recent plant material vs. ancient, bedrock-derived carbon), and size-related variations in catchment and burial dynamics are influencing the fate of the different size fractions of organic material.

  7. Formation of lacustrine plains in west-central Alaska as a result of permafrost degradation and aggradation

    NASA Astrophysics Data System (ADS)

    Kanevskiy, M. Z.; Jorgenson, M. T.; Shur, Y.; O'Donnell, J.; Harden, J. W.; Fortier, D.

    2012-12-01

    Perennially frozen lacustrine sediments containing a large amount of ground ice comprise a significant part of the upper permafrost of the lowlands of west-central Alaska, including Koyukuk Flats and Innoko Flats. Study sites are located in the discontinuous permafrost zone, where permafrost was encountered mainly within uplifted peat plateaus. The upper part of studied sections is formed by frozen peat up to 3 m thick underlain by lacustrine silt, which is mostly ice-rich. Cryogenic structure of lacustrine sediments at different sites has common features: (1) prevalence of layered, braided, and reticulate cryostructures; (2) high variability in the ice content of sediments; (3) high density and low water content of soil aggregates separated by ice lenses. Volume of visible ice in silt reaches at places 40% and more. The thickness of ice lenses generally varies from 1 to 5 cm and occasionally reaches 10 cm. Remnants of peat plateaus are surrounded by unfrozen bogs and fens, formed as a result of thawing and settling of ice-rich lacustrine silt. Modern thermokarst scars initially form at places where ice-rich silt is not protected by a thick layer of organic material. Further development of thermokarst bogs includes lateral enlargement of thaw bulbs and collapsing of the margins of peat plateaus. Lacustrine silt within taliks is covered by woody peat accumulated under forests during the stage of permafrost plateau formation and then by aquatic sphagnum peat accumulated in taliks after collapse. We relate the formation of ice-rich lacustrine sediments to development of lake thermokarst, which affected ice-rich silty yedoma deposits during the transition from Pleistocene to Holocene. Terrain development in lacustrine lowlands of west-central Alaska includes five stages related to permafrost aggradation and degradation from the late Pleistocene to the present time: 1) formation of the ice-rich syngenetic permafrost (yedoma) during the late Pleistocene; 2) yedoma degradation in the yearly Holocene and formation of thaw lakes; 3) complete yedoma degradation under thaw lakes and refreezing of thawed sediments at elevated areas; 4) peat accumulation and freezing of sediments in thaw lake basins; and 5) new cycle of thermokarst and formation of taliks under thaw lakes, bogs and fens. Stages of terrain development of lacustrine lowlands since the Late Pleistocene

  8. Vertical suspended sediment fluxes observed from a formation of underwater gliders

    NASA Astrophysics Data System (ADS)

    Merckelbach, Lucas; Riethmueller, Rolf

    2014-05-01

    In order to understand and predict the pathways and deposition of fine sediments in coastal regions valid parameterisations of the fluxes across interfaces (sea bed - water column or a pycnocline) are paramount. Traditionally, these parameterisations are based on the concept of a critical shear stress, but more recently a probabilistic approach has been proposed, in which the resuspension of sediment is assumed to have a certain likelihood, depending on the external forcing. Both approaches find their justification, to some extent, from the results of laboratory experiments, however, in-situ data, essential for model validation, are scarce. In this study we develop a field method to estimate the (fine) sediment fluxes between the seabed and the water column, and across the pycnocline. The method is applied to a stratified shallow sea (the North Sea in Summer). In order to assess the results, these fluxes are interpreted in terms of bottom shear stress and current shear between upper and lower layer, respectively. The method was tested in an experiment with two underwater gliders in Summer 2013 in the German Bight. Both gliders were equipped with optical backscatter sensors, the measurements of which serve as a proxy for suspended sediment concentration. The profiling character of the gliders allows to calculate the rate of change of the layer-averaged sediment concentration, as observed by the platform. The local, Lagrangian rate of change of sediment concentration is the balance between the fluxes across the layer's interfaces. Due to a horizontal speed of the glider of about 0.5 m/s, horizontal gradients in sediment concentration cause the observed and the local rate of change of sediment concentration to be significantly different. The novelty of this experiment was that the two gliders were flown in a rigid formation, where one glider trailed the other at a more or less constant distance of 5 km, controlled by an algorithm. This allowed the local rate of change to be quantified - and therefore the net fluxes across the interfaces - by accounting for the effects of horizontal gradients. The validity of this method was assessed by comparing the settling and resuspension/entrainment fluxes with physical drivers: current shear near the pycnocline and bottom shear, with wind effects and tidal motion as proxies, respectively.

  9. Crustal shear velocity structure in the Southern Lau Basin constrained by seafloor compliance

    NASA Astrophysics Data System (ADS)

    Zha, Yang; Webb, Spahr C.

    2016-05-01

    Seafloor morphology and crustal structure vary significantly in the Lau back-arc basin, which contains regions of island arc formation, rifting, and seafloor spreading. We analyze seafloor compliance: deformation under long period ocean wave forcing, at 30 ocean bottom seismometers to constrain crustal shear wave velocity structure along and across the Eastern Lau Spreading Center (ELSC). Velocity models obtained through Monte Carlo inversion of compliance data show systematic variation of crustal structure in the basin. Sediment thicknesses range from zero thickness at the ridge axis to 1400 m near the volcanic arc. Sediment thickness increases faster to the east than to the west of the ELSC, suggesting a more abundant source of sediment near the active arc volcanoes. Along the ELSC, upper crustal velocities increase from the south to the north where the ridge has migrated farther away from the volcanic arc front. Along the axial ELSC, compliance analysis did not detect a crustal low-velocity body, indicating less melt in the ELSC crustal accretion zone compared to the fast spreading East Pacific Rise. Average upper crust shear velocities for the older ELSC crust produced when the ridge was near the volcanic arc are 0.5-0.8 km/s slower than crust produced at the present-day northern ELSC, consistent with a more porous extrusive layer. Crust in the western Lau Basin, which although thought to have been produced through extension and rifting of old arc crust, is found to have upper crustal velocities similar to older oceanic crust produced at the ELSC.

  10. Interaction of various flow systems in small alpine catchments: conceptual model of the upper Gurk Valley aquifer, Carinthia, Austria

    NASA Astrophysics Data System (ADS)

    Hilberg, Sylke; Riepler, Franz

    2016-08-01

    Small alpine valleys usually show a heterogeneous hydraulic situation. Recurring landslides create temporal barriers for the surface runoff. As a result of these postglacial processes, temporal lakes form, and thus lacustrine fine-grained sedimentation intercalates with alluvial coarse-grained layers. A sequence of alluvial sediments (confined and thus well protected aquifers) and lacustrine sediments (aquitards) is characteristic for such an environment. The hydrogeological situation of fractured hard-rock aquifers in the framing mountain ranges is characterized by superficially high hydraulic conductivities as the result of tectonic processes, deglaciation and postglacial weathering. Fracture permeability and high hydraulic gradients in small-scaled alpine catchments result in the interaction of various flow systems in various kinds of aquifers. Spatial restrictions and conflicts between the current land use and the requirements of drinking-water protection represent a special challenge for water resource management in usually densely populated small alpine valleys. The presented case study describes hydrogeological investigations within the small alpine valley of the upper Gurktal (Upper Carinthia, Austria) and the adjacent Höllenberg Massif (1,772 m above sea level). Hydrogeological mapping, drilling, and hydrochemical and stable isotope analyses of springs and groundwater were conducted to identify a sustainable drinking-water supply for approximately 1,500 inhabitants. The results contribute to a conceptual hydrogeological model with three interacting flow systems. The local and the intermediate flow systems are assigned to the catchment of the Höllenberg Massif, whereas the regional flow system refers to the bordering Gurktal Alps to the north and provides an appropriate drinking water reservoir.

  11. Mobilization and attenuation of metals downstream from a base-metal mining site in the Matra Mountains, northeastern Hungary

    USGS Publications Warehouse

    Odor, L.; Wanty, R.B.; Horvath, I.; Fugedi, U.; ,

    1999-01-01

    Regional geochemical baseline values have been established for Hungary by the use of low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds thus produced helped to evaluate the importance of high toxic element concentrations found in soils in a valley downstream of a polymetallic vein-type base-metal mine. Erosion of the mine dumps and flotation dump, losses of metals during filtering, storage and transportation, human neglects, and operational breakdowns, have all contributed to the contamination of a small catchment basin in a procession of releases of solid waste. The sulfide-rich waste material weathers to a yellow color; this layer of 'yellow sand' blankets a narrow strip of the floodplain of Toka Creek in the valley near the town of Gyongyosoroszi. Contamination was spread out in the valley by floods. Metals present in the yellow sand include Pb, As, Cd, Cu, Zn, and Sb. Exposure of the local population to these metals may occur through inhalation of airborne particulates or by ingestion of these metals that are taken up by crops grown in the valley. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, soils, and surface water were sampled along the erosion pathways downstream of the mine and dumps. The flood-plain profile was sampled in detail to see the vertical distribution of elements and to relate the metal concentrations to the sedimentation and contamination histories of the flood plain. Downward migration of mobile Zn and Cd from the contaminated upper layers under supergene conditions is observed, while vertical migration of Pb, As, Hg and Sb appears to be insignificant. Soil profiles of 137Cs which originated from above-ground atomic bomb tests and the Chernobyl accident, provide good evidence that the upper 30-40 cm of the flood-plain sections, which includes the yellow sand contamination, were deposited in the last 30-40 years.The regional geochemical baseline values are established for Hungary using low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds allowed the evaluation of the importance of high toxic element concentrations in soils in a valley, downstream of a polymetallic vein-type base-metal mine. The metals present in the yellow sand include Pb, As, Cd, Cu, Zn and Sb. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, the soils and surface water were sampled along the erosion pathways downstream of the mine and dumps.

  12. Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics

    NASA Astrophysics Data System (ADS)

    Gardner, Wilford D.; Richardson, Mary Jo; Mishonov, Alexey V.

    2018-01-01

    Global maps of the maximum bottom concentration, thickness, and integrated particle mass in benthic nepheloid layers are published here to support collaborations to understand deep ocean sediment dynamics, linkage with upper ocean dynamics, and assessing the potential for scavenging of adsorption-prone elements near the deep ocean seafloor. Mapping the intensity of benthic particle concentrations from natural oceanic processes also provides a baseline that will aid in quantifying the industrial impact of current and future deep-sea mining. Benthic nepheloid layers have been mapped using 6,392 full-depth profiles made during 64 cruises using our transmissometers mounted on CTDs in multiple national/international programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and GO-SHIP during the last four decades. Intense benthic nepheloid layers are found in areas where eddy kinetic energy in overlying waters, mean kinetic energy 50 m above bottom (mab), and energy dissipation in the bottom boundary layer are near the highest values in the ocean. Areas of intense benthic nepheloid layers include the Western North Atlantic, Argentine Basin in the South Atlantic, parts of the Southern Ocean and areas around South Africa. Benthic nepheloid layers are weak or absent in most of the Pacific, Indian, and Atlantic basins away from continental margins. High surface eddy kinetic energy is associated with the Kuroshio Current east of Japan. Data south of the Kuroshio show weak nepheloid layers, but no transmissometer data exist beneath the Kuroshio, a deficiency that should be remedied to increase understanding of eddy dynamics in un-sampled and under-sampled oceanic areas.

  13. The Skaergaard trough layering: sedimentation in a convecting magma chamber

    NASA Astrophysics Data System (ADS)

    Vukmanovic, Z.; Holness, M. B.; Monks, K.; Andersen, J. C. Ø.

    2018-05-01

    The upper parts of the floor cumulates of the Skaergaard Intrusion, East Greenland, contain abundant features known as troughs. The troughs are gently plunging synformal structures comprising stacks of crescentic modally graded layers with a sharply defined mafic base that grades upward into plagioclase-rich material. The origin of the troughs and layering is contentious, attributed variously to deposition of mineral grains by magmatic currents descending from the nearby walls, or to in situ development by localised recrystallisation during gravitationally-driven compaction. They are characterised by outcrop-scale features such as mineral lineations parallel to the trough axis, evidence of erosion and layer truncation associated with migration of the trough axis, and disruption of layering by syn-magmatic slumping. A detailed microstructural study of the modal trough layers, using electron backscatter diffraction together with geochemical mapping, demonstrates that these rocks do not record evidence for deformation by either dislocation creep or dissolution-reprecipitation. Instead, the troughs are characterised by the alignment of euhedral plagioclase crystals with unmodified primary igneous compositional zoning. We argue that the lineations and foliations are, therefore, a consequence of grain alignment during magmatic flow. Post-accumulation amplification of the modal layering occurred as a result of differential migration of an unmixed immiscible interstitial liquid, with upwards migration of the Si-rich conjugate into the plagioclase-rich upper part of the layers, whereas the Fe-rich immiscible conjugate remained in the mafic base. Both field and microstructure evidence support the origin of the troughs as the sites of repeated deposition from crystal-rich currents descending from the nearby chamber walls.

  14. Vertical Record of Ecological Change and Carbon Storage in a Young Emergent Mississippi River Coastal Deltaic Floodplain

    NASA Astrophysics Data System (ADS)

    Aarons, A.; Twilley, R.; Bentley, S. J.

    2017-12-01

    Coastal deltaic floodplains are responsible for 40-50% of global coastal and marine carbon (C) burial and yet are often excluded from blue carbon literature. The Wax Lake Delta (WLD) is an unplanned Atchafalaya bayhead delta formation resulting from the dredging of the Wax Lake Outlet in 1942 to reduce downstream flooding of Morgan City. Twelve 4-5 m Vibracores were taken throughout the delta chronosequence to investigate ecological succession and C storage during the entirety of WLD's development. An oyster shell bed that can be found throughout the delta delineates the beginning of the WLD facies in 1952. As a young active delta its sediments are dominated by fine sand. However, the upper 0.4-0.7 m demonstrate a distinct transition to increased organic matter (OM) inputs, and in the upper half of this layer >90% of the C is organic. Spikes in organic matter and C content correspond to decreases in bulk density through the record. Notably, at 2.5 m depth there is a low bulk density layer corresponding to an increase in organic matter and C that is found throughout the older subaerial delta. This layer formed in 1970, a few years before WLD became subaerial in 1973 and therefore likely represents the point at which vegetation colonization began. Atomic N:P ratios, which are ecological indicators of biological influence, also demonstrate trends similar to OM and C further supporting this interpretation. With over 40 years of continuous subaerial land building, WLD provides a stark contrast to most of Louisiana's retrograding coastline and is considered a model for future sediment diversions.

  15. The effect of bio-irrigation by the polychaete Lanice conchilega on active denitrifiers: Distribution, diversity and composition of nosZ gene

    PubMed Central

    Yazdani Foshtomi, Maryam; Leliaert, Frederik; Derycke, Sofie; Willems, Anne; Vincx, Magda

    2018-01-01

    The presence of large densities of the piston-pumping polychaete Lanice conchilega can have important consequences for the functioning of marine sediments. It is considered both an allogenic and an autogenic ecosystem engineer, affecting spatial and temporal biogeochemical gradients (oxygen concentrations, oxygen penetration depth and nutrient concentrations) and physical properties (grain size) of marine sediments, which could affect functional properties of sediment-inhabiting microbial communities. Here we investigated whether density-dependent effects of L. conchilega affected horizontal (m-scale) and vertical (cm-scale) patterns in the distribution, diversity and composition of the typical nosZ gene in the active denitrifying organisms. This gene plays a major role in N2O reduction in coastal ecosystems as the last step completing the denitrification pathway. We showed that both vertical and horizontal composition and richness of nosZ gene were indeed significantly affected when large densities of the bio-irrigator were present. This could be directly related to allogenic ecosystem engineering effects on the environment, reflected in increased oxygen penetration depth and oxygen concentrations in the upper cm of the sediment in high densities of L. conchilega. A higher diversity (Shannon diversity and inverse Simpson) of nosZ observed in patches with high L. conchilega densities (3,185–3,440 ind. m-2) at deeper sediment layers could suggest a downward transport of NO3− to deeper layers resulting from bio-irrigation as well. Hence, our results show the effect of L. conchilega bio-irrigation activity on denitrifying organisms in L. conchilega reefs. PMID:29408934

  16. Turbidity currents with equilibrium basal driving layers: a mechanism for long-runout turbidity currents

    NASA Astrophysics Data System (ADS)

    Luchi, R.; Balachandar, S.; Seminara, G.; Parker, G.

    2017-12-01

    Turbidity currents in lakes and oceans involve leveed channels that document coherent runouts of 100's and up to 1000's of km. They do so without dissipating themselves via excess entrainment of ambient water. It is generally known that currents associated with stable stratification, such as thermohaline underflows, undergo dissipation as they entrain ambient water. Here we ask why some continuous turbidity currents do not follow this tendency, as they can run out extremely long distances while maintaining their coherency. A current that becomes ever thicker downstream due to ambient water entrainment cannot select the scales necessary to maintain a coherent, slowly-varying channel depth and width over 1000 km. It has been assumed that a turbidity current may tend to a state with a densimetric Froude so low that ambient water entrainment is largely suppressed. Here, we show that such an argument is a case of special pleading. Instead, suspended sediment 'fights back' against upward mixing through its fall velocity; the water may be entrained, but the sediment need not follow. We use a formulation capturing the flow vertical structure to show the conditions under which a turbidity current can asymptotically partition itself into two layers. The lower 'driving layer' approaches an asymptotic state with invariant flow thickness, velocity profile and suspended sediment concentration profile when traversing a constant bed slope under bypass conditions. This thickness provides a scale for channel characteristics. The upper 'driven layer' continues to entrain ambient water, but the concentration there becomes ever more dilute, and the layer ultimately has no interaction with near-bed processes (and by implication bed morphology). This partition is a likely candidate for the mechanism by which the driving layer is able to run out long distances, maintaining coherence and keeping confined, over repeated flow events, within a leveed subaqueous channel of its own creation.

  17. Gravitropism of axial organs in multicellular plants

    NASA Astrophysics Data System (ADS)

    Kutschera, U.

    Gravitropism of plant organs such as roots, stems and coleoptiles can be separated into four distinct phases: 1. perception (gravity sensing), 2. transduction of a signal into the target region and 3. the response (differential growth). This last reaction is followed by a straightening of the curved organ (4.). The perception of the gravitropic stimulus upon horizontal positioning of the organ (1.) occurs via amyloplasts that sediment within the statocytes. This conclusion is supported by our finding that submerged rice coleoptiles that lack sedimentable amyloplasts show no graviresponse. The mode of signal transduction (2.) from the statocytes to the peripheral cell layers is still unknown. Differential growth (3.) consists of a cessation of cell expansion on the upper side and an enhancement of elongation on the lower side of the organ. Based on the facts that the sturdy outer epidermal wall (OEW) constitutes the growth-controlling structure of the coleoptile and that growth-related osmiophilic particles accumulate on the upper OEW, it is concluded that the differential incorporation of wall material (presumably glycoproteins) is causally involved. During gravitropic bending, electron-dense particles ('wall-loosening capacity') accumulate on the growth-inhibited upper OEW. It is proposed that the autotropic straightening response, which is in part due to an acceleration of cell elongation on the curved upper side, may be attributable to an incorporation of the accumulated particles ('release of wall-loosening capacity'). This novel mechanism of autotropic re-bending and its implications for the Cholodny-Went hypothesis are discussed.

  18. Movement of fluids in the Nankai Trough area: Insights from 129I and halogen distributions along the IODP NanTroSEIZE transect

    NASA Astrophysics Data System (ADS)

    Tomaru, Hitoshi; Fehn, Udo

    2015-01-01

    Halogen concentrations and 129I/I ratios were determined in pore waters from the Nankai Trough subduction system, collected during IODP Expeditions 315, 316, 322, and 333 along the NanTroSEIZE transect. The transect allowed the first direct comparison of iodine results across an active subduction system, from subducting oceanic sediments to the accretionary prism, and the overlying forearc basin. In contrast to the other halogens (Cl and Br) iodine concentrations show large variations within and among the cores at all sites landward of the trough, I concentrations increase rapidly with depth and reach values several orders of magnitude higher than those in seawater, but are only slightly higher than seawater values at the seaward sites. Methane concentrations follow a similar pattern. Host sediments of the fluids are younger than 7 Ma in all the cores, but the ages of iodine in pore waters at the landward sites reach values beyond 30 Ma. In contrast, iodine seaward of the trough is in isotopic equilibrium with the host sediments, resulting in very similar iodine and sediment ages. The distribution of iodine concentrations and ages indicates that iodine at the landward sites has been transported there in aqueous fluids, probably together with methane, from old formations in the upper plate. The specific fluid pathways potentially were influenced by features such as the megasplay fault in the prism or the décollement. The results demonstrate large-scale transport of fluids carrying iodine and other compounds such as methane from old layers in the upper plate to surface locations landward of the Nankai Trough, while separate, but only local hydrologic processes occur in the marine sediments moving toward the trough.

  19. Sediment Production From Small Undisturbed Forested Basins In The Upper Coastal Plain

    Treesearch

    Daniel A. Marion; Greg Malstaff; Howard G. Halverson

    1996-01-01

    Forest lands in the Upper Coastal Plain (UCP) of the American South are widely recognized as producing water with relatrvely low amounts of sediment. Previous research has established that sediment concentrations from forest basins lacking well-defined channel networks averages 5.3 to 6.2 kg of sediment per hectare per centimeter of runoff (kg/ha-cm) in this...

  20. Total Mercury and Methylmercury Response in Water, Sediment, and Biota to Destratification of the Great Salt Lake, Utah, United States.

    PubMed

    Valdes, Carla; Black, Frank J; Stringham, Blair; Collins, Jeffrey N; Goodman, James R; Saxton, Heidi J; Mansfield, Christopher R; Schmidt, Joshua N; Yang, Shu; Johnson, William P

    2017-05-02

    Measurements of chemical and physical parameters made before and after sealing of culverts in the railroad causeway spanning the Great Salt Lake in late 2013 documented dramatic alterations in the system in response to the elimination of flow between the Great Salt Lake's north and south arms. The flow of denser, more-saline water through the culverts from the north arm (Gunnison Bay) to the south arm (Gilbert Bay) previously drove the perennial stratification of the south arm and the existence of oxic shallow brine and anoxic deep brine layers. Closure of the causeway culverts occurred concurrently with a multiyear drought that resulted in a decrease in the lake elevation and a concomitant increase in top-down erosion of the upper surface of the deep brine layer by wind-forced mixing. The combination of these events resulted in the replacement of the formerly stratified water column in the south arm with one that was vertically homogeneous and oxic. Total mercury concentrations in the deep waters of the south arm decreased by approximately 81% and methylmercury concentrations in deep waters decreased by roughly 86% due to destratification. Methylmercury concentrations decreased by 77% in underlying surficial sediment, whereas there was no change observed in total mercury. The dramatic mercury loss from deep waters and methylmercury loss from underlying sediment in response to causeway sealing provides new understanding of the potential role of the deep brine layer in the accumulation and persistence of methylmercury in the Great Salt Lake. Additional mercury measurements in biota appear to contradict the previously implied connection between elevated methylmercury concentrations in the deep brine layer and elevated mercury in avian species reported prior to causeway sealing.

  1. Floating liquid phase in sedimenting colloid-polymer mixtures.

    PubMed

    Schmidt, Matthias; Dijkstra, Marjolein; Hansen, Jean-Pierre

    2004-08-20

    Density functional theory and computer simulation are used to investigate sedimentation equilibria of colloid-polymer mixtures within the Asakura-Oosawa-Vrij model of hard sphere colloids and ideal polymers. When the ratio of buoyant masses of the two species is comparable to the ratio of differences in density of the coexisting bulk (colloid) gas and liquid phases, a stable "floating liquid" phase is found, i.e., a thin layer of liquid sandwiched between upper and lower gas phases. The full phase diagram of the mixture under gravity shows coexistence of this floating liquid phase with a single gas phase or a phase involving liquid-gas equilibrium; the phase coexistence lines meet at a triple point. This scenario remains valid for general asymmetric binary mixtures undergoing bulk phase separation.

  2. Ocean acidification: Towards a better understanding of calcite dissolution

    NASA Astrophysics Data System (ADS)

    Wilhelmus, Monica M.; Adkins, Jess; Menemenlis, Dimitris

    2016-11-01

    The drastic increase of anthropogenic CO2 emissions over the past two centuries has altered the chemical structure of the ocean, acidifying upper ocean waters. The net impact of this pH decrease on marine ecosystems is still unclear, given the unprecedented rate at which CO2 is being released into the atmosphere. As part of the carbon cycle, calcium carbonate dissolution in sediments neutralizes CO2: phytoplankton at the surface produce carbonate minerals, which sink and reach the seafloor after the organisms die. On time scales of thousands of years, the calcium carbonate in these shells ultimately reacts with CO2 in seawater. Research in this field has been extensive; nevertheless, the dissolution rate law, the impact of boundary layer transport, and the feedback with the global ocean carbon cycle remain controversial. Here, we (i) develop a comprehensive numerical framework via 1D modeling of carbonate dissolution in sediments, (ii) approximate its impact on water column properties by implementing a polynomial approximation to the system's response into a global ocean biogeochemistry general circulation model (OBGCM), and (iii) examine the OBGCM sensitivity response to different formulations of sediment boundary layer properties. We find that, even though the burial equilibration time scales of calcium carbonate are in the order of thousands of years, the formulation of a bottom sediment model along with an improved description of the dissolution rate law can have consequences on multi-year to decadal time scales.

  3. Geophysical imaging of the lacustrine sediments deposited in the La Calderilla Volcanic Caldera (Gran Canaria Island, Spain) for paleoclimate research

    NASA Astrophysics Data System (ADS)

    Himi, Mahjoub; Rodríguez-González, Alejandro; Criado, Constantino; Tapias, Josefina C.; Ravazzi, Cesare; Pérez-Torrado, Francisco; Casas, Albert

    2016-04-01

    The discovery of well-preserved maar structures is important not only for studying the eruptive activity and formation of volcanoes, but also for paleoclimate research, since laminated maar lake sediments may contain very detailed archives of climate and environmental history. Maars are a singular type of volcanic structure generated by explosive phreatomagmatic eruptions as a result of interaction between rising magma and groundwater. This kind of structures are characterised by circular craters, often filled with water and/or lacustrine sediments and surrounded by a ring of pyroclastic deposits.Recently a borehole was drilled at the bottom of La Calderilla volcanic complex which penetrated about 8.7 m in its sedimentary sequence and paleobotanical study has supplied the first evidence of paleoenvironmental evolution during the Holocene on the Gran Canaria Island. This survey, however, did not penetrate into the substrate because the total thickness of the sedimentary fill was unknown. Since the age of formation of La Calderilla volcanic complex based on K/Ar dating is about 85,000 years (Upper Pleistocene), the possibility of its sedimentary fill extends beyond of the Holocene is extremely attractive, since, for example, there are few paleoenvironmental data regarding how much the last glaciation that affected the Canary Islands. In these circumstances, the knowledge of the total thickness of the lacustrine sediments is crucial to design a deeper borehole in the next future. Therefore, the subsurface characterisation provided by geophysics is essential for determining thickness and geometry of the sedimentary filling. Multielectrode ERT method was used to obtain five 2-D resistivity cross-sections into La Calderilla volcanic caldera. An Iris Syscal Pro resistivity system with 48 electrodes connected to a 94 m long cable (2m electrode spacing) in Wenner-Schlumberger configuration for an investigation depth of about 20 m. Data quality (q <2 %).was assessed by averaging or stacking several measurements. Also, very low contact resistances were found because of the high moisture of the soils and the special design of the stainless steel electrodes directly in contact with the multicore cable (R values <3 kΩ). Current injected was automatically adjusted by the system to optimize the input voltage and to ensure the best signal-to-noise ratio. All inverted ERT cross-sections show typical three layer models with very high resistivity contrast. The upper layer with intermediate to high resistivity values (1000 Ω.m to 2500 Ω.m) thin and quit heterogeneous can be correlated with the recent coarse deposits. An intermediate low resistivity layer (200 Ω.m to 400 Ω.m) with a thickness increasing to the NW where reach more than 14 meters and that can be associated to the laminated lacustrine sediments. A lower layer of very high resistivity (> 8000 Ω.m) that can be associated with be volcanic rocks that were the basement of the lake. Sedimentation rate is certainly not homogeneous. A very high rate has been obtained from the first four meters, giving all ages around 2,200 years. Nevertheless, for the rest of the geological log the sedimentation rate is lower and in our opinion more realistic: about 0.5 m for 1,000 years. Extrapolating this rate up to 14 m, the oldest age of lacustrine sedimentary record should be about 19,000 years, far away from the 85,000 years of the formation of La Calderilla volcanic complex following K/Ar dating.

  4. Structural characteristics of cohesive flow deposits, and a sedimentological approach on their flow mechanisms.

    NASA Astrophysics Data System (ADS)

    Tripsanas, E. K.; Bryant, W. R.; Prior, D. B.

    2003-04-01

    A large number of Jumbo Piston cores (up to 20 m long), acquired from the continental slope and rise of the Northwest Gulf of Mexico (Bryant Canyon area and eastern Sigsbee Escarpment), have recovered various mass-transport deposits. The main cause of slope instabilities over these areas is oversteepening of the slopes due to the seaward mobilization of the underlying allochthonous salt masses. Cohesive flow deposits were the most common recoveries in the sediment cores. Four types of cohesive flow deposits have been recognized: a) fluid debris flow, b) mud flow, c) mud-matrix dominated debris flow, and d) clast-dominated debris flow deposits. The first type is characterized by its relatively small thickness (less than 1 m), a mud matrix with small (less than 0.5 cm) and soft mud-clasts, and a faint layering. The mud-clasts reveal a normal grading and become more abundant towards the base of each layer. That reveals that their deposition resulted by several successive surges/pulses, developed in the main flow, than the sudden “freezing” of the whole flow. The main difference between mud flow and mud-matrix dominated debris flow deposits is the presence of small to large mud-clasts in the later. Both deposits consist of a chaotic mud-matrix, and a basal shear laminated zone, where the strongest shearing of the flow was exhibited. Convolute laminations, fault-like surfaces, thrust faults, and microfaults are interpreted as occurring during the “freezing” of the flows and/or by adjustments of the rested deposits. Clast-dominated debris flow deposits consist of three zones: a) an upper plug-zone, characterized by large interlocked clasts, b) a mid-zone, of higher reworked, inversely graded clasts, floating in a mud-matrix, and c) a lower shear laminated zone. The structure of the last three cohesive flow deposits indicate that they represent deposition of typical Bingham flows, consisting of an upper plug-zone in which the yield stress is not exceeded and an underlain shearing zone, where the shear stress exceeded the yield strength of the sediments. Mud-matrix, and clast-dominated debris flow deposits are the pervasive ones. Intensely sheared thin layers (5- to 20 cm) with sharp bases, displayed as successive layers at the base of mud/debris flow deposits, or as isolated depositional units interbedded in hemipelagic sediments, are as interesting, as enigmatic. They are interpreted as basal self-lubricating layers, of having high shear stress and pore pressures, over which the mud/debris flows were able to travel for very long distances.

  5. Changes in Bedform Shape at the Transition Between Upper Plane-Bed and Sheet-Flow Bedload Transport Regimes

    NASA Astrophysics Data System (ADS)

    Hernandez Moreira, R. R.; Huffman, B.; Vautin, D.; Viparelli, E.

    2015-12-01

    The interactions between flow hydrodynamics and bedform characteristics at the transition between upper plane-bed bedload transport regime and sheet-flow have not yet been thoroughly described and still remain poorly understood. The present study focuses on the experimental study of this transition in open channel mode. The experiments were performed in the hydraulic laboratory of the Department of Civil and Environmental Engineering of the University of South Carolina in a sediment-feed flume, 9-m long by 19-cm wide with uniform material sediment of geometric mean grain size diameter of 1.11 mm. Sediment feed rates ranged between 0.5 kg/min and 20 kg/min with two different flow rates of 20 l/s and 30 l/s. We recorded periodic measurements of water surface and bed elevation to estimate the global flow parameters, e.g. mean flow velocity and bed shear stress, and to determine when the flow and the sediment transport reached conditions of mobile bed equilibrium. We define mobile bed equilibrium as a condition in which the mean bed elevation does not change in time. At equilibrium, measurements of bed elevation fluctuations were taken with an ultrasonic transducer system at six discrete locations. In the runs with low and medium feed rates, i.e. smaller than ~12 kg/min, the long wavelength and small amplitude bedforms typical of the upper plane bed regime, which were observed in previous experimental work, formed and migrated downstream. In particular, with increasing feed rates, the amplitude of the bedforms decreases and their geometry changes, from well-defined triangular shapes, to rounded shapes to flat bed with very small amplitude, long wavelength undulations. The decrease in amplitude corresponds to a decrease in form drag and an increase in the thickness of the bedload layer. The ultrasonic measurements are analyzed to statistically describe the observed transition in terms of probability distribution functions of the bed elevation fluctuations.

  6. Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) in remote lakes across the Tibetan Plateau.

    PubMed

    Yang, Ruiqiang; Xie, Ting; Li, An; Yang, Handong; Turner, Simon; Wu, Guangjian; Jing, Chuanyong

    2016-07-01

    Sediment cores from five lakes across the Tibetan Plateau were used as natural archives to study the time trends of polycyclic aromatic hydrocarbons (PAHs). The depositional flux of PAHs generally showed an increasing trend from the deeper layers towards the upper layer sediments. The fluxes of PAHs were low with little variability before the 1950s, and then gradually increased to the late 1980s, with a faster increasing rate after the 1990s. This temporal pattern is clearly different compared with those remote lakes across the European mountains when PAHs started to decrease during the period 1960s-1980s. The difference of the temporal trend was attributed to differences in the economic development stages and energy structure between these regions. PAHs are dominated by the lighter 2&3-ring homologues with the averaged percentage over 87%, while it is notable that the percentage of heavier 4-6 ring PAHs generally increased in recent years, which suggests the contribution of local high-temperature combustion sources becoming more predominant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Convective instability of sludge storage under evaporation and solar radiation

    NASA Astrophysics Data System (ADS)

    Tsiberkin, Kirill; Tatyana, Lyubimova

    2014-05-01

    The sludge storages are an important part of production cycle at salt manufacturing, water supply, etc. A quality of water in the storage depends on mixing of pure water and settled sediment. One of the leading factors is thermal convection. There are two main mechanisms of the layer instability exist. First, it is instability of water due to evaporation from the free surface [1]. It cools the water from upside, increases the particles concentration and leads to the instability in the near-surface layer. Second, the sediment absorbs a solar radiation and heats the liquid from below making it unstable in the near-bottom area. We assume the initial state is the mechanical equilibrium. The water and sediment particles are motionless, the sediment forms a uniform sludge layer of thickness z0, there are no evaporation and heating by solar energy, and the temperature has a linear profile is determined by fixed upper and bottom temperatures of the layer. Taking into account the evaporation and solar radiation absorption, we obtain a non-stationary solution for the temperature using Fourier series method. The local temperature gradients increases rapidly with time, and local Rayleigh number can be estimated by thermal conduction length Lt: Raloc(z,t) = gβ(δT(z,t)/δz)L4t-/νΞ , Lt ~ √Ξt, (1) where g is gravity acceleration, β, ν and Ξ are thermal volume expansion coefficient, kinematic viscosity and thermal conductivity of the liquid, respectively. Raloc* reaches the critical value at finite time t* and water motion begins. The maximal power of solar radiation in visible band equals 230 Wt/m2 at the latitude of "Uralkalii" salt manufacturer (Berezniki, Perm Region, Russian Federation). We neglect IR and UV radiation because of its huge absorption by water [2]. The evaporation speed is found using results for shallow water reservoir [3] and meteorological data for Berezniki [4]. We get the t*~ 6 · 102 s (10 min) for the layer of 1 m depth and t*~ 2 · 103 s (40 min) for the layer of 10 m depth. Dynamic of the system is studied by the Galerkin-Kantorovich method. Using the follow basis along z-axis: wn = cosqnz - cotqnsinh qnz - cosh qnz + coth qnsinh qnz, tanqn = tanhqn, (2) tn = sinpnz, pn = π(2n - 1), n = 1,2,3 ..., 2 (3) we introduce an infinite family of low-mode approximations of the full model. We found the parameter deviations from initial state grow rapidly with Ra > 0 and oscillate with Ra < 0 at the lowest order. Here, Ra is defined by temperature difference between upper and bottom sides of the layer under pure evaporation. The lowest order model does not describe the system in full, because the unstable areas are localized within layer. The study was financially supported by the Russian Foundation for Basic Research (Grant 13-01-96040). [1] Berg J.C. Acrivos A., Boudart M. Advances in Chemical Engineering. Ed. by Drew T.B., Hoopes J.W. Vermeulen T. Academic Press, NY, 1966, V.6, pp. 61-124. [2] ASTM Standard G173-03, 2012, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, ASTM International, 2012. [3] Tanny J. et al. Evaporation from a small water reservoir: direct measurements and estimates. J. Hydrol., 2008, V.351, pp. 218-229. [4] Shklyaev V.A., Shklyaeva L.S. Climatic resources of Ural's Prikamye. Geographical Bull., Perm State University, 2006, V.2, pp. 76-89.

  8. Identifying the source of petroleum pollution in sediment cores of southwest of the Caspian Sea using chemical fingerprinting of aliphatic and alicyclic hydrocarbons.

    PubMed

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud

    2017-02-15

    In this study, the concentration and sources of aliphatic and petroleum markers were investigated in 105 samples of Anzali, Rezvanshahr and Astara cores from the southwest of Caspian Sea. Petroleum importation was diagnosed as a main source in most depths of cores by the results of unresolved complex mixture, carbon preference index and hopanes and steranes. From the chemical diagnostic parameters, petroleum inputs in sediment of cores were determined to be different during years and the sources of hydrocarbons in some sections differed than Anzali and Turkmenistan and Azerbaijan oils. Diagenic ratios in most sediments of upper and middle sections in Astara core were determined to be highly similar to those of Azerbaijan oil, while the presence of Turkmenistan and Anzali oils were detected in a few sections of Anzali and Rezvanshahr cores and only five layers of downer section in Anzali core, respectively. Copyright © 2016. Published by Elsevier Ltd.

  9. Thermal and time-temperature index (TTI) patterns during geologic evolution of north and central Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrie, A.; Hamiter, R.; Fogarty, M.A.

    1996-09-01

    Regional thermal and Time-Temperature Index (TTI) contours were prepared for 12 dip paleo-tectonic reconstructions extending from central Arkansas to the central Gulf Basin. The first 9 reconstructions are based on back-stripping of Series-long sequences above the Louann Salt with the salt not restored. Additional reconstructions through Lower Jurassic set a geologic scenario prior to continental rifting. The reconstructions with salt not restored reveal a paleo-Sigsbee salt wedge, undergirding the Upper Jurassic to Pleistocene continental slope, has been a {open_quotes}permanent{close_quotes} ocean-side feature of the prograding margin, a salt-sediment geometry not in existent salt tectonic theories. Such a permanent and laterally migratingmore » {open_quotes}salt nose{close_quotes} provides an obstacle against which descending gravity-driven sediments can interact, creating reservoir-grade deposits against protruding salts features. The nose migration has left a lubricating layer of salt welds and other features. This salt-surrounded unit, beneath and downdip, may be termed a {open_quotes}salt-floored sub-basin{close_quotes} containing mostly {open_quotes}shallow{close_quotes} sediments of coastal plain, shelf, and slope genesis and growing through time. By Lower Cretaceous (131-96 mybp) times, the salt-floored basin updip from the then Sigsbee salt wedge was deep enough, approximately 5-7 km, that hydrocarbon maturation had begun. In the Upper Cretaceous (96-66 mybp), hydrocarbon maturation extended to sediments along flanks of the recently extinct mid-ocean ridge. From then to the present, ever more of the sedimentary volume has been subject to maturation.« less

  10. Event sedimentation in low-latitude deep-water carbonate basins, Anegada passage, northeast Caribbean

    USGS Publications Warehouse

    Chaytor, Jason D.; ten Brink, Uri S.

    2015-01-01

    The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow-water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef- and slope-derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay-rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand-rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (−1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea-level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin-wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long-term record of past oceanographic conditions in ocean passages.

  11. The legacy of lead (Pb) in fluvial bed sediments of an urban drainage basin, Oahu, Hawaii.

    PubMed

    Hotton, Veronica K; Sutherland, Ross A

    2016-03-01

    The study of fluvial bed sediments is essential for deciphering the impact of anthropogenic activities on water quality and drainage basin integrity. In this study, a systematic sampling design was employed to characterize the spatial variation of lead (Pb) concentrations in bed sediment of urban streams in the Palolo drainage basin, southeastern Oahu, Hawaii. Potentially bioavailable Pb was assessed with a dilute 0.5 N HCl extraction of the <63 μm grain-size fraction from the upper bed sediment layer of 169 samples from Palolo, Pukele, and Waiomao streams. Contamination of bed sediments was associated with the direct transport of legacy Pb from the leaded gasoline era to stream channels via a dense network of storm drains linked to road surfaces throughout the basin. The Palolo Stream had the highest median Pb concentration (134 mg/kg), and the greatest road and storm drain densities, the greatest population, and the most vehicle numbers. Lower median Pb concentrations were associated with the less impacted Pukele Stream (24 mg/kg), and Waiomao Stream (7 mg/kg). The median Pb enrichment ratio values followed the sequence of Palolo (68) > Pukele (19) > Waiomao (8). Comparisons to sediment quality guidelines and potential toxicity estimates using a logistic regression model (LRM) indicated a significant potential risk of Palolo Stream bed sediments to bottom-dwelling organisms.

  12. Process recognition in multi-element soil and stream-sediment geochemical data

    USGS Publications Warehouse

    Grunsky, E.C.; Drew, L.J.; Sutphin, D.M.

    2009-01-01

    Stream-sediment and soil geochemical data from the Upper and Lower Coastal Plains of South Carolina (USA) were studied to determine relationships between soils and stream sediments. From multi-element associations, characteristic compositions were determined for both media. Primary associations of elements reflect mineralogy, including heavy minerals, carbonates and clays, and the effects of groundwater. The effects of groundwater on element concentrations are more evident in soils than stream sediments. A "winnowing index" was created using ratios of Th to Al that revealed differing erosional and depositional environments. Both soils and stream sediments from the Upper and Lower Coastal Plains show derivation from similar materials and subsequent similar multi-element relationships, but have some distinct differences. In the Lower Coastal Plain, soils have high values of elements concentrated in heavy minerals (Ce, Y, Th) that grade into high values of elements concentrated into finer-grain-size, lower-density materials, primarily comprised of carbonates and feldspar minerals (Mg, Ca, Na, K, Al). These gradational trends in mineralogy and geochemistry are inferred to reflect reworking of materials during marine transgressions and regressions. Upper Coastal Plain stream-sediment geochemistry shows a higher winnowing index relative to soil geochemistry. A comparison of the 4 media (Upper Coastal Plain soils and stream sediments and Lower Coastal Plain soils and stream sediments) shows that Upper Coastal Plain stream sediments have a higher winnowing index and a higher concentration of elements contained within heavy minerals, whereas Lower Coastal Plain stream sediments show a strong correlation between elements typically contained within clays. It is not possible to calculate a functional relationship between stream sediment-soil compositions for all elements due to the complex history of weathering, deposition, reworking and re-deposition. However, depending on the spatial separation of the stream-sediment and soil samples, some elements are more highly correlated than others. Crown Copyright ?? 2009.

  13. A model study of sediment transport across the shelf break

    NASA Astrophysics Data System (ADS)

    Marchal, Olivier

    2017-04-01

    A variety of dynamical processes can contribute to the transport of material (e.g., particulate matter) across the shelf break - the region separating the continental shelf from the continental slope. Among these processes are (i) the reflection of internal waves on the outer shelf and upper slope, and (ii) the instability of hydrographic fronts, roughly aligned with isobaths, that are often present at the shelf break. On the one hand, internal waves reflecting on a sloping boundary can produce bottom shear stresses that are large enough to resuspend non-cohesive sediments into the water column. On the other hand, eddies shed from unstable shelf break fronts can incorporate into their core particle-rich waters from the outer shelf and upper slope, and transport these waters offshore. Here we present numerical experiments with a three-dimensional numerical model of ocean circulation and sediment transport, which illustrate the joint effect of internal waves and eddies on sediment transport across the shelf break. The model is based on the primitive equations and terrain-following coordinates. The model domain is square and idealized, comprising a flat continental shelf, a constant continental slope, and a flat abyssal basin. The model grid has O(1 km) horizontal resolution, so that (sub)mesoscale eddies observed in the vicinity of shelf breaks, such as south of New England, can be represented in detail. Internal waves are excited through the specification of a periodic variation in the across-slope component of velocity at the offshore boundary of the domain, and eddies are generated from the baroclinic instability of a shelf break jet that is initially in strict thermal wind balance. Numerical experiments are conducted that are characterized by (i) different slopes of internal wave characteristics relative to the continental slope, representing sub-critical, critical, and super-critical regimes, and (ii) different values for the dimensionless ratios that emerge from the linear stability analysis of shelf break fronts. Emphasis is placed on the physical conditions that are conducive to the formation and maintenance of bottom and intermediate nepheloid layers - the particle-rich layers that are often observed near oceanic margins in the traces of optical instruments.

  14. Origin of the northern Atlantic`s Heinrich events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broecker, W.; Bond, G.; Klas, M.

    1992-01-01

    As first noted by Heinrich, 1988, glacial age sediments in the eastern part of the northern Atlantic contain layers with unusually high ratios of ice-rafted lithic fragments of foraminifera shells. He estimated that these layers are spaced at intervals of roughly 10000 years. In this paper we present detailed information documenting the existence of the upper five of these layers in ODP core 609 from 50{degrees}N and 24{degrees}W. Their ages are respectively 15000 radiocarbon years, 20000 radiocarbon years, 27000 radiocarbon years, about 40000 years, and about 50000 years. We also note that the high lithic fragment to foram ratio ismore » the result of a near absence of shells in these layers. Although we are not of one mind regarding the origin of these layers, we lean toward an explanation that the Heinrich layers are debris released during the melting of massive influxes of icebergs into the northern Atlantic. These sudden inputs may be the result of surges along the eastern margin of the Laurentide ice sheet. 7 refs., 3 figs., 2 tabs.« less

  15. Sediment Microbial Enzyme Activity as an Indicator of Nutrient Limitation in the Great Rivers of the Upper Mississippi Basin

    EPA Science Inventory

    We compared extracellular enzyme activity (EEA) of microbial assemblages in river sediments at 447 sites along the Upper Mississippi, Missouri, and Ohio Rivers with sediment and water chemistry, atmospheric deposition of nitrogen and sulfate, and catchment land uses. The sites re...

  16. Benthic nepheloid layers in the Gulf of Maine and Alexandrium cyst inventories

    PubMed Central

    Pilskaln, C.H.; Hayashi, K.; Keafer, B.A.; Anderson, D.M.; McGillicuddy, D.J.

    2014-01-01

    Cysts residing in benthic nepheloid layers (BNLs) documented in the Gulf of Maine have been proposed as a possible source of inoculum for annual blooms of a toxic dinoflagellate in the region. Herein we present a spatially extensive data set of the distribution and thickness of benthic nepheloid layers in the Gulf of Maine and the abundance and inventories of suspended Alexandrium fundyense cysts within these near-bottom layers. BNLs are pervasive throughout the gulf and adjacent Bay of Fundy with maximum layer thicknesses of 50–60 m observed. Mean BNL thickness is 30 m in the eastern gulf and Bay of Fundy, and 20 m in the western gulf. Cyst densities in the near-bottom particle resuspension layers varied by three orders of magnitude across the gulf with maxima of 105 cysts m−3. An important interconnection of elevated BNL cyst densities is observed between the Bay of Fundy, the Maine Coastal Current and the south-central region of the gulf. BNL cyst inventories estimated for the eastern and western gulf are each on the order of 1015 cysts, whereas the BNL inventory in the Bay of Fundy is on the order of 1016 . Although BNL cyst inventories in the eastern and western gulf are 1–2 orders of magnitude smaller than the abundance of cysts in the upper 1 cm of sediment in those regions, BNL and sediment-bound cyst inventories are comparable in the Bay of Fundy. The existence of widespread BNLs containing substantial cyst inventories indicates that these near-bottom layers represent an important source of germinating A. fundyense cysts in the region. PMID:25419055

  17. Benthic nepheloid layers in the Gulf of Maine and Alexandrium cyst inventories.

    PubMed

    Pilskaln, C H; Hayashi, K; Keafer, B A; Anderson, D M; McGillicuddy, D J

    2014-05-01

    Cysts residing in benthic nepheloid layers (BNLs) documented in the Gulf of Maine have been proposed as a possible source of inoculum for annual blooms of a toxic dinoflagellate in the region. Herein we present a spatially extensive data set of the distribution and thickness of benthic nepheloid layers in the Gulf of Maine and the abundance and inventories of suspended Alexandrium fundyense cysts within these near-bottom layers. BNLs are pervasive throughout the gulf and adjacent Bay of Fundy with maximum layer thicknesses of 50-60 m observed. Mean BNL thickness is 30 m in the eastern gulf and Bay of Fundy, and 20 m in the western gulf. Cyst densities in the near-bottom particle resuspension layers varied by three orders of magnitude across the gulf with maxima of 10 5 cysts m -3 . An important interconnection of elevated BNL cyst densities is observed between the Bay of Fundy, the Maine Coastal Current and the south-central region of the gulf. BNL cyst inventories estimated for the eastern and western gulf are each on the order of 10 15 cysts, whereas the BNL inventory in the Bay of Fundy is on the order of 10 16 . Although BNL cyst inventories in the eastern and western gulf are 1-2 orders of magnitude smaller than the abundance of cysts in the upper 1 cm of sediment in those regions, BNL and sediment-bound cyst inventories are comparable in the Bay of Fundy. The existence of widespread BNLs containing substantial cyst inventories indicates that these near-bottom layers represent an important source of germinating A. fundyense cysts in the region.

  18. Cryolithozone of Western Arctic shelf of Russia

    NASA Astrophysics Data System (ADS)

    Kholmyanskii, Mikhail; Vladimirov, Maksim; Snopova, Ekaterina; Kartashev, Aleksandr

    2017-04-01

    We propose a new original version of the structure of the cryolithozone of west Arctic seas of Russia. In contrast to variants of construction of sections and maps based on thermodynamic modeling, the authors have used electrometric, seismic, and thermal data including their own profile measurements by near-field transient electromagnetic technique and seismic profile observations by reflection method. As a result, we defined the spatial characteristics of cryolithozone and managed to differentiate it to several layers, different both in structure and formation time. We confirmed once again that the spatial boundary of cryolithozone, type and thickness of permafrost, chilled rocks and thawed ground are primarily determined by tectonic and oceanographic regimes of the Arctic Ocean and adjacent land in different geological epochs. Permafrost formed on the land in times of cold weather, turn to submarine during flooding and overlap, in the case of the sea transgression, by marine sediments accumulating in the period of warming. We have been able to establish a clear link between the permafrost thickness and the geomorphological structure of the area. This can be explained by the distribution of thermodynamic flows that change the temperature state of previously formed permafrost rocks. Formation in the outer parts of the shelf which took place at ancient conversion stage can be characterized by the structure: • permafrost table - consists of rocks, where the sea water with a temperature below 0 °C has replaced the melted ice; • middle horizon - composed of undisturbed rocks, and the rocks chilled through the lower sieving underlay; As a result of the interpretation and analysis of all the available data, the authors created a map of types of cryolithozone of the Western Arctic shelf of Russia. The following distribution areas are marked on the map: • single-layer cryolithozone (composed of sediments upper Pleistocene and Holocene); • monosyllabic relict permafrost; • two-layer relict permafrost; • three-layered cryolithozone (composed of Holocene rocks and two-layer relict mainly from permafrost rocks); • three-layer cryolithozone (composed of Holocene rocks and two-layer relict mainly from chilled rocks); • post-cryogenic thawed sediments.

  19. Variations in dissolved organic nitrogen concentration in biofilters with different media during drinking water treatment.

    PubMed

    Zhang, Huining; Zhang, Kefeng; Jin, Huixia; Gu, Li; Yu, Xin

    2015-11-01

    Dissolved organic nitrogen (DON) is potential precursor of disinfection byproducts (DBPs), especially nitrogenous DBPs. In this study, we investigated the impact of biofilters on DON concentration changes in a drinking water plant. A small pilot plant was constructed next to a sedimentation tank in a drinking water plant and included activated carbon, quartz sand, anthracite, and ceramsite biofilters. As the biofilter layer depth increased, the DON concentration first decreased and then increased, and the variation in DON concentration differed among the biofilters. In the activated carbon biofilter, the DON concentration was reduced by the largest amount in the first part of the column and increased by the largest amount in the second part of the column. The biomass in the activated carbon filter was less than that in the quartz sand filter in the upper column. The heterotrophic bacterial proportion among bacterial flora in the activated carbon biofilter was the largest, which might be due to the significant reduction in DON in the first part of the column. Overall, the results indicate that the DON concentration in biofiltered water can be controlled via the selection of appropriate biofilter media. We propose that a two-layer biofilter with activated carbon in the upper layer and another media type in the lower layer could best reduce the DON concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Applications for evaluation of physical properties - An example of siliceous rock permeability -

    NASA Astrophysics Data System (ADS)

    Ojima, T.

    2015-12-01

    ODP Leg. 186, two sites (Site 1150 and Site 1151) were drilled on the continental slope of the deep-sea forearc basin of northern Japan. Diatomaceous sediments were recovered Site 1150 and Site 1151, and the depth of each site is 1181.60 mbsf and 1113.60 mbsf, respectively. This area is under the influence of the Oyashio current and is one of the highly bio-productive regions of the North Pacific Ocean (Motoyama et al., 2004). The combination of high productivity and active tectonic deformation that often caused high rate accumulating of fossil and organic rich sediments. Likewise, IODP Exp. 341 was implemented on off South Alaska. Pelagic and MTD 's layer were recognized with IRD(Ice Rafted Debris). In Tohoku, The onboard results of porosity measurements show high value (50-70 %) down to 1000 mbsf, and obviously higher than nearby subduction trench, Nankai Trough (Taylor and Fisher, 1993). There is a possibility that diatomaceous shell keep a frame structure from effective stress and load pressure. On another drilling site result, DSDP Leg. 19 located 60 km to the north of ODP sites, was reported high value of porosity, but recognized only shallow range (>500 mbsf) (Shephard and Bryant, 1980). Also, South Alaska sediments show high sedimentation rate and cyclic MTD's Layer. Permeability was lower than Tohoku sediments in spite of upper depth. We focused on the relationships between physical property, microstructure, and logging data at deep range(-1000 mbsf). Logging data were collected using wireline logging (Sacks and Suyehiro, 2003; IODP Prel. Rept., 341., 2014). Based on these results, it is expected that microstructure and logging can be integrated into a general model of core-log correlation. In this presentation, We show results of microstructure using SEM, measured physical properties, and wireline logging data, respectively.

  1. Radionuclides and mercury in the salt lakes of the Crimea

    NASA Astrophysics Data System (ADS)

    Mirzoyeva, Natalya; Gulina, Larisa; Gulin, Sergey; Plotitsina, Olga; Stetsuk, Alexandra; Arkhipova, Svetlana; Korkishko, Nina; Eremin, Oleg

    2015-11-01

    90Sr concentrations, resulting from the Chernobyl NPP accident, were determined in the salt lakes of the Crimea (Lakes Kiyatskoe, Kirleutskoe, Kizil-Yar, Bakalskoe and Donuzlav), together with the redistribution between the components of the ecosystems. The content of mercury in the waters of the studied reservoirs was also established. Vertical distributions of natural radionuclide activities (238U, 232Th, 226Ra, 210Pb, 40K) and anthropogenic 137Cs concentrations (as radiotracers) were determined in the bottom sediments of the Koyashskoe salt lake (located in the south-eastern Crimea) to evaluate the longterm dynamics and biogeochemical processes. Radiochemical and chemical analysis was undertaken and radiotracer and statistical methods were applied to the analytical data. The highest concentrations of 90Sr in the water of Lake Kiyatskoe (350.5 and 98.0 Bq/m3) and Lake Kirleutskoe (121.3 Bq/m3) were due to the discharge of the Dnieper water from the North-Crimean Canal. The high content of mercury in Lake Kiyatskoe (363.2 ng/L) and in seawater near Lake Kizil-Yar (364 ng/L) exceeded the maximum permissible concentration (3.5 times the maximum). Natural radionuclides provide the main contribution to the total radioactivity (artificial and natural combined) in the bottom sediments of Lake Koyashskoe. The significant concentration of 210Pb in the upper layer of bottom sediments of the lake indicates an active inflow of its parent radionuclide—gaseous 222Rn from the lower layers of the bottom sediment. The average sedimentation rates in Lake Koyashskoe, determined using 210Pb and 137Cs data, were 0.117 and 0.109 cm per year, respectively.

  2. Extraction of Seabed/Subsurface Features in a Potential CO2 Sequestration Site in the Southern Baltic Sea, Using Wavelet Transform of High-resolution Sub-Bottom Profiler Data

    NASA Astrophysics Data System (ADS)

    Tegowski, J.; Zajfert, G.

    2014-12-01

    Carbon Capture & Storage (CCS) efficiently prevents the release of anthropogenic CO2 into the atmosphere. We investigate a potential site in the Polish Sector of the Baltic Sea (B3 field site), consisting in a depleted oil and gas reservoir. An area ca. 30 x 8 km was surveyed along 138 acoustic transects, realised from R/V St. Barbara in 2012 and combining multibeam echosounder, sidescan sonar and sub-bottom profiler. Preparation of CCS sites requires accurate knowledge of the subsurface structure of the seafloor, in particular deposit compactness. Gas leaks in the water column were monitored, along with the structure of upper sediment layers. Our analyses show the shallow sub-seabed is layered, and quantified the spatial distribution of gas diffusion chimneys and seabed effusion craters. Remote detection of gas-containing surface sediments can be rather complex if bubbles are not emitted directly into the overlying water and thus detectable acoustically. The heterogeneity of gassy sediments makes conventional bottom sampling methods inefficient. Therefore, we propose a new approach to identification, mapping, and monitoring of potentially gassy surface sediments, based on wavelet analysis of echo signal envelopes of a chirp sub-bottom profiler (EdgeTech SB-0512). Each echo envelope was subjected to wavelet transformation, whose coefficients were used to calculate wavelet energies. The set of echo envelope parameters was input to fuzzy logic and c-means algorithms. The resulting classification highlights seafloor areas with different subsurface morphological features, which can indicate gassy sediments. This work has been conducted under EC FP7-CP-IP project No. 265847: Sub-seabed CO2 Storage: Impact on Marine Ecosystems (ECO2).

  3. Sediment Transport Capacity of Turbidity Currents: from Microscale to Geological Scale.

    NASA Astrophysics Data System (ADS)

    Eggenhuisen, J. T.; Tilston, M.; Cartigny, M.; Pohl, F.; de Leeuw, J.; van der Grind, G. J.

    2016-12-01

    A big question in sedimentology concerns the magnitude of fluxes of sediment particles, solute matter and dissolved gasses from shallow marine waters to deep basins by turbidity current flow. Here we establish sediment transport capacity of turbidity current flow on three levels. The most elementary level is set by the maximum amount of sediment that can be contained at the base of turbidity currents without causing complete extinction of boundary layer turbulence. The second level concerns the capacity in a vertical column within turbidity currents. The third level involves the amount of sediment that can be transported in turbidite systems on geological timescales. The capacity parameter Γ compares turbulent forces near the boundary of a turbulent suspension to gravity and buoyancy forces acting on suspended particles. The condition of Γ>1 coincides with complete suppression of coherent boundary layer turbulence in Direct Numerical Simulations of sediment-laden turbulent flow. Γ=1 coincides with the upper limit of observed suspended particle concentrations in flume and field measurements. Γ is grainsize independent, yet capacity of the full vertical structure of turbidity currents becomes grainsize dependent. This is due to the appearance of grainsize dependent vertical motions within turbulence as a primary control on the shape of the vertical concentration profile. We illustrate this dependence with experiments and theory and conclude that capacity depends on the competence of prevailing turbulence to suspend particle sizes. The concepts of capacity and competence are thus tangled. Finally, the capacity of turbidity current flow structure is coupled to geological constraints on recurrence times, channel and lobe life cycles, and allogenic forcing on system activity to arrive at system scale sediment transport capacity. We demonstrate a simple model that uses the fundamental process insight described above to estimate geological sediment budgets from architectural information. These predictions are tied to existing S2S analyses to constrain submarine channel and fan dimensions in ancient and subsurface systems. Predictions of sediment budgets in deep marine systems rely on integration of fundamental issues in turbulent particle suspension into geological models of turbidite systems.

  4. Dynamic study of the upper Sao Francisco river and Tres Marias reservoir using MSS/LANDSAT images. M.S. Thesis; [BRazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Sausen, T. M.

    1981-01-01

    The relationship between the dispersion and concentration of sediment in the superficial layers of the Tres Marias reservoir and the dynamics of the drainage basins of its tributaries was verified using LANDSAT MSS imagery. The drainage network, dissection patterns, and land use of each watershed were considered in an analysis of multispectral images, corresponding to bands 4,5, and 7, of dry and rainy seasons in 1973, 1975, 1977, and 1978. The superficial layer water layers of the reservoir were also divided according to the grey level pattern of each image. Two field trips were made to collect Secchi depths and in situ water reflectance. It is concluded that it is possible to determine the main factors that act in the dynamics of the drainage basins of a reservoir by simultaneous control of the physical variables and the antropic action of each basin.

  5. Analysis of Meteorological Data Obtained During Flight in a Supercooled Stratiform Cloud of High Liquid-Water Content

    NASA Technical Reports Server (NTRS)

    Perkins, Porter J.; Kline, Dwight B.

    1951-01-01

    Flight icing-rate data obtained in a dense and. abnormally deep supercooled stratiform cloud system indicated the existence of liquid-water contents generally exceeding values in amount and extent previously reported over the midwestern sections of the United States. Additional information obtained during descent through a part of the cloud system indicated liquid-water contents that significantly exceeded theoretical values, especially near the middle of the cloud layer.. The growth of cloud droplets to sizes that resulted in sedimentation from the upper portions of the cloud is considered to be a possible cause of the high water contents near the center of the cloud layer. Flight measurements of the vertical temperature distribution in the cloud layer indicated a rate of change of temperature with altitude exceeding that of the moist adiabatic lapse rate. This excessive rate of change is considered to have contributed to the severity of the condition.

  6. Sedimentation in the central segment of the Aleutian Trench: Sources, transport, and depositional style

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, A.J.; Scholl, D.W.; Vallier, T.L.

    1990-05-01

    The central segment of the Aleutian Trench (162{degree}W to 175{degree}E) is an intraoceanic subduction zone that contains an anomalously thick sedimentary fill (4 km maximum). The fill is an arcward-thickening and slightly tilted wedge of sediment characterized acoustically by laterally continuous, closely spaced, parallel reflectors. These relations are indicative of turbidite deposition. The trench floor and reflection horizons are planar, showing no evidence of an axial channel or any transverse fan bodies. Cores of surface sediment recover turbidite layers, implying that sediment transport and deposition occur via diffuse, sheetlike, fine-grained turbidite flows that occupy the full width of the trench.more » The mineralogy of Holocene trench sediments document a mixture of island-arc (dominant) and continental source terranes. GLORIA side-scan sonar images reveal a westward-flowing axial trench channel that conducts sediment to the eastern margin of the central segment, where channelized flow cases. Much of the sediment transported in this channel is derived from glaciated drainages surrounding the Gulf of Alaska which empty into the eastern trench segment via deep-sea channel systems (Surveyor and others) and submarine canyons (Hinchinbrook and others). Insular sediment transport is more difficult to define. GLORIA images show the efficiency with which the actively growing accretionary wedge impounds sediment that manages to cross a broad fore-arc terrace. It is likely that island-arc sediment reaches the trench either directly via air fall, via recycling of the accretionary prism, or via overtopping of the accretionary ridges by the upper parts of thick turbidite flows.« less

  7. Sedimentary organic matter distributions, burrowing activity, and biogeochemical cycling: Natural patterns and experimental artifacts

    NASA Astrophysics Data System (ADS)

    Michaud, Emma; Aller, Robert, C.; Stora, Georges

    2010-11-01

    The coupling between biogenic reworking activity and reactive organic matter patterns within deposits is poorly understood and often ignored. In this study, we examined how common experimental treatments of sediment affect the burrowing behavior of the polychaete Nephtys incisa and how these effects may interact with reactive organic matter distributions to alter diagenetic transport - reaction balances. Sediment and animals were recovered from a subtidal site in central Long Island Sound, USA. The upper 15 cm of the sediment was sectioned into sub-intervals, and each interval separately sieved and homogenized. Three initial distributions of sediment and organic substrate reactivity were setup in a series of microcosms: (1) a reconstituted natural pattern with surface-derived sediment overlying sediment obtained from progressively deeper material to a depth of 15 cm (Natural); (2) a 15 cm thick sediment layer composed only of surface-derived sediment (Rich); and (3) a 15 cm thick layer composed of uniformally mixed sediment from the original 15 cm sediment profile (Averaged). The two last treatments are comparable to that used in microcosms in many previous studies of bioturbation and interspecific functional interaction experiments. Sediment grain size distributions were 97.5% silt-clay and showed no depth dependent patterns. Sediment porosity gradients were slightly altered by the treatments. Nepthys were reintroduced and aquariums were X-rayed regularly over 5 months to visualize and quantify spatial and temporal dynamics of burrows. The burrowing behaviour of adult populations having similar total biovolume, biomass, abundance, and individual sizes differed substantially as a function of treatment. Burrows in sediment with natural property gradients were much shallower and less dense than those in microcosms with altered gradients. The burrow volume/biovolume ratio was also lower in the substrate with natural organic reactivity gradients. Variation in food resources or in sediment mechanical properties associated with treatments, the latter in part coupled to remineralization processes such as exopolymer production, may explain the burrowing responses. In addition to demonstrating how species may respond to physical sedimentation events (substrate homogenization) and patterns of reactive organic matter redistribution, these experiments suggest that infaunal species interactions in microcosms, including the absolute and relative fluxes of remineralized solutes, may be subject to artifacts depending on exactly how sediments are introduced experimentally. Nonlocal transport and cylinder microenvironment transport - reaction models readily demonstrate how the multiple interactions between burrowing patterns and remineralization rate distributions can alter relative flux balances, decomposition pathways, and time to steady state.

  8. Integrating surface and borehole geophysics in ground water studies - an example using electromagnetic soundings in south Florida

    USGS Publications Warehouse

    Paillet, Frederick; Hite, Laura; Carlson, Matthew

    1999-01-01

    Time domain surface electromagnetic soundings, borehole induction logs, and other borehole logging techniques are used to construct a realistic model for the shallow subsurface hydraulic properties of unconsolidated sediments in south Florida. Induction logs are used to calibrate surface induction soundings in units of pore water salinity by correlating water sample specific electrical conductivity with the electrical conductivity of the formation over the sampled interval for a two‐layered aquifer model. Geophysical logs are also used to show that a constant conductivity layer model is appropriate for the south Florida study. Several physically independent log measurements are used to quantify the dependence of formation electrical conductivity on such parameters as salinity, permeability, and clay mineral fraction. The combined interpretation of electromagnetic soundings and induction logs was verified by logging three validation boreholes, confirming quantitative estimates of formation conductivity and thickness in the upper model layer, and qualitative estimates of conductivity in the lower model layer.

  9. Modern Sedimentation off the Kaoping River, SW Taiwan: A Comparison with Eel River's S2S System

    NASA Astrophysics Data System (ADS)

    Huh, C.; Lin, H.; Lin, S.

    2006-12-01

    The Kaoping (KP) River in SW Taiwan has a watershed area of 3257 km2 and an annual sediment discharge of 49 MT. Although the sediment yield of the KP River basin (1.5×104 ton km-2 yr^{- 1}) is the 4th highest among Taiwan's catchment basins, it is nearly one order of magnitude higher than that of the Eel River's basin (~1.8×103 ton km-2 yr-1; the highest in the U.S.). The KP canyon extends almost immediately seaward from the river's mouth and terminates in the northwestern corner of the South China Sea. The head of the canyon is characterized by high and steep walls exceeding 600 m. The KP river's source-to-sink system offers a dramatic case of mountainous rivers at active margins for S2S study. Here we report some results about modern sedimentation in KP river's dispersal system. Seventy-six sediment cores collected from an area of ~3000 km2 were analyzed for fallout nuclides 7Be, 137Cs and 210Pb by gamma spectrometry. From profiles of excess 210Pb and 137Cs sediment accumulation rates in the coring sites were estimated, which vary from 0.06 to 1.6 cm/yr, with the highest rates (>1 cm/yr) distributed in the upper slope (<600 m) on both sides of the KP canyon. The area with high sedimentation rates on Pb-210 time scale coincides with the area covered by a flood layer resulting from Typhoon Haitang during July 18-20, 2005. This suggests that the open margin on the upper slope is a depocenter for sediment dispersed via a surface component of the river's plume on various timescales (from events to centennial). With a total of 76 sampling points laid out, a framework consisting of 105 triangular grids is configured to calculate the budget of sediment in the study area. The calculated budget, at 7.2 MT/yr, accounts for only ~15% of KP river's sediment discharge. We speculate that most of the remainder is exported out of the study area via the KP canyon to the deep sea by gravity-driven turbidity or hyperpycnal flows.

  10. Spatial attenuation of different sound field components in a water layer and shallow-water sediments

    NASA Astrophysics Data System (ADS)

    Belov, A. I.; Kuznetsov, G. N.

    2017-11-01

    The paper presents the results of an experimental study of spatial attenuation of low-frequency vector-scalar sound fields in shallow water. The experiments employed a towed pneumatic cannon and spatially separated four-component vector-scalar receiver modules. Narrowband analysis of received signals made it possible to estimate the attenuation coefficients of the first three modes in the frequency of range of 26-182 Hz and calculate the frequency dependences of the sound absorption coefficients in the upper part of bottom sediments. We analyze the experimental and calculated (using acoustic calibration of the waveguide) laws of the drop in sound pressure and orthogonal vector projections of the oscillation velocity. It is shown that the vertical projection of the oscillation velocity vector decreases significantly faster than the sound pressure field.

  11. Processes forcing the suspended sediments distribution in a wide, shallow and microtidal estuary: a numerical case study for the Río de la Plata

    NASA Astrophysics Data System (ADS)

    Simionato, Claudia; Moreira, Diego

    2017-04-01

    The impact of the diverse mechanisms driving the suspended sediments distribution in the wide, shallow and microtidal Río de la Plata (RdP) estuary and the adjacent shelf is studied by means of a set of process-oriented numerical simulations. With that aim, a regional application of the hydro-sedimentological Model for Applications at Regional Scale (MARS) is implemented, tested and run under diverse conditions. Even the simulations are idealized, they reproduce both qualitatively and quantitatively well the main features of the suspended sediments observed distribution, particularly the mean values of concentration and its gradients: perpendicular to the estuary axis at the upper and intermediate RdP and parallel to the estuary axis at its outer part. Even though naturally the diameter of the sediments that deposit decays with the distance to the sources (with sands and silts dominating in the upper estuary and fine silts and clays over the Barra del Indio), model results show that the large width and the geometry of the estuary play an important role in the sedimentation process. The widening and deepening, and the associated significant reduction of the currents speed that occurs after (i) the confluence of the tributaries and (ii) downstream the Barra del Indio Shoal, favors sediments deposition downstream those areas. Even though tides are of small amplitude in the study area, they have a significant impact on the lateral mixing and the re-suspension of bottom sediments; this last augments the concentration of fine sediments in the layers close to the bottom but their energy is not enough to rise them up to the surface. The model reproduces the increment in the concentration of fine sediments observed in the areas where tidal dissipation energy by bottom friction maximizes (over the southern coast of the RdP and around Punta Piedras and Punta Rasa), but shows that tides alone cannot account for the observed maxima. Winds (which can be quite large over this area) enhance horizontal mixing, smoothing the pattern produced by the tides. Wind waves are the most important forcing for the vertical mixing of the sediments. Their effect is most evident along the southern coast of the RdP and the Barra del Indio Shoal, where wind waves rise to the surface the sediments resuspended by tides. The bottom salinity front acts retaining the sediments upstream the Barra del Indio shoal; there, estuarine currents and flocculation play an important role in sediments deposition.

  12. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust

    USGS Publications Warehouse

    von Huene, Roland E.; Scholl, D. W.

    1991-01-01

    At ocean margins where two plates converge, the oceanic plate sinks or is subducted beneath an upper one topped by a layer of terrestrial crust. This crust is constructed of continental or island arc material. The subduction process either builds juvenile masses of terrestrial crust through arc volcanism or new areas of crust through the piling up of accretionary masses (prisms) of sedimentary deposits and fragments of thicker crustal bodies scraped off the subducting lower plate. At convergent margins, terrestrial material can also bypass the accretionary prism as a result of sediment subduction, and terrestrial matter can be removed from the upper plate by processes of subduction erosion. Sediment subduction occurs where sediment remains attached to the subducting oceanic plate and underthrusts the seaward position of the upper plate's resistive buttress (backstop) of consolidated sediment and rock. Sediment subduction occurs at two types of convergent margins: type 1 margins where accretionary prisms form and type 2 margins where little net accretion takes place. At type 2 margins (???19,000 km in global length), effectively all incoming sediment is subducted beneath the massif of basement or framework rocks forming the landward trench slope. At accreting or type 1 margins, sediment subduction begins at the seaward position of an active buttress of consolidated accretionary material that accumulated in front of a starting or core buttress of framework rocks. Where small-to-mediumsized prisms have formed (???16,300 km), approximately 20% of the incoming sediment is skimmed off a detachment surface or decollement and frontally accreted to the active buttress. The remaining 80% subducts beneath the buttress and may either underplate older parts of the frontal body or bypass the prism entirely and underthrust the leading edge of the margin's rock framework. At margins bordered by large prisms (???8,200 km), roughly 70% of the incoming trench floor section is subducted beneath the frontal accretionary body and its active buttress. In rounded figures the contemporary rate of solid-volume sediment subduction at convergent ocean margins (???43,500 km) is calculated to be 1.5 km3/yr. Correcting type 1 margins for high rates of terrigenous seafloor sedimentation during the past 30 m.y. or so sets the long-term rate of sediment subduction at 1.0 km3/yr. The bulk of the subducted material is derived directly or indirectly from continental denudation. Interstitial water currently expulsed from accreted and deeply subducted sediment and recycled to the ocean basins is estimated at 0.9 km3/yr. The thinning and truncation caused by subduction erosion of the margin's framework rock and overlying sedimentary deposits have been demonstrated at many convergent margins but only off northern Japan, central Peru, and northern Chile has sufficient information been collected to determine average or long-term rates, which range from 25 to 50 km3/m.y. per kilometer of margin. A conservative long-term rate applicable to many sectors of convergent margins is 30 km3/km/m.y. If applied to the length of type 2 margins, subduction erosion removes and transports approximately 0.6 km3/yr of upper plate material to greater depths. At various places, subduction erosion also affects sectors of type 1 margins bordered by small- to medium-sized accretionary prisms (for example, Japan and Peru), thus increasing the global rate by possibly 0.5 km3/yr to a total of 1.1 km3/yr. Little information is available to assess subduction erosion at margins bordered by large accretionary prisms. Mass balance calculations allow assessments to be made of the amount of subducted sediment that bypasses the prism and underthrusts the margin's rock framework. This subcrustally subducted sediment is estimated at 0.7 km3/yr. Combined with the range of terrestrial matter removed from the margin's rock framework by subduction erosion, the global volume of subcrustally subducted materia

  13. Consequences of the river valley bottom transformation after extreme flood (on the example of the Niida River, Japan)

    NASA Astrophysics Data System (ADS)

    Botavin, D.; Golosov, V.; Konoplev, A.; Wakiyama, Y.

    2018-01-01

    Detailed study of different sections of floodplain was undertaken in the Niida River basin (Fukushima Prefecture) after an extreme flood event which occurred in the middle of September 2015. The upstream part of the basin is located in the area with very high level of radionuclide contamination after the accident at Fukushima Dai-ichi NPP. Field and GIS methods were used, including direct measurement of the depth of fresh sediment and its area, with soil descriptions for the typical floodplain sections, measurement of dose rates, interpretation of space images for a few time intervals (before and after flood event) with the following evaluation of spatial changes in deposition for different floodplain sections. In addition, results of quantitative assessment of sedimentation rates and soil radionuclide contamination were applied for understanding the effect of extreme flood on alluvial soils of the different sections. It was established that the maximum sedimentation rates (20-50 cm/event) occurred in the middle part of the lower reach of the Niida River and in some locations of the upper reaches. Dose rates had reduced considerably for all the areas with high sedimentation because the top soil layers with high radionuclide contamination were buried under fresh sediments produced mostly due to bank erosion and mass movements.

  14. Arsenic in groundwater of the Paraiba do Sul delta, Brazil: An atmospheric source?

    PubMed

    Mirlean, N; Baisch, P; Diniz, D

    2014-06-01

    High concentrations of arsenic (>50μg L(-1)) have been detected for the first time in groundwater of the wave-dominated Paraiba do Sul delta, Brazil. The deltaic shallow groundwater aquifer is enriched in arsenic fixed by authigenic sulfides. A study of palynomorphs confirmed that aquifer sediments were formed in inter-dune lakes/swamps lately covered by eolian sands. The organic sediments of contemporaneous inter-dune lake/swamp contain very high concentration of As: up to 180mg kg(-1) and 163μg L(-1) in dry gyttja material and interstitial water, respectively. The As in recent lake/swamp sediments is retained by iron hydroxides in upper and probably by sulfides in lower layers. In the absence of connection of inter-dune lakes/swamps with fluvial currents, the atmospheric input of As could be considered as the principal source in sediments. The calculation demonstrates the possibility of high concentrations of As accumulation in sediments of inter-dune lakes/swamps from atmospheric precipitations within several centuries before they will be covered by eolian sands and turned into shallow aquifer. Considering the commonalities of wave-dominated delta formations, we can predict more prevalent As accumulation in delta plain groundwater. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Viral activities and life cycles in deep subseafloor sediments.

    PubMed

    Engelhardt, Tim; Orsi, William D; Jørgensen, Bo Barker

    2015-12-01

    Viruses are highly abundant in marine subsurface sediments and can even exceed the number of prokaryotes. However, their activity and quantitative impact on microbial populations are still poorly understood. Here, we use gene expression data from published continental margin subseafloor metatranscriptomes to qualitatively assess viral diversity and activity in sediments up to 159 metres below seafloor (mbsf). Mining of the metatranscriptomic data revealed 4651 representative viral homologues (RVHs), representing 2.2% of all metatranscriptome sequence reads, which have close translated homology (average 77%, range 60-97% amino acid identity) to viral proteins. Archaea-infecting RVHs are exclusively detected in the upper 30 mbsf, whereas RVHs for filamentous inoviruses predominate in the deepest sediment layers. RVHs indicative of lysogenic phage-host interactions and lytic activity, notably cell lysis, are detected at all analysed depths and suggest a dynamic virus-host association in the marine deep biosphere studied here. Ongoing lytic viral activity is further indicated by the expression of clustered, regularly interspaced, short palindromic repeat-associated cascade genes involved in cellular defence against viral attacks. The data indicate the activity of viruses in subsurface sediment of the Peruvian margin and suggest that viruses indeed cause cell mortality and may play an important role in the turnover of subseafloor microbial biomass. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Perturbation of seafloor bacterial community structure by drilling waste discharge.

    PubMed

    Nguyen, Tan T; Cochrane, Sabine K J; Landfald, Bjarne

    2018-04-01

    Offshore drilling operations result in the generation of drill cuttings and localized smothering of the benthic habitats. This study explores bacterial community changes in the in the upper layers of the seafloor resulting from an exploratory drilling operation at 1400m water depth on the Barents Sea continental slope. Significant restructurings of the sediment microbiota were restricted to the sampling sites notably affected by the drilling waste discharge, i.e. at 30m and 50m distances from the drilling location, and to the upper 2cm of the seafloor. Three bacterial groups, the orders Clostridiales and Desulfuromonadales and the class Mollicutes, were almost exclusively confined to the upper two centimeters at 30m distance, thereby corroborating an observed increase in anaerobicity inflicted by the drilling waste deposition. The potential of these phylogenetic groups as microbial bioindicators of the spatial extent and persistence of drilling waste discharge should be further explored. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Distribution and assessment of sediment toxicity in Tamaki Estuary, Auckland, New Zealand

    NASA Astrophysics Data System (ADS)

    Abrahim, G. M. S.; Parker, R. J.; Nichol, S. L.

    2007-07-01

    Heavy metal levels in surface sediments from Tamaki Estuary demonstrate significant up estuary increases in Cu, Pb, Zn, Cd and mud concentrations. Increased metal levels towards the head of the estuary are linked to local catchment sources reflecting the historical development, industrialisation and urbanisation of catchment areas surrounding the upper estuary. The relatively narrow constriction in the middle estuary (Panmure area), makes it susceptible to accumulation of upper estuary pollutants, since the constriction reduces circulation and extends the time required for fine waterborne sediments in the upper estuary to exchange with fresh coastal water. As a result fine fraction sediments trapped in the upper estuary facilitate capture and retention of pollutants at the head of the estuary. The increase in sandy mud poor sediments towards the mouth of the estuary is associated with generally low metal concentrations. The estuary’s geomorphic shape with a mid estuary constriction, sediment texture and mineralogy and catchment history are significant factors in understanding the overall spatial distribution of contaminants in the estuary. Bulk concentration values for Cu, Pb, Zn, and Cd in all the studied surface samples occur below ANZECC ISQG-H toxicity values. Cd and Cu concentrations are also below the ISQG-L toxicity levels for these elements. However, Pb and Zn concentrations do exceed the ISQG-L values in some of the surface bulk samples in the upper estuary proximal to long established sources of catchment pollution.

  18. Sedimentation History Of Halfway Creek Marsh, Upper Mississippi River National Wildlife And Fish Refuge, Wisconsin, 1846-2006. Scientific Investigations Report 2007–5209

    EPA Science Inventory

    The history of overbank sedimentation in the vicinity of Halfway Creek Marsh near La Crosse, Wisconsin, was examined during 2005-06 by the U.S. Geological Survey and University of Wisconsin-Madison as part of a broader study of sediment and nutrient loadings to the Upper Mississi...

  19. Rapid fluctuations in the northern Baltic Sea H2S layer

    NASA Astrophysics Data System (ADS)

    Kankaanpää, Harri T.; Virtasalo, Joonas J.

    2017-12-01

    Hydrogen sulfide (H2S) is linked to water quality deterioration in the Baltic Sea, with widespread seafloor hypoxia. We examined the vertical and temporal variability of in situ [H2S], oxygen concentration ([O2]), temperature (T) and pH at weekly, hourly and minute intervals at 13 locations in the western Gulf of Finland in 2013-2014. The main target was the 60-100 m water depth range, containing 3.2-290 μM O2 and 6.3-22.6 μM H2S. Where gas was detected by acoustic surveys, the structure of the H2S layer was more complex compared to stations devoid of gas. Local minima and maxima in pH frequently occurred near the H2S upper boundary (redox transition zone). Except for the homogeneous, tranquil zone above the seafloor at some stations, substantial rapid changes in hydrographic conditions were common. Typically, a layer of marked temporal T variability was present atop or within the topmost H2S layers. The largest temporal changes over a weekly period were - 0.44 °C/- 10.8 μM H2S/- 0.12 pH units (at seafloor level), + 0.18 °C/+7.9 μM H2S between casts (1 h) and + 0.03 °C/- 2.5 μM H2S per minute (high resolution logging). Abrupt [H2S] changes were recorded at two stations with sediments containing free gas. The T and [H2S] changes were synchronous at several layers, reflecting water movement. We conclude that rapid changes occur in hydrographic conditions in the near-bottom H2S layer in the northern Baltic Sea, especially at locations where free gas is present in the underlying sediments.

  20. Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Mukhopadhyay, Sagarika; Kumar, Naresh; Baidya, P. R.

    2018-01-01

    Surface waves generated by earthquakes that occurred near Sumatra, Andaman-Nicobar Island chain and Sunda arc are used to estimate crustal and upper mantle S wave velocity structure of Bay of Bengal. Records of these seismic events at various stations located along the eastern coast of India and a few stations in the north eastern part of India are selected for such analysis. These stations lie within regional distance of the selected earthquakes. The selected events are shallow focused with magnitude greater than 5.5. Data of 65, 37, 36, 53 and 36 events recorded at Shillong, Bokaro, Visakhapatnam, Chennai and Trivandrum stations respectively are used for this purpose. The ray paths from the earthquake source to the recording stations cover different parts of the Bay of Bengal. Multiple Filtering Technique (MFT) is applied to compute the group velocities of surface waves from the available data. The dispersion curves thus obtained for this data set are within the period range of 15-120 s. Joint inversion of Rayleigh and Love wave group velocity is carried out to obtain the subsurface information in terms of variation of S wave velocity with depth. The estimated S wave velocity at a given depth and layer thickness can be considered to be an average value for the entire path covered by the corresponding ray paths. However, we observe variation in the value of S wave velocity and layer thickness from data recorded at different stations, indicating lateral variation in these two parameters. Thick deposition of sediments is observed along the paths followed by surface waves to Shillong and Bokaro stations. Sediment thickness keeps on decreasing as the surface wave paths move further south. Based on velocity variation the sedimentary layer is further divided in to three parts; on top lay unconsolidated sediment, underlain by consolidated sediment. Below this lies a layer which we consider as meta-sediments. The thickness and velocity of these layers decrease from north to south. The crustal material has higher velocity at the southern part compared to that at the northern part of Bay of Bengal indicating that it changes from more oceanic type in the southern part of the Bay to more continental type to its north. Both Moho and lithosphere - asthenosphere boundary (LAB) dips gently towards north. Thicknesses of both lithosphere and asthenosphere also increase in the same direction. The mantle structure shows complex variation from south to north indicating possible effect of repeated changes in type of tectonic activity in the Bay of Bengal.

  1. Paleoseismic events inferred from marine seismogenic turbidites of the eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Okutsu, N.; Ashi, J.; Omura, A.; Yamaguchi, A.; Suganuma, Y.; Kanamatsu, T.; Murayama, M.

    2016-12-01

    Paleoseismology using marine seismogenic turbidites is a developing field especially in subduction margins. However, very fine-grained turbidites are difficult to distinguish from hemipelagic mud. The primary focus of this study is to understand the characteristics of the muddy turbidites. The second focus is to discuss the muddy turbidites distributions and their ages from a longer sediment core, and understand the paleoseismic records of eastern Nankai Trough, Japan. The samples used in this study include multiple cores and a piston core which were collected from the sedimentary basin southwest off Kii Peninsula during the R/V Shinsei Maru KS-14-8 cruise. The sampling site is located at the ENE-WSW elongated basin between the accretionary prism and the forearc basin off Kumano without terrestrial sediment supply. The basin exhibits a terminal basin that captures all sediments supplied from outside. From the multiple core samples, the Cs-137 and Pb- 210 concentration distribution indicates that the muddy sediment layer in the upper 17 cm was formed from the 2004 off the Kii Peninsula earthquake. Visual observation and X-ray CT scans were conducted alongside other measurements for anisotropy of magnetic susceptibility (AMS), paleomagnetism, rock magnetism, electrical resistivity, and X-ray fluorescence core scanning (XRF). Muddy seismogenic turbidites associated with the 2004 off the Kii Peninsula earthquake have thick homogeneous clay layer above the silty lamination. The magnetic susceptibility decreases upwards in the lamination. This specific feature is thought to have formed as the muddy turbiditity current slowly decelerated and slowly settled down the slope. From the results of XRF core scanning, Ca and Fe have a peak at basement of turbidites, and decrease upwards. Ca is thought to correspond to amount of the foraminiferas. In piston core, we observed the same sedimentary and magnetic characteristics as the multiple cores. Based on stratigraphic information from volcanic ash and radiocarbon age of the foraminifera, intercalation pattern of muddy turbidite layers almost consistent with the known past earthquake recurrence times in the Nankai subduction margin. Reversed age recognized beneath the thick turbidite layer suggests reworking of landslide deposits probably due to the strong shaking.

  2. Discriminating Sediment Supply versus Accommodation Controls on Late Cretaceous Foreland Basin Stratigraphic Architecture in the Book Cliffs, Utah using Detrital Zircon Double Dating

    NASA Astrophysics Data System (ADS)

    Bartschi, N.; Saylor, J. E.

    2016-12-01

    Middle to late Campanian strata of the Book Cliffs, Utah record the Late Cretaceous deposition of three clastic wedges in the North American Cordilleran foreland basin east of the Sevier thrust-belt. Variations in wedge geometries provide an opportunity to evaluate the effects of sediment supply versus accommodation on foreland basin stratal architecture. There is a significant increase in eastward progradation rate from the Lower to the Upper Castlegate Sandstone. However, the progradation rate decreases in the overlying Bluecastle and Price River formations, as well as the laterally equivalent Farrer and Tuscher formations. Rapid progradation during Upper Castlegate deposition may be caused by increased sediment supply from either rapid exhumation of the Sevier thrust-belt or introduction of a new sediment source. Alternatively, reduced accommodation within the proximal foreland basin from uplifts associated with Laramide deformation, or a transition from flexural to dynamic subsidence, could produce the observed rapid wedge progradation. Changes in sediment provenance and source-area exhumation rate can be identified using a combination of detrital zircon U-Pb geochronology and (U-Th)/He thermochronology. Quantitative comparisons between collected samples and published provenance data indicates an upsection increase in a new sediment source, revealing a significant overall shift in provenance between wedge boundaries. This change in provenance is coupled by an upsection decrease in lag time between the Lower and Upper Castlegate, consistent with an increase in exhumation rate. Conversely, there is no change in lag time between the Upper Castlegate and overlying Price River Formation, suggesting a relatively constant exhumation rate. Near-zero lag times during the Upper Castlegate is consistent with rapid exhumation associated with increased thrusting of the Sevier thrust-belt. Therefore, progradation of the Upper Castlegate can be attributed to an increase in sediment supply due to both rapid exhumation of the Sevier thrust-belt and introduction of a new sediment source. However, the data do not rule out the potential influence of reduced accommodation associated with early Laramide deformation during Upper Castlegate deposition.

  3. Assessment of heavy metal contamination in the sediments of Nansihu Lake Catchment, China.

    PubMed

    Liu, Enfeng; Shen, Ji; Yang, Liyuan; Zhang, Enlou; Meng, Xianghua; Wang, Jianjun

    2010-02-01

    At present, anthropogenic contribution of heavy metals far exceeds natural input in some aquatic sediment, but the proportions are difficult to differentiate due to the changes in sediment characters. In this paper, the metal (Al, Fe, K, Mg, Ca, Cr, Cu, Ni, and Zn) concentrations, grain size, and total organic carbon (TOC) content in the surface and core sediments of Nansihu Lake Catchment (the open lake and six inflow rivers) were determined. The chemical speciations of the metals (Al, Fe, Cr, Cu, Ni, and Zn) in the surface sediments were also analyzed. Approaches of factor analysis, normalized enrichment factor (EF) and the new non-residual fractions enrichment factor (K(NRF)) were used to differentiate the sources of the metals in the sediments, from detrital clastic debris or anthropogenic input, and to quantify the anthropogenic contamination. The results indicate that natural processes were more dominant in concentrating the metals in the surface and core sediments of the open lake. High concentration of Ca and deficiency of other metals in the upper layers of the sediment core were attributed to the input of carbonate minerals in the catchment with increasing human activities since 1980s. High TOC content magnified the deficiency of the metals. Nevertheless, the EF and K(NRF) both reveal moderate to significant anthropogenic contamination of Cr, Cu, Ni, and Zn in the surface sediments of Laoyun River and the estuary and Cr in the surface sediments of Baima River. The proportion of non-residual fractions (acid soluble, reducible, and oxidizable fractions) of Cr, Cu, Ni, and Zn in the contaminated sediments increased to 37-99% from the background levels less than 30%.

  4. Spatial and temporal trends in poly- and per-fluorinated compounds in the Laurentian Great Lakes Erie, Ontario and St. Clair.

    PubMed

    Codling, Garry; Sturchio, Neil C; Rockne, Karl J; Li, An; Peng, H; Tse, Timothy J; Jones, Paul D; Giesy, John P

    2018-06-01

    The temporal and spatial trends in sediment of 22 poly- and perfluorinated (PFAS) compounds were investigated in the southern Great Lakes Erie and Ontario as well as Lake St. Clair. Surface concentrations measured by Ponar grab samples indicated a trend for greater concentrations near to urban sites. Mean concentrations ∑ 22 PFAS were 15.6, 18.2 and 19 ng g -1 dm for Lakes St. Clair, Erie and Ontario, respectively. Perfluoro-n-butanoic acid (PFBA) and Perfluoro-n-hexanoic acid (PFHxA) were frequently determined in surface sediment and upper core samples indicating a shift in use patterns. Where PFBA was identified it was at relatively great concentrations typically >10 ng g -1 dm. However as PFBA and PFHxA are less likely to bind to sediment they may be indicative of pore water concentrations Sedimentation rates between Lake Erie and Lake Ontario differ greatly with greater rates observed in Lake Erie. In Lake Ontario, in general concentrations of PFAS observed in core samples closely follow the increase in use along with an observable change due to regulation implementation in the 1970s for water protection. However some of the more water soluble PFAS were observed in deeper core layers than the time of production could account for, indicating potential diffusion within the sediment. Given the greater sedimentation rates in Lake Erie, it was hoped to observe in greater resolution changes since the mid-1990s. However, though some decrease was observed at some locations the results are not clear. Many cores in Lake Erie had clearly observable gas voids, indicative of gas ebullition activity due to biogenic production, there were also observable mussel beds that could indicate mixing by bioturbation of core layers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    USGS Publications Warehouse

    Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.

    2005-01-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an inexpensive way to develop a roadmap for understanding sediment dynamics at a watershed scale.

  6. Occurrence of Quaternary turbidite deposits in the central South China Sea: Response to global sea-level changes

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Zhang, X.; Christophe, C.; Peleo-Alampay, A.; Guballa, J. D. S.; Li, P.; Liu, C.

    2016-12-01

    Terrigenous turbidite layers frequently occur at the upper 150-m-thick sedimentary sequence of Hole U1431D (15º22.54'N, 117 º00.00'E, 4240.5 m water depth), International Ocean Discovery Program (IODP) Expedition 349, near the relict spreading ridge in the central South China Sea. This study implies visual statistics combined with grain size, clay mineralogy, and Nd-Sr isotope analyses to reconstruct the occurrence of these turbidite layers. The age-model of combined calcareous nannofossils, planktonic foraminifers, and paleomagnetism suggests that the sedimentary sequence spans the entire Quaternary with an age of 2.6 Ma at the depth of 150 mcd below the seafloor. Our results show that the turbidite deposits are dominated by silt with sandy silt and silty clay, poorly sorted, and grading upward with erosion base. The occurrence of turbidite layers are highly frequent with about 3.06 layers per meter and an average thickness of 14.64 cm per layer above 96 mcd ( 1.6 Ma), while the lower part turbudite layers are less frequently developed with 1.16 layers per meter and an average thickness of 5.67 cm. Provenance analysis indicates that Taiwan, about 900 km northward to the studied site, is the major source for these terrigenous sediments, implying the long run-out turbidity current activity over the very low-gradient deep-sea plain of the South China Sea. The frequency of the turbidite layer occurrence is well correlated to the Quaternary global sea-level change history, with the high frequency occurred during the lower sea-level stands. Our study suggests that the glacial-interglacial-scale sea-level change has controlled terrigenous sediment input from Taiwan and the northern shelf of the South China Sea during the Quaternary. The increase of turbidite layer frequency since 1.6 Ma in the central South China Sea could be triggered by the enlarged amplitude of sea-level change.

  7. Regional Sediment Management Studies of Matagorda Ship Channel and Matagorda Bay System, Texas

    DTIC Science & Technology

    2013-08-01

    types of sediment, as there is more silt and clay (cohesive) material in the Lavaca Bay and upper Matagorda Bay and sandy (non- cohesive) sediment in the...Sediment varies from silt to clay in the upper and mid bays and sandy material in the lower bay. 2.5 Dredging History The SWG maintains the deep...diameter  clay mineralogy  rate of deformation (shear rate)  percentage of organic material  water chemistry (especially pH, salinity, etc

  8. Drilling, construction, geophysical log data, and lithologic log for boreholes USGS 142 and USGS 142A, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Hodges, Mary K.V.; Schusler, Kyle; Mudge, Christopher

    2017-07-27

    Starting in 2014, the U.S. Geological Survey in cooperation with the U.S. Department of Energy, drilled and constructed boreholes USGS 142 and USGS 142A for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole USGS 142 initially was cored to collect rock and sediment core, then re-drilled to complete construction as a screened water-level monitoring well. Borehole USGS 142A was drilled and constructed as a monitoring well after construction problems with borehole USGS 142 prevented access to upper 100 feet (ft) of the aquifer. Boreholes USGS 142 and USGS 142A are separated by about 30 ft and have similar geology and hydrologic characteristics. Groundwater was first measured near 530 feet below land surface (ft BLS) at both borehole locations. Water levels measured through piezometers, separated by almost 1,200 ft, in borehole USGS 142 indicate upward hydraulic gradients at this location. Following construction and data collection, screened water-level access lines were placed in boreholes USGS 142 and USGS 142A to allow for recurring water level measurements.Borehole USGS 142 was cored continuously, starting at the first basalt contact (about 4.9 ft BLS) to a depth of 1,880 ft BLS. Excluding surface sediment, recovery of basalt, rhyolite, and sediment core at borehole USGS 142 was approximately 89 percent or 1,666 ft of total core recovered. Based on visual inspection of core and geophysical data, material examined from 4.9 to 1,880 ft BLS in borehole USGS 142 consists of approximately 45 basalt flows, 16 significant sediment and (or) sedimentary rock layers, and rhyolite welded tuff. Rhyolite was encountered at approximately 1,396 ft BLS. Sediment layers comprise a large percentage of the borehole between 739 and 1,396 ft BLS with grain sizes ranging from clay and silt to cobble size. Sedimentary rock layers had calcite cement. Basalt flows ranged in thickness from about 2 to 100 ft and varied from highly fractured to dense, and ranged from massive to diktytaxitic to scoriaceous, in texture.Geophysical logs were collected on completion of drilling at boreholes USGS 142 and USGS 142A. Geophysical logs were examined with available core material to describe basalt, sediment and sedimentary rock layers, and rhyolite. Natural gamma logs were used to confirm sediment layer thickness and location; neutron logs were used to examine basalt flow units and changes in hydrogen content; gamma-gamma density logs were used to describe general changes in rock properties; and temperature logs were used to understand hydraulic gradients for deeper sections of borehole USGS 142. Gyroscopic deviation was measured to record deviation from true vertical at all depths in boreholes USGS 142 and USGS 142A.

  9. Sediments from the Boxing Day tsunami on the coasts of southeastern India and Kenya

    NASA Astrophysics Data System (ADS)

    Weiss, R.; Bahlburg, H.

    2006-12-01

    On the Boxing Day 2004, the world community experienced a catastrophic tsunami in the Indian Ocean and could also saw how unprepared and unaware countries along the Indian ocean were. Beyond the tragedy of the tremendous loss of lives, the result of this event is an opportunity to study a global tsunami (mega-tsunami) in many regards. Here, we report on tsunami sediments left behind on beaches at the coast of Tamil Nadu (India) and on beaches between Malindi and Lamu (Kenya). Characteristic debris accumulations on the beach surface at Tamil Nadu (India) showed the impact of three tsunami waves. In this area, the tsunami climbed ~5 m up the beach; the last traces of a tsunami wave were found ~580 m away from the shoreline. Palm trees indicated an overland flow depth of 3.5 m, ~50 m from the shoreline. The tsunami deposits were up to 30 cm thick. They had an erosional base to the underlying soil and pre-tsunami beach deposits and were made up of moderately well- to well-sorted coarse and medium sand. The sand sheet thins inland, but without a decrease in grain size. Three distinct layers could be identified within the tsunami deposit. The lower one occasionally displayed cross-bedding with foresets dipping landward indicating deposition during run-up. The two upper layers were graded or parallel-laminated without indicators of flow directions. The boundaries between the different layers were marked by dark laminae, rich in heavy minerals. Also, the presence of benthic foraminifera indicates entrainment of sediment into the water column by the incoming tsunami wave in water depths less than 30 m. On beaches between Malindi and Lamu, Kenya, the traces of only one tsunami wave could be found, which attained a run-up height of about 3 m and traveled ~35 m inland with respect to the tidal stage at tsunami impact. The tsunami sediments consist of one layer of fine sand and are predominantly composed of heavy minerals supplied to the sea by nearby rivers. A slight fining-inland trend could be identified in the thinning- inland sand layer. Benthic foraminifera also indicate an entrainment of sediment by the incoming tsunami wave in a water depth less than 30 m, however there are indications that sediment might be entrained in a water depth of 80 m. The fact that only one sand layer occurs in Kenya as opposed to three at Tamil Nadu might lead to the conclusion that only one wave approached the Kenyan coast. This interpretation is misleading because the Kenyan coast is several thousand kilometers away from source area of the tsunami; the non-linear behavior of the incoming tsunami waves, especially the interaction with the nearby reef, may have resulted in the discovered sedimentologic evidence of the tsunami impact on the Kenyan coast.

  10. Trace metal in sediment from a deep-sea floor of Makassar Strait

    NASA Astrophysics Data System (ADS)

    Budianto, F.; Lestari

    2018-02-01

    Makassar Strait is located in the entrance of Indonesian Through Flow (ITF). However, the geochemistry of metals in sediment within Makassar Strait remains unexplored. The aim of this study was to measure the concentration of metals in sediment and to assess the sediment quality based on those metals concentrations. The sediment was collected from 632-4730 m in depth using giant piston corer on R/V Baruna Jaya VIII in December 2014. In each observation point, three layers of sediment were sub-sampled from the core i.e. surface layer (0-5 cm), middle layer (45-55 cm) and bottom layer. The metals were analyzed using acid digestion procedure followed by Atomic Absorption Spectrophotometer. The result indicated that the metal has spatially insignificant differences in sediment and the increase of metal concentration by depth was noticed. The Enrichment factor presented as no enrichment to minor enrichment of metal in sediment.

  11. Foraminiferal, lithic, and isotopic changes across four major unconformities at Deep Sea Drilling Project Site 548, Goban Spur: Chapter 14 in Initial reports of the Deep Sea Drilling Project

    USGS Publications Warehouse

    Poag, C. Wylie; Reynolds, Leslie A.; Mazzullo, James M.; Keigwin, Loyd D.

    1985-01-01

    Sediment samples taken at close intervals across four major unconformities (middle Miocene/upper Miocene, lower Oligocene/upper Oligocene, lower Eocene/upper Eocene, lower Paleocene/upper Paleocene) at DSDP-IPOD Site 548, Goban Spur, reveal that coeval biostratigraphic gaps, sediment discontinuities, and seismic unconformities coincide with postulated low stands of sea level. Foraminiferal, lithic, and isotopic analyses demonstrate that environments began to shift prior to periods of marine erosion, and that sedimentation resumed in the form of turbidites derived from nearby upper-slope sources. The unconformities appear to have developed where a water-mass boundary intersected the continental slope, rhythmically crossing the drill site in concert with sea-level rise and fall.

  12. Geoacoustic character, sedimentology and chronology of a cross-shelf Holocene sediment deposit off Cabo Frio, Brazil (southwest Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Mendoza, Ursula; Ayres Neto, Arthur; C. Abuchacra, Rodrigo; Fernandes Barbosa, Cátia; G. Figueiredo, Alberto; C. Gomes, Manoela; Belem, Andre L.; Capilla, Ramsés; S. Albuquerque, Ana Luiza

    2014-08-01

    The Cabo Frio region in the state of Rio de Janeiro, southeast coast of Brazil, is characterized by a local coastal upwelling system and converging littoral sediment transport systems that are deflected offshore at Cabo Frio, as a consequence of which a thick cross-shelf sediment deposit has developed over time. To investigate the evolution of this muddy deposit, geophysical, sedimentological and geochemical data from four sediment cores (3.8-4.1 m in length) recovered in water depths between 88 and 141 m were analyzed. The high-resolution seismic data show variable sediment thicknesses ranging from 1 to 20 m, comprising two sedimentary units separated by a high-impedance layer at a depth of about 10 m below the seafloor at the coring sites. According to the available age datings, the upper sedimentary unit is late Pleistocene to Holocene in age, whereas the lower unit (not dated) must, by implication, be entirely Pleistocene in age. The boomer-seismic reflection signal can be divided into three echo-types, namely transparent (inner shelf), stratified (middle shelf) and reflective (outer shelf), each type seemingly related to the local sediment composition. The upper 4 m of the upper sedimentary unit is dominated by silty sediment on the middle shelf, and by upward-fining sediments (silty sand to sandy silt) on the inner and outer shelf. The downcore trends of P-wave velocity, gamma-ray density and acoustic impedance are largely similar, but generally reversed to those of water and organic carbon contents. Total organic carbon contents increase with decreasing mean grain size, periodic fluctuations suggesting temporal changes in the regional hydrodynamics and primary productivity fuelled by the local upwelling system. The reconstruction of sedimentation rates in the course of the Holocene is based on 35 AMS age datings of organic material recovered from variable downcore depths. These range from a maximum of 13.3 cm/decade near the base of the inner shelf core (7.73-7.70 ka BP) to generally very low values (<0.11 cm/century) over the last thousand years in all cores. Over the last 6 ka there appear to have been three distinct sedimentation peaks, one between 6 and 5 ka BP, another between 4 and 3 ka PB, and one around 1 ka BP. Due to different time intervals between dates, not every peak is equally well resolved in all four cores. Based on the similar sedimentology of the inner and outer shelf cores, an essentially identical sedimentation model is proposed to have been active in both cases, albeit at different times. Thus, already during the last glacial maximum, alongshore sediment transport was deflected offshore by a change in shoreline orientation caused by the Cabo Frio structural high. The source of terrigenous material was probably a barrier-island complex that was subsequently displaced landward in the course of sea-level rise until it stabilized some 6.5 ka BP along the modern coast.

  13. Seismic evidence of Messinian salt in opposite margins of West Mediterranean

    NASA Astrophysics Data System (ADS)

    Mocnik, Arianna; Camerlenghi, Angelo; Del Ben, Anna; Geletti, Riccardo; Wardell, Nigel; Zgur, Fabrizio

    2015-04-01

    The post drift Messinian Salinity Crisis (MSC) affected the whole Mediterranean basin, with deposition of evaporitic sequences in the deep basins, in the lower continental slopes, and in several shallower marginal basins; usually, in the continental margins, the MSC originated noticeable erosional truncations that locally cause important hiatuses in the pre-Messinian sequences, covered by the Plio-Quaternary sediments. In this work we focus on the MSC seismic signature of two new seismic datasets acquired in 2010 (West Sardinia offshore) and in 2012 (within the Eurofleet project SALTFLU in the South Balearic continental margin and the northern Algero abyssal plain). The "Messinian trilogy" recognized in the West-Mediterranean abyssal plain, is characterized by different seismic facies: the Lower evaporite Unit (LU), the salt Mobile Unit (MU) and the Upper evaporite mainly gypsiferous Unit (UU). Both seismic datasets show the presence of the Messinian trilogy also if the LU is not always clearly interpretable due to the strong seismic signal absorption by the halite layers; the salt thickness of the MU is similar in both the basins as also the thickness and stratigraphy of the UU. The Upper Unit (UU) is made up of a well reflecting package of about 10 reflectors, partially deformed by salt tectonic and characterized by a thin transparent layer that we interpreted as salt sequence inner the shallower part of the UU. Below the stratified UU, the MU exhibits a transparent layer in the deep basin and also on the foot of the slope, where a negative reflector, related to the high interval velocity of salt, marks its base. The halokinetic processes are not homogeneously distributed in the region, forming a great number of diapirs on the foot of the slope (due to the pression of the slided sediments) and giant domes toward the deep basin (due to the higher thickness of the Plio-quaternary sediments). This distribution seems to be related to the amount of salt and of the sedimentary cover. During the MSC the margins of the West Mediterranean Sea seem to be involved in some tectonic events probably connected to reactivation of normal faults and to the fast variation of the water load related to sea level fluctuations. The absence of calibrating boreholes in the deep Mediterranean basins and the hard penetration of seismic energy below the evaporitic layers, represent a limit for the knowledge of the geological evolution of the basins; the interpretation of the presented datasets could be a contribution to the comprehension of the evaporitic deposition and early-stage salt deformation during the MSC in the Mediterranean sea.

  14. Sediment storage quantification and postglacial evolution of an inner-alpine sedimentary basin (Gradenmoos, Schober Mountains, Austria)

    NASA Astrophysics Data System (ADS)

    Götz, J.; Buckel, J.; Otto, J. C.; Schrott, L.

    2012-04-01

    Knickpoints in longitudinal valley profiles of alpine headwater catchments can be frequently assigned to the lithological and tectonical setting, to damming effects through large (rockfall) deposits, or to the impact of Pleistocene glaciations causing overdeepened basins. As a consequence various sedimentary sinks developed, which frequently interrupt sediment flux in alpine drainage basins. Today these locations may represent landscape archives documenting a sedimentary history of great value for the understanding of alpine landscape evolution. The glacially overdeepened Gradenmoos basin at 1920 m a.s.l. (an alpine lake mire with adjacent floodplain deposits and surrounding slope storage landforms; approx. 4.1 km2) is the most pronounced sink in the studied Gradenbach catchment (32.5 km2). The basin is completely filled up with sediments delivered by mainly fluvial processes, debris flows, and rock falls, it is assumed to be deglaciated since Egesen times and it is expected to archive a continuous stratigraphy of postglacial sedimentation. As the analysis of denudation-accumulation-systems is generally based on back-calculation of stored sediment volumes to a specific sediment delivering area, most reliable results will be consequently obtained (1) if sediment output of the system can be neglected for the investigated period of time, (2) if - due to spatial scale - sediment storage can be assessed quantitatively with a high level of accuracy, and (3) if the sediment contributing area can be clearly delimited. All three aspects are considered to be fulfilled to a high degree within the Gradenmoos basin. Sediment storage is quantified using geophysical methods, core drillings and GIS modelling whereas postglacial reconstruction is based on radiocarbon dating and palynological analyses. Subject to variable subsurface conditions, different geophysical methods were applied to detect bedrock depth. Electrical resistivity surveying (2D/3D) was used most extensively as it delivered detailed and realistic subsurface models with low residual errors in the fine grained and water saturated central and distal part of the basin. With a lower data density, ground penetrating radar and refraction seismic supplied bedrock depths underneath adjacent debris and talus slope deposits. Additionally extracted sediment cores (up to 22 m depth) yielded a detailed stratigraphic record of the basin comprising a basal till layer underneath lake sediments (sandy-silty, partly varved), a sandy matrix with several oxidised layers in the upper sections, and layers of peat towards the surface. As bedrock was reached several times, core drilling further enabled to calibrate resistivity models. On the base of geophysical derived bedrock points, the shape of the assumed bedrock basin was modelled using a thin-plate-spline interpolation. Sediment volumes were calculated by subtracting the bedrock model from a surface DEM derived from terrestrial laser scanning. Since sediment delivering areas can be clearly assigned to single storage landform volumes, denudation rates could be calculated in detail and related to sedimentation rates obtained by radiocarbon dating results. An integrated analysis of surface, subsurface and temporal information finally yielded a model of postglacial basin evolution which will be discussed in a paraglacial context. This presentation is supported by the EUROCORES programme TOPO-EUROPE of the European Science Foundation.

  15. Upper Cretaceous and lower Eocene conglomerates of Western Transverse Ranges: evidence for tectonic rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, W.E.; Krause, R.G.F.

    1989-04-01

    Stratigraphic and paleomagnetic studies have suggested that the western Transverse Ranges (WTR) microplate is allochthonous, and may have experienced translational and rotational motions. Present paleocurrent directions from the Upper Cretaceous Jalama Formation of the Santa Ynez Mountains are north-directed; these forearc sediments (Great Valley sequence) contain magmatic arc-derived conglomerate clasts from the Peninsular Ranges in southern California. Paleocurrents in the lower Eocene Juncal and Cozy Dell Formations are south-directed. This juxtaposition is best explained by 90/degrees/ or more of clockwise rotation of the WTR microplate, so that Upper Cretaceous forearc sediments sourced from the Peninsular Ranges magmatic arc were depositedmore » by west-directed currents. Eocene sediments were derived from an uplifted portion of the western basin margin and deposited by east-directed currents. Franciscan olistoliths in the Upper Cretaceous sediments indicate deposition adjacent to an accretionary wedge; conglomeratic clasts recycled from the Upper Cretaceous sequence, and radiolarian cherts and ophiolitic boulders in the Eocene strata indicate derivation from an outer accretionary ridge.« less

  16. Upper Washita River experimental watersheds: Sediment Database

    USDA-ARS?s Scientific Manuscript database

    Improving the scientific understanding of the effectiveness of watershed conservation practices and floodwater-retardation structures to control floods and soil erosion is one of the primary objectives for sediment studies in the upper Washita River Experimental Watersheds. This paper summarizes se...

  17. Use of fiber-optic DTS to investigate physical processes in thermohaline environments

    NASA Astrophysics Data System (ADS)

    Suarez, F. I.; Sarabia, A.; Silva, C.

    2014-12-01

    Salt-gradient solar ponds are artificial thermohaline environments that collect and store thermal energy for long time-periods. A solar pond consists of three distinctive zones: the upper convective zone, which is a thin layer of cooler, less salty water; the non-convective zone that has gradients in temperature and salinity; and the lower convective zone, a layer of high salinity brine where temperatures are the highest. The solar radiation that penetrates the upper layers of the pond reaches the lower convective zone and heats the high salinity brine, which does not rise beyond the lower convective zone because the effect of salinity on density is greater than the effect of temperature. The sediments beneath the pond are also heated due to the temperature increase in the lower convective zone, providing an additional volume for energy storage. To study the different physical processes occurring within a solar pond and its surroundings, we deployed a helicoidally wrapped distributed-temperature-sensing (DTS) system in a small-scale solar pond (1-m deep, 2.5-m long and 1.5-m width). In this installation, the pond is surrounded by a sandy soil that serves as an additional energy storage volume. The thermal profile is observed at a spatial sampling resolution of 1.1 cm (spatial resolution of 2.2. cm), a temporal resolution ranging from 15 s to 5 min, and a thermal resolution ranging from 0.05 to 0.5°C. These resolutions allow closing the energy balance and inferring physical processes such as double-diffusive convection, solar radiation absorption, and heat conduction through the sediments or through the non-convective zone. Independent thermal measurements are also being made to evaluate strengths and limitations of DTS systems in thermohaline environments, and to assess different calibration algorithms that have been proposed in the past.

  18. Temporal evolution of 137Cs, 237Np, and 239+240Pu and estimated vertical 239+240Pu export in the northwestern Mediterranean Sea.

    PubMed

    Bressac, M; Levy, I; Chamizo, E; La Rosa, J J; Povinec, P P; Gastaud, J; Oregioni, B

    2017-10-01

    The evolution of 137 Cs, 237 Np and 239+240 Pu at the DYFAMED station (NW Mediterranean) is discussed in relation to physical processes, downward fluxes of particles, and changes in the main input sources. The data set presented in this study represents the first complete 237 Np vertical profiles (0.12-0.27μBqL -1 ), and constitutes a baseline measurement to assess future changes. A similar behavior of Cs and Np has been evidenced, confirming that Np behaves conservatively. While the 137 Cs decrease has been driven by its radioactive decay, the vertical distribution of 237 Np has not substantially changed over the last decade. In the absence of recent major inputs, a homogenization of their vertical distribution occurred, partly due to deep convection events that became more intense during the last decade. In contrast, 239+240 Pu surface levels in the NW Mediterranean waters have fallen in the past four decades by a factor of 5. This decrease in surface has been balanced by higher concentrations in the deep-water layers. A first estimate of the downward 239+240 Pu fluxes in the NW Mediterranean Sea is proposed over more than two decades. This estimation, based on the DYFAMED sediment trap time-series data and published 239+240 Pu flux measurements, suggests that sinking particles have accounted for 60-90% of the upper layer (0-200m) Pu inventory loss over the period 1989-2013. The upper layer residence time of Pu is estimated to be ~28years, twice as long as the residence time estimated for the whole western Mediterranean (~15years). This difference highlights the slow removal of Pu in the open waters of the NW Mediterranean and confirms that most of the Pu removal occurs along the coastal margin where sedimentation rates are high. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. GPR studies over the tsunami affected Karaikal beach, Tamil Nadu, south India

    NASA Astrophysics Data System (ADS)

    Loveson, V. J.; Gujar, A. R.; Barnwal, R.; Khare, Richa; Rajamanickam, G. V.

    2014-08-01

    In this study, results of GPR profiling related to mapping of subsurface sedimentary layers at tsunami affected Karaikal beach are presented . A 400 MHz antenna was used for profiling along 262 m stretch of transect from beach to backshore areas with penetration of about 2.0 m depth (50 ns two-way travel time). The velocity analysis was carried out to estimate the depth information along the GPR profile. Based on the significant changes in the reflection amplitude, three different zones are marked and the upper zone is noticed with less moisture compared to other two (saturated) zones. The water table is noticed to vary from 0.5 to 0.75 m depth (12-15 ns) as moving away from the coastline. Buried erosional surface is observed at 1.5 m depth (40-42 ns), which represents the limit up to which the extreme event acted upon. In other words, it is the depth to which the tsunami sediments have been piled up to about 1.5 m thickness. Three field test pits were made along the transect and sedimentary sequences were recorded. The sand layers, especially, heavy mineral layers, recorded in the test pits indicate a positive correlation with the amplitude and velocity changes in the GPR profile. Such interpretation seems to be difficult in the middle zone due to its water saturation condition. But it is fairly clear in the lower zone located just below the erosional surface where the strata is comparatively more compact. The inferences from the GPR profile thus provide a lucid insight to the subsurface sediment sequences of the tsunami sediments in the Karaikal beach.

  20. Observations of sediment transport on the Amazon subaqueous delta

    USGS Publications Warehouse

    Sternberg, R.W.; Cacchione, D.A.; Paulson, B.; Kineke, G.C.; Drake, D.E.

    1996-01-01

    A 19-day time series of fluid, flow, and suspended-sediment characteristics in the benthic boundary layer is analyzed to identify major sedimentary processes active over the prodelta region of the Amazon subaqueous delta. Measurements were made by the benthic tripod GEOPROBE placed on the seabed in 65 m depth near the base of the deltaic foreset beds from 11 February to 3 March 1990, during the time of rising water and maximum sediment discharge of the Amazon River; and the observations included: hourly measurements of velocity and suspended-sediment concentration at four levels above the seabed; waves and tides; and seabed elevation. Results of the first 14-day period of the time series record indicate that sediment resuspension occurred as a result of tidal currents (91% of the time) and surface gravity waves (46% of the time). Observations of suspended sediment indicated that particle flux in this region is 0.4-2% of the flux measured on the adjacent topset deposits and is directed to the north and landward relative to the Brazilian coast (268??T). Fortnightly variability is strong, with particle fluxes during spring tides five times greater than during neap tides. On the 15th day of the data record, a rapid sedimentation event was documented in which 44 cm of sediment was deposited at the study site over a 14-h period. Evaluation of various mechanisms of mass sediment movement suggests that this event represents downslope migration of fluid muds from the upper foreset beds that were set in motion by boundary shear stresses generated by waves and currents. This transport mechanism appears to occur episodically and may represent a major source of sediment to the lower foreset-bottomset region of the subaqueous delta.

  1. Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH blowout

    DOE PAGES

    Brooks, Gregg R.; Larson, Rebekka A.; Schwing, Patrick T.; ...

    2015-07-14

    The objective of this study was to investigate the impacts of the Deepwater Horizon (DWH) oil discharge at the seafloor as recorded in bottom sediments of the DeSoto Canyon region in the northeastern Gulf of Mexico. Through a close coupling of sedimentological, geochemical, and biological approaches, multiple independent lines of evidence from 11 sites sampled in November/December 2010 revealed that the upper ~1 cm depth interval is distinct from underlying sediments and results indicate that particles originated at the sea surface. Consistent dissimilarities in grain size over the surficial ~1 cm of sediments correspond to excess 234Th depths, which indicatesmore » a lack of vertical mixing (bioturbation), suggesting the entire layer was deposited within a 4–5 month period. In addition, a time series from four deep-sea sites sampled up to three additional times over the following two years revealed that excess 234Th depths, accumulation rates, and 234Th inventories decreased rapidly, within a few to several months after initial coring. The interpretation of a rapid sedimentation pulse is corroborated by stratification in solid phase Mn, which is linked to diagenesis and redox change, and the dramatic decrease in benthic formanifera density that was recorded in surficial sediments. Results are consistent with a brief depositional pulse that was also reported in previous studies of sediments, and marine snow formation in surface waters closer to the wellhead during the summer and fall of 2010. Although sediment input from the Mississippi River and advective transport may influence sedimentation on the seafloor in the DeSoto Canyon region, we conclude based on multidisciplinary evidence that the sedimentation pulse in late 2010 is the product of marine snow formation and is likely linked to the DWH discharge.« less

  2. Sedimentation Pulse in the NE Gulf of Mexico following the 2010 DWH Blowout

    PubMed Central

    Brooks, Gregg R.; Larson, Rebekka A.; Schwing, Patrick T.; Romero, Isabel; Moore, Christopher; Reichart, Gert-Jan; Jilbert, Tom; Chanton, Jeff P.; Hastings, David W.; Overholt, Will A.; Marks, Kala P.; Kostka, Joel E.; Holmes, Charles W.; Hollander, David

    2015-01-01

    The objective of this study was to investigate the impacts of the Deepwater Horizon (DWH) oil discharge at the seafloor as recorded in bottom sediments of the DeSoto Canyon region in the northeastern Gulf of Mexico. Through a close coupling of sedimentological, geochemical, and biological approaches, multiple independent lines of evidence from 11 sites sampled in November/December 2010 revealed that the upper ~1 cm depth interval is distinct from underlying sediments and results indicate that particles originated at the sea surface. Consistent dissimilarities in grain size over the surficial ~1 cm of sediments correspond to excess 234Th depths, which indicates a lack of vertical mixing (bioturbation), suggesting the entire layer was deposited within a 4–5 month period. Further, a time series from four deep-sea sites sampled up to three additional times over the following two years revealed that excess 234Th depths, accumulation rates, and 234Th inventories decreased rapidly, within a few to several months after initial coring. The interpretation of a rapid sedimentation pulse is corroborated by stratification in solid phase Mn, which is linked to diagenesis and redox change, and the dramatic decrease in benthic formanifera density that was recorded in surficial sediments. Results are consistent with a brief depositional pulse that was also reported in previous studies of sediments, and marine snow formation in surface waters closer to the wellhead during the summer and fall of 2010. Although sediment input from the Mississippi River and advective transport may influence sedimentation on the seafloor in the DeSoto Canyon region, we conclude based on multidisciplinary evidence that the sedimentation pulse in late 2010 is the product of marine snow formation and is likely linked to the DWH discharge. PMID:26172639

  3. Feasibility of estimate sediment yield in the non-sediment monitoring station area - A case study of Alishan River watershed,Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, ChiaChi; Chan, HsunChuan; Jia, YaFei; Zhang, YaoXin

    2017-04-01

    Due to the steep topography, frail geology and concentrated rainfall in wet season, slope disaster occurred frequently in Taiwan. In addition, heavy rainfall induced landslides in upper watersheds. The sediment yield on the slopeland affects the sediment transport in the river. Sediment deposits on the river bed reduce the river cross section and change the flow direction. Furthermore, it generates risks to residents' lives and property in the downstream. The Taiwanese government has been devoting increasing efforts on the sedimentary management issues and on reduction in disaster occurrence. However, due to the limited information on the environmental conditions in the upper stream, it is difficult to set up the sedimentary monitoring equipment. This study used the upper stream of the Qingshuei River, the Alishan River, as a study area. In August 2009, Typhoon Morakot caused the sedimentation of midstream and downstream river courses in the Alishan River. Because there is no any sediment monitoring stations within the Alishan River watershed, the sediment yield values are hard to determine. The objective of this study is to establish a method to analyze the event-landslide sediment transport in the river on the upper watershed. This study numerically investigated the sediment transport in the Alishan River by using the KINEROS 2 model developed by the United States Department of Agriculture and the CCHE1D model developed by the National Center for Computational Hydroscience and Engineering. The simulated results represent the morphology changes in the Alishan River during the typhoon events. The results consist of a critical strategy reference for the sedimentary management for the Alishan River watershed.

  4. Determination of pre-mining geochemical conditions and paleoecology in the Animas River Watershed, Colorado

    USGS Publications Warehouse

    Church, S.E.; Fey, D.L.; Brouwers, E.M.; Holmes, C.W.; Blair, Robert

    1999-01-01

    Determination of the pre-mining geochemical baseline in bed sediments and the paleoecology in a watershed impacted by historical mining activity is of utmost importance in establishing watershed restoration goals. We have approached this problem in the Animas River watershed using geomorphologic mapping methods to identify old pre-mining sediments. A systematic evaluation of possible sites resulted in collection of a large number of samples of pre-mining sediments, overbank sediments, and fluvial tailings deposits from more than 50 sites throughout the watershed. Chemical analysis of individual stratigraphic layers has resulted in a chemical stratigraphy that can be tied to the historical record through geochronological and dendochronological studies at these sites. Preliminary analysis of geochemical data from more than 500 samples from this study, when coupled with both the historical and geochronological record, clearly show that there has been a major impact by historical mining activities on the geochemical record preserved in these fluvial bed sediments. Historical mining activity has resulted in a substantial increase in metals in the very fine sand to clay sized component of the bed sediment of the upper Animas River, and Cement and Mineral Creeks. Enrichment factors for metals in modern bed sediments, relative to the pre-mining sediments, range from a factor of 2 to 6 for arsenic, 4 to more than 10 for cadmium, 2 to more than 10 for lead, 2 to 5 for silver, and 2 to more than 15 for zinc. However, the pre-mining bed sediment geochemical baseline is high relative to crustal abundance levels of many orerelated metals and the watershed would readily be identified as a highly mineralized area suitable for mineral exploration if it had not been disturbed by historical mining activity. We infer from these data that the water chemistry in the streams was less acidic prior to historical mining activity in the watershed. Paleoentologic evidence does not indicate a healthy aquatic habitat in any of the stream reaches investigated above the confluence of the Animas River with Mineral Creek (fig. 1) prior to the impact of historical mining activity. The absence of paleoentologic remains is interpreted to reflect the poor preservation regime of the bed sediment materials sampled. The fluvial sediments sampled in this study represent higher energy environments than are conducive to the preservation of most aquatic organisms including fish remains. We interpret the sedimentological data to indicate that there has been substantial loss of riparian habitat in the upper Animas River above Howardsville as a result of historical mining activity.

  5. Upper Campanian suspected silicified seismite related to the Syrian Arc tectonic system in the Middle East

    NASA Astrophysics Data System (ADS)

    Lewy, Zeev

    2010-06-01

    The formation of the rare 'homogenous linear structures' in chert beds in the Phosphate Member of the Mishash Formation in central and southern Israel is reevaluated based on new samples from Har Omer, Arava Valley. These are of 4-6 cm thick chert beds in which the upper and lower surfaces form dense subparallel low ridges in contrast to the planar surfaces of other chert layers alternating with other lithologies. The ridges were suggested to have formed by advancing silicification fronts replacing the original sediment by microquartz without specifying the control on the ridged pattern and its regional orientation. One sample exhibits different color internal folds attesting to a multiple wavy mobilization of the silica-bearing liquid, probably composed of individual tiny crystallites of silicified calcareous micrite dispersed in seawater. This interpreted 'soup' of microquartz crystallites is corroborated by examples of a plastic deformation and mobilization in a muddy state of the siliceous Mishash Formation unconsolidated sediment. E-W dominant orientation of the ridges in central and southern Israel cannot be related to a simple diffusive diagenetic process and probably was initiated by N-S trending seismic surface waves during the Syrian Arc tectonic activity in the Middle East. Accordingly, this seismically induced sedimentary structure (seismite) formed through the vertical mobilization of silica-rich liquid replacing seawater in-between the sedimentary particles, advancing in a wavy upper and lower front triggered by a seismic event.

  6. Geological Development of the Izu-Bonin Forearc Since the Eocene Based on Biostratigraphic, Rock Magnetic, and Sediment Provenance Observations from IODP Expedition 352 Drill Cores

    NASA Astrophysics Data System (ADS)

    Petronotis, K. E.; Robertson, A.; Kutterolf, S.; Avery, A.; Baxter, A.; Schindlbeck, J. C.; Wang, K. L.; Acton, G.

    2016-12-01

    International Ocean Discovery Program (IODP) Expedition 352 recovered early Oligocene to recent sediments above Eocene igneous basement at 4 sites in the Izu-Bonin Forearc. The sites were selected to investigate the forearc region since subduction initiation in the Eocene, with Sites U1439 and U1442 being cored into the upper trench slope and Sites U1440 and U1441 into the lower trench slope. Postcruise studies of biostratigraphy, sediment chemistry, tephra composition and chronology and magnetic properties, along with observations from prior coring help constrain the regional geological development. Volcanic activity in the area, as inferred from its influence on sediment composition, has varied between long periods of activity and quiescence. Combined whole-rock sediment chemistry and tephra compositions suggest that during the Oligocene to earliest Miocene ( 30-22 Ma) tuffaceous input of predominantly dacitic composition was mainly derived from the intra-oceanic Izu-Bonin Arc. The early Miocene interval ( 22-15 Ma) lacks tuffaceous input, as supported by rock magnetic data. During this period, the forearc subsided beneath the carbonate compensation depth (CCD), as evidenced by radiolarian-bearing mud and metal-rich silty clay. This was followed by input of tephra with bimodal felsic and mafic compositions from the Izu-Bonin Arc from 15 to 5 Ma. Middle Miocene to Quaternary time was characterized by increased carbonate preservation, coupled with abundant, predominantly felsic tephra input, which is chemically indicative of a Japan continental arc source (Honshu), with additional chemically distinctive input from the Izu-Bonin Arc. Extending back to 32 Ma, tephra layers can be correlated between the upper-slope sites, extrapolated to the less well-dated lower-slope sites, and further correlated with onland Japanese tephra (Kutterolf et al., 2016; Goldschmidt Conference). Overall, the new results provide an improved understanding of the regional tectonic evolution.

  7. Sedimentology, stratigraphy and chronology of a decantation tank in the sewer network of Orléans (France).

    NASA Astrophysics Data System (ADS)

    Jacob, Jérémy; Thibault, Alexandre; Simonneau, Anaëlle; Le Milbeau, Claude; DiGiovanni, Christian; Sabatier, Pierre; Reyss, Jean-Louis; Ardito, Luigi; Morio, Cédric

    2017-04-01

    Current debates on the status of the Anthropocene convey geologists and palaeoenvironmentalists toward new spatial and temporal targets. One of the most emblematic socio-ecosystem of the Anthropocene is urban areas in which the dynamics of materials are mainly controlled by human activities. This brings unprecedented elemental, molecular and isotopic concentrations and distributions that lead Norra (2009) to propose a new geological sphere: the Astysphere. Here we propose that sediments accumulated in sewer networks can provide original, integrated, and multi-thematic archives for the recent history of cities by considering urban systems as any catchment where materials are produced, transported and sedimented. The study site is a decantation tank that collects stormwater and wastewater from the north of Orléans city, upstream wastewater plants in Orléans. Sediments accumulated since 1942 over 17 m depth and were never cleaned out until 2015. Two sedimentary cores of 70 (A) and 250 cm long (B) were collected before clean out and then a third of 150 cm (C) after. Sediments are organized into layers constituted by sands and gravels alternating with silts and organic layers. Sharp contacts between those layers indicate evenemential sedimentation, as expected in sewer networks. We formulate the hypothesis that organic/mineral alternations result from a seasonal dynamic. 7Be presence in topmost sample from core A confirms it was deposited within the last 6 months. In core C, only the upper half core, mostly mineral, displays significant 7Be levels whereas 7Be is absent from the lower half, which is mostly organic. This would confirm that our hypothesis of a seasonal alternation, with organic facies deposited during spring- summer and mineral facies deposited during fall-winter. 30 14C dates measured on cores A and B by postbomb method are logically distributed with depth, the most ancient (beginning of the eighties) being recorder at 2.5m depth. This study shows that sediments accumulated in a decantation tank constitute sedimentary archives comparable to more natural ones, thus allowing palaeoenvironmental reconstructions for the Anthropocene. We are currently examining the mineral and organic content of this archive to provide a detailed chronology of the history of man-made materials (drugs, plastics, pesticides…) in urban contexts.

  8. Deposits of Large-scale Mass Movements in the Sediments of Hallstätter See (Austria) - Recurrent Natural Hazards at a UNESCO World Cultural Heritage Site

    NASA Astrophysics Data System (ADS)

    Lauterbach, S.; Strasser, M.; Tjallingii, R.; Kowarik, K.; Reschreiter, H.; Spatl, C.; Brauer, A.

    2017-12-01

    The cultural importance of underground salt mining in Hallstatt (Austria), which is documented since the Middle Bronze Age, has been recognized already 20 years ago by assigning the status of a UNESCO World Cultural Heritage Site to the Hallstatt area, particularly because of the wealth of archaeological artefacts from the Early Iron Age. Local mining activity is well documented for prehistoric times and known to have been repeatedly affected by large-scale mass movements, for example at the end of the Bronze Age and during the Late Iron Age. In contrast, evidence of mining activity between the 5th and late 13th century AD is scarce, which could be related to socio-economic changes but also to continued mass movement activity, possibly biasing the archaeological record. Within the present study, a 15.63-m-long 14C-dated sediment core from Hallstätter See has been investigated with respect to the deposits of large-scale mass movements. Most of the lake sediment sequence consists of cm- to sub-mm-scale laminated carbonate mud with frequently intercalated small-scale turbidites, reflecting seasonally variable detrital input from the tributaries, but two major event layers clearly stand out. The upper one comprises a 2.45-m-thick basal mass transport deposit (containing folded laminated sediments, homogenized sediments with liquefaction structures, and coarse gravel) and an overlying 1.45-m-thick co-genetic turbidite. From the lower event layer only the topmost part of the turbiditic sequence with a (minimum) thickness of 1.49 m was recovered. Based on their sedimentological characteristics, both event layers are interpreted as the subaqueous continuation of large-scale mass movements, which occurred at ca. 1050 and 2300 cal. years BP and possibly originated from the rock walls along the western lake shore where also the salt mining area is located. This indicates that mass movement activity not only threatened prehistoric salt mining, but occurred also repeatedly during the Common Era, possibly explaining the lack of archaeological evidence of mining activity between the 5th and late 13th century AD. However, a direct spatial and temporal relationship between documented mass movements in the mining area and those recorded in the lake sediments cannot be proven at present and requires further investigations.

  9. Use of borehole geophysical logs for improved site characterization at Naval Weapons Industrial Reserve Plant, Dallas, Texas

    USGS Publications Warehouse

    Anaya, Roberto; Braun, Christopher L.; Kuniansky, Eve L.

    2000-01-01

    A shallow alluvial aquifer at the Naval Weapons Industrial Reserve Plant near Dallas, Texas, has been contaminated by organic solvents used in the fabrication and assembly of aircraft and aircraft parts. Natural gamma-ray and electromagnetic-induction log data collected during 1997 from 162 wells were integrated with existing lithologic and cone-penetrometer test log data to improve characterization of the subsurface alluvium at the site. The alluvium, consisting of mostly fine-grained, low-permeability sediments, was classified into low, intermediate, and high clay-content sediments on the basis of the gamma-ray logs. Low clay-content sediments were interpreted as being relatively permeable, whereas high clay-content sediments were interpreted as being relatively impermeable. Gamma-ray logs, cone-penetrometer test logs, and electromagnetic-induction logs were used to develop a series of intersecting sections to delineate the spatial distribution of low, intermediate, and high clay-content sediments and to delineate zones of potentially contaminated sediments. The sections indicate three major sedimentary units in the shallow alluvial aquifer at NWIRP. The lower unit consists of relatively permeable, low clay-content sediments and is absent over the southeastern and northwestern part of the site. Permeable zones in the complex, discontinuous middle unit are present mostly in the western part of the site. In the eastern and southeastern part of the site, the upper unit has been eroded away and replaced by fill material. Zones of potentially contaminated sediments are generally within the uppermost clay layer or fill material. In addition, the zones tend to be local occurrences.

  10. Accumulation rate and mixing of shelf sediments in the Monterey Bay National Marine Sanctuary

    USGS Publications Warehouse

    Lewis, R.C.; Coale, K.H.; Edwards, B.D.; Marot, M.; Douglas, J.N.; Burton, E.J.

    2002-01-01

    The distribution of excess 210Pb in 31 sediment cores was used to determine modern (last 100 yr) mass accumulation rates and the depth of sediment mixing on the continental shelf between Pacifica and Monterey, California, USA. Apparent mass accumulation rates average 0.27 g cm-2 yr-1 and range from 0.42 g cm-2 yr-1 to 0.12 g cm-2 yr-1. Accumulation rates were highest at mid-shelf water depths (60-100 m) adjacent to major rivers and near the head of the Ascension submarine canyon. Cores from water depths of less than 65 m had low, uniform 210Pb activity profiles and sandy textures. The uppermost 5-13 cm of 15 cores had uniform 210Pb activity profiles above a region of steadily decreasing 210Pb activity. This phenomenon was attributed to sediment mixing. The thickness of this upper layer of uniform 210Pb activity decreased southward from 13 cm, west of Pacifica, to less than 5 cm, near Monterey Canyon. This southward decrease may be attributed to shallower bioturbation in the southern study area. Integrated excess 210Pb activities were generally higher where sedimentation rates were high. They were also higher with increasing distance from major rivers. Thus, sedimentation rate alone does not explain the distribution of integrated excess 210Pb in this study area. Excess 210Pb in the seafloor is controlled by other factors such as sediment texture, the atmospheric deposition rate of 210Pb, and the residence time of sediment particles in the water column. ?? 2002 Elsevier Science B.V. All rights reserved.

  11. Mercury sedimentation in lakes in western Whatcom County, Washington, USA and its relation to local industrial and municipal atmospheric sources

    USGS Publications Warehouse

    Paulson, A.J.; Norton, D.

    2008-01-01

    Concentrations of mercury (Hg) were measured in six dated cores from four lakes in western Whatcom County, Washington, USA, that were at various bearings from a chlor-alkali plant, two municipal waste incinerators and a municipal sewage sludge incinerator. The importance of atmospheric emissions of Hg from these local municipal and industrial sources was evaluating by comparing the temporal trends in sedimentation of the lake cores with the emission history of each Hg species and by examining the geographical distribution of Hg sedimentation in relation to the region's primary wind pattern. Local municipal and industrial sources of atmospheric Hg were not responsible for the majority of the Hg in the upper layer of sediments of Whatcom County lakes because of (1) the significant enrichment of Hg in lake sediments prior to emissions of local industrial and municipal sources in 1964, (2) smaller increases in Hg concentrations occurred after 1964, (3) the similarity of maximum enrichments found in Whatcom County lakes to those in rural lakes around the world, (4) the inconsistency of the temporal trends in Hg sedimentation with the local emission history, and (5) the inconsistency of the geographic trends in Hg sedimentation with estimated deposition. Maximum enrichment ratios of Hg in lake sediments between 2 and 3 that are similar to rural areas in Alaska, Minnesota, and New England suggest that global sources of Hg were primarily responsible for increases of Hg in Whatcom County lakes beginning about 1900. ?? 2007 GovernmentEmployee: U.S. Government, Department of Interior, U.S. Geological Survey.

  12. Seasonal flux and assemblage composition of planktic foraminifers from a sediment-trap study in the northern Gulf of Mexico

    USGS Publications Warehouse

    Poore, Richard Z.; Spear, Jessica W.; Tedesco, Kathy A.

    2013-01-01

    Sediment-trap samples from the northern Gulf of Mexico reveal that Globorotalia truncatulinoides, Neogloboquadrina dutertrei, Pulleniatina spp. (includes P. obliquiloculata and P. finalis), and the Globorotalia menardii group (includes Gt. menardii, Gt. tumida, and Gt. ungulata) generally occur in cold months. Globigerinoides ruber (white and pink varieties) and Globigennoides sacculifer occur throughout the year. The seasonal occurrence of individual taxa of planktic foraminifers in the Gulf of Mexico have important differences with the seasonal occurrence of the same taxa observed in a 6-year sediment-trap dataset from the western Sargasso Sea. Thus information on the ecologic preferences of individual taxa determined in one region cannot necessarily be applied directly to another area. In the northern Gulf of Mexico 90% of the total flux of Globorotalia truncatulinoides tests to sediments occurs in January and February. Mg/Ca and d18Ο measurements indicate that nonencrusted forms of Gt. truncatulinoides calcify in the upper-surface-mixed zone. Thus, analyses of nonencrusted Gt. truncatulinoides in sediments of the northern Gulf of Mexico have potential for monitoring past conditions in the winter-surface-mixed layer. The relatively low overall abundance of Globigerinoides ruber (white) in sediment-trap samples is anomalous because Gs. ruber (white) is one of the most abundant foraminifers in>150 µm census data from northern Gulf of Mexico Holocene sediment core samples. Globigerinoides ruber (pink) is a relatively persistent and common component of the sediment-trap samples. Thus Gs. ruber (pink) has potential as a proxy for mean annual sea-surface temperature in the Gulf of Mexico

  13. Tectonic Impact on the Sedimentary Magnetic Record in Active Margin Settings

    NASA Astrophysics Data System (ADS)

    Riedinger, N.; Torres, M. E.; Solomon, E. A.

    2017-12-01

    Here we explore the impact of depositional and tectonic dynamics on sedimentary magnetic signals using samples collected during the Integrated Ocean Drilling Project (IODP) Expedition 334 off Costa Rica. This active margin system displays fast convergence rates, abundant seismicity, and subduction erosion, and thus allows us to study fluid flow responses to rapid episodes of uplift and subsidence in an erosional convergent margin - one of the main goals of the Costa Rica Seismogenesis Project (CRISP). The sediments at the middle slope site (Site U1378; 533 m water depth) vary strongly in their magnetic susceptibility and geochemical signals compared to the upper slope site (Site U1379; 139 m water depth). The more recent sediments at each site (upper 50 m) clearly show that Site U1378 experienced relative steady state conditions (with respect to pore water geochemistry), while at Site U1379 dynamic conditions lead to non-steady state geochemical profiles - and consequently to a differing magnetic susceptibility profile. These differences are most likely related to changes in methane flux and subsequent shifting of the sulfate-methane transition. Throughout the sediment column at Hole U1379C intervals showing a strong decrease in the magnetic susceptibility can be correlated with specific lithological horizons with abundant carbonate layers. Our data show that these layers are formed diagenetically, based on a depleted carbonate carbon isotope signal (up to -25‰) that is consistent with the pore water record. The carbonate layers not only caused a dilution in the magnetic mineral assemblages, but also point to a concurrent alteration process of iron oxides to iron sulfides. This is recorded in the sedimentary record as iron sulfide (pyrite) enrichments and their associated sulfur isotopic signature (δ34S; up to +6.3‰). These alterations can be tied to a location fluctuation of the sulfate-methane transition due to changes in the methane flux. The strong difference in the magnetic susceptibility records at the two sites can be linked to in situ diagenesis potentially caused by differences in their histories of subsidence and uplift. This highlights the importance of understanding both the tectonic and digenetic history of sedimentary settings prior the application of proxy tools such as magnetic susceptibility.

  14. The impact of periglacial cover beds on runoff generation in a small spring catchment, Ore Mountains

    NASA Astrophysics Data System (ADS)

    Heller, Katja; Hübner, Rico; Kleber, Arno

    2010-05-01

    The knowledge of hillslope processes is essential to improve pollutant research and flood prediction. Relic periglacial covers are widespread on slopes of the central European low mountain ranges. Cover beds are assumed to be an important control factor for subcutaneous water flow paths. Periglacial cover beds originated by solifluction, kryoturbation and accumulation of loess during Pleistocene times. Differences in bulk density, sediment type, as well as structure and rate of coarse clasts in the layers result in vertical disparity in hydraulic conductivity (anisotropy), leading to interflow. This hypothesis has been testing in an ongoing study in a small spring catchment (6 ha) in the eastern Ore Mountains, south-eastern Germany, since November 2007. The study area is underlain by gneiss and is formed as a slope hollow. The cover beds consist of a 3-layer complex with upper layer, intermediate layer and basal layer. Soil water tension within the layers is measured with 76 recording tensiometers. Electrical resistivity tomography was used to monitor the spatial dispersal of soil moisture. Results of hydrometrical measurements and of electrical resistivity surveys will be described and new findings on slope water dynamics will be presented.

  15. Benthic foraminiferal assemblage formation: Theory and observation for the European Arctic margin

    NASA Astrophysics Data System (ADS)

    Loubere, Paul; Rayray, Shan

    2016-09-01

    We use theory and observation to determine how benthic foraminiferal populations living in a range of sedimentary microenvironments are translated into fossil assemblages along the continental margin of the European Arctic. We examine downcore stained (cell tracker green and rose Bengal) and total species shell abundances through the sediment mixing (bioturbation) zone. This, in combination with porewater geochemical measurements, allows us to establish zones of production and destruction for species' shells, and deduce how the fossil record is being generated by the living community. For many taxa, shell production is high in the upper, oxic, sedimentary layer, but destruction in this zone is also high. Hence, contribution to the fossil record is biased to more infaunal populations and species. Taxa producing near, or below, the anoxic boundary of the sediments are particularly important to the developing fossil record of the fjord environment. We find that taxon relative and absolute abundances change continuously through the biologically active sediment profile. This has implications for reconstructing paleoenvironments using benthic foraminiferal assemblages, and potentially for the geochemistry of individual fossil taxa.

  16. Benthic foraminiferal assemblage formation: Theory and observation for the European Arctic Margin

    NASA Astrophysics Data System (ADS)

    Loubere, Paul; Rayray, Shan

    2016-07-01

    We use theory and observation to determine how benthic foraminiferal populations living in a range of sedimentary microenvironments are translated into fossil assemblages along the continental margin of the European Arctic. We examine downcore stained (cell tracker green and rose Bengal) and total species shell abundances through the sediment mixing (bioturbation) zone. This, in combination with porewater geochemical measurements, allows us to establish zones of production and destruction for species' shells, and deduce how the fossil record is being generated by the living community. For many taxa, shell production is high in the upper, oxic, sedimentary layer, but destruction in this zone is also high. Hence, contribution to the fossil record is biased to more infaunal populations and species. Taxa producing near, or below, the anoxic boundary of the sediments are particularly important to the developing fossil record of the fjord environment. We find that taxon relative and absolute abundances change continuously through the biologically active sediment profile. This has implications for reconstructing paleoenvironments using benthic foraminiferal assemblages, and potentially for the geochemistry of individual fossil taxa.

  17. DDTs and HCHs in sediment cores from the Tibetan Plateau.

    PubMed

    Cheng, Hairong; Lin, Tian; Zhang, Gan; Liu, Guoqing; Zhang, Weiling; Qi, Shihua; Jones, Kevin C; Zhang, Xuewen

    2014-01-01

    Sediment cores were collected from five critical regions in the Tibetan Plateau and were analysed for OCPs with the objective of examining the time trends and recycling of DDTs and HCHs in the cryogenic area. A concurrent increase of the DDT and HCH concentrations from the late 1980s in Lake Yamzho Yumco, Nam Co and Star Sea were observed. The increasing levels of DDE/DDTs (>0.4) suggested that DDT in the upper layers of the sediment cores may be recycled/"weathered" DDT. Regarding the acceleration of glacier retreat from the 1980s due to global warming, it is suggested that OCPs formerly trapped either in the snow/glacier or in the frozen soil land recently reclaimed in the processes of glacier retreat may have been flushed into the sedimentary basins. These findings demonstrate the potential impact of global warming on the recycling of POPs in the plateau cryosphere and indicate that the pristine Tibetan Plateau may serve as one of the key probes to the global trend of POPs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Sedimentation in Lake Onalaska, Navigation Pool 7, upper Mississippi River, since impoundment

    USGS Publications Warehouse

    Korschgen, C.E.; Jackson, G.A.; Muessig, L.F.; Southworth, D.C.

    1987-01-01

    Sediment accumulation was evaluated in Lake Onalaska, a 2800-ha backwater impoundment on the Upper Mississippi River. Computer programs were used to process fathometric charts and generate an extensive data set on water depth for the lake. Comparison of 1983 survey data with pre-impoundment (before 1937) data showed that Lake Onalaska had lost less than 10 percent of its original mean depth in the 46 years since impoundment. Previous estimates of sedimentation rates based on Cesium-137 sediment core analysis appear to have been too high. (DBO)

  19. Use of OSL dating to establish the stratigraphic framework of Quaternary eolian sediments, Anton scarp upper trench, Northeastern Colorado High Plains, USA

    USGS Publications Warehouse

    Mahan, S.A.; Noe, D.C.; McCalpin, J.P.

    2009-01-01

    This paper contains the results of the optically stimulated luminescence (OSL) dating used to establish stratigraphic ages and relationships of eolian sediments in a trench in northeastern Colorado, USA. This trench was located in the upper face of the Anton scarp, a major topographic lineament trending NW-SE for a distance of 135 km, in anticipation of intersecting near-surface faulting. The trench was 180 m long, 4.5-6.0 m deep, and exposed 22 m of stratigraphic section, most of which dipped gently west and was truncated by gulley channeling at the face of the scarp. No direct evidence of faulting was found in the upper trench. The stratigraphy from the trench was described, mapped and dated using OSL on quartz and potassium feldspar, and 14C obtained from woody material. OSL dating identified two upper loess units as Peoria Loess and Gilman Canyon Loess, deposited between 16 and 30 ka ago. The bottom layers of the trench were substantially older, giving OSL ages in excess of 100 ka. These older ages are interpreted as underestimates, owing to saturation of the fast component of OSL. Using OSL and 14C dating, we can constrain the erosion and down cutting of the scarp face as occurring between 16 and 5.7 ka. As the trenching investigation continues in other parts of the scarp face, the results of this preliminary study will be of importance in relating the ages of the strata that underlie different parts of the scarp, and in determining whether Quaternary faulting was a mechanism that contributed to the formation of this regional geomorphic feature.

  20. Heavy metal contamination of sediments in the upper connecting channels of the Great Lakes

    USGS Publications Warehouse

    Nichols, S. Jerrine; Manny, Bruce A.; Schloesser, Donald W.; Edsall, Thomas A.

    1991-01-01

    In 1985, sampling at 250 stations throughout the St. Marys, St. Clair, and Detroit rivers and Lake St. Clair — the connecting channels of the upper Great Lakes — revealed widespread metal contamination of the sediments. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, and zinc each exceeded U.S. Environmental Protection Agency sediment pollution guidelines at one or more stations throughout the study area. Sediments were polluted more frequently by copper, nickel, zinc, and lead than by cadmium, chromium, or mercury. Sediments with the highest concentrations of metals were found (in descending order) in the Detroit River, the St. Marys River, the St. Clair River, and Lake St. Clair. Although metal contamination of sediments was most common and sediment concentrations of metals were generally highest near industrial areas, substantial contamination of sediments by metals was present in sediment deposition areas up to 60 km from any known source of pollution.

  1. Subdivision of Holocene Baltic sea sediments by their physical properties [Gliederung holozaner ostseesedimente nach physikalischen Eigenschaften

    USGS Publications Warehouse

    Harff, Jan; Bohling, Geoffrey C.; Endler, R.; Davis, J.C.; Olea, R.A.

    1999-01-01

    The Holocene sediment sequence of a core taken within the centre of the Eastern Gotland Basin was subdivided into 12 lithostratigraphic units based on MSCL-data (sound velocity, wet bulk density, magnetic susceptibility) using a multivariate classification method. The lower 6 units embrace the sediments until the Litorina transgression, and the upper 6 units subdivide the brackish-marine Litorina- and post-Litorina sediments. The upper lithostratigraphic units reflect a change of anoxic (laminated) and oxic (non-laminated) sediments. By application of a numerical stratigraphic correlation method the zonation was extended laterally onto contiguous sediment cores within the central basin. Consequently the change of anoxic and oxic sediments can be used for a general lithostratigraphic subdivision of sediments of the Gotland Basin. A quantitative criterion based on the sediment-physical lithofacies is added to existing subdivisions of the Holocene in the Baltic Sea.

  2. Chemical contamination and physical characteristics of sediments in the upper Great Lakes connecting channels 1985

    USGS Publications Warehouse

    Bertram, Paul E.; Edsall, Thomas A.; Manny, Bruce A.; Nichols, Susan J.; Schloesser, Donald W.

    1991-01-01

    Contamination of sediments by toxic organic substances and heavy metals was widespread throughout the connecting channels of the upper Great Lakes in 1985. Sediments at 250 stations in the connecting channels were analyzed for total PCBs, oil and grease, phenols, total cyanide, total volatile solids, mercury, cadmium, chromium, cobalt, copper, lead, nickel, and zinc, and the results were evaluated according to U.S. EPA guidelines for polluted sediments. Sediments were most heavily contaminated near industrialized areas, although some areas more than 40 km downstream from known point sources of pollution were moderately contaminated by oil and metals.

  3. Mercury contamination from mine and natural sources in Harley Gulch, downstream from the Abbott and Turkey Run Mercury Mines, Lake County, California

    NASA Astrophysics Data System (ADS)

    Hothem, R. L.; Rytuba, J. J.; Goldstein, D.; Brussee, B.

    2011-12-01

    The Abbott and Turkey Run Mercury (Hg) mine area in central California has released Hg tailings into the Harley Gulch watershed since 1862. Harley Gulch flows into Cache Creek which is a significant source of Hg into San Francisco Bay Delta. Thermal mine water effluent emanating from the Turkey Run adit flows into the upper part of the watershed. Despite remediation efforts, Hg tailings and enriched sediment remain in the Harley Gulch wetlands and in the creek downstream from the mine area. Water, sediment, and biota have been sampled from below the mine area to 15 km downstream to the confluence with Cache Creek in order to assess the impact of Hg on water quality and biota. Two previously unrecognized natural sources of Hg in the watershed are connate groundwater with elevated levels of Hg, and biogenic sediment composed of phytoplankton that accumulates in the upper part of the watershed during the dry season. The connate groundwater source contains isotopically-heavy Mg-Ca-Cl-CO3-SO4 water that has elevated concentrations of Ba, W, Ti, and Hg. This water first enters Harley Gulch in the central part of the wetland immediately downstream from the mine area and continues to contribute water downstream for a distance of 1.5 km. It is both chemically and isotopically distinct from the thermal mine water effluent from the Turkey Run adit. The biogenic source consists of blooms of phytoplankton that accumulate to a thickness of up to 0.2 m. Phytoplankton have a large bioaccumulation factor of Hg and monomethyl mercury (MMeHg) that results in a high concentrations of Hg and MMeHg (Hg: 5-25 μg/g, MMeHg 5.2 ng/g) in the biogenic sediment. The tan biogenic sediment at the surface consists of living diatoms and below it is a layer of black reduced biogenic sediment consisting of diatom fragments with micron- to submicron-sized FeS, HgS, and barite grains. Sulfate-reducing bacteria reduce sulfate to sulfide in the pore waters of the biogenic sediment that reacts with dissolved Fe to form FeS. Hg released from the diatoms into the pore fluid reacts with sulfide to form micron- to submicron-sized particles of HgS. The decrease in sulfate concentration resulting from sulfate reduction results in precipitation of barite. The resulting biogenic sediment is composed primarily of diatoms with a minor component of CaCO3 and clay and is transported downstream during periods of high flow. Composites of aquatic invertebrates collected from the upper two sites of the Harley Gulch wetland included larval damselflies (Coenagrionidae), adult predaceous diving beetles (Dytiscidae), and larval water scavenger beetles (Hydrophilidae). The percentage of MMeHg was low in all samples, the concentrations of MMeHg (113 - 604 ng/g, wet mass) were moderate, and the total Hg concentrations were extremely high (1,240 - 9,940 ng/g). The concentrations of both MMeHg and Hg were lower at downstream sites in both damselflies and diving beetles compared with the wetlands and the areas where connate groundwater enters the creek in the upper part of the watershed. As with these biological taxa, concentrations of both Hg and MMeHg in water and sediment were lower at the downstream sites.

  4. Gas-controlled seafloor doming on Opouawe Bank, offshore New Zealand

    NASA Astrophysics Data System (ADS)

    Koch, Stephanie; Berndt, Christian; Bialas, Joerg; Haeckel, Matthias; Crutchley, Gareth; Papenberg, Cord; Klaeschen, Dirk; Greinert, Jens

    2015-04-01

    The process of gas accumulation and subsequent sediment doming appears to be a precursory process in the development of methane seep sites on Opouawe Bank and might be a common characteristic for gas seeps in general. Seabed domes appear as unimpressive topographic highs with diameters ranging from 10-1000 m and exhibit small vertical displacements and layer thickness in comparison to their width. The dome-like uplift of the sediments results from an increase in pore pressure caused by gas accumulation in near-seabed sediments. In this context sediment doming is widely discussed to be a precursor of pockmark formation. Our results suggest that by breaching of domed seafloor sediments a new seep site can develop and contrary to ongoing discussion does not necessarily lead to the formation of pockmarks. There are clear differences in individual gas migration structures that indicate a progression through different evolutionary stages, which range from channeled gas flow and associated seismic blanking, to gas trapping beneath relatively low-permeability horizons, and finally overpressure accumulation and doming. We present high resolution sub-bottom profiler (Parasound) and 2D multichannel seismic data from Opouawe Bank, an accretionary ridge at the Hikurangi Margin, offshore New Zealand's North Island. Beneath this bank, methane migrates along stratigraphic pathways from a maximum source depth of 1500-2100 mbsf (meter below seafloor) towards active cold seeps at the seafloor. We show that, in the shallow sediment of the upper 100 mbsf, this primary migration mechanism changes into a process of gas accumulation leading to sediment doming. Modeling the height of the gas column necessary to create different dome geometries, shows that doming due to gas accumulation is feasible and consistent with field observations. The well-stratified, sub-horizontal strata that exist beneath Opouawe Bank provide favorable conditions for this type of seep development because shallow sub-vertical gas migration is forced to traverse sedimentary layering in the absence of faults that might otherwise have provided more efficient gas migration pathways. Thus, gas has to generate its own migration pathways through the progressive process of doming and breaking through the strata. The data from offshore New Zealand document that shallow sediment doming does not have to be associated with seafloor pockmarks and that models in which fluid migration through soft sediments necessarily culminates in pockmark formations are not applicable everywhere.

  5. Updated Reference Model for Heat Generation in the Lithosphere

    NASA Astrophysics Data System (ADS)

    Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.

    2017-12-01

    Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.

  6. Characteristics and habitat of deep vs. shallow slow slip events

    NASA Astrophysics Data System (ADS)

    Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.

    2016-12-01

    Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.

  7. The Gale Crater Mound in a Regional Geologic Setting: Mapping and Probing Surrounding Outcrops for Areas Akin to the Central Mound at Gale

    NASA Technical Reports Server (NTRS)

    Korn, Lisa; Allen, Carlton

    2013-01-01

    There are several hypotheses on the origin of Gale Crater s central mound. These include ground water upwelling [1], aeolian, ice, volcanic [1-3], lacustrine [1-3], hydrothermal [1-3], and polar deposits [2]. The Mars Science Laboratory rover, Curiosity, landed in Gale Crater on August 6, 2012. It is currently analyzing samples along its traverse towards a channel and layered deposits that will provide insight into the sedimentary history of the crater [4]. Located at 5S, 138E, Gale is a 155km diameter, Late Noachian/Early Hesperian crater. It is situated along the southern highlands/northern lowlands dichotomy boundary and contains a central mound that rises approximately 5km from the crater floor [1]. The highest parts of Mt. Sharp are higher than the northern rim, but are roughly the same height as the southern rim. Mt. Sharp is divided into an upper mound and a lower mound, which are separated by an erosional unconformity [2]. The lower mound s sequences span the Late Noachian/Early Hesperian Epoch [1], while the upper mound s age is poorly constrained. The lower mound s sequences feature parallel beds of varying thickness, albedo, texture, and dip angle that are eroded into channels and yardangs [2]. The upper mound has finer layers at higher angles [1] with yardangs, serrated erosional patterns, and lobate features [3]. The lower mound also exhibits an upward progression of phyllosilicate to sulfate rich sediments, contrasting the upper mound s lack of hydrated minerals [4].

  8. Sedimentary conditions of Upper Permian volcano-clastic rocks of Ayan-Yrahskiy anticlinorium (Verhoyansk-Kolyma orogen)

    NASA Astrophysics Data System (ADS)

    Astakhova, Anna; Khardikov, Aleksandr

    2013-04-01

    Sedimentation conditions of upper Permian volcano-clastic rocks of Ayan-Yurakhsky anticlinorium are the reason of discussions between researchers. It is important to correctly solve this problem. Investigation allows us to conclude that upper Permian sediments was formed due to high rate deltaic sedimentation on shelf and continental slope of epicontinental sea basin. More than 45 outcrops of upper Permian sediments were described within Ayan-Yurakhsky anticlinorium. Termochemical and X-ray phase, lithological facies, stadial, paleogeographic and others were applied. Investigation allows to classify following types: tuffs, tuffites of andesites, andesi-dacites, sandstone tuffs, siltstone tuffs and claystone tuffs. Two facies were deliniated in the research area: 1) delta channel facies 2) epicontinental sea shelf edge and continental slope. Delta channel facies are located on the south-west part of Aian-Yrahskiy anticlinorium. It is composed of silty packsand and psammitic tuff-siltstone alternation and gravel-psammitic andesi-dacitic tuffute and tuff-breccia bands. Sediments have cross-bedding, through cross-bedding, curvilinear lamination structures. Facies occurred during high rate deltaic sedimentation on the shelf of epicontinental sea. Epicontinental sea shelf edge and continental slope facies are located on the south-west part. Sediments are represented by large thickness tuff-siltstone with tuff-sandstone, tuff-madstone, tuff, tuffite bands and lenses. Large number of submarine landslides sediments provide evidence that there was high angle sea floore environment. 30-50 m diametr eruption centers were described by authors during geological traverses. They are located in Kulu river basin. Their locations are limited by deep-seated pre-ore fault which extended along Ayan-Yurakhsky anticlinorium. U-Pb SHRIMP method showed that the average age of circons, taken from eruption centers, is Permian (256,3±3,7 ma). This fact confirms our emphasis that eruption centers were the centre of underwater effusive explosions which had been occurred in late Permian time. Gold ore deposits mainly localized in the south of Ayan-Yurakhsky anticlinorium and associated with upper Permian deltaic facies sediments. Taking into account lithological facies feature and volcanoclastic origin of sediments it is reasonable to suggest expelled-catagenesis model of gold mineralization. Gold was entered in sedimentary basin with piroclastic material. During catagenesis stage gold migrated from complex of shelf edge and continental slope to fan delta front complex in conjunction with expelled water. The emplacement of ore gold deposits related with upper Permian sediments can be successfully predicted, using this model and associated techniques.

  9. Dynamic study of the upper Sao Francisco River and the Tres Marias reservoir using MSS/LANDSAT images. [Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Sausen, T. M.

    1981-01-01

    The use of LANDSAT multispectral ban scanner imagery to verify the relationship between the behavior of the Tres Marias reservoir and the dynamics of the Sao Francisco River supply basin is described. The dispersion of suspended sediments and their concentration in the surface layers of the water are considered. A five year survey of the region during both dry and rainy seasons was performed. The drainage network was analyzed based on the patterns of dessication, water rises and soil use in the supply basin. Surface layers of the reservoir were tabulated as a function of the levels of gray in the imagery. In situ observations of water depth and reflectance were performed. Ground truth and LANDSAT data were correlated to determine the factors affecting the dynamics of the supply basin.

  10. Heavy metal distributions in Peru Basin surface sediments in relation to historic, present and disturbed redox environments

    NASA Astrophysics Data System (ADS)

    Koschinsky, Andrea

    Heavy metal distributions in deep-sea surface sediments and pore water profiles from five areas in the Peru Basin were investigated with respect to the redox environment and diagenetic processes in these areas. The 10-20-cm-thick Mn oxide-rich and minor metal-rich top layer is underlain by an increase in dissolved Mn and Ni concentrations resulting from the reduction of the MnO 2 phase below the oxic zone. The mobilised associated metals like Co, Zn and Cu are partly immobilised by sorption on clay, organic or Fe compounds in the post-oxic environment. Enrichment of dissolved Cu, Zn, Ni, Co, Pb, Cd, Fe and V within the upper 1-5 cm of the oxic zone can be attributed to the degradation of organic matter. In a core from one area at around 22-25 cm depth, striking enrichments of these metals in dissolved and solid forms were observed. Offset distributions between oxygen penetration and Mn reduction and the thickness of the Mn oxide-rich layer indicate fluctuations of the Mn redox boundary on a short-term time scale. Within the objectives of the German ATESEPP research programme, the effect of an industrial impact such as manganese nodule mining on the heavy metal cycle in the surface sediment was considered. If the oxic surface were to be removed or disturbed, oxygen would penetrate deep into the formerly suboxic sediment and precipitate Mn 2+ and metals like Ni and Co which are preferably scavenged by MnO 2. The solid enrichments of Cd, V, and other metals formed in post-oxic environments would move downward with the new redox boundary until a new equilibrium between oxygen diffusion and consumption is reached.

  11. Time-response of cultured deep-sea benthic foraminifera to different algal diets

    NASA Astrophysics Data System (ADS)

    Heinz, P.; Hemleben, Ch; Kitazato, H.

    2002-03-01

    The vertical distribution of benthic foraminifera in the surface sediment is influenced by environmental factors, mainly by food and oxygen supply. An experiment of three different time series was performed to investigate the response of deep-sea benthic foraminifera to simulated phytodetritus pulses under stable oxygen concentrations. Each series was fed constantly with one distinct algal species in equivalent amounts. The temporal reactions of the benthic foraminifera with regard to the vertical distribution in the sediment, the total number, and the species composition were observed and compared within the three series. Additionally, oxygen contents and bacterial cell numbers were measured to ensure that these factors were invariable and did not influence foraminiferal communities. The addition of algae leads to higher population densities 21 days after food was added. Higher numbers of individuals were probably caused by higher organic levels, which in turn induced reproduction. A stronger response is found after feeding with Amphiprora sp. and Pyramimonas sp., compared to Dunaliella tertiolecta. At a constant high oxygen supply, no migration to upper layers was observed after food addition, and more individuals were found in deeper layers. The laboratory results thus agree with the predictions of the TROX-model. An epifaunal microhabitat preference was shown for Adercotryma glomerata. Hippocrepina sp. was spread over the entire sediment depth with a shallow infaunal maximum. Melonis barleeanum preferred a deeper infaunal habitat. Bacterial cell concentrations were stable during the laboratory experiments and showed no significant response to higher organic fluxes.

  12. Chemical characteristics of dissolved organic matter (DOM) in relation to heavy metal concentrations in soil water from boreal peatlands after clear-cut harvesting

    NASA Astrophysics Data System (ADS)

    Kiikkilä, O.; Nieminen, T.; Starr, M.; Ukonmaanaho, L.

    2012-04-01

    Boreal peatlands form an important terrestrial carbon reserve and are a major source of dissolved organic matter (DOM) to surface waters, particularly when disturbed through forestry practices such as draining or timber harvesting. Heavy metals show a strong affinity to organic matter and so, along with DOM, heavy metals can be mobilized and transported from the soil to surface waters and sediments where they may become toxic to aquatic organisms and pass up the food chain. The complexation of heavy metals with DOM can be expected to be related and determined by the chemical characteristics of DOM and oxidation/reducing conditions in the peat. We extracted interstitial water from peat samples and determined the concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and Al, Cu, Zn and Fe in various fractions of DOM isolated by adsorption properties (XAD-8 fractionation) and molecular-weight (ultrafiltration). The peat samples were taken from 0-30 and 30-50 cm depth in drained peatland catchments two years after whole-tree or stem-only clear-cut harvesting (Scots pine or Norway spruce) had been carried out. The samples from the upper layer had been subject to alternating saturation/aeration conditions while the deeper layer had been continuously under the water table. The fractionation of DOC and DON according to both adsorption properties and molecular-weight fractions clearly differed between the upper and lower peat layers. While the hydrophobic acid fraction contained proportionally more DOC and DON than the hydrophilic acid fraction in the upper peat layer the results were vice versa in the lower peat layer. High-molecular-weight compounds (> 100 kDa) were proportionally more abundant in the upper and low-molecular-weight compounds (< 1 kDa) in the lower peat layer. These differences are assumed to reflect differences in the aerobic/ anaerobic conditions and degree of decomposition between the two layers. The concentrations of Zn, Al, Fe and DON correlated positively with DOC concentrations whereas the concentration Cu did not correlate with DOC concentrations. Heavy metal concentrations in different molecular-weight fractions indicated that Al, Cu, Zn and Fe were mostly associated with high-molecular-weight compounds and only a small fraction existed as free metal ions in solution. There were no clear differences in the chemical characteristics of DOC or DON or heavy metal concentrations between the two harvesting treatments.

  13. Wetland Management Reduces Sediment and Nutrient Loading to the Upper Mississippi River

    EPA Science Inventory

    Restored riparian wetlands in the Upper Mississippi River basin have the potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh...

  14. Seismic Structure of India from Regional Waveform Matching

    NASA Astrophysics Data System (ADS)

    Gaur, V.; Maggi, A.; Priestley, K.; Rai, S.

    2003-12-01

    We use a neighborhood adaptive grid search procedure and reflectivity synthetics to model regional distance range (500-2000~km) seismograms recorded in India and to determine the variation in the crust and uppermost mantle structure across the subcontinent. The portions of the regional waveform which are most influenced by the crust and uppermost mantle structure are the 10-100~s period Pnl and fundamental mode surface waves. We use the adaptive grid search algorithm to match both portions of the seismogram simultaneously. This procedure results in a family of 1-D path average crust and upper mantle velocity and attenuation models whose propagation characteristics closely match those of the real Earth. Our data set currently consist of ˜20 seismograms whose propagation paths are primarily confined to the Ganges Basin in north India and the East Dharwar Craton of south India. The East Dharwar Craton has a simple and uniform structure consisting of a 36+/-2 km thick two layer crust, and an uppermost mantle with a sub-Moho velocity of 4.5~km/s. The structure of northern India is more complicated, with pronounced low velocities in the upper crustal layer due to the large sediment thicknesses in the Ganges basin.

  15. Lithostratigraphy, biostratigraphy and chemostratigraphy of Upper Cretaceous and Paleogene sediments from southern Tanzania: Tanzania Drilling Project Sites 27-35

    NASA Astrophysics Data System (ADS)

    Jimènez Berrocoso, Àlvaro; Huber, Brian T.; MacLeod, Kenneth G.; Petrizzo, Maria Rose; Lees, Jacqueline A.; Wendler, Ines; Coxall, Helen; Mweneinda, Amina K.; Falzoni, Francesca; Birch, Heather; Singano, Joyce M.; Haynes, Shannon; Cotton, Laura; Wendler, Jens; Bown, Paul R.; Robinson, Stuart A.; Gould, Jeremy

    2012-07-01

    The 2008 Tanzania Drilling Project (TDP) expedition recovered common planktonic foraminifera (PF), calcareous nannofossils (CN) and calcareous dinoflagellates with extraordinary shell preservation at multiple Cenomanian-Campanian sites that will be used for paleoclimatic, paleoceanographic, and biostratigraphic studies. New cores confirm the existence of a more expanded and continuous Upper Cretaceous sequence than had previously been documented in the Lindi and Kilwa regions of southeastern coastal Tanzania. This TDP expedition cored 684.02 m at eight Upper Cretaceous sites (TDP Sites 28-35) and a thin Paleocene section (TDP Site 27). TDP Sites 29, 30, 31 and 34 together span the lowermost Turonian to Coniacian (PF Whiteinella archaeocretacea to Dicarinella concavata Zones and CN Zones UC6a-9b), with TDP Site 31 being the most biostratigraphically complete Turonian section found during TDP drilling. A discontinuous section from the Santonian-upper Campanian (PF D. asymetrica to Radotruncana calcarata Zones and CN Zones UC12-16) was collectively recovered at TDP Sites 28, 32 and 35, while thin sequences of the lower Cenomanian (PF Thalmanninella globotruncanoides Zone and CN subzones UC3a-b) and middle Paleocene (Selandian; PF Zone P3a and CN Zone NP5) were cored in TDP Sites 33 and 27, respectively. Records of δ13Corg and δ13Ccarb from bulk sediments generated for all the Cretaceous sites show largely stable values through the sections. Only a few parallel δ13Corg and δ13Ccarb shifts have been found and they are interpreted to reflect local processes. The δ18Ocarb record, however, is consistent with Late Cretaceous cooling trends from the Turonian into the Campanian. Lithologies of these sites include thick intervals of claystones and siltstones with locally abundant, finely-laminated fabrics, irregular occurrences of thin sandstone layers, and sporadic bioclastic debris (e.g., inoceramids, ammonites). Minor lithologies represent much thinner units of up to medium-grained, massive sandstones. The %CaCO3 (∼5-40%) and %Corg (∼0.1-2%) are variable, with the highest %CaCO3 in the lower Campanian and the highest %Corg in the Turonian. Lithofacies analysis suggests that deposition of these sediments occurred in outer shelf-upper slope, a setting that agrees well with inferences from benthic foraminifera and calcareous dinoflagellates.

  16. Stages of rootless cone formation observed within the Raudhólar cone group, Iceland

    NASA Astrophysics Data System (ADS)

    Fitch, E. P.; Hamilton, C.; Fagents, S. A.; Thordarson, T.

    2013-12-01

    Secondary (rootless) cones form when lava interacts explosively with water contained in the substrate, and represent a largely degassed, end-member system that can elucidate mechanisms of magma-water interactions in the absence of primary degassing-induced fragmentation. Rootless cones are well documented in Iceland. The Raudhólar rootless cone group, located within the ~5200-year-old Ellidaá lava flow on the south-eastern outskirts of Reykjavík, was extensively quarried during the Second World War and now provides excellent cross-sections through the tephra sequences. Taking advantage of this exposure, we performed detailed stratigraphic, grain-size, and componentry analyses, which suggest that the energetics of rootless explosions vary substantially during cone formation. The lower unit contains the most substrate sediment and is characterized by dilute pyroclastic density current deposits. The middle unit is dominated by a succession of bed-pairs, each containing a finer-grained lower layer and coarser-grained upper layer. In the upper unit, the succession grades into a welded section that caps the cone. The abundance of substrate sediment generally decreases upwards within the cone, which suggests that the efficiency of lava-substrate mixing decreased with time. In addition, clast size generally increases upwards within the cone, implying that the fragmentation energy also decreased as the rootless eruption progressed. Both lines of evidence suggest that the explosions decreased in intensity with time, likely due to the depletion of available groundwater. However, alternating fine- and coarse-grained beds imply cycles of increased and decreased fragmentation efficiency, which we attribute to groundwater recharge and depletion during the event. Therefore, this study presents a detailed look at rootless cone formation and provides the foundation for future work on this important, yet understudied, system.

  17. Basis for paleoenvironmental interpretation of magnetic properties of sediment from Upper Klamath Lake (Oregon): Effects of weathering and mineralogical sorting

    USGS Publications Warehouse

    Rosenbaum, J.G.; Reynolds, R.L.

    2004-01-01

    Studies of magnetic properties enable reconstruction of environmental conditions that affected magnetic minerals incorporated in sediments from Upper Klamath Lake. Analyses of stream sediment samples from throughout the catchment of Upper Klamath Lake show that alteration of Fe-oxide minerals during subaerial chemical weathering of basic volcanic rocks has significantly changed magnetic properties of surficial deposits. Titanomagnetite, which is abundant both as phenocrysts and as microcrystals in fresh volcanic rocks, is progressively destroyed during weathering. Because fine-grained magnetite is readily altered due to large surface-to-volume ratios, weathering causes an increase in average magnetic grain size as well as reduction in the quantity of titanomagnetite both absolutely and relative to hematite. Hydrodynamic mineralogical sorting also produces differences in magnetic properties among rock and mineral grains of differing sizes. Importantly, removal of coarse silicate and Fe-oxide grains by sorting concentrated extremely fine-grained magnetite in the resulting sediment. The effects of weathering and sorting of minerals cannot be completely separated. These processes combine to produce the magnetic properties of a non-glacial lithic component of Upper Klamath Lake sediments, which is characterized by relatively low magnetite content and coarse magnetic grain size. Hydrodynamic sorting alone causes significant differences between the magnetic properties of glacial flour in lake sediments and of fresh volcanic rocks in the catchment. In comparison to source volcanic rocks, glacial flour in the lake sediment is highly enriched in extremely fine-grained magnetite.

  18. Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing

    USGS Publications Warehouse

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Catranis, Catharine; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Arctic lakes are a significant source of the greenhouse gas methane (CH4), but the role that methane oxidizing bacteria (methanotrophs) play in limiting the overall CH4 flux is poorly understood. Here, we used stable isotope probing (SIP) techniques to identify the metabolically active aerobic methanotrophs in upper sediments (0–1 cm) from an arctic lake in northern Alaska sampled during ice-free summer conditions. The highest CH4 oxidation potential was observed in the upper sediment (0–1 cm depth) with 1.59 μmol g wet weight-1 day-1 compared with the deeper sediment samples (1–3 cm, 3–5 cm and 5–10 cm), which exhibited CH4 oxidation potentials below 0.4 μmol g wet weight-1 day-1. Both type I and type II methanotrophs were directly detected in the upper sediment total communities using targeted primer sets based on 16S rRNA genes. Sequencing of 16S rRNA genes and functional genes (pmoA and mxaF) in the 13C-DNA from the upper sediment indicated that type I methanotrophs, mainly Methylobacter, Methylosoma, Methylomonas and Methylovulum miyakonense, dominated the assimilation of CH4. Methylotrophs, including the genera Methylophilus and/or Methylotenera, were also abundant in the 13CDNA. Our results show that a diverse microbial consortium acquired carbon from CH4 in the sediments of this arctic lake.

  19. Evaluation of gravitational gradients generated by Earth's crustal structures

    NASA Astrophysics Data System (ADS)

    Novák, Pavel; Tenzer, Robert; Eshagh, Mehdi; Bagherbandi, Mohammad

    2013-02-01

    Spectral formulas for the evaluation of gravitational gradients generated by upper Earth's mass components are presented in the manuscript. The spectral approach allows for numerical evaluation of global gravitational gradient fields that can be used to constrain gravitational gradients either synthesised from global gravitational models or directly measured by the spaceborne gradiometer on board of the GOCE satellite mission. Gravitational gradients generated by static atmospheric, topographic and continental ice masses are evaluated numerically based on available global models of Earth's topography, bathymetry and continental ice sheets. CRUST2.0 data are then applied for the numerical evaluation of gravitational gradients generated by mass density contrasts within soft and hard sediments, upper, middle and lower crust layers. Combined gravitational gradients are compared to disturbing gravitational gradients derived from a global gravitational model and an idealised Earth's model represented by the geocentric homogeneous biaxial ellipsoid GRS80. The methodology could be used for improved modelling of the Earth's inner structure.

  20. Regional Vp, Vs, Vp/Vs, and Poisson's ratios across earthquake source zones from Memphis, Tennessee, to St. Louis, Missouri

    USGS Publications Warehouse

    Catchings, R.D.

    1999-01-01

    Models of P- and S-wave velocity, Vp/Vs ratios, Poisson's ratios, and density for the crust and upper mantle are presented along a 400-km-long profile trending from Memphis, Tennessee, to St. Louis, Missouri. The profile crosses the New Madrid seismic zone and reveals distinct regional variations in the crustal velocity structure north and south of the latitude of New Madrid. In the south near Memphis, the upper few kilometers of the crust are dominated by upper crustal sedimentary basins or graben with P-wave velocities less than 5 km/sec and S-wave velocities of about 2 km/sec. P-wave velocities of the upper and middle crust range from 6.0 to 6.5 km/sec at depths above 25 km, and corresponding S-wave velocities range from 3.5 to 3.7 km/sec. The lower crust consists of a high-velocity layer (Vp = 7.4 km/sec; Vs ~4.2 km/sec) that is up to 20-km thick at the latitude of New Madrid but thins to about 15 km near Memphis. To the north, beneath the western-most Illinois basin, low-velocity (Vp < 5 km/sec; Vs < 2.3 km/sec) sedimentary basins are less than 1-km deep. The average velocities (Vp = 6.0 km/sec; Vs = 3.5 km/sec) of the underlying, near-surface rocks argue against large thickness of unconsolidated noncarbonate sediments within 50 km of the western edge of the Illinois basin. Most of the crust beneath the Illinois basin is modeled as one layer, with velocities up to 6.8 km/sec (Vs = 3.7 km/sec) at 37-km depth. The thick, high-velocity (Vp = 7.4 km/sec; Vs ~4.2 km/sec) lower crustal layer thins from about 20 km near New Madrid to about 6 km beneath the western Illinois basin. Refractions from the Moho and upper mantle occur as first arrivals over distances as a great as 160 km and reveal upper mantle layering to 60 km depth. Upper mantle layers with P-wave velocities of 8.2 km/sec (Vs = 4.5 km/sec) and 8.4 km/sec (Vs = 4.7 km/sec) are modeled at 43 and 60 km depth, respectively. Crustal Vp/Vs ratios range between 1.74 and 1.83, and upper mantle Vp/V s ratios range from 1.78 to 1.84. Poisson's ratios range from about 0.26 to 0.33 in the crust and from about 0.27 to 0.29 in the upper mantle. Modeled average densities range from about 2.55 in the sedimentary basins to 3.43 in the upper mantle. Geophysical characteristics of the crust and upper mantle within the New Madrid seismic zone are consistent with other continental rifts, but the crustal structure of the Illinois basin is not characteristics of most continental rift settings. Seismic and gravity data suggest a buried horst near the middle of Reelfoot rift, beneath which is a vertical zone of seismicity and velocity anomalies. The relative depth of the Reelfoot rift north and south of the Reelfoot graben suggests that the rift and its bounding faults may extend eastward beneath the city of Memphis.

  1. Generation of net sediment transport by velocity skewness in oscillatory sheet flow

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Li, Yong; Chen, Genfa; Wang, Fujun; Tang, Xuelin

    2018-01-01

    This study utilizes a qualitative approach and a two-phase numerical model to investigate net sediment transport caused by velocity skewness beneath oscillatory sheet flow and current. The qualitative approach is derived based on the pseudo-laminar approximation of boundary layer velocity and exponential approximation of concentration. The two-phase model can obtain well the instantaneous erosion depth, sediment flux, boundary layer thickness, and sediment transport rate. It can especially illustrate the difference between positive and negative flow stages caused by velocity skewness, which is considerably important in determining the net boundary layer flow and sediment transport direction. The two-phase model also explains the effect of sediment diameter and phase-lag to sediment transport by comparing the instantaneous-type formulas to better illustrate velocity skewness effect. In previous studies about sheet flow transport in pure velocity-skewed flows, net sediment transport is only attributed to the phase-lag effect. In the present study with the qualitative approach and two-phase model, phase-lag effect is shown important but not sufficient for the net sediment transport beneath pure velocity-skewed flow and current, while the asymmetric wave boundary layer development between positive and negative flow stages also contributes to the sediment transport.

  2. Layered Outcrops of Far West Candor Chasma

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site]

    Images from Mariner 9 in 1972 revealed that some of the mesas and mounds found within the chasms of the martian 'Grand Canyon'--the Valles Marineris--have layers in them. Speculations as to the origin of these interior layered materials ranged from volcanic ash deposits to sediments laid down in lakes that could have partially filled the Vallis Marineris troughs, much as lakes now occupy portions of the rift valleys of eastern Africa. The proposal that the Valles Marineris once hosted deep martian lakes led to additional speculation as to the prospects for finding fossil evidence of martian life.

    Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images have ten or more times better resolution than the Mariner 9 and Viking orbiter images taken in the 1970s. MOC images have indeed confirmed the presence of layered outcrops within the Valles Marineris. They have also shown places previously not suspected to have layered rock, and they have shown that these materials might not have formed in the Valles Marineris, but were instead deposited in craters that were subsequently buried long before the chasms opened up (see discussion below). The layered rock is now visible because of faulting and erosion.

    The high resolution picture shown here (B, above right) was the first image received by MOC scientists that began to hint at a larger story of layered sedimentary rock on Mars. The picture shows a 1.5 km by 2.9 km (0.9 mi by 1.8 mi) area in far southwestern Candor Chasma (A, above left) that was--based on Mariner 9 and Viking orbiter images--not previously expected to exhibit layers. The MOC image reveals that the floor of western Candor Chasma at this location is indeed layered. What is most striking about the picture is the large number and uniformity of the layers, or beds. There are over 100 beds in this area, and each has about the same thickness (estimated to be about 10 meters (11 yards) thick). Each layer has a relatively smooth upper surface, and each is hard enough to form steep cliffs at its margins.

    Layers indicate change. The uniform pattern seen here--beds of similar properties and thickness repeated over a hundred times--suggest that the deposition of materials that made the layers was interrupted at regular or episodic intervals. Patterns like this, when found on Earth, usually indicate the presence of sediment deposited in dynamic, energetic, underwater environments. On Mars, these same patterns could very well indicate that the materials were deposited in a lake or shallow sea. Other MOC images suggest that these layers would not have formed in a lake in Candor Chasma, but instead were deposited in a crater or other basin that existed before Candor Chasma was cut (by faulting and erosion) into the surrounding terrain. However, it is not known for certain that these materials actually formed underwater, for it is possible that there were uniquely Martian processes occurring in the distant past that would mimic the pattern of sedimentation in water. For example, if the early Martian atmosphere was denser than it is today, and if the planet's atmospheric pressure changed on a cyclic basis (as it does today), then perhaps these materials are simply deposits of airborne dust that were later buried and cemented to create cliff-forming rock.

    Sunlight illuminates both the wide angle context view and the narrow angle high resolution image from the left/upper left. In both, north is toward the top and east to the right.

  3. The September 16, 2015 Illapel Tsunami - Sedimentology of tsunami deposits at the beaches of La Serena and Coquimbo

    NASA Astrophysics Data System (ADS)

    Bahlburg, H.; Nentwig, V.; Kreutzer, M.

    2016-12-01

    On September 16, 2015, a Mw 8.3 earthquake occurred off the coast of Central Chile, 46 km west of the town of Illapel, the hypocenter was at a depth of 8.7 km in the transition zone from the Chilean flat slab to the central Chilean steep slab subduction geometry, and near the intersection of the Juan Fernandez Ridge with the South America plate. The quake caused a tsunami registered which at Coquimbo and La Serena (c. 30°S) attained wave heights of 4.5 m leading to flooding and destruction of infrastructure. Maximum inundation distance was c. 700 m in Coquimbo Bay with minor flooding at the beaches of La Serena to the N. Tsunami deposits are usually the only observable evidence of past events. In view of a limited preservation potential, it is of paramount importance to undertake detailed studies in the wake of actual events. We report initial field data of a sedimentological post-tsunami field survey undertaken in October 2015. The most comprehensive sedimentological record of this tsunami is preserved at Playa Los Fuertes in La Serena. Along a 30 m long trench perpendicular to the coast we observed a laminated package of tsunami deposits. Above an erosive basal unconformity with an amplitude of up to 50 cm the deposit consists of 6 layers of variable thickness, ranging between dark laminae a few millimeters thick and rich in heavy minerals, and lighter colored sand layers up to 15 cm thick. The sediments are moderately well to well sorted, unimodal with modes between 1.3 and 2.0 Φ (medium sand). Cross-beds in the lower four layers indicate deposition from tsunami inflow, cross bedding in the penultimate layer records outflow. Water escape through small sand volcanoes was coeval to formation of the overlying sediment layer by traction deposition. This simultaneity is indicated by sand issued from the lower layer which has been preserved as a thin plume deformed in the downcurrent, i.e. landward, direction in the newly forming upper layer. Other sectors of the sediment show sand diapirs intruding up to 15 cm into the overlying tsunami deposit. The assemblage of laminae, layers and sedimentary structures indicates that the deposit records at least 4 events of tsunami inflow and one outflow event. Intervening layers without directional structures cannot be assigned unequivocally to either inflow or outflow deposition.

  4. Integrated monitoring approach to investigate the contamination, mobilization and risks of sediments

    NASA Astrophysics Data System (ADS)

    Bölscher, Jens; Schulte, Achim; Terytze, Konstantin

    2017-04-01

    The use of surface water bodies for manufacturing purposes has been common not only in Germany since the beginning of industrialization, and this has led to a high accumulation of different chemical contaminants in the sediments of aquatic ecosystems. In particular, water bodies with very low flow conditions like the "Rummelsburger See", an anabranch of the Spree River located in the centre of Berlin, have been highly affected. Given that, it has become necessary to obtain improved knowledge concerning the current sediment dynamics, the rate of sedimentation and the current level of contamination and toxicity compared to earlier conditions. Against this background, a survey was set up, consisting of an integrated monitoring approach that focuses on hydraulics, sediment dynamics and contamination, including boundary conditions, such as weather and motor-boat activities to find information, which would help design appropriate treatment in the future. To detect the spatial distribution of pollutants in the sediment, over 200 sediment samples were collected via drill cores at 16 locations. The upper 15 cm of each drill core was systematically divided into 5 layers (each of 3 cm) for separate examination. The investigation of sediment deposition and remobilisation rates was accomplished by installing 18 sediment traps. The presence of selected heavy metals and organic pollutants in the sediments was determined for every sampling location and layer of the drill cores, as well as for all sediment traps. Changes in boundary conditions which influence the spatial and temporal distribution of deposition and resuspension were monitored by placing devices within the water body and taking different mobile measurements (3-D flow conditions, oxygen, turbidity, chlorophyll-a, temperature). The analysis of sediment and suspended matter included the determination of the total content of inorganic (Hg, Cd, Cr, Pb, Ni, Cu, Zn) and organic compounds (polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH), selected nitro-compounds, selected organotin compounds and polychlorinated biphenyls (PCB, AOX and EOX) in the sediment and suspended matter. The physico-chemical conditions of the samples were examined as well. The research into soluble and mobilizable sediment-bounded pollutants is based upon a 24 hour batch test. Certain toxic effects of the sediments were determined by different ecotoxicological test methods. In addition, the thresholds of the sediment quality guidelines published by de Deckere et al. (2011) were used to assess the solid contents. Because of the high concentrations of the pollutants, the consensus 2 values are used as thresholds in this study. The results provide important details on the spatial and temporal distribution of sedimentation and contamination. All sediments of the analysed cores and traps remain highly contaminated with heavy metals and organic compounds. The results indicate the resuspension, transport and accumulation of these sediments and show at least that toxic effects for the benthic taxa are expected. This kind of approach is necessary to create a basis for a remediation programme for, and a risk assessment of, polluted water bodies.

  5. Tracing suspended sediment sources in the Upper Sangamon River Basin using conservative and non-conservative tracers

    NASA Astrophysics Data System (ADS)

    Yu, M.; Rhoads, B. L.; Stumpf, A.

    2015-12-01

    As the awareness of water pollution, eutrophication and other water related environmental concerns grows, the significance of sediment in the transport of nutrients and contaminants from agricultural areas to streams has received increasing attention. Both the physical and geochemical properties of suspended sediment are strongly controlled by sediment sources. Thus, tracing sources of suspended sediment in watersheds is important for the design of management practices to reduce sediment loads and contributions of sediment-adsorbed nutrients from agricultural areas to streams. However, the contributions of different sediment sources to suspended sediment loads within intensively managed watersheds in the Midwest still remain insufficiently explored. This study aims to assess the provenance of suspended sediment and the relation between channel morphology and production of suspended sediment in the Upper Sangamon River Basin, Illinois, USA. The 3,690-km2 Upper Sangamon River Basin is characterized by low-relief, agricultural lands dominated by row-crop agriculture. Sediment source samples were collected in the Saybrook from five potential sources: farmland, forests, floodplains, river banks, and grasslands. Event-based and accumulated suspended sediment samples were collected by ISCO automatic pump samplers and in situ suspended sediment samplers and from the stream at watershed outlet. A quantitative geochemical fingerprinting technique, combining statistically verified multicomponent signatures and an un-mixing model, was employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and radionuclides from soil samples were used as potential tracers. Our preliminary results indicate that the majority of suspended sediment is derived from floodplains in the downstream portions of the watersheds, while only minor amounts of suspended sediment are derived from upland areas and banks. These results suggest that floodplain erosion during high flow events contributes to the suspended sediment.

  6. Recent Trends in Suspended Sediment Load & Water Quality in the Upper Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Freeman, L. A.; Ackleson, S. G.

    2016-02-01

    The Chesapeake Bay spans several major cities on the US east coast and drains a large watershed (164,200 km2) to the Atlantic Ocean. Upstream deforestation and agriculture have led to a major decline in water quality (increased sediment and nutrient load) of the Bay over the past century. Sediment flux into the Chesapeake Bay is a natural process, but has become an environmental concern as land use changes have exacerbated natural suspended sediment loads and saturated the capacity of the estuary to filter and remove sediments. In situ measurements of suspended sediments and surface reflectance from the Potomac, Patapsco, and Severn River were used to develop algorithms that convert surface reflectance from Landsat (1-3, 4-5, 7, 8) imagery to suspended sediment concentration for the entire Chesapeake Bay. A unique time series of suspended sediment load in the Chesapeake Bay was compiled from Landsat imagery dating from 1977-2015. Particular focus is given to the upper Chesapeake Bay near Washington, DC and Baltimore, MD to understand urban effects. In particular, the Potomac, Patapsco, and Severn River are examined from both remote sensing and in situ measurements. Landsat imagery combined with in situ monitoring provides environmental scientists and resource managers with detailed trends in sediment distribution and concentration, a key measure of water quality. Trends of suspended sediment load in several rivers and the upper Chesapeake Bay will be presented, along with a discussion of suspended sediment algorithms for Landsat imagery. Advantages of Landsat 8 (improved signal-to-noise performance and more bands) versus previous sensors will be examined for suspended sediment applications.

  7. Contrasting Patterns of Fine Fluvial Sediment Delivery in Two Adjacent Upland Catchments

    NASA Astrophysics Data System (ADS)

    Perks, M.; Bracken, L.; Warburton, J.

    2010-12-01

    Quantifying patterns of fine suspended sediment transfer in UK upland rivers is of vital importance in combating the damaging effects of elevated fluxes of suspended sediment, and sediment associated transport of contaminants, on in-stream biota. In many catchments of the UK there is still a lack of catchment-wide understanding of both the spatial patterns and temporal variation in fine sediment delivery. This poster describes the spatial and temporal distribution of in-stream fine sediment delivery from a network of 44 time-integrated mass flux samplers (TIMs) in two adjacent upland catchments. The two catchments are the Esk (210 km2) and Upper Derwent (236 km2) which drain the North York Moors National Park. Annual suspended sediment loads in the Upper Derwent are 1273 t, whereas in the Esk catchment they are greater at 1778 t. Maximum yields of 22 t km-2 yr -1 were measured in the headwater tributaries of the Rye River (Derwent), whereas peak yields in the Esk are four times greater (98 t km-2 yr-1) on the Butter Beck subcatchment. Analysis of the within-storm sediment dynamics, indicates that the sediment sources within the Upper Derwent catchment are from distal locations possibly mobilised by hillslope runoff processes, whereas in the Esk, sediment sources are more proximal to the channel e.g. within channel stores or bank failures. These estimates of suspended sediment flux are compared with the diffuse pollution potential generated by a risk-based model of sediment transfer (SCIMAP) in order to assess the similarity between the model predictions and observed fluxes.

  8. Characteristics of earthquake-induced turbidites in Beppu Bay, southwest Japan

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Takemura, K.; Kuwae, M.; Ikehara, K.; Yamamoto, M.

    2015-12-01

    Beppu Bay is located at the western end of the arc-bisecting dextral fault (Median Tectonic Line) associated with the northwestward subduction of the Philippine Sea Plate. According to Itoh et al. (1998) and Itoh et al. (2014), the process of formation of the bay was divided into two stages. The older stage (5 to 1.5 Ma) was dominated by a northward-inclined half-graben, while a pull-apart stress resulting from the right-stepping of the MTL developed during the younger stage (1.5 Ma to present in particular, 0.7 Ma to present), so seamless sediments were clearly preserved in the bay. Recently, Kuwae et al. (2012) revealed that the hemipelagic sediments accompanied with some event layers (18 major event layers (> 1 cm thick) and 55 minor event layers (< 1 cm thick)) were deposited. The core was well dated based on AMS 14C ages of 42 bivalves. In this study, we investigated the lithology of the event layers to understand how the layers were deposited. As a result, major event layers are classified into five types based on difference in the grain composition and facies: turbidites (type A-C), tephras (type D), and others (type E). Type A (4 layers) is thick event layers with a basal sand division, middle laminated silt division, and upper clay division. Relatively heavy particles, such as minerals, are concentrated in the basal division with clear erosion. Type B (7 layers) is similar to type A, but lack the basal division. Type C (5 layers) is almost the same as type B, but contains gypsum. Type D (2 layers) consists of a large amount of volcanic glass without bottom erosion. Type E (1 layer) is different from all other types and distinguishes by black color coarse particles and relatively high magnetic susceptibility. In particular, type A event layers are deposited in 334, 617, 1685, and 1893 cal. yrs BP using our age-depth model. The deposition age of an event layer corresponds to Keicho-Bungo historical earthquake occurred in 354 cal. yrs BP (Usami, 1996). The ages of other three layers are also not inconsistent with the ages of three fault events estimated by previous on-fault studies (Oita Prefecture, 2001; Chida et al., 2004). We thus concluded that the type A event layers were likely induced by earthquakes.

  9. Distributions of nutrients, dissolved organic carbon and carbohydrates in the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Deli; Henrichs, Susan M.; Guo, Laodong

    2006-09-01

    Seawater samples were collected from stations along a transect across the shelf-basin interface in the western Arctic Ocean during September 2002, and analyzed for nutrients, dissolved organic carbon (DOC), and total dissolved carbohydrate (TDCHO) constituents, including monosaccharides (MCHO) and polysaccharides (PCHO). Nutrients (nitrate, ammonium, phosphate and dissolved silica) were depleted at the surface, especially nitrate. Their concentrations increased with increasing depth, with maxima centered at ˜125 m depth within the halocline layer, then decreased with increasing depth below the maxima. Both ammonium and phosphate concentrations were elevated in shelf bottom waters, indicating a possible nutrient source from sediments, and in a plume that extended into the upper halocline waters offshore. Concentrations of DOC ranged from 45 to 85 μM and had an inverse correlation with salinity, indicating that mixing is a control on DOC concentrations. Concentrations of TDCHO ranged from 2.5 to 19 μM-C, comprising 13-20% of the bulk DOC. Higher DOC concentrations were found in the upper water column over the shelf along with higher TDCHO concentrations. Within the TDCHO pool, the concentrations of MCHO ranged from 0.4 to 8.6 μM-C, comprising 20-50% of TDCHO, while PCHO concentrations ranged from 0.5 to 13.6 μM-C, comprising 50-80% of the TDCHO. The MCHO/TDCHO ratio was low in the upper 25 m of the water column, followed by a high MCHO/TDCHO ratio between 25 and 100 m, and a low MCHO/TDCHO ratio again below 100 m. The high MCHO/TDCHO ratio within the halocline layer likely resulted from particle decomposition and associated release of MCHO, whereas the low MCHO/TDCHO (or high PCHO/TDCHO) ratio below the halocline layer could have resulted from slow decomposition and additional particulate CHO sources.

  10. Radioactive Cs in the estuary sediments near Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Yamasaki, Shinya; Imoto, Junpei; Furuki, Genki; Ochiai, Asumi; Ohnuki, Toshihiko; Sueki, Keisuke; Nanba, Kenji; Ewing, Rodney C; Utsunomiya, Satoshi

    2016-05-01

    The migration and dispersion of radioactive Cs (mainly (134)Cs and (137)Cs) are of critical concern in the area surrounding the Fukushima Daiichi Nuclear Power Plant (FDNPP). Considerable uncertainty remains in understanding the properties and dynamics of radioactive Cs transport by surface water, particularly during rainfall-induced flood events to the ocean. Physical and chemical properties of unique estuary sediments, collected from the Kuma River, 4.0km south of the FDNPP, were quantified in this study. These were deposited after storm events and now occur as dried platy sediments on beach sand. The platy sediments exhibit median particle sizes ranging from 28 to 32μm. There is increasing radioactivity towards the bottom of the layers deposited; approximately 28 and 38Bqg(-1) in the upper and lower layers, respectively. The difference in the radioactivity is attributed to a larger number of particles associated with radioactive Cs in the lower part of the section, suggesting that radioactive Cs in the suspended soils transported by surface water has decreased over time. Sequential chemical extractions showed that ~90% of (137)Cs was strongly bound to the residual fraction in the estuary samples, whereas 60~80% of (137)Cs was bound to clays in the six paddy soils. This high concentration in the residual fraction facilitates ease of transport of clay and silt size particles through the river system. Estuary sediments consist of particles <100μm. Radioactive Cs desorption experiments using the estuary samples in artificial seawater revealed that 3.4±0.6% of (137)Cs was desorbed within 8h. More than 96% of (137)Cs remained strongly bound to clays. Hence, particle size is a key factor that determines the travel time and distance during the dispersion of (137)Cs in the ocean. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Bioturbation delays attenuation of DDT by clean sediment cap but promotes sequestration by thin-layered activated carbon.

    PubMed

    Lin, Diana; Cho, Yeo-Myoung; Werner, David; Luthy, Richard G

    2014-01-21

    The effects of bioturbation on the performance of attenuation by sediment deposition and activated carbon to reduce risks from DDT-contaminated sediment were assessed for DDT sediment-water flux, biouptake, and passive sampler (PE) uptake in microcosm experiments with a freshwater worm, Lumbriculus variegatus. A thin-layer of clean sediment (0.5 cm) did not reduce the DDT flux when bioturbation was present, while a thin (0.3 cm) AC cap was still capable of reducing the DDT flux by 94%. Bioturbation promoted AC sequestration by reducing the 28-day DDT biouptake (66%) and DDT uptake into PE (>99%) compared to controls. Bioturbation further promoted AC-sediment contact by mixing AC particles into underlying sediment layers, reducing PE uptake (55%) in sediment compared to the AC cap without bioturbation. To account for the observed effects from bioturbation, a mass transfer model together with a biodynamic model were developed to simulate DDT flux and biouptake, respectively, and models confirmed experimental results. Both experimental measurements and modeling predictions imply that thin-layer activated carbon placement on sediment is effective in reducing the risks from contaminated sediments in the presence of bioturbation, while natural attenuation process by clean sediment deposition may be delayed by bioturbation.

  12. Habitat quality of historic Snake River fall Chinook salmon spawning locations and implications for incubation survival: part 1, substrate quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.

    2005-07-01

    We evaluated substrate quality at two historic fall Chinook salmon (Oncorhynchus tshawytscha) spawning sites in the Snake River, Idaho, USA. The primary objective of this evaluation was to measure sediment permeability within these areas to determine the potential quality of the habitat in the event that anadromous salmonids are reintroduced to the upper Snake River. Riverbed sediments within the two sites in the upper Snake River were sampled using freeze cores and hydraulic slug tests. Sediment grain size distributions at both sites were typical of gravel-bed rivers with the surface layer coarser than the underlying substrate, suggesting the riverbed surfacemore » was armored. Despite the armored nature of the bed, the size of the largest material present on the riverbed surface was well within the size limit of material capable of being excavated by spawning fall Chinook salmon. The percentage of fines was low, suggesting good quality substrate for incubating salmon embryos. Geometric mean particle sizes found in this study compared to a 55% to 80% survival to emergence based on literature values. Hydraulic slug tests showed moderate to high hydraulic conductivity and were comparable to values from current fall Chinook salmon spawning areas in the Hells Canyon Reach of the Snake River and the Hanford Reach of the Columbia River. Predicted estimates of mean egg survival at both sites (48% and 74%) equaled or exceeded estimates from fall Chinook salmon spawning areas in the Hells Canyon Reach and the Hanford Reach.« less

  13. Water and sediment temperatures at mussel beds in the upper Mississippi River basin

    USGS Publications Warehouse

    Newton, Teresa J.; Sauer, Jennifer; Karns, Byron

    2013-01-01

    Native freshwater mussels are in global decline and urgently need protection and conservation. Declines in the abundance and diversity of North American mussels have been attributed to human activities that cause pollution, waterquality degradation, and habitat destruction. Recent studies suggest that effects of climate change may also endanger native mussel assemblages, as many mussel species are living close to their upper thermal tolerances. Adult and juvenile mussels spend a large fraction of their lives burrowed into sediments of rivers and lakes. Our objective was to measure surface water and sediment temperatures at known mussel beds in the Upper Mississippi (UMR) and St. Croix (SCR) rivers to estimate the potential for sediments to serve as thermal refugia. Across four mussel beds in the UMR and SCR, surface waters were generally warmer than sediments in summer, and were cooler than sediments in winter. This suggests that sediments may act as a thermal buffer for mussels in these large rivers. Although the magnitude of this effect was usually <3.0°C, sediments were up to 7.5°C cooler at one site in May, suggesting site-specific variation in the ability of sediments to act as thermal buffers. Sediment temperatures in the UMR exceeded those shown to cause mortality in laboratory studies. These data suggest that elevated water temperatures resulting from global warming, thermal discharges, water extraction, and/or droughts have the potential to adversely affect native mussel assemblages.

  14. Phosphorus retention and internal loading in the Bay of Quinte, Lake Ontario, using diagenetic modelling.

    PubMed

    Doan, Phuong T K; Watson, Sue B; Markovic, Stefan; Liang, Anqi; Guo, Jay; Mugalingam, Shan; Stokes, Jonathan; Morley, Andrew; Zhang, Weitao; Arhonditsis, George B; Dittrich, Maria

    2018-04-24

    Internal phosphorus (P) loading significantly contributes to hysteresis in ecosystem response to nutrient remediation, but the dynamics of sediment P transformations are often poorly characterized. Here, we applied a reaction-transport diagenetic model to investigate sediment P dynamics in the Bay of Quinte, a polymictic, spatially complex embayment of Lake Ontario, (Canada). We quantified spatial and temporal variability of sediment P binding forms and estimated P diffusive fluxes and sediment P retention in different parts of the bay. Our model supports the notion that diagenetic recycling of redox sensitive and organic bound P forms drive sediment P release. In the recent years, summer sediment P diffusive fluxes varied in the range of 3.2-3.6 mg P m -2  d -1 in the upper bay compared to 1.5 mg P m -2  d -1 in the middle-lower bay. Meanwhile sediment P retention ranged between 71% and 75% in the upper and middle-lower bay, respectively. The reconstruction of temporal trends of internal P loading in the past century, suggests that against the backdrop of reduced external P inputs, sediment P exerts growing control over the lake nutrient budget. Higher sediment P diffusive fluxes since mid-20th century with particular increase in the past 20 years in the shallower upper basins, emphasize limited sediment P retention potential and suggest prolonged ecosystem recovery, highlighting the importance of ongoing P control measures. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Sediment Budgeting in Dam-Affected Rivers: Assessing the Influence of Damming, Tributaries, and Alluvial Valley Sediment Storage on Sediment Regimes

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Dekker, F. J.; Riebe, C. S.

    2014-12-01

    Although sediment supply is recognized as a fundamental driver of fluvial processes, measuring how dams affect sediment regimes and incorporating such knowledge into management strategies remains challenging. To determine the influences of damming, tributary supply, and valley morphology and sediment storage on downstream sediment supply in a dryland river, the Bill Williams River (BWR) in western Arizona, we measured basin erosion rates using cosmogenic nuclide analysis of beryllium-10 (10Be) at sites upstream and downstream of a dam along the BWR, as well as from tributaries downstream of the dam. Riverbed sediment mixing calculations were used to test if the dam, which blocks sediment supply from the upper 85% of the basin's drainage area, increases the proportion of tributary sediment to residual upstream sediment in mainstem samples downstream of the dam. Erosion rates in the BWR watershed are more than twice as large in the upper catchment (136 t km-2 yr-1) than in tributaries downstream of Alamo Dam (61 t km-2 yr-1). Tributaries downstream of the dam have little influence on mainstem sediment dynamics. The effect of the dam on reducing sediment supply is limited, however, because of the presence of large alluvial valleys along the mainstem BWR downstream of the dam that store substantial sediment and mitigate supply reductions from the upper watershed. These inferences, from our 10Be derived erosion rates and mixing calculations, are consistent with field observations of downstream changes in bed material size, which suggest that sediment-deficit conditions are restricted to a 10 km reach downstream of the dam, and limited reservoir bathymetry data. Many studies have suggested that tributary sediment inputs downstream of dams play a key role in mitigating dam-induced sediment deficits, but here we show that in a dryland river with ephemeral tributaries, sediment stored in alluvial valleys can also play a key role and in some cases trumps the role of tributaries.

  16. Pleistocene ice-rich yedoma in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Kanevskiy, M. Z.; Shur, Y.; Jorgenson, T. T.; Sturm, M.; Bjella, K.; Bray, M.; Harden, J. W.; Dillon, M.; Fortier, D.; O'Donnell, J.

    2011-12-01

    Yedoma, or the ice-rich syngenetic permafrost with large ice wedges, widely occurs in parts of Alaska that were unglaciated during the last glaciation including Interior Alaska, Foothills of Brooks Range and Seward Peninsula. A thick layer of syngenetic permafrost was formed by simultaneous accumulation of silt and upward permafrost aggradation. Until recently, yedoma has been studied mainly in Russia. In Interior Alaska, we have studied yedoma at several field sites (Erickson Creek area, Boot Lake area, and several sites around Fairbanks, including well-known CRREL Permafrost tunnel). All these locations are characterized by thick sequences of ice-rich silt with large ice wedges up to 30 m deep. Our study in the CRREL Permafrost tunnel and surrounding area revealed a yedoma section up to 18 m thick, whose formation began about 40,000 yr BP. The volume of wedge-ice (about 10-15%) is not very big in comparison with other yedoma sites (typically more than 30%), but soils between ice wedges are extremely ice-rich - an average value of gravimetric moisture content of undisturbed yedoma silt with micro-cryostructures is about 130%. Numerous bodies of thermokarst-cave ice were detected in the tunnel. Geotechnical investigations along the Dalton Highway near Livengood (Erickson Creek area) provided opportunities for studies of yedoma cores from deep boreholes. The radiocarbon age of sediments varies from 20,000 to 45,000 yr BP. Most of soils in the area are extremely ice-rich. Thickness of ice-rich silt varies from 10 m to more than 26 m, and volume of wedge-ice reaches 35-45%. Soil between ice wedges has mainly micro-cryostructures and average gravimetric moisture content from 80% to 100%. Our studies have shown that the top part of yedoma in many locations was affected by deep thawing during the Holocene, which resulted in formation of the layer of thawed and refrozen soils up to 6 m thick on top of yedoma deposits. Thawing of the upper permafrost could be related to climate changes during Holocene or to wildfires, or both. The ice-poor layer of thawed and refrozen sediments (gravimetric moisture content usually does not exceed 40%) was encountered in many boreholes below the thin ice-rich intermediate layer (gravimetric moisture content usually exceeds 100%). These two layers separate ice wedges from the active layer and protect them from further thawing. Such structure of the upper permafrost at different yedoma sites of Interior Alaska can explain a relatively rare occurrence of surface features related to yedoma degradation such as thermokarst mounds and erosional gullies developed along ice wedges.

  17. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    USGS Publications Warehouse

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream water; (3) to develop site-specific thresholds for toxicity of Zn and Cu in stream water; and (4) to develop models of the contributions of Cu and Zn to toxicity of stream water, which may be used to characterize toxicity before and after planned remediation efforts. We evaluated the toxicity of metal-contaminated sediments by conducting sediment toxicity tests with two species of benthic invertebrates, the midge, Chironomus tentans. and the amphipod, Hyalella azteca. Laboratory toxicity tests with both taxa, exposed to fine stream-bed sediments collected in September 1997, showed some evidence of sediment toxicity, as survival of midge larvae in sediments from Cement Creek (C48) and lower Mineral Creek (M34), and growth of amphipods in sediments from these sites and three Animas River sites (A68, Animas at Silverton; A72, Animas below Silverton, and A73, Animas at Elk Park) were significantly reduced compared to a reference site, South Mineral Creek (SMC) . Amphipods were also exposed to site water and fine stream-bed sediment, separately and in combination, during the late summer low flow period (August-September) of 1998. In these studies, stream water, with no sediment present, from all five sites tested (same sites as above, except C48) caused 90% to 100% mortality of amphipods. In contrast, significant reductions in survival of amphipods occurred at two sites (A72 and SMC) in exposures with field-collected sediment plus stream water, and at only one site (A72) in exposures with sediments and clean overlying water. Concentrations of Zn, Pb, Cu, and Cd were high in both sediment and pore water (interstitial water) from most sites tested, but greatest sediment toxicity was apparently associated with greater concentrations of Fe and/or Al in sediments. These results suggest that fine stream-bed sediments of the more contaminated stream reaches of the upper Animas River watershed are toxic to benthic invertebrates, but that these impacts are less serious than tox

  18. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part III - Sulfate- and methane- based microbial processes

    NASA Astrophysics Data System (ADS)

    Pastor, L.; Toffin, L.; Decker, C.; Olu, K.; Cathalot, C.; Lesongeur, F.; Caprais, J.-C.; Bessette, S.; Brandily, C.; Taillefert, M.; Rabouille, C.

    2017-08-01

    Geochemical profiles (SO42-, H2S, CH4, δ13CH4) and phylogenetic diversity of Archaea and Bacteria from two oceanographic cruises dedicated to the lobes sediments of the Congo deep-sea fan are presented in this paper. In this area, organic-rich turbidites reach 5000 m and allow the establishment of patchy cold-seep-like habitats including microbial mats, reduced sediments, and vesicomyid bivalves assemblages. These bivalves live in endosymbiosis with sulfur-oxidizing bacteria and use sulfides to perform chemosynthesis. In these habitats, unlike classical abyssal sediments, anoxic processes are dominant. Total oxygen uptake fluxes and methane fluxes measured with benthic chambers are in the same range as those of active cold-seep environments, and oxygen is mainly used for reoxidation of reduced compounds, especially in bacterial mats and reduced sediments. High concentrations of methane and sulfate co-exist in the upper 20 cm of sediments, and evidence indicates that sulfate-reducing microorganisms and methanogens co-occur in the shallow layers of these sediments. Simultaneously, anaerobic oxidation of methane (AOM) with sulfate as the electron acceptor is evidenced by the presence of ANMEs (ANaerobic MEthanotroph). Dissolved sulfide produced through the reduction of sulfate is reoxidized through several pathways depending on the habitat. These pathways include vesicomyid bivalves uptake (adults or juveniles in the bacterial mats habitats), reoxidation by oxygen or iron phases within the reduced sediment, or reoxidation by microbial mats. Sulfide uptake rates by vesicomyids measured in sulfide-rich sea water (90±18 mmol S m-2 d-1) were similar to sulfide production rates obtained by modelling the sulfate profile with different bioirrigation constants, highlighting the major control of vesicomyids on sulfur cycle in their habitats.

  19. A gel probe equilibrium sampler for measuring arsenic porewater profiles and sorption gradients in sediments: II. Field application to Haiwee reservoir sediment

    USGS Publications Warehouse

    Campbell, K.M.; Root, R.; O'Day, P. A.; Hering, J.G.

    2008-01-01

    Arsenic (As) geochemistry and sorption behavior were measured in As- and iron (Fe)-rich sediments of Haiwee Reservoir by deploying undoped (clear) polyacrylamide gels and hydrous ferric oxide (HFO)-doped gels in a gel probe equilibrium sampler, which is a novel technique for directly measuring the effects of porewater composition on As adsorption to Fe oxides phases in situ. Arsenic is deposited at the sediment surface as As(V) and is reduced to As(III) in the upper layers of the sediment (0-8 cm), but the reduction of As(V) does not cause mobilization into the porewater. Dissolved As and Fe concentrations increased at depth in the sediment column driven by the reductive dissolution of amorphous Fe(III) oxyhydroxides and conversion to a mixed Fe(II, III) green rust-type phase. Adsorption of As and phosphorous (P) onto HFO-doped gels was inhibited at intermediate depths (10-20 cm), possibly due to dissolved organic or inorganic carbon, indicating that dissolved As concentrations were at least partially controlled by porewater composition rather than surface site availability. In sediments that had been recently exposed to air, the region of sorption inhibition was not observed, suggesting that prior exposure to air affected the extent of reductive dissolution, porewater chemistry, and As adsorption behavior. Arsenic adsorption onto the HFO-doped gels increased at depths >20 cm, and the extent of adsorption was most likely controlled by the competitive effects of dissolved phosphate. Sediment As adsorption capacity appeared to be controlled by changes in porewater composition and competitive effects at shallower depths, and by reductive dissolution and availability of sorption sites at greater burial depths. ?? 2008 American Chemical Society.

  20. Role of storms and forest practices in sedimentation of an Oregon Coast Range lake

    NASA Astrophysics Data System (ADS)

    Richardson, K.; Hatten, J. A.; Wheatcroft, R. A.; Guerrero, F. J.

    2014-12-01

    The design of better management practices in forested watersheds to face climate change and the associated increase in the frequency of extreme events requires a better understanding of watershed responses to extreme events in the past and also under management regimes. One of the most sensitive watershed processes affected is sediment yield. Lake sediments record events which occur in a watershed and provide an opportunity to examine the interaction of storms and forest management practices in the layers of the stratigraphy. We hypothesize that timber harvesting and road building since the 1900s has resulted in increases in sedimentation; however, the passage of the Oregon Forest Practices Act (OFPA) in 1972 has led to a decrease in sedimentation. Sediment cores were taken at Loon Lake in the Oregon Coast Range. The 32-m deep lake captures sediment from a catchment highly impacted by recent land use and episodic Pacific storms. We can use sedimentological tools to measure changes in sediment production as motivated by extreme floods before settlement, during a major timber harvesting period, and after installation of forestry Best Management Practices. Quantification of changes in particle size and elemental composition (C, N, C/N) throughout the cores can elucidate changes in watershed response to extreme events, as can changes in layer thickness. Age control in the cores is being established by Cesium-137 and radiocarbon dating. Given the instrumental meteorological data and decadal climate reconstructions, we will disentangle climate driven signals from changes in land use practices. The sediment shows distinct laminations and varying thickness of layers throughout the cores. Background deposition is composed of thin layers (<0.5 cm) of fine silts and clays, punctuated by thicker layers (3-25 cm) every 10 to 75 cm. These thick layers consist of distinctly textured units, generally fining upward. We interpret the thick layers in Loon Lake to be deposited by sediment-producing floods throughout much of the 1500-year lifespan of this lake. We will explore the relationship between sedimentation, land use, and climate forcing events to determine if the OFPA is having an effect on reducing sedimentation rates as a result of extreme magnitude storm events.

  1. Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment

    USGS Publications Warehouse

    McCoy, S.W.; Kean, Jason W.; Coe, Jeffrey A.; Tucker, G.E.; Staley, Dennis M.; Wasklewicz, T.A.

    2012-01-01

    Debris flows can dramatically increase their volume, and hence their destructive potential, by entraining sediment. Yet quantitative constraints on rates and mechanics of sediment entrainment by debris flows are limited. Using an in situ sensor network in the headwaters of a natural catchment we measured flow and bed properties during six erosive debris-flow events. Despite similar flow properties and thicknesses of bed sediment entrained across all events, time-averaged entrainment rates were significantly faster for bed sediment that was saturated prior to flow arrival compared with rates for sediment that was dry. Bed sediment was entrained from the sediment-surface downward in a progressive fashion and occurred during passage of dense granular fronts as well as water-rich, inter-surge flow.En massefailure of bed sediment along the sediment-bedrock interface was never observed. Large-magnitude, high-frequency fluctuations in total normal basal stress were dissipated within the upper 5 cm of bed sediment. Within this near surface layer, concomitant fluctuations in Coulomb frictional resistance are expected, irrespective of the influence of pore fluid pressure or fluctuations in shear stress. If the near-surface sediment was wet as it was overridden by a flow, additional large-magnitude, high-frequency pore pressure fluctuations were measured in the near-surface bed sediment. These pore pressure fluctuations propagated to depth at subsonic rates and in a diffusive manner. The depth to which large excess pore pressures propagated was typically less than 10 cm, but scaled as (D/fi)0.5, in which D is the hydraulic diffusivity and fi is the frequency of a particular pore pressure fluctuation. Shallow penetration depths of granular-normal-stress fluctuations and excess pore pressures demonstrate that only near-surface bed sediment experiences the full dynamic range of effective-stress fluctuations, and as a result, can be more easily entrained than deeper sediment. These data provide robust tests for mechanical models of entrainment and demonstrate that a debris flow over wet bed sediment will be larger than the same flow over dry bed sediment.

  2. Sheet flow and suspended sediment due to wave groups in a large wave flume

    USGS Publications Warehouse

    Dohmen-Janssen, C. M.; Hanes, D.M.

    2005-01-01

    A series of sand bed experiments was carried out in the Large Wave Flume in Hannover, Germany as a component of the SISTEX99 experiment. The experiments focussed on the dynamic sediment response due to wave group forcing over a flat sand bed in order to improve understanding of cross-shore sediment transport mechanisms and determine sediment concentrations, fluxes and net transport rates under these conditions. Sediment concentrations were measured within the sheet flow layer (thickness in the order of 10 grain diameters) and in the suspension region (thickness in the order of centimetres). Within the sheet flow layer, the concentrations are highly coherent with the instantaneous near-bed velocities due to each wave within the wave group. However, in the suspension layer concentrations respond much more slowly to changes in near-bed velocity. At several centimetres above the bed, the suspended sediment concentrations vary on the time scale of the wave group, with a time delay relative to the peak wave within the wave group. The thickness of the sheet flow changes with time. It is strongly coherent with the wave forcing, and is not influenced by the history or sequence of the waves within the group. The velocity of the sediment was also measured within the sheet flow layer some of the time (during the larger wave crests of the group), and the velocity of the fluid was measured at several cm above the sheet flow layer. The grain velocity and concentration estimates can be combined to estimate the sediment flux. The estimates were found to be consistent with previous measurements under monochromatic waves. Under these conditions, without any significant mean current, the sediment flux within the sheet flow layer was found to greatly exceed the sediment flux in the suspension layer. As a result, net transport rates under wave groups are similar to those under monochromatic waves. ?? 2004 Elsevier Ltd. All rights reserved.

  3. Petrography, mineralogy, and geochemistry of deep gravelly sands in the Eyreville B core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Bartosova, Katerina; Gier, Susanne; Horton, J. Wright; Koeberl, Christian; Mader, Dieter; Dypvik, Henning

    2010-01-01

    The ICDP–USGS Eyreville drill cores in the Chesapeake Bay impact structure reached a total depth of 1766 m and comprise (from the bottom upwards) basement-derived schists and granites/pegmatites, impact breccias, mostly poorly lithified gravelly sand and crystalline blocks, a granitic slab, sedimentary breccias, and postimpact sediments. The gravelly sand and crystalline block section forms an approximately 26 m thick interval that includes an amphibolite block and boulders of cataclastic gneiss and suevite. Three gravelly sands (basal, middle, and upper) are distinguished within this interval. The gravelly sands are poorly sorted, clast supported, and generally massive, but crude size-sorting and subtle, discontinuous layers occur locally. Quartz and K-feldspar are the main sand-size minerals and smectite and kaolinite are the principal clay minerals. Other mineral grains occur only in accessory amounts and lithic clasts are sparse (only a few vol%). The gravelly sands are silica rich (~80 wt% SiO2). Trends with depth include a slight decrease in SiO2 and slight increase in Fe2O3. The basal gravelly sand (below the cataclasite boulder) has a lower SiO2 content, less K-feldspar, and more mica than the higher sands, and it contains more lithic clasts and melt particles that are probably reworked from the underlying suevite. The middle gravelly sand (below the amphibolite block) is finer-grained, contains more abundant clay minerals, and displays more variable chemical compositions than upper gravelly sand (above the block). Our mineralogical and geochemical results suggest that the gravelly sands are avalanche deposits derived probably from the nonmarine Potomac Formation in the lower part of the target sediment layer, in contrast to polymict diamictons higher in the core that have been interpreted as ocean-resurge debris flows, which is in agreement with previous interpretations. The mineralogy and geochemistry of the gravelly sands are typical for a passive continental margin source. There is no discernible mixing with marine sediments (no glauconite or Paleogene marine microfossils noted) during the impact remobilization and redeposition. The unshocked amphibolite block and cataclasite boulder might have originated from the outer parts of the transient crater.

  4. Occurrence of Organic Compounds and Trace Elements in the Upper Passaic and Elizabeth Rivers and Their Tributaries in New Jersey, July 2003 to February 2004: Phase II of the New Jersey Toxics Reduction Workplan for New York-New Jersey Harbor

    USGS Publications Warehouse

    Wilson, Timothy P.; Bonin, Jennifer L.

    2008-01-01

    Samples of surface water and suspended sediment were collected from the Passaic and Elizabeth Rivers and their tributaries in New Jersey from July 2003 to February 2004 to determine the concentrations of selected chlorinated organic and inorganic constituents. This sampling and analysis was conducted as Phase II of the New York-New Jersey Harbor Estuary Workplan?Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. Samples were collected from three groups of tributaries: (1) the Second, Third, and Saddle Rivers; (2) the Pompton and upper Passaic Rivers; and (3) the West Branch and main stem of the Elizabeth River. The Second, Third, and Saddle Rivers were sampled near their confluence with the tidal Passaic River, but at locations not affected by tidal flooding. The Pompton and upper Passaic Rivers were sampled immediately upstream from their confluence at Two Bridges, N.J. The West Branch and the main stem of the Elizabeth River were sampled just upstream from their confluence at Hillside, N.J. All tributaries were sampled during low-flow discharge conditions using the protocols and analytical methods for organic constituents used in low-flow sampling in Phase I. Grab samples of streamflow also were collected at each site and were analyzed for trace elements (mercury, methylmercury, cadmium, and lead) and for suspended sediment, particulate organic carbon, and dissolved organic carbon. The measured concentrations and available historical suspended-sediment and stream-discharge data (where available) were used to estimate average annual loads of suspended sediment and organic compounds in these rivers. Total suspended-sediment loads for 1975?2000 were estimated using rating curves developed from historical U.S. Geological Survey (USGS) suspended-sediment and discharge data, where available. Average annual loads of suspended sediment, in millions of kilograms per year (Mkg/yr), were estimated to be 0.190 for the Second River, 0.23 for the Third River, 1.00 for the Saddle River, 1.76 for the Pompton River, and 7.40 for the upper Passaic River. On the basis of the available discharge records, the upper Passaic River was estimated to provide approximately 60 percent of the water and 80 percent of the total suspended-sediment load at the Passaic River head-of-tide, whereas the Pompton River provided roughly 20 percent of the total suspended-sediment load estimated at the head-of-tide. The combined suspended-sediment loads of the upper Passaic and Pompton Rivers (9.2 Mkg/yr), however, represent only 40 percent of the average annual suspended-sediment load estimated for the head-of-tide (23 Mkg/yr) at Little Falls, N.J. The difference between the combined suspended-sediment loads of the tributaries and the estimated load at Little Falls represents either sediment trapped upriver from the dam at Little Falls, additional inputs of suspended sediment downstream from the tributary confluence, or uncertainty in the suspended-sediment and discharge data that were used. The concentrations of total suspended sediment-bound polychlorinated biphenyls (PCBs) in the tributaries to the Passaic River were 194 ng/g (nanograms per gram) in the Second River, 575 ng/g in the Third River, 2,320 ng/g in the Saddle River, 200 ng/g in the Pompton River, and 87 ng/g in the upper Passic River. The dissolved PCB concentrations in the tributaries were 563 pg/L (picograms per liter) in the Second River, 2,510 pg/L in the Third River, 2,270 pg/L in the Saddle River, 887 pg/L in the Pompton River, and 1,000 pg/L in the upper Passaic River. Combined with the sediment loads and discharge, these concentrations resulted in annual loads of suspended sediment-bound PCBs, i

  5. Long-Life Self-Renewing Solar Reflector Stack

    DOEpatents

    Butler, Barry Lynn

    1997-07-08

    A long-life solar reflector includes a solar collector substrate and a base layer bonded to a solar collector substrate. The first layer includes a first reflective layer and a first acrylic or transparent polymer layer covering the first reflective layer to prevent exposure of the first reflective layer. The reflector also includes at least one upper layer removably bonded to the first acrylic or transparent polymer layer of the base layer. The upper layer includes a second reflective layer and a second acrylic or transparent polymer layer covering the second reflective layer to prevent exposure of the second reflective layer. The upper layer may be removed from the base reflective layer to expose the base layer, thereby lengthening the useful life of the solar reflector. A method of manufacturing a solar reflector includes the steps of bonding a base layer to a solar collector substrate, wherein the base reflective layer includes a first reflective layer and a first transparent polymer or acrylic layer covering the first reflective layer; and removably bonding a first upper layer to the first transparent polymer or acrylic layer of the base layer. The first upper layer includes a second reflective layer and a second transparent polymer or acrylic layer covering the second reflective layer to prevent exposure of the second reflective layer.

  6. Increased Power in Sediment Microbial Fuel Cell: Facilitated Mass Transfer via a Water-Layer Anode Embedded in Sediment.

    PubMed

    Lee, Yoo Seok; An, Junyeong; Kim, Bongkyu; Park, HyunJun; Kim, Jisu; Chang, In Seop

    2015-01-01

    We report a methodology for enhancing the mass transfer at the anode electrode of sediment microbial fuel cells (SMFCs), by employing a fabric baffle to create a separate water-layer for installing the anode electrode in sediment. The maximum power in an SMFC with the anode installed in the separate water-layer (SMFC-wFB) was improved by factor of 6.6 compared to an SMFC having the anode embedded in the sediment (SMFC-woFB). The maximum current density in the SMFC-wFB was also 3.9 times higher (220.46 mA/m2) than for the SMFC-woFB. We found that the increased performance in the SMFC-wFB was due to the improved mass transfer rate of organic matter obtained by employing the water-layer during anode installation in the sediment layer. Acetate injection tests revealed that the SMFC-wFB could be applied to natural water bodies in which there is frequent organic contamination, based on the acetate flux from the cathode to the anode.

  7. Rock magnetic properties of sediments from Lake Sanabria and its catchment (NW Spain): paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Larrasoaña, J. C.; Borruel, V.; Gómez-Paccard, M.; Rico, M.; Valero-Garces, B.; Moreno-Caballud, A.; Soto, R.

    2013-12-01

    Lake Sanabria is located in the NW Spanish mountains at 1000 m a.s.l., and constitutes the largest lake of glacial origin in the Iberian Peninsula. Here we present an environmental magnetic study of a Late Pleistocene-Holocene sediment core from Lake Sanabria and from different lithologies that crop out in its catchment, which includes Paleozoic plutonic, metamorphic and vulcanosedimentary rocks, and Quaternary deposits of glacial origin. This study was designed to complement sedimentologic and geochemical studies aimed at unraveling the climatic evolution of the NW Iberian Peninsula during the last deglaciation. Our results indicate that magnetite and pyrrhotite dominate the magnetic assemblage of both the sediments from the lower half of the studied sequence (25.6 - 13 cal kyr BP) deposited in a proglacial environment, and the Paleozoic rocks that make up most of the catchment of the lake. The occurrence of these minerals both in the catchment rocks and in the lake sediments indicates that sedimentation was then driven by the erosion of a glacial flour, which suffered minimal chemical transformation in response to a rapid and short routing to the lake. Sediments from the upper half of the studied sequence, accumulated after 12.4 cal kyr BP in a fluviolacustrine environment, contain magnetite and greigite. This points to a prominent role of post-depositional reductive dissolution, driven by a sharp increase in the accumulation of organic matter into the lake and the creation of anoxic conditions in the sediments, in shaping the magnetic assemblage of Holocene sediments. Pyrrhotite is stable under reducing conditions as opposed to magnetite, which is unstable. We therefore interpret that previous pedogenic processes occurred in the then deglaciated catchment of the lake were responsible for the oxidation of pyrrhotite and authigenic formation of magnetite, which survived subsequent reductive diagenesis given its initial larger concentrations. This interpretation is supported by the magnetic properties of Quaternary till sediments, which in some cases retain their original magnetic assemblage (magnetite and pyrrhotite) and in other cases include larger concentrations of magnetite. The Holocene sequence includes some discrete layers with a magnetic signature identical to that of the glacial flour. These layers are interpreted as being deposited during extreme runoff events that eroded Quaternary tills. The sharp change in magnetic properties observed in the lake sediments between 13 and 12.4 kyr BP supports the rapid deglaciation of the catchment of Lake Sanabria inferred in previous studies on the basis of sedimentological, geochemical and geomorphological data.

  8. Characteristics of the near-bottom suspended sediment field over the continental shelf off northern California based on optical attenuation measurements during STRESS and SMILE

    NASA Astrophysics Data System (ADS)

    Trowbridge, J. H.; Butman, B.; Limeburner, R.

    1994-08-01

    Time-series measurements of current velocity, optical attenuation and surface wave intensity obtained during the Sediment Transport Events on Shelves and Slopes (STRESS) experiments, combined with shipboard measurements of conductivity, temperature and optical attenuation obtained during the Shelf Mixed Layer Experiment (SMILE), provide a description of the sediment concentration field over the central and outer shelf off northern California. The questions addressed are: (1) existence and characteristics of bottom nepheloid layers and their relationship to bottom mixed layers; (2) characteristics of temporal fluctuations in sediment concentration and their relationship to waves and currents; (3) spatial scales over which suspended sediment concentrations vary horizontally; and (4) vertical distribution of suspended sediment.

  9. Suspended sediments from upstream tributaries as the source of downstream river sites

    NASA Astrophysics Data System (ADS)

    Haddadchi, Arman; Olley, Jon

    2014-05-01

    Understanding the efficiency with which sediment eroded from different sources is transported to the catchment outlet is a key knowledge gap that is critical to our ability to accurately target and prioritise management actions to reduce sediment delivery. Sediment fingerprinting has proven to be an efficient approach to determine the sources of sediment. This study examines the suspended sediment sources from Emu Creek catchment, south eastern Queensland, Australia. In addition to collect suspended sediments from different sites of the streams after the confluence of tributaries and outlet of the catchment, time integrated suspended samples from upper tributaries were used as the source of sediment, instead of using hillslope and channel bank samples. Totally, 35 time-integrated samplers were used to compute the contribution of suspended sediments from different upstream waterways to the downstream sediment sites. Three size fractions of materials including fine sand (63-210 μm), silt (10-63 μm) and fine silt and clay (<10 μm) were used to find the effect of particle size on the contribution of upper sediments as the sources of sediment after river confluences. And then samples were analysed by ICP-MS and -OES to find 41 sediment fingerprints. According to the results of Student's T-distribution mixing model, small creeks in the middle and lower part of the catchment were major source in different size fractions, especially in silt (10-63 μm) samples. Gowrie Creek as covers southern-upstream part of the catchment was a major contributor at the outlet of the catchment in finest size fraction (<10 μm) Large differences between the contributions of suspended sediments from upper tributaries in different size fractions necessitate the selection of appropriate size fraction on sediment tracing in the catchment and also major effect of particle size on the movement and deposition of sediments.

  10. How many upper Eocene microspherule layers: More than we thought

    NASA Technical Reports Server (NTRS)

    Hazel, Joseph E.

    1988-01-01

    The scientific controversy over the origin of upper Eocene tektites, microtektites and other microspherules cannot be logically resolved until it is determined just how many events are involved. The microspherule-bearing beds in marine sediments have been dated using standard biozonal techniques. Although a powerful stratigraphic tool, zonal biostratigraph has its limitations. One is that if an event, such as a microspherule occurrence, is observed to occur in a zone at one locality and then a similar event observed in the same zone at another locality, it still may be unwarranted to conclude that these events exactly correlate. To be in a zone a sample only need be between the fossil events that define the zone boundaries. It is often very difficult to accurately determine where within a zone one might be. Further, the zone defining events do not everywhere occur at the same points in time. That is, the ranges of the defining taxa are not always filled. Thus, the length of time represented by a zone (but not, of course, its chronozone) can vary from place to place. These problems can be offset by use of chronostratigraphic modelling techniques such as Graphic Correlation. This technique was used to build a Cretaceous and Cenozoic model containing fossil, magnetopolarity, and other events. The scale of the model can be demonstrated to be linear with time. This model was used to determine the chronostratigraphic position of upper Eocene microspherule layers.

  11. CRUST 5.1: A global crustal model at 5° x 5°

    USGS Publications Warehouse

    Mooney, Walter D.; Laske, Gabi; Masters, T. Guy

    1998-01-01

    We present a new global model for the Earth's crust based on seismic refraction data published in the period 1948–1995 and a detailed compilation of ice and sediment thickness. An extensive compilation of seismic refraction measurements has been used to determine the crustal structure on continents and their margins. Oceanic crust is modeled with both a standard model for normal oceanic crust, and variants for nonstandard regions, such as oceanic plateaus. Our model (CRUST 5.1) consists of 2592 5° × 5° tiles in which the crust and uppermost mantle are described by eight layers: (1) ice, (2) water, (3) soft sediments, (4) hard sediments, (5) crystalline upper, (6) middle, (7) lower crust, and (8) uppermost mantle. Topography and bathymetry are adopted from a standard database (ETOPO-5). Compressional wave velocity in each layer is based on field measurements, and shear wave velocity and density are estimated using recently published empirical Vp- Vs and Vp-density relationships. The crustal model differs from previous models in that (1) the thickness and seismic/density structure of sedimentary basins is accounted for more completely, (2) the velocity structure of unmeasured regions is estimated using statistical averages that are based on a significantly larger database of crustal structure, (3) the compressional wave, shear wave, and density structure have been explicitly specified using newly available constraints from field and laboratory studies. Thus this global crustal model is based on substantially more data than previous models and differs from them in many important respects. A new map of the thickness of the Earth's crust is presented, and we illustrate the application of this model by using it to provide the crustal correction for surface wave phase velocity maps. Love waves at 40 s are dominantly sensitive to crustal structure, and there is a very close correspondence between observed phase velocities at this period and those predicted by CRUST 5.1. We find that the application of crustal corrections to long-period (167 s) Rayleigh waves significantly increases the variance in the phase velocity maps and strengthens the upper mantle velocity anomalies beneath stable continental regions. A simple calculation of crustal isostacy indicates significant lateral variations in upper mantle density. The model CRUST 5.1 provides a complete description of the physical properties of the Earth's crust at a scale of 5° × 5° and can be used for a wide range of seismological and nonseismological problems.

  12. Non-local rheology of stony debris flow propagating over a cohesionless sediment bed

    NASA Astrophysics Data System (ADS)

    Lanzoni, Stefano; Gregoretti, Carlo

    2016-04-01

    Velocity profiles of gravel-water mixtures observed in flume experiments often exhibit a double-slope behavior, with a lower narrower region where the velocity increases slowly, and an upper wider region often exhibiting a nearly linear behavior. Even though the flow can be classified within the grain-inertia regime, the overall profile seems to not conform to the power law (with exponent 1.5) distribution obtained by integrating along the normal to the flow the dispersive stresses envisaged by Bagnold (1954) in his pioneer work. Note that this formulation neglects the contribution to the velocity profile of the quasi-static (frictional) stresses that tend to dominate close to an erodible sediment bottom. The present work investigates the possibility to find out a uniformly valid distribution of shear stress from the bottom to the flow surface. To this aim we follow a heuristic coherence length approach (GDR-MIDI, 2004) similar to the mixing length procedure commonly used to study the atmospheric boundary layer over canopy (see, e.g., Harmann and Finnegan, 2007). A database built on 64 systematic debris flow experiments is used to disclose the general features of velocity profiles that establish within the body of almost steady water-sediment flows and the dependence of transport sediment volumetric concentration on the relevant parameters. The almost steady water-sediment flows considered in the study were generated by releasing a prescribed water discharge on a saturated layer of sediment (specifically, 3 mm gravel, 6 mm gravel, and 3 mm glass spheres) initially placed in a 10 m long and 0.2 m wide laboratory flume. The analysis clearly indicates that stony debris flow conditions characterized the experiments. The mixing length does not result constant, as required by a Bagnold-like profile, but varies gradually, from zero at the flow surface, to a finite value near the erodible bottom. We discuss this structure in terms of shear stress distribution along the normal to the flow, with particular attention to the role played by frictional stresses near to the movable bed over which the debris flow propagates.

  13. Lateral trends and vertical sequences in estuarine sediments, Willapa Bay, Washington

    USGS Publications Warehouse

    Clifton, H. Edward; Phillips, L.

    1980-01-01

    Willapa Bay is a sizable estuary on the southern coast of Washington- Relatively unmodified in a geologic sense by human activity the bay provides an excellent example of modern depositional facies in an estuarine setting. Studies of these deposits indicate that consistent lateral trends exist in sediment texture and sedimentary structures. The texture changes from sandy at the mouth of the bay to muddy in its upper parts. In any part of the bay , sediment is coarsest in the channel bottoms, where lag deposits accumulate. The sediment tends to fine in an upslope direction and is finest in supratidal flat deposits of silt and clay. The nature of sedimentary structures depends on the combination of physical and biological processes and sediment textures. Bedforms exist wherever the bed is sandy. In the main tidal channels sandwaves and dunes up to 4 meters high occur. In tributary channels and at the margins of the main channel, at shallower depths and under less intense currents , the structures are generally less than a meter high. Current ripples occur in t he sandy bed of all of the tidal channels and in runoff channels cross the tidal flat. Symmetric long-crested ripples are produced by wave action over the sandy intertidal flat. Internal structures in the bay's sediment depend not only on the nature of the bedform but also on the rate of bioturbation relative to physical processes. Under fields of large sandwaves or dunes, medium- to large-scale tabular and trough crossbedding predominates. This crossbedding generally is unidirectional, reflecting the locally dominant current (ebb or flood). Ripple bedding predominates elsewhere in sandy sediment within the channels. Where sand transport is diminished, as on the floor of the upper tributary channels, bioturbation exceeds the rate of production of physical structures and bedding is destroyed. The depositional banks in such areas tend to be sites of rapid sediment accumulation and bedding in the form of interlayered sand (commonly ripple bedded) and mud persists. On intertidal flats the sediment accumulates slowly and bioturbation erases nearly all physical structures. Bedding is preserved only where deposition is locally rapid , as in topographic depressions or on the depositional banks of runoff channels, or where faunal activity is inhibited, as beneath mounds of blue-green algae. The rate of sedimentation is slower still on the supratidal flats, but the general paucity of faunal activity allows the preservation of thin alternations of fine sand , silt or clay. The lateral migration of the tidal channels produces vertical sequences in which topographically higher facies are superposed on one another. Near the mouth of the estuary the upward sequence: lag deposit — crossbedded sand — ripple or planar-bedded sand is typical. The crossbedding shows a general upward decrease in thickness and a progression from trough to tabular units. In the main tidal channel - in the central estuary and in sandy tributary channels, the typical vertical sequence resembles that near the mouth , with the exception that the sequence is capped by bioturbated sandy or muddy tide flat deposits. In the upper estuary , where muddy sediment predominates, a typical sequence shows the progression-. bioturbated lag deposit — gently dipping interlaminated sand and mud layers of the accretionary bank — bioturbated mud flat deposits — thinly laminated fine supratidal deposits.

  14. Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the upper Clark Fork River, Montana

    USGS Publications Warehouse

    Canfield, Timothy J.; Kemble, Nile E.; Brumbaugh, William G.; Dwyer, F. James; Ingersoll, Christopher G.; Fairchild, James F.

    1994-01-01

    The upper Clark Fork River, above Flathead River, is contaminated with large amounts of As, Cd, Cu, Pb, Mn, and Zn ores from past mining activities. The contaminated area extends from the Butte and Anaconda area to at least 230 km downstream to Milltown Reservoir. Both the upper Clark Fork River and Milltown Reservoir have been designated as U.S. Environmental Protection Agency Superfund sites because of metal-contaminated bottom sediments. We evaluated the impacts of past mining activities on the Clark Fork River ecosystem using benthic invertebrate community assessment, residue chemistry, and toxicity testing. Oligochaeta and Chironomidae generally accounted for over 90% of the benthic invertebrate community in the soft sediment depositional areas. Taxa of Oligochaeta and Chironomidae were predominantly pollution tolerant. Higher numbers of Chironomidae genera were present at stations with higher concentrations of metals in sediment identified as toxic by the amphipod Hyalella azteca in 28-d exposures. Frequency of mouthpart deformities in genera of Chironomidae was low and did not correspond to concentrations of metals in sediment. Total abundance of organisms/m2 did not correspond to concentrations of metals in the sediment samples. Chemical analyses, laboratory toxicity tests, and benthic community evaluations all provide evidence of metal-induced degradation to aquatic communities in both the reservoir and the river. Using a weight-of-evidence approach-the Sediment Quality Triad - provided good concurrence among measures of benthic community structure, sediment chemistry, and laboratory toxicity.

  15. The effect of bioturbation in pelagic sediments: Lessons from radioactive tracers and planktonic foraminifera in the Gulf of Aqaba, Red Sea

    NASA Astrophysics Data System (ADS)

    Steiner, Zvi; Lazar, Boaz; Levi, Shani; Tsroya, Shimon; Pelled, Omer; Bookman, Revital; Erez, Jonathan

    2016-12-01

    Studies of recent environmental perturbations often rely on data derived from marine sedimentary records. These records are known to imperfectly inscribe the true sequence of events, yet there is large uncertainty regarding the corrections that should be employed to accurately describe the sedimentary history. Here we show in recent records from the Gulf of Aqaba, Red Sea, how events of the abrupt disappearance of the planktonic foraminifer Globigerinoides sacculifer, and episodic deposition of the artificial radionuclide 137Cs, are significantly altered in the sedimentary record compared to their known past timing. Instead of the abrupt disappearance of the foraminifera, we observe a prolonged decline beginning at core depth equivalent to ∼30 y prior to its actual disappearance and continuing for decades past the event. We further observe asymmetric smoothing of the radionuclide peak. Utilization of advection-diffusion-reaction models to reconstruct the original fluxes based on the known absolute timing of the events reveal that it is imperative to use a continuous function to describe bioturbation. Discretization of bioturbation into mixed and unmixed layers significantly shifts the location of the modeled event. When bioturbation is described as a continuously decreasing function of depth, the peak of a very short term event smears asymmetrically but remains in the right depth. When sudden events repeat while the first spike is still mixed with the upper sediment layer, bioturbation unifies adjacent peaks. The united peak appears at an intermediate depth that does not necessarily correlate with the timing of the individual events. In a third case, a long lasting sedimentary event affected by bioturbation, the resulting peak is rather weak compared to the actual event and appears deeper in the sediment column than expected based on the termination of the event. The model clearly shows that abrupt changes can only endure in the record if a thick sediment layer settled on the sediment-water interface at once or if bioturbation rates decreased to very low values for a prolonged period of time. In any other case smearing by bioturbation makes an abrupt event appear to have started shortly before the real timing and end long after its true termination.

  16. Sediment sources and transport in Kings Bay and vicinity, Georgia and Florida, July 8-16, 1982

    USGS Publications Warehouse

    Radtke, D.B.

    1985-01-01

    Water quality, bottom-material, suspended-sediment, and current velocity data were collected during July 1982 in Kings Bay and vicinity to provide information on the source and transport of estuarine sediments. Kings Bay and Cumberland Sound, the site of the Poseidon Submarine Base in southeast Georgia, are experiencing high rates of sediment deposition and accumulation, which are causing serious navigational and operational problems. Velocity, bathymetry, turbidity, and bottom-material data suggest sediment transported from lower Kings Bay is accumulating deposits of suspended sediment transported from Cumberland Sound on the floodtide and from upper Kings Bay and the tidal march drained by Marianna Creek on the ebbtide. Suspended-sediment discharges computed for consecutive 13-hr ebbtides and floodtides showed that a net quantity of suspended sediment was transported seaward from upper Kings Bay and Marianna Creek. A net landward transport of suspended sediment computed at the St. Marys Entrance indicated areas seaward of St. Marys Entrance may be supplying sediment to the shoaling areas of the estuary, including lower Kings Bay. (USGS)

  17. Numerical simulations of sand production in interbedded hydrate-bearing sediments during depressurization

    USGS Publications Warehouse

    Uchida, Shun; Lin, Jeen-Shang; Myshakin, Evgeniy; Seol, Yongkoo; Collett, Timothy S.; Boswell, Ray

    2017-01-01

    Geomechanical behavior of hydrate-bearing sediments during gas production is complex, involving changes in hydrate-dependent mechanical properties. When interbedded clay layers are present, the complexity is more pronounced because hydrate dissociation tends to occur preferentially in the sediments adjacent to the clay layers due to clay layers acting as a heat source. This would potentially lead to shearing deformation along the sand/clay contacts and may contribute to solid migration, which hindered past field-scale gas production tests. This paper presents a near-wellbore simulation of sand/clay interbedded hydrate-bearing sediments that have been subjected to depressurization and discusses the effect of clay layers on sand production.

  18. Sedimentation in a Submarine Seamount Apron at Site U1431, International Ocean Discovery Program Expedition 349, South China Sea

    NASA Astrophysics Data System (ADS)

    Dadd, K. A.; Clift, P. D.; Hyun, S.; Jiang, T.; Liu, Z.

    2014-12-01

    International Ocean Discovery Program (IODP) Expedition 349 Site U1431 is located near the relict spreading ridge in the East Subbasin of the South China Sea. Holes at this site were drilled close to seamounts and intersected the volcaniclastic apron. Volcaniclastic breccia and sandstone at Site U1431 are dated as late middle Miocene to early late Miocene (~8-13 Ma), suggesting a 5 m.y. duration of seamount volcanism. The apron is approximately 200 m thick and is sandwiched between non-volcaniclastic units that represent the background sedimentation. These comprise dark greenish gray clay, silt, and nannofossil ooze interpreted as turbidite and hemipelagic deposits that accumulated at abyssal water depths. At its base, the seamount sequence begins with dark greenish gray sandstone, siltstone, and claystone in upward fining sequences interpreted as turbidites intercalated with minor intervals of volcaniclastic breccia. Upsection the number and thickness of breccia layers increases with some beds up to 4.8 m and possibly 14.5 m thick. The breccia is typically massive, ungraded, and poorly sorted with angular to subangular basaltic clasts, as well as minor reworked subrounded calcareous mudstone, mudstone, and sandstone clasts. Basaltic clasts include nonvesicular aphyric basalt, sparsely vesicular aphyric basalt, highly vesicular aphyric basalt, and nonvesicular glassy basalt. Mudstone clasts are clay rich and contain foraminifer fossils. The matrix comprises up to 40% of the breccia beds and is a mix of clay, finer grained altered basalt clasts, and mafic vitroclasts with rare foraminifer fossils. Some layers have calcite cement between clasts. Volcaniclastic sandstone and claystone cycles interbedded with the breccia layers have current ripples and parallel laminations indicative of high-energy flow conditions during sedimentation. The breccia beds were most likely deposited as a series of debris flows or grain flows. This interpretation is supported by their massive structure, poor sorting, and reverse-graded bases. The upper part of the apron grades back into the background clay, silt and nannofossil ooze sedimentation with minor volcaniclastic sand and silt.

  19. Constraints on crustal structure in the Southeastern United States from the SUGAR 2 refraction seismic refraction experiment

    NASA Astrophysics Data System (ADS)

    Marzen, R. E.; Shillington, D. J.; Lizarralde, D.; Harder, S. H.

    2016-12-01

    The Southeastern United States is an ideal location to study the interactions between continental collision, extensive but short-lived magmatism, and continental rifting. Continental collision during the Alleghenian Orogeny ( 290 Ma) formed the supercontinent Pangea. Extension leading to the breakup of Pangea began 230 Ma, forming the South Georgia Basin and other rift basins. The extensive Central Atlantic Magmatic Province (CAMP) magmatism was emplaced at 200 Ma, and continental separation occurred afterwards. During these processes, part of the African continent was added to North America. Prior work has raised questions including (1) the location and geometry of the suture zone and implications for the style of collision (thin-skinned versus thick-skinned), (2) the role of pre-existing structures on later rifting, and (3) the distribution of magmatism, and possible relationships between magmatism and rifting. To address these questions, we present preliminary velocity models for the 400-km-long refraction seismic line from the SUwanee Suture and GA Rift basin experiment (SUGAR) Line 2. This line is central to CAMP magmatism, and crosses the South Georgia rift basin and two hypothesized locations for the ancient suture zone. The data were collected in August 2015 by a team of over 40 students and scientists. Fifteen shots spaced at 20-40 km were recorded by 1981 Texans spaced at 250 m. We observe refractions from the basin, crust, and upper mantle, and wide-angle reflections from the base of the sediments, within the crust, and from the Moho. Prominent mid crustal reflections may arise from the top of elevated lower crustal velocities and possible lower crustal layering. The starting velocity model and constraints on the upper sedimentary basin velocity structure are obtained through forward modeling, which show basin sediment thickness increasing to the South. We then invert for smooth 2D velocity structure using first arrivals (FAST) and a layered velocity model using refractions and reflections (RAYINVR) to evaluate the crust and upper mantle velocity structure. Model results will be compared to other geological and geophysical data, including the roughly parallel SUGAR Line 1, to examine along-strike changes in rift structure, suture structure, and evidence of magmatism.

  20. Evolution of Slow to Intermediate-Spreading Oceanic Crust in the South Atlantic: The Effects of Age, Sediment Thickness, and Spreading Rate on the Heterogeneity of Upper Crustal Velocities

    NASA Astrophysics Data System (ADS)

    Kardell, D. A.; Christeson, G. L.; Reece, R.; Carlson, R. L.

    2017-12-01

    The upper section of oceanic crust (layer 2A) commonly exhibits relatively low seismic velocities due to abundant pore and crack space created by the extrusive emplacement of magma and extensional faulting at the spreading ridge. While this is generally true for all spreading rates, previous studies have shown that slow seafloor spreading can yield much higher levels of upper crustal heterogeneity than observed for faster spreading rates. We use a recent multichannel seismic dataset collected with a 12.5 km streamer during the CREST cruise (Crustal Reflectivity Experiment Southern Transect) to build eleven 60-80 km-long tomographic velocity models. These two-dimensional models include both ridge-normal and ridge-parallel orientations and cover oceanic crust produced at slow to intermediate spreading rates. Crustal ages range between 0 and 70 m.y., spreading rates range between slow-spreading and intermediate-spreading, and sedimentary cover thickness ranges from 0 m close to the spreading center to 500 m proximal to the Rio Grande Rise. Our results show a trend of increasing layer 2A velocities with age out to the midpoint of the seismic transect. There is a rapid increase in velocities from 2.8 km/s near the ridge to 4.3 km/s around 10 Ma, and a slower increase to velocities around 5 km/s in 37 m.y. old crust. While this indicates an ongoing evolution in oceanic crust older than expected, the velocities do level off in the older half of the transect, averaging 5 km/s. Crust covered by a thicker sedimentary section can exhibit velocities up to 1 km/s faster than adjacent non-sedimented crust, accounting for much of the local variations. This is possibly due to the effects of a sealed hydrothermal system. We also observe a more heterogeneous velocity structure parallel to the ridge than in the ridge-normal orientation, and more velocity heterogeneity for slow-spreading crust compared to intermediate-spreading crust.

  1. The potential of carbon and nitrogen isotopes to conservatively discriminate between subsoil sediment sources

    NASA Astrophysics Data System (ADS)

    Laceby, J. Patrick; Olley, Jon

    2013-04-01

    Moreton Bay, in South East Queensland, Australia, is a Ramsar wetland of international significance. A decline of the bay's ecosystem health has been primarily attributed to sediments and nutrients from catchment sources. Sediment budgets for three catchments indicated gully erosion dominates the supply of sediment in Knapp Creek and the Upper Bremer River whereas erosion from cultivated soils is the primary sediment source in Blackfellow Creek. Sediment tracing with fallout-radionuclides confirmed subsoil erosion processes dominate the supply of sediment in Knapp Creek and the Upper Bremer River whereas in Blackfellow Creek cultivated and subsoil sources contribute >90% of sediments. Other sediment properties are required to determine the relative sediment contributions of channel bank, gully and cultivated sources in these catchments. The potential of total organic carbon (TOC), total nitrogen (TN), and carbon and nitrogen stable isotopes (δ13C, δ15N) to conservatively discriminate between subsoil sediment sources is presented. The conservativeness of these sediment properties was examined through evaluating particle size variations in depth core soil samples and investigating whether they remain constant in source soils over two sampling occasions. Varying conservative behavior and source discrimination was observed. TN in the

  2. Evaluating external nutrient and suspended-sediment loads to Upper Klamath Lake, Oregon, using surrogate regressions with real-time turbidity and acoustic backscatter data

    USGS Publications Warehouse

    Schenk, Liam N.; Anderson, Chauncey W.; Diaz, Paul; Stewart, Marc A.

    2016-12-22

    Executive SummarySuspended-sediment and total phosphorus loads were computed for two sites in the Upper Klamath Basin on the Wood and Williamson Rivers, the two main tributaries to Upper Klamath Lake. High temporal resolution turbidity and acoustic backscatter data were used to develop surrogate regression models to compute instantaneous concentrations and loads on these rivers. Regression models for the Williamson River site showed strong correlations of turbidity with total phosphorus and suspended-sediment concentrations (adjusted coefficients of determination [Adj R2]=0.73 and 0.95, respectively). Regression models for the Wood River site had relatively poor, although statistically significant, relations of turbidity with total phosphorus, and turbidity and acoustic backscatter with suspended sediment concentration, with high prediction uncertainty. Total phosphorus loads for the partial 2014 water year (excluding October and November 2013) were 39 and 28 metric tons for the Williamson and Wood Rivers, respectively. These values are within the low range of phosphorus loads computed for these rivers from prior studies using water-quality data collected by the Klamath Tribes. The 2014 partial year total phosphorus loads on the Williamson and Wood Rivers are assumed to be biased low because of the absence of data from the first 2 months of water year 2014, and the drought conditions that were prevalent during that water year. Therefore, total phosphorus and suspended-sediment loads in this report should be considered as representative of a low-water year for the two study sites. Comparing loads from the Williamson and Wood River monitoring sites for November 2013–September 2014 shows that the Williamson and Sprague Rivers combined, as measured at the Williamson River site, contributed substantially more suspended sediment to Upper Klamath Lake than the Wood River, with 4,360 and 1,450 metric tons measured, respectively.Surrogate techniques have proven useful at the two study sites, particularly in using turbidity to compute suspended-sediment concentrations in the Williamson River. This proof-of-concept effort for computing total phosphorus concentrations using turbidity at the Williamson and Wood River sites also has shown that with additional samples over a wide range of flow regimes, high-temporal-resolution total phosphorus loads can be estimated on a daily, monthly, and annual basis, along with uncertainties for total phosphorus and suspended-sediment concentrations computed using regression models. Sediment-corrected backscatter at the Wood River has potential for estimating suspended-sediment loads from the Wood River Valley as well, with additional analysis of the variable streamflow measured at that site. Suspended-sediment and total phosphorus loads with a high level of temporal resolution will be useful to water managers, restoration practitioners, and scientists in the Upper Klamath Basin working toward the common goal of decreasing nutrient and sediment loads in Upper Klamath Lake.

  3. Effect of water-column pH on sediment-phosphorus release rates in Upper Klamath Lake, Oregon, 2001

    USGS Publications Warehouse

    Fisher, Lawrence H.; Wood, Tamara M.

    2004-01-01

    Sediment-phosphorus release rates as a function of pH were determined in laboratory experiments for sediment and water samples collected from Shoalwater Bay in Upper Klamath Lake, Oregon, in 2001. Aerial release rates for a stable sediment/water interface that is representative of the sediment surface area to water column volume ratio (1:3) observed in the lake and volumetric release rates for resuspended sediment events were determined at three different pH values (8.1, 9.2, 10.2). Ambient water column pH (8.1) was maintained by sparging study columns with atmospheric air. Elevation of the water column pH to 9.2 was achieved through the removal of dissolved carbon dioxide by sparging with carbon dioxide-reduced air, partially simulating water chemistry changes that occur during algal photosynthesis. Further elevation of the pH to 10.2 was achieved by the addition of sodium hydroxide, which doubled average alkalinities in the study columns from about 1 to 2 milliequivalents per liter. Upper Klamath Lake sediments collected from the lake bottom and then placed in contact with lake water, either at a stable sediment/water interface or by resuspension, exhibited an initial capacity to take up soluble reactive phosphorus (SRP) from the water column rather than release phosphorus to the water column. At a higher pH this initial uptake of phosphorus is slowed, but not stopped. This initial phase was followed by a reversal in which the sediments began to release SRP back into the water column. The release rate of phosphorus 30 to 40 days after suspension of sediments in the columns was 0.5 mg/L/day (micrograms per liter per day) at pH 8, and 0.9 mg/L/day at pH 10, indicating that the higher pH increased the rate of phosphorus release by a factor of about two. The highest determined rate of release was approximately 10% (percent) of the rate required to explain the annual internal loading to Upper Klamath Lake from the sediments as calculated from a lake-wide mass balance and observed in total phosphorus data collected at individual locations.

  4. Hydrocarbon pollution in the sediment from the Jarzouna-Bizerte coastal area of Tunisia (Mediterranean Sea).

    PubMed

    Zrafi-Nouira, I; Khedir-Ghenim, Z; Zrafi, F; Bahri, R; Cheraeif, I; Rouabhia, M; Saidane-Mosbahi, D

    2008-06-01

    This study investigated the presence and origin of hydrocarbon pollution in industrial waste water sediments found near the Jarzouna (Bizerte, Tunisia) oil refinery. Analyses of surface sediments (layer 1) and deep sediments (layer 2) showed that Total Hydrocarbon (TH) concentrations ranged from 602 +/- 7.638 microg/g in layer-1 to 1270 +/- 2.176 microg/g in layer-2. The results suggest that the deeper the sediment, the higher the level of total hydrocarbon found. The sedimentary Non Aromatic Hydrocarbon (NAH) and Aromatic Hydrocarbon (AH) concentrations ranged from 66.22 +/- 1.516 to 211.82 +/- 10.670 microg/g for NAH, and from 13.84 +/- 0.180 to 115.60 +/- 2.479 microg/g for AH. The high variability of these concentrations was associated with the location of the sediment collection sites. Aliphatic biomarker analysis revealed petroleum contamination close to the refinery rejection site, and biogenic sources further away. Petroleum contamination may be associated with increased industrial activity in the area of Jarzouna-Bizerte in the Mediterranean Sea.

  5. IODP Expedition 351 Lithostratigraphy: Volcaniclastic Record of Izu-Bonin-Mariana (IBM) Arc Initiation

    NASA Astrophysics Data System (ADS)

    Barth, A. P.; Brandl, P. A.; Li, H.; Hickey-Vargas, R.; Jiang, F.; Kanayama, K.; Kusano, Y.; Marsaglia, K. M.; McCarthy, A.; Meffre, S.; Savov, I. P.; Tepley, F. J., III; Yogodzinski, G. M.

    2014-12-01

    The destruction of lithospheric plates by subduction is a fundamentally important process leading to arc magmatism and the creation of continental crust, yet subduction initiation and early magmatic arc evolution remain poorly understood. For many arc systems, onset of arc volcanism and early evolution are obscured by metamorphism or the record is deeply buried; however, initial products of arc systems may be preserved in forearc and backarc sedimentary records. IODP Expedition 351 recovered this history from the dispersed ash and pyroclast record in the proximal rear-arc of the northern IBM system west of the Kyushu-Palau Ridge. Drilling at Site U1438 in the Amami Sankaku Basin recovered a thick volcaniclastic record of subduction initiation and the early evolution of the Izu-Bonin Arc. A 160-m thick section of Neogene sediment overlies 1.3 kilometers of Paleogene volcaniclastic rocks with andesitic average composition; this volcaniclastic section was deposited on mafic volcanic basement rocks. The thin upper sediment layer is primarily terrigenous, biogenic and volcaniclastic mud and ooze with interspersed ash layers. The underlying Eocene to Oligocene volcaniclastic rocks are 33% tuffaceous mudstone, 61% tuffaceous sandstone, and 6% conglomerate with volcanic and rare sedimentary clasts commonly up to pebble and rarely to cobble size. The clastic section is characterized by repetitive conglomerate and sandstone-dominated intervals with intervening mudstone-dominated intervals, reflecting waxing and waning of coarse arc-derived sediment inputs through time. Volcanic lithic clasts in sandstones and conglomerates range from basalt to rhyolite in composition and include well-preserved pumice, reflecting a lithologically diverse and compositionally variable arc volcanic source.

  6. Zeolite-clay mineral zonation of volcaniclastic sediments within the McDermitt caldera complex of Nevada and Oregon

    USGS Publications Warehouse

    Glanzman, Richard K.; Rytuba, James J.

    1979-01-01

    Volcaniclastic sediments deposited in the moat of the collapsed McDermitt caldera complex have been altered chiefly to zeolites and potassium feldspar. The original rhyolitic and peralkaline ash-flow tuffs are included in conglomerates at the caldera rims and grade into a lacustrine series near the center of the collapse. The tuffs show a lateral zeolitic alteration from almost fresh glass to clinoptilolite, clinoptilolite-mordenite, and erionite; to analcime-potassium feldspar; and finally to potassium feldspar. Vertical zonation is in approximately the same order. Clay minerals in associated mudstones, on the other hand, show little lateral variation but a distinct vertical zonation, having a basal dioctahedral smectite, a medial trioctahedral smectite, and an upper dioctahedral smectite. The medial trioctahedral smectite is enriched in lithium (as much as 6,800 ppm Li). Hydrothermal alteration of the volcaniclastic sediments, forming both mercury and uranium deposits, caused a distinct zeolite and clay-mineral zonation within the general lateral zonation. The center of alteration is generally potassium feldspar, commonly associated with alunite. Potassium feldspar grades laterally and vertically to either clinoptilolite or clinoptilolite-mordenite, generally associated with gypsum. This zone then grades vertically and laterally into fresh glass. The clay minerals are a dioctahedral smectite, a mixed-layer clay mineral, and a 7-A clay mineral. The mixed-layer and 7-A clay minerals are associated with the potassium feldspar-alunite zone of alteration, and the dioctahedral smectite is associated with clinoptilolite. This mineralogical zonation may be an exploration guide for mercury and uranium mineralization in the caldera complex environment.

  7. Slope failures and timing of turbidity flows north of Puerto Rico

    USGS Publications Warehouse

    ten Brink, Uri S.; Chaytor, Jason D.

    2014-01-01

    The submerged carbonate platform north of Puerto Rico terminates in a high (3,000–4,000 m) and in places steep (>45°) slope characterized by numerous landslide scarps including two 30–50 km-wide amphitheater-shaped features. The origin of the steep platform edge and the amphitheaters has been attributed to: (1) catastrophic failure, or (2) localized failures and progressive erosion. Determining which of the two mechanisms has shaped the platform edge is critically important in understanding landslide-generated tsunami hazards in the region. Multibeam bathymetry, seismic reflection profiles, and a suite sediment cores from the Puerto Rico Trench and the slope between the trench and the platform edge were used to test these two hypotheses. Deposits within trench axis and at the base of the slope are predominantly composed of sandy carbonate turbidites and pelagic sediment with inter-fingering of chaotic debris units. Regionally-correlated turbidites within the upper 10 m of the trench sediments were dated between ∼25 and 22 kyrs and ∼18–19 kyrs for the penultimate and most recent events, respectively. Deposits on the slope are laterally discontinuous and vary from thin layers of fragmented carbonate platform material to thick pelagic layers. Large debris blocks or lobes are absent within the near-surface deposits at the trench axis and the base of slope basins. Progressive small-scale scalloping and self-erosion of the carbonate platform and underlying stratigraphy appears to be the most likely mechanism for recent development of the amphitheaters. These smaller scale failures may lead to the generation of tsunamis with local, rather than regional, impact.

  8. Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Shao, Zongze; Cui, Zhisong; Dong, Chunming; Lai, Qiliang; Chen, Liang

    2010-05-01

    Little is known about the types and concentrations of polycyclic aromatic hydrocarbons (PAHs) existing in the deep-sea subsurface environment, which is believed to be cold, oligothrophic and of high static pressure. PAHs in the upper layers of the water column are unavoidably subjected to degradation while they are deposited to the sea floor and become embedded in the deep-sea sediment. In this report, a high concentration of PAHs was discovered in the sediment 2.7 m beneath the bottom surface at a water depth of 3962 m on the Mid-Atlantic Ridge (MAR). The total concentration of PAHs was 445 ng (g dry wt sediment) -1. Among the seven detected PAHs, the concentrations of phenanthrene (222 ng g -1) and fluorene (79 ng g -1) were relatively high. In addition, PAH-degrading bacteria were found within the sediments. As in a previously detected site on the MAR, in the PAH-enriched region of this site, a bacterium of the genus Cycloclasticus was found to be the predominant isolate detected by PCR-DGGE analysis. In addition, bacteria of the Halomonas, Marinobacter, Alcanivorax, Thalassospira and Maricaulis genera, were also included in the PAH-degrading community. In summary, a high concentration of PAHs was detected in the subsurface of the deep-sea sediment, and once again, the Cycloclasticus bacterium was confirmed to be a ubiquitous marine PAH degrader even in the subsurface marine environment. Considering the abundance of PAHs therein, biodegradation is thus thought to be inactive, probably because of the low temperature, limited oxygen and/or limited nutrients.

  9. Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India.

    PubMed

    Kumar, Manoj; Ramanathan, A L; Rahman, Mohammad Mahmudur; Naidu, Ravi

    2016-12-15

    Concentrations of inorganic forms [arsenite, As(III) and arsenate, As(V) of arsenic (As) present in groundwater, agricultural soils and subsurface sediments located in the middle Gangetic plain of Bihar, India were determined. Approximately 73% of the groundwater samples (n=19) show As(III) as the dominant species while 27% reveals As(V) was the dominant species. The concentration of As(III) in agricultural soil samples varies from not detectable to 40μg/kg and As(V) was observed as the major species (ranging from 1050 to 6835μg/kg) while the total As concentration varied from 3528 to 14,690μg/kg. Total extracted concentration of As was higher in the subsurface sediments (range 9119-20,056μg/kg in Methrapur and 4788-19,681μg/kg in Harail Chapar) than the agricultural soil, indicating the subsurface sediment as a source of As. Results of X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) revealed the presence of hematite and goethite throughout the vertical section below while magnetite was observed only in the upper oxidized layer at Methrapur and Harail Chapar. Alteration of Fe-oxides and presence of fibrous goethite indicating presence of diagenetic sediment. Siderite plays a crucial role as sinks to the As in subsurface sediments. The study also concluded that decomposition of organic matter present in dark and grey sections promote the redox conditions and trigger mobilization of As into groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis

    NASA Astrophysics Data System (ADS)

    Armstrong-Altrin, John S.; Machain-Castillo, María Luisa; Rosales-Hoz, Leticia; Carranza-Edwards, Arturo; Sanchez-Cabeza, Joan-Albert; Ruíz-Fernández, Ana Carolina

    2015-03-01

    The aim of this work is to constrain the provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico (~1089-1785 m water depth). To achieve this, 10 piston sediment cores (~5-5.5 m long) were studied for mineralogy, major, trace and rare earth element geochemistry. Samples were analyzed at three core sections, i.e. upper (0-1 cm), middle (30-31 cm) and lower (~300-391 cm). The textural study reveals that the core sediments are characterized by silt and clay fractions. Radiocarbon dating of sediments for the cores at different levels indicated a maximum of ~28,000 year BP. Sediments were classified as shale. The chemical index of alteration (CIA) values for the upper, middle, and lower sections revealed moderate weathering in the source region. The index of chemical maturity (ICV) and SiO2/Al2O3 ratio indicated low compositional maturity for the core sediments. A statistically significant correlation observed between total rare earth elements (∑REE) versus Al2O3 and Zr indicated that REE are mainly housed in detrital minerals. The North American Shale Composite (NASC) normalized REE patterns, trace element concentrations such as Cr, Ni and V, and the comparison of REE concentrations in sediments and source rocks indicated that the study area received sediments from rocks intermediate between felsic and mafic composition. The enrichment factor (EF) results indicated that the Cd and Zn contents of the upper section sediments were influenced by an anthropogenic source. The trace element ratios and authigenic U content of the core sediments indicated the existence of an oxic depositional environment.

  11. Identifying cryptotephra units using correlated rapid, nondestructive methods: VSWIR spectroscopy, X-ray fluorescence, and magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    McCanta, Molly C.; Hatfield, Robert G.; Thomson, Bradley J.; Hook, Simon J.; Fisher, Elizabeth

    2015-12-01

    Understanding the frequency, magnitude, and nature of explosive volcanic eruptions is essential for hazard planning and risk mitigation. Terrestrial stratigraphic tephra records can be patchy and incomplete due to subsequent erosion and burial processes. In contrast, the marine sedimentary record commonly preserves a more complete historical record of volcanic activity as individual events are archived within continually accumulating background sediments. While larger tephra layers are often identifiable by changes in sediment color and/or texture, smaller fallout layers may also be present that are not visible to the naked eye. These cryptotephra are commonly more difficult to identify and often require time-consuming and destructive point counting, petrography, and microscopy work. Here we present several rapid, nondestructive, and quantitative core scanning methodologies (magnetic susceptibility, visible to shortwave infrared spectroscopy, and XRF core scanning) which, when combined, can be used to identify the presence of increased volcaniclastic components (interpreted to be cryptotephra) in the sedimentary record. We develop a new spectral parameter (BDI1000VIS) that exploits the absorption of the 1 µm near-infrared band in tephra. Using predetermined mixtures, BDI1000VIS can accurately identify tephra layers in concentrations >15-20%. When applied to the upper ˜270 kyr record of IODP core U1396C from the Caribbean Sea, and verified by traditional point counting, 29 potential cryptotephra layers were identified as originating from eruptions of the Lesser Antilles Volcanic Arc. Application of these methods in future coring endeavors can be used to minimize the need for physical disaggregation of valuable drill core material and allow for near-real-time recognition of tephra units, both visible and cryptotephra. This article was corrected on 23 DEC 2015. See the end of the full text for details.

  12. Terminal zone glacial sediment transfer at a temperate overdeepened glacier system

    NASA Astrophysics Data System (ADS)

    Swift, D. A.; Cook, S. J.; Graham, D. J.; Midgley, N. G.; Fallick, A. E.; Storrar, R.; Toubes Rodrigo, M.; Evans, D. J. A.

    2018-01-01

    Continuity of sediment transfer through glacial systems is essential to maintain subglacial bedrock erosion, yet transfer at temperate glaciers with overdeepened beds, where subglacial fluvial sediment transport should be greatly limited by adverse slopes, remains poorly understood. Complex multiple transfer processes in temperate overdeepened systems has been indicated by the presence of large frontal moraine systems, supraglacial debris of mixed transport origin, thick basal ice sequences, and englacial thrusts and eskers. At Svínafellsjökull, thrusts comprising decimetre-thick debris-rich bands of stratified facies ice of basal origin, with a coarser size distribution and higher clast content than that observed in basal ice layers, contribute substantially to the transfer of subglacial material in the terminal zone. Entrainment and transfer of material occurs by simple shear along the upper surface of bands and by strain-induced deformation of stratified and firnified glacier ice below. Thrust material includes rounded and well-rounded clasts that are also striated, indicating that fluvial bedload is deposited as subglacial channels approach the overdeepening and then entrained along thrusts. Substantial transfer also occurs within basal ice, with facies type and debris content dependent on the hydrological connectedness of the adverse slope. A process model of transfer at glaciers with terminal overdeepenings is proposed, in which the geometry of the overdeepening influences spatial patterns of ice deformation, hydrology, and basal ice formation. We conclude that the significance of thrusting in maintaining sediment transfer continuity has likely been overlooked by glacier sediment budgets and glacial landscape evolution studies.

  13. Potential Sedimentary Evidence of Two Closely Spaced Tsunamis on the West Coast of Aceh, Indonesia

    NASA Astrophysics Data System (ADS)

    Monecke, Katrin; Meilianda, Ella; Rushdy, Ibnu; Moena, Abudzar; Yolanda, Irvan P.

    2016-04-01

    Recent research in the coastal regions of Aceh, Indonesia, an area that was largely affected by the 2004 Sumatra Andaman earthquake and ensuing Indian Ocean tsunami, suggests the possibility that two closely spaced tsunamis occurred at the turn of the 14th to 15th century (Meltzner et al., 2010; Sieh et al., 2015). Here, we present evidence of two buried sand layers in the coastal marshes of West Aceh, possibly representing these penultimate predecessors of the 2004 tsunami. We discovered the sand layers in an until recently inaccessible area of a previously studied beach ridge plain about 15 km North of Meulaboh, West Aceh. Here, the 2004 tsunami left a continuous, typically a few cm thick sand sheet in the coastal hinterland in low-lying swales that accumulate organic-rich deposits and separate the sandy beach ridges. In keeping with the long-term progradation of the coastline, older deposits have to be sought after further inland. Using a hand auger, the buried sand layers were discovered in 3 cores in a flooded and highly vegetated swale in about 1 km distance to the shoreline. The pair of sand layers occurs in 70-100 cm depth and overlies 40-60 cm of dark-brown peat that rests on the basal sand of the beach ridge plain. The lower sand layer is only 1-6 cm thick, whereas the upper layer is consistently thicker, measuring 11-17 cm, with 8-14 cm of peat in between sand sheets. Both layers consist of massive, grey, medium sand and include plant fragments. They show very sharp upper and lower boundaries clearly distinguishing them from the surrounding peat and indicating an abrupt depositional event. A previously developed age model for sediments of this beach ridge plain suggest that this pair of layers could indeed correlate to a nearby buried sand sheet interpreted as tsunamigenic and deposited soon after 1290-1400AD (Monecke et al., 2008). The superb preservation at this new site allows the clear distinction of two depositional events, which, based on a first estimate of sedimentation rates, are separated by only a few decades. Future microfossil and grain size analysis as well as radiocarbon dating are necessary to assertively interpret the origin, depositional characteristics and age of the two sand layers. Meltzner et al. (2010): Coral evidence for earthquake recurrence and an A.D. 1390 - 1455 earthquake cluster at the south end of the 2004 Aceh-Andaman rupture. J. Geophys. Res. 115, B10402. Sieh et al. (2015): Penultimate predecessors of the 2004 Indian Ocean tsunami in Aceh, Sumatra: Stratigraphic, archeological and historical evidence. J. Geophys. Res. Solid Earth, 120, 308-325. Monecke et al. (2008): A 1,000-year sedimentary record of tsunami recurrence in northern Sumatra. Nature, 455, 1232-1234.

  14. A Study of the Physical Processes of an Advection Fog BoundaryLayer

    NASA Astrophysics Data System (ADS)

    Liu, D.; Yan, W.; Kang, Z.; Dai, Z.; Liu, D.; Liu, M.; Cao, L.; Chen, H.

    2016-12-01

    Using the fog boundary layer observation collected by a moored balloon between December 1 and 2, 2009, the processes of advection fog formation and dissipation under cold and warm double-advection conditions was studied. the conclusions are as follows: 1. The advection fog process was generated by the interaction between the near-surface northeast cold advection and the upper layer's southeast warm, humid advection. The ground fog formed in an advection cooling process, and the thick fog disappeared in two hours when the wind shifted from the northeast to the northwest. The top of the fog layer remained over 600 m for most of the time. 2. This advection fog featured a double-inversion structure. The interaction between the southeast warm, humid advection of the upper layer and the descending current generated the upper inversion layer. The northeast cold advection near the ground and the warm, humid advection in the high-altitude layer formed the lower layer clouds and lower inversion layer. The upper inversion layer was composed of southeast warm, humid advection and a descending current with increasing temperature. The double inversion provided good thermal conditions for maintaining the thick fog layer. 3. The southeast wind of the upper layer not only created the upper inversion layer but also brought vapour-rich air to the fog region. The steady southeast vapour transportation by the southeast wind was the main condition that maintained the fog thickness, homogeneous density, and long duration. The low-altitude low-level jet beneath the lower inversion layer helped maintain the thickness and uniform density of the fog layer by enhancing the exchange of heat, momentum and vapour within the lower inversion layer. 4. There were three transportation mechanisms associated with this advection fog: 1) The surface layer vapour was delivered to the lower fog layer. 2) The low-altitude southeast low-level jet transported the vapour to the upper layer. 3) The vapour was exchanged between the upper and lower layers via the turbulent exchange and vertical air motion, which mixed the fog density and maintained the thickness of the fog. These mechanisms explain why the fog top was higher than the lower inversion layer and reached the upper inversion layer, as well as why this advection fog was so thick.

  15. Prediction of the fate of p,p'-DDE in sediment on the Palos Verdes shelf, California, USA

    USGS Publications Warehouse

    Sherwood, C.R.; Drake, D.E.; Wiberg, P.L.; Wheatcroft, R.A.

    2002-01-01

    Long-term (60-yr) predictions of vertical profiles of p,p???-DDE concentrations in contaminated bottom sediments on the Palos Verdes shelf were calculated for three locations along the 60-m isobath using a numerical solution of the one-dimensional advection-diffusion equation. The calculations incorporated the following processes: sediment deposition (or erosion), depth-dependent solid-phase biodiffusive mixing, in situ diagenetic transformation, and loss of p,p???-DDE across the sediment-water interface by two mechanisms (resuspension of sediments by wave action and subsequent loss of p,p???-DDE to the water column by desorption, and desorption from sediments to porewater and subsequent molecular diffusion to the water column). A combination of field measurements, laboratory analyses, and calculations with supporting models was used to set parameters for the model. The model explains significant features observed in measurements made every 2 years from 1981 to 1997 by the County Sanitation Districts of Los Angeles (LACSD). Analyses of available data suggest that two sites northwest of the Whites Point sewage outfalls will remain depositional, even as particulate supply from the sewage-treatment plant and nearby Portuguese Bend Landslide decreases. At these sites, model predictions for 1991-2050 indicate that most of the existing inventory of p,p???-DDE will remain buried and that surface concentrations will gradually decrease. Analyses of data southeast of the outfalls suggest that erosion is likely to occur somewhere on the southeast edge of the existing effluent-affected deposit, and model predictions for such a site showed that erosion and biodiffusion will reintroduce the p,p???-DDE to the upper layer of sediments, with subsequent increases in surface concentrations and loss to the overlying water column.

  16. Risk assessment of trace metals in an extreme environment sediment: shallow, hypersaline, alkaline, and industrial Lake Acıgöl, Denizli, Turkey.

    PubMed

    Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman

    2018-02-23

    The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.

  17. High resolution LiDAR measurements reveal fine internal structure and variability of sediment-carrying coastal plume

    NASA Astrophysics Data System (ADS)

    Zavialov, P. O.; Pelevin, V. V.; Belyaev, N. A.; Izhitskiy, A. S.; Konovalov, B. V.; Krementskiy, V. V.; Goncharenko, I. V.; Osadchiev, A. A.; Soloviev, D. M.; Garcia, C. A. E.; Pereira, E. S.; Sartorato, L.; Moller, O. O.

    2018-05-01

    We report results of a field survey conducted in the buoyant, sediment-carrying coastal plume generated by the discharge from the Patos Lagoon, the World's largest choked lagoon. The concentration of total suspended matter (TSM) and organic matter (as represented by total organic carbon, TOC) were mapped using an ultraviolet fluorescent LiDAR, which allowed for extensive data coverage (total of 79,387 simultaneous determinations of TSM and TOC) during 3 consecutive days. These observations were accompanied by hydrographic measurements from the ship and at a mooring station. We first describe synoptic variability of the plume, which responded energetically to wind forcing. We then analyze the TSM, TOC and hydrographic data jointly and develop a simple approach to estimate the rates of suspended matter removal from the upper layer due to gravitational settling and turbulent mixing based on relative changes in TSM and TOC concentrations. Four distinct regions within the plume exhibiting different dynamics of suspended and dissolved constituents were identified on this basis.

  18. A preliminary appraisal of sediment sources and transport in Kings Bay and vicinity, Georgia and Florida

    USGS Publications Warehouse

    McConnell, J.B.; Radtke, D.B.; Hale, T.W.; Buell, G.R.

    1983-01-01

    Water-quality, bottom-material, suspended-sediment, and current-velocity data were collected during November 1981 in Kings Bay and vicinity to provide information on the sources and transport of estuarine sediments. Kings Bay and Cumberland Sound , the site of the Poseidon Submarine Base in southeast Georgia, are experiencing high rates of sediment deposition and accumulation, which are causing serious navigational and operational problems. Velocity, bathymetry, turbidity, and bottom-material data suggest that the area in the vicinity of lower Kings Bay is accumulating deposits of suspended sediment transported from Cumberland Sound on the floodtide and from upper Kings Bay and the tidal marsh drained by Marianna Creek on the ebbtide. Suspended-sediment discharges computed for consecutive 13-hour ebbtides and floodtides showed that a net quantity of suspended sediment was transported seaward from upper Kings Bay and Marianna Creek. A net landward transport of suspended sediment computed at the St. Marys Entrance indicated areas seaward of St. Marys Entrance may be supplying sediment to the shoaling areas of the estuary, including lower Kings Bay. (USGS)

  19. Chemical characterization of sediments and pore water from the upper Clark Fork River and Milltown Reservoir, Montana

    USGS Publications Warehouse

    Brumbaugh, W. G.; Ingersoll, C.G.; Kemble, N.E.; May, T.W.; Zajicek, J.L.

    1994-01-01

    The upper Clark Fork River basin in western Montana is widely contaminated by metals from past mining, milling, and smelting activities As part of a comprehensive ecological risk assessment for the upper Clark Fork River, we measured physical and chemical characteristics of surficial sediment samples that were collected from depositional zones for subsequent toxicity evaluations Sampling stations included five locations along the upper 200 km of the river, six locations in or near Milltown Reservoir (about 205 km from the river origin), and two tributary reference sites Concentrations of As, Cd, Cu, Mn, Pb, and Zn decreased from the upper stations to the downstream stations in the Clark Fork River but then increased in all Milltown Reservoir stations to levels similar to uppermost river stations Large percentages (50 to 90%) of the total Cd, Cu, Pb, and Zn were extractable by dilute (3 n) HCl for all samples Copper and zinc accounted for greater than 95% of extractable metals on a molar basis Acid-volatile sulfide (AVS) concentrations were typically moderate (0 6 to 23 μmol/g) in grab sediment samples and appeared to regulate dissolved (filterable) concentrations of Cd, Cu, and Zn in sediment pore waters Acid volatile sulfide is important in controlling metal solubility in the depositional areas of the Clark Fork River and should be monitored in any future studies Spatial variability within a sampling station was high for Cu, Zn, and AVS, therefore, the potential for toxicity to sediment dwelling organisms may be highly localized.

  20. Lutz's spontaneous sedimentation technique and the paleoparasitological analysis of sambaqui (shell mound) sediments

    PubMed Central

    Camacho, Morgana; Pessanha, Thaíla; Leles, Daniela; Dutra, Juliana MF; Silva, Rosângela; de Souza, Sheila Mendonça; Araujo, Adauto

    2013-01-01

    Parasite findings in sambaquis (shell mounds) are scarce. Although the 121 shell mound samples were previously analysed in our laboratory, we only recently obtained the first positive results. In the sambaqui of Guapi, Rio de Janeiro, Brazil, paleoparasitological analysis was performed on sediment samples collected from various archaeological layers, including the superficial layer as a control. Eggs of Acanthocephala, Ascaridoidea and Heterakoidea were found in the archaeological layers. We applied various techniques and concluded that Lutz's spontaneous sedimentation technique is effective for concentrating parasite eggs in sambaqui soil for microscopic analysis. PMID:23579793

  1. Lutz's spontaneous sedimentation technique and the paleoparasitological analysis of sambaqui (shell mound) sediments.

    PubMed

    Camacho, Morgana; Pessanha, Thaíla; Leles, Daniela; Dutra, Juliana M F; Silva, Rosângela; Souza, Sheila Mendonça de; Araujo, Adauto

    2013-04-01

    Parasite findings in sambaquis (shell mounds) are scarce. Although the 121 shell mound samples were previously analysed in our laboratory, we only recently obtained the first positive results. In the sambaqui of Guapi, Rio de Janeiro, Brazil, paleoparasitological analysis was performed on sediment samples collected from various archaeological layers, including the superficial layer as a control. Eggs of Acanthocephala, Ascaridoidea and Heterakoidea were found in the archaeological layers. We applied various techniques and concluded that Lutz's spontaneous sedimentation technique is effective for concentrating parasite eggs in sambaqui soil for microscopic analysis.

  2. Volatile fatty acids as substrates for iron and sulfate reduction in Arctic marine sediments, Svalbard

    NASA Astrophysics Data System (ADS)

    Finke, N.; Vandieken, V.; Jorgensen, B. B.

    2006-12-01

    Anaerobic degradation of complex organic material in aquatic systems is a multi-step process. The metabolic products of fermentative bacteria serve as electron donors for the terminal oxidizing bacteria. In marine sediments, iron reduction and sulfate reduction are generally the most important terminal oxidation processes in the upper anoxic zone [1]. Microorganisms that reduce iron and sulfate may use a broad range of electron donors, yet the list of potential substrates provides little information about the substrates used in situ by these organisms. Investigations on the electron donors for sulfate reducers in marine sediments have shown that volatile fatty acids (VFA), and in particular acetate, together with hydrogen are the major substrates (e.g. [2-4]). Similar investigations for iron reduction or simultaneous iron and sulfate reduction are lacking for marine sediments. Furthermore, most of these studies were made in temperate sediments and little is known about the substrates for sulfate reducers in permanently cold sediments, which account for >90% of the ocean floor [5]. We investigated the relative contributions of iron reduction and sulfate reduction to the terminal oxidation of organic carbon and the importance of acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in permanently cold, Arctic sediments from Svalbard. In the surface layer (0-2 cm) sulfate reduction accounted for 2/3 of the organic carbon oxidation (determined as DIC production), the remaining 1/3 were attributed to iron reduction. In the 5-9 cm layer sulfate reduction was the sole important terminal oxidation step. The contribution of acetate to terminal oxidation was determined by radiotracer incubation as well as from the accumulation after the inhibition of sulfate reduction by selenate. The rates determined with the two methods varied by less than 20%. Acetate turnover, determined with the tracer incubations, accounted for 10 and 40% of the sulfate reduction in the 0-2 cm and 5-9 cm layer, respectively. Together acetate, lactate, propionate and isobutyrate accounted for 21 and 52% of the sulfate reduction, in the 0-2 cm and 5-9 cm layer, respectively. Assigning all acetate and lactate turnover in the selenate inhibited samples, these two VFA account for less than 10 and 2%, respectively, of the iron reduction in the 0-2 cm layer. Thus, 67 and 48% of the terminal oxidation in the 0-2cm and 5-9 cm layer must be driven by electron donors other than the investigated VFA. The sulfate reduction rates as well as the VFA turnover rates were at the lower end of reported rates from similar studies, mostly measured in temperate sites (e.g. [2-4, 6, 7]). Comparing a series of studies with different in situ temperatures shows, parameters other than in situ temperature seem to be more important in determining the sulfate reduction and VFA turnover rates. [1] Thamdrup, B. (2000) Bacterial manganese and iron reduction in aquatic sediments, 41-84 pp. Kluwer Academic / Plenum Publ., New York. [2] Parkes, R.J., Gibson, G.R., Mueller-Harvey, I., Buckingham, W.J. and Herbert, R.A. (1989) J. Gen. Microbiol. 135, 175-187. [3] Christensen, D. (1984) Limnol. Oceanogr. 29, 189-192. [4] Shaw, D.G. and McIntosh, D.J. (1990) Estuarine Coastal & Shelf Science 31, 775-788. [5] Levitus, S. and Boyer, T. (1994) World Ocean Atlas, pp. US Department of Commerce, Washington, DC. [6] Kristensen, E., King, G.M., Holmer, M., Banta, G.T., Jensen, M.H., Hansen, K. and Bussarawit, N. (1994) Mar. Ecol.-Prog. Ser. 109, 245-255. [7] Wellsbury, P. and Parkes, R.J. (1995) FEMS Microbiol. Ecol. 17, 85-94.

  3. Effects of historical land-cover changes on flooding and sedimentation, North Fish Creek, Wisconsin

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Knox, James C.; Whitman, Heather E.

    1999-01-01

    Results from hydrologic and sediment-transport modeling indicate that modern flood peaks and sediment loads in North Fish Creek may be double that expected under pre-settlement forest cover. During maximum agricultural activity in the mid-1920's to mid-1930's, flood peaks probably were about 3 times larger and sediment loads were about 5 times larger than expected under pre-settlement forest cover. These results indicate that future changes from pasture or cropland to forest will help reduce flood peaks, thereby reducing erosion and sedimentation. The addition of detention basins (to decrease flood peaks) on tributaries to North Fish Creek, or bank and instream restoration (to decrease erosion) in the upper main stem, also may help reduce the contribution of sediment from the upper main stem to the transitional section and lower main stem of the creek.

  4. Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River

    NASA Astrophysics Data System (ADS)

    Gran, K. B.

    2015-12-01

    Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a series of inset terraces within the valley. The importance of sand on channel behavior thus extends beyond transport rates, affecting the depth of incision and volume of material excavated during a rainy to dry season transition.

  5. Crustal velocity structure across the Main Ethiopian Rift: results from two-dimensional wide-angle seismic modelling

    NASA Astrophysics Data System (ADS)

    Mackenzie, G. D.; Thybo, H.; Maguire, P. K. H.

    2005-09-01

    We present the results of velocity modelling of a recently acquired wide-angle seismic reflection/refraction profile across the Main Ethiopian Rift. The models show a continental type of crust with significant asymmetry between the two sides of the rift. A 2- to 5-km-thick layer of sedimentary and volcanic sequences is modelled across the entire region. This is underlain by a 40- to 45-km-thick crust with a c. 15-km-thick high-velocity lowest crustal layer beneath the western plateau. This layer is absent from the eastern side, where the crust is 35 km thick beneath the sediments. We interpret this layer as underplated material associated with the Oligocene flood basalts of the region with possible subsequent addition by recent magmatic events. Slight crustal thinning is observed beneath the rift, where Pn velocities indicate the presence of hot mantle rocks containing partial melt. Beneath the rift axis, the velocities of the upper crustal layers are 5-10 per cent higher than outside the rift, which we interpret as resulting from mafic intrusions that can be associated with magmatic centres observed in the rift valley. Variations in seismic reflectivity suggest the presence of layering in the lower crust beneath the rift, possibly indicating the presence of sills, as well as some layering in the proposed underplated body.

  6. Characteristics of suspended and streambed sediment within constructed chutes and the main channel at Upper Hamburg and Glovers Point Bends, Missouri River, Nebraska, 2008

    USGS Publications Warehouse

    Woodward, Brenda K.; Rus, David L.

    2011-01-01

    The U.S. Army Corps of Engineers, Omaha District, as part of the Missouri River Bank Stabilization and Navigation Mitigation Project, has constructed 17 off-channel chutes along the channelized Missouri River, downstream from Sioux City, Iowa, to increase habitat diversity. To better understand characteristics of suspended and streambed sediment within these constructed chutes, the U.S. Geological Survey investigated specific aspects of chute design and function in relation to sediment characteristics including: (1) effects of inlet structures; (2) changes occurring between the inlet and the outlet of a chute; (3) effects of chutes on sediment characteristics in the main channel; and (4) differences in chute dynamics between sampled chutes. Two chutes differing in design, location, and dynamics were studied, Upper Hamburg Bend near Nebraska City, Nebr., and Glovers Point Bend near Winnebago, Nebr. Each site was characterized using five or more sampling transects (two in the chute and three to four in the main channel) designed to bracket sediment exchanges between chutes and the main channel. A sixth transect was included at the Upper Hamburg Bend study site to account for the effects of a nontarget chute having its inlet midway between the inlet and outlet of the primary chute. Representative samples of suspended and streambed sediment were collected at each transect, along with measurements of turbidity and streamflow, between June and November 2008. Four sets of samples were collected at the Glovers Point Bend study site and five sample sets were collected from the Upper Hamburg Bend study site. Results from paired t-tests and standard t-tests indicated that the inlet structure design, passing inflow only from the top of the main-channel water column, reduced the supply of coarse-grained suspended sediment entering the chutes. Statistical comparisons did not indicate differences between the inlet and outlet of either chute; however, anecdotal evidence of recent bank erosion and in-channel deposition was observed in both chutes during the study period. Chutes had little effect on Missouri River main-channel sediment characteristics, which could be explained by the much greater streamflow of the main channel. Between-chute comparisons showed no significant differences in the suspended-sediment characteristics; however, the Upper Hamburg Bend chute had a coarser streambed, wider channel, and much greater streamflow than did the Glovers Point Bend chute.

  7. Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust

    NASA Astrophysics Data System (ADS)

    Farahat, Navah X.; Archer, David; Abbot, Dorian S.

    2017-08-01

    Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.

  8. Tephra layers of blind Spring Valley and related upper pliocene and pleistocene tephra layers, California, Nevada, and Utah: isotopic ages, correlation, and magnetostratigraphy

    USGS Publications Warehouse

    Sarna-Wojcicki, Andrei M.; Reheis, Marith C.; Pringle, Malcolm S.; Fleck, Robert J.; Burbank, Doug; Meyer, Charles E.; Slate, Janet L.; Wan, Elmira; Budahn, James R.; Troxel, Bennie; Walker, James P.

    2005-01-01

    Numerical ages have been determined for a stratigraphic sequence of silicic tephra layers exposed at the Cowan Pumice Mine in Blind Spring Valley, near Benton Hot Springs, east-central California, as well as at Chalk Cliffs, north of Bishop, Calif. The tephra layers at these sites were deposited after eruptions from nearby sources, most of them from near Glass Mountain, and some from unknown sources. The ages were determined primarily by the laser-fusion 40Ar/39Ar method, mostly on sanidine feldspar; two were determined by conventional K-Ar analysis on obsidian clasts. These tephra layers, all underlying the Bishop ash bed and listed in order of concordant age and stratigraphic position, are: Tephra Unit Method Material Age Bishop Tuff (air-fall pumice) Ar/Ar sanidine 0.759?0.002 Ma* Upper tuffs of Glass Mountain Ar/Ar sanidine 0.87?0.02 Ma Upper tuffs of Glass Mountain Ar/Ar sanidine 1.13?0.19 Ma Lower tuffs of Glass Mountain K-Ar obsidian 1.86?0.09 Ma (avg of 2 dates) Ar/Ar sanidine 1.92?0.02 Ma (avg of 2 dates) Tuffs of Blind Spring Valley Ar/Ar sanidine 2.135?0.02 to sanidine 2.219?0.006 Ma (10 dates) Tuffs of Benton Hot Springs Ar/Ar plagioclase 2.81?0.02 Ma *Date published previously The above tephra layers were also petrographically examined and the volcanic glass shards of the layers were chemically analyzed using the electron microprobe and, for some samples, instrumental neutron activation analysis and X-ray fluorescence. The same types of chemical and petrographic analyses were conducted on stratigraphic sequences of tephra layers of suspected upper Pliocene and Pleistocene age in several past and present depositional basins within the region outside of Blind Spring Valley. Chemical characterization, combined with additional dates and with magnetostratigraphy of thick sections at two of the distal sites, allow correlation of the tephra layers at the Cowan Pumice Mine with layers present at the distal sites and provide age constraints for other intercalated tephra layers and sediments for which age data were previously lacking. The identification at several sections of the widespread Huckleberry Ridge ash bed, derived from the Yellowstone eruptive source area in Wyoming, as well as a new 40Ar/39Ar age on this ash bed from a proximal locality, provide additional age constraints to several of the distal sections. The dated or temporally bracketed distal units, in order of concordant age and stratigraphic position, are: Tephra Unit Method Material Age Tephra layers of Glass Mountain (undiff.) P-mag.*; correlation N/A 1.78 , 1.96, 1.96, 2.22, 2.57, <2.89 Ma Tephra layers of Benton Hot Springs Ar/Ar; correlation plagioclase 2.89?0.03 Ma *Magnetostratigraphic polarity determination At the Cowan Pumice Mine, only a partial section of the eruptive record is preserved, but the best materials for laser-fusion 40Ar/39Ar and other isotopic dating methods were obtained. In the more distal Willow Wash and Confidence Hills sections, both persistent depositional basins for most of late Pliocene time, more complete sections of upper Pliocene tephra layers were preserved. In the region of Glass Mountain, the tephra layers that make up each of the mapped and dated pyroclastic units are multiple and complex, but a progressive simplification of the stratigraphy away from the source area was observed for more distal sites in southern and southwestern California and in Utah. This progressive

  9. A detailed Holocene glacial-periglacial reconstruction based on multidisciplinary studies of a 60 m permafrost core from central Svalbard

    NASA Astrophysics Data System (ADS)

    Hvidtfeldt Christiansen, Hanne; Elberling, Bo; Gilbert, Graham L.; Thiel, Christine; Murray, Andrew; Buylaert, Jan-Pieter; Dypvik, Henning; Lomstein, Bente; Hovgaard, Jonas; Christensen, Anne T.; Mørkved, Pål T.; Reigstad, Laila J.; Fromreide, Siren; Seidenkrantz, Marit-Solveig

    2014-05-01

    During summer 2012, a 60 m sedimentary permafrost core was retrieved from the lower part of the Adventdalen Valley, central Svalbard, as part of the Longyearbyen CO2 project. The core was taken in 3 m long sections, with 20 % core loss, and reached the sedimentary bedrock (Lower Cretaceous). Thus our samples had the potential to represent the entire Quaternary and reflect changes in the sedimentary environments through time. The stratigraphy and sedimentology of the core was first investigated, to establish an overall geological model for the sampling site. The general stratigraphy encompasses a layer of basal till at the bottom of the core. This is overlain by marine sediments documenting a transition from glacial-proximal to open-marine conditions. Subsequently, a thick package of deltaic sediments records the progradation of the local river system. Finally, aeolian sediments, characterizing the modern environment, form the top few meters of the core. The ice content of the permafrost is generally low. Gravimetric water content generally ranges between 20% and 40%, but is considerably higher in some ice-rich layers. High resolution optically stimulated luminescence dating of the core sediment shows that deposition was very fast and took place primarily during the mid Holocene, with very rapid sedimentation of around 4 m/ka. With the onset of aeolian deposition (around 3-4 ka) the sedimentation rate decreased significantly to 1m/ka. The microbial diversity and activity of the core are being studied displaying decreasing activity with depth. Microbial community and functional gene numbers indicate variations with depth and geochemistry. Incubation studies have been performed primarily on the upper 30 m, and indicate a potential CO2 production from all depth intervals being studied. The potential for using foraminifer studies for both dating and palaeoenvironmental reconstructions are evaluated with the intension of comparison with previous studies of marine sediment cores both from the fjords in the Svalbard area and from the Barents Sea and Fram Strait region. This multidisciplinary approach is allowing us to build the first detailed palaeoenvironmental reconstruction of the Holocene glacial-periglacial interaction in the lowlands of central Svalbard; this includes a detailed reconstruction of the permafrost conditions.

  10. Nature and origin of the sedimentary pile subducting in the Nankai Through

    NASA Astrophysics Data System (ADS)

    Chauvel, C.; Garcon, M.; Yobregat, E.; Chipoulet, C.; Labanieh, S.

    2013-12-01

    Nd-Hf isotopes and trace and major element concentrations were measured on bulk sediments recovered at Site C0012 during IODP Expedition 322 and 333 in the Shikoku basin. We analyzed the composition of different lithologies such as clay, claystone, sand, sandstone, and ash layers, all through the sedimentary pile, from the surface to the sediment-basalt interface, in order to identify compositional trends and source variations with depth. Major and trace element contents of the background sediments (hemipelagic mudstone) are very homogenous and span a relatively small range of values throughout the entire sedimentary pile. Their composition resembles that of the average upper continental crust of Rudnick and Gao (2003, Treatise on Geochemistry, Vol.3, p. 1-64). Nd and Hf isotopes are more variable, relatively unradiogenic (-8 < ɛNd < -3 ; -4 < ɛHf < +5) but display no systematic variations with depth (Fig. 1). Such isotopic compositions indicate that the background sedimentation of the Shikoku basin may consist of volcaniclastic material from the Izu-Bonin and/or Ryukyu arcs, detrital material eroded from SW Japan and relatively high amount of an evolved continental-derived component, probably Chinese loess as already suggested by Mahomet (2005, Sediment. Geol., 182, p.183-199). Compared to the background sedimentation, volcanic ash layers and volcaniclastic sandstones have very different trace element patterns and more radiogenic Nd-Hf isotopic signature (Fig. 1). Our results allow us to distinguish at least two different volcanic sources for these deposits. At the bottom of the sedimentary pile, siliciclastic sandstones with a mid-Miocene age are present; they have remarkably low ɛNd and ɛHf values (i.e. ɛNd < -8 and ɛHf < -5). Such isotopic compositions clearly demonstrate that their source cannot be the Japanese mainland, as suggested by previous studies (e.g. Underwood et al, 2009, Exp.322 PR ; Fergusson, 2003, Proc. ODP, Sci. Results 190/196). These sandstones are also too coarse to result from an accumulation of Chinese loess transported by wind (particles usually finer than 40 μm). Given the location of the Shikoku basin at 15Ma, we suggest that the siliciclastic sandstones mainly consists of detrital materials transported by Chinese rivers up to the sea in the Shikoku basin. Variations of ɛNd as a function of depth. Potential sediment sources are indicated by color bands

  11. Mobility of arsenic in a Bangladesh aquifer: Inferences from geochemical profiles, leaching data, and mineralogical characterization

    NASA Astrophysics Data System (ADS)

    Swartz, Christopher H.; Blute, Nicole Keon; Badruzzman, Borhan; Ali, Ashraf; Brabander, Daniel; Jay, Jenny; Besancon, James; Islam, Shafiqul; Hemond, Harold F.; Harvey, Charles F.

    2004-11-01

    Aquifer geochemistry was characterized at a field site in the Munshiganj district of Bangladesh where the groundwater is severely contaminated by As. Vertical profiles of aqueous and solid phase parameters were measured in a sandy deep aquifer (depth >150 m) below a thick confining clay (119 to 150 m), a sandy upper aquifer (3.5 to 119 m) above this confining layer, and a surficial clay layer (<3.5 m). In the deep aquifer and near the top of the upper aquifer, aqueous As levels are low (<10 μg/L), but aqueous As approaches a maximum of 640 μg/L at a depth of 30 to 40 m and falls to 58 μg/L near the base (107 m) of the upper aquifer. In contrast, solid phase As concentrations are uniformly low, rarely exceeding 2 μg/g in the two sandy aquifers and never exceeding 10 μg/g in the clay layers. Solid phase As is also similarly distributed among a variety of reservoirs in the deep and upper aquifer, including adsorbed As, As coprecipitated in solids leachable by mild acids and reductants, and As incorporated in silicates and other more recalcitrant phases. One notable difference among depths is that sorbed As loads, considered with respect to solid phase Fe extractable with 1 N HCl, 0.2 M oxalic acid, and a 0.5 M Ti(III)-citrate-EDTA solution, appear to be at capacity at depths where aqueous As is highest; this suggests that sorption limitations may, in part, explain the aqueous As depth profile at this site. Competition for sorption sites by silicate, phosphate, and carbonate oxyanions appear to sustain elevated aqueous As levels in the upper aquifer. Furthermore, geochemical profiles are consistent with the hypothesis that past or ongoing reductive dissolution of Fe(III) oxyhydroxides acts synergistically with competitive sorption to maintain elevated dissolved As levels in the upper aquifer. Microprobe data indicate substantial spatial comapping between As and Fe in both the upper and deep aquifer sediments, and microscopic observations reveal ubiquitous Fe coatings on most solid phases, including quartz, feldspars, and aluminosilicates. Extraction results and XRD analysis of density/magnetic separates suggest that these coatings may comprise predominantly Fe(II) and mixed valence Fe solids, although the presence of Fe(III) oxyhydroxides can not be ruled out. These data suggest As release may continue to be linked to dissolution processes targeting Fe, or Fe-rich, phases in these aquifers.

  12. From Black Hole to Hydrate Hole: Gas hydrates, authigenic carbonates and vent biota as indicators of fluid migration at pockmark sites of the Northern Congo Fan

    NASA Astrophysics Data System (ADS)

    Kasten, S.; Schneider, R.; Spiess, V.; Cruise Participants Of M56b

    2003-04-01

    A recent high-resolution seismic, echosounder and video survey combined with detailed geological and geochemical sampling of pockmark sites on the Northern Congo Fan was carried out with RV Meteor in November/December 2002 in the frame of the project "CONGO" (BMBF/BEO "Geotechnologien"). These investigations revealed the extensive occurrence of surface and sub-surface gas hydrates as well as characteristic features of fluid venting such as clams (Calyptogena), tube worms (Pogonophera) and huge amounts of authigenic carbonates. In a first approach the patchyness in the occurrence of these features was mapped in relation to pockmark structure and seismic reflectors. Detailed sampling of three pockmarks by gravity corer showed that gas hydrates are present at and close to the sediment surface and often occur as several distinct layers and/or veins intercalated with hemipelagic muds. The depth of the upper boundary of these hydrate-bearing sediments increases from the center towards the edge of the pockmark structures. Pore water concentration profiles of sulfate and methane document the process of anaerobic methane oxidation above the hydrate-bearing layers. For those cores which contained several gas hydrate layers preliminary pore water profiles suggest the occurrence of more than one zone of anaerobic methane oxidation. Authigenic carbonates are found in high abundance, irregularly distributed within the pockmarks close to the sediment surface. These carbonates occur in a wide variety with respect to size, shape, structure and mineralogy. Their formation is associated with high amounts of bicarbonate released by the process of anaerobic methane oxidation. In the gravity cores authigenic carbonates are always present above hydrate-bearing sections. However, the quantities and characteristics of these authigenic minerals in relation to venting and microbial activity as well as to gas hydrate dissociation are not clear yet. Unraveling this relationship will be a major target of further investigation. By means of detailed studies of the sedimentary solid-phase, authigenic carbonates, clam layers and molecular biomarkers we will also try to reconstruct the history of venting and the dynamics of gas hydrate formation and decomposition in the Northern Congo fan area.

  13. Replication of Annual Cycles in Mn in Hudson River Cores: Mn Peaks During High Water Flow

    NASA Astrophysics Data System (ADS)

    Abbott, D. H.; Hutson, D.; Marrero, A. M.; Block, K. A.; Chang, C.; Cai, Y.

    2017-12-01

    Using the results from an ITRAX, XRF scanner, we previously reported apparent annual cycles in Mn in a single, high sedimentation rate Hudson River core, LWB1-8, taken off Yonkers, NY (Carlson et al., 2016). We replicated these results in three more high sedimentation rate cores and found stratigraphic markers that verify our inferences about the annual nature of the Mn cycles. The three new cores are LWB4-5 taken off Peekskill, NY, and LWB3-44 and LWB3-25, both taken in Haverstraw Bay. The cores are from water depths of 7-9 meters and all have high magnetic susceptibilities (typically > 30 cgs units) in their upper 1 to 2 meters. The high susceptibilities are primarily produced by magnetite from modern industrial combustion. One core, LWB1-8, has reconnaissance Cs dates that verify the annual nature of the cycles. More Cs dates are expected before the meeting. We developed several new methods of verifying the annual nature of our layer counts. The first is looking at the grain size distribution and age of layers with unusually high Mn peaks. Peaks in Si, Ni and Ti and peaks in percentage of coarse material typically accompany the peaks in Mn. Some are visible as yellow sandy layers. The five highest peaks in Mn in LWB1-8 have layer counted ages that correspond (within 1 year in the top meter and within 2 years in the bottom meter) to 1996, 1948, 1913, 1857 and 1790. The latter three events are the three largest historical spring freshets on the Hudson. 1996 is a year of unusually high flow rate during the spring freshet. Based on our work and previous work on Mn cycling in rivers, we infer that the peaks in Mn are produced by extreme erosional events that erode sediment and release pore water Mn into the water column. The other methods of testing our chronology involve marine storms that increase Ca and Sr and a search for fragments of the Peekskill meteorite that fell in October 1992. More information on the latter will be available by the meeting.

  14. Something Old, Something New

    NASA Technical Reports Server (NTRS)

    2006-01-01

    20 September 2006 When it was launched in 1996, the plan was that Mars Global Surveyor (MGS) would wrap up its mission in 2000. Damage to a hinge connected to a solar panel slowed the orbit insertion aerobraking process by a year, so in 1997 the spacecraft team determined that MGS's mission would end in early 2001. However, the spacecraft and its instruments remained healthy, and its mission was extended. And extended. And extended again. And again. MGS has now been orbiting the red planet for just over nine years. Throughout the mission, data from the Mars Orbiter Camera (MOC) have emphasized details about some of the very oldest and the very newest features exposed on the planet's surface.

    The very ancient and the modern come together in this small, approximately 3 km by 3 km (1.9 mi by 1.9 mi) area on the floor of an unnamed impact crater in western Arabia Terra.

    Old are the light-toned, layered mounds scattered across the image. The layers form stair-steps leading to the top of each mound. In most cases, the 'steps' are not clean, but are instead covered with debris eroded from the next layer, or step, above. The mounds are remnants of layered rock that once covered the entire scene. They were deposited as sediment in the large, unnamed crater in which these landforms occur. Their regular thickness and repeated character suggest that episodic, or perhaps cyclic, processes brought sediment to the crater floor. If the crater contained water at the time the sediments were deposited, then they represent lakebed materials. The processes that (a) brought sediment to this site, (b) cemented the sediment to form rock, and (c) eroded the sediment to form the mounds we see today, all occurred at some time in the distant past.

    New are the dark-toned sand dunes and intermediate-toned ripples. The dark dunes were formed of sand that in relatively recent times has been blown by wind from the northeast (upper right) toward the southwest (lower left). The dunes have slowly encroached upon the older, light-toned, layered mounds. Surrounding each mound is a suite of intermediate-toned ripples. These are large ripples, relative to counterparts on Earth, and are most likely made up of grains somewhat coarser than sand, typically of several millimeters in size. The ripples form a pattern that is generally radial to each mound, indicating that they formed in winds that interacted with these topographic obstacles. The dark dunes are generally younger than the ripples, as dark sand has encroached upon and over-ridden some of the ripples.

    This image is one of the favorites of the MOC operations team at Malin Space Science Systems, because it is not only pretty, it also emphasizes aspects of both the ancient and modern sedimentary processes and materials on Mars. Sediments, sedimentary rocks, and the environments in which they were deposited have been a key theme of the MOC science investigation from the beginning, more than 20 years ago, when MOC was selected by NASA to be built and sent to Mars. The first MOC was aboard Mars Observer when it was lost in 1993; the second MOC was built for MGS and is still operating today.

    Location near: 8.8oN, 1.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  15. Late Quaternary sediment deposition of core MA01 in the Mendeleev Ridge, the western Arctic Ocean: Preliminary results

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Kyu; Kim, Sunghan; Khim, Boo-Keun; Xiao, Wenshen; Wang, Rujian

    2014-05-01

    Late Quaternary deep marine sediments in the Arctic Ocean are characterized by brown layers intercalated with yellowish to olive gray layers (Poore et al., 1999; Polyak et al., 2004). Previous studies reported that the brown and gray layers were deposited during interglacial (or interstadial) and glacial (or stadial) periods, respectively. A 5.5-m long gravity core MA01 was obtained from the Mendeleev Ridge in the western Arctic Ocean by R/V Xue Long during scientific cruise CHINARE-V. Age (~450 ka) of core MA01 was tentatively estimated by correlation of brown layers with an adjacent core HLY0503-8JPC (Adler et al., 2009). A total of 22 brown layers characterized by low L* and b*, high Mn concentration, and abundant foraminifera were identified. Corresponding gray layers are characterized by high L* and b*, low Mn concentration, and few foraminiferal tests. Foraminifera abundance peaks are not well correlated to CaCO3 peaks which occurred with the coarse-grained (>0.063 mm) fractions (i.e., IRD) both in brown and gray layers. IRDs are transported presumably by sea ice for the deposition of brown layers and by iceberg for the deposition of gray layers (Polyak et al., 2004). A strong correlation coefficient (r2=0.89) between TOC content and C/N ratio indicates that the major source of organic matter is terrestrial. The good correlations of CaCO3 content to TOC (r2=0.56) and C/N ratio (r2=0.69) imply that IRDs contain detrital CaCO3 which mainly originated from the Canadian Arctic Archipelago. In addition, high kaolinite/chlorite (K/C) ratios mostly correspond to CaCO3 peaks, which suggests that the fine-grained particles in the Mendeleev Ridge are transported from the north coast Alaska and Canada where Mesozoic and Cenozoic strata are widely distributed. Thus, the Beaufort Gyre, the predominant surface current in the western Arctic Ocean, played an important role in the sediment delivery to the Mendeleev Ridge. It is worthy of note that the TOC and CaCO3 peaks are obviously distinct in the upper part of core MA01, whereas these peaks are reduced in the lower part of the core. More study on these contrasting features is in progress. References Adler, R.E., Polyak, L., Ortiz, J.D., Kaufman, D.S., Channell, J.E.T., Xuan, C., Grottoli, A.G., Sellén, E., and Crawford, K.A., 2009. Global and Planetary Change 68(1-2), 18-29. Polyak, L., Curry, W.B., Darby, D.A., Bischof, J., and Cronin, T.M., 2004. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 73-93. Poore, R., Osterman, L., Curry, W., and Phillips, R., 1999. Geology 27, 759-762.

  16. Episodic sediment-discharge events in Cascade Springs, southern Black Hills, South Dakota

    USGS Publications Warehouse

    Hayes, Timothy Scott

    1999-01-01

    Cascade Springs is a group of artesian springs in the southern Black Hills, South Dakota, with collective flow of about 19.6 cubic feet per second. Beginning on February 28, 1992, a large discharge of red suspended sediment was observed from two of the six known discharge points. Similar events during 1906-07 and 1969 were documented by local residents and newspaper accounts. Mineralogic and grain-size analyses were performed to identify probable subsurface sources of the sediment. Geochemical modeling was performed to evaluate the geochemical evolution of water discharged from Cascade Springs. Interpretations of results provide a perspective on the role of artesian springs in the regional geohydrologic framework. X-ray diffraction mineralogic analyses of the clay fraction of the suspended sediment were compared to analyses of clay-fraction samples taken from nine geologic units at and stratigraphically below the spring-discharge points. Ongoing development of a subsurface breccia pipe(s) in the upper Minnelusa Formation and/or Opeche Shale was identified as a likely source of the suspended sediment; thus, exposed breccia pipes in lower Hell Canyon were examined. Upper Minnelusa Formation breccia pipes in lower Hell Canyon occur in clusters similar to the discrete discharge points of Cascade Springs. Grain-size analyses showed that breccia masses lack clay fractions and have coarser distributions than the wall rocks, which indicates that the red, fine-grained fractions have been carried out as suspended sediment. These findings support the hypothesis that many breccia pipes were formed as throats of abandoned artesian springs. Geochemical modeling was used to test whether geochemical evolution of ground water is consistent with this hypothesis. The evolution of water at Cascade Springs could not be suitably simulated using only upgradient water from the Minnelusa aquifer. A suitable model involved dissolution of anhydrite accompanied by dedolomitization in the upper Minnelusa Formation, which is caused by upward leakage of relatively fresh water from the Madison aquifer. The anhydrite dissolution and dedolomitization account for the net removal of minerals that would lead to breccia pipe formation by gravitational collapse. Breccia pipes in the lower Minnelusa Formation are uncommon; however, networks of interconnected breccia layers and breccia dikes are common. These networks, along with vertical fractures and faults, are likely pathways for transmitting upward leakage from the Madison aquifer. It is concluded that suspended sediment discharged at Cascade Springs probably results from episodic collapse brecciation that is caused by subsurface dissolution of anhydrite beds and cements of the upper Minnelusa Formation, accompanied by replacement of dolomite by calcite. It is further concluded that many breccia pipes probably are the throats of artesian springs that have been abandoned and exposed by erosion. The locations of artesian spring-discharge points probably have been shifting outwards from the center of the Black Hills uplift, essentially keeping pace with regional erosion over geologic time. Thus, artesian springflow probably is a factor in controlling water levels in the Madison and Minnelusa aquifers, with hydraulic head declining over geologic time, in response to development of new discharge points. Development of breccia pipes as throats of artesian springs would greatly enhance vertical hydraulic conductivity in the immediate vicinity of spring-discharge points. Horizontal hydraulic conductivity in the Minnelusa Formation also may be enhanced by dissolution processes related to upward leakage from the Madison aquifer. Potential processes could include dissolution resulting from leakage in the vicinity of breccia pipes that are abandoned spring throats, active spring discharge, development of subsurface breccias with no visible surface expression or spring discharge, as well as general areal leakage

  17. Organic matter in sediment layers of an acidic mining lake as assessed by lipid analysis. Part II: Neutral lipids.

    PubMed

    Poerschmann, Juergen; Koschorreck, Matthias; Górecki, Tadeusz

    2017-02-01

    Natural neutralization of acidic mining lakes is often limited by organic matter. The knowledge of the sources and degradability of organic matter is crucial for understanding alkalinity generation in these lakes. Sediments collected at different depths (surface sediment layer from 0 to 1 cm and deep sediment layer from 4 to 5cm) from an acidic mining lake were studied in order to characterize sedimentary organic matter based on neutral signature markers. Samples were exhaustively extracted, subjected to pre-chromatographic derivatizations and analyzed by GC/MS. Herein, molecular distributions of diagnostic alkanes/alkenes, terpenes/terpenoids, polycyclic aromatic hydrocarbons, aliphatic alcohols and ketones, sterols, and hopanes/hopanoids were addressed. Characterization of the contribution of natural vs. anthropogenic sources to the sedimentary organic matter in these extreme environments was then possible based on these distributions. With the exception of polycyclic aromatic hydrocarbons, combined concentrations across all marker classes proved higher in the surface sediment layer as compared to those in the deep sediment layer. Alkane and aliphatic alcohol distributions pointed to predominantly allochthonous over autochthonous contribution to sedimentary organic matter. Sterol patterns were dominated by phytosterols of terrestrial plants including stigmasterol and β-sitosterol. Hopanoid markers with the ββ-biohopanoid "biological" configuration were more abundant in the surface sediment layer, which pointed to higher bacterial activity. The pattern of polycyclic aromatic hydrocarbons pointed to prevailing anthropogenic input. Pyrolytic makers were likely to due to atmospheric deposition from a nearby former coal combustion facility. The combined analysis of the array of biomarkers provided new insights into the sources and transformations of organic matter in lake sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A field, laboratory and modeling study of reactive transport of groundwater arsenic in a coastal aquifer

    PubMed Central

    Jung, Hun Bok; Charette, Matthew A.; Zheng, Yan

    2009-01-01

    A field, laboratory, and modeling study of As in groundwater discharging to Waquoit Bay, MA, shed light on coupled control of chemistry and hydrology on reactive transport of As in a coastal aquifer. Dissolved Fe(II) and As(III) in a reducing groundwater plume bracketed by an upper and a lower redox interface are oxidized as water flows towards the bay. This results in precipitation of Fe(III) oxides, along with oxidation and adsorption of As to sediment at the redox interfaces where concentrations of sedimentary HCl-leachable Fe (80~90% Fe(III)) are 734±232 mg kg-1, sedimentary phosphate extractable As (90~100% As(V)) are 316±111 μg kg-1, and are linearly correlated. Batch adsorption of As(III) onto orange, brown and gray sediments follows Langmuir isotherms, and can be fitted by a surface complexation model (SCM) assuming a diffuse layer for ferrihydrite. The sorption capacity and distribution coefficient for As increase with decreasing sediment Fe(II)/Fe. To allow accumulation of the amount of sediment As, similar hydrogeochemical conditions would have been operating for thousands of years at Waquoit Bay. The SCM simulated the observed dissolved As concentration better than a parametric approach based on Kd. Site specific isotherms should be established for Kd or SCM based models. PMID:19708362

  19. Pleistocene to Holocene contrasts in organic matter production and preservation on the California continental margin

    USGS Publications Warehouse

    Dean, W.E.; Gardner, J.V.

    1998-01-01

    Organic matter in sediments from cores collected from the upper continental slope (200-2700 m) off California and southern Oregon shows marked differences in concentration and marine character between the last glacial interval (ca. 24-10 ka) and either Holocene time or last interstadial (oxygen isotope stage 3, ca. 60-24 ka). In general, sediments deposited during Holocene time and stage 3 contain higher amounts of marine organic matter than those deposited during the last glacial interval, and this contrast is greatest in cores collected off southern California. The most profound differences in stage 3 sediments are between predominantly bioturbated sediments and occasional interbeds of laminated sediments. The sediments are from cores collected within the present oxygen minimum zone on the upper continental slope from as far north as the Oregon-California border to as far south as Point Conception. These upper Pleistocene laminated sediments contain more abundant hydrogen-rich (type II) marine algal organic matter than even surface sediments that have large amounts of nonrefractory organic matter. The stable carbon-isotopic composition of the organic matter does not change with time between bioturbated and laminated sediments, indicating that the greater abundance of type II organic matter in the laminated sediments is not due to a change in source but rather represents a greater degree of production and preservation of marine organic matter. The presence of abundant, well-preserved organic matter supports the theory that the oxygen minimum zone in the northeastern Pacific Ocean was more intense, and possibly anoxic, during late Pleistocene time as a result of increased coastal upwelling that enhanced algal productivity.

  20. Stochastic Modelling of the Hydraulic Anisotropy of Ash Impoundment Sediment

    NASA Astrophysics Data System (ADS)

    Slávik, Ivan

    2017-12-01

    In the case reported here the impoundments of a 400 MW coal heated power plant with an annual production of about 1.5 million tons of fuel ash are of the cross-valley type, operated by the simple and cheap „upstream method”. The aim of the research was to determine overall and local values of the permeability in horizontal as well as in vertical direction and the anisotropy of the thin-layered sedimented ash. The coal ashes are hydraulically transported through pipelines in form of a slurry and periodically floated on the beach of the impoundment. The ashes are deposited in the form of a thin-layered sediment, with random alternation of layers with a coarser or finer granularity. The ash impoundment sediment is anthropogenic sediment with horizontally laminated texture. Therefore, the sediment is anisotropic from the viewpoint of water seepage. The knowledge of the permeability and the seepage anisotropy of the sediment is a basic requirement for the design of an appropriate dewatering system. The seepage anisotropy of the ash sediment has been checked by means of stochastic modelling, based on the correlation between the effective grain diameter and the coefficient of permeability of the ash: the effective grain diameter and the thickness of individual layers have been proposed to be random events.

  1. Assessment of trace metal contamination in stream sediments of the Tuul River, Mongolia

    NASA Astrophysics Data System (ADS)

    Dalai, B.

    2011-12-01

    Thirty four sediment samples were collected in Ulaanbaatar basin, along the Tuul River which is the main source of water for the capital city Ulaanbaatar, Mongolia. The catchment can be divided three parts (upper, middle, and lower) according to the extent of urbanization. The upper part of the river basin is comparatively less affected by human activity and it can be represent the natural background condition. The middle part is the urban area of Ulaanbaatar and lower part extends SW of the end of the urban area mostly used for agriculture and farming activity. The present study focused on the levels of potentially toxic metals such as As, Pb, Zn, Cu, Ni and Cr in order to assess the extent of environmental pollution and to discuss the origin of these contaminants in sediments of the Tuul River using X-ray fluorescence analyses. Metal concentrations in the sediments are discussed by comparison with average Upper Continental Crust values (UCC) and ecological risk assessment by reference to sediment quality guidelines (SQG). The results showed thet average abundances of metals are measurable contrast between upper, middle and lower parts of the river. The Upper part and its surrounding area's sediment signature indicated that more depletion comparatively other parts (Pb, Zn, Cu, Ni and Cr), whereas enrichment sign did not detect. However, among the Upper part sediments, two samples (NA1 and NA2) enriched with trace metals which sampled from Nalaikh area were significantly affected by coal mining activity. Most metals are (As, Pb, Zn, Cu and Ni) higher in the middle part (within the city) than the upper and lower part due to the urban activities. The small tributaries such as Selbe, Uliastai, Gachuurt and Tolgoit were significantly affected by urban activities and highest values are detected from them. Lower part significantly enriched with Cr (av 98 ppm). Highest concentration of Cr (183 ppm) was at Shuvuu which is receiving point of domestic and industrial wastewater discharge. However all three parts show depletion in some chalcophile and HFSE elements (Cu, Ni, Cr, Sr, Nb, Zr, Th, Sc). This depletion of elements relative to UCC suggest that the river sediments were derived from a highly felsic crustal source. The assessment of ecological risk assessment result showed that adverse aquatic biological effects caused by As and Cr. While, concentration of Pb, Zn, Cu and Ni are generally below their respective Threshold effect level (TEL), in middle part reaches to reach values bordering on the Probable effect level (PEL). This indicated that anthropogenic contribution in the urban areas, increasing values above a naturally low regional background.

  2. The Middle Jurassic basinal deposits of the Surmeh Formation in the Central Zagros Mountains, southwest Iran: Facies, sequence stratigraphy, and controls

    USGS Publications Warehouse

    Lasemi, Y.; Jalilian, A.H.

    2010-01-01

    The lower part of the Lower to Upper Jurassic Surmeh Formation consists of a succession of shallow marine carbonates (Toarcian-Aalenian) overlain by a deep marine basinal succession (Aalenian-Bajocian) that grades upward to Middle to Upper Jurassic platform carbonates. The termination of shallow marine carbonate deposition of the lower part of the Surmeh Formation and the establishment of deep marine sedimentation indicate a change in the style of sedimentation in the Neotethys passive margin of southwest Iran during the Middle Jurassic. To evaluate the reasons for this change and to assess the basin configuration during the Middle Jurassic, this study focuses on facies analysis and sequence stratigraphy of the basinal deposits (pelagic and calciturbidite facies) of the Surmeh Formation, referred here as 'lower shaley unit' in the Central Zagros region. The upper Aalenian-Bajocian 'lower shaley unit' overlies, with an abrupt contact, the Toarcian-lower Aalenian platform carbonates. It consists of pelagic (calcareous shale and limestone) and calciturbidite facies grading to upper Bajocian-Bathonian platform carbonates. Calciturbidite deposits in the 'lower shaley unit' consist of various graded grainstone to lime mudstone facies containing mixed deep marine fauna and platform-derived material. These facies include quartz-bearing lithoclast/intraclast grainstone to lime mudstone, bioclast/ooid/peloid intraclast grainstone, ooid grainstone to packstone, and lime wackestone to mudstone. The calciturbidite layers are erosive-based and commonly exhibit graded bedding, incomplete Bouma turbidite sequence, flute casts, and load casts. They consist chiefly of platform-derived materials including ooids, intraclasts/lithoclasts, peloids, echinoderms, brachiopods, bivalves, and open-ocean biota, such as planktonic bivalves, crinoids, coccoliths, foraminifers, and sponge spicules. The 'lower shaley unit' constitutes the late transgressive and the main part of the highstand systems tract of a depositional sequence and grades upward to platform margin and platform interior facies as a result of late highstand basinward progradation. The sedimentary record of the 'lower shaley unit' in the Central Zagros region reveals the existence of a northwest-southeast trending platform margin during the Middle Jurassic that faced a deep basin, the 'Pars intrashelf basin' in the northeast. The thinning of calciturbidite layers towards the northeast and the widespread Middle Jurassic platform carbonates in the southern Persian Gulf states and in the Persian Gulf area support the existence of a southwest platform margin and platform interior source area. The platform margin was formed as a result of tectonic activity along the preexisting Mountain Front fault associated with Cimmerian continental rifting in northeast Gondwana. Flooding of the southwest platform margin during early to middle Bajocian resulted in the reestablishment of the carbonate sediment factory and overproduction of shallow marine carbonates associated with sea-level highstand, which led to vertical and lateral expansion of the platform and gradual infilling of the Pars intrashelf basin by late Bajocian time. ?? 2010 Springer-Verlag.

  3. Simulating the effect of vegetation cover on the sediment yield of mediterranean catchments using SHETRAN

    NASA Astrophysics Data System (ADS)

    Lukey, B. T.; Sheffield, J.; Bathurst, J. C.; Lavabre, J.; Mathys, N.; Martin, C.

    1995-08-01

    The sediment yield of two catchments in southern France was modelled using the newly developed sediment code of SHETRAN. A fire in August 1990 denuded the Rimbaud catchment, providing an opportunity to study the effect of vegetation cover on sediment yield by running the model for both pre-and post-fire cases. Model output is in the form of upper and lower bounds on sediment discharge, reflecting the uncertainty in the erodibility of the soil. The results are encouraging since measured sediment discharge falls largely between the predicted bounds, and simulated sediment yield is dramatically lower for the catchment before the fire which matches observation. SHETRAN is also applied to the Laval catchment, which is subject to Badlands gulley erosion. Again using the principle of generating upper and lower bounds on sediment discharge, the model is shown to be capable of predicting the bulk sediment discharge over periods of months. To simulate the effect of reforestation, the model is run with vegetation cover equivalent to a neighbouring fully forested basin. The results obtained indicate that SHETRAN provides a powerful tool for predicting the impact of environmental change and land management on sediment yield.

  4. Sr-87/Sr-86 isotopic age determination of upper Cretaceous Santonian, Campanian and Maastrichtian chondrichthyan teeth of the Atlantic and Eastern Gulf Coastal Plains: Implications for sea level cyclicity and macrofossil time-averaging in depositional sequence lag deposits

    NASA Astrophysics Data System (ADS)

    Becker, Martin Andrew

    1997-11-01

    Unconformities and fossil rich layers are common elements in the stratigraphic architecture of upper Cretaceous sediments exposed on both the Atlantic and Eastern Gulf Coastal Plains. Contacts between the Eutaw Formation and Tombigbee Sands Member in Alabama, the Blufftown Formation and Cusseta Sands in Georgia and the Wenonah- Mt. Laurel and Navesink Formations in New Jersey are marked by erosional surfaces with overlying blankets and lenses of macrofossil residuum. These contacts correspond to bounding unconformities and transgressive lags separating Santonian-Campanian, lower Campanian-upper Campanian and Campanian-Maastrichtian depositional sequences. Regression and subsequent transgression of sea level at the top of these depositional sequences resulted in hydrodynamic sorting of sediments and fossils that had previously accumulated in shelf and lower shoreface paleoenvironments. Remobilization of sediments by shoreface retreat reworked fossil hard-parts which became concentrated above erosional surfaces as sea level rose. Because of the abundance of chondrichthyan, pelecypod and ammonite fossils, these lags have great biostratigraphic significance and provide a basis for examining time averaging in macrofossil zonation. Chondrichthyan teeth are composed of extremely durable and highly insoluble, biogenic apatite. This tooth apatite accurately records the Sr87/Sr86 isotopic signature of seawater, from which the numerical age of the teeth can be calculated using published age/concentration data. Teeth (e.g. Squalicorax kaupi, Scapanorhynchus texanus) from Santonian-Campanian lag deposits at the contact of the Eutaw Formation and Tombigbee Sands Member in Alabama yield approximate ages of 85-81 Ma. Teeth from lower-upper Campanian lag deposits at the contact of the Blufftown Formation and Cusseta Sands in Georgia yield approximate ages of 83-75 Ma. Teeth from Campanian-Maastrichtian lag deposits at the contact of the Wenonah-Mt. Laurel and Navesink Formations in New Jersey yield approximate ages of 80-76 Ma. Isotopic age determination from these chondrichthyan teeth indicate average hiatus of approximately 3-7 million years occur during the development of lag accumulations and transgressive unconformities. Santonian, Campanian and Maastrichtian macrofossils analyzed in this study are hydrodynamically stable components representing time-averaged fossil assemblages sorted together by physical processes and are not life cohorts. Abrupt appearance and disappearance of organisms found in upper Cretaceous lag deposits of the Atlantic and Eastern Gulf Coastal Plains are artifacts of a physical sorting processes associated with sea-level cyclicity.

  5. A laboratory study of sediment and contaminant release during gas ebullition.

    PubMed

    Yuan, Qingzhong; Valsaraj, Kalliat T; Reible, Danny D; Willson, Clinton S

    2007-09-01

    Significant quantities of gas are generated from labile organic matter in contaminated sediments. The implications for the gas generation and subsequent release of contaminants from sediments are unknown but may include enhanced direct transport such as pore water advection and diffusion. The behavior of gas in sediments and the resulting migration of a polyaromatic hydrocarbon, viz phenanthrene, were investigated in an experimental system with methane injection at the base of a sediment column. Hexane above the overlying water layer was used to trap any phenanthrene migrating out of the sediment layer. The rate of suspension of solid particulate matter from the sediment bed into the overlying water layer was also monitored. The experiments indicated that significant amounts of both solid particulate matter and contaminant can be released from a sediment bed by gas movement with the amount of release related to the volume of gas released. The effective mass transfer coefficient of gas bubble-facilitated contaminant release was estimated under field conditions, being around three orders of magnitude smaller than that of bioturbation. A thin sand-capping layer (2 cm) was found to dramatically reduce the amount of contaminant or particles released with the gas because it could prevent or at least reduce sediment suspension. Based on the experimental observations, gas bubble-facilitated contaminant transport pathways for both uncapped and capped systems were proposed. Sediment cores were sliced to obtain phenanthrene concentration. X-ray computed tomography (CT) was used to investigate the void space distribution in the sediment penetrated by gas bubbles. The results showed that gas bubble migration could redistribute the sediment void spaces and may facilitate pore water circulation in the sediment.

  6. In situ observation of the water-sediment interface in combined sewers, using endoscopy.

    PubMed

    Oms, C; Gromaire, M C; Chebbo, G

    2003-01-01

    A new method for water-sediment interface observation has been designed. This system is based on a small diameter endoscope protected by a graduated plastic tube. It makes it possible to visualise in a non-destructive manner the sediments and the water-sediment interface. The endoscope was used to investigate Le Marais catchment (Paris): an immobile organic layer was observed at the water-sediment interface. This layer appears in pools of gross bed sediment, at the upstream of collectors, in zones where velocity is slow and where bed shear stress is less than 0.03 N/m2.

  7. Upper-crustal structure of the inner Continental Borderland near Long Beach, California

    USGS Publications Warehouse

    Baher, S.; Fuis, G.; Sliter, R.; Normark, W.R.

    2005-01-01

    A new P-wave velocity/structural model for the inner Continental Borderland (ICB) region was developed for the area near Long Beach, California. It combines controlled-source seismic reflection and refraction data collected during the 1994 Los Angeles Region Seismic Experiment (LARSE), multichannel seismic reflection data collected by the U.S. Geological Survey (1998-2000), and nearshore borehole stratigraphy. Based on lateral velocity contrasts and stratigraphic variation determined from borehole data, we are able to locate major faults such as the Cabrillo, Palos Verdes, THUMS-Huntington Beach, and Newport Inglewood fault zones, along with minor faults such as the slope fault, Avalon knoll, and several other yet unnamed faults. Catalog seismicity (1975-2002) plotted on our preferred velocity/structural model shows recent seismicity is located on 16 out of our 24 faults, providing evidence for continuing concern with respect to the existing seismic-hazard estimates. Forward modeling of P-wave arrival times on the LARSE line 1 resulted in a four-layer model that better resolves the stratigraphy and geologic structures of the ICB and also provides tighter constraints on the upper-crustal velocity structure than previous modeling of the LARSE data. There is a correlation between the structural horizons identified in the reflection data with the velocity interfaces determined from forward modeling of refraction data. The strongest correlation is between the base of velocity layer 1 of the refraction model and the base of the planar sediment beneath the shelf and slope determined by the reflection model. Layers 2 and 3 of the velocity model loosely correlate with the diffractive crust layer, locally interpreted as Catalina Schist.

  8. Settling-driven gravitational instabilities associated with volcanic clouds: new insights from experimental investigations

    NASA Astrophysics Data System (ADS)

    Scollo, Simona; Bonadonna, Costanza; Manzella, Irene

    2017-06-01

    Downward propagating instabilities are often observed at the bottom of volcanic plumes and clouds. These instabilities generate fingers that enhance the sedimentation of fine ash. Despite their potential influence on tephra dispersal and deposition, their dynamics is not entirely understood, undermining the accuracy of volcanic ash transport and dispersal models. Here, we present new laboratory experiments that investigate the effects of particle size, composition and concentration on finger generation and dynamics. The experimental set-up consists of a Plexiglas tank equipped with a removable plastic sheet that separates two different layers. The lower layer is a solution of water and sugar, initially denser than the upper layer, which consists of water and particles. Particles in the experiments include glass beads as well as andesitic, rhyolitic and basaltic volcanic ash. During the experiments, we removed the horizontal plastic sheet separating the two fluids. Particles were illuminated with a laser and filmed with a HD camera; particle image velocimetry (PIV) is used to analyse finger dynamics. Results show that both the number and the downward advance speed of fingers increase with particle concentration in the upper layer, while finger speed increases with particle size but is independent of particle composition. An increase in particle concentration and turbulence is estimated to take place inside the fingers, which could promote aggregation in subaerial fallout events. Finally, finger number, finger speed and particle concentration were observed to decrease with time after the formation of fingers. A similar pattern could occur in volcanic clouds when the mass supply from the eruptive vent is reduced. Observed evolution of the experiments through time also indicates that there must be a threshold of fine ash concentration and mass eruption rate below which fingers do not form; this is also confirmed by field observations.

  9. Development and implications of a sediment budget for the upper Elk River watershed, Humboldt County

    Treesearch

    Lee H. MacDonald; Michael W. Miles; Shane Beach; Nicolas M. Harrison; Matthew R. House; Patrick Belmont; Ken L. Ferrier

    2017-01-01

    A number of watersheds on the North Coast of California have been designated as sediment impaired under the Clean Water Act, including the 112 km2 upper Elk River watershed that flows into Humboldt Bay just south of Eureka. The objectives of this paper are to: 1) briefly explain the geomorphic context and anthropogenic uses of the Elk River...

  10. Dating the upper Cenozoic sediments in Fisher Valley, southeastern Utah ( USA).

    USGS Publications Warehouse

    Colman, Steven M.; Choquette, Anne F.; Rosholt, J.M.; Miller, G.H.; Huntley, D.J.

    1986-01-01

    More than 140 m of upper Cenozoic basin-fill sediments were deposited and then deformed in Fisher Valley between about 2.5 and 0.25 m.y. ago, in response to uplift of the adjacent Onion Creek salt diapir. In addition to these basin-fill sediments, minor amounts of eolian and fluvial sand were depositd in Holocene time. The sediments, whose relative ages are known from the stratigraphy, are predominantly sandy, second-cycle red beds derived from nearby Mesozoic rocks; most were deposited in a vertical sequence, filling a sedimentary basin now exposed by fluvial dissection. We have applied a variety of established and experimental dating methods to the sediments in Fisher Valley to establish their age and to provide time control for the recent history of the Onion Creek salt diapir.-from Authors

  11. Gas Hydrate Petroleum System Analysis

    NASA Astrophysics Data System (ADS)

    Collett, T. S.

    2012-12-01

    In a gas hydrate petroleum system, the individual factors that contribute to the formation of gas hydrate accumulations, such as (1) gas hydrate pressure-temperature stability conditions, (2) gas source, (3) gas migration, and (4) the growth of the gas hydrate in suitable host sediment can identified and quantified. The study of know and inferred gas hydrate accumulations reveal the occurrence of concentrated gas hydrate is mostly controlled by the presence of fractures and/or coarser grained sediments. Field studies have concluded that hydrate grows preferentially in coarse-grained sediments because lower capillary pressures in these sediments permit the migration of gas and nucleation of hydrate. Due to the relatively distal nature of the deep marine geologic settings, the overall abundance of sand within the shallow geologic section is usually low. However, drilling projects in the offshore of Japan, Korea, and in the Gulf of Mexico has revealed the occurrence of significant hydrate-bearing sand reservoirs. The 1999/2000 Japan Nankai Trough drilling confirmed occurrence of hydrate-bearing sand-rich intervals (interpreted as turbidite fan deposits). Gas hydrate was determined to fill the pore spaces in these deposits, reaching saturations up to 80% in some layers. A multi-well drilling program titled "METI Toaki-oki to Kumano-nada" also identified sand-rich reservoirs with pore-filling hydrate. The recovered hydrate-bearing sand layers were described as very-fine- to fine-grained turbidite sand layers measuring from several centimeters up to a meter thick. However, the gross thickness of the hydrate-bearing sand layers were up to 50 m. In 2010, the Republic of Korea conducted the Second Ulleung Basin Gas Hydrate (UBGH2) Drilling Expedition. Seismic data clearly showed the development of a thick, potential basin wide, sedimentary sections characterized by mostly debris flows. The downhole LWD logs and core data from Site UBGH2-5 reveal that each debris flows is characterized by basal silt- to sand-rich clay dominated stratigraphic units. The upper most debris flow at Site UBGH2-5 extends into the overlying gas hydrate stability zone and IR core scans indicate that this section contains some amount of gas hydrate. The UBGH2 LWD and coring program also confirmed the occurrence of numerous volcaniclastic and siliciclastic sand reservoirs that were deposited as part of local to basin-wide turbidite events. Gas hydrate saturations within the turbidite sands ranged between 60-80 percent. In 2009, the Gulf of Mexico (GOM) Joint Industry Project (JIP) drilled seven wells at three sites, finding gas hydrate at high concentration in sands in four wells, with suspected gas hydrate at low to moderate saturations in two other wells. In the northern GOM, high sedimentation rates in conjunction with salt tectonism, has promoted the formation of complex seafloor topography. As a result, coarse-grained deposition can occur as gravity-driven sedimentation traversing the slope within intra-slope "ponded" accommodation spaces.

  12. Holocene Depositional History of Shad Pond, a Hypersaline Coastal Lagoon, Eleuthera, Bahamas and Its Influence on Lucayan Occupation

    NASA Astrophysics Data System (ADS)

    Boush, L. E.; Fentress, S.; Conroy, M.; Cook, A.; Miseridina, D.; Buynevich, I. V.; Myrbo, A.; Brown, E. T.; Berman, M.; Gnivecki, P.; Kjellmark, E.; Savarese, M.; Brady, K.

    2013-12-01

    Shad Pond, an enclosed hypersaline lagoon on the southeastern tip of Eleuthera, Bahamas reveals a ~5000-year record of hurricane activity, as well as sea-level and climate change history. Three sediment cores recovered 1.04-2.54 m of sediment over bedrock along a transect perpendicular to shoreline. Sediment composition and grain size, loss on ignition, X-ray fluorescence (XRF) measurements of the cores along with dune transects and ground-penetrating radar (GPR) profiles adjacent to the lake provide a comprehensive dataset to interpret the history of this coastal basin. The sedimentary sequence was composed of alternating lithofacies that included microbial mats, sand, and peat. Laminated mats often alternated with sandy layers in thin to medium-bedded units. Two peat layers were found in the basal part of the shore-distal core (Site 1) between 1.82-2.40 m and 2.53-2.54 m and were separated by a 13-cm-thick gray mud layer. In general, organic matter and carbonate content tracked granulometry and composition in all cores. High-resolution XRF scans of Ca and Sr at Site 1 show elevated levels ~3,700 cal yBP, which correlate with the top of the peat layer, but these elemental concentrations vary at Site 3. XRF measurements of Fe indicate a dust flux that has been recorded regionally throughout the Caribbean. Dune transects and GPR profiles indicate a phased history of the pond, beginning with initial stages as an open lagoon dominated by red mangrove, with black mangrove and buttonwood also present. The lake likely closed at approximately 3,700 cal yBP indicated by the transition between the upper peat and microbial mat layers. This could have been due to increased storm events in a regime of rising sea level. Aeolian aggradation continued to heighten the barrier between the bedrock headlands to its present position. Hurricane overwash deposits punctuated the algal mat accumulation throughout this time period. Present-day hypersaline conditions sustain algal mats throughout the lake bottom. It is likely that the occupation by Lucayan culture was influenced by the position of the shoreline along southern Eleuthera and this lake was already unsuitable as a water source at the time of their arrival and occupation during 1300-600 years BP (AD 700-1400).

  13. Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Iversen, Morten H.; Pakhomov, Evgeny A.; Hunt, Brian P. V.; van der Jagt, Helga; Wolf-Gladrow, Dieter; Klaas, Christine

    2017-04-01

    Salp fecal pellets are rich in organic matter and have been shown to sink at very high velocities. In recent years, salp abundances have been increasing in the Southern Ocean where they seem to be replacing krill as the dominant grazers on phytoplankton. As salps can form large swarms with high pellet production rates, it has been suggested that they will become increasingly important for the vertical export of particulate organic matter in the Southern Ocean. However, detailed studies combining both investigations of pellet production rates, turnover, and export are still needed in order to determine whether salp pellets are important for export ('sinkers') or recycling ('floaters') of organic matter. Our results suggest that pellets are produced at high rates in the upper few hundred meters of the water column. Although we observed high sinking velocities and low microbial degradation rates of the produced salp pellets, only about one third of the produced pellets were captured in sediment traps placed at 100 m and about 13% of the produced pellets were exported to sediment traps placed at 300 m. The high retention of these fast-settling pellets seems to be caused by break-up and loosening of the pellets, possibly by zooplankton and salps themselves. We measured 3-fold lower size-specific sinking velocities in loosened and fragmented compared to freshly produced intact pellets-. This enhanced the residence times (>1 day) of both small and large pellets in the upper water column. We postulate that the fragile nature of salp pellets make them more important for recycling of organic matter in the upper mesopelagic layer rather than as a conduit for export of particulate organic matter to the seafloor.

  14. Estimating selenium removal by sedimentation from the Great Salt Lake, Utah

    USGS Publications Warehouse

    Oliver, W.; Fuller, C.; Naftz, D.L.; Johnson, W.P.; Diaz, X.

    2009-01-01

    The mass of Se deposited annually to sediment in the Great Salt Lake (GSL) was estimated to determine the significance of sedimentation as a permanent Se removal mechanism. Lake sediment cores were used to qualitatively delineate sedimentation regions (very high to very low), estimate mass accumulation rates (MARs) and determine sediment Se concentrations. Sedimentation regions were defined by comparison of isopach contours of Holocene sediment thicknesses to linear sedimentation rates determined via analysis of 210Pb, 226Ra, 7Be and 137Cs activity in 20 short cores (<5 cm), yielding quantifiable results in 13 cores. MARs were developed via analysis of the same radioisotopes in eight long cores (>10 cm). These MARs in the upper 1-2 cm of each long core ranged from 0.019 to 0.105 gsed/cm2/a. Surface sediment Se concentrations in the upper 1 or 2 cm of each long core ranged from 0.79 to 2.47 mg/kg. Representative MARs and Se concentrations were used to develop mean annual Se removal by sedimentation in the corresponding sedimentation region. The spatially integrated Se sedimentation rate was estimated to be 624 kg/a within a range of uncertainty between 285 and 960 kg/a. Comparison to annual Se loading and other potential removal processes suggests burial by sedimentation is not the primary removal process for Se from the GSL. ?? 2009 Elsevier Ltd.

  15. Late Quaternary refugia of Mediterranean taxa in the Portuguese Estremadura: charcoal based palaeovegetation and climatic reconstruction

    NASA Astrophysics Data System (ADS)

    Figueiral, I.; Terral, J.-F.

    2002-02-01

    The study of archaeological charcoal preserved in the sediments of Buraca Grande (Estremadura, Portugal) are used to aid the reconstruction of vegetation available to prehistoric settlements from the Upper Palaeolithic to the Neolithic. Results indicate the possible existence of three different phases. The first is mostly characterized by the presence of Pinus type sylvestris and of Buxus sempervirens. During the second phase, these taxa are replaced by more thermophilous elements dominated by Olea europaea. The decrease of Olea europaea in the last archaeological layer appears to represent the beginning of a third phase. The eco-anatomical analyses of charcoal fragments identified as Olea europaea allowed us to evaluate the palaeoclimatic conditions during this period. Two main phases are recognized; the first (Upper Pleistocene) is drier and cooler than present, while the Holocene sequence is comparable to present-day conditions. Results from both analyses are complementary and appear to show that this region was a refuge area for thermophilous taxa during the colder periods of the Pleistocene.

  16. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes.

    PubMed

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-08-26

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them.

  17. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    PubMed Central

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  18. Sewage contamination in the upper Mississippi River as measured by the fecal sterol, coprostanol

    USGS Publications Warehouse

    Writer, J.H.; Leenheer, J.A.; Barber, L.B.; Amy, G.L.; Chapra, S.C.

    1995-01-01

    The molecular sewage indicator, coprostanol, was measured in bed sediments of the Mississippi River for the purpose of determining sewage contamination. Coprostanol is a non-ionic, non-polar, organic molecule that associates with sediments in surface waters, and concentrations of coprostanol in bed sediments provide an indication of long-term sewage loads. Because coprostanol concentrations are dependent on particle size and percent organic carbon, a ratio between coprostanol (sewage sources) and cholestanol + cholesterol (sewage and non-sewage sources) was used to remove the biases related to particle size and percent organic carbon. The dynamics of contaminant transport in the Upper Mississippi River are influenced by both hydrologic and geochemical parameters. A mass balance model incorporating environmental parameters such as river and tributary discharge, suspended sediment concentration, fraction of organic carbon, sedimentation rates, municipal discharges and coprostanol decay rates was developed that describes coprostanol concentrations and therefore, expected patterns of municipal sewage effects on the Upper Mississippi River. Comparison of the computed and the measured coprostanol concentrations provides insight into the complex hydrologic and geochemical processes of contaminant transport and the ability to link measured chemical concentrations with hydrologic characteristics of the Mississippi River.

  19. Depositionally controlled recycling of iron and sulfur in marine sediments and its isotopic consequences

    NASA Astrophysics Data System (ADS)

    Riedinger, N.; Formolo, M.; Arnold, G. L.; Vossmeyer, A.; Henkel, S.; Sawicka, J.; Kasten, S.; Lyons, T. W.

    2011-12-01

    The continental margin off Uruguay and Argentina is characterized by highly dynamic depositional conditions. This variable depositional regime significantly impacts the biogeochemical cycles of iron and sulfur. Mass deposit related redeposition of reduced minerals can lead to the reoxidation of these phases and thus to an overprint of their geochemical primary signatures. Due to rapid burial these oxidized phases are still present in deeper subsurface sediments. To study the effects of sediment relocation on the sulfur and iron inventory we collected shallow and deep subsurface sediment samples via multicorer and gravity cores, respectively, in the western Argentine Basin during the RV Meteor Expedition M78/3 in May-July 2009. The samples were retrieved from shelf, slope and deep basin sites. The concentration and sulfur isotope composition of acid volatile sulfur (AVS), chromium reducible sulfur (CRS), elemental sulfur and total organic sulfur were determined. Furthermore, sequential iron extraction techniques were applied assess the distribution of iron oxide phases within the sediment. The investigated sediments are dominated by terrigenous inputs, with high amounts of reactive ferric iron minerals and only low concentrations of calcium carbonate. Total organic carbon concentrations show strong variation in the shallow subsurface sediments ranging between approximately 0.7 and 6.4 wt% for different sites. These concentrations do not correlate with water depths. Pore water accumulations of hydrogen sulfide are restricted to an interval at the sulfate-methane transition (SMT) zone a few meters below the sediment surface. In these deeper subsurface sediments pyrite is precipitated in this zone of hydrogen sulfide excess, whereas the accumulation of authigenic AVS and elemental sulfur (up to 2000 ppm) occurs at the upper and lower boundary of the sulfidic zone due the reaction of iron oxides with limited amounts of sulfide. Furthermore, our preliminary results indicate that there is a link between modern deposition in the shallow subsurface sediments and the long-term signals being buried and preserved in the deep subsurface layers. The data show that the burial of elemental sulfur into deep subsurface sediments can fuel the deep biosphere and has consequences for isotopic overprints tied, for example, to oxidation and disproportionation processes in the deeper sediments.

  20. Upper Mississippi River System - Environmental Management Program Definite Project Report (R-4) with Integrated Environmental Assessment. Andalusia Refuge Rehabilitation and Enhancement. Pool 16, Upper Mississippi River, Rock Island County, Illinois. Technical Appendices

    DTIC Science & Technology

    1988-11-01

    surface about 5 feet. A-2 * SEDIMENT CONDITIONS Historical records of past sedimentation rates are essentially nonexistent. A paper by J. Roger McHenry...dated March 1981 entitled "Recent Sedimentation Rates in Two Backwater Channel Lakes, Pool 14, Mississippi River" indicates widely varying deposition... rates , with an average of about 0.1 foot per year. Diversion of the upland drainage from the refuge area and the proposed levee with 2-year flood

  1. Shallow structure and stratigraphy of the carbonate West Florida continental slope and their implications to sedimentation and geohazards

    USGS Publications Warehouse

    Doyle, Larry J.

    1983-01-01

    An 1800-joule sparker survey of the West Florida continental slope between about 26?N and 29?15?N showed a top bed of Pleistocene age forming an irregular drape over a surface that is probably Pliocene. The contact between the top two layers is unconformable in the south and, in some places, shows karst collapse and solution features. Karst topography grades into a more hummocky erosional surface to the north, which in turn smoothes out; the contact become conformable still further north. A period of folding, which is widespread over the outer portion of the study area and which may be related to large scale mass wasting, occurred at about the same time represented by the unconformity. Significant subsidence has occurred as late as Pleistocene. The surface layer thins to a minimum (0 in the south) at about 525-meters water depth and then thickens again dramatically to the west, downslope. This thinning is interpreted to be due to the Loop Current, which flows from north to south in the area and which acts to block deposition and scour the bottom. Despite the fact that the margin is dominated by carbonates, usually associated with low sedimentation rates, there is widespread evidence of mass wasting affecting ancient and surficial deposits on the outer part of the upper slope. Three potential groups of geohazards identified are: 1. Potential bottom failure in areas where a thin top layer overlies the karst surface. 2. Potential for sliding and slumping. 3. Scour due to currents which could also affect drilling and engineering activities.

  2. Unusual algal turfs associated with the rhodophyta Phyllophora crispa: Benthic assemblages along a depth gradient in the Central Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bonifazi, Andrea; Ventura, Daniele; Gravina, Maria Flavia; Lasinio, Giovanna Jona; Belluscio, Andrea; Ardizzone, Gian Domenico

    2017-02-01

    Macroalgal assemblages dominated by the turf-forming alga Phyllophora crispa are described in detail for the first time in the Central Mediterranean Sea. This particular form of algal growth, which comprises an upper mixed layer of multiple algal species with a basal stratum formed by entangled thalli of P. crispa, was observed for the first time in 2012 along the promontory of Punta del Lazzaretto (Giglio Island, Italy). In this study, this assemblage was analysed to document the diversity of macroalgae and invertebrate associated communities and assess their distribution along a depth gradient. The algae forming turfs grow directly on the rock at low depth up to 10-15 m depth, while they grow above P. crispa from 15 m to 35 m depth, resulting in luxuriant beds covering up to 100% of the substrate. Multivariate analysis revealed clear differences regarding algae and invertebrate species richness and abundance between shallow and deep strata because of the dominance of Phyllophora crispa at depths greater than 20 m. The long laminal thalli of P. crispa favoured sessile fauna colonization, while the vagile species were principally linked to the architectural complexity of the turf layer created by the P. crispa, which increased the microhabitat diversity and favoured sediment deposition within the turf layer. The complex structures of these turf assemblages and their widespread distribution along the whole coast of the island suggest a well-established condition of the communities linked to the high natural sedimentation rate observed in the area.

  3. Apulian crust: Top to bottom

    NASA Astrophysics Data System (ADS)

    Amato, Alessandro; Bianchi, Irene; Agostinetti, Nicola Piana

    2014-12-01

    We investigate the crustal seismic structure of the Adria plate using teleseismic receiver functions (RF) recorded at 12 broadband seismic stations in the Apulia region. Detailed models of the Apulian crust, e.g. the structure of the Apulian Multi-layer Platform (AMP), are crucial for assessing the presence of potential décollements at different depth levels that may play a role in the evolution of the Apenninic orogen. We reconstruct S-wave velocity profiles applying a trans-dimensional Monte Carlo method for the inversion of RF data. Using this method, the resolution at the different depth level is completely dictated by the data and we avoid introducing artifacts in the crustal structure. We focus our study on three different key-elements: the Moho depth, the lower crust S-velocity, and the fine-structure of the AMP. We find a well defined and relatively flat Moho discontinuity below the region at 28-32 km depth, possibly indicating that the original Moho is still preserved in the area. The lower crust appears as a generally low velocity layer (average Vs = 3.7 km/s in the 15-26 km depth interval), likely suggestive of a felsic composition, with no significant velocity discontinuities except for its upper and lower boundaries where we find layering. Finally, for the shallow structure, the comparison of RF results with deep well stratigraphic and sonic log data allowed us to constrain the structure of the AMP and the presence of underlying Permo-Triassic (P-T) sediments. We find that the AMP structure displays small-scale heterogeneities in the region, with a thickness of the carbonates layers varying between 4 and 12 km, and is underlain by a thin, discontinuous layer of P-T terrigenous sediments, that are lacking in some areas. This fact may be due to the roughness in the original topography of the continental margins or to heterogeneities in its shallow structure due to the rifting process.

  4. Depositional history, nannofossil biostratigraphy, and correlation of Argo Abyssal Plain Sites 765 and 261

    USGS Publications Warehouse

    Dumoulin, Julie A.; Bown, Paul R.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.

    1992-01-01

    Sediments from the Argo Abyssal Plain (AAP), northwest of Australia, are the oldest known from the Indian Ocean and were recovered from ODP Site 765 and DSDP Site 261. New biostratigraphic and sedimentologic data from these sites, as well as reinterpretations of earlier findings, indicate that basal sediments at both localities are of Late Jurassic age and delineate a history of starved sedimentation punctuated by periodic influx of calcareous pelagic turbidites.Biostratigraphy and correlation of Upper Jurassic-Lower Cretaceous sediments is based largely on calcareous nannofossils. Both sites yielded variably preserved nannofossil successions ranging from Tithonian to Hauterivian at Site 765 and Kimmeridgian to Hauterivian at Site 261. The nannofloras are comparable to those present in the European and Atlantic Boreal and Tethyan areas, but display important differences that reflect biogeographic differentiation. The Argo region is thought to have occupied a position at the southern limit of the Tethyan nannofloral realm, thus yielding both Tethyan and Austral biogeographic features.Sedimentary successions at the two sites are grossly similar, and differences largely reflect Site 765 's greater proximity to the continental margin. Jurassic sediments were deposited at rates of about 2 m/m.y. near the carbonate compensation depth (CCD) and contain winnowed concentrations of inoceramid prisms and nannofossils, redeposited layers rich in calcispheres and calcisphere debris, manganese nodules, and volcanic detritus. Lower Cretaceous and all younger sediments accumulated below the CCD at rates that were highest (about 20 m/m.y.) during mid-Cretaceous and Neogene time. Background sediment in this interval is noncalcareous claystone; turbidites dominate the sequence and are thicker and coarser grained at Site 765.AAP turbidites consist mostly of calcareous and siliceous biogenic components and volcanogenic smectite clay; they were derived from relatively deep parts of the continental margin that lay below the photic zone, but above the CCD. The Jurassic-Lower Cretaceous section is about the same thickness across the AAP; turbidites in this interval appear to have had multiple sources along the Australian margin. The Upper Cretaceous-Cenozoic section, however, is three times thicker at Site 765 than at Site 261; turbidites in this interval were derived predominantly from the south.Patterns of sedimentation across the AAP have been influenced by shifts in sea level, the CCD, and configuration of the continental margin. Major pulses of calcareous turbidite deposition occurred during Valanginian, Aptian, and Neogene time—all periods of eustatic lowstands and depressed CCD levels. Sediment redeposited on the AAP has come largely from the Australian outer shelf, continental slope, or rise, rather than the continent itself. Most terrigenous detritus was trapped in epicontinental basins that have flanked northwestern Australia since the early Mesozoic.

  5. Underwater Flow Visualization Methods in the Upper Layer of the Ocean.

    DTIC Science & Technology

    1981-05-22

    AD-A107 919 NAVAL RESEARCH LAB WASHINGTON DC F/G 8/3 UNDERWATER FLOW VISUALIZATION METHODS IN T1E UPPER LAYER OF THE-ETC(U) AMAY 81 J R MCGRATH, C M...S.bOti1.) S. TYPE OF REPORT I PERIOD COVERED UNDERWATER FLOW VISUALIZATION METHODS Interim report on a continuingNRL problem. IN THE UPPER LAYER OF THE...56 UNDERWATER FLOW VISUALIZATION METHODS IN THE UPPER LAYER OF THE OCEAN 1. INTRODUCTION a) Purpose This report documents the

  6. Benthic photosynthesis and oxygen consumption in permeable carbonate sediments at Heron Island, Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Rasheed, Mohammed; Wild, Christian; Franke, Ulrich; Huettel, Markus

    2004-01-01

    In order to investigate benthic photosynthesis and oxygen demand in permeable carbonate sands and the impact of benthic boundary layer flow on sedimentary oxygen consumption, in situ and laboratory chamber experiments were carried out at Heron Island, Great Barrier Reef, Australia. Total photosynthesis, net primary production and respiration were estimated to be 162.9±43.4, 98.0±40.7, and 64.9±15.0 mmol C m -2 d -1, respectively. DIN and DIP fluxes for these sands reached 0.34 and 0.06 mmol m -2 d -1, respectively. Advective pore water exchange had a strong impact on oxygen consumption in the permeable sands. Consumption rates in the chamber with larger pressure gradient (20 rpm, 1.2 Pa between centre and rim) simulating a friction velocity of 0.6 cm s -1 were approximately two-fold higher than in the chambers with slow stirring (10 rpm, 0.2 Pa between centre and rim, friction velocity of 0.3 cm s -1). In the laboratory chamber experiments with stagnant water column, oxygen consumption was eight times lower than in the chamber with fast stirring. Laboratory chamber experiments with Br - tracer revealed solute exchange rates of 2.6, 2.2, 0.7 ml cm -2 d -1 at stirring rates of 20, 10, and 0 rpm, respectively. In a laboratory experiment investigating the effect of sediment permeability on oxygen and DIC fluxes, a three-fold higher permeability resulted in two- to three-fold higher oxygen consumption and DIC release rates. These experiments demonstrate the importance of boundary flow induced flushing of the upper layer of permeable carbonate sediment on oxygen uptake in the coral sands. The high filtration and oxidation rates in the sub-tropical permeable carbonate sediments and the subsequent release of nutrients and DIC reveal the importance of these sands for the recycling of matter in this oligotrophic environment.

  7. Selenium and trace element mobility affected by periodic displacement of stratification in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Beisner, K.; Naftz, D.L.; Johnson, W.P.; Diaz, X.

    2009-01-01

    The Great Salt Lake (GSL) is a unique ecosystem in which trace element activity cannot be characterized by standard geochemical parameters due to the high salinity. Movement of selenium and other trace elements present in the lake bed sediments of GSL may occur due to periodic stratification displacement events or lake bed exposure. The water column of GSL is complicated by the presence of a chemocline persistent over annual to decadal time scales. The water below the chemocline is referred to as the deep brine layer (DBL), has a high salinity (16.5 to 22.9%) and is anoxic. The upper brine layer (UBL) resides above the chemocline, has lower salinity (12.6 to 14.7%) and is oxic. Displacement of the DBL may involve trace element movement within the water column due to changes in redox potential. Evidence of stratification displacement in the water column has been observed at two fixed stations on the lake by monitoring vertical water temperature profiles with horizontal and vertical velocity profiles. Stratification displacement events occur over periods of 12 to 24 h and are associated with strong wind events that can produce seiches within the water column. In addition to displacement events, the DBL shrinks and expands in response to changes in the lake surface area over a period of months. Laboratory tests simulating the observed sediment re-suspension were conducted over daily, weekly and monthly time scales to understand the effect of placing anoxic bottom sediments in contact with oxic water, and the associated effect of trace element desorption and (or) dissolution. Results from the laboratory simulations indicate that a small percentage (1%) of selenium associated with anoxic bottom sediments is periodically solubilized into the UBL where it potentially can be incorporated into the biota utilizing the oxic part of GSL.

  8. Inference of lithologic distributions in an alluvial aquifer using airborne transient electromagnetic surveys

    USGS Publications Warehouse

    Dickinson, Jesse; Pool, D.R.; Groom, R.W.; Davis, L.J.

    2010-01-01

    An airborne transient electromagnetic (TEM) survey was completed in the Upper San Pedro Basin in southeastern Arizona to map resistivity distributions within the alluvial aquifer. This investigation evaluated the utility of 1D vertical resistivity models of the TEM data to infer lithologic distributions in an alluvial aquifer. Comparisons of the resistivity values and layers in the 1D resistivity models of airborne TEM data to 1D resistivity models of ground TEM data, borehole resistivity logs, and lithologic descriptions in drill logs indicated that the airborne TEM identified thick conductive fine-grained sediments that result in semiconfined groundwater conditions. One-dimensional models of ground-based TEM surveys and subsurface lithology at three sites were used to determine starting models and constraints to invert airborne TEM data using a constrained Marquardt-styleunderparameterized method. A maximum structural resolution of six layers underlain by a half-space was determined from the resistivity structure of the 1D models of the ground TEM data. The 1D resistivity models of the airborne TEM data compared well with the control data to depths of approximately 100 m in areas of thick conductive silt and clay and to depths of 200 m in areas of resistive sand and gravel. Comparison of a 3D interpolation of the 1D resistivity models to drill logs indicated resistive (mean of 65 ohm-m ) coarse-grained sediments along basin margins and conductive (mean of 8 ohm-m ) fine-grained sediments at the basin center. Extents of hydrologically significant thick silt and clay were well mapped by the 1D resistivity models of airborne TEM data. Areas of uncertain lithology remain below conductive fine-grained sediments where the 1D resistivity structure is not resolved: in areas where multiple lithologies have similar resistivity values and in areas of high salinity.

  9. Geochronology of Mudflow Deposits on the Mississippi River Delta Front, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Keller, G. P.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Miner, M. D.; Obelcz, J.; Maloney, J. M.

    2016-02-01

    Short multicores (<50cm) and longer gravity cores (up to 3m) were collected seaward of the Southwest Pass of the Mississippi River Delta (Gulf of Mexico) and were analyzed to assess the frequency, extent, and potential causes of submarine mass wasting events. Cores were analyzed for radionuclide activity, grain size, and density at 2cm resolution, with x-radiography for the whole core. Short-term sedimentation rates calculated from 7Be are 2-12cm/y, while longer-term accumulation from 210Pb are only 1.3-5.5cm/y. In most cores, 210Pb activity steadily decreases downcore without displaying a "stairstep" nature. However, six cores have layers of low 210Pb activity stratigraphically above layers with higher activity. In one long core from a mudflow gully, 210Pb steadily decreases for the upper 90cm before stabilizing for the remaining 130cm. Clay content generally ranges between 25-40% and sand ranges between 5-15% with silt making up the rest of each sample. Sedimentation rates derived from 210Pb in the short cores indicate that proximity to the river mouth has stronger influence than depositional environment (mudflow gully, depositional lobe, prodelta). This finding may be explained by rapid sedimentation rates coupled with a reduced tropical cyclone activity over the delta in the last seven years (2006-2013). The regions of decreased 210Pb activity may be evidence of scavenging effects of plume sedimentation because they do not correspond with decreases in clay fraction. The zone of homogenized activity below 90cm in the gully core occurs at a depth equivalent to 18 years, indicating mixing on a decadal scale, potentially from mudflows. These results may be explained by a lack of recent mass failures corresponding with lulls in tropical cyclone activity over the delta, preceded by a period of more active hurricane-driven mudflow activity.

  10. Distribution in the abundance and biomass of shelled pteropods in surface waters of the Indian sector of the Antarctic Ocean in mid-summer

    NASA Astrophysics Data System (ADS)

    Akiha, Fumihiro; Hashida, Gen; Makabe, Ryosuke; Hattori, Hiroshi; Sasaki, Hiroshi

    2017-06-01

    We investigated shelled pteropod abundance and biomass with a 100-μm closing net, and their estimated downward fluxes using a sediment trap installed in a drifter buoy in the Indian sector of the Antarctic Ocean during the austral summer. Over 90% pteropod abundance was distributed in the upper 50 m; 70-100% were immature veligers. Limacina retroversa was dominant in the >0.2 mm individuals north of 60°S, L. helicina dominated south of 62°S, while populations around 60-62°S were mixed. Unidentifiable small Limacina spp. (ssL) were highly abundant in the upper 50 m at 60°S, 63°S, and 64°S on 110°E and 63°S on 115°E, although their estimated particulate organic carbon (POC) biomasses were less than that of Limacina adults. Adult females bearing egg clusters were found in the 0-50 m layer; the veligers likely grew within a short period. The mean downward flux of ssL and veligers at 70 m around 60°S, 110°E was 5.1 ± 1.6 × 103 ind. m-2 d-1 (0.6 ± 0.2 mg C m-2 d-1), which was 3.8% of the integrated ssL and veligers in the upper 70 m, suggesting that at least 4% of the veligers were produced daily in the surface layers. The mid-summer spawned ssL and veligers likely contributed to the subsequent increase in large pteropods in the area.

  11. Devices, systems, and methods for conducting assays with improved sensitivity using sedimentation

    DOEpatents

    Schaff, Ulrich Y.; Koh, Chung-Yan; Sommer, Gregory J.

    2016-04-05

    Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.

  12. Devices, systems, and methods for conducting assays with improved sensitivity using sedimentation

    DOEpatents

    Schaff, Ulrich Y; Koh, Chung-Yan; Sommer, Gregory J

    2015-02-24

    Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.

  13. Cold-seep-like macrofaunal communities in organic- and sulfide-rich sediments of the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Olu, K.; Decker, C.; Pastor, L.; Caprais, J.-C.; Khripounoff, A.; Morineaux, M.; Ain Baziz, M.; Menot, L.; Rabouille, C.

    2017-08-01

    Methane-rich fluids arising from organic matter diagenesis in deep sediment layers sustain chemosynthesis-based ecosystems along continental margins. This type of cold seep develops on pockmarks along the Congo margin, where fluids migrate from deep-buried paleo-channels of the Congo River, acting as reservoirs. Similar ecosystems based on shallow methane production occur in the terminal lobes of the present-day Congo deep-sea fan, which is supplied by huge quantities of primarily terrestrial material carried by turbiditic currents along the 800 km channel, and deposited at depths of up to nearly 5000 m. In this paper, we explore the effect of this carbon enrichment of deep-sea sediments on benthic macrofauna, along the prograding lobes fed by the current active channel, and on older lobes receiving less turbiditic inputs. Macrofaunal communities were sampled using either USNEL cores on the channel levees, or ROV blade cores in the chemosynthesis-based habitats patchily distributed in the active lobe complex. The exceptionally high organic content of the surface sediment in the active lobe complex was correlated with unusual densities of macrofauna for this depth, enhanced by a factor 7-8, compared with those of the older, abandoned lobe, whose sediment carbon content is still higher than in Angola Basin at same depth. Macrofaunal communities, dominated by cossurid polychaetes and tanaids were also more closely related to those colonizing low-flow cold seeps than those of typical deep-sea sediment. In reduced sediments, microbial mats and vesicomyid bivalve beds displayed macrofaunal community patterns that were similar to their cold-seep counterparts, with high densities, low diversity and dominance of sulfide-tolerant polychaetes and gastropods in the most sulfidic habitats. In addition, diversity was higher in vesicomyid bivalve beds, which appeared to bio-irrigate the upper sediment layers. High beta-diversity is underscored by the variability of geochemical gradients in vesicomyid assemblages, and by the vesicomyid population characteristics that vary in density, size and composition. By modifying the sediment geochemistry differently according to their morphology and physiology, the different vesicomyid species play an important role structuring macrofauna composition and vertical distribution. Dynamics of turbiditic deposits at a longer temporal scale (thousands of years) and their spatial distribution in the lobe area also resulted in high heterogeneity of the "cold-seep-like communities". Dynamics of chemosynthetic habitats and associated macrofauna in the active lobe area resembled those previously observed at the Regab pockmark along the Congo margin and rapid succession is expected to cope with high physical disturbance by frequent turbiditic events and huge sedimentation rates. Finally, we propose a model of the temporal evolution of these peculiar habitats and communities on longer timescales in response to changes in distributary channels within the lobe complex.

  14. 3D multidisciplinary numerical model of polychlorinated biphenyl dynamics on the Black Sea north-western shelf

    NASA Astrophysics Data System (ADS)

    Bagaiev, Andrii; Ivanov, Vitaliy

    2014-05-01

    The Black Sea north-western shelf plays a key role in economics of the developing countries such as Ukraine due to food supply, invaluable recreational potential and variety of the relevant maritime shipping routes. On the other hand, a shallow flat shelf is mostly affected by anthropogenic pollution, eutrophication, hypoxia and harmful algae blooms. The research is focused on modeling the transport and transformation of PCBs (PolyChlorinated Biphenyls) because they are exceedingly toxic and highly resistant to degradation, hence cumulatively affect marine ecosystems. Being lipophilic compounds, PCBs demonstrate the distinguishing sorption/desorption activity taking part in the biogeochemical fluxes via the organic matter particles and sediments. In the framework of the research, the coastal in-situ data on PCB concentration in the water column and sediments are processed, visualized and analyzed. It is concluded that the main sources of PCBs are related to the Danube discharge and resuspension from the shallow-water sediments. Developed 3D numerical model is aimed at simulation of PCB contamination of the water column and sediment. The model integrates the full physics hydrodynamic block as well as modules, which describe detritus transport and transformation and PCB dynamics. Three state variables are simulated in PCB transport module: concentration in solute, on the settling particles of detritus and in the top layer of sediments. PCB adsorption/desorption on detritus; the reversible PCB fluxes at the water-sediment boundary; destruction of detritus are taken into consideration. Formalization of PCB deposition/resuspension in the sediments is adapted from Van Rijn's model of the suspended sediment transport. The model was spun up to reconstruct the short term scenario of the instantaneous PCB release from the St. George Arm of Danube. It has been shown that PCB transport on sinking detritus represents the natural buffer mechanism damping the spreading PCB contamination in the Black Sea shelf ecosystem. Special numerical experiments were carried out to evaluate the artificial sorbent efficiency as a possible post-accidental counter-measure. End-user application is implemented to provide operational PCB forecast in order to support decision making and minimize ecological risks. The graphical user interface allows specifying instantaneous or continuous PCB release scenarios and quick updating the prediction of PCB release trajectory and temporal variability of the mass balance components. It provides visualization of PCB contamination at the sea surface, in the water column and in the upper layer of sediments over time, including the animations of PCB movement. The integrated ocean-ecosystem-sediment-pollution approach developed is applicable to any coastal area and allows further implementation related to advances in the model representation of natural processes and to improvements of PCB monitoring.

  15. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    NASA Astrophysics Data System (ADS)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  16. Remedy and Recontamination Assessment Array

    DTIC Science & Technology

    2017-03-01

    of silica sand visual tracer at interface, (C) addition of thin sand layer, and (D) final result with treatment and overlying water added...Final result for thin clean sediment layer treatment after final installation of treatment and overlying water ... treatment sediments were held in the sediment cells or tubs with overlying surface water under cool conditions overnight prior to application of the

  17. Influence of Aroclor 1242 concentration on polychlorinated biphenyl biotransformations in Hudson River test tube microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fish, K.M.

    1996-08-01

    PCBs are a family of compounds sold with various levels of chlorination and under different trade names. They have accumulated in soils, sediments, and biota, raising concerns about possible health risks. The upper Hudson River was contaminated with Aroclor 1242. This study examines the influence of Aroclor concentration on PCB biotransformations in the upper Hudson River sediment. 6 refs., 3 figs.

  18. The sedimentary evolution of the Celtic Sea during Marine Isotope Stages 1 and 2

    NASA Astrophysics Data System (ADS)

    Lockhart, Edward; Scourse, James; Van Landeghem, Katrien; Praeg, Daniel; Mellett, Claire; Huws, Dei; Saher, Margot; Benetti, Sara

    2017-04-01

    During the Last Glacial Maximum (LGM), the Celtic Sea was partially glaciated by the Irish Sea Ice Stream and is considered to have subsequently experienced a high-energy post-glacial transgression. The combination of these events resulted in the deposition, reworking and erosion of a wide range of sediment types to produce the upper stratigraphy of the shelf, including the world's largest submarine elongated ridges. These geomorphic features dominate the shelf and have been previously interpreted to have formed as a result of the tidal reworking of shelf deposits during transgression, despite not having been directly dated. Shelf-wide high-resolution geophysical data, and vibrocores, collected as part of the BRITICE-CHRONO Project, provide new information on relationships between seismic and shallow sedimentary units. A regionally extensive near-surface reflector, cored in several locations, correlates to a gravel/shell layer with an erosive base, unconformably overlying fine-grained LGM glacial sediments with undrained shear strengths in excess of 120 kPa, and in places exhibiting visibly deformed laminations. Geotechnical tests suggest these sediments to be over-consolidated, and we propose that these properties and the observed deformation can only be explained by subglacial reworking under a re-advancing Irish Sea Ice Stream, a scenario never before evidenced in reconstructions of Celtic Sea glaciation. Previous reconstructions propose a single advance-retreat cycle; therefore, a re-advance during a time of inferred retreat would represent a significant change in glacial dynamics. Seismic reflection profiles show that the regionally continuous gravel/shell layer appears to form an undulating palaeo-topography, possibly influenced by the geotechnical properties of the deposits below, on which the large surface ridges are formed. The presence of a regionally continuous reflection surface truncating LGM glacial sediments would suggest a significant erosion event after glacial deposition occurred, possibly representing transgression. This suggests that the large surface ridges may be of post-glacial tidal origin, but with significant sediment supply and morphological control influenced by the glaciation of the Celtic Sea.

  19. Traces in the dark: sedimentary processes and facies gradients in the upper shale member of the Upper Devonian-Lower Mississippian Bakken Formation, Williston Basin, North Dakota, U.S.A.

    USGS Publications Warehouse

    Egenhoff, Sven O.; Fishman, Neil S.

    2013-01-01

    Black, organic-rich rocks of the upper shale member of the Upper Devonian–Lower Mississippian Bakken Formation, a world-class petroleum source rock in the Williston Basin of the United States and Canada, contain a diverse suite of mudstone lithofacies that were deposited in distinct facies belts. The succession consists of three discrete facies associations (FAs). These comprise: 1) siliceous mudstones; 2) quartz- and carbonate-bearing, laminated mudstones; and 3) macrofossil-debris-bearing massive mudstones. These FAs were deposited in three facies belts that reflect proximal to distal relationships in this mudstone system. The macrofossil-debris-bearing massive mudstones (FA 3) occur in the proximal facies belt and contain erosion surfaces, some with overlying conodont and phosphate–lithoclast lag deposits, mudstones with abundant millimeter-scale siltstone laminae showing irregular lateral thickness changes, and shell debris. In the medial facies belt, quartz- and carbonate-bearing, laminated mudstones dominate, exhibiting sub-millimeter-thick siltstone layers with variable lateral thicknesses and localized mudstone ripples. In the distal siliceous mudstone facies belt, radiolarites, radiolarian-bearing mudstones, and quartz- and carbonate-bearing, laminated mudstones dominate. Overall, total organic carbon (TOC) contents range between about 3 and 10 wt %, with a general proximal to distal decrease in TOC content. Abundant evidence of bioturbation exists in all FAs, and the lithological and TOC variations are paralleled by changes in burrowing style and trace-fossil abundance. While two horizontal traces and two types of fecal strings are recognized in the proximal facies belt, only a single horizontal trace fossil and one type of fecal string characterize mudstones in the distal facies belt. Radiolarites intercalated into the most distal mudstones are devoid of traces and fecal strings. Bedload transport processes, likely caused by storm-induced turbidity currents, were active across all facies belts. Suspended sediment settling from near the ocean surface, however, most likely played a role in the deposition of some of the mudstones, and was probably responsible for deposition of the radiolarites. The distribution pattern of high-TOC sediments in proximal and lower-TOC deposits in some distal facies is interpreted as a function of higher accumulation rates during radiolarian depositional events leading to a decrease in suspension-derived organic carbon in radiolarite laminae. The presence of burrows in all FAs and nearly all facies in the upper Bakken shale member indicates that dysoxic conditions prevailed during its deposition. This study shows that in intracratonic high-TOC mudstone successions such as the upper Bakken shale member bed-load processes most likely dominated sedimentation, and conditions promoted a thriving infaunal benthic community. As such, deposition of the upper Bakken shale member through dynamic processes in an overall dysoxic environment represents an alternative to conventional anoxic depositional models for world-class source rocks.

  20. Manganese cycles in Arctic marine sediments - Climate signals or diagenesis?

    NASA Astrophysics Data System (ADS)

    März, C.; Stratmann, A.; Eckert, S.; Schnetger, B.; Brumsack, H.-J.

    2009-04-01

    In comparison to sediments from other parts of the world ocean, the inorganic geochemistry of Arctic Ocean sediments is poorly investigated. However, marked light to dark brown layers are well-known features of Quaternary Arctic sediments, and have been related to variable Mn contents. Brown layers represent intervals relatively rich in Mn (often > 1 wt.%), while yellowish-greyish intervals contain less Mn. As these brown layers are widespread in pelagic Quaternary deposits of the Arctic Ocean, there are attempts to use them as stratigraphic, age-equivalent marker horizons that are genetically related to global climate changes (e.g. Jakobsson et al., 2000; Löwemark et al., 2008). In the Arctic Ocean, other conventional stratigraphic methods often fail, therefore the use of Mn-rich layers as a chemostratigraphic tool seems to be a promising approach. However, several inorganic-geochemical and modelling studies of Mn cycles in the Arctic as well as in other parts of the world ocean have shown that multiple Mn layers in marine sediments can be created by non-steady state diagenetic processes, i.e. secondary Mn redistribution in the sediment due to microbially mediated dissolution-reprecipitation reactions (e.g. Li et al., 1969; Gobeil et al., 1997; Burdige, 2006; Katsev et al., 2006). Such biogeochemical processes can lead to rapid migration or fixation of redox boundaries in the sediment, resulting in the formation or (partial) destruction of metal-rich layers several thousands of years after sediment deposition. As this clearly would alter primary paleoenvironmental signals recorded in the sediments, we see an urgent need to unravel the real stratigraphic potential of Arctic Mn cycles before they are readily established as standard tools. For this purpose, we are studying Mn cycles in Arctic Ocean sediments recovered during R/V Polarstern expedition ARK XXIII/3 on the Mendeleev Ridge (East Siberian Sea). First results of pore water and sediment composition (analysed by ICP-OES and WD-XRF) indicate that certain Mn-rich layers are currently dissolving, while others are forming. This internal Mn re-distribution, while being more pronounced in some locations than in others, also has an impact on related trace metal distributions (e.g. Co, Cu, Ni, Mo). As Mn diagenesis obviously occurs in most cores studied so far (pelagic depositional areas unaffected by turbidites), we conclude that caution has to be taken when applying Mn layers as stratigraphic tools. In addition to more sensitive analyses (acid digestions and HR-ICP-MS measurements), we will apply methods like sequential Mn extraction, X-ray diffraction and electron microscopy to study these Mn-rich layers. These data will be put into a broader context by comparing them to parameters like magnetic susceptibility, grain size distribution, sediment colour or porosity. Hopefully, this will result in a better understanding of Mn biogeochemistry in the Arctic Ocean, including its application as paleoenvironmental proxy. Burdige, D.J. (2006) Geochemistry of marine sediments. Princeton University Press, 609 pp. Gobeil, C., Macdonald, R.W., Sundby, B. (1997) Diagenetic separation of cadmium and manganese in suboxic continental margin sediments. Geochim. Cosmochim. Acta 61, 4647-4654. Jakobsson, M., Løvlie, R., Al-Hanbali, H., Arnold, E.M., Backman, J., Mörth, M. (2000) Manganese and color cycles in Artic Ocean sediments constrain Pleistocene chronology. Geology 8, 23-26. Katsev, S., Sundby, B., Mucci, A. (2006) Modeling vertical excursions of the redox boundary in sediments: Application to deep basins of the Arctic Ocean. Limnol. Oceanogr. 51, 1581-1593. Li, Y.-H., Bischoff, J. Mathieu, G. (1969) Migration of manganese in Arctic Basin sediments. Earth Planet. Sci. Lett. 7, 265-270. Löwemark, L., Jakobsson, M., Mörth, M., Backman, J. (2008) Arctic Ocean manganese contents and sediment colour cycles. Polar. Res. 27, 105-113.

  1. Organic matter diagenesis within the water column and surface sediments of the northern Sargasso Sea revealed by lipid biomarkers

    NASA Astrophysics Data System (ADS)

    Conte, M. H.; Pedrosa Pàmies, R.; Weber, J.

    2017-12-01

    The intensity of particle cycling processes within the mesopelagic and bathypelagic ocean controls the length scale of organic material (OM) remineralization and diagenetic transformations of OM composition through the water column and into the sediments. To elucidate the OM cycling in the oligotrophic North Atlantic gyre, we analyzed lipid biomarkers in the suspended particles (30-4400 m depth, 100 mab), the particle flux (500 m, 1500 m and 3200 m depth), and in the underlying surficial sediments (0-0.5 cm, 4500-4600 m depth) collected at the Oceanic Flux Program (OFP) time series site located 75km SE of Bermuda. Changes in lipid biomarker concentration and composition with depth highlight the rapid remineralization of OM within the upper mesopelagic layer and continuing diagenetic transformations of OM throughout the water column and within surficial sediments. Despite observed similarities in biomarker composition in suspended and sinking particles, results show there are also consistent differences in relative contributions of phytoplankton-, bacterial- and zooplankton-derived sources that are maintained throughout the water column. For example, sinking particles are more depleted in labile biomarkers (e.g. polyunsaturated fatty acids (PUFA)) and more enriched in bacteria-derived biomarkers (e.g. hopanoids and odd/branched fatty acids) and indicators of fecal-derived OM (e.g. saturated fatty acids, FA 18:1w9 and cholesterol) than in the suspended pool. Strong seasonality in deep (3200 m) fluxes of phytoplankton-derived biomarkers reflect the seasonal input of bloom-derived material to underlying sediments. The rapid diagenetic alteration of this bloom-derived input is evidenced by depletion of PUFAs and enrichment of microbial biomarkers (e.g. odd/branched fatty acids) in surficial sediments over a two month period.

  2. Geoacoustic Characterization of the Mud Drape at the New England Mud Patch

    NASA Astrophysics Data System (ADS)

    Reed, A. H.

    2016-02-01

    The New England Mud Patch is an extensive deposit of fine-grained sediments that extends from an area south of Cape Cod, MA to south of Montauk Point Long Island, NY out on the continental shelf in water depths of 60 to 90 meters. The mud patch has a remarkable accumulation of up to a 13 meter thick sequence of mud that overlays a transgressive surface of Pleistocene Age and then thins out on the periphery where surficial sediments convert from mud to sand and sand/gravel. The deposit likely accumulated in this region due to the coalescing of shelf currents that had oppositional flow. This work focuses on a section of the mud patch that is centered over the thickest portion of mud and extends east-west for 30 km and north south for 10 km. Gravity cores were collected throughout this region and the cores penetrated the upper 2-4 m of mud at 28 different sites with multiple cores collected in several locations. The mud thickness in these regions exceeded the core barrel length, therefore the cores did not penetrate into the basal sand sediment layer, a relict transgressional horizon, which displays prominently in the acoustic data for this selected region. These cores were evaluated for compressional sound speed (averaging 1480 m/s) and density (1580 kg/m3) and found to be largely homogeneous and similar throughout the study area. The largest source of inhomogeneity was due to dispersed shell hash and disarticulated bivalves, but these inclusions represent minor components in the total sediment volume. The overlying sediment that characterizes the New England Mud Patch can be readily classified as mud, silty mud, or sandy-silty mud. This fine-grained sediment deposit reflects upon the low-energy nature of the hydrodynamics within this region.

  3. [Influence of Vallisneria spiralis on the physicochemical properties of black-odor sediment in urban sluggish river].

    PubMed

    Xu, Kuan; Liu, Bo; Wang, Guo-Xiang; Ma, Jiu-Yuan; Cao, Xun; Zhou, Feng

    2013-07-01

    Using Indoor simulation method, the effect of Vallisneria spiralis on the physicochemical propertise of black and stink sediment was investigated. The surface sediment of urban sluggish river which had been heavily polluted was used as material in the study. The results showed that the redox environment of the sediment was significantly improved by Vallisneria spiralis. During the experiment, the Eh of surface sediment rose from -70 mV to 90 mV. The ferrous content was reduced by 25% in the experiment group while increased by 38% in the control group; the organic matter was decomposed effectively, prevented from natural decomposition to the smelly substances. There was a 3 mm thick greyish yellow oxide layer after 7 days in the experimental group, and the oxide layer gradually thickened over time. The thickness of the oxide layer reached 11 mm at the end of the experiment, and no significant odor was detected. On the contrary, the oxide layer in the control group was only 1 mm thick and the thickness remained unchanged. Meanwhile, an obnoxious odor existed during the whole experiment. The roots of Vallisneria spiralis had significant influence on the porosity of sediment. On one hand, the densification of sediment could be improved by Vallisneria spiralis. On the other hand, Vallisneria spiralis was able to change the state of the surface sediment flows, reduce the erosion of river sediment and inhibit the transfer of black-odor substances, which has a positive ecological meaning.

  4. Mercury Contributions from Flint Creek and other Tributaries to the Upper Clark Fork River in Northwestern Montana

    NASA Astrophysics Data System (ADS)

    Langner, H.; Young, M.; Staats, M. F.

    2013-12-01

    Methylmercury contamination in biota is a major factor diminishing the environmental quality of the Upper Clark Fork River (CFR), e.g. by triggering human consumption limits of fish. The CFR is subject to one of the largest Superfund cleanup projects in the US, but remediation and restoration is currently focused exclusively on other mining-related contaminants (As, Cu, Zn, Pb, Cd), which may be counterproductive with respect to the bio-availability of mercury, for example by creation of wetlands along mercury-contaminated reaches of the river. The identification and elimination of Hg sources is an essential step toward reducing the methylmercury exposure in the biota of the CFR watershed because a strong correlation exists between total mercury levels in river sediment and methylmercury levels in aquatic life. We analyzed duplicate samples from the top sediment layer of the main stem and significant tributaries to the Clark Fork River along a 240 km reach between Butte, MT and downstream of the Missoula Valley. Mercury concentrations were 1.3 × 1.6 (mean × SD, n = 35) in the main stem. Concentrations in tributaries varied widely (0.02 to 85 mg/kg) and seemed only loosely related to the number of historic precious metal mines in the watershed. In the upper reach of the CFR, elevated Hg levels are likely caused by residual contaminated sediments in the flood plain. Levels tend to decrease downstream until Drummond, MT, where Flint Creek contributes a significant amount of mercury, causing Hg levels in the main stem CFR to increase from 0.7 to 4 mg/kg. Levels continue to decrease downstream. Flint Creek is the single largest contributor of Hg to the CFR. Detailed sampling of the main stem Flint Creek and tributaries (26 sites) showed extremely high levels in two tributaries (22 to 85 mg/kg) where historic milling operations were located. Elimination of these point sources may be accomplished comparatively economically and may significantly reduce mercury levels in Flint Creek and the Clark Fork River basin.

  5. Tephrostratigraphy of the late Quaternary record from Lake Chalco, central México

    NASA Astrophysics Data System (ADS)

    Ortega-Guerrero, Beatriz; Caballero García, Lizeth; Linares-López, Carlos

    2018-01-01

    Lacustrine sequences in active volcanic settings preserve the record of fall-out products (tephras) from explosive volcanic activity from both proximal and distal sources. Sediments of Lake Chalco, located in the western part of the Trans Mexican Volcanic Belt, offer the opportunity to develop a detailed tephrostratigraphy of proximal and distal sources, and to provide stratigraphic marker horizons for the correlation of paleoclimate records. Here, we present major oxide glass and pumice data from 18 tephra layers interbedded in the lacustrine sediments of Chalco, from 11.5 to 31.3 cal ka BP. Tephra glass compositions range from basaltic trachyandesitic to rhyolitic. Two tephras were successfully correlated with the Tutti Frutti Plinian Eruption of Popocatépetl volcano; and two tephra layers from the Nevado de Toluca Plinian activity: the Upper Toluca Pumice and the Lower Toluca Pumice. Although the source of most of the tephras analyzed is unknown, their geochemical characterization, coupled with a robust chronology, contributes to establish a detailed tephrostratigraphy for the region. This tephra record also contributes to improving the estimated frequency of explosive volcanic activity for future hazards in the Basin of México and surrounding areas, where more than 29 million people live. Our findings estimate a recurrence interval of volcanic activity of ca. 1100 years in the interval between ca. 32 and 11.5 cal ka BP, shorter than previously estimated.

  6. Mozambique upper fan: origin of depositional units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Droz, L.; Mougenot, D.

    1987-11-01

    The upper Mozambique Fan includes a stable down-stream region, with a north-south channel flanked by thick (1.5 sec two-way traveltime) asymmetric levees, and a migrating upstream region where at least two main feeding paths have been successively dominant. From the Oligocene to early Miocene, the north-south Serpa Pinto Valley acted as the main conduit for the north Mozambique terrigenous sediments. From the middle Miocene, the west-east Zambezi Valley became the dominant path and supplied the fan with sediments transported by the Zambezi River from the central part of Mozanbique. The transfer from one sediment-feeding system to the other is relatedmore » to the abandonment of the Serpa Pinto Valley because of graben formation along the Davie Ridge, which trapped the sediments, and the increase of the Zambezi River sediment supply because of the creation and erosion of the East African Rift. 13 figures.« less

  7. Investigating the importance of sediment resuspension in Alexandrium fundyense cyst population dynamics in the Gulf of Maine

    USGS Publications Warehouse

    Butman, Bradford; Aretxabaleta, Alfredo L.; Dickhudt, Patrick J.; Dalyander, P. Soupy; Sherwood, Christopher R.; Anderson, Donald M.; Keafer, Bruce A.; Signell, Richard P.

    2014-01-01

    Cysts of Alexandrium fundyense, a dinoflagellate that causes toxic algal blooms in the Gulf of Maine, spend the winter as dormant cells in the upper layer of bottom sediment or the bottom nepheloid layer and germinate in spring to initiate new blooms. Erosion measurements were made on sediment cores collected at seven stations in the Gulf of Maine in the autumn of 2011 to explore if resuspension (by waves and currents) could change the distribution of over-wintering cysts from patterns observed in the previous autumn; or if resuspension could contribute cysts to the water column during spring when cysts are viable. The mass of sediment eroded from the core surface at 0.4 Pa ranged from 0.05 kg m−2 near Grand Manan Island, to 0.35 kg m−2 in northern Wilkinson Basin. The depth of sediment eroded ranged from about 0.05 mm at a station with sandy sediment at 70 m water depth on the western Maine shelf, to about 1.2 mm in clayey–silt sediment at 250 m water depth in northern Wilkinson Basin. The sediment erodibility measurements were used in a sediment-transport model forced with modeled waves and currents for the period October 1, 2010 to May 31, 2011 to predict resuspension and bed erosion. The simulated spatial distribution and variation of bottom shear stress was controlled by the strength of the semi-diurnal tidal currents, which decrease from east to west along the Maine coast, and oscillatory wave-induced currents, which are strongest in shallow water. Simulations showed occasional sediment resuspension along the central and western Maine coast associated with storms, steady resuspension on the eastern Maine shelf and in the Bay of Fundy associated with tidal currents, no resuspension in northern Wilkinson Basin, and very small resuspension in western Jordan Basin. The sediment response in the model depended primarily on the profile of sediment erodibility, strength and time history of bottom stress, consolidation time scale, and the current in the water column. Based on analysis of wave data from offshore buoys from 1996 to 2012, the number of wave events inducing a bottom shear stress large enough to resuspend sediment at 80 m ranged from 0 to 2 in spring (April and May) and 0 to 10 in winter (October through March). Wave-induced resuspension is unlikely in water greater than about 100 m deep. The observations and model results suggest that a millimeter or so of sediment and associated cysts may be mobilized in both winter and spring, and that the frequency of resuspension will vary interannually. Depending on cyst concentration in the sediment and the vertical distribution in the water column, these events could result in a concentration in the water column of at least 104 cysts m−3. In some years, resuspension events could episodically introduce cysts into the water column in spring, where germination is likely to be facilitated at the time of bloom formation. An assessment of the quantitative effects of cyst resuspension on bloom dynamics in any particular year requires more detailed investigation.

  8. Trace-fossil assemblages with a new ichnogenus in "spotted"

    NASA Astrophysics Data System (ADS)

    Šimo, Vladimír; Tomašových, Adam

    2013-10-01

    Highly-bioturbated "spotted" limestones and marls (Fleckenmergel-Fleckenkalk facies) of the Early Jurassic, which were deposited in broad and recurrent deep-shelf habitats of the Northern Tethys, are characterized by rare benthic carbonate-producing macroinvertebrates. To address this paradox, we analyse trace-fossil assemblages in a ~85 m-thick succession of Pliensbachian spotted deposits (Zliechov Basin, Western Carpathians). They are dominated by infaunal and semi-infaunal deposit-feeders, with 9 ichnogenera and pyritized tubes of the semi-infaunal foraminifer Bathysiphon, being dominated by Chondrites, Lamellaeichnus (new ichnogenus), and Teichichnus. Lamellaeichnus, represented by a horizontal basal cylindrical burrow and an upper row of stacked convex-up gutters, was produced by a mobile deposit-feeder inhabiting shallow tiers because it is crossed by most other trace fossils. We show that the spotty appearance of the deposits is generated by a mixture of (1) dark, organic-rich shallow- and deep-tier traces (TOC = 0.16-0.36), and (2) light grey, organic-poor mottled or structurless sediment (TOC = 0.09-0.22). The higher TOC in shallow-tier burrows of Lamellaeichnus demonstrates that uppermost sediment layers were affected by poor redox cycling. Such conditions imply a limited mixed-layer depth and inefficient nutrient recycling conditioned by hypoxic bottom-waters, allowed by poor circulation and high sedimentation rates in depocenters of the Zliechov Basin. Hypoxic conditions are further supported by (1) dominance of trace-fossils produced by infaunal deposit feeders, (2) high abundance of hypoxiatolerant agglutinated foraminifer Bathysiphon, and (3) high abundance of Chondrites with ~0.5 mm-sized branches. Oxygen-deficient bottom-conditions can thus simultaneously explain the rarity of benthic carbonate-producing macroinvertebrates and high standing abundance of tolerant soft-shell and agglutinated organisms in spotted deposits.

  9. Hydrogeology, water quality, and saltwater intrusion in the Upper Floridan Aquifer in the offshore area near Hilton Head Island, South Carolina, and Tybee Island, Georgia, 1999-2002

    USGS Publications Warehouse

    Falls, W. Fred; Ransom, Camille; Landmeyer, James E.; Reuber, Eric J.; Edwards, Lucy E.

    2005-01-01

    To assess the hydrogeology, water quality, and the potential for saltwater intrusion in the offshore Upper Floridan aquifer, a scientific investigation was conducted near Tybee Island, Georgia, and Hilton Head Island, South Carolina. Four temporary wells were drilled at 7, 8, 10, and 15 miles to the northeast of Tybee Island, and one temporary well was drilled in Calibogue Sound west of Hilton Head Island. The Upper Floridan aquifer at the offshore and Calibogue sites includes the unconsolidated calcareous quartz sand, calcareous quartz sandstone, and sandy limestone of the Oligocene Lazaretto Creek and Tiger Leap Formations, and the limestone of the late Eocene Ocala Limestone and middle Avon Park Formation. At the 7-, 10-, and 15-mile sites, the upper confining unit between the Upper Floridan and surficial aquifers correlates to the Miocene Marks Head Formation. Paleochannel incisions have completely removed the upper confining unit at the Calibogue site and all but a 0.8-foot-thick interval of the confining unit at the 8-mile site, raising concern about the potential for saltwater intrusion through the paleochannel-fill sediments at these two sites. The paleochannel incisions at the Calibogue and 8-mile sites are filled with fine- and coarse-grained sediments, respectively. The hydrogeologic setting and the vertical hydraulic gradients at the 7- and 10-mile sites favored the absence of saltwater intrusion during predevelopment. After decades of onshore water use in Georgia and South Carolina, the 0-foot contour in the regional cone of depression of the Upper Floridan aquifer is estimated to have been at the general location of the 7- and 10-mile sites by the mid-1950s and at or past the 15-mile site by the 1980s. The upward vertical hydraulic gradient reversed, but the presence of more than 17 feet of upper confining unit impeded the downward movement of saltwater from the surficial aquifer to the Upper Floridan aquifer at the 7- and 10-mile sites. At the 10-mile site, the chloride concentration in the Upper Floridan borehole-water sample and the pore-water samples from the Oligocene and Eocene strata support the conclusion of no noticeable modern saltwater intrusion in the Upper Floridan aquifer. The chloride concentration of 370 milligrams per liter in the borehole-water sample at the 7-mile site from the Upper Floridan aquifer at 78 to 135 feet below North American Vertical Datum of 1988 is considerably higher than the chloride concentration of 25 milligrams per liter measured at the 10-mile site. The higher concentration probably is the result of downward leakage of saltwater through the confining unit at the 7-mile site or could reflect downward leakage of saltwater through an even thinner layer of the upper confining unit beneath the paleochannel to the northeast and lateral movement (encroachment) from the paleochannel to the 7-mile site. Carbon-14 concentrations at both sites, however, are low and indicate that most of the water is relict fresh ground water. The hydrogeology at the 15-mile site includes 17 feet of the upper confining unit. The chloride concentration in the Upper Floridan aquifer is 6,800 milligrams per liter. The setting for the Upper Floridan aquifer beneath the 15-mile site is interpreted as a transitional mixing zone between relict freshwater and relict saltwater. At the Calibogue site, 35 feet of fine-grained paleochannel-fill sediments overlies the Oligocene strata of the Upper Floridan aquifer. The vertical hydraulic conductivity of the paleochannel fill at this site is similar to the upper confining unit and effectively replaces the missing upper confining unit. Chloride concentrations and low carbon-14 and tritium concentrations in borehole water from the Upper Floridan aquifer, and low chloride concentrations in pore water from the upper confining unit indicate relict freshwater confined in the Upper Floridan aquifer at the Calibogue site. The coarse-grained paleochannel-f

  10. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    USGS Publications Warehouse

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase, less than 10 milligrams per liter, in median suspended-sediment concentration for either basin. During low-flow conditions in 2004 and 2005, previously mined areas investigated on Harrison Creek and on Frying Pan Creek did not contribute substantial suspended sediments to sample sites downstream from the mined areas. No substantial mining-related water- or sediment-quality problems were detected at any of the sites investigated in the upper Birch Creek watershed during low-flow conditions. Average annual streamflow and precipitation were near normal in 2002 and 2003. Drought conditions, extreme forest fire impact, and low annual streamflow set apart the 2004 and 2005 summer seasons. Daily mean streamflow for upper Birch Creek varied throughout the period of record-from maximums of about 1,000 cubic feet per second to minimums of about 20 cubic feet per second. Streamflow increased and decreased rapidly in response to rainfall and rapid snowmelt events because the steep slopes, thin soil cover, and permafrost areas in the watershed have little capacity to retain runoff. Median suspended-sediment concentrations for the 115 paired samples from Frying Pan Creek and 101 paired samples from Harrison Creek were less than the 20 milligrams per liter total maximum daily load. The total maximum daily load was set by the U.S. Environmental Protection Agency for the upper Birch Creek basin in 1996. Suspended-sediment paired-sample data were collected using automated samplers in 2004 and 2005, primarily during low-flow conditions. Suspended-sediment concentrations in grab samples from miscellaneous sites ranged from less than 1 milligram per liter during low-flow conditions to 1,386 milligrams per liter during a high-flow event on upper Birch Creek. Streambed-sediment samples were collected at six sites on Harrison Creek, two sites on Frying Pan Creek, and one site on upper Birch Creek. Trace-element concentrations of mercury, lead, and zinc in streambed sedimen

  11. The chronostratigraphy of the Haua Fteah cave (Cyrenaica, northeast Libya).

    PubMed

    Douka, Katerina; Jacobs, Zenobia; Lane, Christine; Grün, Rainer; Farr, Lucy; Hunt, Chris; Inglis, Robyn H; Reynolds, Tim; Albert, Paul; Aubert, Maxime; Cullen, Victoria; Hill, Evan; Kinsley, Leslie; Roberts, Richard G; Tomlinson, Emma L; Wulf, Sabine; Barker, Graeme

    2014-01-01

    The 1950s excavations by Charles McBurney in the Haua Fteah, a large karstic cave on the coast of northeast Libya, revealed a deep sequence of human occupation. Most subsequent research on North African prehistory refers to his discoveries and interpretations, but the chronology of its archaeological and geological sequences has been based on very early age determinations. This paper reports on the initial results of a comprehensive multi-method dating program undertaken as part of new work at the site, involving radiocarbon dating of charcoal, land snails and marine shell, cryptotephra investigations, optically stimulated luminescence (OSL) dating of sediments, and electron spin resonance (ESR) dating of tooth enamel. The dating samples were collected from the newly exposed and cleaned faces of the upper 7.5 m of the ∼14.0 m-deep McBurney trench, which contain six of the seven major cultural phases that he identified. Despite problems of sediment transport and reworking, using a Bayesian statistical model the new dating program establishes a robust framework for the five major lithostratigraphic units identified in the stratigraphic succession, and for the major cultural units. The age of two anatomically modern human mandibles found by McBurney in Layer XXXIII near the base of his Levalloiso-Mousterian phase can now be estimated to between 73 and 65 ka (thousands of years ago) at the 95.4% confidence level, within Marine Isotope Stage (MIS) 4. McBurney's Layer XXV, associated with Upper Palaeolithic Dabban blade industries, has a clear stratigraphic relationship with Campanian Ignimbrite tephra. Microlithic Oranian technologies developed following the climax of the Last Glacial Maximum and the more microlithic Capsian in the Younger Dryas. Neolithic pottery and perhaps domestic livestock were used in the cave from the mid Holocene but there is no certain evidence for plant cultivation until the Graeco-Roman period. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Simulated Effects of Ground-Water Augmentation on the Hydrology of Round and Halfmoon Lakes in Northwestern Hillsborough County, Florida

    USGS Publications Warehouse

    Yager, Richard M.; Metz, P.A.

    2004-01-01

    Pumpage from the Upper Floridan aquifer in northwest Hillsborough County near Tampa, Florida, has induced downward leakage from the overlying surficial aquifer and lowered the water table in many areas. Leakage is highest where the confining layer separating the aquifers is breached, which is common beneath many of the lakes in the study area. Leakage of water to the Upper Floridan aquifer has lowered the water level in many lakes and drained many wetlands. Ground water from the Upper Floridan aquifer has been added (augmented) to some lakes in an effort to maintain lake levels, but the resulting lake-water chemistry and lake leakage patterns are substantially different from those of natural lakes. Changes in lake-water chemistry can cause changes in lake flora, fauna, and lake sediment composition, and large volumes of lake leakage are suspected to enhance the formation of sinkholes near the shoreline of augmented lakes. The leakage rate of lake water through the surficial aquifer to the Upper Floridan aquifer was estimated in this study using ground-water-flow models developed for an augmented lake (Round Lake) and non-augmented lake (Halfmoon Lake). Flow models developed with MODFLOW were calibrated through nonlinear regression with UCODE to measured water levels and monthly net ground-water-flow rates from the lakes estimated from lake-water budgets. Monthly estimates of ground-water recharge were computed using an unsaturated flow model (LEACHM) that simulated daily changes in storage of water in the soil profile, thus estimating recharge as drainage to the water table. Aquifer properties in the Round Lake model were estimated through transient-state simulations using two sets of monthly recharge rates computed during July 1996 to February 1999, which spanned both average conditions (July 1996 through October 1997), and an El Ni?o event (November 1997 through September 1998) when the recharge rate doubled. Aquifer properties in the Halfmoon Lake model were estimated through steady-state simulations of average conditions in July 1996. Simulated hydrographs computed by the Round and Halfmoon Lake models closely matched measured water-level fluctuations, except during El Ni?o, when the Halfmoon Lake model was unable to accurately reproduce water levels. Possibly, potential recharge during El Ni?o was diverted through ground-water-flow outlets that were not represented in the Halfmoon Lake model, or a large part of the rainfall was diverted into runoff before it could become recharge. Solute transport simulations with MT3D indicate that leakage of lake water extended 250 to 400 feet into the surficial aquifer around Round Lake, and from 75 to 150 feet around Halfmoon Lake before flowing to the underlying Upper Floridan aquifer. These results are in agreement with concentrations of stable isotopes of oxygen-18 (d18O) and deuterium (dD) in the surficial aquifer. Schedules of monthly augmentation rates to maintain constant stages in Round and Halfmoon Lakes were computed using an equation that accounted for changes in the Upper Floridan aquifer head and the deviation from the mean recharge rate. Resulting lake stages were nearly constant during the first half of the study, but increased above target lake stages during El Ni?o; modifying the computation of augmentation rates to account for the higher recharge rate during El Ni?o resulted in lake stages that were closer to the target lake stage. Substantially more lake leakage flows to the Upper Floridan aquifer from Round Lake than from Halfmoon Lake, because the estimated vertical hydraulic conductivities of lake and confining layer sediments and breaches in the confining layer beneath Round Lake are much greater. Augmentation rates required to maintain the low guidance stages in Round Lake (53 feet) and Halfmoon Lake (42 feet) under average Upper Floridan aquifer heads are estimated as 33,850 cubic feet per day and 1,330 to 10,000 cubic feet per day, respectively. T

  13. Water-quality, bed-sediment, and biological data (October 1993 through September 1994) and statistical summaries of data for streams in the Upper Clark Fork basin, Montana

    USGS Publications Warehouse

    Lambing, J.H.; Hornberger, Michelle I.; Axtmann, E.V.; Dodge, K.A.

    1995-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a program to characterize aquatic resources in the upper Clark Fork basin of western Montana. Water- quality data were obtained periodically at 16 stations during October 1993 through September 1994 (water year 1994); daily suspended-sediment data were obtained at six of these stations. Bed-sediment and biological data were obtained at 11 stations in August 1994. Sampling stations were located on the Clark Fork and major tributaries. The primary constituents analyzed were trace elements associated with mine tailings from historical mining and smelting activities. Water-quality data include concentrations of major ions, trace elements, and suspended sediment in samples collected periodically during water year 1994. Daily values of streamflow, suspended-sediment concentration, and suspended- sediment discharge are given for six stations. Bed- sediment data include trace-element concentrations in the fine and bulk fractions. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota. Statistical summaries of bed sediment, and biological data are provided for the period of record at each station since 1985.

  14. Geomicrobiology of Fe-rich crusts in Lake Superior sediment

    NASA Astrophysics Data System (ADS)

    Dittrich, M.; Monreau, L.; Quazi, S.; Raoof, B.; Chesnyuk, A.; Katsev, S.; Fulthorpe, R.

    2012-04-01

    The limnological puzzles of Lake Superior are increasingly attracting scientists, and very little is known about the sediments and their associated microflora. The sediments are organic poor (less than 5%C) and the lake is deep oligotrophic, with water temperatures at the bottom around 3C. Previous studies reveal Fe-rich layers in the sediments at multiple loccations around the lake. The origin and mechanisms of formation of this layer remain unknown. In this study we investigated geochemical and microbiological processes that may lead to the formation of a two cm thick iron layer about 10 cm below the sediment surface. Sediment cores from two stations (EM, 230m water depth and ED, 310m water depth) in the East Basin were used. We monitored oxygen and pH depth profiles with microsensors, porewater and sediment solid matter were analyzed for nutrient and metal contents. Furthermore, phosphorus and iron sequantial extractions of sediment cores have been perfomed. The total cell count was determined using DAPI epifluoresence microscopy. DNA was extracted from the sediment samples and 16S ribosonal RNA amplicons were analyzed with denaturing gradient gel electrophoresis (DGGE). For a more in depth analysis, DNA samples from 8-10 cm and 10-12 cm were sent to the Research and Testing Lab (Texas) for pyrosequencing of 16S rRNA gene amplicons amplified using barcoded universal primers 27f-519r. The scanning electron microscope (SEM) images from the iron layer 10-12cm show filaments that were encrusted with spheres ca. 20 nm in diameter. SEM observations of thin sections also indicate the presence of very fine particles showing various morphologies. Analyses of the deposit material by SEM and energy dispersive X-ray spectroscopy (EDS) indicate that bacteria cells surfaces served as nucleation surfaces for Fe-oxide formation. EDS line-scans through bacterial cells covered with precipitates reveal phosphorus and carbon peaks at interface between cell surface and Fe-particles. The cluster analysis performed on the DGGE separation of ribosomal RNA gene fragments revealed that the two iron layers were not highly similar to each other. We obtained a total of 26,062 16S rRNA gene sequence reads from the two iron layers and the layers directly above them, which were clustered into operational taxonomic units sharing 80% similarity or more. 64-70% of these clusters could not be classified below the phylum level. While the 8-10 cm sediment layers were dominated (46.5% of reads) by relatives of Paenisporosarcina, the iron layers contained far fewer gram positive organisms, far more proteobacteria, and an a high proportion of Nitrospira species which show relatively high similarity to organisms found in an iron II rich seep.

  15. Temporal and spatial variability of the sediment grain-size distribution on the Eel shelf: The flood layer of 1995

    USGS Publications Warehouse

    Drake, D.E.

    1999-01-01

    Sediment grain-size characteristics observed on the Eel shelf have been analyzed using a wet-sieving technique that minimizes breakage of aggregates. At several sites on the 70-m isobath north of the river, where a 1995 flood layer attained a maximum thickness of about 9 cm, replicate box cores were collected on seven cruises during February 1995 to January 1997. These samples provide a unique opportunity to follow the evolution of a flood layer over a two-year period as it was modified and gradually buried. One month after the flood, a layer of tan-colored, high-porosity sediment with up to 96% of its particles in the size range of 0-20 ??m had accumulated on the central part of the shelf, 7-30 km north of the river and principally between the 50-m and 90-m isobaths. Substantial coarsening of this layer occurred between February 1995 and May 1995, particularly along the southern and the landward edge of the deposit in water depths of <70 m. The early stage of coarsening was probably caused by physical reworking of the surface 0.5-cm of the deposit and by addition of new sediment from shallower regions of the shelf. Temporal changes in inventories of several grain-size fractions show that physical processes continued to add coarse sediment to the flood layer after May 1995, but the large increases in thickness of the surface mixed layer could only be attributed to bioturbation by a recovering, or seasonally fluctuating, benthic community. The 1995 flood layer has evolved from exhibiting limited variability and normal grading (i:e., upward fining) to a layer that (1) shows significant spatial variability on scales from centimeters to 10's of meters, (2) is substantially coarser owing to additions of sediment from the inner shelf, (3) is inversely graded (i.e., coarsens upward), and (4) is intensely bioturbated to depths of 4-5 cm.

  16. U.S. Geological Survey ArcMap Sediment Classification tool

    USGS Publications Warehouse

    O'Malley, John

    2007-01-01

    The U.S. Geological Survey (USGS) ArcMap Sediment Classification tool is a custom toolbar that extends the Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 9.2 Desktop application to aid in the analysis of seabed sediment classification. The tool uses as input either a point data layer with field attributes containing percentage of gravel, sand, silt, and clay or four raster data layers representing a percentage of sediment (0-100%) for the various sediment grain size analysis: sand, gravel, silt and clay. This tool is designed to analyze the percent of sediment at a given location and classify the sediments according to either the Folk (1954, 1974) or Shepard (1954) as modified by Schlee(1973) classification schemes. The sediment analysis tool is based upon the USGS SEDCLASS program (Poppe, et al. 2004).

  17. Responses of streamflow and sediment load to climate change and human activity in the Upper Yellow River, China: a case of the Ten Great Gullies Basin.

    PubMed

    Liu, Tong; Huang, He Qing; Shao, Mingan; Yao, Wenyi; Gu, Jing; Yu, Guoan

    2015-01-01

    Soil erosion and land desertification are the most serious environmental problems globally. This study investigated the changes in streamflow and sediment load from 1964 to 2012 in the Ten Great Gullies area of the Upper Yellow River. Tests for gradual trends (Mann-Kendall test) and abrupt changes (Pettitt test) identify that significant declines in streamflow and sediment load occurred in 1997-1998 in two typical gullies. A comparison of climatic variability before and after the change points shows no statistically significant trends in annual precipitation and potential evapotranspiration. Human activities have been very active in the region and during 1990-2010, 146.01 and 197.62 km2 of land were converted, respectively, to forests and grassland, with corresponding increases of 87.56 and 77.05%. In addition, a large number of check dams have been built up in the upper reaches of the ten gullies. These measures were likely responsible for the significant decline in the annual streamflow and sediment load over the last 49 years.

  18. Soft-sediment deformation structures in the late Miocene Şelmo Formation around Adıyaman area, Southeastern Turkey

    NASA Astrophysics Data System (ADS)

    Koç Taşgın, Calibe; Orhan, Hükmü; Türkmen, İbrahim; Aksoy, Ercan

    2011-04-01

    The Şelmo Formation was deposited in the basins associated with the Southeastern Anatolian Thrust Belt and East Anatolian Fault Zone in SE Turkey. These structures developed as a result of compressional stresses created by the movement of the Arabian plate to the north and the Eurasian plate to the west from early Miocene to late Pliocene. The outcrops of the Şelmo Formation in the Adýyaman area (SE Turkey) comprise braided river deposits (lower alluvial unit) at the base, lacustrine and deltaic deposits in the middle (lacustrine unit) and low sinuousity river and alluvial deposits at the top (upper alluvial unit). Soft-sediment deformation structures were developed in sandstone, siltstone and marl of the deltaic and lacustrine unit of the Şelmo Formation. These are slumps, recumbent folds, load casts, ball-and-pillow structures, flame structures, neptunian dykes, chaotically associated structures and synsedimentary faults. The tectonic setting of the basin, the lateral extent of the soft-sediment deformation structures over tens of kilometers, their similarities to deformation structures interpreted as being induced seismically in other regions worldwide or in a laboratory setting, and being confined by undeformed layers suggest that the main trigger system was related to seismic activity in the area.

  19. Thiosulfate and sulfite distributions in porewater of marine sediments related to manganese, iron, and sulfur geochemistry

    NASA Astrophysics Data System (ADS)

    Thamdrup, Bo; Finster, Kai; Fossing, Henrik; Hansen, Jens Würgler; Jørgensen, Bo Barker

    1994-01-01

    Depth distributions of thiosulfate (S 2O 32-) and sulfite (SO 32-) were measured in the porewaters of a Danish salt marsh and subtidal marine sediments by HPLC analysis after derivatization with DTNP [2,2'-dithiobis(5-nitropyridine)]. The distributions were compared to the redox zonation as indicated by Eh and Mn 2+, Fe 2+ and H 2S distributions. Concentrations of S 2O 32- varied from below detection (<50 nM) to 600 nM while SO 32- concentrations generally were 2-3 times higher, 100-1500 nM. Depth distributions of the two species were roughly similar. Lowest concentrations were found in the oxidized zone, including both the oxic surface layer and the suboxic zone of intense manganese and iron reduction, and concentrations tended to increase through the suboxic and into the reduced, sulfidic zone. The similarity of SO 32- and S 2O 32- profiles suggested a close coupling of the cycling of the two species. Rates of consumption were suggested as the main factor governing their distribution. Rapid turnover times for S 2O 32- and H 2S of 4 and 1.1 h, respectively, were estimated for the upper 0-1 cm of a subtidal sediment.

  20. Using the salt tectonics as a proxy to reveal post-rift active crustal tectonics: The example of the Eastern Sardinian margin

    NASA Astrophysics Data System (ADS)

    Lymer, Gaël; Vendeville, Bruno; Gaullier, Virginie; Chanier, Frank; Gaillard, Morgane

    2017-04-01

    The Western Tyrrhenian Basin, Mediterranean Sea, is a fascinating basin in terms of interactions between crustal tectonics, salt tectonics and sedimentation. The METYSS (Messinian Event in the Tyrrhenian from Seismic Study) project is based on 2100 km of HR seismic data acquired in 2009 and 2011 along the Eastern Sardinian margin. The main aim is to study the Messinian Salinity Crisis (MSC) in the Western Tyrrhenian Basin, but we also investigate the thinning processes of the continental crust and the timing of crustal vertical motions across this complex domain. Our first results allowed us to map the MSC seismic markers and to better constrain the timing of the rifting, which ended before the MSC across the upper and middle parts of the margin. We also evidenced that crustal activity persisted long after the end of rifting. This has been particularly observed on the upper margin, where several normal faults and a surprising compressional structure were recently active. In this study we investigate the middle margin, the Cornaglia Terrace, where the Mobile Unit (MU, mobile Messinian salt) accumulated during the MSC and acts as a décollement. Our goal is to ascertain whether or not crustal tectonics existed after the pre-MSC rift. This is a challenge where the MU is thick, because potential basement deformations could be first accommodated by the MU and therefore would not find any expression in the supra-salt layers (Upper Unit, UU and Plio-Quaternary, PQ). However our investigations clearly reveal interactions between crustal and salt tectonics along the margin. We thus evidence gravity gliding of the salt and its brittle sedimentary cover along basement slopes generated by the post-MSC tilting of some basement blocks bounded by crustal normal faults, formerly due to the rifting. Another intriguing structure also got our interest. It corresponds to a wedge-shaped of MU located in a narrow N-S half graben bounded to the west by a major, east-verging, crustal normal fault. Below the MU, the sediments thicken toward the fault. The top of the MU is sub-horizontal and the supra-salt layers are sub-horizontal. At a first glance this geometry would suggest that the pre-salt unit and the MU are syn-tectonic and that nothing happened after Messinian times. However some subtle evidence of deformations in the UU and PQ (an anticline to the west and a small west-verging normal fault in the east) imply that some crustal tectonics activity persisted after the end of the rifting. To understand why the salt unit is wedge-shaped, we considered several scenarii that we tested with physical modelling. We demonstrate that this structure is related to the post-rift activity of the major crustal normal fault, whose vertical motion has been cushioned by lateral flow of an initially tabular salt layer, which thinned upslope and inflated downslope, keeping the overlying sediments remained sub-horizontal. Such interactions between thin-skinned and thick-skinned tectonics highlight how the analysis of the salt tectonics is a powerful tool to reveal recent deep crustal tectonics in the Western Mediterranean Basin.

  1. Flux and accumulation of sedimentary particles off the continental slope of Pakistan: a comparison of water column and seafloor estimates from the oxygen minimum zone, NE Arabian Sea

    NASA Astrophysics Data System (ADS)

    Schulz, H.; von Rad, U.

    2013-07-01

    Due to the lack of bioturbation, the laminated muds from the oxygen-minimum zone (OMZ) off Pakistan provide a unique opportunity to precisely determine the vertical and lateral sediment fluxes in the near shore part of the northeastern Arabian Sea, and to explore the effects of the margin topography and the low oxygen conditions on the accumulation of organic matter and other particles. West of Karachi, in the Hab river area of EPT and WPT (Eastern and Western PAKOMIN Traps), 16 short sediment profiles from water depths between 250 m and 1970 m on a depth transect crossing the OMZ (~ 120 to ~ 1200 m water depth) were investigated, and correlated on the basis of a thick, light-gray- to reddish-colored turbidite layer. Varve counting yielded a date for this layer of AD 1905 to 1888. We adopted the young age which agrees with 210Pb- dating, and used this isochronous stratigraphic marker bed to calculate sediment accumulation rates, that we could directly compare with the flux rates from the sediment traps installed within the water column above. All traps in the area show exceptionally high, pulsed winter fluxes of up to 5000 mg m-2 d-1 in this margin environment. The lithic flux at the sea floor is as high as 4000 mg m-2 d-1 , and agrees remarkably well with the bulk winter flux of material. This holds as well for the individual bulk components (organic carbon, calcium carbonate, opal, lithic fraction). However, the high winter flux events (HFE) by their extreme mass of remobilized matter terminated the recording in the shallow traps by clogging the funnels. Based on our comparisons, we argue that HFE for the past 5000 yr most likely occurred as regular events within the upper OMZ off Pakistan. Coarse fraction and foraminiferal accumulation rates from sediment surface samples along the Hab transect show distribution patterns that seem to be a function of water depth and distance from the shelf. Some of these sediment fractions show sudden shifts at the lower boundary of the OMZ. However, the potential effect of the OMZ on carbon preservation in the area would by masked by high mass of fine-grained matter laterally advected, and by the pulsed nature of the resuspension events.

  2. CRUST1.0: An Updated Global Model of Earth's Crust

    NASA Astrophysics Data System (ADS)

    Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. E.

    2012-04-01

    We present an updated global model of Earth's crustal structure. The new model, CRUST1.0, serves as starting model in a more comprehensive effort to compile a global model of Earth's crust and lithosphere, LITHO1.0. CRUST1.0 is defined on a 1-degree grid and is based on a new database of crustal thickness data from active source seismic studies as well as from receiver function studies. In areas where such constraints are still missing, for example in Antarctica, crustal thicknesses are estimated using gravity constraints. The compilation of the new crustal model initially follows the philosophy of the widely used crustal model CRUST2.0 (Bassin et al., 2000; http://igppweb.ucsd.edu/~gabi/crust2.html). Crustal types representing properties in the crystalline crust are assigned according to basement age or tectonic setting. The classification of the latter loosely follows that of an updated map by Artemieva and Mooney (2001) (http://www.lithosphere.info). Statistical averages of crustal properties in each of these crustal types are extrapolated to areas with no local seismic or gravity constraint. In each 1-degree cell, boundary depth, compressional and shear velocity as well as density is given for 8 layers: water, ice, 3-layer sediment cover and upper, middle and lower crystalline crust. Topography, bathymetry and ice cover are taken from ETOPO1. The sediment cover is essentially that of our sediment model (Laske and Masters, 1997; http://igppweb.ucsd.edu/~sediment.html), with several near-coastal updates. In the sediment cover and the crystalline crust, updated scaling relationships are used to assign compressional and shear velocity as well as density. In an initial step toward LITHO1.0, the model is then validated against our new global group velocity maps for Rayleigh and Love waves, particularly at frequencies between 30 and 40 mHz. CRUST1.0 is then adjusted in areas of extreme misfit where we suspect deficiencies in the crustal model. These currently include some near-coastal areas with thick sediment cover and several larger orogenic belts. Some remaining discrepancies, such as in backarc basins, may result from variations in the deeper uppermost mantle and remain unchanged in CRUST1.0 but will likely be modified in LITHO1.0. CRUST1.0 is available for download.

  3. ICDP Project DeepCHALLA: Reconstructing 250,000 Years of Climate Change and Environmental History on the East African Equator

    NASA Astrophysics Data System (ADS)

    Wolff, C.; Verschuren, D.; Van Daele, M. E.; Waldmann, N.; Meyer, I.; Lane, C. S.; Van der Meeren, T.; Ombori, T.; Kasanzu, C.; Olago, D.

    2017-12-01

    Sediments on the bottom of Lake Challa, a 92-m deep crater lake on the border of Kenya and Tanzania near Mt. Kilimanjaro, contain a uniquely long and continuous record of past climate and environmental change in easternmost equatorial Africa. Supported in part by the International Continental Scientific Drilling Programme (ICDP), the DeepCHALLA project has now recovered this sediment record down to 214.8 m below the lake floor, with 100% recovery of the uppermost 121.3 m (the last 160 kyr BP) and ca.85% recovery of the older part of the sequence, down to the lowermost distinct reflector identified in seismic stratigraphy. This acoustic basement represents a ca.2-m thick layer of coarsely laminated, diatom-rich organic mud mixed with volcanic sand and silt deposited 250 kyr ago, overlying an estimated 20-30 m of unsampled lacustrine deposits representing the earliest phase of lake development. Down-hole logging produced profiles of in-situ sediment composition that confer an absolute depth- scale to both the recovered cores and the seismic stratigraphy. An estimated 74% of the recovered sequence is finely laminated (varved), and continuously so over the upper 72.3 m (the last 90 kyr). All other sections display at least cm-scale lamination, demonstrating persistence of a tranquil, profundal depositional environment throughout lake history. The sequence is interrupted only by 32 visible tephra layers 2 to 9 mm thick; and by several dozen fine-grained turbidites up to 108 cm thick, most of which are clearly bracketed between a non-erosive base and a diatom-laden cap. Tie points between sediment markers and the corresponding seismic reflectors support a preliminary age model inferring a near-constant rate of sediment accumulation over at least the last glacial cycle (140 kyr BP to present). This great time span combined with the exquisite temporal resolution of the Lake Challa sediments provides great opportunities to study past tropical climate dynamics at both short (inter-annual to decadal) and long (glacial-interglacial) time scales; and to assess the multi-faceted impact of this climate change on the region's freshwater resources, the functioning of terrestrial ecosystems, and the history of the African landscape in which modern humans (our species, Homo sapiens) originally evolved and have lived ever since.

  4. Isoprenoid quinones resolve the stratification of microbial redox processes in a biogeochemical continuum from the photic zone to deep anoxic sediments of the Black Sea.

    PubMed

    Becker, Kevin W; Elling, Felix J; Schröder, Jan M; Lipp, Julius S; Goldhammer, Tobias; Zabel, Matthias; Elvert, Marcus; Overmann, Jörg; Hinrichs, Kai-Uwe

    2018-03-09

    The stratified water column of the Black Sea serves as a model ecosystem for studying the interactions of microorganisms with major biogeochemical cycles. Here we provide detailed analysis of isoprenoid quinones to study microbial redox processes in the ocean. In a continuum from the photic zone through the chemocline into deep anoxic sediments of the southern Black Sea, diagnostic quinones and inorganic geochemical parameters indicate niche segregation between redox processes and corresponding shifts in microbial community composition. Quinones specific for oxygenic photosynthesis and aerobic respiration dominate oxic waters, while quinones associated with thaumarchaeal ammonia-oxidation and bacterial methanotrophy, respectively, dominate a narrow interval in suboxic waters. Quinone distributions indicate highest metabolic diversity within the anoxic zone, with anoxygenic photosynthesis being a major process in its photic layer. In the dark anoxic layer, quinone profiles indicate occurrence of bacterial sulfur and nitrogen cycling, archaeal methanogenesis, and archaeal methanotrophy. Multiple novel ubiquinone isomers, possibly originating from unidentified intra-aerobic anaerobes, occur in this zone. The respiration modes found in the anoxic zone continue into shallow subsurface sediments, but quinone abundances rapidly decrease within the upper 50 cm below sea floor, reflecting the transition to lower energy availability. In the deep subseafloor sediments, quinone distributions and geochemical profiles indicate archaeal methanogenesis/methanotrophy and potentially bacterial fermentative metabolisms. We observed that sedimentary quinone distributions track lithology, which supports prior hypotheses that deep biosphere community composition and metabolisms are determined by environmental conditions during sediment deposition. Importance Microorganisms play crucial roles in global biogeochemical cycles. Yet, we have only a fragmentary understanding of the diversity of microorganisms and their metabolisms, as the majority remains uncultured. Thus, culture-independent approaches are critical for determining microbial diversity and active metabolic processes. In order to resolve the stratification of microbial communities in the Black Sea, we comprehensively analyzed redox process-specific isoprenoid quinone biomarkers in a unique continuous record from the photic zone through the chemocline into anoxic subsurface sediments. We describe an unprecedented quinone diversity that allowed us to detect distinct biogeochemical processes including oxygenic photosynthesis, archaeal ammonia oxidation, aerobic methanotrophy and anoxygenic photosynthesis in defined geochemical zones. Copyright © 2018 American Society for Microbiology.

  5. Controls on reef development and the terrigenous-carbonate interface on a shallow shelf, Nicaragua (Central America)

    NASA Astrophysics Data System (ADS)

    Roberts, H. H.; Murray, S. P.

    1983-06-01

    Marine geology and physical oceanographic data collected during two field projects (˜4 months) on the Caribbean shelf of Nicaragua indicate a surprising dominance of carbonate deposition and reef growth on a shelf that is receiving an abnormally large volume of terrigenous sediments. High rainfall rates (˜400 500 cm/year), coupled with a warm tropical climate, encourage rapid denudation of the country's central volcanic highland and transport of large volumes of terrigenous sediment and fresh water to the coast. Estimates suggest that three times more fresh water and fifteen times more sediment are introduced per unit length of coastline than on the east coast of the United States. Distribution of the terrigenous facies, development of carbonate sediment suites, and the location and quality of viable reefs are strongly controlled by the dynamic interaction near the coasts of highly turbid fresh to brackish water effluents from thirteen rivers with clear marine waters of the shelf. Oceanic water from the central Caribbean drift current intersects the shelf and moves slowely in a dominant northwest direction toward the Yucatan Channel. A sluggish secondary gyre moves to the south toward Costa Rica. In contrast, the turbid coastal water is deflected to the south in response to density gradients, surface water slopes, and momentum supplied by the steady northeast trade winds. A distinct two-layered flow is commonly present in the sediment-rich coastal boundary zone, which is typically 10 20 km wide. The low-salinity upper layer is frictionally uncoupled from the ambient shelf water and therefore can expand out of the normally coherent coastal boundary zone during periods of abnormal flooding or times when instability is introduced into the northeast trades. Reef distribution, abruptness of the terrigenous-carbonate interface, and general shelf morphology reflect the long-term dynamic structure of the shelf waters. A smooth-bottomed ramp of siliciclastic sands to silts and clays mantles the inner shelf floor in a linear belt paralleling the coast. This belt generally corresponds to the western flank of the coastal boundary zone. Occurrence of reefs is generally confined to areas outside this zone. Terrigenous clays and silts of the inner shelf are abruptly (<20 km from the coast) replaced by Halimeda-rich sediment of the middle and outer shelf. Within the carbonate facies belt, reef complexes thrive as small, isolated masses; large, reef-capped platforms; reef fringes around islands; and shelfedge structures with vertical relief that can exceed 25 m. In general, the frequency and proliferation of reefs increase away from the turbid coastal boundary layer and toward the cooler and saltier water that upwells at the shelf margin.

  6. Role of organic phosphorus in sediment in a shallow eutrophic lake

    NASA Astrophysics Data System (ADS)

    Shinohara, Ryuichiro; Hiroki, Mikiya; Kohzu, Ayato; Imai, Akio; Inoue, Tetsunori; Furusato, Eiichi; Komatsu, Kazuhiro; Satou, Takayuki; Tomioka, Noriko; Shimotori, Koichi; Miura, Shingo

    2017-08-01

    We tested the hypothesis that mineralization of molybdenum unreactive phosphorus (MUP) in pore water is the major pathway for the changes in the concentration of molybdenum-reactive P (MRP) in pore water and inorganic P in sediment particles. The concentration of inorganic P in the sediment particles increased from December to April in Lake Kasumigaura, whereas concentrations of organic P in the sediment particles and MUP in pore water decreased. These results suggest that MUP mineralization plays a key role as the source of MRP, whereas desorption of inorganic P from the sediment particles into the pore water is a minor process. One-dimensional numerical simulation of sediment particles and the pore water supported the hypothesis. Diffusive flux of MUP was small in pore water, even in near-surface layers, so mineralization was the dominant process for changing the MUP concentration in the pore water. For MRP, diffusion was the dominant process in the surface layer, whereas adsorption onto the sediment was the dominant process in deeper layers. Researchers usually ignore organic P in the sediment, but organic P in sediment particles and the pore water is a key source of inorganic P in the sediment particles and pore water; our results suggest that in Lake Kasumigaura, organic P in the sediment is an important source, even at depths more than 1 cm below the sediment surface. In contrast, the large molecular size of MUP in pore water hampers diffusion of MUP from the sediment into the overlying water.

  7. Microphysical modeling of Titan's detached haze layer in a 3D GCM

    NASA Astrophysics Data System (ADS)

    Larson, Erik J. L.; Toon, Owen B.; West, Robert A.; Friedson, A. James

    2015-07-01

    We use a 3D GCM with coupled aerosol microphysics to investigate the formation and seasonal cycle of the detached haze layer in Titan's upper atmosphere. The base of the detached haze layer is defined by a local minimum in the vertical extinction profile. The detached haze is seen at all latitudes including the south pole as seen in Cassini images from 2005-2012. The layer merges into the winter polar haze at high latitudes where the Hadley circulation carries the particles downward. The hemisphere in which the haze merges with the polar haze varies with season. We find that the base of the detached haze layer occurs where there is a near balance between vertical winds and particle fall velocities. Generally the vertical variation of particle concentration in the detached haze region is simply controlled by sedimentation, so the concentration and the extinction vary roughly in proportion to air density. This variation explains why the upper part of the main haze layer, and the bulk of the detached haze layer follow exponential profiles. However, the shape of the profile is modified in regions where the vertical wind velocity is comparable to the particle fall velocity. Our simulations closely match the period when the base of the detached layer in the tropics is observed to begin its seasonal drop in altitude, and the total range of the altitude drop. However, the simulations have the base of the detached layer about 100 km lower than observed, and the time for the base to descend is slower in the simulations than observed. These differences may point to the model having somewhat lower vertical winds than occur on Titan, or somewhat too large of particle sizes, or some combination of both. Our model is consistent with a dynamical origin for the detached haze rather than a chemical or microphysical one. This balance between the vertical wind and particle fall velocities occurs throughout the summer hemisphere and tropics. The particle concentration gradients that are established in the summer hemisphere are transported to the winter hemisphere by meridional winds from the overturning Hadley cell. Our model is consistent with the disappearance of the detached haze layer in early 2014. Our simulations predict the detached haze and gap will reemerge at its original high altitude between mid 2014 and early 2015.

  8. Microphysical Modeling of Titan's Detached Haze Layer in a 3D GCM

    NASA Astrophysics Data System (ADS)

    Larson, Erik J.; Toon, Owen B.; West, Robert A.; Friedson, A. James

    2015-11-01

    We investigate the formation and seasonal cycle of the detached haze layer in Titan’s upper atmosphere using a 3D GCM with coupled aerosol microphysics. The base of the detached haze layer is defined by a local minimum in the vertical extinction profile. The detached haze is seen at all latitudes including the south pole as seen in Cassini images from 2005-2012. The layer merges into the winter polar haze at high latitudes where the Hadley circulation carries the particles downward. The hemisphere in which the haze merges with the polar haze varies with season. We find that the base of the detached haze layer occurs where there is a near balance between vertical winds and particle fall velocities. Generally the vertical variation of particle concentration in the detached haze region is simply controlled by sedimentation, so the concentration and the extinction vary roughly in proportion to air density. This variation explains why the upper part of the main haze layer, and the bulk of the detached haze layer follow exponential profiles. However, the shape of the profile is modified in regions where the vertical wind velocity is comparable to the particle fall velocity. Our simulations closely match the period when the base of the detached layer in the tropics is observed to begin its seasonal drop in altitude, and the total range of the altitude drop. However, the simulations have the base of the detached layer about 100 km lower than observed, and the time for the base to descend is slower in the simulations than observed. These differences may point to the model having somewhat lower vertical winds than occur on Titan, or somewhat too large of particle sizes, or some combination of both. Our model is consistent with a dynamical origin for the detached haze rather than a chemical or microphysical one. This balance between the vertical wind and particle fall velocities occurs throughout the summer hemisphere and tropics. The particle concentration gradients that are established in the summer hemisphere are transported to the winter hemisphere by meridional winds from the overturning Hadley cell. Our model is consistent with the disappearance of the detached haze layer in early 2014.

  9. Reprint of: A numerical investigation of fine sediment resuspension in the wave boundary layer-Uncertainties in particle inertia and hindered settling

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.

    2016-05-01

    The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to continental margins. Hence, studying fine sediment resuspensions in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycles. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with sediment availabilities. As the sediment availability and hence the sediment-induced stable stratification increases, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to hindered settling and particle inertia effects. Present numerical simulations including the particle inertia suggest that for a typical wave condition in continental shelves, the effect of particle inertia is negligible. Through additional numerical experiments, we also confirm that the particle inertia tends (up to the Stokes number St = 0.2) to attenuate flow turbulence. On the other hand, for flocs with lower gelling concentrations, the hindered settling can play a key role in sustaining a large amount of suspended sediments and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A sufficient condition for the occurrence of gelling ignition is hypothesized for a range of wave intensities as a function of sediment/floc properties and erodibility parameters.

  10. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Brothers, D.S.; Ruppel, C.; Kluesner, J.W.; ten Brink, Uri S.; Chaytor, J.D.; Hill, J.C.; Andrews, B.D.; Flores, C.

    2014-01-01

    Identifying the spatial distribution of seabed fluid expulsion features is crucial for understanding the substrate plumbing system of any continental margin. A 1100 km stretch of the U.S. Atlantic margin contains more than 5000 pockmarks at water depths of 120 m (shelf edge) to 700 m (upper slope), mostly updip of the contemporary gas hydrate stability zone (GHSZ). Advanced attribute analyses of high-resolution multichannel seismic reflection data reveal gas-charged sediment and probable fluid chimneys beneath pockmark fields. A series of enhanced reflectors, inferred to represent hydrate-bearing sediments, occur within the GHSZ. Differential sediment loading at the shelf edge and warming-induced gas hydrate dissociation along the upper slope are the proposed mechanisms that led to transient changes in substrate pore fluid overpressure, vertical fluid/gas migration, and pockmark formation.

  11. Global Paleobathymetry Reconstruction with Realistic Shelf-Slope and Sediment Wedge

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Hinnov, L. A.; Gnanadesikan, A.; Olson, P.

    2013-12-01

    We present paleo-ocean bathymetry reconstructions in a 0.1°x0.1° resolution, using simple geophysical models (Plate Model Equation for oceanic lithosphere), published ages of the ocean floor (Müller et al. 2008), and modern world sediment thickness data (Divins 2003). The motivation is to create realistic paleobathymetry to understand the effect of ocean floor roughness on tides and heat transport in paleoclimate simulations. The values for the parameters in the Plate Model Equation are deduced from Crosby et al. (2006) and are used together with ocean floor age to model Depth to Basement. On top of the Depth to Basement, we added an isostatically adjusted multilayer sediment layer, as indicated from sediment thickness data of the modern oceans and marginal seas (Divins 2003). We also created another version of the sediment layer from the Müller et al. dataset. The Depth to Basement with the appropriate sediment layer together represent a realistic paleobathymetry. A Sediment Wedge was modeled to complement the reconstructed paleobathymetry by extending it to the coastlines. In this process we added a modeled Continental Shelf and Continental Slope to match the extent of the reconstructed paleobathymetry. The Sediment Wedge was prepared by studying the modern ocean where a complete history of seafloor spreading is preserved (north, south and central Atlantic Ocean, Southern Ocean between Australia-Antarctica, and the Pacific Ocean off the west coast of South America). The model takes into account the modern continental shelf-slope structure (as evident from ETOPO1/ETOPO5), tectonic margin type (active vs. passive margin) and age of the latest tectonic activity (USGS & CGMW). Once the complete ocean bathymetry is modeled, we combine it with PALEOMAP (Scotese, 2011) continental reconstructions to produce global paleoworld elevation-bathymetry maps. Modern time (00 Ma) was assumed as a test case. Using the above-described methodology we reconstructed modern ocean bathymetry, starting with age of the oceanic crust. We then reconstructed paleobathymetry for PETM (55 Ma) and Cenomanian-Turonian (90 Ma) times. For each case, the final products are: a) a global depth to basement measurement map based on plate model and EarthByte published age of the ocean crust for modern world; b) global oceanic crust bathymetry maps with a multilayer sediment layer (two versions with two types of sediment layers based on: i) observed total sediment thickness of the modern oceans and marginal seas, and ii) EarthByte-estimated global sediment data for 00 Ma); c) global oceanic bathymetry maps (two versions with two types of sediment layers) with reconstructed shelf and slope; and d) global elevation-bathymetry maps (two versions with two types of sediment layers) with continental elevations (PALEOMAP) and ocean bathymetry. Similar maps for other geological times can be produced using this method provided that ocean crustal age is known.

  12. Human impacts on sediment in the Yangtze River: A review and new perspectives

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Yang, S. L.; Xu, K. H.; Milliman, J. D.; Wang, H.; Yang, Z.; Chen, Z.; Zhang, C. Y.

    2018-03-01

    Changes in riverine suspended and riverbed sediments have environmental, ecological and social implications. Here, we provide a holistic review of water and sediment transport and examine the human impacts on the flux, concentration and size of sediment in the Yangtze River in recent decades. We find that most of the fluvial sediment has been trapped in reservoirs, except for the finest portion. Furthermore, soil-conservation since the 1990s has reduced sediment yield. From 1956-1968 (pre-dam period) to 2013-2015 (post-dams and soil-conservation), the sediment discharge from the sub-basins decreased by 91%; in the main river, the sediment flux decreased by 99% at Xiangjiaba (upper reach), 97% at Yichang (transition between upper and middle reaches), 83% at Hankou (middle reach), and 77% at Datong (tidal limit). Because the water discharge was minimally impacted, the suspended sediment concentration decreased to the same extent as the sediment flux. Active erosion of the riverbed and coarsening of surficial sediments were observed in the middle and lower reaches. Fining of suspended sediments was identified along the river, which was counteracted by downstream erosion. Along the 700-km-long Three Gorges Reservoir, which retained 80% of the sediment from upstream, the riverbed gravel or rock was buried by mud because of sedimentation after impoundment. Along with these temporal variations, the striking spatial patterns of riverine suspended and riverbed sediments that were previously exhibited in this large basin were destroyed or reversed. Therefore, we conclude that the human impacts on sediment in the Yangtze River are strong and systematic.

  13. Seafloor Morphology And Sediment Discharge Of The Storfjorden And Kveithola Palaeo-Ice Streams (NW Barents Sea) During The Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Rebesco, Michele; Pedrosa, Mayte; Demol, Ben; Giulia Lucchi, Renata; Urgeles, Roger; Colmenero-Hidalgo, Elena; Andreassen, Karin; Sverre Laberg, Jan; Winsborrow, Monica

    2010-05-01

    IPY Activity N. 367 focusing on Neogene ice streams and sedimentary processes on high- latitude continental margins (NICE-STREAMS) resulted in two coordinated cruises on the adjacent Storfjorden and Kveithola trough-mouth fans in the NW Barents Sea: SVAIS Cruise of BIO Hespérides, summer 2007, and EGLACOM Cruise of Cruise R/V OGS-Explora, summer 2008. The objectives were to acquire a high-resolution set of bathymetric, seismic and sediment core data in order to decipher the Neogene architectural development of the glacially-dominated NW Barents Sea continental margin in response to natural climate change. The paleo-ice streams drained ice from southern Spitsbergen, Spitsbergen Bank, and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. In the outer trough of southern Storfjorden, lobate moraines superimpose and are cut by very large linear features attributed to mega-iceberg scours. In the adjacent Kveithola trough, a fresh morphology includes mega-scale glacial lineations overprinted by transverse grounding-zone wedges, diagnostic of episodic ice stream retreat. A 15 m thick glacimarine drape suggests an high post-deglaciation sedimentation rate. Preliminary interpretation suggests that the retreat of the Svalbard/Barents Sea Ice Sheet was highly dynamic and that grounded ice persisted on Spitsbergen Bank for some thousands years after the main Barents Sea deglaciation.The Storfjorden continental slope is divided into three wide lobes. Opposite the two northernmost lobes the slope is dominated by straight gullies in the upper part, and deposition of debris lobes on the mid and lower parts. In contrast, the southernmost lobe is characterized by widespread occurrence of submarine landslides. Sediment failure has accompanied the evolution of the southern Storfjorden and Kveithola margin throughout the Late Neogene, with very large mass transport deposits up to 200 m thick in the early phases of the development of the glacially influenced margin. Conversely, the central and northern parts of the Storfjorden margin have prograded without appreciable episodes of mass failure. Sedimentation has occurred through alternate layering of decimeter-thick glacial debris flows deposits, with laminated and acoustically transparent interglacial sediment drape. Gullies and paleo-gullies incise the glacial debris flows and are covered by the interglacial drape. They are formed early during each deglaciation phase, most likely by the erosive action of short-lived hyperpycnal flows generated by sediment-laden subglacial meltwater discharge. In sediment cores thick finely-laminated sedimentary beds on the upper continental slope of the southern part of the margin indicate preferential deposition by settlement of meltwater sediment plumes. High sedimentation rates of plumites may contribute to the slope instability and suggest that meltwater discharge was focused on the southern Storfjorden and Kveithola paleo-ice streams.

  14. A mongoose remain (Mammalia: Carnivora) from the Upper Irrawaddy sediments, Myanmar and its significance in evolutionary history of Asian herpestids

    NASA Astrophysics Data System (ADS)

    Egi, Naoko; Thaung-Htike; Zin-Maung-Maung-Thein; Maung-Maung; Nishioka, Yuichiro; Tsubamoto, Takehisa; Ogino, Shintaro; Takai, Masanaru

    2011-11-01

    A tooth of a mongoose (Mammalia: Carnivora: Herpestidae) was discovered from the Upper Irrawaddy sediments in central Myanmar. The age of the fauna is not older than the mid-Pliocene. It is identified as a right first upper molar of a small species of Urva (formally included in the genus Herpestes) based on its size and shape. The present specimen is the first carnivoran from the Upper Irrawaddy sediments and is the first record of mongooses in the Pliocene and early Pleistocene of Asia. It confirms that mongooses had already dispersed into Southeast Asia by the late Pliocene, being consistent with the previous molecular phylogenetic analyses. The fossil may belong to one of the extant species, but an assignment to a specific species is difficult due to the fragmentary nature of the specimen and the small interspecific differences in dental shape among the Asian mongooses. The size of the tooth suggests that the Irrawaddy specimen is within or close to the clade of Urva auropunctata + javanica + edwardsii, and this taxonomic assignment agrees with the geographical distribution.

  15. Exhuming Crater in Northeast Arabia

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-563, 3 December 2003

    The upper crust of Mars is layered, and interbedded with these layers are old, filled and buried meteor impact craters. In a few places on Mars, such as Arabia Terra, erosion has re-exposed some of the filled and buried craters. This October 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example. The larger circular feature was once a meteor crater. It was filled with sediment, then buried beneath younger rocks. The smaller circular feature is a younger impact crater that formed in the surface above the rocks that buried the large crater. Later, erosion removed all of the material that covered the larger, buried crater, except in the location of the small crater. This pair of martian landforms is located near 17.6oN, 312.8oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.

  16. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport

    NASA Astrophysics Data System (ADS)

    Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.

    2009-04-01

    Temporal and spatial changes in wind speed, wind direction, and moisture content are ubiquitous across sandy coastal beaches. Often these factors interact in unknown ways to create complexity that confounds our ability to model sediment transport at any point across the beach as well as our capacity to predict sediment delivery into the adjacent foredunes. This study was designed to measure wind flow and sediment transport over a beach and foredune at Greenwich Dunes, Prince Edward Island National Park, with the express purpose of addressing these complex interactions. Detailed measurements are reported for one stormy day, October 11, 2004, during which meteorological conditions were highly variable. Wind speed ranged from 4 ms - 1 to over 20 ms - 1 , wind direction was highly oblique varying between 60° and 85° from shore perpendicular, and moisture content of the sand surface ranged from a minimum of about 3% (by mass) to complete saturation depending on precipitation, tidal excursion, and storm surge that progressively inundated the beach. The data indicate that short-term variations (i.e., minutes to hours) in sediment transport across this beach arise predominantly because of short-term changes in wind speed, as is expected, but also because of variations in wind direction, precipitation intensity, and tide level. Even slight increases in wind speed are capable of driving more intense saltation events, but this relationship is mediated by other factors on this characteristically narrow beach. As the angle of wind approach becomes more oblique, the fetch distance increases and allows greater opportunity for the saltation system to evolve toward an equilibrium transport state before reaching the foredunes. Whether the theoretically-predicted maximum rate of transport is ever achieved depends on the character of the sand surface (e.g., grain size, slope, roughness, vegetation, moisture content) and on various attributes of the wind field (e.g., average wind speed, unsteadiness, approach angle, flow compression, boundary layer development). Moisture content is widely acknowledged as an important factor in controlling release of sediment from the beach surface. All other things being equal, the rate of sediment transport over a wet surface is lesser than over a dry surface. On this beach, the moisture effect has two important influences: (a) in a temporal sense, the rate of sediment transport typically decreases in association with rainfall and increases when surface drying takes place; and (b) in a spatio-temporal sense, shoreline excursions associated with nearshore processes (such as wave run-up, storm surge, and tidal excursions) have the effect of constraining the fetch geometry of the beach—i.e., narrowing the width of the beach. Because saturated sand surfaces, such as found in the swash zone, will only reluctantly yield sediments to aeolian entrainment, the available beach surface across which aeolian transport can occur becomes narrower as the sea progressively inundates the beach. Under these constrained conditions, the transport system begins to shut down unless wind angle becomes highly oblique (thereby increasing fetch distance). In this study, maximum sediment transport was usually measured on the mid-beach rather than the upper beach (i.e., closer to the foredunes). This unusual finding is likely because of internal boundary layer development across the beach, which yields a decrease in near-surface wind speed (and hence, transport capacity) in the landward direction. Although widely recognized in the fluid mechanics literature, this decrease in near-surface shear stress as a by-product of a developing boundary layer in the downwind direction has not been adequately investigated in the context of coastal aeolian geomorphology.

  17. Seismic Stratigraphy of the Mariana Forearc Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Chapp, E.; Taylor, B.; Oakley, A.; Moore, G.

    2005-12-01

    A grid of seismic reflection profiles across the Mariana forearc between 14N-18N reveals a sedimentary basin between the Oligocene-Miocene frontal arc and the Eocene outer forearc highs. We identify and correlate several seismic stratigraphic units and use them to constrain the local and regional tectonics, which vary significantly from north to south. Four major sediment packages are distinguished in the southern forearc basin. The oldest unit, U-4, is conformable to arcward-tilted, rotated fault blocks formed during early extension, possibly associated with early Oligocene rifting prior to Parece Vela Basin spreading. Onlap relationships between the oldest sedimentary units indicate that deposition occurred before, during and after block rotation. On one profile, the U-4 sequence is deformed above a blind thrust fault in an otherwise extensional environment. Sediments that comprise the third unit, U-3, thin trenchward and onlap onto U-4. U-2 sediments onlap both sides of the basin and are characterized by nearly uniform thicknesses across the southern section. They currently dip trenchward, but are bypassed and onlapped arcward by thin recent deposits, U-1, on the three southern lines, suggesting recent relative subsidence of the outer forearc. The onset of this subsidence (during deposition of the upper strata of U-2) may have generated slope instability that triggered a large submarine slump off the frontal arc high into the forearc basin ENE of Saipan. The seismic stratigraphic units reveal both pre- and post-slump depositional boundaries including a possible post-slump debris apron around the perimeter of the toe thrust. The central region (near 16N), absent of the large rotated basement fault blocks found in the south, is characterized by high-angle normal faults that offset the seafloor by as much as 200 m. The upper section of U-4 is visible in isolated sections, but the coherency of the oldest layers is lost. Because a clear basement reflection is not resolved in this area, it is uncertain whether the absence of the oldest sediment reflections represents a lack of deposition or the limits of our imaging capabilities. The basin stratigraphy reveals a northward thickening of U-2 and U-3, indicating greater extension and increased sediment supply in the central region during deposition. U-1 is absent suggesting that the large relative subsidence of the outer forearc is restricted to the southern region. The stratigraphy of the northern forearc basin (near 18N) is interrupted by several local basement highs. U-4 and the lower sediments of U-3 are not imaged in this area. The upper strata of U-3 are resolvable in small basins formed between local highs. Above this, U-2 comprises most of the coherent basin fill. Ongoing work seeks to correlate these sequences with dated cores drilled in the area at ODP Leg 60 Sites 458 and 459.

  18. Flow and sediment transport dynamics in a slot and cauldron blowout and over a foredune, Mason Bay, Stewart Island (Rakiura), NZ

    NASA Astrophysics Data System (ADS)

    Hesp, Patrick A.; Hilton, Michael; Konlecher, Teresa

    2017-10-01

    This study is the first to simultaneously compare flow and sediment transport through a blowout and over an adjacent foredune, and the first study of flow within a highly sinuous, slot and cauldron blowout. Flow across the foredune transect is similar to that observed in other studies and is primarily modulated by across-dune vegetation density differences. Flow within the blowout is highly complex and exhibits pronounced accelerations and jet flow. It is characterised by marked helicoidal coherent vortices in the mid-regions, and topographically vertically forced flow out of the cauldron portion of the blowout. Instantaneous sediment transport within the blowout is significant compared to transport onto and/or over the adjacent foredune stoss slope and ridge, with the blowout providing a conduit for suspended sediment to reach the downwind foredune upper stoss slope and crest. Medium term (4 months) aeolian sedimentation data indicates sand is accumulating in the blowout entrance while erosion is taking place throughout the majority of the slot, and deposition is occurring downwind of the cauldron on the foredune ridge. The adjacent lower stoss slope of the foredune is accreting while the upper stoss slope is slightly erosional. Longer term (16 months) pot trap data shows that the majority of foredune upper stoss slope and crest accretion occurs via suspended sediment delivery from the blowout, whereas the majority of the suspended sediment arriving to the well-vegetated foredune stoss slope is deposited on the mid-stoss slope. The results of this study indicate one mechanism of how marked alongshore foredune morphological variability evolves due to the role of blowouts in topographically accelerating flow, and delivering significant aeolian sediment downwind to relatively discrete sections of the foredune.

  19. Suspended sediment, turbidity, and stream water temperature in the Sauk River Basin, western Washington, water years 2012-16

    USGS Publications Warehouse

    Jaeger, Kristin L.; Curran, Christopher A.; Anderson, Scott W.; Morris, Scott T.; Moran, Patrick W.; Reams, Katherine A.

    2017-11-01

    The Sauk River is a federally designated Wild and Scenic River that drains a relatively undisturbed landscape along the western slope of the North Cascade Mountain Range, Washington, which includes the glaciated volcano, Glacier Peak. Naturally high sediment loads characteristic of basins draining volcanoes like Glacier Peak make the Sauk River a dominant contributor of sediment to the downstream main stem river, the Skagit River. Additionally, the Sauk River serves as important spawning and rearing habitat for several salmonid species in the greater Skagit River system. Because of the importance of sediment to morphology, flow-conveyance, and ecosystem condition, there is interest in understanding the magnitude and timing of suspended sediment and turbidity from the Sauk River system and its principal tributaries, the White Chuck and Suiattle Rivers, to the Skagit River.Suspended-sediment measurements, turbidity data, and water temperature data were collected at two U.S. Geological Survey streamgages in the upper and middle reaches of the Sauk River over a 4-year period extending from October 2011 to September 2015, and at a downstream location in the lower river for a 5-year period extending from October 2011 to September 2016. Over the collective 5-year study period, mean annual suspended-sediment loads at the three streamgages on the upper, middle, and lower Sauk River streamgages were 94,200 metric tons (t), 203,000 t, and 940,000 t streamgages, respectively. Fine (smaller than 0.0625 millimeter) total suspended-sediment load averaged 49 percent at the upper Sauk River streamgage, 42 percent at the middle Sauk River streamgage, and 34 percent at the lower Sauk River streamgage.

  20. Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica). Role of permafrost as a low-permeability barrier.

    PubMed

    Curtosi, Antonio; Pelletier, Emilien; Vodopivez, Cristian L; Mac Cormack, Walter P

    2007-09-20

    Although Antarctica is still considered as one of the most pristine areas of the world, the growing tourist and fisheries activities as well as scientific operations and their related logistic support are responsible for an increasing level of pollutants in this fragile environment. Soils and coastal sediments are significantly affected near scientific stations particularly by polycyclic aromatic hydrocarbons (PAHs). In this work sediment and soil were sampled in two consecutive summer Antarctic expeditions at Potter Cove and peninsula, in the vicinity of Jubany Station (South Shetland Islands). Two- and 3-ring PAHs (methylnaphthalene, fluorene, phenanthrene and anthracene) were the main compounds found in most sites, although total PAH concentrations showed relatively low levels compared with other human-impacted areas in Antarctica. Pattern distribution of PAHs observed in samples suggested that low-temperature combustion processes such as diesel motor combustion and open-field garbage burning are the main sources of these compounds. An increase in PAH concentrations was observed from surface to depth into the active soil layer except for a unique sampling site where a fuel spill had been recently reported and where an inverted PAH concentration gradient was observed. The highest level was detected in the upper layer of permafrost followed by a sharp decrease in depth, showing this layer is acting as a barrier for downward PAH migration. When PAH levels in soil from both sampling programs were compared a significant decrease (p<0.01) was observed in summer 2005 (range at 75-cm depth: 12+/-1-153+/-22 ng/g) compared to summer 2004 (range at 75-cm depth: 162+/-15-1182+/-113 ng/g) whereas concentrations in surface sediment collected nearby the station PAHs increased drastically in 2005 (range: 36+/-3-1908+/-114 ng/g) compared to 2004 (range: 28+/-3-312+/-24 ng/g). Precipitation regime and water run off suggest that an important wash out of soil-PAHs occurred during the interval time between samplings. Results showed that the present PAH contamination level of Jubany Station is relatively low compared to other reported cases in Antarctica but also suggests that an increase in rain and in thawing processes caused by the global warming could result in an important soil-associated PAH mobilization with unpredictable consequences for the biota of Potter Cove.

  1. Hyporheic zone as a bioreactor: sediment heterogeneity influencing biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Perujo, Nuria; Romani, Anna M.; Sanchez-Vila, Xavier

    2017-04-01

    Mediterranean fluvial systems are characterized by frequent periods of low flow or even drought. During low flow periods, water from wastewater treatment plants (WWTPs) is proportionally large in fluvial systems. River water might be vertically transported through the hyporheic zone, and then porous medium acts as a complementary treatment system since, as water infiltrates, a suite of biogeochemical processes occurs. Subsurface sediment heterogeneity plays an important role since it influences the interstitial fluxes of the medium and drives biomass growing, determining biogeochemical reactions. In this study, WWTP water was continuously infiltrated for 3 months through two porous medium tanks: one consisting of 40 cm of fine sediment (homogeneous); and another comprised of two layers of different grain size sediments (heterogeneous), 20 cm of coarse sediment in the upper part and 20 cm of fine one in the bottom. Several hydrological, physicochemical and biological parameters were measured periodically (weekly at the start of the experiment and biweekly at the end). Analysed parameters include dissolved nitrogen, phosphorus, organic carbon, and oxygen all measured at the surface, and at 5, 20 and 40 cm depth. Variations in hydraulic conductivity with time were evaluated. Sediment samples were also analysed at three depths (surface, 20 and 40 cm) to determine bacterial density, chlorophyll content, extracellular polymeric substances, and biofilm function (extracellular enzyme activities and carbon substrate utilization profiles). Preliminary results suggest hydraulic conductivity to be the main driver of the differences in the biogeochemical processes occurring in the subsurface. At the heterogeneous tank, a low nutrient reduction throughout the whole medium is measured. In this medium, high hydraulic conductivity allows for a large amount of infiltrating water, but with a small residence time. Since some biological processes are largely time-dependent, small water residence time results in low nutrient reduction. Moreover, high nitrification and low ammonium concentration in the interface of the two grain-size layers are measured, probably related to high dissolved oxygen concentration at the coarse-fine sediment interface, further promoting accumulation of bacteria and algae. In contrast, the homogeneous tank shows low dissolved oxygen values and high denitrification in depth which could be related to lower overall hydraulic conductivity, as compared to the heterogeneous tank. The preliminary analysis of our results indicates a key role of hydraulic conductivity on biogeochemical processes in the porous medium but, at the same time that it is strongly interacting with sediment grain-size distribution and the development of biofilm. The final scope of this study is to know the interactions between physicochemical and biological components in sediments in order to understand in detail the biogeochemical processes occurring.

  2. Mechanical Controls on Halokinesis in Layered Evaporite Sequences: Insights from 2D Geomechanical Forward Models

    NASA Astrophysics Data System (ADS)

    Goteti, Rajesh; Agar, Susan M.; Brown, John P.; Ball, Philip; Zuhlke, Rainer

    2017-04-01

    Mechanical stratification in LES (Layered Evaporate Sequences) can have a distinct impact on structural and depositional styles in rifted margin salt tectonics. The bulk mechanical response of an LES under geological loading is dependent, among other factors, on the relative proportions of salt and sediment, salt mobility and sedimentation rate. To assess the interactions among the aforementioned factors in a physically consistent manner, we present 2D, large-strain finite element models of an LES salt minibasin and diapirs. Loading from the deposition of alternating salt and sediment layers (i.e., LES), gravity and a prescribed geothermal gradient provide the driving force for halokinesis in the models. To accurately capture the mechanical impact of stratification within the modeled LES, salt is assigned a temperature-dependent visco-plastic rheology, whereas the sediments are assigned a non-associative cap-plasticity model that supports both compaction and shear localization. Perturbations in the initial salt-sediment interface are used to initiate the salt diapirs. Model results suggest that active diapirism in the basal halite layer initiates when the pressure at the base of the incipient salt diapir exceeds that beneath the minibasin. Vertical growth of the diapir is also accompanied by its lateral expansion at higher structural levels where it preferentially intrudes the adjacent pre- and syn-kinematic salt layers. This pressure pumping of deeper salt into shallow salt layers, can result in rapid thickness changes between successive sediment layers within the LES. Caution needs to be exercised as such thickness changes observed in seismic images may not be entirely due to the shifting of depocenters but also due to the lateral pumping of salt within the LES. The presence of salt layers at multiple structural levels decouples the deformation between successive clastic layers resulting in disharmomic folding with contrasting strain histories in the sedimentary stringers. A significant proportion of the bulk deviatoric strain is preferentially partitioned into the salt layers. Effective plastic shear strains within the sediment stringers generally remain low in the minibasin but can be significantly higher with attendant intense folding near the diapirs. In non-LES systems, the shape of a salt diapir is often used as indicator of relative rates of salt supply and sedimentation over geological time. However our models suggest that this rule-of-thumb may not apply in LES where the shape of the salt diapir is a function of the mechanical properties of the salt layers at various structural levels in addition to the relative rates of salt supply and sedimentation. Imaging challenges in LES may preclude placing strong constraints on structural timing based on interpretation of interfaces between the stringers and the salt diapir. In such situations, geomechanical forward modeling can be a useful tool in placing physics-based quantitative constraints on the timing of LES structures.

  3. Water and sediment quality of dry season pools in a dryland river system: the upper Leichhardt River, Queensland, Australia.

    PubMed

    Mackay, Alana K; Taylor, Mark P; Hudson-Edwards, Karen A

    2011-07-01

    This article presents the geochemical characteristics and physicochemical properties of water and sediment from twelve semi-permanent, dryland pools in the upper Leichhardt River catchment, north-west Queensland, Australia. The pools were examined to better understand the quality of sediments and temporary waters in a dryland system with a well-established metal contamination problem. Water and sediment sampling was conducted at the beginning of the hydroperiod in May and September 2007. Water samples were analyzed for major solute compositions (Ca, Na, K, Mg, Cl, SO(4), HCO(3)) and water-soluble (operationally defined as the <0.45 μm fraction) metals (Cd, Cu, Pb, Zn). Sediment samples were analyzed for total extractable and bioaccessible metals (As, Cd, Cu, Pb, Zn), elemental composition and grain morphology. At the time of sampling a number of pools contained water and sediment with elevated concentrations, compared to Australian regulatory guidelines, of Cu (maximum: water 28 μg L(-1); sediment 770 mg kg(-1)), Pb (maximum: water 3.4 μg L(-1); sediment 630 mg kg(-1)) and Zn (maximum: water 150 μg L(-1); sediment 780 mg kg(-1)). Concentrations of Cd and As in pools were relatively low and generally within Australian regulatory guideline values. Localized factors, such as the interaction of waters with anthropogenic contaminants from modern and historic mine wastes (i.e. residual smelter and slag materials), exert influence on the quality of pool waters. Although the pools of the upper Leichhardt River catchment are contaminated, they do not appear to be the primary repository of water and sediment associated metals when compared to materials in the remainder channel and floodplain. Nevertheless, a precautionary approach should be adopted to mitigating human exposure to contaminated environments, which might include the installation of appropriate warning signs by local health and environmental authorities.

  4. Upper Eocene Spherules at ODP Site 1090B

    NASA Technical Reports Server (NTRS)

    Liu, S.; Kyte, F. T.; Glass, B. P.; Gersonde, R.

    2000-01-01

    Our two labs independently discovered upper Eocene microtektites and microkrystites at ODP Site 1090, a new South Atlantic locality near the Agulhus Ridge. This is a significant new data point for the strewn fields of these spherules, which were recently extended into the Atlantic sector of the Southern Ocean when they were reported at ODP Site 689 on the Maude Rise. The microtektites have been regarded as related to North American tektites and the microkrystites as belonging to the clinopyroxene-bearing (cpx) spherule strewn field. Initial reports indicate that Site 1090 contains a complete sequence of upper Eocene sediments composed of diatom and nannofossil oozes. The magneto- and bio-stratigraphy indicate that impact-age sediments should occur in core 30X of Hole 1090B. One of us (FTK) took 2 cc samples at 10 cm intervals over 600 cm of core for Ir analyses and the senior author (SL) took 3 cc samples at 20 cm intervals to search for spherules. Both studies proved successful and additional samples were obtained to confirm initial results and better define the Ir anomaly and spherule abundances. Peak Ir concentrations of 0.97 ng/g were found at 1090B-30X-5, 105-106cm and 0.78 ng/g at 115-116 cm. Anomalous Ir concentrations (greater than 0.1 ng/g) extend over about 100 cm of core. Preliminary results indicate that the excess Ir at this site is about 25 ng per sq cm. About 380 microtektites (>63 pm) and 2492 microkrystites (>63 pm) were recovered over a 1.8 m interval with a peak abundance of microtektites (106/gram) and microkrystites (562/gram) at 1090B-30X- 5, 114-115 cm. The largest microtektite is approximately 960 x 1140 micron in size. About 55 % are spherical, and the rest are disc, cylinder, dumbbell, teardrop, or fragments. Most of the microtektites are transparent colorless, but a few are transparent pale brown or green. Preliminary data indicate that the microtektites at Site 1090 have similar major oxide compositions to those at Site 689. About 50% of the cpx spherules are spherical, the rest are fragments. They range from yellowish translucent to dark opaque. Based on stratigraphic data, occurrence of a positive Ir anomaly, and similar appearance and major oxide compositions of the Site 1090 spherules to those at Site 689, we believe that the spherule layer(s) are the same at both sites. However, there are significant differences between these two sites. At Site 689 the peak abundance of the cpx spherules is slightly below that of the microtektites. We can distinguish no such separation at Site 1090, despite a somewhat higher sediment accumulation rates. Peak Ir concentrations are about four times higher at Site 1090, resulting in a similarly higher total flux of Ir for this site compared to Site 689 on the Maude Rise. This is generally consistent with the flux of cpx spherules (greater than 63 pm) which is estimated to be approximately -2100 per sq cm, about twice that of Site 689D (1040 sq cm) and with the cpx-spherule component being a principal carrier of the Ir signal. The number of microtektites per sq cm (greater than 63 micron) is nearly the same at both sites, approximately 300 in 1090B and 280 in 689B. A decrease in the greater than 63 micron size fraction (consisting primarily of diatoms and radiolaria) is coincident with the spherule layer at both sites suggesting that the impact(s) that produced the spherule layer(s) may have had an adverse affect on the marine plankton.

  5. Multivariate geostatistical modeling of the spatial sediment distribution in a large scale drainage basin, Upper Rhone, Switzerland

    NASA Astrophysics Data System (ADS)

    Schoch, Anna; Blöthe, Jan Henrik; Hoffmann, Thomas; Schrott, Lothar

    2018-02-01

    There is a notable discrepancy between detailed sediment budget studies in small headwater catchments (< 102 km2) focusing on the identification of sedimentary landforms in the field (e.g. talus cones, moraine deposits, fans) and large scale studies (> 103 km2) in higher order catchments applying modeling and/or remote sensing based approaches for major sediment storage delineation. To bridge the gap between these scales, we compiled an inventory of sediment and bedrock coverage from field mapping, remote sensing analysis and published data for five key sites in the Upper Rhone Basin (Val d'Illiez, Val de la Liène, Turtmanntal, Lötschental, Goms; 360.3 km2, equivalent to 6.7% of the Upper Rhone Basin). This inventory was used as training and testing data for the classification of sediment and bedrock cover. From a digital elevation model (2 × 2 m ground resolution) and Landsat imagery we derived 22 parameters characterizing local morphometry, topography and position, contributing area, and climatic and biotic factors on different spatial scales, which were used as inputs for different statistical models (logistic regression, principal component logistic regression, generalized additive model). Best prediction results with an excellent performance (mean AUROC: 0.8721 ± 0.0012) and both a high spatial and non-spatial transferability were achieved applying a generalized additive model. Since the model has a high thematic consistency, the independent input variables chosen based on their geomorphic relevance are suitable to model the spatial distribution of sediment. Our high-resolution classification shows that 53.5 ± 21.7% of the Upper Rhone Basin are covered with sediment. These are by no means evenly distributed: small headwaters (< 5 km2) feature a very strong variability in sediment coverage, with watersheds drowning in sediments juxtaposed to watersheds devoid of sediment cover. In contrast, larger watersheds predominantly show a bimodal distribution, with highest densities for bedrock (30-40%) being consistently lower than for sediment cover (60-65%). Earlier studies quantifying sedimentary cover and volume focus on the broad glacially overdeepened Rhone Valley that accounts for c. 9% of our study area. While our data support its importance, we conservatively estimate that the remaining 90% of sediment cover, mainly located outside trunk valleys, account for a volume of 2.6-13 km3, i.e. 2-16% of the estimated sediment volume stored in the Rhone Valley between Brig and Lake Geneva. Furthermore, our data reveal increased relative sediment cover in areas deglaciated since the Little Ice Age, as compared to headwater regions without this recent glacial imprint. We therefore conclude that sediment storage in low-order valleys, often neglected in large scale studies, constitutes a significant component of large scale sediment budgets that needs to be better included into future analysis.

  6. Mystery #18

    Atmospheric Science Data Center

    2013-04-22

    ... pale tan area in the upper right are derived from marine fossil sediments that accumulated there over two million years ago. Partly ... available at JPL March 2004 - Wetlands and fossil sediments. project:  MISR category:  ...

  7. Continuous In Situ Measurements of Near Bottom Chemistry and Sediment-Water Fluxes with the Chimney Sampler Array (CSA)

    NASA Astrophysics Data System (ADS)

    Martens, C. S.; Mendlovitz, H. P.; White, B. L.; Hoer, D.; Sleeper, K.; Chanton, J.; Wilson, R.; Lapham, L.

    2011-12-01

    The Chimney Sampler Array (CSA) was designed to measure in situ chemical and physical parameters within the benthic boundary layer plus methane and oxygen sediment-water chemical fluxes at upper slope sites in the northern Gulf of Mexico. The CSA can monitor temporal changes plus help to evaluate oceanographic and sub-seafloor processes that can influence the formation and stability of gas hydrates in underlying sediments. The CSA consists of vertical cylinders (chimneys) equipped with internal chemical sensors and with laboratory flume-calibrated washout rates. Chimney washout rates multiplied by chimney mean versus ambient concentrations allow calculation of net O2 and methane sediment-water fluxes. The CSA is emplaced on the seafloor by a ROVARD lander using a ROV for chimney deployments. The CSA presently includes two 30 cm diameter by 90 cm length cylinders that seal against the sediment with lead pellet beanbags; within each chimney cylinder are optode, conductivity and methane sensors. The CSA's data logger platform also includes pressure and turbidity sensors external to the chimneys along with an acoustic Doppler current meter to measure temporal variation in ambient current velocity and direction. The CSA was deployed aboard a ROVARD lander on 9/13/2010 in the northern Gulf of Mexico (Lat. 28 51.28440, Long. 088 29.39421) on biogeochemically active sediments within Block MC-118. A ROV was utilized for chimney deployment away from the ROVARD lander. The CSA monitored temporal changes in water column physical parameters, obtained near-bottom chemical data to compare with pore fluid and sediment core measurements and measured temporal variability in oxygen and methane sediment-water fluxes at two closely spaced stations at MC-118. A continuous, three-week data set was obtained that revealed daily cycles in chemical parameters and episodic flux events. Lower than ambient chimney dissolved O2 concentrations controlled by temporal variability in washout rates were used to calculate sediment O2 demand. Episodic events yielding turbidity spikes produced episodic spikes in chimney methane concentrations and sediment-water fluxes. The robust data set reveals new capabilities for long-term monitoring of near-bottom processes in biogeochemically active, continental margin environments.

  8. [Research of input water ratio's impact on the quality of effluent water from hydrolysis reactor].

    PubMed

    Liang, Kang-Qiang; Xiong, Ya; Qi, Mao-Rong; Lin, Xiu-Jun; Zhu, Min; Song, Ying-Hao

    2012-11-01

    Based on high SS/BOD and low C/N ratio of waste water of municipal wastewater treatment plant, the structure of currently existing hydrolysis reactor was reformed to improve the influent quality. In order to strengthen the sludge hydrolysis and improve effluent water quality, two layers water distributors were set up so that the sludge hydrolysis zone was formed between the two layers distribution. For the purpose of the hydrolysis reactor not only plays the role of the primary sedimentation tank but also improves the effluent water biodegradability, input water ratios of the upper and lower water distributor in the experiment were changed to get the best input water ratio to guide the large-scale application of this sort hydrolysis reactor. Results show, four kinds of input water ratio have varying degrees COD and SS removal efficiency, however, input water ratio for 1 : 1 can substantially increase SCOD/COD ratio and VFA concentration of effluent water compared with the other three input water ratios. To improve the effluent biodegradability, input water ratio for 1 : 1 was chosen for the best input water ratio. That was the ratio of flow of upper distributor was 50%, and the ratio of the lower one was 50%, at this case it can reduce the processing burden of COD and SS for follow-up treatment, but also improve the biodegradability of the effluent.

  9. Geochemical evidence for enhanced preservation of organic matter in the oxygen minimum zone of the continental margin of northern California during the Late Pleistocene

    USGS Publications Warehouse

    Dean, Walter E.; Gardner, James V.; Anderson, Roger Y.

    1994-01-01

    The present upper water mass of the northeastern Pacific Ocean off California has a well-developed oxygen minimum zone between 600 and 1200 m wherein concentrations of dissolved oxygen are less than 0.5 mL/L. Even at such low concentrations of dissolved oxygen, benthic burrowing organisms are abundant enough to thoroughly bioturbate the surface and near-surface sediments. These macro organisms, together with micro organisms, also consume large quantities of organic carbon produced by large seasonal stocks of plankton in the overlying surface waters, which are supported by high concentrations of nutrients within the California Current upwelling system. In contrast to modern conditions of bioturbation, laminated sediments are preserved in upper Pleistocene sections of cores collected on the continental slope at water depths within the present oxygen minimum zone from at least as far north as the California-Oregon border and as far south as Point Conception. Comparison of sediment components in the laminae with those delivered to sediment traps as pelagic marine “snow” demonstrates that the dark-light lamination couplets are indeed annual (varves). These upper Pleistocene varved sediments contain more abundant lipid-rich “sapropelic” (type II) organic matter than the overlying bioturbated, oxidized Holocene sediments. The baseline of stable carbon isotopic composition of the organic matter in these slope cores does not change with time, indicating that the higher concentrations of type II organic matter in the varved sediments represent better preservation of organic matter rather than any change in the source of organic matter.

  10. Compaction and sedimentary basin analysis on Mars

    NASA Astrophysics Data System (ADS)

    Gabasova, Leila R.; Kite, Edwin S.

    2018-03-01

    Many of the sedimentary basins of Mars show patterns of faults and off-horizontal layers that, if correctly understood, could serve as a key to basin history. Sediment compaction is a possible cause of these patterns. We quantified the possible role of differential sediment compaction for two Martian sedimentary basins: the sediment fill of Gunjur crater (which shows concentric graben), and the sediment fill of Gale crater (which shows outward-dipping layers). We assume that basement topography for these craters is similar to the present-day topography of complex craters that lack sediment infill. For Gunjur, we find that differential compaction produces maximum strains consistent with the locations of observed graben. For Gale, we were able to approximately reproduce the observed layer orientations measured from orbiter image-based digital terrain models, but only with a >3 km-thick donut-shaped past overburden. It is not immediately obvious what geologic processes could produce this shape.

  11. A numerical investigation of fine sediment resuspension in the wave boundary layer - effect of hindered settling and bedforms

    NASA Astrophysics Data System (ADS)

    Hsu, T. J.; Cheng, Z.; Yu, X.

    2016-02-01

    The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to the continental margin. Hence, studying the fine sediment resuspension in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycle. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with the sediment availability. As the sediment availability and hence the sediment-induced stable stratification increase, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to the floc dynamics and hindered settling. This study further investigate the effect of hindered settling. Particularly, for flocs with lower gelling concentrations, the hindered settling effect can play a key role in sustaining large amount of suspended sediment load and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A condition for the occurrence of gelling ignition is proposed for a range of wave intensities as a function of sediment/floc properties and erodibility parameters. These aforementioned studies are limited to fine sediment transport over a flat bed. However, recent field and laboratory observation show that a small amount of sand fraction can lead to the formation of small bedforms, which can armor the bed while in the meantime enhance near bed turbulence. Preliminary investigation on the effect of bedforms on the resulting transport modes will also be presented.

  12. Mixed sand and gravel beaches: accurate measurement of active layer depth and sediment transport volumes using PIT tagged tracer pebbles

    NASA Astrophysics Data System (ADS)

    Holland, A.; Moses, C.; Sear, D. A.; Cope, S.

    2016-12-01

    As sediments containing significant gravel portions are increasingly used for beach replenishment projects globally, the total number of beaches classified as `mixed sand and gravel' (MSG) increases. Calculations for required replenishment sediment volumes usually assume a uniform layer of sediment transport across and along the beach, but research into active layer (AL) depth has shown variations both across shore and according to sediment size distribution. This study addresses the need for more accurate calculations of sediment transport volumes on MSG beaches by using more precise measurements of AL depth and width, and virtual velocity of tracer pebbles. Variations in AL depth were measured along three main profile lines (from MHWS to MLWN) at Eastoke, Hayling Island (Hampshire, UK). Passive Integrated Transponder (PIT) tagged pebbles were deployed in columns, and their new locations repeatedly surveyed with RFID technology. These data were combined with daily dGPS beach profiles and sediment sampling for detailed analysis of the influence of beach morphodynamics on sediment transport volumes. Data were collected over two consecutive winter seasons: 2014-15 (relatively calm, average wave height <1 m) and 2015-16 (prolonged periods of moderate storminess, wave heights of 1-2 m). The active layer was, on average, 22% of wave height where beach slope (tanβ) is 0.1, with variations noted according to slope angle, sediment distribution, and beach groundwater level. High groundwater levels and a change in sediment proportions in the sandy lower foreshore reduced the AL to 10% of wave height in this area. The disparity in AL depth across the beach profile indicates that traditional models are not accurately representing bulk sediment transport on MSG beaches. It is anticipated that by improving model inputs, beach managers will be better able to predict necessary volumes and sediment grain size proportions of replenishment material for effective management of MSG beaches.

  13. Evaluating Local and Regional Sources of Trace Element Contamination in a Rural Sub Estuary of the Upper Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Krahforst, C.; Hartman, S.; Sherman, L.; Kehm, K.

    2014-12-01

    The distribution of trace elements (V, Cr, Co, Ni, Cu, Zn, As, Ag, Cd, Sn, Ba, W, Pb and U) along with Al and Fe and other sediment characteristics in surface sediment and sediment cores from the Chester River - a sub estuary of the Chesapeake Bay located in a predominantly agricultural watershed of Maryland's upper Eastern Shore, USA - have been determined in order to add to the understanding of contaminant transport and fate and inform management strategies designed to maintain or improve the ecological condition of estuaries. These analyses coupled with the comparison of elemental analysis of 210Pb - dated sediment cores, main stem water quality surveys, and a review of recent EPA National Coastal Condition Assessment sediment data from Chesapeake Bay provide added information about the roles of local and region scale processes on ecosystem condition. The high amount of suspended sediment in the Chester River (5-20 mg L-1) is an important factor controlling water quality conditions of the Chester River and a prime focus for environmental management of this system. Sources of suspended matter include local runoff, atmospheric deposition, local resuspension, and exchange with the Chesapeake Bay. In principle, each of these sources could be distinguished on the basis of chemical composition of surface sediment. Preliminary results from multivariate analytic models indicate that many of the elements investigated display significant covariance with Al (and other predominantly crustal signatures) which may indicate limited exogenic sources of contamination for sediments of this watershed. For example total Pb concentrations are mostly below the NOAA's low toxic effects level and lower than the median value of NCCA data for the upper Chesapeake suggesting that sediments have significant sources from within the watershed. Further, significant higher concentrations of Sn and Cu coincide with sediment collected in or near marinas and point to localized anthropogenic sources for these elements. Elemental enrichment values relative to Al of Chester River sediments are significantly lower than observations in sediments from Chesapeake Bay overall and may indicate that local watershed management strategies may be effective for improving water and habitat quality of the Chester River.

  14. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ribó, Marta; Puig, Pere; Muñoz, Araceli; Lo Iacono, Claudio; Masqué, Pere; Palanques, Albert; Acosta, Juan; Guillén, Jorge; Gómez Ballesteros, María

    2016-01-01

    Detailed analysis of recently acquired swath bathymetry, together with high-resolution seismic profiles and bottom sediment samples, revealed the presence of large-scale fine-grained sediment waves over the Gulf of Valencia continental slope. As many other deep-water sediment waves, these features were previously attributed to gravitational slope failure, related to creep-like deformation, and are here reinterpreted as sediment wave fields extending from 250 m depth to the continental rise, at 850 m depth. Geometric parameters were computed from the high-resolution multibeam dataset. Sediment wave lengths range between 500 and 1000 m, and maximum wave heights of up to 50 m are found on the upper slope, decreasing downslope to minimum values of 2 m high. Sediment waves on the lower part of the slope are quasi-stationary vertically accreting, whereas they show an upslope migrating pattern from the mid-slope to the upper part of the continental slope. High-resolution seismic profiles show continuous internal reflectors, with sediment waves merging down-section and sediment wave packages decreasing in thickness downslope. These sediment packages are thicker on the crest of each individual sediment wave and thinner on the downslope flank. 210Pb analyses conducted on sediment cores collected over the sediment wave fields also indicate slightly higher sediment accumulation rates on the wave crests. Sediment wave formation processes have been inferred from contemporary hydrodynamic observations, which reveal the presence of near-inertial internal waves interacting with the Gulf of Valencia continental slope. Internal wave activity is suggested to be the preferential mechanism for the transport and deposition of sediment, and the maintenance of the observed sediment wave fields.

  15. Controls of bioclastic turbidite deposition in eastern Muertos Trough northeast Caribbean Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsthoff, G.M.; Holcombe, T.L.

    1985-02-01

    A study of seismic-reflection profiles and sediment cores establishes regional bathymetric and source area control over the composition, transport, and distribution of turbidites in the eastern Muertos Trough, Bioclastic (carbonate) turbidites dominate the eastern portion of the trough. Analyses of carbon content and sand-sized components suggest that the bioclastic turbidites (characterized by planktonic foraminifera, pteropods, and sponge spicules) are reworked pelagic oozes originally deposited on the outer-shelf and upper-slope areas south of St. Croix and eastern Puerto Rico. The presence of several intrashelf and upper-slope basins prohibits shallow-water carbonate sediments from entering the Muertos Trough. Volcanic rock fragments derived frommore » Puerto Rico are transported to the trough via the Guayanilla Canyon system. Mixing of the volcanic fragments with outer-shelf and upper-slope lutites results in mixed bioclastic-terrigenous turbidites south of central and western Puerto Rico. The paucity of shallow-water carbonate sediments in the trough suggests that the submarine canyons are effective conduits for the rapid transport of volcaniclastic sands across the shelf and thereby prevent extensive mixing with inner- and middle-shelf carbonate sediments. Sediment transport within the trough is primarily axial in an east-west direction. Outer trench-wall fault scarps, south of Guayanilla Canyon, limit the southerly progradation of the trench-wedge facies and deflect incoming gravity flows in a down-axis (westward) direction. Where no faults exist, the trench wedge progrades southward and interfingers with the pelagic sediments of the northern Venezuelan basin.« less

  16. Ill-posedness in modeling mixed sediment river morphodynamics

    NASA Astrophysics Data System (ADS)

    Chavarrías, Víctor; Stecca, Guglielmo; Blom, Astrid

    2018-04-01

    In this paper we analyze the Hirano active layer model used in mixed sediment river morphodynamics concerning its ill-posedness. Ill-posedness causes the solution to be unstable to short-wave perturbations. This implies that the solution presents spurious oscillations, the amplitude of which depends on the domain discretization. Ill-posedness not only produces physically unrealistic results but may also cause failure of numerical simulations. By considering a two-fraction sediment mixture we obtain analytical expressions for the mathematical characterization of the model. Using these we show that the ill-posed domain is larger than what was found in previous analyses, not only comprising cases of bed degradation into a substrate finer than the active layer but also in aggradational cases. Furthermore, by analyzing a three-fraction model we observe ill-posedness under conditions of bed degradation into a coarse substrate. We observe that oscillations in the numerical solution of ill-posed simulations grow until the model becomes well-posed, as the spurious mixing of the active layer sediment and substrate sediment acts as a regularization mechanism. Finally we conduct an eigenstructure analysis of a simplified vertically continuous model for mixed sediment for which we show that ill-posedness occurs in a wider range of conditions than the active layer model.

  17. Ceramic substrate including thin film multilayer surface conductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Joseph Ambrose; Peterson, Kenneth A.

    2017-05-09

    A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on anmore » upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.« less

  18. Regional-scale input of dispersed and discrete volcanic ash to the Izu-Bonin and Mariana subduction zones

    NASA Astrophysics Data System (ADS)

    Scudder, Rachel P.; Murray, Richard W.; Schindlbeck, Julie C.; Kutterolf, Steffen; Hauff, Folkmar; McKinley, Claire C.

    2014-11-01

    We have geochemically and statistically characterized bulk marine sediment and ash layers at Ocean Drilling Program Site 1149 (Izu-Bonin Arc) and Deep Sea Drilling Project Site 52 (Mariana Arc), and have quantified that multiple dispersed ash sources collectively comprise ˜30-35% of the hemipelagic sediment mass entering the Izu-Bonin-Mariana subduction system. Multivariate statistical analyses indicate that the bulk sediment at Site 1149 is a mixture of Chinese Loess, a second compositionally distinct eolian source, a dispersed mafic ash, and a dispersed felsic ash. We interpret the source of these ashes as, respectively, being basalt from the Izu-Bonin Front Arc (IBFA) and rhyolite from the Honshu Arc. Sr-, Nd-, and Pb isotopic analyses of the bulk sediment are consistent with the chemical/statistical-based interpretations. Comparison of the mass accumulation rate of the dispersed ash component to discrete ash layer parameters (thickness, sedimentation rate, and number of layers) suggests that eruption frequency, rather than eruption size, drives the dispersed ash record. At Site 52, the geochemistry and statistical modeling indicates that Chinese Loess, IBFA, dispersed BNN (boninite from Izu-Bonin), and a dispersed felsic ash of unknown origin are the sources. At Site 1149, the ash layers and the dispersed ash are compositionally coupled, whereas at Site 52 they are decoupled in that there are no boninite layers, yet boninite is dispersed within the sediment. Changes in the volcanic and eolian inputs through time indicate strong arc-related and climate-related controls.

  19. Identification of in-sewer sources of organic solids contributing to combined sewer overflows.

    PubMed

    Ahyerre, M; Chebbo, G

    2002-09-01

    Previous research has shown that combined sewer systems are the main source of particle and organic pollution during rainfall events contributing to combined sewer overflow. The aim of this article is to identify in an urban catchment area called "Le Marais", in the center of Paris, the types of sediments that are eroded and contribute to the pollution of combined sewer overflow. Three sediment types are considered: granular material found in the inverts of pipes, organic biofilms and organic sediment at the water bed interface, identified as an immobile layer in the "Le Marais" catchment area. The method used consist, firstly, of sampling and assessing the organic pollutant loads and metallic loads of the particles in each type of sediment. Then, the mass of each type of sediment is assessed. The mass and the characteristics of each type of sediment is finally compared to the mass and characteristics of the particles eroded in the catchment area, estimated by mass balances, in order to find the source of eroded particles. The only identified type of deposit that can contribute to combined sewer overflows is the organic layer. Indeed, the solids of this layer have mean and metallic loads that are of the same order of magnitude as the eroded particles. Moreover, the mass of the organic layer considered over different time scales is of the same order of magnitude as the eroded masses during rainfall events and an erosion experiment showed that the organic layer is actually eroded.

  20. The Late Pleistocene Contourites on Ceara Rise: Stratigraphy, Sedimentology and Paleoceanography

    NASA Astrophysics Data System (ADS)

    Ivanova, E. V.; Murdmaa, I.; Borisov, D.; Seitkalieva, E.; Ovsepyan, E.

    2016-12-01

    The study of sediment cores obtained during the cruises 35 (2012) and 50 (2015) of RV Akademic Ioffe from the Ceara Rise in the western tropical Atlantic strongly supports a significant influence of bottom (contour) currents on the Late Quaternary sedimentation. Seismic evidence of contourites in the study area (migrating contourite sediment waves, furrows) was previously described by Kumar and Embley (1977) and Curry et al. (1995). Widespread distribution of seismic waves on the rise and adjacent areas was suggested by Murdmaa et al (2014) based on the results of high-resolution seismic profiling with SES-2000 deep (4-5 kHz) in 2012. Our sediment cores recovered intercalation of bioturbated clays and silty clays with thin linear or wavy sand and silt layers and lenses implying strong bottom current control on sedimentation. The stratigraphic frame of the reference core AI-3426 retrieved near the summit of the Ceara Rise, at the water depth of 3046 m is based on the foraminiferal (Globorotalia menardii zones), oxygen isotope and AMS-14C data. The core recovered sediments of the last 140 ka with very rich and well-preserved tropical planktic foraminiferal assemblages. G. menardii is common within MIS 1 and 5 and is almost absent in MIS 2-4 and upper MIS 6. The abundance of benthic foraminifers is rather low. However, dominance of Globocassidulina subglobosa in benthic assemblages likely indicates a moderate bottom-current activity on the Ceara Rise during the last glacial. The other 4-5m long sediment cores collected along the seismic profile from the northern and southern slopes demonstrate the similar contourite sedimentological features and insignificant reworking of the Neogene foraminiferal species as inferred from the core AI-3426 along with the significant variations in foraminiferal preservation during the Pleistocene. The study is supported by the projects RSF 14-50-00095, RFBR 14-05-00744 and RFBR 16-35-60111, and Program I3P by RAS.

  1. Formation and burial of pyrite and organic sulfur in mud sediments of the East China Sea inner shelf: Constraints from solid-phase sulfur speciation and stable sulfur isotope

    NASA Astrophysics Data System (ADS)

    Zhu, Mao-Xu; Shi, Xiao-Ning; Yang, Gui-Peng; Hao, Xiao-Chen

    2013-02-01

    Solid-phase sulfur speciation and stable sulfur isotopic compositions are used to elucidate the formation and burial of pyrite-sulfur (Spy) and organic sulfur (OS) at three selected sites in mud sediments of the East China Sea (ECS) inner shelf, and to infer potential factors influencing the preservation of Spy and OS in the sediments. Our results in combination with previous studies show that the overall reactivity of sedimentary organic matter (OM) is low, while OM at the site impacted by frequent algal-bloom events displays somewhat enhanced reactivity. We observed characteristically low contents of acid volatile sulfide (AVS) and Spy in the sediments, which can be attributed to low sulfate reduction rate due to high redox potential together with limited availability of labile OM. Several geochemical features, for example, persistent occurrence of S0, good coupling among the profiles of AVS, S0 and Spy, and large 34Spy depletion, all suggest that the polysulfide pathway and disproportionation are likely involved in the pyrite formation. Organic sulfur amounts in the sediments are at the lower end of OS contents reported in many other marine sediments around the world. The sources of OS are both biosynthetic and diagenetic, with the biosynthetic OS being the major share (59-73%). In one site studied (C702), enhanced accumulation of OS within the upper layers (14 cm) is believed to be associated with frequent algal-bloom events. Net burial fluxes of Spy and OS in the three sites studied range from 0.27 to 0.82 mmol/m2/d and from 0.22 to 0.74 mmol/m2/d, respectively. Sedimentation rate and algal-bloom events are two important factors influencing the spatial variability of Spy and OS burial fluxes in the whole shelf.

  2. Chemistry of Tertiary sediments in the surroundings of the Ries impact structure and moldavite formation revisited

    NASA Astrophysics Data System (ADS)

    Žák, Karel; Skála, Roman; Řanda, Zdeněk; Mizera, Jiří; Heissig, Kurt; Ackerman, Lukáš; Ďurišová, Jana; Jonášová, Šárka; Kameník, Jan; Magna, Tomáš

    2016-04-01

    Moldavites, tektites of the Central European strewn field, have been traditionally linked with the Ries impact structure in Germany. They are supposed to be derived mainly from the near-surface sediments of the Upper Freshwater Molasse of Miocene age that probably covered the target area before the impact. Comparison of the chemical composition of moldavites with that of inferred source materials requires recalculation of the composition of sediments to their water-, organic carbon- and carbon dioxide-free residuum. This recalculation reflects the fact that these compounds were lost almost completely from the target materials during their transformation to moldavites. Strong depletions in concentrations of many elements in moldavites relative to the source sediments (e.g., Mo, Cu, Ag, Sb, As, Fe) contrast with enrichments of several elements in moldavites (e.g., Cs, Ba, K, Rb). These discrepancies can be generally solved using two different approaches, either by involvement of a component of specific chemical composition, or by considering elemental fractionation during tektite formation. The proposed conceptual model of moldavite formation combines both approaches and is based on several steps: (i) the parent mixture (Upper Freshwater Molasse sediments as the dominant source) contained also a minor admixture of organic matter and soils; (ii) the most energetic part of the ejected matter was converted to vapor (plasma) and another part produced melt directly upon decompression; (iii) following further adiabatic decompression, the expanding vapor phase disintegrated the melt into small melt droplets and some elements were partially lost from the melt because of their volatility, or because of the volatility of their compounds, such as carbonyls of Fe and other transition metals (e.g., Ni, Co, Mo, Cr, and Cu); (iv) large positively charged ions such as Cs+, Ba2+, K+, Rb+ from the plasma portion were enriched in the late-stage condensation spherules or condensed directly onto negatively charged melt droplets; (v) simultaneously, the melt droplets coalesced into larger tektite bodies. Steps (iii)-(v) may have overlapped in time. The still melted moldavite bodies reaching their final size were reshaped by further melt flow. This melt flow was related to moldavite rotation and escape (bubbling off) of the last portion of gaseous volatiles during their flight in a low-pressure region above the dense layer of the atmosphere.

  3. Stratigraphy of a proposed wind farm site southeast of Block Island: Utilization of borehole samples, downhole logging, and seismic profiles

    NASA Astrophysics Data System (ADS)

    Sheldon, Dane P. H.

    Seismic stratigraphy, sedimentology, lithostratigraphy, downhole geophysical logging, mineralogy, and palynology were used to study and interpret the upper 70 meters of the inner continental shelf sediments within a proposed wind farm site located approximately two to three nautical miles to the southeast of Block Island, Rhode Island. Core samples and downhole logging collected from borings drilled for geotechnical purposes at proposed wind turbine sites along with seismic surveys in the surrounding area provide the data for this study. Cretaceous coastal plain sediments that consist of non-marine to marine sand, silt, and clay are found overlying bedrock at a contact depth beyond the sampling depth of this study. The upper Cretaceous sediments sampled in borings are correlated with the Magothy/Matawan formations described regionally from New Jersey to Nantucket. An unconformity formed through sub-aerial, fluvial, marine, and glacial erosion marks the upper strata of the Cretaceous sediments separating them from the overlying deposits. The majority of Quaternary deposits overlying the unconformity represent the advance, pulsing, and retreat of the Laurentide ice sheet that reached its southern terminus in the area of Block Island approximately 25,000 to 21,000 years before present. The sequence consists of a basal glacial till overlain by sediments deposited by meltwater environments ranging from deltaic to proglacial lakefloor. A late Pleistocene to early Holocene unconformity marks the top of the glacial sequence and was formed after glacial retreat through fluvial and subaerial erosion/deposition. Overlying the glacial sequence are sediments deposited during the late Pleistocene and Holocene consisting of interbedded gravel, sand, silt, and clay. Sampling of these sediments was limited and surficial reflectors in seismic profiles were masked due to a hard bottom return. However, two depositional periods are interpreted as representing fluvial and estuarine/marine environments respectively. One sample recovered at five meters contained shell fragments within a gray fine to coarse sand possibly representing a shallow estuarine to marine environment. A coarse near surface deposit described but not recovered in all borings may represent a transgressive unconformity and resulting lag deposit however due to lack of sampling and seismic resolution in the upper 5 meters, the nature of this deposit is merely speculation. In areas where depth to the glacial surface increased, sediments ranging from sand to fine-grained silt and clay were encountered in borings. In summary, the upper 70 meters of the inner continental shelf section within the study site consists of unconsolidated sediments spanning three major depositional periods. Sediments derived from glacial activity represent the bulk of samples collected. The glacial sequences represent various depositional environments, although most samples are interpreted to be the product of glacial meltwater deposition with distribution determined by source as well as highs and lows present in the antecedent topography. Finely laminated (varved) sediment to the south of Block Island indicates the presence of proglacial lakes in the area during the time of glacial retreat. Overlying sediments represent environments ranging from fluvial to marine.

  4. Seasonal electrical resistivity surveys of a coastal bluff, Barter Island, North Slope Alaska

    USGS Publications Warehouse

    Swarzenski, Peter W.; Johnson, Cordell; Lorenson, Thomas; Conaway, Christopher H.; Gibbs, Ann E.; Erikson, Li; Richmond, Bruce M.; Waldrop, Mark P.

    2016-01-01

    Select coastal regions of the North Slope of Alaska are experiencing high erosion rates that can be attributed in part to recent warming trends and associated increased storm intensity and frequency. The upper sediment column of the coastal North Slope of Alaska can be described as continuous permafrost underlying a thin (typically less than 1–2 m) active layer that responds variably to seasonal thaw cycles. Assessing the temporal and spatial variability of the active layer and underlying permafrost is essential to better constrain how heightened erosion may impact material fluxes to the atmosphere and the coastal ocean, and how enhanced thaw cycles may impact the stability of the coastal bluffs. In this study, multi-channel electrical resistivity tomography (ERT) was used to image shallow subsurface features of a coastal bluff west of Kaktovik, on Barter Island, northeast Alaska. A comparison of a suite of paired resistivity surveys conducted in early and late summer 2014 provided detailed information on how the active layer and permafrost are impacted during the short Arctic summer. Such results are useful in the development of coastal resilience models that tie together fluvial, terrestrial, climatic, geologic, and oceanographic forcings on shoreline stability.

  5. Production of Hexagenia limbata nymphs in contaminated sediments in the Upper Great Lakes connecting channels

    USGS Publications Warehouse

    Edsall, Thomas A.; Manny, Bruce A.; Schloesser, Donald W.; Nichols, Susan J.; Frank, Anthony M.

    1991-01-01

    In April through October 1986, we sampled sediments and populations of nymphs of the burrowing mayfly, Hexagenia limbata (Serville), at 11 locations throughout the connecting channels of the upper Great Lakes, to determine if sediment contaminants adversely affected nymph production. Production over this period was high (980 to 9231 mg dry wt m-2) at the five locations where measured sediment levels of oil, cyanide, and six metals were below the threshold criteria of the U.S. Environmental Protection Agency and the Ontario Ministry of Environment for contaminated or polluted sediments, and also where the criterion for visible oil given in the Water Quality Agreement between the U.S.A. and Canada for connecting waters of the Great Lakes was not exceeded. At the other six locations where sediments were polluted, production was markedly lower (359 to 872 mg dry wt m-2). This finding is significant because it indicates that existing sediment quality criteria can be applied to protect H. limbata from oil, cyanide, and metals in the Great Lakes and connecting channels where the species fulfills a major role in secondary production and trophic transfer of energy.

  6. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin: Organochlorine compounds in streambed sediments and fish tissues, 1995-97

    USGS Publications Warehouse

    McNellis, R.P.; Fallon, J.D.; Lee, K.E.

    2001-01-01

    Streambed sediments and fish tissues were collected in part of the Upper Mississippi River Basin to assess the presence and distribution of organochlorine compounds (OCs) including PCBs. A total of 13 OCs were detected among 14 of 27 streambed sediment sampling locations. In fish tissues analyzed, 9 OCs were detected among 17 of 24 sites sampled. Eight OCs were detected in both fish and streambed sediment samples, they were: cis-chlordane, o,p'-DDD; p,p'-DDD; p,p'-DDE; p,p'-DDT; hexachlorobenzene; transnonachlor; and PCBs. The most frequently detected OCs were: p,p'-DDE; and p,p'-DDD in streambed sediment and p,p'-DDE and PCBs in fish tissues. No OCs were detected in streambed sediment at agricultural sites; however, the agricultural sites had 17 detections of OCs in fish tissue. Urban streams had concentrations of total DDT and metabolites in streambed sediment that exceed guidelines for classification of sites with high probabilities of adverse effects to aquatic organisms. Total DDT was the only OC within an urban land use that exceeded guidelines for piscivorous wildlife.

  7. Hydrographic and particle distributions over the Palos Verdes continental shelf: Spatial, seasonal and daily variability

    USGS Publications Warehouse

    Jones, B.H.; Noble, M.A.; Dickey, T.D.

    2002-01-01

    Moorings and towyo mapping were used to study the temporal and spatial variability of physical processes and suspended particulate material over the continental shelf of the Palos Verdes Peninsula in southwestern Los Angeles, California during the late summer of 1992 and winter of 1992-93. Seasonal evolution of the hydrographic structure is related to seasonal atmospheric forcing. During summer, stratification results from heating of the upper layer. Summer insolation coupled with the stratification results in a slight salinity increase nearsurface due to evaporation. Winter cooling removes much of the upper layer stratification, but winter storms can introduce sufficient quantities of freshwater into the shelf water column again adding stratification through the buoyancy input. Vertical mixing of the low salinity surface water deeper into the water column decreases the sharp nearsurface stratification and reduces the overall salinity of the upper water column. Moored conductivity measurements indicate that the decreased salinity persisted for at least 2 months after a major storm with additional freshwater inputs through the period. Four particulate groups contributed to the suspended particulate load in the water column: phytoplankton, resuspended sediments, and particles in treated sewage effluent were observed in every towyo mapping cruise; terrigenous particles are introduced through runoff from winter rainstorms. Terrigenous suspended particulate material sinks from the water column in <9 days and phytoplankton respond to the stormwater input of buoyancy and nutrients within the same period. The suspended particles near the bottom have spatially patchy distributions, but are always present in hydrographic surveys of the shelf. Temporal variations in these particles do not show a significant tidal response, but they may be maintained in suspension by internal wave and tide processes impinging on the shelf. ?? 2002 Elsevier Science Ltd. All rights reserved.

  8. Scaling oxygen microprofiles at the sediment interface of deep stratified waters

    NASA Astrophysics Data System (ADS)

    Schwefel, Robert; Hondzo, Miki; Wüest, Alfred; Bouffard, Damien

    2017-02-01

    Dissolved oxygen microprofiles at the sediment-water interface of Lake Geneva were measured concurrently with velocities 0.25 to 2 m above the sediment. The measurements and scaling analyses indicate dissolved oxygen fluctuations and turbulent fluxes in exceedance of molecular diffusion in the proximity of the sediment-water interface. The measurements allowed the parameterization of the turbulent diffusion as a function of the dimensionless height above the sediment and the turbulence above the sediment-water interface. Turbulent diffusion depended strongly on the friction velocity and differed from formulations reported in the literature that are based on concepts of turbulent and developed wall-bounded flows. The dissolved oxygen microprofiles and proposed parameterization of turbulent diffusion enable a foundation for the similarity scaling of oxygen microprofiles in proximity to the sediment. The proposed scaling allows the estimation of diffusive boundary layer thickness, oxygen flux, and oxygen microprofile distribution in the near-sediment boundary layer.

  9. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China

    NASA Astrophysics Data System (ADS)

    Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue

    2007-02-01

    Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.

  10. Surficial deposits in the Bear Lake Basin

    USGS Publications Warehouse

    Reheis, Marith C.; Laabs, Benjamin J.C.; Forester, Richard M.; McGeehin, John P.; Kaufman, Darrell S.; Bright, Jordon

    2005-01-01

    Mapping and dating of surficial deposits in the Bear Lake drainage basin were undertaken to provide a geologic context for interpretation of cores taken from deposits beneath Bear Lake, which sometimes receives water and sediment from the glaciated Bear River and sometimes only from the small drainage basin of Bear Lake itself. Analyses of core sediments by others are directed at (1) constructing a high-resolution climate record for the Bear Lake area during the late Pleistocene and Holocene, and (2) investigating the sources and weathering history of sediments in the drainage basin. Surficial deposits in the upper Bear River and Bear Lake drainage basins are different in their overall compositions, although they do overlap. In the upper Bear River drainage, Quaternary deposits derived from glaciation of the Uinta Range contain abundant detritus weathered from Precambrian quartzite, whereas unglaciated tributaries downstream mainly contribute finer sediment weathered from much younger, more friable sedimentary rocks. In contrast, carbonate rocks capped by a carapace of Tertiary sediments dominate the Bear Lake drainage basin.

  11. Microbial diversity in methane hydrate-bearing deep marine sediments core preserved in the original pressure.

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Hata, T.; Nishida, H.

    2017-12-01

    In normal coring of deep marine sediments, the sampled cores are exposed to the pressure of the atmosphere, which results in dissociation of gas-hydrates and might change microbial diversity. In this study, we analyzed microbial composition in methane hydrate-bearing sediment core sampled and preserved by Hybrid-PCS (Pressure Coring System). We sliced core into three layers; (i) outside layer, which were most affected by drilling fluids, (ii) middle layer, and (iii) inner layer, which were expected to be most preserved as the original state. From each layer, we directly extracted DNA, and amplified V3-V4 region of 16S rRNA gene. We determined at least 5000 of nucleotide sequences of the partial 16S rDNA from each layer by Miseq (Illumina). In the all layers, facultative anaerobes, which can grow with or without oxygen because they can metabolize energy aerobically or anaerobically, were detected as majority. However, the genera which are often detected anaerobic environment is abundant in the inner layer compared to the outside layer, indicating that condition of drilling and preservation affect the microbial composition in the deep marine sediment core. This study was conducted as a part of the activity of the Research Consortium for Methane Hydrate Resources in Japan [MH21 consortium], and supported by JOGMEC (Japan Oil, Gas and Metals National Corporation). The sample was provided by AIST (National Institute of Advanced Industrial Science and Technology).

  12. The influence of buried nodules on the mobility of metals in deep sea sediments

    NASA Astrophysics Data System (ADS)

    Heller, Christina; Kuhn, Thomas

    2017-04-01

    Hydrothermal fluids can extract significant amounts of heat from oceanic lithosphere by lateral fluid flow through permeable basaltic crust of an age of up to 65 Ma. Fluid recharge and discharge occur at basement outcrops in between impermeable pelagic deep sea sediments. Recharge of oxic seawater causes upward oxygen diffusion into sediments overlying the permeable basalt in areas proximal to recharge sites. It is suggested that this oxygen has a strong impact on sediments and Mn-nodules during fluid exposure time. The aim of this study is to investigate if/how fluid flow through oceanic crust influence the distribution and element budget of Mn-nodules. Nodules occur widespread at the seafloor of the Clarion-Clipperton Zone (CCZ) in the equatorial North Pacific and were analyzed in many studies worldwide. Nodules buried in the deep sea sediments could be found only rarely (von Stackelberg, 1997, Geol. Soc. Spec. Publ., 119: 153-176). High resolution side-scan sonar recordings (unpublished Data BGR Hannover) indicate that there exist a coherent layer of nodules buried in the sediments of the working area. During the expedition SO 240/FLUM nodules were found on the sediment surface in 4200 to 4300 m water depth as well as in the sediment down to 985 cm below seafloor. In general, nodules consist of different nm- to µm-thick, dense and porous layers. The geochemical composition of bulk nodules and single nodule layers were determined by XRF, ICP-MS/OES, XRD and by high resolution analyses with electron microprobe and LA-ICP-MS. Dense layers have low Mn/Fe ratios (<4) and high concentrations of Co, Zr and REY, while porous layers are characterized by high Mn/Fe ratios (> 10) and high Ni+Cu and Li concentrations. The different compositions depend on different formation processes of the layers. They were formed by metal precipitation from oxic (hydrogenetic) and suboxic (diagenetic) bottom-near seawater and/or pore water (Wegorzewski and Kuhn, 2014, Mar. Geol. 357, 123-138). Preliminary results show that there are significant differences between the geochemical composition of nodules grown at sediment surface and those found within sediments. Compared to surface nodules, buried nodules are enriched in Co and W, but have lower concentration of Mo, Ba, Zn and Li. The distribution of Rare Earth Elements and Y(REY) is also different. Furthermore, the locations of the buried manganese nodules correlates with increased contents of Mn, Co and other elements in the suboxic pore water. It seems that the hydrogenetic layers of the buried nodules were dissolved and/ or recrystallized due to diagenetic processes in the sediment. As a result, a new Fe-rich layer type was formed, with Mn being released into the pore water and/or being used to form todorokite in the nodules. The mineralogical analyses of surface and buried nodules support this assumption. Until now, it couldńt be proven that the hydrothermal fluid flow in the basalts underneath the sediments has an influence on the nodule geochemistry.

  13. Gravity anomalies and associated tectonic features over the Indian Peninsular Shield and adjoining ocean basins

    NASA Astrophysics Data System (ADS)

    Mishra, D. C.; Arora, K.; Tiwari, V. M.

    2004-02-01

    A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW-SE, NE-SW and N-S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35-40 km under the continent, which reduces to 22/20-24 km under the Bay of Bengal with thick sediments of 8-10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m 3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150-200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5-6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m 3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent-ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8-9 km with crustal layers of densities 2650 and 2870 kg/m 3 representing an oceanic crust.

  14. Hydrogeologic Framework in Three Drainage Basins in the New Jersey Pinelands, 2004-06

    USGS Publications Warehouse

    Walker, Richard L.; Reilly, Pamela A.; Watson, Kara M.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the New Jersey Pinelands Commission, began a multi-phase hydrologic investigation in 2004 to characterize the hydrologic system supporting the aquatic and wetland communities of the New Jersey Pinelands area (Pinelands). The Pinelands is an ecologically diverse area in the southern New Jersey Coastal Plain underlain by the Kirkwood-Cohansey aquifer system. The demand for ground water from this aquifer system is increasing as local development increases. To assess the effects of ground-water withdrawals on Pinelands stream and wetland water levels, three drainage basins were selected for detailed hydrologic assessments, including the Albertson Brook, McDonalds Branch and the Morses Mill Stream basins. Study areas were defined surrounding the three drainage basins to provide sub-regional hydrogeologic data for the ground-water flow modeling phase of this study. In the first phase of the hydrologic assessments, a database of hydrogeologic information and a hydrogeologic framework model for each of the three study areas were produced. These framework models, which illustrate typical hydrogeologic variations among different geographic subregions of the Pinelands, are the structural foundation for predictive ground-water flow models to be used in assessing the hydrologic effects of increased ground-water withdrawals. During 2004-05, a hydrogeologic database was compiled using existing and new geophysical and lithologic data including suites of geophysical logs collected at 7 locations during the drilling of 21 wells and one deep boring within the three study areas. In addition, 27 miles of ground-penetrating radar (GPR) surface geophysical data were collected and analyzed to determine the depth and extent of shallow clays in the general vicinity of the streams. On the basis of these data, the Kirkwood-Cohansey aquifer system was divided into 7 layers to construct a hydrogeologic framework model for each study area. These layers are defined by their predominant sediment textures as aquifers and leaky confining layers. The confining layer at the base of the Kirkwood-Cohansey aquifer system, depending on location, is defined as one of two distinct clays of the Kirkwood Formation. The framework models are described using hydrogeologic sections, maps of structure tops of layers, and thickness maps showing variations of sediment textures of the various model layers. The three framework models are similar in structure but unique to their respective study areas. The hydraulic conductivity of the Kirkwood-Cohansey aquifer system in the vicinity of the three study areas was determined from analysis of 16 slug tests and 136 well-performance tests. The mean values for hydraulic conductivity in the three study areas ranged from about 84 feet per day to 130 feet per day. With the exception of the basal confining layers, the variable and discontinuous nature of clay layers within the Kirkwood-Cohansey aquifer system was confirmed by the geophysical and lithologic records. Leaky confining layers and discontinuous clays are generally more common in the upper part of the aquifer system. Although the Kirkwood-Cohansey aquifer system generally has been considered a water-table aquifer in most areas, localized clays in the aquifer layers and the effectiveness of the leaky confining layers may act to impede the flow of ground water in varying amounts depending on the degree of confinement and the location, duration, and magnitude of the hydraulic stresses applied. Considerable variability exists in the different sediment textures. The extent to which this hydrogeologic variability can be characterized is constrained by the extent of the available data. Thus, the hydraulic properties of the modeled layers were estimated on the basis of available horizontal hydraulic conductivity data and the range of sediment textures estimated from geophysical and lithologic data.

  15. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    NASA Astrophysics Data System (ADS)

    Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.

    2018-03-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to correct these low false turbidity measurements and accurately measure turbidity.

  16. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David; Griffiths, Ronald

    2018-01-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to correct these low false turbidity measurements and accurately measure turbidity.

  17. Comparison of recent sedimentation patterns in Mondsee and Hallstätter See (Upper Austria) and implications for palaeoflood reconstructions in the Eastern European Alps

    NASA Astrophysics Data System (ADS)

    Lauterbach, Stefan; Kämpf, Lucas; Swierczynski, Tina; Tjallingii, Rik; Brauer, Achim

    2017-04-01

    Rainfall-triggered flood events represent one of the most serious societal and economic threats in Central Europe. Nevertheless, the thorough assessment of this hazard is still limited by the restricted knowledge about the long-term spatio-temporal recurrence patterns and complex climatic trigger mechanisms of extreme flood events. As instrumental and documentary flood time series rarely exceed a few hundred years, long and precisely dated palaeoflood records from natural archives, e.g. lake sediments, offer an excellent opportunity to gain important information about long-term flood dynamics. This can improve the understanding of flood occurrence under different climatic boundary conditions as well as flood-generating processes and thus allow a more reliable assessment of future flood scenarios. However, the spatial coverage of lake sediment palaeoflood records across Europe is still limited and individual lakes are very heterogeneous in their sedimentological response and sensitivity to flooding. It therefore remains questionable whether single lake sediment palaeoflood records are representative on a larger spatial scale. Investigating adjacent lakes in terms of their individual flood response can therefore (1) help to improve the understanding of key hydro-climatological variables and lake internal processes, both controlling flood layer deposition, and (2) allow to assess the completeness and representativeness of single palaeoflood records, particularly with regard to different flood seasonality. Here we present first data from a project aiming at establishing a new palaeoflood record for the Eastern Alps by investigating the sediments of Hallstätter See in the Calcareous Alps of Upper Austria. These are compared with results from adjacent Mondsee (ca. 35 km to the northwest), located at the northern fringe of the Calcareous Alps. The recent sediments from these two lakes have been investigated with respect to their reflection of large flood events by using detailed sediment microfacies analysis on large-scale thin sections and high-resolution µ-XRF scanning. The depositional environment in Hallstätter See is mainly controlled by seasonally variable and largely runoff-triggered input of allochthonous clastic-detrital material by the Traun River, a major tributary of the Danube. In consequence, the sediments reveal a complex cm- to sub-mm-scale lamination, reflecting detrital input by frequent individual runoff events that are not necessarily extreme floods. This largely contrasts the depositional environment in Mondsee, where detrital material delivered through the relatively small tributaries is intercalated within the regular endogenic calcite varves only during major flood events. This comparison highlights that both lake systems are very different in their response to flooding, depending on catchment geology and morphology, tributary characteristics as well as flood seasonality. Hence, even for lakes in the same climatic domain, the comparison of resulting palaeoflood records is not necessarily straightforward since every lake sediment record only reflects certain aspects of regional flood history, strongly influenced by the individual characteristics of the lake system.

  18. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model

    USGS Publications Warehouse

    Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G.

    2008-01-01

    We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The coupled model is applicable for fluvial, estuarine, shelf, and nearshore (surfzone) environments. Three-dimensional radiation-stress terms have been included in the momentum equations, along with effects of a surface wave roller model. The sediment-transport algorithms are implemented for an unlimited number of user-defined non-cohesive sediment classes. Each class has attributes of grain diameter, density, settling velocity, critical stress threshold for erosion, and erodibility constant. Suspended-sediment transport in the water column is computed with the same advection-diffusion algorithm used for all passive tracers and an additional algorithm for vertical settling that is not limited by the CFL criterion. Erosion and deposition are based on flux formulations. A multi-level bed framework tracks the distribution of every size class in each layer and stores bulk properties including layer thickness, porosity, and mass, allowing computation of bed morphology and stratigraphy. Also tracked are bed-surface properties including active-layer thickness, ripple geometry, and bed roughness. Bedload transport is calculated for mobile sediment classes in the top layer. Bottom-boundary layer submodels parameterize wave-current interactions that enhance bottom stresses and thereby facilitate sediment transport and increase bottom drag, creating a feedback to the circulation. The model is demonstrated in a series of simple test cases and a realistic application in Massachusetts Bay. 

  19. Analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek (ID-111-006), Big Jacks Creek (ID-111-007C), Duncan Creek (ID-111-0007B), and Upper Deep Creek (ID-111-044) Wilderness Study Areas, Owyhee County, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, M.S.; Gent, C.A.; Bradley, L.A.

    1989-01-01

    A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho

  20. The paleogeographic significance of Aquilapollenites occurrence in Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Asrar M.; Srivastava, Satish K.

    2006-12-01

    The occurrence of the genus Aquilapollenites in Upper Cretaceous and Neogene sediments of northwestern Pakistan is reported here. Aquilapollenites amplus, Aquilapollenites reductus, and Aquilapollenites sp. occur in the Maastrichtian palynomorph assemblage from an outcrop sample of the Mir Ali section, northern Waziristan. Aquilapollenites medeis in the Neogene Murgha Faqir Zai Formation of the Pishin Basin, Balochistan, is considered a reworked Cretaceous specimen. The Upper Cretaceous sediments of the Asian plate on the Tethys margin are considered to be the source of Aquilapollenites spp. in these samples.

  1. Characterization of heavy-metal-contaminated sediment by using unsupervised multivariate techniques and health risk assessment.

    PubMed

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Wang, Sheng-Wei

    2015-03-01

    This study characterized the sediment quality of the severely contaminated Erjen River in Taiwan by using multivariate analysis methods-including factor analysis (FA), self-organizing maps (SOMs), and positive matrix factorization (PMF)-and health risk assessment. The SOMs classified the dataset with similar heavy-metal-contaminated sediment into five groups. FA extracted three major factors-traditional electroplating and metal-surface processing factor, nontraditional heavy-metal-industry factor, and natural geological factor-which accounted for 80.8% of the variance. The SOMs and FA revealed the heavy-metal-contaminated-sediment hotspots in the middle and upper reaches of the major tributary in the dry season. The hazardous index value for health risk via ingestion was 0.302. PMF further qualified the source apportionment, indicating that traditional electroplating and metal-surface-processing industries comprised 47% of the health risk posed by heavy-metal-contaminated sediment. Contaminants discharged from traditional electroplating and metal-surface-processing industries in the middle and upper reaches of the major tributary must be eliminated first to improve the sediment quality in Erjen River. The proposed assessment framework for heavy-metal-contaminated sediment can be applied to contaminated-sediment river sites in other regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Evolution of sediment plumes in the Chesapeake bay and implications of climate variability.

    PubMed

    Zheng, Guangming; DiGiacomo, Paul M; Kaushal, Sujay S; Yuen-Murphy, Marilyn A; Duan, Shuiwang

    2015-06-02

    Fluvial sediment transport impacts fisheries, marine ecosystems, and human health. In the upper Chesapeake Bay, river-induced sediment plumes are generally known as either a monotonic spatial shape or a turbidity maximum. Little is known about plume evolution in response to variation in streamflow and extreme discharge of sediment. Here we propose a typology of sediment plumes in the upper Chesapeake Bay using a 17 year time series of satellite-derived suspended sediment concentration. On the basis of estimated fluvial and wind contributions, we define an intermittent/wind-dominated type and a continuous type, the latter of which is further divided into four subtypes based on spatial features of plumes, which we refer to as Injection, Transport, Temporary Turbidity-Maximum, and Persistent Turbidity-Maximum. The four continuous types exhibit a consistent sequence of evolution within 1 week to 1 month following flood events. We also identify a "shift" in typology with increased frequency of Turbidity-Maximum types before and after Hurricane Ivan (2004), which implies that extreme events have longer-lasting effects upon estuarine suspended sediment than previously considered. These results can serve as a diagnostic tool to better predict distribution and impacts of estuarine suspended sediment in response to changes in climate and land use.

  3. A Spatially Distributed Conceptual Model for Estimating Suspended Sediment Yield in Alpine catchments

    NASA Astrophysics Data System (ADS)

    Costa, Anna; Molnar, Peter; Anghileri, Daniela

    2017-04-01

    Suspended sediment is associated with nutrient and contaminant transport in water courses. Estimating suspended sediment load is relevant for water-quality assessment, recreational activities, reservoir sedimentation issues, and ecological habitat assessment. Suspended sediment concentration (SSC) along channels is usually reproduced by suspended sediment rating curves, which relate SSC to discharge with a power law equation. Large uncertainty characterizes rating curves based only on discharge, because sediment supply is not explicitly accounted for. The aim of this work is to develop a source-oriented formulation of suspended sediment dynamics and to estimate suspended sediment yield at the outlet of a large Alpine catchment (upper Rhône basin, Switzerland). We propose a novel modelling approach for suspended sediment which accounts for sediment supply by taking into account the variety of sediment sources in an Alpine environment, i.e. the spatial location of sediment sources (e.g. distance from the outlet and lithology) and the different processes of sediment production and transport (e.g. by rainfall, overland flow, snowmelt). Four main sediment sources, typical of Alpine environments, are included in our model: glacial erosion, hillslope erosion, channel erosion and erosion by mass wasting processes. The predictive model is based on gridded datasets of precipitation and air temperature which drive spatially distributed degree-day models to simulate snowmelt and ice-melt, and determine erosive rainfall. A mass balance at the grid scale determines daily runoff. Each cell belongs to a different sediment source (e.g. hillslope, channel, glacier cell). The amount of sediment entrained and transported in suspension is simulated through non-linear functions of runoff, specific for sediment production and transport processes occurring at the grid scale (e.g. rainfall erosion, snowmelt-driven overland flow). Erodibility factors identify different lithological units, while the distance from the outlet is accounted for by including sediment wave velocities. The model is calibrated and validated on the basis of continuous turbidity data measured at the outlet of the basin. In addition, SSC data measured twice per week since 1964 are used to evaluate the performance of the model over longer time scales. Our predictive model is shown to reproduce SSC dynamics of the upper Rhône basin satisfactorily. The model accounts for the spatial distribution of sediment sources (location and processes of erosion and transport) and their activation/deactivation throughout the hydrological year. Therefore, it can reproduce the effects of changes in climate on sediment fluxes. In particular, we show that observed changes in SSC in the upper Rhône basin during the last 40 years are likely a consequence of increased air temperatures in this period and the consequent acceleration of glacial erosion.

  4. Stabilizing Effects of Bacterial Biofilms: EPS Penetration and Redistribution of Bed Stability Down the Sediment Profile

    NASA Astrophysics Data System (ADS)

    Chen, X. D.; Zhang, C. K.; Zhou, Z.; Gong, Z.; Zhou, J. J.; Tao, J. F.; Paterson, D. M.; Feng, Q.

    2017-12-01

    Biofilms, consisting of microorganisms and their secreted extracellular polymeric substances (EPSs), serve as "ecosystem engineers" stabilizing sedimentary environments. Natural sediment bed provides an excellent substratum for biofilm growth. The porous structure and rich nutrients allow the EPS matrix to spread deeper into the bed. A series of laboratory-controlled experiments were conducted to investigate sediment colonization of Bacillus subtilis and the penetration of EPS into the sediment bed with incubation time. In addition to EPS accumulation on the bed surface, EPS also penetrated downward. However, EPS distribution developed strong vertical heterogeneity with a much higher content in the surface layer than in the bottom layer. Scanning electron microscope images of vertical layers also displayed different micromorphological properties of sediment-EPS matrix. In addition, colloidal and bound EPSs exhibited distinctive distribution patterns. After the full incubation, the biosedimentary beds were eroded to test the variation of bed stability induced by biological effects. This research provides an important reference for the prediction of sediment transport and hence deepens the understanding of the biologically mediated sediment system and broadens the scope of the burgeoning research field of "biomorphodynamics."

  5. Biostratigraphic sequence analysis of two Lower Miocene to Pliocene sections, Eastern Falcon, Northwestern Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz De Gamero, M.L.; Giffuni, G.; Castro Mora, M.

    1993-02-01

    The eastern region of the Falcon Basin in northwestern Venezuela comprises a thick sedimentary sequence deposited from a deep marine bathyal to neritic environment, ranging in age from the Middle Eocene to the Pliocene. A detailed biostratigraphic study (foraminifera and calcareous nannoplankton) was carried out in two sedimentary sequences outcropping in Cumarebo and Piritu, adjacent areas of eastern Falcon, representing: platform, slope and basinal settings. The Cumarebo section is continuous in the studied interval, from the Middle Miocene to the Pliocene. The Piritu section is continuous from the Lower to the lower Upper Miocene, terminating unconformably beneath a thin intervalmore » of middle Pliocene platform sediments, indicating tectonism during the latest Miocene. The sequence stratigraphical interpretation was based on the biostratigraphic analysis of the benthic and planktonic fossils, facies distribution and sedimentological data. Systems tracts, sequence boundaries and maximum flooding surfaces from cycles TB2.4 to TB3.5 of the cycle chart were identified. In the Cumarebo section, the upper Middle and Upper Miocene is mostly composed of shales, with some turbiditic sands belonging to a LSW system tract. The upper most Miocene contains a thick carbonate buildup (HST), and it is overlain by a Pliocene section that shallows upward from upper slope to outer shelf depositional environments. In the basinal (Piritu) section, most of the sediments are deep-water shales belonging to a LSW system tract, with some turbiditic sands in the upper Lower Miocene. TST and HST sediments, with scattered carbonate buildups in the upper Middle Miocene were also identified.« less

  6. Advanced Water Quality Modelling in Marine Systems: Application to the Wadden Sea, the Netherlands

    NASA Astrophysics Data System (ADS)

    Boon, J.; Smits, J. G.

    2006-12-01

    There is an increasing demand for knowledge and models that arise from water management in relation to water quality, sediment quality (ecology) and sediment accumulation (ecomorphology). Recently, models for sediment diagenesis and erosion developed or incorporated by Delft Hydraulics integrates the relevant physical, (bio)chemical and biological processes for the sediment-water exchange of substances. The aim of the diagenesis models is the prediction of both sediment quality and the return fluxes of substances such as nutrients and micropollutants to the overlying water. The resulting so-called DELWAQ-G model is a new, generic version of the water and sediment quality model of the DELFT3D framework. One set of generic water quality process formulations is used to calculate process rates in both water and sediment compartments. DELWAQ-G involves the explicit simulation of sediment layers in the water quality model with state-of-the-art process kinetics. The local conditions in a water layer or sediment layer such as the dissolved oxygen concentration determine if and how individual processes come to expression. New processes were added for sulphate, sulphide, methane and the distribution of the electron-acceptor demand over dissolved oxygen, nitrate, sulphate and carbon dioxide. DELWAQ-G also includes the dispersive and advective transport processes in the sediment and across the sediment-water interface. DELWAQ-G has been applied for the Wadden Sea. A very dynamic tidal and ecologically active estuary with a complex hydrodynamic behaviour located at the north of the Netherlands. The predicted profiles in the sediment reflect the typical interactions of diagenesis processes.

  7. Mercury Cycling in Sediments of the Northeast Pacific Continental Margin Between Southern California and Central Oregon, USA

    NASA Astrophysics Data System (ADS)

    Heim, W. A.; Coale, K. H.; Chiswell, H.; Olson, A.; Martenuk, S.; Bonnema, A.; Weiss-Penzias, P. S.

    2017-12-01

    Monomethylmercury (MMHg) production by anaerobic bacteria in sediments is considered to be a dominate source of MMHg to sediments and overlying surface water in the coastal environment. In this study, we measured total mercury (Hgt) and MMHg sediment and pore water concentrations and calculated diffusive sediment water exchange fluxes in samples collected on the coastal shelf in the California Current System. Sediment cores and overlying water were collected from 20 stations using a slow-entry multi-corer deployed during 4 oceanographic cruises over two years. The upper few centimeters of undisturbed cores were sectioned at the following depth increments: 0.5, 1, 1.5, 2, 3, 4, 5 cm. Pore waters were extracted via centrifugation and the Hgt and MMHg gradients were used to calculate fluxes into the overlying water column based upon molecular diffusion alone. Sediment concentrations for Hgt and MMHg ranged from 50 to 2338 pmoles g-1 and 0.1 to 9 pmoles g-1 respectively. Pore water and overlying water MMHg concentrations ranged from 0.1 to 2.2 pM and 0.03 to 0.3 pM respectively. Diffusional Hgt and MMHg sediment water fluxes ranged from 1.4 to 7.3 pmoles m-2 d-1 and -0.03 to 1.7 pmoles m-2 d-1 respectively. While the gradients in MMHg showed significant and widespread flux that would indicate an input into the waters of the shelf these fluxes were insufficient to sustain elevated concentrations at the sediment boundary layer, or at the depth of the shelf in general. Measurements made on the northwestern Atlantic shelf are in general an order of magnitude greater than those observed here. We suggest that the narrow eastern shelf of the California Current with little allochthonous inputs contrasts sharply with the broad shelf of the Eastern Seaboard with significant organic carbon, riverine and anthropogenic inputs. In general, the narrow shelf of the California Current seems to reflect the pelagic processes of the off shore regions for this element where water column production predominates the formation of the methylated forms.

  8. Late-Quaternary glacial to postglacial sedimentation in three adjacent fjord-lakes of the Québec North Shore (eastern Canadian Shield)

    NASA Astrophysics Data System (ADS)

    Poiré, Antoine G.; Lajeunesse, Patrick; Normandeau, Alexandre; Francus, Pierre; St-Onge, Guillaume; Nzekwe, Obinna P.

    2018-04-01

    High-resolution swath bathymetry imagery allowed mapping in great detail the sublacustrine geomorphology of lakes Pentecôte, Walker and Pasteur, three deep adjacent fjord-lakes of the Québec North Shore (eastern Canada). These sedimentary basins have been glacio-isostatically uplifted to form deep steep-sided elongated lakes. Their key geographical position and limnogeological characteristics typical of fjords suggest exceptional potential for long-term high-resolution paleoenvironmental reconstitutions. Acoustic subbottom profiles acquired using a bi-frequency Chirp echosounder (3.5 & 12 kHz), together with cm- and m-long sediment core data, reveal the presence of four acoustic stratigraphic units. The acoustic basement (Unit 1) represents the structural bedrock and/or the ice-contact sediments of the Laurentide Ice Sheet and reveals V-shaped bedrock valleys at the bottom of the lakes occupied by ice-loaded sediments in a basin-fill geometry (Unit 2). Moraines observed at the bottom of lakes and in their structural valleys indicate a deglaciation punctuated by short-term ice margin stabilizations. Following ice retreat and their isolation, the fjord-lakes were filled by a thick draping sequence of rhythmically laminated silts and clays (Unit 3) deposited during glaciomarine and/or glaciolacustrine settings. These sediments were episodically disturbed by mass-movements during deglaciation due to glacial-isostatic rebound. AMS 14C dating reveal that the transition between deglaciation of the lakes Pentecôte and Walker watersheds and the development of para- and post-glacial conditions occurred around 8000 cal BP. The development of the lake-head river delta plain during the Holocene provided a constant source of fluvial sediment supply to the lakes and the formation of turbidity current bedforms on the sublacustrine delta slopes. The upper sediment succession (i.e., ∼4-∼6.5 m) consists of a continuous para-to post-glacial sediment drape (Unit 4) that contains laminated and massive sediment and series of Rapidly Deposited Layers. These results allow establishing a conceptual model of how a glaciated coastal fjord evolves during and after deglaciation in a context of rapid glacio-isostatically induced forced regression.

  9. Levels and mass burden of DDTs in sediments from fishing harbors: the importance of DDT-containing antifouling paint to the coastal environment of China.

    PubMed

    Lin, Tian; Hu, Zhaohui; Zhang, Gan; Li, Xiangdong; Xu, Weihai; Tang, Jianhui; Li, Jun

    2009-11-01

    DDT remains an important type of persistent organic pollutant (POP) in the environment of China. One of the current applications of DDT in China has been through antifouling paint for fishing ships as an active component. It has been estimated that approximately 5000 t of DDT was released into the Chinese coastal environment during the last two decades. Therefore, sediments in coastal fishing harbors of China may be the important sinks of DDT. In this study, DDT and its metabolites in 58 sediment samples from nine typical fishing harbors along the coastal line of China were characterized to assess their accumulation levels, sediment burdens, and potential ecological risks. The concentrations of DDTs ranged from 9 to 7350 ng/g dry weight, which were generally 1-2 orders of magnitude higher than those of the adjacent estuarine/marine sediments. The high concentrations of DDT coupled with the lower concentrations of HCH and TOC clearly indicated a strong local DDT input, i.e., DDT-containing antifouling paint, within the fishing harbors. A significant correlation between the total DDT concentrations and p,p'-DDT concentrations further confirmed the existence of fresh DDT input. The overall burden of DDTs within the upper 10 cm sediment layer in the fishing harbors of the Pearl River Delta, southern China, was estimated to be 1.0-5.7 t, which was several times higher than the DDT accumulation in the surface sediment of the Pearl River estuary. The concentrations of DDTs in the fishing harbor sediments significantly exceeded the sediment quality guidelines on the basis of adverse biological effects. The absence or low concentrations of p,p'-DDD in aquatic organisms and human may imply that either p,p'-DDD may be less bioaccumulated by fish and human, or is biotransformed to other metabolites. A national ban of DDT as an additive to antifouling paint was implemented in 2009 in China; however, the legacy high DDT burden in the coastal fishing harbors needs further monitoring and proper management.

  10. 3D model of radionuclide dispersion in coastal areas with multifraction cohesive and non-cohesive sediments

    NASA Astrophysics Data System (ADS)

    Brovchenko, Igor; Maderich, Vladimir; Jung, Kyung Tae

    2015-04-01

    We developed new radionuclide dispersion model that may be used in coastal areas, rivers and estuaries with non-uniform distribution of suspended and bed sediments both cohesive and non-cohesive types. Model describes radionuclides concentration in dissolved phase in water column, particulated phase on suspended sediments on each sediment class types, bed sediments and pore water. The transfer of activity between the water column and the pore water in the upper layer of the bottom sediment is governed by diffusion processes. The phase exchange between dissolved and particulate radionuclides is written in terms of desorption rate a12 (s-1) and distribution coefficient Kd,iw and Kd,ib (m3/kg) for water column and for bottom deposit, respectively. Following (Periáñez et al., 1996) the dependence of distribution coefficients is inversely proportional to the sediment particle size. For simulation of 3D circulation, turbulent diffusion and wave fields a hydrostatic model SELFE (Roland et. al. 2010) that solves Reynolds-stress averaged Navier-Stokes (RANS) equations and Wave Action transport equation on the unstructured grids was used. Simulation of suspended sediment concentration and bed sediments composition is based on (L. Pinto et. al., 2012) approach that originally was developed for non-cohesive sediments. In present study we modified this approach to include possibility of simulating mixture of cohesive and non-cohesive sediments by implementing parameterizations for erosion and deposition fluxes for cohesive sediments and by implementing flocculation model for determining settling velocity of cohesive flocs. Model of sediment transport was calibrated on measurements in the Yellow Sea which is shallow tidal basin with strongly non-uniform distribution of suspended and bed sediments. Model of radionuclide dispersion was verified on measurements of 137Cs concentration in surface water and bed sediments after Fukushima Daiichi nuclear accident. References Periáñez, R. Abril, J.M., Garcia-Leon, M. (1996). Modelling the dispersion of non-conservative radionuclides in tidal waters'Part 1: conceptual and mathematical model. Journal of Environmental Radioactivity 31 (2), 127-141 Roland, A., Y. J. Zhang, H. V. Wang, Y. Meng, Y.-C. Teng, V. Maderich, I. Brovchenko, M. Dutour-Sikiric, and U. Zanke (2012), A fully coupled 3D wave-current interaction model on unstructured grids, J. Geophys. Res., 117, C00J33 Pinto L., Fortunato A.B., Zhang Y., Oliveira A., Sancho F.E.P. (2012) Development and validation of a three-dimensional morphodynamic modelling system for non-cohesive sediments, Ocean Modell., (57-58), 1-14

  11. Heat flow through a basaltic outcrop on a sedimented young ridge flank

    NASA Astrophysics Data System (ADS)

    Wheat, C. Geoffrey; Mottl, Michael J.; Fisher, Andrew T.; Kadko, David; Davis, Earl E.; Baker, Edward

    2004-12-01

    One hundred seven thermal gradients were measured in shallow surface sediments using the submersible Alvin within a 0.5 km2 area on and around the 65-m-high, mostly sediment-covered Baby Bare outcrop located on the eastern flank of the Juan de Fuca Ridge. Heat flow values range from 0.35 W m-2, which is close to the average value (0.27 W m-2) for the sediment-buried 3.5-Myr-old crust surrounding the outcrop, to as high as 490 W m-2. Some measurements are purely conductive, whereas others are consistent with upward fluid seepage through this sediment layer. Highest heat flow values are found roughly 10 m below the summit along a ridge-parallel fault where shimmering water, springs, and communities of clams were found. Heat flow values surrounding a second fault are elevated to a lesser extent (maximum of 9.2 W m-2). The total power output from this 0.5 km2 area is 1.5 MW, about 10 times greater than the conductive power output predicted for a commensurate area of 3.5-Myr crust. Much of this heat loss is conductive (˜84%), consistent with an independent estimate of the convective heat flux from Rn/heat anomalies in spring fluids and in the water column above the springs. Calculations suggest that the 64°C isotherm, which is the temperature in the surrounding upper crust, is <20 m below the summit, corresponding to a height that is 30 m above the surrounding turbidite plain. These elevated fluid temperatures at shallow depths provide thermal buoyance to drive seafloor seepage from the outcrop.

  12. Magnetostratigraphy of cave sediments, Wyandotte Ridge, Crawford County, southern Indiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pease, P.P.; Gomez, B.; Schmidt, V.A.

    1992-01-01

    The field polarities of 42 sediment samples obtained from 21 sites in Wyandotte Cave, and five smaller satellite caves in Wyandotte Ridge, southern Indiana, have been determined and correlated with magnetostratigraphic data from Mammoth Cave, Kentucky. In Wyandotte Cave sediment samples obtained between 137 m and 162 m in elevation possessed a normal field polarity, while samples obtained between 168 m and 171 m exhibited a field reversal. The reversal was interpreted to represent the most recent polarity change, dating the sediment fill and the end of the active period of the upper level of Wyandotte Cave at ca 0.788more » Ma. There is a temporal correlation between the active period of the upper level in Wyandotte Cave and the C-level in Mammoth Cave, which lies at a similar elevation. Such a correlation is most likely a consequence of the contemporaneous abandonment of passages in the two cave systems during the early Pleistocene reconstruction of the Ohio River system, which acts as the base level control in both caves. Samples from two caves near the top of Wyandotte Ridge, located between elevations of 236 m and 241 m, exhibited a normal polarity. These caves are located at a higher elevation than any of the sample sites in Mammoth Cave and their location suggests that the fill predates sediments from that system. It appears most likely that the fill in these caves is a minimum of ca 2.48 Ma. old and correlates with the residuum of the upper Mitchell Plain surface, not with the fill in the upper (A- or B-levels) in Mammoth Cave.« less

  13. Late Quaternary glaciation of the Upper Soca River Region (Southern Julian Alps, NW Slovenia)

    USGS Publications Warehouse

    Bavec, Milos; Tulaczyk, Slawek M.; Mahan, Shannon; Stock, Gregory M.

    2004-01-01

    Extent of Late Quaternary glaciers in the Upper Soc??a River Region (Southern Julian Alps, SE Europe) has been analyzed using a combination of geological mapping, glaciological modeling, and sediment dating (radiocarbon, U/Th series and Infrared Stimulated Luminescence-IRSL). Field investigations focused mainly on relatively well preserved Quaternary sequences in the Bovec Basin, an intramontane basin located SW of the Mediterranean/Black Sea divide and surrounded by mountain peaks reaching from approximately 2100 up to 2587 m a.s.l. Within the Basin we recognized two Late Quaternary sedimentary assemblages, which consist of the same facies association of diamictons, laminated lacustrine deposits and sorted fluvial sediments. Radiocarbon dating of the upper part of the lake sediments sequence (between 12790??85 and 5885??60 14C years b.p.) indicates that the younger sedimentary assemblage was deposited during the last glacial maximum and through early Holocene (Marine Isotope Stage 21, MIS 2-1). Sediment ages obtained for the older assemblage with U/Th and IRSL techniques (between 154.74??22.88 and 129.93??7.90 ka b.p. for selected samples) have large errors but both methods yield results consistent with deposition during the penultimate glacial-interglacial transition (MIS 6-5). Based on analyses of field data combined with glaciological modeling, we argue that both sediment complexes formed due to high sediment productivity spurred by paraglacial conditions with glaciers present in the uplands around the Bovec Basin but not extending down to the basin floor. Our study shows that the extent and intensity of direct glacial sedimentation by Late Quaternary glaciers in the region was previously significantly overestimated. ?? 2004 Elsevier B.V. All rights reserved.

  14. Channel, floodplain, and wetland responses to floods and overbank sedimentation, 1846-2006, Halfway Creek Marsh, Upper Mississippi Valley, Wisconsin

    USGS Publications Warehouse

    Fitzpatrick, F.A.; Knox, J.C.; Schubauer-Berigan, J. P.

    2009-01-01

    Conversion of upland forest and prairie vegetation to agricultural land uses, following Euro-American settlement in the Upper Mississippi River System, led to accelerated runoff and soil erosion that subsequently transformed channels, floodplains, and wetlands on bottomlands. Halfway Creek Marsh, at the junction of Halfway Creek and the Mississippi River on Wisconsin's western border, is representative of such historical transformation. This marsh became the focus of a 2005-2006 investigation by scientists from the U.S. Geological Survey, the University of Wisconsin- Madison, and the U.S. Environmental Protection Agency, who used an understanding of the historical transformation to help managers identify possible restoration alternatives for Halfway Creek Marsh. Field-scale topographic surveys and sediment cores provided data for reconstructing patterns and rates of historical overbank sedimentation in the marsh. Information culled from historical maps, aerial photographs, General Land Offi ce Survey notes, and other historical documents helped establish the timing of anthropogenic disturbances and document changes in channel patterns. Major human disturbances, in addition to agricultural land uses, included railroad and road building, construction of artifi cial levees, drainage alterations, and repeated dam failures associated with large floods. A volume of approximately 1,400,000 m3, involving up to 2 m of sandy historical overbank deposition, is stored through the upper and lower marshes and along the adjacent margins of Halfway Creek and its principal tributary, Sand Lake Coulee. The estimated overbank sedimentation rate for the entire marsh is ??3,000 m3 yr-1 for the recent period 1994-2006. In spite of reduced surface runoff and soil erosion in recent years, this recent sedimentation rate still exceeds by ??4 times the early settlement (1846-1885) rate of 700 m3 yr-1, when anthropogenic acceleration of upland surface runoff and soil erosion was beginning. The highest rate of historical bottomland sedimentation occurred from 1919 to 1936, when the estimated overbank sedimentation rate was 20,400 m3 yr- 1. This rate exceeded by nearly 30 times the 1846-1886 rate. Artifi cial levees were constructed along the upper reach of Halfway Creek in the marsh during the early twentieth century to restrict fl ooding on the adjacent bottomlands. Anomalously high overbank sedimentation rates subsequently occurred on the fl oodplain between the levees, which also facilitated more effi cient transport of sediment into the lower marsh bottomland. Although overbank sedimentation rates dropped after 1936, corresponding to the widespread adoption of soil-conservation and agricultural best-management practices, the continuation of anomalously high overbank sedimentation between the levees led to increased bank heights and development of a relatively deep channel. The deep cross-section morphology is commonly mistaken as evidence of channel incision; however, this morphology actually resulted from excessive overbank sedimentation. The historical metamorphosis of the Halfway Creek channel and riparian wetlands underscores the importance of understanding the long-term history of channel and fl oodplain evolution when restoration of channels and riparian wetlands are under consideration. Sedimentation patterns and channel morphology for Halfway Creek Marsh probably are representative of other anthropogenically altered riparian wetlands in the Upper Mississippi River System and similar landscapes elsewhere.

  15. Reconstructing Deep-Marine Sediment Gravity Flow Dynamics from Ancient Rocks: an Example from Skoorsteenberg Fm. Tanqua Karoo

    NASA Astrophysics Data System (ADS)

    Kane, I. A.; Pontén, A. S. M.; Hodgson, D.; Vangdal, B.

    2015-12-01

    The processes which create deep-marine lobes are challenging to study, owing to the depth of the lobes beneath the sea surface and the destructive nature of the sediment gravity flows which transport the sediment that builds them. One approach is to reconstruct paleohydraulics using detailed outcrop observations which can be used to build a theoretical framework for flow behavior. The Skoorsteenberg Fm., Tanqua Karoo, offers an excellent opportunity to study fine-grained deep-marine lobes in near continuous quasi-3D exposure. The spatial and stratigraphic distribution of the various facies of Fan 3 (one of the Skoorsteenberg Fm. lobe complexes) are presented. The turbidites which dominate the proximal and medial lobe areas, pass down-dip into very muddy sandstones which are here attributed to a type of transitional flow state. The model developed here suggests that turbidity currents exiting channels were large and turbulent enough to erode and entrain their substrate, increasing their concentration and clay content. As the flows decelerated they became increasingly stratified, characterised by an increasing bulk Richardson (Ri). Sand and silt particles settled together with flocculated clay, forming a cohesive, low yield-strength layer. This layer flowed in a laminar manner but settling of sand grains continued due to the low yield strength. The rising yield strength of the lower layer progressively inhibited the efficiency of vertical mixing, characterised by an increasing flux Richardson number, which, when it exceeded a critical value , led to a catastrophic collapse of the turbulent energy field and en-masse transformation of the upper part of the flow, ultimately resulting in a highly argillaceous sandstone (debrite) division. This transformation was possible due to the narrow grain size range, dominantly silt-vf sand with abundant flocculated clay, which behaved as a single phase. This model of flow evolution accounts for the presence of such beds without invoking external controls or large-scale flow partitioning, and also explains the abrupt pinchout of all divisions of these sandstones following catastrophic loss of turbulence.

  16. Water-quality, bed-sediment, and biological data (October 1992 through September 1993) and statistical summaries of water-quality data (March 1985 through September 1993) for streams in the upper Clark Fork basin, Montana

    USGS Publications Warehouse

    Lambing, John H.

    1994-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a program to characterize aquatic resources in the upper Clark Fork basin of western Montana. Water-quality data were obtained periodically at 16 stations during October 1992 through September 1993 (water year 1993); daily suspended-sediment data were obtained at six of these stations. Bed-sediment and biological data were obtained at 11 stations in August 1993. Sampling stations were located on the Clark Fork and major tributaries. The primary constituents analyzed were trace elements associated with mine tailings from historic mining and smelting activities. Water-quality data include concentra- tions of major ions, trace elements, and suspended sediment in samples collected periodically during water year 1993. A statistical summary of water- quality data is provided for the period of record at each station since 1985. Daily values of streamflow, suspended-sediment concentration, and suspended-sediment discharge are given for six stations. Bed-sediment data include trace- element concentrations in the fine and bulk fractions. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota.

  17. Geologic aspects of the surficial aquifer in the upper East Coast planning area, Southeast Florida

    USGS Publications Warehouse

    Miller, Wesley L.

    1980-01-01

    The Upper East Coast Planning Area, as designated by the South Florida Water Management District, consists of St. Lucie County, Martin County, and eastern Okeechobee County. The surficial aquifer is the main source of freshwater for agricultural and urban uses in the area. The geologic framework of the aquifer is displayed by contour mapping and lithologic cross sections to provide water managers with a better understanding of the natural restraints that may be imposed on future development. The surficial aquifer is primarily sand, limestone, shell, silt, and clay deposited during the Pleistocene and Pliocene Epochs. The aquifer is unconfined and under water-table conditions in most of the area, but locally, artesian conditions exits where discontinuous clay layers act as confining units. Impermeable and semipermeable clays and marls of the Tamiami (lower Pliocene) and Hawthorn Formations (Miocene) unconformably underlie the surficial aquifer and form its base. Contour lines showing the altitude of the base of the aquifer indicate extensive erosion of the Miocene sediments prior to deposition of the aquifer materials. (USGS)

  18. Human footprints in Central Mexico older than 40,000 years

    NASA Astrophysics Data System (ADS)

    González, Silvia; Huddart, David; Bennett, Matthew R.; González-Huesca, Alberto

    2006-02-01

    The timing, route and origin of the first colonization to the Americas remains one of the most contentious topics in human evolution. A number of migration routes have been suggested and there are different views as to the antiquity of the earliest human occupation. Some believe that settlement happened as early as 30 ka BP, but most of the currently accepted early sites in North America date to the latest Pleistocene, related to the expansion of the Clovis culture, while the oldest directly radiocarbon dated human remains are 11.5 ka BP. In this context new evidence is presented in this paper, in the form of human footprints preserved in indurated volcanic ash, to suggest that Central Mexico was inhabited as early as over 40 ka BP. Human and animal footprints have been found within the upper bedding surfaces of the Xalnene volcanic ash layer that outcrops in the Valsequillo Basin, south of Puebla, Mexico. This ash layer was produced by a subaqueous monogenetic volcano erupting within a palaeo-lake, dammed by lava within the Valsequillo Basin during the Pleistocene. The footprints were formed during low stands in lake level along the former shorelines and indicate the presence of humans, deer, canids, big felids, and probably camels and bovids. The footprints were buried by ash and lake sediments as lake levels rose and transgressed across the site. The ash has been dated to at least 40 ka BP by OSL dating of incorporated, baked lake sediments.

  19. Runoff and sediment yield from proxy records: Upper Animas Creek Basin, New Mexico

    Treesearch

    W. R. Osterkamp

    1999-01-01

    Analyses of water- and sediment-yield records from the Walnut Gulch Experimental Watershed, the San Simon Wash Basin, and the Jornada Experimental Range, combined with observations of regional variations in climate, geology and soils, vegetation, topography, fire frequency, and land-use history, allow estimates of present conditions of water and sediment discharges in...

  20. The mountain-lowland debate: deforestation and sediment transport in the upper Ganga catchment.

    PubMed

    Wasson, R J; Juyal, N; Jaiswal, M; McCulloch, M; Sarin, M M; Jain, V; Srivastava, P; Singhvi, A K

    2008-07-01

    The Himalaya-Gangetic Plain region is the iconic example of the debate about the impact on lowlands of upland land-use change. Some of the scientific aspects of this debate are revisited by using new techniques to examine the role of deforestation in erosion and river sediment transport. The approach is whole-of-catchment, combining a history of deforestation with a history of sediment sources from well before deforestation. It is shown that deforestation had some effect on one very large erosional event in 1970, in the Alaknanda subcatchment of the Upper Ganga catchment, but that both deforestation and its effects on erosion and sediment transport are far from uniform in the Himalaya. Large magnitude erosional events occur for purely natural reasons. The impact on the Gangetic Plain of erosion caused by natural events and land cover change remains uncertain.

Top